National Library of Energy BETA

Sample records for gas producing areas

  1. Produce diesel from gas

    SciTech Connect (OSTI)

    Singleton, A.H.; Regier, S.

    1983-05-01

    The Gulf Badger process converts natural gas directly to hydrocarbon liquids by a catalytic chemical route. Fischer-Tropsch process--which is a carbon monoxide polymerization/ hydrogenation process--is used. Because the process is exothermal, heat removal by either tubular fixed bed, fluidized bed, or slurry are considered. A wax build up of high molecular weight material is removed by hydro-stripping two-bed system. The demonstration plant flow diagram shows the process to be: natural gas is compressed, recycled with CO/sub 2/, sulfur is removed in a zinc oxide drum, CO is removed in amine scrubbers, H/sub 2//CO ratio is adjusted to produce a hydrogen rich stream, and stabilization and distribution follow. A monitoring system using computers is part of the demonstration unit.

  2. Number of Producing Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    Producing Gas Wells Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2009 2010 2011 2012 2013 2014 View History U.S. 493,100 487,627 514,637 482,822 484,994 514,786 1989-2014 Alabama 6,913 7,026 7,063 6,327 6,165 6,118 1989-2014 Alaska 261 269 277 185 159 170 1989-2014 Arizona 6 5 5 5 5 5 1989-2014 Arkansas 6,314 7,397 8,388 8,538 9,843 10,150 1989-2014 California 1,643 1,580 1,308 1,423 1,335 1,118 1989-2014

  3. How is shale gas produced? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How is shale gas produced? How is shale gas produced? How is shale gas produced? (3.81 MB) More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary Shale Gas Development Challenges: Fracture Fluids

  4. Adaptive control system for gas producing wells

    SciTech Connect (OSTI)

    Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko

    2015-03-10

    Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.

  5. Renewable Natural Gas - Producer Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DAVID ROSS MANAGING DIRECTOR MULTIGEN INTERNATIONAL, LLC Your Economic Onsite Energy Solution Bioenergy 2015: Opportunities in a Changing Energy Landscape Renewable Natural Gas - Developer Perspective Overview  MultiGen International  Biogas  Anaerobic Digestion  Biogas Upgrade Technologies  Development Risk  Recommendations MultiGen International, LLC MultiGen International (MGI) - is a project development company focused on solving waste issues using commercial technologies

  6. ADVANCED STRIPPER GAS PRODUCED WATER REMEDIATION

    SciTech Connect (OSTI)

    Harry Bonner; Roger Malmquist

    2003-11-01

    Natural gas and oil production from stripper wells also produces water contaminated with hydrocarbons, and in most locations, salts and trace elements. The hydrocarbons are not generally present in concentrations that allow the operator to economically recover these liquids. Produced liquids, (Stripper Gas Water) which are predominantly water, present the operator with two options; purify the water to acceptable levels of contaminates, or pay for the disposal of the water. The project scope involves testing SynCoal as a sorbent to reduce the levels of contamination in stripper gas well produced water to a level that the water can be put to a productive use. Produced water is to be filtered with SynCoal, a processed sub-bituminous coal. It is expected that the surface area of and in the SynCoal would sorb the hydrocarbons and other contaminates and the effluent would be usable for agricultural purposes. Test plan anticipates using two well locations described as being disparate in the level and type of contaminates present. The loading capacity and the rate of loading for the sorbent should be quantified in field testing situations which include unregulated and widely varying liquid flow rates. This will require significant flexibility in the initial stages of the investigation. The scope of work outlined below serves as the guidelines for the testing of SynCoal carbon product as a sorbent to remove hydrocarbons and other contaminants from the produced waters of natural gas wells. A maximum ratio of 1 lb carbon to 100 lbs water treated is the initial basis for economic design. While the levels of contaminants directly impact this ratio, the ultimate economics will be dictated by the filter servicing requirements. This experimental program was intended to identify those treatment parameters that yield the best technological practice for a given set of operating conditions. The goal of this research was to determine appropriate guidelines for field trials by

  7. Solid fuel volatilization to produce synthesis gas

    DOE Patents [OSTI]

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.

    2014-07-29

    A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.

  8. Method of producing a high pressure gas

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Zollinger, William T.

    2006-07-18

    A method of producing a high pressure gas is disclosed and which includes providing a container; supplying the container with a liquid such as water; increasing the pressure of the liquid within the container; supplying a reactant composition such as a chemical hydride to the liquid under pressure in the container and which chemically reacts with the liquid to produce a resulting high pressure gas such as hydrogen at a pressure of greater than about 100 pounds per square inch of pressure; and drawing the resulting high pressure gas from the container.

  9. AGA Producing Region Natural Gas in Underground Storage (Working Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 549,759 455,591 416,294 457,969 533,496 599,582 638,359 634,297 713,319 766,411 700,456 552,458 1996 369,545 263,652 195,447 224,002 279,731 339,263 391,961 474,402 578,991 638,500 562,097

  10. Particle Gas Target for High Density Laser Produced Plasmas Charles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Gas Target for High Density Laser Produced Plasmas Charles H. Skinner, Nathaniel Fisch, and Ernest Valeo This invention is a novel "particle gas" cell for achieving plasma ...

  11. Oil shale retorting with steam and produced gas

    SciTech Connect (OSTI)

    Merrill, L.S. Jr.; Wheaton, L.D.

    1991-08-20

    This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

  12. Water management technologies used by Marcellus Shale Gas Producers.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  13. ,"AGA Producing Region Underground Natural Gas Storage - All...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:23 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","AGA Producing Region Natural ...

  14. AGA Producing Region Natural Gas in Underground Storage - Change...

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas ... Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -32.80 -42.10 -53.10 -51.10 ...

  15. Method and apparatus for producing synthesis gas

    DOE Patents [OSTI]

    Hemmings, John William; Bonnell, Leo; Robinson, Earl T.

    2010-03-03

    A method and apparatus for reacting a hydrocarbon containing feed stream by steam methane reforming reactions to form a synthesis gas. The hydrocarbon containing feed is reacted within a reactor having stages in which the final stage from which a synthesis gas is discharged incorporates expensive high temperature materials such as oxide dispersed strengthened metals while upstream stages operate at a lower temperature allowing the use of more conventional high temperature alloys. Each of the reactor stages incorporate reactor elements having one or more separation zones to separate oxygen from an oxygen containing feed to support combustion of a fuel within adjacent combustion zones, thereby to generate heat to support the endothermic steam methane reforming reactions.

  16. DOE's Early Investment in Shale Gas Technology Producing Results Today |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Early Investment in Shale Gas Technology Producing Results Today DOE's Early Investment in Shale Gas Technology Producing Results Today February 2, 2011 - 12:00pm Addthis Washington, DC - A $92 million research investment in the 1970s by the U.S. Department of Energy (DOE) is today being credited with technological contributions that have stimulated development of domestic natural gas from shales. The result: more U.S. jobs, increased energy security, and higher revenues

  17. Producing Natural Gas From Shale | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas From Shale Producing Natural Gas From Shale January 26, 2012 - 12:00pm Addthis The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing nearly half of all U.S. natural gas production. | Image courtesy of the Office of Fossil Energy. The Office of Fossil

  18. Gas Sampling At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Wister Area (DOE GTP) (Redirected from Water-Gas Samples At Wister Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  19. Gas Sampling At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Wister Area (DOE GTP) Exploration Activity...

  20. Surface Gas Sampling At Lightning Dock Area (Norman & Moore,...

    Open Energy Info (EERE)

    Surface Gas Sampling At Lightning Dock Area (Norman & Moore, 2004) (Redirected from Water-Gas Samples At Lightning Dock Area (Norman & Moore, 2004)) Jump to: navigation, search...

  1. Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Colrado Area (DOE GTP) (Redirected from Water-Gas Samples At Colrado Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  2. Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Colrado Area (DOE GTP) Exploration...

  3. AGA Producing Region Natural Gas in Underground Storage - Change...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage - Change in ... Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 ...

  4. AGA Producing Region Natural Gas Total Underground Storage Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

  5. System and method for producing substitute natural gas from coal

    DOE Patents [OSTI]

    Hobbs, Raymond

    2012-08-07

    The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

  6. Modern methods wrest more gas, oil from Ukraine`s historic producing basins

    SciTech Connect (OSTI)

    Texas, L.C.; Machuzhak, M.I.; Chepily, P.M.

    1998-11-23

    The major oil and gas producing area of the Republic of Ukraine is the Dnieper-Donets basin located in the eastern part of the country. The paper describes the geology of the basin, the oil and gas accumulations, field activities, and potential for further production. The paper then discusses the Precarpathian region located in western Ukraine, its oil and gas accumulation, potential, specifications of the fluids, and future outlook.

  7. Fluidized bed method and apparatus for producing a combustible gas

    SciTech Connect (OSTI)

    Caplin, P. B.

    1984-11-13

    A combustible gas producer plant is described in which a finely divided inert particulate material fluidized bed is divided into a first, combustible-gas producing section and a second, heating section, to both of which sections fuel is fed. Heat transfer, by bed material migration, from the second to the first section sustains the reaction in the first section leading to the production of combustible gas. A diaphragm water wall divides and surrounds the volumes above bed sections and is part of a boiler generating steam used (optionally with added oxygen) to fluidize the first bed section. The steam is also used to fluidize the bed material at the boundary of the bed sections and prevent in-bed gas migration across that boundary. The second section of the bed is fluidized with air or an air/inert gas mixture. Fluidization is effected with sparge tubes and the plant may include evaporator, superheater and economizer sections for the boiler.

  8. Midwest Producing Region Natural Gas in Underground Storage - Change in

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas from Same Month Previous Year (Percent) Midwest Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Midwest Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 37.50 45.20 77.20 72.70 38.10 19.90 9.40 5.50 4.00 4.60 12.20 15.70 2016 23.70 75.90 115.20 82.90 53.00 34.90 - = No Data Reported; -- =

  9. Mountain Producing Region Natural Gas in Underground Storage - Change in

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 -4.70 13.00 35.00 41.50 36.90 27.10 22.30 18.60 16.40 14.60 18.60 22.30 2016 19.40 24.20 27.80 31.30 31.00 27.50 - = No Data Reported;

  10. Pacific Producing Region Natural Gas in Underground Storage - Change in

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas from Same Month Previous Year (Percent) Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Pacific Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 39.40 137.00 162.70 103.50 62.40 34.80 25.30 14.90 12.90 9.80 8.70 -0.90 2016 0.10 -3.90 -3.60 -2.20 -6.10 -6.00 - = No Data Reported; -- = Not

  11. East Producing Region Natural Gas in Underground Storage - Change in

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas from Same Month Previous Year (Percent) East Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) East Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 18.20 24.60 42.70 44.60 29.20 20.70 13.20 10.60 6.30 2.60 9.50 14.90 2016 18.10 42.70 82.40 49.90 23.20 14.30 - = No Data Reported; -- = Not

  12. South Central Producing Region Natural Gas in Underground Storage - Change

    U.S. Energy Information Administration (EIA) Indexed Site

    in Working Gas from Same Month Previous Year (Percent) Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) South Central Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 24.30 27.20 70.30 75.70 64.30 50.50 39.00 35.90 29.90 21.20 22.90 24.80 2016 32.10 77.60 87.90 54.60 34.30 23.30 - = No Data Reported; --

  13. Surface Gas Sampling At Lightning Dock Area (Norman, Et Al.,...

    Open Energy Info (EERE)

    Surface Gas Sampling At Lightning Dock Area (Norman, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At...

  14. Water management practices used by Fayetteville shale gas producers.

    SciTech Connect (OSTI)

    Veil, J. A.

    2011-06-03

    Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

  15. Surface Gas Sampling At Lightning Dock Area (Norman, Et Al.,...

    Open Energy Info (EERE)

    Surface Gas Sampling At Lightning Dock Area (Norman, Et Al., 2002) (Redirected from Water-Gas Samples At Lightning Dock Area (Norman, Et Al., 2002)) Jump to: navigation, search...

  16. Surface Gas Sampling At Jemez Springs Area (Goff & Janik, 2002...

    Open Energy Info (EERE)

    Jemez Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Jemez Springs Area (Goff & Janik,...

  17. Surface Gas Sampling At Valles Caldera - Redondo Area (Goff ...

    Open Energy Info (EERE)

    Redondo Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Redondo Area (Goff &...

  18. Gas Flux Sampling At Steamboat Springs Area (Lechler And Coolbaugh...

    Open Energy Info (EERE)

    Steamboat Springs Area (Lechler And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Steamboat Springs Area...

  19. Gas Flux Sampling At Desert Peak Area (Lechler And Coolbaugh...

    Open Energy Info (EERE)

    Desert Peak Area (Lechler And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Desert Peak Area (Lechler And...

  20. Gas Sampling At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area...

  1. Method for producing high surface area chromia materials for catalysis

    DOE Patents [OSTI]

    Gash, Alexander E.; Satcher, Joe; Tillotson, Thomas; Hrubesh, Lawrence; Simpson, Randall

    2007-05-01

    Nanostructured chromium(III)-oxide-based materials using sol-gel processing and a synthetic route for producing such materials are disclosed herein. Monolithic aerogels and xerogels having surface areas between 150 m.sup.2/g and 520 m.sup.2/g have been produced. The synthetic method employs the use of stable and inexpensive hydrated-chromium(III) inorganic salts and common solvents such as water, ethanol, methanol, 1-propanol, t-butanol, 2-ethoxy ethanol, and ethylene glycol, DMSO, and dimethyl formamide. The synthesis involves the dissolution of the metal salt in a solvent followed by an addition of a proton scavenger, such as an epoxide, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively.

  2. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  3. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark Scotto

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  4. AGA Producing Region Natural Gas Injections into Underground Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Producing Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 20,366 29,330 55,297 93,538 129,284 83,943 104,001 98,054 88,961 65,486 49,635 27,285 1995 24,645 25,960 57,833 78,043 101,019 100,926 77,411 54,611 94,759 84,671 40,182 33,836 1996 34,389 48,922 38,040 76,100 98,243 88,202 88,653 109,284 125,616 91,618 37,375

  5. AGA Producing Region Natural Gas Underground Storage Withdrawals (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 201,567 147,250 61,339 23,149 9,789 29,178 13,371 19,352 10,151 24,102 52,809 137,962 1995 166,242 120,089 100,955 31,916 17,279 19,712 35,082 62,364 16,966 33,762 102,735 181,097 1996 223,932 157,642 141,292 36,788 27,665 26,393 32,861 27,599 20,226 34,000 116,431 142,519 1997

  6. Surface Gas Sampling At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    Sulphur Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Sulphur...

  7. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff...

    Open Energy Info (EERE)

    Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff & Janik, 2002)...

  8. Surface Gas Sampling At International Geothermal Area Mexico...

    Open Energy Info (EERE)

    International Geothermal Area Mexico (Norman, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At International...

  9. Water-Gas Samples At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik & Goff, 2002)...

  10. Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details...

  11. Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details...

  12. Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration Activity...

  13. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby, Et Al., 1983) Exploration...

  14. Gas Flux Sampling At Lightning Dock Area (Cunniff & Bowers, 2005...

    Open Energy Info (EERE)

    2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity...

  15. Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details...

  16. Soil Gas Sampling At Chena Geothermal Area (Kolker, 2008) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Gas Sampling At Chena Geothermal Area (Kolker, 2008) Exploration Activity Details Location...

  17. Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity...

  18. Gas Flux Sampling At Kawaihae Area (Thomas, 1986) | Open Energy...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location...

  19. Surface Gas Sampling At Lassen Volcanic National Park Area (Janik...

    Open Energy Info (EERE)

    Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen...

  20. AGA Producing Region Natural Gas Underground Storage Volume (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Underground Storage Volume (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,433,462 1,329,400 1,322,914 1,388,877 1,498,496 1,553,493 1,643,445 1,714,361 1,785,350 1,819,344 1,810,791 1,716,773 1995 1,601,428 1,510,175 1,467,414 1,509,666 1,586,445 1,662,195 1,696,619 1,688,515 1,768,189 1,818,098 1,757,160 1,613,046 1996 1,436,765 1,325,994 1,223,139 1,264,513 1,334,894

  1. Attempts to Produce D2-Gas-Filled Be Shells (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Attempts to Produce D2-Gas-Filled Be Shells Citation Details In-Document Search Title: Attempts to Produce D2-Gas-Filled Be Shells We have attempted to fabricate some 0.5 mm ...

  2. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    SciTech Connect (OSTI)

    David B. Burnett

    2005-09-29

    This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally

  3. AGA Producing Region Natural Gas in Underground Storage (Base Gas) (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Base Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,039,864 1,032,160 1,033,297 1,032,517 1,037,294 1,037,338 1,038,940 1,036,193 1,037,422 1,035,931 1,035,050 1,043,103 1995 1,051,669 1,054,584 1,051,120 1,051,697 1,052,949 1,062,613 1,058,260 1,054,218 1,054,870 1,051,687 1,056,704 1,060,588 1996 1,067,220 1,062,343 1,027,692 1,040,511 1,055,164

  4. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOE Patents [OSTI]

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  5. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOE Patents [OSTI]

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  6. Process for producing dimethyl ether from synthesis gas

    DOE Patents [OSTI]

    Pierantozzi, R.

    1985-06-04

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  7. Process for producing dimethyl ether form synthesis gas

    DOE Patents [OSTI]

    Pierantozzi, Ronald

    1985-01-01

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  8. AGA Producing Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    1,689,895 1,688,206 1,865,696 2,041,963 2,126,724 2,176,332 1994-2015 Base Gas 1,087,170 1,084,178 1,084,148 1,086,406 1,088,335 1,088,465 1994-2015 Working Gas 602,725 604,028...

  9. AGA Producing Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    1,863,519 1,917,665 2,042,184 2,206,064 2,200,189 2,159,737 1994-2014 Base Gas 1,083,436 1,087,842 1,089,725 1,089,543 1,089,660 1,089,228 1994-2014 Working Gas 780,084 829,824...

  10. Exploration slack in mature areas, new producers more active

    SciTech Connect (OSTI)

    Vielvoye, R.

    1989-05-22

    This special report examines the current status of drilling, production, and refining activities, and what's being planned. Little money will be spent on exploration in most areas, but Iraq and Iran will spend billions reconstructing production and refining facilities. And some refiners in the region are anxious to expand into markets in Japan and other Far East consuming countries.

  11. Attempts to Produce D2-Gas-Filled Be Shells

    SciTech Connect (OSTI)

    Cook, B; McElfresh, M; Alford, C; Fought, E; Letts, S

    2005-01-14

    We have attempted to fabricate some 0.5 mm diameter D{sub 2}-gas-filled Be shells by coating gas-filled PVA-coated GDP mandrels with Cu-doped Be. We find that during the coating all (or most) of the gas leaks out. This is likely due to either small cracks or holes in the coating that are formed at the earliest points and are maintained during the thickness build-up of the coating, and/or to some level of intrinsic porosity in the coating. This memo documents our efforts.

  12. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011

    SciTech Connect (OSTI)

    2011-09-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  13. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

  14. Gas Sampling At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Gabbs Valley Area (DOE GTP)...

  15. Gas Sampling At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Gabbs Valley Area (DOE GTP) (Redirected from Water-Gas Samples At Gabbs Valley Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  16. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Glass Buttes Area (DOE GTP) (Redirected from Water-Gas Samples At Glass Buttes Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  17. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Glass Buttes Area (DOE GTP)...

  18. United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004

    Reports and Publications (EIA)

    2006-01-01

    This report discusses the regional and temporal trends in producing and nonproducing crude oil and natural gas reserves using the Energy Information Administration's (EIA) categorization of reserves. The report first focuses on EIA's collection and reporting of crude oil and natural gas reserves data, followed by a discussion of the natural gas reserve trends, and then the crude oil reserve trends.

  19. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the

  20. Produce More Oil Gas via eBusiness Data Sharing

    SciTech Connect (OSTI)

    Paul Jehn; Mike Stettner

    2004-09-30

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  1. NETL Collaborates with Partners to Produce Global Outlook on Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrates | Department of Energy Collaborates with Partners to Produce Global Outlook on Natural Gas Hydrates NETL Collaborates with Partners to Produce Global Outlook on Natural Gas Hydrates March 17, 2015 - 10:53am Addthis Researchers at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) were part of an international team, including the United Nations Environmental Programme (UNEP), that contributed to a newly released report explaining the prospect of gas hydrates

  2. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC

  3. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012

    SciTech Connect (OSTI)

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  4. Horizontal natural gas storage caverns and methods for producing same

    DOE Patents [OSTI]

    Russo, Anthony

    1995-01-01

    The invention provides caverns and methods for producing caverns in bedded salt deposits for the storage of materials that are not solvents for salt. The contemplated salt deposits are of the bedded, non-domed variety, more particularly salt found in layered formations that are sufficiently thick to enable the production of commercially usefully sized caverns completely encompassed by walls of salt of the formation. In a preferred method, a first bore hole is drilled into the salt formation and a cavity for receiving insolubles is leached from the salt formation. Thereafter, at a predetermined distance away from the first bore hole, a second bore hole is drilled towards the salt formation. As this drill approaches the salt, the drill assumes a slant approach and enters the salt and drills through it in a horizontal direction until it intersects the cavity for receiving insolubles. This produces a substantially horizontal conduit from which solvent is controlledly supplied to the surrounding salt formation, leaching the salt and producing a concentrated brine which is removed through the first bore hole. Insolubles are collected in the cavity for receiving insolubles. By controlledly supplying solvent, a horizontal cavern is produced with two bore holes extending therefrom.

  5. Combination gas producing and waste-water disposal well

    DOE Patents [OSTI]

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  6. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization efficiently has an

  7. Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet, April 2014 | Department of Energy Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 The University of Minnesota, Morris, in collaboration with the University of Minnesota Center for Diesel Research, Cummins Power Generation Inc., ALL Power Labs, and Hammel, Green & Abrahamson (HGA), integrated a biomass gasifier and a reciprocating engine generator

  8. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    2002-05-31

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

  9. Treating Coalbed Natural Gas Produced Water for Beneficial Use By MFI Zeolite Membranes

    SciTech Connect (OSTI)

    Robert Lee; Liangxiong Li

    2008-03-31

    Desalination of brines produced from oil and gas fields is an attractive option for providing potable water in arid regions. Recent field-testing of subsurface sequestration of carbon dioxide for climate management purposes provides new motivation for optimizing efficacy of oilfield brine desalination: as subsurface reservoirs become used for storing CO{sub 2}, the displaced brines must be managed somehow. However, oilfield brine desalination is not economical at this time because of high costs of synthesizing membranes and the need for sophisticated pretreatments to reduce initial high TDS and to prevent serious fouling of membranes. In addition to these barriers, oil/gas field brines typically contain high concentrations of multivalent counter cations (eg. Ca{sup 2+} and SO{sub 4}{sup 2-}) that can reduce efficacy of reverse osmosis (RO). Development of inorganic membranes with typical characteristics of high strength and stability provide a valuable option to clean produced water for beneficial uses. Zeolite membranes have a well-defined subnanometer pore structure and extreme chemical and mechanical stability, thus showing promising applicability in produced water purification. For example, the MFI-type zeolite membranes with uniform pore size of {approx}0.56 nm can separate ions from aqueous solution through a mechanism of size exclusion and electrostatic repulsion (Donnan exclusion). Such a combination allows zeolite membranes to be unique in separation of both organics and electrolytes from aqueous solutions by a reverse osmosis process, which is of great interest for difficult separations, such as oil-containing produced water purification. The objectives of the project 'Treating Coalbed Natural Gas Produced Water for Beneficial Use by MFI Zeolite Membranes' are: (1) to conduct extensive fundamental investigations and understand the mechanism of the RO process on zeolite membranes and factors determining the membrane performance, (2) to improve the

  10. City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility

    Broader source: Energy.gov [DOE]

    The western Colorado town of Grand Junction is fueling city vehicles with compressed natural gas (CNG) that was produced from biogas at their water treatment facility and is then shipped to a public fueling station nearby. Similar to other wastewater treatment and manufacturing facilities, Grand Junction’s Persigo Plant uses an anaerobic digester to break down organic matter in the sewage and produces bio-methane gas as a byproduct. The bio-methane gas is then cleaned and treated to meet transportation fuel quality standards.

  11. Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff &...

    Open Energy Info (EERE)

    Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Redirect page Jump to: navigation, search REDIRECT Surface Gas Sampling At Fenton Hill Hdr Geothermal...

  12. Partial oxidation process for producing a stream of hot purified gas

    DOE Patents [OSTI]

    Leininger, Thomas F.; Robin, Allen M.; Wolfenbarger, James K.; Suggitt, Robert M.

    1995-01-01

    A partial oxidation process for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H.sub.2, CO, CO.sub.2, H.sub.2 O, CH.sub.4, NH.sub.3, HCl, HF, H.sub.2 S, COS, N.sub.2, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N.sub.2 and H.sub.2. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000.degree. F.

  13. Partial oxidation process for producing a stream of hot purified gas

    DOE Patents [OSTI]

    Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

    1995-03-28

    A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

  14. June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    SciTech Connect (OSTI)

    2011-10-01

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

  15. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect (OSTI)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with

  16. Ion transport membrane reactor systems and methods for producing synthesis gas

    SciTech Connect (OSTI)

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  17. July 2010 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    SciTech Connect (OSTI)

    2011-01-01

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis was conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analysis. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. An additional water sample was collected from well 29-6 Water Hole for analysis of tritium and gamma-emitting radionuclides. A duplicate produced water sample was collected from well 30-039-21743.

  18. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    SciTech Connect (OSTI)

    Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

    2005-12-01

    An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

  19. Oil- and gas-in-place assessment under geological uncertainty, Jobal-Zuron area, Guarico subbasin, central Venezuela

    SciTech Connect (OSTI)

    Martinez, G.

    1989-03-01

    Oil- and gas-in-place assessment has been a major problem in the evaluation of the Jobal-Zuron area of the Guarico subbasin of the Eastern Venezuela basin. The area is now undergoing an integrated appraisal in order to determine its economic viability for supplying the Venezuelan domestic gas market. The area has been known as a gas producer from the Miocene Chaguaramas Formation. Currently stated reserves are estimated at 21.7 million bbl of condensate and 313.8 billion ft/sup 3/ of gas; daily production is 23 million ft/sup 3/ of gas from nine wells. Recent tests and appaisals would increase reserves to 60 million bbl of condensate and 888.6 billion ft/sup 3/ of gas and daily production up to 4.2 million ft/sup 3/ of gas per well. Although the Venezuelan domestic gas market is increasing, the Jobal-Zuron area is still lacking deep geological and reserve definition. The area is, geologically speaking, one of the most complex in Venezuela from both the stratigraphic and structural points of view. The Guarico subbasin was tectonically very active during the upper Miocene-Pliocene; compaction and diagenesis are the main factors affecting porosity.

  20. Water-Gas Samples At Long Valley Caldera Area (Goff & Janik,...

    Open Energy Info (EERE)

    Area (Goff & Janik, 2002) Redirect page Jump to: navigation, search REDIRECT Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Retrieved from "http:...

  1. Gas Flux Sampling At Brady Hot Springs Area (Lechler And Coolbaugh...

    Open Energy Info (EERE)

    Brady Hot Springs Area (Lechler And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Brady Hot Springs Area...

  2. Gas Flux Sampling At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area...

  3. Characterization of gas targets for laser produced extreme ultraviolet plasmas with a Hartmann-Shack sensor

    SciTech Connect (OSTI)

    Peth, Christian; Kranzusch, Sebastian; Mann, Klaus; Vioel, Wolfgang

    2004-10-01

    A table top extreme ultraviolet (EUV)-source was developed at Laser-Laboratorium Goettingen for the characterization of optical components and sensoric devices in the wavelength region from 11 to 13 nm. EUV radiation is generated by focusing the beam of a Q-switched Nd:YAG laser into a pulsed xenon gas jet. Since a directed gas jet with a high number density is needed for an optimal performance of the source, conical nozzles with different cone angles were drilled with an excimer laser to produce a supersonic gas jet. The influence of the nozzle geometry on the gas jet was characterized with a Hartmann-Shack wave front sensor. The deformation of a planar wave front after passing the gas jet was analyzed with this sensor, allowing a reconstruction of the gas density distribution. Thus, the gas jet was optimized resulting in an increase of EUV emission by a factor of two and a decrease of the plasma size at the same time.

  4. Plasma-produced phase-pure cuprous oxide nanowires for methane gas sensing

    SciTech Connect (OSTI)

    Cheng, Qijin Zhang, Fengyan; Yan, Wei; Randeniya, Lakshman; Ostrikov, Kostya

    2014-03-28

    Phase-selective synthesis of copper oxide nanowires is warranted by several applications, yet it remains challenging because of the narrow windows of the suitable temperature and precursor gas composition in thermal processes. Here, we report on the room-temperature synthesis of small-diameter, large-area, uniform, and phase-pure Cu{sub 2}O nanowires by exposing copper films to a custom-designed low-pressure, thermally non-equilibrium, high-density (typically, the electron number density is in the range of 10{sup 11}10{sup 13}?cm{sup ?3}) inductively coupled plasmas. The mechanism of the plasma-enabled phase selectivity is proposed. The gas sensors based on the synthesized Cu{sub 2}O nanowires feature fast response and recovery for the low-temperature (?140?C) detection of methane gas in comparison with polycrystalline Cu{sub 2}O thin film-based gas sensors. Specifically, at a methane concentration of 4%, the response and the recovery times of the Cu{sub 2}O nanowire-based gas sensors are 125 and 147?s, respectively. The Cu{sub 2}O nanowire-based gas sensors have a potential for applications in the environmental monitoring, chemical industry, mining industry, and several other emerging areas.

  5. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    SciTech Connect (OSTI)

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  6. Convergence of natural gas and electricity industries means change, opportunity for producers in the U. S

    SciTech Connect (OSTI)

    Dar, V.K. Jefferson Gas Systems Inc., Arlington, VA )

    1995-03-13

    The accelerating deregulation of natural gas and electricity distribution is the third and most powerful wave of energy deregulation coursing through North America. The first wave (1978--92) provided the impetus for sculpting competitive markets in energy production. The second (1986--95) is now breaking to fashion competitive bulk logistical and wholesale consumption markets through open access on and unbundling of gas pipeline and storage capacity and high voltage transmission capacity. The third wave, the deregulation of gas and electric retail markets through open access and nondiscriminatory, unbundled local gas and electric distribution tariffs, began in the early 1990s. It will gather momentum for the next 5 years and crest at the turn of the century, affecting and molding almost $300 billion/year in retail energy sales. The transformation will have these strategic implications: (1) the convergent evolution of the gas and electric industries; (2) severe margin compression along the energy value chain from wellhead to busbar to the distribution pipes and wires; and (3) the rapid emergency of cyberspace retailing of energy products and services. The paper discusses merchant plants, convergence and producers, capital flows, producer federations, issues of scale, and demand, margins, and value.

  7. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prices using spot prices from producing areas, plus an allowance for interstate natural gas pipeline and local distribution company charges to transport the gas to market. Such a...

  8. ,"AGA Producing Region Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","AGA Producing Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","12/2014" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016"

  9. ,"AGA Producing Regions Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Regions Natural Gas Underground Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","AGA Producing Regions Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","12/2014" ,"Release Date:","08/31/2016" ,"Next Release

  10. Method for increasing the calorific value of gas produced by the in situ combustion of coal

    DOE Patents [OSTI]

    Shuck, Lowell Z.

    1978-01-01

    The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

  11. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

    2012-03-20

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε{sub Sr}{sup SW} = +13.8 to +41.6, where ε{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  12. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§ Karl T. Schroeder,§ and Harry M. Edenborn

    2012-02-24

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  13. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys

    SciTech Connect (OSTI)

    Muth, Thomas R; Yamamoto, Yukinori; Frederick, David Alan; Contescu, Cristian I; Chen, Wei; Lim, Yong Chae; Peter, William H; Feng, Zhili

    2013-01-01

    ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  14. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  15. Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  16. Surface Gas Sampling At Lightning Dock Area (Norman & Moore,...

    Open Energy Info (EERE)

    David I. Norman, Joseph Moore (2004) Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For Geothermal Exploration Additional References Retrieved from "http:...

  17. Washington Metropolitan Area Transit Authority: Compressed Natural Gas Transit Bus Evaluation

    SciTech Connect (OSTI)

    Chandler, K.; Eberts, E.; Melendez, M.

    2006-04-01

    Evaluates compressed natural gas (CNG) powered transit buses at Washington Metropolitan Area Transit Authority (WMATA), providing a comparison between them and standard diesel transit buses.

  18. Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

  19. Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Exploration...

  20. Gas Sampling At Rye Patch Area (DOE GTP, 2011) | Open Energy...

    Open Energy Info (EERE)

    2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye...

  1. Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity...

  2. Gas Flux Sampling At Mccoy Geothermal Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location...

  3. Gas Sampling At Black Warrior Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Black Warrior Area (DOE GTP) Exploration Activity Details Location Black...

  4. Gas Flux Sampling At Black Warrior Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Black Warrior Area (DOE GTP) Exploration Activity Details Location...

  5. Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity...

  6. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    SciTech Connect (OSTI)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  7. Study on systems based on coal and natural gas for producing dimethyl ether

    SciTech Connect (OSTI)

    Zhou, L.; Hu, S.Y.; Chen, D.J.; Li, Y.R.; Zhu, B.; Jin, Y.

    2009-04-15

    China is a coal-dependent country and will remain so for a long time. Dimethyl ether (DME), a potential substitute for liquid fuel, is a kind of clean diesel motor fuel. The production of DME from coal is meaningful and is studied in this article. Considering the C/H ratios of coal and natural gas (NG), the cofeed (coal and NG) system (CFS), which does not contain the water gas shift process, is studied. It can reduce CO{sub 2} emission and increase the conversion rate of carbon, producing more DME. The CFS is simulated and compared with the coal-based and NG-based systems with different recycling ratios. The part of the exhaust gas that is not recycled is burned, producing electricity. On the basis of the simulation results, the thermal efficiency, economic index, and CO{sub 2} emission ratio are calculated separately. The CFS with a 100% recycling ratio has the best comprehensive evaluation index, while the energy, economy, and environment were considered at the same time.

  8. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Donald F. Duttlinger; E. Lance Cole

    2003-12-15

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback confirms that producers are taking action with the

  9. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  10. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    2001-05-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. PTTC's Board made a strategic decision to relocate the Headquarters (HQ) office from Washington, DC to Houston, Texas. Driving force behind relocation was to better connect with independent producers, but cost savings could also be realized. Relocation was accomplished in late December 2000, with the HQ office being fully operational by January 2001. Early indications are that the HQ relocation is, in fact, enabling better networking with senior executives of independents in the Houston oil community. New Board leadership, elected in March 2001, will continue to effectively guide PTTC.

  11. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    1999-10-31

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  12. Proceedings of the 1999 Oil and Gas Conference: Technology Options for Producer Survival

    SciTech Connect (OSTI)

    None available

    2000-04-12

    The 1999 Oil & Gas Conference was cosponsored by the U.S. Department of Energy (DOE), Office of Fossil Energy, Federal Energy Technology Center (FETC) and National Petroleum Technology Office (NPTO) on June 28 to 30 in Dallas, Texas. The Oil & Gas Conference theme, Technology Options for Producer Survival, reflects the need for development and implementation of new technologies to ensure an affordable, reliable energy future. The conference was attended by nearly 250 representatives from industry, academia, national laboratories, DOE, and other Government agencies. Three preconference workshops (Downhole Separation Technologies: Is it Applicable for Your Operations, Exploring and developing Naturally Fractured Low-Permeability Gas Reservoirs from the Rocky Mountains to the Austin Chalk, and Software Program Applications) were held. The conference agenda included an opening plenary session, three platform sessions (Sessions 2 and 3 were split into 2 concurrent topics), and a poster presentation reception. The platform session topics were Converting Your Resources Into Reserves (Sessions 1 and 2A), Clarifying Your Subsurface Vision (Session 2B), and High Performance, Cost Effective Drilling, Completion, Stimulation Technologies (Session 3B). In total, there were 5 opening speakers, 30 presenters, and 16 poster presentations.

  13. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    SciTech Connect (OSTI)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  14. Soil Gas Sampling At Kilauea East Rift Geothermal Area (Cox,...

    Open Energy Info (EERE)

    the ground in the Lower East Rift Zone were measured using alpha particle sensitive cellulose nitrate films. The survey was successful in defining an area of geothermal...

  15. Development of Large Area Gas Electron Multiplier Detector and...

    Office of Scientific and Technical Information (OSTI)

    While the important next step was the development of large area (1m x 1m) GEM planes, we also have looked into opportunities of applying this technology to precision tracking ...

  16. Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    deviations from expected ratios. One well was also found to have an abnormally high sulfate concentration. All three wells are located in the same general area and are sampling...

  17. Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report

    SciTech Connect (OSTI)

    1997-06-01

    The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

  18. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control

    DOE Patents [OSTI]

    Orosa, John; Montgomery, Matthew

    2014-02-11

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

  19. In situ gasification process for producing product gas enriched in carbon monoxide and hydrogen

    DOE Patents [OSTI]

    Capp, John P.; Bissett, Larry A.

    1978-01-01

    The present invention is directed to an in situ coal gasification process wherein the combustion zone within the underground coal bed is fed with air at increasing pressure to increase pressure and temperature in the combustion zone for forcing product gases and water naturally present in the coal bed into the coal bed surrounding the combustion zone. No outflow of combustion products occurs during the build-up of pressure and temperature in the combustion zone. After the coal bed reaches a temperature of about 2000.degree. F and a pressure in the range of about 100-200 psi above pore pressure the airflow is terminated and the outflow of the combustion products from the combustion zone is initiated. The CO.sub.2 containing gaseous products and the water bleed back into the combustion zone to react endothermically with the hot carbon of the combustion zone to produce a burnable gas with a relatively high hydrogen and carbon monoxide content. About 11 to 29 percent of the gas recovered from the combustion zone is carbon monoxide which is considerably better than the 4 to 10 percent carbon monoxide obtained by employing previously known coal gasification techniques.

  20. [Inspection of gas cylinders in storage at TA-54, Area L]. Volume 2, Final report

    SciTech Connect (OSTI)

    1994-06-23

    ERC sampled, analyzed, and rcontainerized when necessary gas cylinders containing various chemicals in storage at LANL TA-54 Area L. This report summarizes the operation. This is Volume 2 of five volumes.

  1. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S.

  2. Oil and gas developments in South America, Central America, Carribbean area, and Mexico in 1981

    SciTech Connect (OSTI)

    Deal, C.S.

    1982-11-01

    Petroleum developments in 1981 continued in the pattern of recent years of increasing exploration and exploitation in response to the second catastrophic surge in crude oil prices thrust on the world economy in 1979. Production of crude oil increased in Argentina, Brazil, Chile, Colombia, Guatemala, and Mexico, whereas Venezuela, Trinidad, Peru, and Bolivia experienced declines. Exploratory surveys, exploratory drilling, and development drilling all increased in most of the countries reporting. Significant successful exploratory drilling is reported for several countries. In Argentina, the producing zone of the Austral basin has been extended farther offshore, and is reportedly productive in what is apparently the upper Malvinas basin. In Brazil, extensions to several producing areas are reported in the Campos basin. Also, the Jurua gas province of western Amazonas reportedly had an encouraging extension. Colombia had several discoveries in the Magdalena basins, but the 2 Llanos discoveries are considered much more significant. For a variety of reasons, several countries have undertaken or are undertaking changes in laws and regulations to attract foreign companies into exploration risk ventures. In some countries, exploitation ventures are also offered.

  3. Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas

    DOE Patents [OSTI]

    Durai-Swamy, Kandaswamy

    1982-01-01

    In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

  4. Sedimentary and tectonic controls on oil occurrences in the traditional producing area, Barinas Subbasin, Western Venezuela

    SciTech Connect (OSTI)

    Daal, J.; Martinez, G.; Salas, J. )

    1996-01-01

    A Stratigraphic and Tectonic model explains the oil-field locations in the Traditional Producing Area of the Barinas Subbasin, Western Venezuela. The database for the model includes a 585-km[sup 2] 3-D seismic survey, as well as petrophysical, lithologic and biostratigraphic data from Cretaceous and Tertiary sediments. A long-term relative sea level rise from Albian through Campanian (Cretaceous) time, coincident with passive-margin basin subsidence, resulted in onlap of marginal marine sands and marine-shelf limestones and shales over crystalline metamorphic rocks of the Guayana Shield Basement. Facies changes in the Cretaceous Aguardiente, Escandalosa, and Navay Formations are related mainly to eustatic sea level changes. A tectonic pulse deformed these sediments in Late Maastrichtian to Paleocene time. An erosional unconformity that developed atop this deformed Cretaceous section relates to tectonic uplift and not to sea-level change. Onlap of Middle Eocene marine transgressive Gobernador Fm. sands and Masparrito Fm. limestones over this unconformity was driven by increased tectonic subsidence. Accelerated tectonic subsidence drowned the Masparrito carbonate platform and led to deposition of a condensed section within the lower Paguey Formation; this condensed section marks a tectonic Maximum Flooding Surface not related to eustatic sea level change. After deposition of the Eocene Paguey, and just prior to deposition of the Oligo-Miocene Parangula Formation, a second tectonic event reactivated older faults and led to growth of structural traps for Cretaceous and Eocene reservoirs. Both tectonic and eustatic events have combined to control oil occurrence in the Barinas Subbasin.

  5. Sedimentary and tectonic controls on oil occurrences in the traditional producing area, Barinas Subbasin, Western Venezuela

    SciTech Connect (OSTI)

    Daal, J.; Martinez, G.; Salas, J.

    1996-12-31

    A Stratigraphic and Tectonic model explains the oil-field locations in the Traditional Producing Area of the Barinas Subbasin, Western Venezuela. The database for the model includes a 585-km{sup 2} 3-D seismic survey, as well as petrophysical, lithologic and biostratigraphic data from Cretaceous and Tertiary sediments. A long-term relative sea level rise from Albian through Campanian (Cretaceous) time, coincident with passive-margin basin subsidence, resulted in onlap of marginal marine sands and marine-shelf limestones and shales over crystalline metamorphic rocks of the Guayana Shield Basement. Facies changes in the Cretaceous Aguardiente, Escandalosa, and Navay Formations are related mainly to eustatic sea level changes. A tectonic pulse deformed these sediments in Late Maastrichtian to Paleocene time. An erosional unconformity that developed atop this deformed Cretaceous section relates to tectonic uplift and not to sea-level change. Onlap of Middle Eocene marine transgressive Gobernador Fm. sands and Masparrito Fm. limestones over this unconformity was driven by increased tectonic subsidence. Accelerated tectonic subsidence drowned the Masparrito carbonate platform and led to deposition of a condensed section within the lower Paguey Formation; this condensed section marks a tectonic Maximum Flooding Surface not related to eustatic sea level change. After deposition of the Eocene Paguey, and just prior to deposition of the Oligo-Miocene Parangula Formation, a second tectonic event reactivated older faults and led to growth of structural traps for Cretaceous and Eocene reservoirs. Both tectonic and eustatic events have combined to control oil occurrence in the Barinas Subbasin.

  6. DOE - Fossil Energy: A Brief Overview of How Natural Gas is Produced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Often, both oil and gas flow to the surface from the same underground formation. Like oil ... Almost always, some type of pumping system will be required to extract the gas present in ...

  7. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Unconventional Oil and Gas Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Offshore Safety and Spill Prevention Unconventional Oil and Gas ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Unconventional Oil and Gas Chapter 7: Technology Assessments Executive Summary The United States will, for the foreseeable future, continue to rely heavily upon oil and natural gas to support our economy, national security, and energy security. Given the increasing reliance on unconventional oil and gas (UOG) resources,

  8. Increasing Gas Hydrate Formation Temperature for Desalination of High Salinity Produced Water with Secondary Guests

    SciTech Connect (OSTI)

    Cha, Jong-Ho; Seol, Yongkoo

    2013-10-07

    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  9. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Natural Gas Delivery Infrastructure Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Offshore Safety and Spill Prevention Unconventional Oil and Gas ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Natural Gas Delivery Infrastructure Chapter 7: Technology Assessments Introduction and Background The U.S. natural gas delivery system is an extensive network composed of over 315,000 miles of transmission pipeline and over 2.1 million miles of distribution mains. 1 In 2015, this system moved over 25 trillion cubic feet

  10. Oil and gas development in the United States in the early 1990`s: An expanded role for independent producers

    SciTech Connect (OSTI)

    1995-10-01

    Since 1991, the major petroleum companies` foreign exploration and development expenditures have exceeded their US exploration and development expenditures. The increasing dependence of US oil and gas development on the typically much smaller nonmajor companies raises a number of issues. Did those companies gain increased prominence largely through the reduced commitments of the majors or have they been significantly adding to the US reserve base? What are the characteristics of surviving and growing producers compared with companies exiting the US oil and gas business? Differences between majors` development strategies and those of other US oil and gas producers appear considerable. As the mix of exploration and development strategies in US oil and gas increasingly reflects the decisions of smaller, typically more specialized producers, what consequences can be seen regarding the costs of adding to US reserves? How are capital markets accessed? Are US oil and gas investments by the nonmajors likely to be undertaken only with higher costs of capital? This report analyzes these issues. 20 figs., 6 tabs.

  11. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOE Patents [OSTI]

    McCormick, Steve H.; Pigott, William R.

    1997-01-01

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area.

  12. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOE Patents [OSTI]

    McCormick, S.H.; Pigott, W.R.

    1997-12-30

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area. 3 figs.

  13. Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    Broader source: Energy.gov [DOE]

    Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

  14. Soil gas survey in the geothermal area of Bolsena Lake (Vulsini Mts. , central Italy)

    SciTech Connect (OSTI)

    Corazza, E.; Magro, G.; Ceccarelli, A. ); Pieri, S.; Rossi, U. )

    1993-06-01

    A soil gas survey has been carried out in the Vulsini Mts. volcanic area, around Bolsena Lake, with the objective of testing the reliability of this geochemical method for geothermal exploration. The thermal gradients is high all over the area; the He/Ne ratio, and He, CO[sub 2], and H[sub 2] concentrations have been determined in 259 samples. Compared with its surroundings, this area exhibits an overall positive CO[sub 2] anomaly, but the distribution of diffusive gases (He and H[sub 2]) allows one to distinguish three different sectors around the lake: (1) a northern sector with high CO[sub 2], and H[sub 2]/CO[sub 2], He/CO[sub 2], and He/Ne ratios close to the background value; (2) a south-eastern sector, characterized by the presence of cold fumaroles, with high He, H[sub 2], CO[sub 2] and He/Ne, and generally low H[sub 2]/CO[sub 2] and He/CO[sub 2] spots. Permeability is assumed to the main factor controlling the differences between the above three sectors. In sector 1, the flysch (1 km thick) is intruded by a great number of sills and dikes, and the underlying limestones are completely metamorphosed into marbles; CO[sub 2] is the late stage of a heavy degassing process. Sector 2 includes several volcanic spatter cones along the tectonic trends; the high permeability allows the deep gases to be ducted with minor changes. Sector 3 is an elongated strip with an anti-Apennine trend; diffusion of H[sub 2] only is the result of the thick (>3 km) unaltered flysch cover. In sector 3 the underground outflow of the lake through shallow volcanics entrains large quantities of air and masks any deep gases; the few anomalous spots reproduce situations like that of sector 2. One of these spots is located near a producing well tapping the geothermal reservoir.

  15. Integrated exploration strategy for locating areas capable of high gas rate cavity completion in coalbed methane reservoirs

    SciTech Connect (OSTI)

    Klawitter, A.L.; Hoak, T.E.; Decker, A.D.

    1995-10-01

    In 1993, the San Juan Basin accounted for approximately 605 Bcf of the 740 Bcf of all coalbed gas produced in the United States. The San Juan {open_quotes}cavitation fairway{close_quotes} in which production occurs in open-hole cavity completions, is responsible for over 60% of all U.S. coalbed methane production. Perhaps most striking is the fact that over 17,000 wells had penetrated the Fruitland formation in the San Juan Basin prior to recognition of the coalbed methan potential. To understand the dynamic cavity fairway reservoir in the San Juan Basin, an exploration rationale for coalbed methan was developed that permits a sequential reduction in total basin exploration area based on four primary exploration criteria. One of the most significant criterion is the existence of thick, thermally mature, friable coals. A second criterion is the existence of fully gas-charged coals. Evaluation of this criterion requires reservoir geochemical data to delineate zones of meteoric influx where breaching has occurred. A third criterion is the presence of adequate reservoir permeability. Natural fracturing in coals is due to cleating and tectonic processes. Because of the general relationship between coal cleating and coal rank, coal cleating intensity can be estimated by analysis of regional coal rank maps. The final criterion is determining whether natural fractures are open or closed. To make this determination, remote sensing imagery interpretation is supported by ancillary data compiled from regional tectonic studies. Application of these four criteria to the San Juan Basin in a heuristic, stepwise process resulted in an overall 94% reduction in total basin exploration area. Application of the first criterion reduced the total basin exploration area by 80%. Application of the second criterion further winnows this area by an addition 9%. Application of the third criterion reduces the exploration area to 6% of the total original exploration area.

  16. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect (OSTI)

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  17. Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas

    Broader source: Energy.gov [DOE]

    Project objectives: To validate and realize the potential for the production of low temperature resource geothermal production on oil & gas sites. Test and document the reliability of this new technology.; Gain a better understanding of operational costs associated with this equipment.

  18. SEP Success Story: City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility

    Broader source: Energy.gov [DOE]

    The City of Grand Junction built a 5-mile underground pipeline to transport compressed natural gas (CNG) from a local wastewater treatment facility to a CNG station using a grant from the Colorado Department of Local Affairs and seed funding from the Energy Department's State Energy Program.

  19. Geologic, geochemical, and geographic controls on NORM in produced water from Texas oil, gas, and geothermal reservoirs. Final report

    SciTech Connect (OSTI)

    Fisher, R.

    1995-08-01

    Water from Texas oil, gas, and geothermal wells contains natural radioactivity that ranges from several hundred to several thousand Picocuries per liter (pCi/L). This natural radioactivity in produced fluids and the scale that forms in producing and processing equipment can lead to increased concerns for worker safety and additional costs for handling and disposing of water and scale. Naturally occurring radioactive materials (NORM) in oil and gas operations are mainly caused by concentrations of radium-226 ({sup 226}Ra) and radium-228 ({sup 228}Ra), daughter products of uranium-238 ({sup 238}U) and thorium-232 ({sup 232}Th), respectively, in barite scale. We examined (1) the geographic distribution of high NORM levels in oil-producing and gas-processing equipment, (2) geologic controls on uranium (U), thorium (Th), and radium (Ra) in sedimentary basins and reservoirs, (3) mineralogy of NORM scale, (4) chemical variability and potential to form barite scale in Texas formation waters, (5) Ra activity in Texas formation waters, and (6) geochemical controls on Ra isotopes in formation water and barite scale to explore natural controls on radioactivity. Our approach combined extensive compilations of published data, collection and analyses of new water samples and scale material, and geochemical modeling of scale Precipitation and Ra incorporation in barite.

  20. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    SciTech Connect (OSTI)

    Shen, Z.; Chen, Y.; Haghshenas, M.; Nguyen, T.; Galloway, J.; Gerlich, A.P.

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  1. Oil and gas developments in South Africa, Central America, Caribbean Area, and Mexico in 1984

    SciTech Connect (OSTI)

    Tappmeyer, D.M.

    1985-10-01

    For the 25 countries described in the region, exploration activity continued to be centered in proven petroleum provinces in 1984. Exploration activity increased in Brazil, Colombia, and Venezuela. Important, successful exploration efforts continued in areas around Cano Limon field in Colombia, and Guafita and La Victoria fields in Venezuela. Notable discoveries in South America included the 42-46-1X San Martin Cretaceous discovery by Shell in the Ucayali basin in Peru, the significant oil and gas discovery at Palmar Largo ES-1 by YPF in Argentina, and the first offshore gas discovery, the Pecten 1-SPS-20 wildcat in the Santo basin in Brazil. Oil production increased in Barbados, Brazil, Colombia, Ecuador, Mexico, Peru, Trinidad and Tobago, and Venezuela. A notable increase (40%) in oil production occurred in Brazil. Gas production increased in Argentina, Barbados, Colombia, Peru, and Trinidad and Tobago. 8 figures, 8 tables.

  2. Oil and gas developments in South America, Central America, Caribbean Area, and Mexico in 1982

    SciTech Connect (OSTI)

    Deal, C.S.

    1983-10-01

    Petroleum developments in the region in 1982 had a more varied pattern than in 1981 when all aspects were upbeat with varying degrees of increases. In 1982, Brazil, Mexico, and Guatemala had striking increases in oil production; Bolivia, Chile, and Colombia had moderate increases; and Argentina, Trinidad, and Venezuela reported declines. In exploration, Argentina reported several additional offshore Tierra del Fuego discoveries in the Cretaceous Springhill and 2 more encouraging gas discoveries in the Noroeste basin. Bolivia reported an oil discovery from Silurian rocks more generally considered a gas objective. Brazil extended and confirmed the Western Amazonas gas area with 2 discoveries. Colombia added 2 more spectacular oil discoveries in the Llanos basin to follow up 2 similar finds in 1981. Several countries reported that discoveries have increased the national reserves of hydrocarbons. Considering the social, political, and economic problems in several countries, along with the worldwide depression and petroleum surplus, developments in the region have been on the whole favorable.

  3. Produce More Oil and Gas via eBusiness Data Sharing

    SciTech Connect (OSTI)

    Paul Jehn; Mike Stettner; Ben Grunewald

    2005-07-22

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  4. PRODUCE MORE OIL AND GAS VIA eBUSINESS DATA SHARING

    SciTech Connect (OSTI)

    Paul Jehn; Mike Stettner

    2004-04-30

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  5. Final report on evaluation of cyclocraft support of oil and gas operations in wetland areas

    SciTech Connect (OSTI)

    Eggington, W.J.; Stevens, P.M.; John, C.J.; Harder, B.J.; Lindstedt, D.M.

    1994-10-01

    The cyclocraft is a proven hybrid aircraft, capable of VTOL, lifting heavy and bulky loads, highly controllable, having high safety characteristics and low operating costs. Mission Research Corporation (MRC), under Department of Energy sponsorship, is evaluating the potential use of cyclocraft in the transport of drill rigs, mud, pipes and other materials and equipment, in a cost effective and environmentally safe manner, to support oil and gas drilling, production, and transportation operations in wetland areas. Based upon the results of an earlier parametric study, a cyclocraft design, having a payload capacity of 45 tons and designated H.1 Cyclocraft, was selected for further study, including the preparation of a preliminary design and a development plan, and the determination of operating costs. This report contains all of the results derived from the program to evaluate the use of cyclocraft in the support of oil and gas drilling and production operations in wetland areas.

  6. Minimum separation distances for natural gas pipeline and boilers in the 300 area, Hanford Site

    SciTech Connect (OSTI)

    Daling, P.M.; Graham, T.M.

    1997-08-01

    The U.S. Department of Energy (DOE) is proposing actions to reduce energy expenditures and improve energy system reliability at the 300 Area of the Hanford Site. These actions include replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing a new natural gas distribution system to provide a fuel source for many of these units, and constructing a central control building to operate and maintain the system. The individual heating units will include steam boilers that are to be housed in individual annex buildings located at some distance away from nearby 300 Area nuclear facilities. This analysis develops the basis for siting the package boilers and natural gas distribution systems to be used to supply steam to 300 Area nuclear facilities. The effects of four potential fire and explosion scenarios involving the boiler and natural gas pipeline were quantified to determine minimum separation distances that would reduce the risks to nearby nuclear facilities. The resulting minimum separation distances are shown in Table ES.1.

  7. Iron catalyst for preparation of polymethylene from synthesis gas and method for producing the catalyst

    DOE Patents [OSTI]

    Sapienza, Richard S.; Slegeir, William A.

    1990-01-01

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

  8. Iron catalyst for preparation of polymethylene from synthesis gas and method for producing the catalyst

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.

    1990-05-15

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

  9. Risk Reduction and Soil Ecosystem Restoration in an Active Oil Producing Area in an Ecologically Sensitive Setting

    SciTech Connect (OSTI)

    Kerry L. Sublette; Greg Thoma; Kathleen Duncan

    2006-01-01

    The empowerment of small independent oil and gas producers to solve their own remediation problems will result in greater environmental compliance and more effective protection of the environment as well as making small producers more self-reliant. In Chapter 1 we report on the effectiveness of a low-cost method of remediation of a combined spill of crude oil and brine in the Tallgrass Prairie Preserve in Osage County, OK. Specifically, we have used hay and fertilizer as amendments for remediation of both the oil and the brine. No gypsum was used. Three spills of crude oil plus produced water brine were treated with combinations of ripping, fertilizers and hay, and a downslope interception trench in an effort to demonstrate an inexpensive, easily implemented, and effective remediation plan. There was no statistically significant effect of treatment on the biodegradation of crude oil. However, TPH reduction clearly proceeded in the presence of brine contamination. The average TPH half-life considering all impacted sites was 267 days. The combination of hay addition, ripping, and a downslope interception trench was superior to hay addition with ripping, or ripping plus an interception trench in terms of rates of sodium and chloride leaching from the impacted sites. Reductions in salt inventories (36 months) were 73% in the site with hay addition, ripping and an interception trench, 40% in the site with hay addition and ripping only, and < 3% in the site with ripping and an interception trench.

  10. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    prices from producing areas, plus an allowance for interstate natural gas pipeline and local distribution company charges to transport the gas to market. Such a calculation...

  11. Process for producing methane from gas streams containing carbon monoxide and hydrogen

    DOE Patents [OSTI]

    Frost, Albert C.

    1980-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

  12. Combination gas-producing and waste-water disposal well. [DOE patent application

    DOE Patents [OSTI]

    Malinchak, R.M.

    1981-09-03

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  13. H. R. 1476: A bill to amend the Internal Revenue Code of 1986 to clarify the application of the credit for producing fuel from a nonconventional source with respect to gas produced from a tight formation and to make such credit permanent with respect to such gas and gas produced from Devonian shale. Introduced in the House of Representatives, One Hundredth First Congress, First Session, March 16, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The determination of whether gas is produced from geopressured brines, Devonian shales, coal seams, or a tight formation is made from section 503 of the Natural Gas Policy Act of 1978. Permanent credit is for gas produced from a tight formation or Devonian shale only and applies to gas sold after July 1, 1987. The credit allowed for any taxable year shall not exceed the sum of the regular tax reduced by the sum of other credits allowable under other subsections of the Internal Revenue Code.

  14. Stopping a water crossflow in a sour-gas producing well

    SciTech Connect (OSTI)

    Hello, Y. Le; Woodruff, J.

    1998-09-01

    Lacq is a sour-gas field in southwest France. After maximum production of 774 MMcf/D in the 1970`s, production is now 290 MMcf/D, with a reservoir pressure of 712 psi. Despite the loss of pressure, production is maintained by adapting the surface equipment and well architecture to reservoir conditions. The original 5-in. production tubing is being replaced with 7-in. tubing to sustain production rates. During openhole cleaning, the casing collapsed in Well LA141. The primary objective was to plug all possible hydraulic communication paths into the lower zones. The following options were available: (1) re-entering the well from the top and pulling the fish before setting cement plugs; (2) sidetracking the well; and (3) drilling a relief well to intercept Well LA141 above the reservoirs. The decision was made to start with the first option and switch to a sidetrack if this option failed.

  15. Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area

    SciTech Connect (OSTI)

    Kandt, A.; Hotchkiss, E.; Fiebig, M.

    2010-10-01

    As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

  16. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect (OSTI)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  17. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier

    SciTech Connect (OSTI)

    Seggiani, Maurizia; Puccini, Monica; Raggio, Giovanni

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was

  18. Geohydrologic feasibility study of the Piceance Basin of Colorado for the potential applicability of Jack W. McIntyre`s patented gas/produced water separation process

    SciTech Connect (OSTI)

    Kieffer, F.

    1994-02-01

    Geraghty & Miller, Inc. of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of Jack McIntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Piceance Basin through literature surveys. Jack McIntyre`s tool separates produced water from gas and disposes of the water downhole into aquifers unused because of poor water quality, uneconomic lifting costs or poor aquifer deliverability. The beneficial aspects of this technology are two fold. The process increases the potential for recovering previously uneconomic gas resources by reducing produced water lifting, treatment and disposal costs. Of greater importance is the advantage of lessening the environmental impact of produced water by downhole disposal. Results from the survey indicate that research in the Piceance Basin includes studies of the geologic, hydrogeologic, conventional and unconventional recovery oil and gas technologies. Available information is mostly found centered upon the geology and hydrology for the Paleozoic and Mesozoic sediments. Lesser information is available on production technology because of the limited number of wells currently producing in the basin. Limited information is available on the baseline geochemistry of the coal/sand formation waters and that of the potential disposal zones. No determination was made of the compatibility of these waters. The study also indicates that water is often produced in variable quantities with gas from several gas productive formations which would indicate that there are potential applications for Jack McIntyre`s patented tool in the Piceance Basin.

  19. Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts

    DOE Patents [OSTI]

    Gorin, Everett

    1979-01-01

    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.

  20. CARMA LARGE AREA STAR FORMATION SURVEY: STRUCTURE AND KINEMATICS OF DENSE GAS IN SERPENS MAIN

    SciTech Connect (OSTI)

    Lee, Katherine I.; Storm, Shaye; Mundy, Lee G.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu; Fernndez-Lpez, Manuel; Looney, Leslie W.; Segura-Cox, Dominique; Rosolowsky, Erik; Arce, Hctor G.; Plunkett, Adele L.; Ostriker, Eve C.; Shirley, Yancy L.; Kwon, Woojin; Kauffmann, Jens; Tobin, John J.; Volgenau, N. H.; Tassis, Konstantinos; and others

    2014-12-20

    We present observations of N{sub 2}H{sup +} (J = 1 ? 0), HCO{sup +} (J = 1 ? 0), and HCN (J = 1 ? 0) toward the Serpens Main molecular cloud from the CARMA Large Area Star Formation Survey (CLASSy). We mapped 150 arcmin{sup 2} of Serpens Main with an angular resolution of ?7''. The gas emission is concentrated in two subclusters (the NW and SE subclusters). The SE subcluster has more prominent filamentary structures and more complicated kinematics compared to the NW subcluster. The majority of gas in the two subclusters has subsonic to sonic velocity dispersions. We applied a dendrogram technique with N{sub 2}H{sup +}(1-0) to study the gas structures; the SE subcluster has a higher degree of hierarchy than the NW subcluster. Combining the dendrogram and line fitting analyses reveals two distinct relations: a flat relation between nonthermal velocity dispersion and size, and a positive correlation between variation in velocity centroids and size. The two relations imply a characteristic depth of 0.15 pc for the cloud. Furthermore, we have identified six filaments in the SE subcluster. These filaments have lengths of ?0.2 pc and widths of ?0.03 pc, which is smaller than a characteristic width of 0.1 pc suggested by Herschel observations. The filaments can be classified into two types based on their properties. The first type, located in the northeast of the SE subcluster, has larger velocity gradients, smaller masses, and nearly critical mass-per-unit-length ratios. The other type, located in the southwest of the SE subcluster, has the opposite properties. Several YSOs are formed along two filaments which have supercritical mass per unit length ratios, while filaments with nearly critical mass-per-unit-length ratios are not associated with YSOs, suggesting that stars are formed on gravitationally unstable filaments.

  1. Oil and gas developments in South America, Central America, Caribbean area, and Mexico in 1983

    SciTech Connect (OSTI)

    Tappmeyer, D.M.

    1984-10-01

    Petroleum exploration in the region was generally less in 1983 than in 1982. Brazil, Colombia, Ecuador, and Barbados increased crude production, whereas Argentina, Bolivia, Brazil, Colombia, Ecuador, Mexico, and Trinidad-Tobago reported increases in gas production. Although drilling activities remained low compared to past years, significant oil discoveries were reported in Colombia, Mexico, and Brazil. In Colombia, Cano Limon field is reported to be the largest field found in the Llanos region. In Brazil, important oil discoveries were made offshore in the Para, Potiquas, and Ampos basins. In Mexico, discoveries were reported in the Cerro Azul, Poza Rica (Chicontepec, Villahermosa, and Tabasco) areas onshore and in the Bay of Campeche offshore. In Argentina, discoveries were made in the San Jorge basin and the Noreste Tarija basin. 10 figures, 11 tables.

  2. Oil and gas developments in South America, Central America, Caribbean area, and Mexico in 1986

    SciTech Connect (OSTI)

    Wiman, W.D.

    1987-10-01

    Exploration activity in South America, Central America, the Caribbean area, and Mexico in 1986 was considerably reduced compared to 1985. Brazil, Colombia, Ecuador, Guatemala, and Venezuela had increased oil production, with Colombia showing a dramatic 71% increase attributed mainly to bringing on-stream the pipeline connecting Occidental-Shell-Ecopetrol's Cano Limon complex to the port of Covenas. Significant discoveries were reported from Argentina in the Olmedo, Oran, and San Jorge basins; Brazil in the offshore Campos and Amazon basins; Colombia in the Llanos basin; Ecuador in the Oriente basin; Mexico in the Bay of Campeche; Peru in the Ucayali basin; and Venezuela in the Eastern Venezuela basin. Eastern Venezuela's Furrial discovery is reported to have recoverable reserves of more than 1 million bbl of oil, and Shell's Ucayali basin discovery is reported to hold more than 7 tcf of gas. 7 figures, 10 tables.

  3. EMFLUX{reg_sign} soil-gas survey of Technical Area 54, Los Alamos National Laboratory, New Mexico

    SciTech Connect (OSTI)

    1993-09-30

    This EMFLUXR Soil-Gas Survey was conducted on Material Disposal Areas (MDAS) G, J, and L in Technical Area 54 at Los Alamos National Laboratory (LANL), New Mexico. MDA L has been used for disposal of volatile organic compounds (VOCs) and MDA G (comprising sub-areas G-1 through G-8) for disposal of both VOCs and radioactive waste; MDA I has reportedly been used for disposal of waste without either of these contaminants. All three of the sites are currently active. Figure 1 shows the location of the three MDAs within Technical Area 54 of operable Unit 1148. The purpose of the EMFLUX{reg_sign} Soil-Gas Survey was to determine the presence, identities, and relative strengths of contaminants within the three areas of LANL investigated. Quadrel understands that this information will be used in Phase-I assessment of these areas to determine flux rates of -- VOCs emanating from the ground.

  4. Oil and gas developments in South America, Central America, Caribbean area, and Mexico in 1987

    SciTech Connect (OSTI)

    Wiman, W.D.

    1988-10-01

    Exploration activity in South America, Central America, the Caribbean area, and Mexico in 1987 showed significant increases in seismic acquisition in Belize, Bolivia, Brazil, Costa Rica, Guatemala, Mexico, Paraguay, and Peru, and a decrease in Chile and Venezuela. Exploratory drilling increased in most major producing countries but was accompanied by a decline in development drilling. Most of the increase could be attributed to private companies fulfilling obligations under risk contracts; however, state oil companies in Bolivia, Chile, and Colombia showed significant increased activity, with only Mexico showing a decrease. Colombia again had a dramatic increase in production (29% from 1986). Noteworthy discoveries were made in Bolivia (Villamontes-1); Brazil, in the Solimoes basin (1-RUC-1-AM); Chile (Rio Honda-1); Colombia, in the Llanos basin (Austral-1, La Reforma-1, Libertad Norte-1, Cravo Este-1, and Cano Yarumal-1), in the Upper Magdalena basin (Toldado-1 and Los Mangos-1); Ecuador (Frontera-1, a joint-exploration venture with Colombia); Mexico, in the Chiapas-Tabasco region (Guacho-1 and Iridi-1), in the Frontera Norte area (Huatempo-1); Peru, in the Madre de Dios basin (Armihuari-4X); Trinidad (West East Queen's Beach-1); and Venezuela (Musipan-1X). Brazil's upper Amazon (Solimoes basin) discovery, Colombia's Upper Magdalena basin discoveries Toldado-1 and Los Mangos-1, Mexico's Chiapas-Tabasco discoveries, Peru's confirmation of the giant Cashiriari discovery of 1986, and Venezuela's success in Monagas state were the highlights of 1987. 5 figs., 8 tabs.

  5. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mohan, Arvind Murali; Bibby, Kyle J.; Lipus, Daniel; Hammack, Richard W.; Gregory, Kelvin B.; Forster, Robert J.

    2014-10-22

    Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. Thus, the metabolic profile revealed a relative increase in genes responsiblemore » for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.« less

  6. Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

  7. The impact of the oil industry on the indigenous population in the oil-producing areas of Nigeria: As measured by ecological factors

    SciTech Connect (OSTI)

    Ikein, A.A.

    1988-01-01

    Exploration and exploitation of the petroleum resource has created some of the largest fortunes and has helped to achieve some of the most impressive economic growth and development, yet little or no attention has been directed to its impact on the producing areas, particularly in developing countries. Therefore, the purpose of this study was to measure the impact of the oil industry on the inhabitants of the oil-producing areas as measured by certain ecological factors. The factors considered were education, health, housing, power, roads, water, and pollution. The selected socio-economic factors are thought to influence the social well being of the inhabitants.

  8. DOE-Sponsored Online Mapping Portal Helps Oil and Gas Producers Comply with New Mexico Compliance Rules

    Broader source: Energy.gov [DOE]

    An online mapping portal to help oil and natural gas operators comply with a revised New Mexico waste pit rule has been developed by a team of New Mexico Tech researchers.

  9. A summary of volatile impurity measurements and gas generation studies on MISSTD-1, a high-purity plutonium oxide produced by low-temperature calcination of plutonium oxalate

    SciTech Connect (OSTI)

    Berg, John M.; Narlesky, Joshua E.; Veirs, Douglas K.

    2012-06-08

    Plutonium dioxide of high specific surface area was subjected to long-term tests of gas generation in sealed containers. The material preparation and the storage conditions were outside the bounds of acceptable parameters defined by DOE-STD-3013-2012 in that the material was stabilized to a lower temperature than required and had higher moisture content than allowed. The data provide useful information for better defining the bounding conditions for safe storage. Net increases in internal pressure and transient increases in H{sub 2} and O{sub 2} were observed, but were well within the bounds of gas compositions previously shown to not threaten integrity of 3013 containers.

  10. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOE Patents [OSTI]

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  11. Desulfurization of hot fuel gas produced from high-chlorine Illinois coals. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    O`Brien, W.S.; Gupta, R.P.

    1992-10-01

    New coal gasification processes are now being developed which can generate electricity with high thermal efficiency either in an integrated gasification combined cycle (IGCC) or in a fuel cell (MCFC). Both of these new coal-to-electricity pathways require that the coal-derived fuel gas be at a high temperature and be free of potential pollutants, such as sulfur compounds. Unfortunately, some high-sulfur Illinois coals also contain significant chlorine which converts into hydrogen chloride (HCl) in the coal-gas. This project investigates the effect of HCl, in concentrations typical of a gasifier fed by high-chlorine Illinois coals, on zinc-titanate sorbents that are currently being developed for H{sub 2}S and COS removal from hot coal gas. This study is designed to identify any deleterious changes in the sorbent caused by the HCI, both in absorptive operation and in the regeneration cycle, and will pave the way to modify the sorbent formulation or the process operating procedure to remove HCl along with the H{sub 2}S and COS from hot coal gas. This will negate any harmful consequences of utilizing high-chlorine Illinois coal in these processes. The work activity during the third quarter of this project involved the performance of the second block-set of experiments in the bench-scale fluidized-bed reactor. These experiments were designed to study the effect of HCl in the desulfurization of a low-Btu fuel gas. Nine single-cycle experiments were performed, at operating temperature of 538, 650, and 750{degrees}C, with HCl concentrations of 0, 200, and 800 ppMv. The presence of HCl in the coal gas significantly enhanced the desulfurization efficacy of the sorbent. A 10-cycle sulfidation-regeneration sequence is currently being performed at 650{degrees}C with 800 ppMv HCl in the simulated fuel gas to determine any adverse effects on the sorbent structure or its desulfurization capability.

  12. New York Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New York Natural Gas ...

  13. Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas...

    Open Energy Info (EERE)

    M2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  14. Well-to-wheels Analysis of Energy Use and Greenhouse Gas Emissions of Hydrogen Produced with Nuclear Energy

    SciTech Connect (OSTI)

    Wu, Ye; Wang, Michael Q.; Vyas, Anant D.; Wade, David C.; Taiwo, Temitope A.

    2004-07-01

    A fuel-cycle model-called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model-has been developed at Argonne National Laboratory to evaluate well-to-wheels (WTW) energy and emission impacts of motor vehicle technologies fueled with various transportation fuels. The GREET model contains various hydrogen (H{sub 2}) production pathways for fuel-cell vehicles (FCVs) applications. In this effort, the GREET model was expanded to include four nuclear H{sub 2} production pathways: (1) H{sub 2} production at refueling stations via electrolysis using Light Water Reactor (LWR)-generated electricity; (2) H{sub 2} production in central plants via thermo-chemical water cracking using steam from High Temperature Gas cooled Reactor (HTGR); (3) H{sub 2} production in central plants via high-temperature electrolysis using HTGR-generated electricity and steam; and (4) H{sub 2} production at refueling stations via electrolysis using HTGR-generated electricity The WTW analysis of these four options include these stages: uranium ore mining and milling; uranium ore transportation; uranium conversion; uranium enrichment; uranium fuel fabrication; uranium fuel transportation; electricity or H{sub 2} production in nuclear power plants; H{sub 2} transportation; H{sub 2} compression; and H{sub 2} FCVs operation. Due to large differences in electricity requirements for uranium fuel enrichment between gas diffusion and centrifuge technologies, two scenarios were designed for uranium enrichment: (1) 55% of fuel enriched through gaseous diffusion technology and 45% through centrifuge technology (the current technology split for U.S. civilian nuclear power plants); and (2) 100% fuel enrichment using the centrifuge technology (a future trend). Our well-to-pump (WTP) results show that significant reductions in fossil energy use and greenhouse gas (GHG) emissions are achieved by nuclear-based H{sub 2} compared to natural gas-based H{sub 2} production via steam

  15. The boomerang area: An example of oil and gas fields related to a transfer zone development

    SciTech Connect (OSTI)

    Specht, M.; Colletta, B.; Letouzey, J. ); Baby, P. ); Oller, J.; Montemuro, G. ); Guillier, B. )

    1993-02-01

    We present results of a study realized from petroleum data of Yacimientos Petroliferos Fiscales Bolivianos of the most important transfer zone of the Bolivian Andean belt: the Santa Cruz transfer zone. Frontal part of the Bolivian Andean belt consists of a thick series (6 to 8 km) of paleozoic to cenozoic sedimentary rocks thrusted eastwards on a sole thrust located in paleozoic series. The frontal part of the belt, globally N-S oriented, undergoes an important deviation East of Santa Cruz with a left lateral offset of 100 Km. Taking into account the E-W shortening direction, this transfer zone can be interpreted as a lateral ramp. The Santa Cruz transfer zone coincide with a set of small oil and gas fields whereas frontal structures lack hydrocarbon occurrences. We are then faced with a two-fold problem: (1) what is the origin of the transfer zone (2) why are the oil and gas concentrated in the transfer zone Our synthesis shows that the transfer zone is superimposed on the limit of a detached Paleozoic basin whose border direction is oblique to the regional shortening direction. We then interpret the oil and gas formation in two steps: (1) source rock maturation and hydrocarbon migration towards the top of the Paleozoic sedimentary wedge before Andean deformation. (2) hydrocarbon dismigration towards anticlinal structures developed during the lateral ramp propagation. In order to test our interpretation we performed a set of analog model experiments whose 3D visualization was analyzed by computerized X-ray tomography.

  16. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Bibby, Kyle J.; Lipus, Daniel; Hammack, Richard W.; Gregory, Kelvin B.; Forster, Robert J.

    2014-10-22

    Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. Thus, the metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.

  17. Fluid pressure arrival time tomography: Estimation and assessment in the presence of inequality constraints, with an application to a producing gas field at Krechba, Algeria

    SciTech Connect (OSTI)

    Rucci, A.; Vasco, D.W.; Novali, F.

    2010-04-01

    Deformation in the overburden proves useful in deducing spatial and temporal changes in the volume of a producing reservoir. Based upon these changes we estimate diffusive travel times associated with the transient flow due to production, and then, as the solution of a linear inverse problem, the effective permeability of the reservoir. An advantage an approach based upon travel times, as opposed to one based upon the amplitude of surface deformation, is that it is much less sensitive to the exact geomechanical properties of the reservoir and overburden. Inequalities constrain the inversion, under the assumption that the fluid production only results in pore volume decreases within the reservoir. We apply the formulation to satellite-based estimates of deformation in the material overlying a thin gas production zone at the Krechba field in Algeria. The peak displacement after three years of gas production is approximately 0.5 cm, overlying the eastern margin of the anticlinal structure defining the gas field. Using data from 15 irregularly-spaced images of range change, we calculate the diffusive travel times associated with the startup of a gas production well. The inequality constraints are incorporated into the estimates of model parameter resolution and covariance, improving the resolution by roughly 30 to 40%.

  18. Predictive and preventive maintenance of oil and gas production pipelines in the area North Monagas-Venezuela

    SciTech Connect (OSTI)

    Perez, M.A.L.

    1996-12-31

    Predictive maintenance of oil and gas production pipelines has allowed the prediction of operational failures. Specially due to the thermodynamic behavior of the produced fluids, contaminants present in the oil and gas such as sand, water, H{sub 2}S and CO{sub 2}, asphaltene deposition, high temperatures and pressures, physicochemical characteristics of the soil, etc. lead to risks of the installations. In order to minimize risks of failures, the author has established a control and monitoring preventive program of the variables that influence these conditions, such as: nondestructive testing, wall thickness measurements and two dimensional B Scan measurements to detect impurities, laminations and inclusions in the pipeline material, corrosion evaluation of pipelines, characterization of the soil corrosive potential of flow stations and compressing plants. Additionally, he has implemented predictive control through the application of external corrosion prevention techniques such as cathodic protection and coatings. For internal corrosion, the use of corrosion inhibitors, asphaltene dispersants and material selection are used. Increasing the protection through preventive and predictive maintenance can reduce the operational risks involved for the oil and gas production.

  19. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    States along the Gulf of Mexico. Gulf States have been some of the most prolific natural gas producing areas. U.S. natural gas processing capacity showed a net increase of about 12...

  20. LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS

    SciTech Connect (OSTI)

    PACE, M.E.

    2004-01-13

    The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

  1. Development of Large Area Gas Electron Multiplier Detector and Its Application to a Digital Hadron Calorimeter for Future Collider Experiments

    SciTech Connect (OSTI)

    Yu, Jaehoon; White, Andrew

    2014-09-25

    The UTA High Energy Physics Group conducted generic detector development based on large area, very thin and high sensitivity gas detector using gas electron multiplier (GEM) technology. This is in preparation for a use as a sensitive medium for sampling calorimeters in future collider experiments at the Energy Frontier as well as part of the tracking detector in Intensity Frontier experiments. We also have been monitoring the long term behavior of one of the prototype detectors (30cmx30cm) read out by the SLAC-developed 13-bit KPiX analog chip over three years and have made presentations of results at various APS meetings. While the important next step was the development of large area (1m x 1m) GEM planes, we also have looked into opportunities of applying this technology to precision tracking detectors to significantly improve the performance of the Range Stack detector for CP violation experiments and to provide an amplification layer for the liquid Argon Time Projection Chamber in the LBNE experiment. We have jointly developed 33cmx100cm large GEM foils with the CERN gas detector development group to construct 33cm x100cm unit chambers. Three of these unit chambers will be put together to form a 1m x 1m detector plane. Following characterization of one 33cmx100cm unit chamber prototype, a total of five 1m x 1m planes will be constructed and inserted into an existing 1m3 RPC DHCAL stack to test the performance of the new GEM DHCAL in particle beams. The large area GEM detector we planned to develop in this proposal not only gives an important option to DHCAL for future collider experiments but also the potential to expand its use to Intensity Frontier and Cosmic Frontier experiments as high efficiency, high amplification anode planes for liquid Argon time projection chambers. Finally, thanks to its sensitivity to X-rays and other neutral radiations and its light-weight characteristics, the large area GEM has a great potential for the use in medical imaging and

  2. New Mexico Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New Mexico Natural ...

  3. North Dakota Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) North Dakota Natural ...

  4. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2009-10-01

    This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

  5. PILOT TESTING: PRETREATMENT OPTIONS TO ALLOW RE-USE OF FRAC FLOWBACK AND PRODUCED BRINE FOR GAS SHALE RESOURCE DEVELOPMENT

    SciTech Connect (OSTI)

    Burnett, David

    2012-12-31

    The goal of the A&M DOE NETL Project No. DE-FE0000847 was to develop a mobile, multifunctional water treatment capability designed specifically for “pre-treatment” of field waste brine. The project consisted of constructing s mobile “field laboratory” incorporating new technology for treating high salinity produced water and using the lab to conduct a side-by-side comparison between this new technology and that already existing in field operations. A series of four field trials were performed utilizing the mobile unit to demonstrate the effectiveness of different technology suitable for use with high salinity flow back brines and produced water. The design of the mobile unit was based on previous and current work at the Texas A&M Separation Sciences Pilot Plant. The several treatment techniques which have been found to be successful in both pilot plant and field tests had been tested to incorporate into a single multifunctional process train. Eight different components were evaluated during the trials, two types of oil and grease removal, one BTEX removal step, three micro-filters, and two different nanofilters. The performance of each technique was measured by its separation efficiency, power consumption, and ability to withstand fouling. The field trials were a success. Four different field brines were evaluated in the first trial in New York. Over 16,000 gallons of brine were processed. Using a power cost of $.10 per kWh, media pretreatment power use averaged $0.004 per barrel, solids removal $.04 per barrel and brine “softening” $.84 per barrel. Total power cost was approximately $1.00 per barrel of fluid treated. In Pennsylvania, brines collected from frac ponds were tested in two additional trials. Each of the brines was converted to an oil-free, solids-free brine with no biological activity. Brines were stable over time and would be good candidates for use as a make-up fluid in a subsequent fracturing fluid design. Reports on all of the field

  6. The gathering storm: A primer on gas gathering and production area rate design

    SciTech Connect (OSTI)

    Morgan, R.G.

    1994-12-31

    The commission`s new direction on gathering issues has now been commenced. Implementation of those orders will raise a host of corollary issues. Subsequent orders are likely to refine and further define matters relating to spin-downs and spin-offs. Of course, several court appeals of FERC orders which adopted the Northwest conditional authority approach are pending. Rehearing and appeals of the most recent gathering orders are also likely. While FERC`s course is clearer now, the courts will ultimately review whether the course is permissible. The full unbundling of gathering costs from mainline transmission costs and production area rate design are significant matters which still remain and require immediate commission attention. The potential for mischief and competitive disadvantage to competing pipelines are inconsistent with the underlying concepts of Order No. 636.

  7. A high surface area Zr(IV)-based metal–organic framework showing stepwise gas adsorption and selective dye uptake

    SciTech Connect (OSTI)

    Lv, Xiu-Liang; Tong, Minman; Huang, Hongliang; Wang, Bin; Gan, Lei; Yang, Qingyuan; Zhong, Chongli; Li, Jian-Rong

    2015-03-15

    Exploitation of new metal–organic framework (MOF) materials with high surface areas has been attracting great attention in related research communities due to their broad potential applications. In this work, a new Zr(IV)-based MOF, [Zr{sub 6}O{sub 4}(OH){sub 4}(eddb){sub 6}] (BUT-30, H{sub 2}eddb=4,4′-(ethyne-1,2-diyl)dibenzoic acid) has been solvothermally synthesized, characterized, and explored for gases and dyes adsorptions. Single-crystal X-ray diffraction analysis demonstrates a three-dimensional cubic framework structure of this MOF, in which each Zr{sub 6}O{sub 4}(OH){sub 4} building unit is linked by 12 linear eddb ligands. BUT-30 has been found stable up to 400 °C and has a Brunauer–Emmett–Teller (BET) surface area as high as 3940.6 m{sup 2} g{sup −1} (based on the N{sub 2} adsorption at 77 K) and total pore volume of 1.55 cm{sup 3} g{sup −1}. It is more interesting that this MOF exhibits stepwise adsorption behaviors for Ar, N{sub 2}, and CO{sub 2} at low temperatures, and selective uptakes towards different ionic dyes. - Graphical abstract: A new Zr(IV)-based MOF with high surface area has been synthesized and structurally characterized, which shows stepwise gas adsorption at low temperature and selective dye uptake from solution. - Highlights: • A new Zr-based MOF was synthesized and structurally characterized. • This MOF shows a higher surface area compared with its analogous UiO-67 and 68. • This MOF shows a rare stepwise adsorption towards light gases at low temperature. • This MOF performs selective uptakes towards cationic dyes over anionic ones. • Using triple-bond spacer is confirmed feasible in enhancing MOF surface areas.

  8. CARMA Large Area Star Formation Survey: project overview with analysis of dense gas structure and kinematics in Barnard 1

    SciTech Connect (OSTI)

    Storm, Shaye; Mundy, Lee G.; Lee, Katherine I.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu; Gong, Hao; Fernndez-Lpez, Manuel; Looney, Leslie W.; Segura-Cox, Dominique M.; Rosolowsky, Erik; Arce, Hctor G.; Plunkett, Adele L.; Ostriker, Eve C.; Volgenau, Nikolaus H.; Shirley, Yancy L.; Tobin, John J.; Kwon, Woojin; Isella, Andrea; and others

    2014-10-20

    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N{sub 2}H{sup +}, HCO{sup +}, and HCN (J = 1 ? 0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7'' and spectral resolution near 0.16 km s{sup 1}. We imaged ?150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N{sub 2}H{sup +} shows the strongest emission, with morphology similar to cool dust in the region, while HCO{sup +} and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N{sub 2}H{sup +} velocity dispersions ranging from ?0.05 to 0.50 km s{sup 1} across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new, non-binary dendrogram algorithm is used to analyze dense gas structures in the N{sub 2}H{sup +} position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01 to 0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc; this suggests that overdense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.

  9. Emission factors for domestic use of L.P. gas in the metropolitan area of Mexico City

    SciTech Connect (OSTI)

    Molina, M.M.; Schifter, I.; Ontiveros, L.E.; Salinas, A.; Moreno, S.; Melgarejo, L.A.; Molina, R.; Krueger, B.

    1998-12-31

    One of the main problems found in air pollution in the Metropolitan Area of Mexico City (MAMC) is the presence of high concentrations of ozone at ground level in the atmosphere. The official Mexican standard for ozone concentration in the air (0.11 ppm, one hour, once every 3 years) has been exceeded more than 300 days per year. Ozone is formed due to the emissions of nitrogen oxides and hydrocarbons originated from either combustion processes or vapors emanating from fuel handling operations. The results of an evaluation of several domestic devices like stoves and water heaters with L.P. gas as fuel are presented. A method for the evaluation of hydrocarbon emission was developed. A prototype of domestic installation was constructed. The prototype includes L.P. gas tank, domestic stove, water heater, piping and instrumentation. Several combinations of stoves and water heaters were evaluated. The sampling and analysis of hydrocarbons were performed using laboratory equipment originally designed for the evaluation of combustion and evaporative emissions in automobiles: a SHED camera (sealed room equipped with an hydrocarbon analyzer) was used to measure leaks in the prototype of domestic installation and a Constant Volume Sampler (CVS) for the measurement of incomplete combustion emissions. Emission factors were developed for each domestic installation.

  10. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  11. System for treating produced water

    DOE Patents [OSTI]

    Sullivan, Enid J.; Katz, Lynn; Kinney, Kerry; Bowman, Robert S.; Kwon, Soondong

    2010-08-03

    A system and method were used to treat produced water. Field-testing demonstrated the removal of contaminants from produced water from oil and gas wells.

  12. oil and gas portfolio reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Gas Research Portfolio Reports Natural Gas & Oil Program Research Portfolio Reports The Office of Fossil Energy (FE)/National Energy Technology Laboratory (NETL) is releasing a series of nine Research Portfolio Reports to provide a snapshot of results and accomplishments completed to-date for active and completed projects under three focus areas: Unconventional Oil & Gas Resources; Ultra-Deepwater; and Small Producers. The reports capture research conducted over the last ten years

  13. China develops natural gas industry

    SciTech Connect (OSTI)

    An, Z.

    1982-09-06

    As of 1981, China was producing some 474.4 billion CF (12.74 billion m/sup 3/)/yr of natural gas from over 60 gas fields, 40 of them in Sichuan Province. The Sichuan gas lies in fractures and solution cavities in limestone and dolomite formations that generally require stimulation. After desulfurization, the gas is used by the steel and chemical industries and for residential heating. Recent discoveries in other areas of China include the Guxinzhuang field in the Bohai-North China basin, where geological conditions favor large gas pools, and the Sebei fields in Qaidam basin, northwest China.

  14. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  15. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  16. Method of producing hydrogen

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Wilding, Bruce M.; Zollinger, William T.

    2006-12-26

    A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.

  17. Desulfurization of hot fuel gas produced from high-chlorine Illinois coals. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    O`Brien, W.S.; Gupta, R.P.

    1992-12-31

    In this project, simulated gasifier-product streams were contacted with the zinc titanate desulfurization sorbent in a bench-scale atmospheric fluidized-bed reactor at temperatures ranging from 538 to 750 {degree}C (1000 to 1382 {degree}F). The first set of experiments involved treating a medium-Btu fuel gas (simulating that of a ``Texaco`` oxygen-blown, entrained-bed gasifier) containing 1.4 percent H{sub 2}S and HCl concentrations of 0, 200, and 1500 ppmv. The second experimental set evaluated hot-gas desulfurization of a low-Btu fuel gas (simulating the product of the ``U-Gas`` air-blown gasifier), with HCl concentrations of 0, 200, and 800 ppmv. These operating conditions were typical of the gas-treatment requirements of gasifiers fueled by Illinois basin coals containing up to 0.6 percent chlorine. The results of the experiments at 538 and 650 {degree}C at all the HCl concentrations revealed no deleterious effects on the capability of the sorbent to remove H{sub 2}S from the fuel gas mixtures. In most cases, the presence of the HCl significantly enhanced the desulfurization reaction rate. Some zinc loss, however, was encountered in certain situations at 750 {degree}C when low-steam operating conditions were present. Also of interest, a portion of the incoming HCl was removed from the gas stream and was retained permanently by the sorbent. This behavior was examined in more detail in a limited set of experiments aimed at identifying ways to modify the sorbents composition so that the sorbent could act as a simultaneous desulfurization and dechlorination agent in the hot-gas cleanup process.

  18. Backscatter absorption gas imaging system

    DOE Patents [OSTI]

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  19. Backscatter absorption gas imaging system

    DOE Patents [OSTI]

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  20. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  1. Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wells (Number of Elements) Federal Offshore--Gulf of Mexico Natural Gas Number of ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) Federal Offshore ...

  2. What is shale gas? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What is shale gas? What is shale gas? What is shale gas? (694.01 KB) More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary How is shale gas produced?

  3. Geology of Ziliujing gas field - The gas field developed earliest in the world

    SciTech Connect (OSTI)

    Ding, Chuanbai )

    1991-03-01

    Ziliujing gas field, located in Zigong municipality, Sichuan, is an asymmetric anticline, and well depth is generally less than 1,300 m. There are eight gas- and brine-producing intervals. Tc-3 of the Lower Triassic is the main gas-producing horizon, which is a carbonate with a combination of fracture and intergranular porosities. As early as 1,500 years ago, the production of brine and natural gas was started; over 13,000 wells were drilled of which over 1,000 wells were gas wells. The total area of different producing zones is about 22 km{sup 2}. The distribution and production of natural gas are controlled by structural faults. The gas sources supplied are beyond the limit of the structure. Tc-3 reservoir is a typical fissured reservoir, and most of the wells have the characteristics of (1) high initial production rate; (2) rapid depletion; and (3) long producing life. Owing to the favorable geological conditions; the great number of wells; outstanding ancient technologies in drilling, production, and transportation; comprehensive utilization; and very long production history, tremendous success is achieved in the development of gas fields. The total cumulative gas production by the end of 1985 was 33 billion cubic meters in which 17.2 billion cubic meters were contributed by Tc-3 reservoir; maximum gas and brine recoveries have been achieve. So far the gas reservoirs have not been depleted and new discoveries have been found in recent years. The brilliant achievements of the ancestors remain.

  4. gas_flooding | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Flooding Gas flooding technologies primarily use carbon dioxide flooding as a method to produce more oil from the reservoir by channeling gas into previously-bypassed areas. CO2 flooding technologies experiment with a number of foams, gels, and thickening agents to improve sweep efficiency. CO2 floods are extensively used in some regions of the U.S., particularly in West Texas and the southern Rocky Mountains. CO2 flooding currently produces about 190,000 BOPD. In the past decade flooding

  5. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of the Alaska gas pipeline. The opening of ANWR might reduce the gas resource risk of building an Alaska gas pipeline, as the area has an estimated 3.6 trillion cubic...

  6. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-09-29

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were

  7. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2006-06-30

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were

  8. USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-02-01

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper

  9. Numerical simulation of microwave amplification in a plasma channel produced in a gas via multiphoton ionisation by a femtosecond laser pulse

    SciTech Connect (OSTI)

    Bogatskaya, A V; Popov, A M; Volkova, E A

    2014-12-31

    This paper examines the evolution of a nonequilibrium plasma channel produced in xenon by a femtosecond KrF laser pulse. We demonstrate that such a channel can be used to amplify microwave pulses over times of the order of the relaxation time of the photoelectron energy spectrum in xenon. Using the slowly varying amplitude approximation, we analyse the propagation and amplification of an rf pulse in a plasma channel, in particular when the rf field influences the electron energy distribution function in the plasma. (interaction of laser radiation with matter. laser plasma)

  10. Low-Btu coal gasification in the United States: company topical. [Brick producers

    SciTech Connect (OSTI)

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  11. Shale Gas Glossary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glossary Shale Gas Glossary Shale Gas Glossary (286.97 KB) More Documents & Publications Natural Gas from Shale: Questions and Answers Modern Shale Gas Development in the United States: A Primer How is shale gas produced?

  12. Produced Water Management and Beneficial Use

    SciTech Connect (OSTI)

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  13. Natural Gas Fuel Basics | Department of Energy

    Energy Savers [EERE]

    gaseous (compressed natural gas, CNG) or liquefied (liquefied natural gas, LNG) state. ... To produce LNG, natural gas is purified and condensed into liquid by cooling to -260F ...

  14. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies

  15. Method of producing imines

    DOE Patents [OSTI]

    Sithambaram, Shanthakumar; Son, Young-Chan; Suib, Steven L.

    2008-04-08

    A method for forming an imine comprises reacting a first reactant comprising a hydroxyl functionality, a carbonyl functionality, or both a hydroxyl functionality and a carbonyl functionality with a second reactant having an amine functionality in the presence of ordered porous manganese-based octahedral molecular sieves and an oxygen containing gas at a temperature and for a time sufficient for the imine to be produced.

  16. DOE Seeks Industry Proposals for Feasibility Study to Produce...

    Energy Savers [EERE]

    Greenhouse Gas-Free Hydrogen at Existing Nuclear Power Plants DOE Seeks Industry Proposals for Feasibility Study to Produce Greenhouse Gas-Free Hydrogen at Existing Nuclear ...

  17. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  18. Natural gas annual 1993 supplement: Company profiles

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  19. California: Agricultural Residues Produce Renewable Fuel | Department...

    Broader source: Energy.gov (indexed) [DOE]

    technology is expected to produce biofuel that reduces greenhouse gas emissions by 80% compared to fossil fuel and help make California a leader in advanced biofuel production. ...

  20. Gas sensor incorporating a porous framework

    DOE Patents [OSTI]

    Yaghi, Omar M.; Czaja, Alexander U.; Wang, Bo; Furukawa, Hiroyasu; Galatsis, Kosmas; Wang, Kang L.

    2013-07-09

    The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

  1. Gas sensor incorporating a porous framework

    DOE Patents [OSTI]

    Yaghi, Omar M; Czaja, Alexander U; Wang, Bo; Galatsis, Kosmas; Wang, Kang L; Furukawa, Hiroyasu

    2014-05-27

    The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

  2. Middle East oil and gas

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    The following subjects are covered in this publication: (1) position of preeminence of the Middle East; (2) history of area's oil operations for Iran, Iraq, Bahrain, Kuwait, Saudi Arabia, neutral zone, Qatar, United Arab Emirates, Oman and Egypt; (3) gas operations of Saudi Arabia, Iran, Kuwait, Qatar, Iraq and United Arab Emirates; (4) changing relationships with producing countries; (5) a new oil pricing environment; (6) refining and other industrial activities; and (7) change and progress. 10 figs., 12 tabs.

  3. Why is shale gas important? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why is shale gas important? Why is shale gas important? Why is shale gas important? (1.27 MB) More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary How is shale gas produced?

  4. Environmental Compliance for Oil and Gas Exploration and Production

    SciTech Connect (OSTI)

    Hansen, Christine

    1999-10-26

    The Appalachian/Illinois Basin Directors is a group devoted to increasing communication among the state oil and gas regulatory agencies within the Appalachian and Illinois Basin producing region. The group is comprised of representatives from the oil and gas regulatory agencies from states in the basin (Attachment A). The directors met to discuss regulatory issues common to the area, organize workshops and seminars to meet the training needs of agencies dealing with the uniqueness of their producing region and perform other business pertinent to this area of oil and gas producing states. The emphasis of the coordinated work was a wide range of topics related to environmental compliance for natural gas and oil exploration and production.

  5. Number of Producing Gas Wells (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries

  6. NETL: Natural Gas Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Resources Useful for heating, manufacturing, and as chemical feedstock, natural gas has the added benefit of producing fewer greenhouse gas emissions than other fossil fuels used in power production.The United States is endowed with an abundance of natural gas resources, so increasing use of natural gas power can help strengthen domestic energy security. NETL research efforts enhance technologies that reduce the cost, increase the efficiency, and reduce the environmental risk of

  7. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    delivery volumes. Northern Natural Gas Company issued a system overrun limitation (SOL) for all market-area zones for gas day February 21, 2008. The SOL was the result of...

  8. Oil and gas leasing in proposed wilderness areas: the Wyoming District Court's interpretation of Section 603 of the Federal Land Policy Management Act of 1976 - Rocky Mountain Oil and Gas Association v. Andrus, 500 F. Supp. 1338 (D. Wyo. 1980), appeal docketed, No. 81-1040 (10th Cir. Jan. 5, 1981)

    SciTech Connect (OSTI)

    Corbett, H.E.

    1982-01-01

    Plaintiff Rocky Mountain Oil and Gas Association, a non-profit trade association, brought suit against the Secretary of the Interior, challenging land management policies of the Department of the Interior which plaintiff contended have effectively prohibited oil and gas exploration in areas proposed as wilderness under the Federal Land Policy Management Act of 1976 (FLPMA). The principal issue at trial was Interior's interpretation of the wilderness study provisions contained in Section 603 of the Act, which directed that activities on oil and gas leases in proposed wilderness areas be managed so as to prevent impairment of wilderness values. The United States Court for the District of Wyoming, Kerr, J., held that strict application of the non-impairment standard of Section 603, FLPMA, by the Department of the Interior virtually halted oil and gas exploration in proposed wilderness areas, and is therefore statutorily erroneous, clearly contrary to Congressional intent, and counter-productive to public interest. The Trial Court's decision is being appealed to the Tenth Circuit Court of Appeals under the title Rocky Mountain Oil and Gas Association v. Watt. 91 references.

  9. Field studies of beach cones as coastal erosion control/reversal devices for areas with significant oil and gas activities. Final report, February 24, 1992--September 18, 1995

    SciTech Connect (OSTI)

    Law, V.J.

    1995-09-18

    The primary objective of this project was to evaluate the utility of a device called the {open_quotes}beach cone{close_quotes} in combating coastal erosion. Seven initial sites were selected for testing beach cones in a variety of geometric configurations. Permits were obtained from the State of Louisiana and the U.S. Army Corps of Engineers to perform the work associated with this study. Six hundred beach cones were actually installed at six of the sites in late July and early August, 1992. Findings indicate that beach cones accreted significant amounts of materials along the beach of a barrier island, and they might have been instrumental in repairing an approximately 200 meter gap in the island. At the eighth installation the amount of accreted material was measured by surveys to be 2200 cubic meters (2900 cubic yards) in February of 1993, when the cones were found to have been completely covered by the material. At other test sites, accretion rates have been less dramatic but importantly, no significant additional erosion has occurred, which is a positive result. The cost of sediment accretion using beach cones was found to be about $13.72 per cubic yard, which would be much lower if the cones were mass produced (on the order of $3.00 per cubic yard). The survival of the cones through the fringes of Hurricane Andrew indicates that they can be anchored sufficiently to survive significant storms. The measurements of the cones settling rates indicate that this effect is not significant enough to hinder their effectiveness. A subcontract to Xavier University to assess the ecological quality of the experimental sites involved the study of the biogeochemical cycle of trace metals. The highest concentration of heavy metals were near a fishing camp while the lowest levels were in the beach sand of a barrier island. This suggests that the metals do not occur naturally in these areas, but have been placed in the sediments by man`s activities.

  10. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    As of February 14, Northern Natural Gas implemented a system overrun limitation (SOL) affecting all market area zones. These zones are located in the northern part of the...