Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Number of Producing Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Producing Gas Wells Producing Gas Wells Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2007 2008 2009 2010 2011 2012 View History U.S. 452,945 476,652 493,100 487,627 514,637 482,822 1989-2012 Alabama 6,591 6,860 6,913 7,026 7,063 6,327 1989-2012 Alaska 239 261 261 269 277 185 1989-2012 Arizona 7 6 6 5 5 5 1989-2012 Arkansas 4,773 5,592 6,314 7,397 8,388 8,538 1989-2012 California 1,540 1,645 1,643 1,580 1,308 1,423 1989-2012 Colorado 22,949 25,716 27,021 28,813 30,101 32,000 1989-2012 Gulf of Mexico 2,552 1,527 1,984 1,852 1,559 1,474 1998-2012 Illinois 43 45 51 50 40 40 1989-2012 Indiana 2,350 525 563 620 914 819 1989-2012 Kansas

2

Delivery of Hydrogen Produced from Natural Gas  

E-Print Network (OSTI)

for economic storage, handling and delivery of hydrogen. Office of Fossil Energy Milestone · 2006: Define & Petroleum Technology Office of Fossil Energy June 3, 2003 Hydrogen Coordination Meeting #12;Key NearDelivery of Hydrogen Produced from Natural Gas Christopher Freitas Office of Natural Gas

3

Coal seam natural gas producing areas (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is...

4

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

5

How is shale gas produced? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home How is shale gas produced? How is shale gas produced? How is shale gas produced? Energy.gov Careers...

6

Changes related to "Coal seam natural gas producing areas (Louisiana...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal seam natural gas producing areas (Louisiana)" Coal seam natural gas producing areas...

7

DOE's Early Investment in Shale Gas Technology Producing Results...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Early Investment in Shale Gas Technology Producing Results Today DOE's Early Investment in Shale Gas Technology Producing Results Today February 2, 2011 - 12:00pm Addthis...

8

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

9

AGA Producing Region Natural Gas in Underground Storage (Working Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 549,759 455,591 416,294 457,969 533,496 599,582 638,359 634,297 713,319 766,411 700,456 552,458 1996 369,545 263,652 195,447 224,002 279,731 339,263 391,961 474,402 578,991 638,500 562,097 466,366 1997 314,140 248,911 297,362 326,566 401,514 471,824 478,925 532,982 617,733 705,879 642,254 494,485 1998 391,395 384,696 362,717 457,545 550,232 610,363 684,086 748,042 784,567 893,181 888,358 768,239 1999 611,978 585,458 530,610 568,307 653,498 728,071 744,307 750,460 826,493 858,836 849,011 718,513

10

Top 5 producing states' combined marketed natural gas output rose ...  

U.S. Energy Information Administration (EIA)

Combined marketed natural gas production from the top five natural gas producing states—Texas, Louisiana, Wyoming, Oklahoma, and Colorado—increased by about 7.5% ...

11

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Count) Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

12

Water management technologies used by Marcellus Shale Gas Producers.  

Science Conference Proceedings (OSTI)

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

Veil, J. A.; Environmental Science Division

2010-07-30T23:59:59.000Z

13

Management of produced water in oil and gas operations.  

E-Print Network (OSTI)

??Produced water handling has been an issue of concern for oil and gas producers as it is one of the major factors that cause abandonment… (more)

Patel, Chirag V.

2005-01-01T23:59:59.000Z

14

Which states consume and produce the most natural gas? - FAQ ...  

U.S. Energy Information Administration (EIA)

Which states consume and produce the most natural gas? U.S. consumption of natural gas in 2011 was 24.4 Tcf, the top five states that consumed the ...

15

Producing Natural Gas From Shale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Producing Natural Gas From Shale Producing Natural Gas From Shale Producing Natural Gas From Shale January 26, 2012 - 12:00pm Addthis The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing nearly half of all U.S. natural gas production. | Image courtesy of the Office of Fossil Energy. The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing

16

Coal seam natural gas producing areas (Louisiana) | Open Energy...  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Coal seam natural gas producing areas (Louisiana) This is the approved revision of this...

17

Top 5 producing states' combined marketed natural gas output rose ...  

U.S. Energy Information Administration (EIA)

Glossary › All Reports ... Due primarily to drilling programs in the Marcellus shale ... Alaska is the country's second leading natural gas producer in terms of ...

18

Method and apparatus for producing synthesis gas  

DOE Patents (OSTI)

A method and apparatus for reacting a hydrocarbon containing feed stream by steam methane reforming reactions to form a synthesis gas. The hydrocarbon containing feed is reacted within a reactor having stages in which the final stage from which a synthesis gas is discharged incorporates expensive high temperature materials such as oxide dispersed strengthened metals while upstream stages operate at a lower temperature allowing the use of more conventional high temperature alloys. Each of the reactor stages incorporate reactor elements having one or more separation zones to separate oxygen from an oxygen containing feed to support combustion of a fuel within adjacent combustion zones, thereby to generate heat to support the endothermic steam methane reforming reactions.

Hemmings, John William (Katy, TX); Bonnell, Leo (Houston, TX); Robinson, Earl T. (Mentor, OH)

2010-03-03T23:59:59.000Z

19

Process of producing combustible gas and for carbonizing coal  

SciTech Connect

This patent describes a process of producing combustible gas by supporting a column of fuel in a shaft furnace, intermittently blasting a combustion-supporting gas transversely through a mid portion of said column to produce a mid zone of sufficiently high temperature to decompose steam. The steam then circulated upwardly through said column between said blasting operations.

Doherty, H.L.

1922-08-15T23:59:59.000Z

20

Coal seam natural gas producing areas (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting Provider Louisiana Department of Natural Resources In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is authorized, as provided in this law, to establish a single unit to be served by one or more wells for a coal seam natural gas producing area. Without in any way modifying the authority granted to the commissioner to establish a drilling unit or

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

System and method for producing substitute natural gas from coal  

DOE Patents (OSTI)

The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

Hobbs, Raymond (Avondale, AZ)

2012-08-07T23:59:59.000Z

22

Ratio of produced gas to produced water from DOE's EDNA Delcambre No. 1 geopressured-geothermal aquifer gas well test  

DOE Green Energy (OSTI)

A paper presented by the Institute of Gas Technology (IGT) at the Third Geopressured-Geothermal Energy Conference hypothesized that the high ratio of produced gas to produced water from the No. 1 sand in the Edna Delcambre No. 1 well was due to free gas trapped in pores by imbibition over geological time. This hypothesis was examined in relation to preliminary test data which reported only average gas to water ratios over the roughly 2-day steps in flow rate. Subsequent public release of detailed test data revealed substantial departures from the previously reported computer simulation results. Also, data now in the public domain reveal the existence of a gas cap on the aquifier tested. This paper describes IGT's efforts to match the observed gas/water production with computer simulation. Two models for the occurrence and production of gas in excess of that dissolved in the brine have been used. One model considers the gas to be dispersed in pores by imbibition, and the other model considers the gas as a nearby free gas cap above the aquifier. The studies revealed that the dispersed gas model characteristically gave the wrong shape to plots of gas production on the gas/water ratio plots such that no reasonable match to the flow data could be achieved. The free gas cap model gave a characteristically better shape to the production plots and could provide an approximate fit to the data of the edge of the free gas cap is only about 400 feet from the well.Because the geological structure maps indicate the free gas cap to be several thousand feet away and the computer simulation results match the distance to the nearby Delcambre Nos. 4 and 4A wells, it appears that the source of the excess free gas in the test of the No. 1 sand may be from these nearby wells. The gas source is probably a separate gas zone and is brought into contact with the No. 1 sand via a conduit around the No. 4 well.

Rogers, L.A.; Randolph, P.L.

1979-01-01T23:59:59.000Z

23

Economics of producing substitute natural gas from coal. Occasional pub  

Science Conference Proceedings (OSTI)

Using the cost levelization approach, the economics of producing substitute natural gas (SNG) are examined under different assumptions regarding conversion technologies, coal types and plant financing. A comparison of levelized constant dollar cost-of-service price estimated for Westinghouse and dry bottom Lurgi processes for 1990-2019 shows that SNG from coal produced at western sites is competitive with natural gas and fuel oils.

Rosenberg, J.I.; Ashby, A.B.

1983-07-01T23:59:59.000Z

24

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark V. Scotto; Mark A. Perna

2010-05-30T23:59:59.000Z

25

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark Scotto

2010-05-30T23:59:59.000Z

26

Adsorption process producing chronologically constant amount of a residual gas  

SciTech Connect

An adsorption process is disclosed for purifying or fractionating a gaseous feed mixture comprises an adsorption phase, at least one expansion phase, a purging phase and at least one pressure buildup phase. The expansion phase(S) and the purging phase produce residual process gas fractions. The sum total of volume, and/or mass streams of the residual process gas fractions comprises a residual gas stream which is maintained chronologically substantially constant by controlling the volume and/or gas streams of the gas entering the purging phase and maintaining the gas leaving the expansion phase(S) at a substantially constant value, dependent on the desired mass and/or volume quantity of the residual gas stream. The length of the purging phase and of the expansion phase(S) is adjusted accordingly so that the relationship of the length of time of the purging phase to the length of time of the expansion phase(S) is substantially the same as the relationship of the volume and/or mass of the gas fractions obtained during the purging to those obtained during the expansion phase(S), respectively. The control of the purging and of the expansion phase(S) can also be varied in response to a flow rate of a feed gas entering the process.

Benkmann, C.

1982-02-16T23:59:59.000Z

27

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 841 2007-Jan 01/05 823 01/12 806 01/19 755 01/26 716 2007-Feb 02/02 666 02/09 613 02/16 564 02/23 538 2007-Mar 03/02 527 03/09 506 03/16 519 03/23 528 03/30 550 2007-Apr 04/06 560 04/13 556 04/20 568 04/27 590 2007-May 05/04 610 05/11 629 05/18 648 05/25 670

28

Producing Region Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 570 1994-Jan 01/07 532 01/14 504 01/21 440 01/28 414 1994-Feb 02/04 365 02/11 330 02/18 310 02/25 309 1994-Mar 03/04 281 03/11 271 03/18 284 03/25 303 1994-Apr 04/01 287 04/08 293 04/15 308 04/22 334 04/29 353 1994-May 05/06 376 05/13 399 05/20 429 05/27 443

29

Water management practices used by Fayetteville shale gas producers.  

SciTech Connect

Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

Veil, J. A. (Environmental Science Division)

2011-06-03T23:59:59.000Z

30

METHOD AND APPARATUS FOR PRODUCING INTENSE ENERGETIC GAS DISCHARGES  

DOE Patents (OSTI)

A device for producing an energetic gas arc discharge employing the use of gas-fed hollow cathode and anode electrodes is reported. The rate of feed of the gas to the electrodes is regulated to cause complete space charge neutralization to occur within the electrodes. The arc discharge is closely fitted within at least one of the electrodes so tint the gas fed to this electrode is substantially completely ionized before it is emitted into the vacuum chamber. It is this electrode design and the axial potential gradient that exists in the arc which permits the arc to be operated in low pressures and at volthges and currents that permit the arc to be energetic. The use of the large number of energetic ions that are accelerated toward the cathode as a propulsion device for a space vehicle is set forth.

Bell, P.R.; Luce, J.S.

1960-01-01T23:59:59.000Z

31

Pages that link to "Coal seam natural gas producing areas (Louisiana...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal seam natural gas producing areas (Louisiana)" Coal seam natural gas producing areas...

32

Greenhouse gas emissions related to ethanol produced from corn  

DOE Green Energy (OSTI)

This report confers the details of a panel meeting discussion on greenhouse gases. The topic of this discussion was ethanol. Members discussed all aspects of growing corn and producing ethanol. Then the question was raised as to whether or not this is a suitable substitute to fossil fuel usage in the reduction of greenhouse gas emissions.

Marland, G.

1994-04-01T23:59:59.000Z

33

Salt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 101 2007-Jan 01/05 109 01/12 107 01/19 96 01/26 91 2007-Feb 02/02 78 02/09 63 02/16 52 02/23 54 2007-Mar 03/02 59 03/09 58 03/16 64 03/23 70 03/30 78 2007-Apr 04/06 81 04/13 80 04/20 80 04/27 83 2007-May 05/04 85 05/11 88 05/18 92 05/25 97 2007-Jun 06/01 100 06/08 101 06/15 102 06/22 102 06/29 102

34

Gas injection as an alternative option for handling associated gas produced from deepwater oil developments in the Gulf of Mexico  

E-Print Network (OSTI)

The shift of hydrocarbon exploration and production to deepwater has resulted in new opportunities for the petroleum industry(in this project, the deepwater depth greater than 1,000 ft) but also, it has introduced new challenges. In 2001,more than 999 Bcf of associated gas were produced from the Gulf of Mexico, with deepwater associated gas production accounting for 20% of this produced gas. Two important issues are the potential environmental impacts and the economic value of deepwater associated gas. This project was designed to test the viability of storing associated gas in a saline sandstone aquifer above the producing horizon. Saline aquifer storage would have the dual benefits of gas emissions reduction and gas storage for future use. To assess the viability of saline aquifer storage, a simulation study was conducted with a hypothetical sandstone aquifer in an anticlinal trap. Five years of injection were simulated followed by five years of production (stored gas recovery). Particular attention was given to the role of relative permeability hysteresis in determining trapped gas saturation, as it tends to control the efficiency of the storage process. Various cases were run to observe the effect of location of the injection/production well and formation dip angle. This study was made to: (1) conduct a simulation study to investigate the effects of reservoir and well parameters on gas storage performance; (2) assess the drainage and imbibition processes in aquifer gas storage; (3) evaluate methods used to determine relative permeability and gas residual saturation ; and (4) gain experience with, and confidence in, the hysteresis option in IMEX Simulator for determining the trapped gas saturation. The simulation results show that well location and dip angle have important effects on gas storage performance. In the test cases, the case with a higher dip angle favors gas trapping, and the best recovery is the top of the anticlinal structure. More than half of the stored gas is lost due to trapped gas saturations and high water saturation with corresponding low gas relative permeability. During the production (recovery) phase, it can be expected that water-gas production ratios will be high. The economic limit of the stored gas recovery will be greatly affected by producing water-gas ratio, especially for deep aquifers. The result indicates that it is technically feasible to recover gas injected into a saline aquifer, provided the aquifer exhibits the appropriate dip angle, size and permeability, and residual or trapped gas saturation is also important. The technical approach used in this study may be used to assess saline aquifer storage in other deepwater regions, and it may provide a preliminary framework for studies of the economic viability of deepwater saline aquifer gas storage.

Qian, Yanlin

2003-05-01T23:59:59.000Z

35

DOE's Early Investment in Shale Gas Technology Producing Results...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sands, and methane from coalbeds, DOE developed and stimulated the deployment of advanced exploration and production technologies. These technologies recovered new gas supplies...

36

AGA Producing Region Natural Gas in Underground Storage (Base Gas) (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,039,864 1,032,160 1,033,297 1,032,517 1,037,294 1,037,338 1,038,940 1,036,193 1,037,422 1,035,931 1,035,050 1,043,103 1995 1,051,669 1,054,584 1,051,120 1,051,697 1,052,949 1,062,613 1,058,260 1,054,218 1,054,870 1,051,687 1,056,704 1,060,588 1996 1,067,220 1,062,343 1,027,692 1,040,511 1,055,164 1,056,516 1,052,009 1,051,395 1,052,015 1,048,151 1,052,057 1,053,173 1997 1,064,968 1,054,977 1,059,316 1,059,050 1,059,706 1,064,515 1,063,554 1,063,029 1,066,254 1,064,123 1,065,557 1,065,151 1998 1,064,741 1,058,297 1,057,927 1,057,506 1,060,241 1,055,941 1,055,660 1,055,056 1,056,417 1,057,591 1,057,539 1,038,925

37

How much does it cost to produce crude oil and natural gas? - FAQ ...  

U.S. Energy Information Administration (EIA)

How much does it cost to produce crude oil and natural gas? A measure of the total cost to produce crude oil and natural gas is the upstream costs.

38

Method of producing a methane rich gas mixture from mine gas  

SciTech Connect

A pressure-swing adsorption system is used to enrich the methane content of mine gas obtained from bores around mine shafts or galleries from the customary 25 to 45% by volume to a product gas quality of 50% by volume. Using a carbon molecular sieve adsorbent, the adsorption is carried out at 5 to 8 bar and is followed by a uniflow expansion to an intermediate pressure and a counterflow expansion to a flushing pressure of 1.1 to 2 bar. Counterflow flushing is carried out with waste gas and the product gas is a mixture of the gases obtained by counterflow expansion and flushing.

Richter, E.; Giessler, K.; Knoblauch, K.; Korbacher, W.

1985-06-04T23:59:59.000Z

39

Process for producing dimethyl ether form synthesis gas  

DOE Green Energy (OSTI)

This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

Pierantozzi, Ronald (Macungie, PA)

1985-01-01T23:59:59.000Z

40

Process for producing dimethyl ether from synthesis gas  

DOE Patents (OSTI)

This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

Pierantozzi, R.

1985-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

AGA Producing Region Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

1,894,503 1,780,012 1,829,817 1,964,003 2,054,202 2,124,803 1994-2013 Base Gas 1,076,234 1,074,821 1,075,297 1,077,568 1,080,613 1,080,790 1994-2013 Working Gas 818,269 705,191...

42

Producing Natural Gas from Shale Opportunities and Challenges of a Major  

E-Print Network (OSTI)

continuing annual support to STRONGER (the State Review of Oil and Natural Gas Environmental Regulation1 Producing Natural Gas from Shale ­ Opportunities and Challenges of a Major New Energy Source ~2300 TCF (85% Shale Gas) "100 years of Natural Gas" U.S. Consumption 23 TCF/y #12;5 Opportunity: Global

Nur, Amos

43

AGA Producing Region Natural Gas Underground Storage Withdrawals (Million  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 201,567 147,250 61,339 23,149 9,789 29,178 13,371 19,352 10,151 24,102 52,809 137,962 1995 166,242 120,089 100,955 31,916 17,279 19,712 35,082 62,364 16,966 33,762 102,735 181,097 1996 223,932 157,642 141,292 36,788 27,665 26,393 32,861 27,599 20,226 34,000 116,431 142,519 1997 204,601 103,715 43,894 54,285 24,898 34,122 65,631 42,757 30,579 32,257 113,422 180,582 1998 143,042 69,667 97,322 25,555 30,394 38,537 33,314 37,034 51,903 17,812 60,078 168,445 1999 189,816 77,848 104,690 44,930 22,829 26,085 58,109 60,549 25,888 43,790 66,980 165,046

44

AGA Producing Region Natural Gas Injections into Underground Storage  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Producing Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 20,366 29,330 55,297 93,538 129,284 83,943 104,001 98,054 88,961 65,486 49,635 27,285 1995 24,645 25,960 57,833 78,043 101,019 100,926 77,411 54,611 94,759 84,671 40,182 33,836 1996 34,389 48,922 38,040 76,100 98,243 88,202 88,653 109,284 125,616 91,618 37,375 48,353 1997 45,327 35,394 89,625 83,137 107,821 99,742 71,360 95,278 116,634 117,497 49,750 33,170 1998 41,880 59,324 73,582 119,021 128,323 96,261 107,136 94,705 87,920 129,117 58,026 47,924 1999 35,830 50,772 49,673 80,879 110,064 100,132 72,348 67,286 103,587 79,714 66,465 32,984

45

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2011-09-01T23:59:59.000Z

46

Review of {sup 222}Rn in natural gas produced from unconventional sources  

SciTech Connect

A review of the literature on trace radioactivity in natural gas and natural gas products has been performed and the consequent radioactivity concentrations and dose rates due to natural radioactive elements in natural gas produced from Devonian shale wells, western tight gas sands, geo-pressurized aquifiers and coal beds have been studied. Preliminary data on {sup 222}Rn concentrations from these energy sources fall within the range observed for more conventional sources. Gas produced from reservoirs with higher than average natural /sup 238/U higher than average levels of {sup 222}Rn. Massive fracturing techniques do not appear to raise the relative concentration of radon in natural gas.

Gogolak, C.V.

1980-11-01T23:59:59.000Z

47

Study of a liquid-gas mixing layer: Shear instability and size of produced drops  

E-Print Network (OSTI)

Study of a liquid-gas mixing layer: Shear instability and size of produced drops Sylvain Marty +++++ Presented by £££££ Abstract We study experimentally the atomization of a liquid sheet by a parallel gas flow creation. We study in particular the regimes at low M (ratio of gas/liquid dynamic pressures), to test

Paris-Sud XI, Université de

48

How much does it cost to produce crude oil and natural gas? - FAQ ...  

U.S. Energy Information Administration (EIA)

Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. ... How much does it cost to produce crude oil and natural gas?

49

Producing Gas-Oil Ratio Performance of Conventional and Unconventional Reservoirs.  

E-Print Network (OSTI)

?? This study presents a detailed analysis of producing gas-oil ratio performance characteristics from conventional reservoir to unconventional reservoir. Numerical simulations of various reservoir fluid… (more)

Lei, Guowen

2012-01-01T23:59:59.000Z

50

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

51

AGA Producing Region Natural Gas Underground Storage Capacity (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,026,828 2,068,220 2,068,220 2,068,428 2,068,428 2,068,428 2,074,428 2,082,928 2,082,928 2,082,928 2,082,928 2,082,928 1995 2,082,928 2,096,611 2,096,611 2,096,176 2,096,176 2,096,176 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 1996 2,095,131 2,106,116 2,110,116 2,108,116 2,110,116 2,127,294 2,126,618 2,134,784 2,140,284 2,140,284 2,144,784 2,144,784 1997 2,143,603 2,149,088 2,170,288 2,170,288 2,170,178 2,170,178 2,189,642 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 1998 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,197,859

52

AGA Producing Region Natural Gas Underground Storage Volume (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,433,462 1,329,400 1,322,914 1,388,877 1,498,496 1,553,493 1,643,445 1,714,361 1,785,350 1,819,344 1,810,791 1,716,773 1995 1,601,428 1,510,175 1,467,414 1,509,666 1,586,445 1,662,195 1,696,619 1,688,515 1,768,189 1,818,098 1,757,160 1,613,046 1996 1,436,765 1,325,994 1,223,139 1,264,513 1,334,894 1,395,779 1,443,970 1,525,797 1,631,006 1,686,652 1,614,154 1,519,539 1997 1,379,108 1,303,888 1,356,678 1,385,616 1,461,221 1,536,339 1,542,480 1,596,011 1,683,987 1,770,002 1,707,810 1,559,636 1998 1,456,136 1,442,993 1,420,644 1,515,050 1,610,474 1,666,304 1,739,745 1,803,097 1,840,984 1,950,772 1,945,897 1,807,163

53

United States Producing and Nonproducting Crude Oil and Natural Gas Reserves From 1985 Through 2004  

Gasoline and Diesel Fuel Update (EIA)

United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004 By Philip M. Budzik Abstract The Form EIA-23 survey of crude oil and natural gas producer reserves permits reserves to be differentiated into producing reserves, i.e., those reserves which are available to the crude oil and natural gas markets, and nonproducing reserves, i.e., those reserves which are unavailable to the crude oil and natural gas markets. The proportion of nonproducing reserves relative to total reserves grew for both crude oil and natural gas from 1985 through 2004, and this growth is apparent in almost every major domestic production region. However, the growth patterns in nonproducing crude oil and natural gas reserves are

54

Combination gas producing and waste-water disposal well  

DOE Patents (OSTI)

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, Raymond M. (McKeesport, PA)

1984-01-01T23:59:59.000Z

55

Producer gas power plants can cut the oil bills of the developing countries  

SciTech Connect

As a power-generation fuel substitute in developing countries, producer gas from coal, biomass, or waste could reduce oil-import bills while assuring a steady fuel supply. An international working group formed at the Royal Swedish Academy of Sciences is assisting developing countries in setting up simple producer-gas plants consisting of a downdraft gasifier, cyclone, filter, and cooler. Sweden gained expertise in this technology during World War II and now manufactures much of the equipment needed for producer-gas facilities. Depending on oil price, a dual-fuel power plant (15% diesel oil, 85% producer gas) could compete economically with a diesel-only plant, assuming extra labor requirements of 20 min/hr of operation for the gas-fired facility.

Not Available

1982-02-01T23:59:59.000Z

56

Partial oxidation process for producing a stream of hot purified gas  

DOE Patents (OSTI)

A partial oxidation process for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H.sub.2, CO, CO.sub.2, H.sub.2 O, CH.sub.4, NH.sub.3, HCl, HF, H.sub.2 S, COS, N.sub.2, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N.sub.2 and H.sub.2. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000.degree. F.

Leininger, Thomas F. (Chino Hills, CA); Robin, Allen M. (Anaheim, CA); Wolfenbarger, James K. (Torrance, CA); Suggitt, Robert M. (Wappingers Falls, NY)

1995-01-01T23:59:59.000Z

57

Partial oxidation process for producing a stream of hot purified gas  

DOE Patents (OSTI)

A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

1995-03-28T23:59:59.000Z

58

The Value of Hurricane Forecasts to Oil and Gas Producers in the Gulf of Mexico  

Science Conference Proceedings (OSTI)

The threat of hurricanes often forces producers of crude oil and natural gas in the Gulf of Mexico to evacuate offshore drilling rigs and temporarily to cease production. More accurate hurricane forecasts would result in fewer false alarms, ...

Timothy J. Considine; Christopher Jablonowski; Barry Posner; Craig H. Bishop

2004-09-01T23:59:59.000Z

59

Sustainable development through beneficial use of produced water for the oil and gas industry.  

E-Print Network (OSTI)

??Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large… (more)

Siddiqui, Mustafa Ashique

2012-01-01T23:59:59.000Z

60

Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report  

DOE Green Energy (OSTI)

The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

NONE

1997-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 152 170 165 195 224 Production (million cubic feet)...

62

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 280 300 225 240 251 Production (million cubic feet)...

63

NETL: News Release - DOE's Oil and Gas Produced-Water Program Logs Key  

NLE Websites -- All DOE Office Websites (Extended Search)

July 20, 2007 July 20, 2007 DOE's Oil and Gas Produced-Water Program Logs Key Milestones Cost-Effectively Treating Coproduced Water Boosts U.S. Energy, Water Supplies MORGANTOWN, WV - A research program funded by the U.S. Department of Energy (DOE) is making significant progress in developing new ways to treat and use water coproduced with oil and natural gas. The ultimate benefit is a two-for-one solution that expects to boost domestic energy supplies while enhancing the Nation's water supply. Coproduced water-some of which occurs naturally in subsurface formations, and some that is recovered following injection of water into an oil or gas reservoir to boost production-accounts for 98 percent of all waste generated by U.S. oil and natural gas operations. Produced-water volumes average nine barrels for each barrel of oil produced. Handling, treating, and safely disposing of this produced water has been a tough, costly challenge for oil and natural gas producers for decades. Much of the produced water has high concentrations of minerals or salts that make it unsuitable for beneficial use or surface discharge. An oilfield operator often must reinject such produced water into deep formations, sometimes resorting to costly trucking of the water to deep-injection well sites specially designated by the U.S. Environmental Protection Agency.

64

,"AGA Producing Region Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Region Natural Gas Underground Storage Volume (MMcf)" Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","AGA Producing Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5030872m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5030872m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

65

Horizontal natural gas storage caverns and methods for producing same  

DOE Patents (OSTI)

The invention provides caverns and methods for producing caverns in bedded salt deposits for the storage of materials that are not solvents for salt. The contemplated salt deposits are of the bedded, non-domed variety, more particularly salt found in layered formations that are sufficiently thick to enable the production of commercially usefully sized caverns completely encompassed by walls of salt of the formation. In a preferred method, a first bore hole is drilled into the salt formation and a cavity for receiving insolubles is leached from the salt formation. Thereafter, at a predetermined distance away from the first bore hole, a second bore hole is drilled towards the salt formation. As this drill approaches the salt, the drill assumes a slant approach and enters the salt and drills through it in a horizontal direction until it intersects the cavity for receiving insolubles. This produces a substantially horizontal conduit from which solvent is controlledly supplied to the surrounding salt formation, leaching the salt and producing a concentrated brine which is removed through the first bore hole. Insolubles are collected in the cavity for receiving insolubles. By controlledly supplying solvent, a horizontal cavern is produced with two bore holes extending therefrom.

Russo, Anthony (Albuquerque, NM)

1995-01-01T23:59:59.000Z

66

A Review of Manufacturing Uses for Gypsum Produced by Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

Gypsum is widely used as a source material to manufacture products for building construction applications8212primarily wallboard, cement, and concrete8212and has a number of other commercial applications. The mineral is mined throughout the world (natural gypsum) and also is produced as a result of various industrial processes (synthetic gypsum). The largest source of synthetic gypsum used for manufacturing applications is flue gas desulfurization (FGD) gypsum, the product of wet flue gas desulfurization...

2006-03-07T23:59:59.000Z

67

Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations  

Science Conference Proceedings (OSTI)

The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

Rachel Henderson

2007-09-30T23:59:59.000Z

68

June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site  

SciTech Connect

Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

None

2011-10-01T23:59:59.000Z

69

Geothermal Power Production from Brine Co-Produced from Oil and Gas Wells  

Science Conference Proceedings (OSTI)

Millions of barrels of water (brine) per day are co-produced from oil and gas wells. Currently, the oil and gas industry views this as a waste stream that costs millions of dollars per year to manage, through either treatment or disposal/reinjection. A significant percentage of the co-produced brine, however, flows at sufficient rate and temperature to generate power using a binary power plant, and this is viewed by some as a potential value stream. The value lies in that the co-produced water is "free" ...

2012-04-30T23:59:59.000Z

70

Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells  

Open Energy Info (EERE)

Co-Produced Fluids from Oil and Gas Wells Co-Produced Fluids from Oil and Gas Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Coproduced Fluids for Oil and Gas Wells Project Description The geothermal organic Rankine cycle (ORC) system will be installed at an oil field operated by Encore Acquisition in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. The data and knowledge acquire during the O & M phase can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

71

Fuel gas conditioning process  

DOE Patents (OSTI)

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

72

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

73

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

74

Natural Gas Production  

U.S. Energy Information Administration (EIA)

Natural Gas Production. Measured By. Disseminated Through. Survey of Producing States and Mineral Management Service “Evolving Estimate” in Natural Gas Monthly.

75

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

#12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than the ANL Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis

Patzek, Tadeusz W.

76

Aalborg Universitet Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas  

E-Print Network (OSTI)

Aalborg Universitet Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil &, B. (2013). Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas, 2013 #12;Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production

Yang, Zhenyu

77

Method for increasing the calorific value of gas produced by the in situ combustion of coal  

DOE Patents (OSTI)

The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

Shuck, Lowell Z. (Morgantown, WV)

1978-01-01T23:59:59.000Z

78

Producing Natural Gas from Shale Opportunities and Challenges of a Major  

E-Print Network (OSTI)

agency thereof. #12;Modern Shale Gas Development in the United States: A Primer Work Performed Under DE.gwpc.org and ALL Consulting Tulsa, OK 74119 918-382-7581 www.all-llc.com April 2009 #12;MODERN SHALE GAS SHALE GAS DEVELOPMENT IN THE UNITED STATES: A PRIMER FOREWORD This Primer on Modern Shale Gas

Nur, Amos

79

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

80

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

82

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

83

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

84

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

85

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

86

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

87

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

88

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

89

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

90

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

91

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

92

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

93

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

94

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

95

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

Science Conference Proceedings (OSTI)

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?{sub Sr}{sup SW} = +13.8 to +41.6, where ?{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

2012-03-20T23:59:59.000Z

96

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

SciTech Connect

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ?375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?Sr SW = +13.8 to +41.6, where ?Sr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§ Karl T. Schroeder,§ and Harry M. Edenborn

2012-02-24T23:59:59.000Z

97

Ruslands Gas.  

E-Print Network (OSTI)

??This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to… (more)

Elkjær, Jonas Bondegaard

2009-01-01T23:59:59.000Z

98

Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys  

Science Conference Proceedings (OSTI)

ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

Muth, Thomas R [ORNL; Yamamoto, Yukinori [ORNL; Frederick, David Alan [ORNL; Contescu, Cristian I [ORNL; Chen, Wei [ORNL; Lim, Yong Chae [ORNL; Peter, William H [ORNL; Feng, Zhili [ORNL

2013-01-01T23:59:59.000Z

99

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 22,442 22,117 23,554 18,774 16,718 Production...

100

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

2004 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year... 341,678 373,304 387,772 393,327 405,048 Production...

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 1,169 1,244 1,232 1,249 1,272 Production (million...

102

High density flux of Co nanoparticles produced by a simple gas aggregation apparatus  

Science Conference Proceedings (OSTI)

Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

Landi, G. T.; Romero, S. A.; Santos, A. D. [Departamento de Fisica dos Materiais e Mecanica, Laboratorio de Materiais Magneticos, Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05314-970 Sao Paulo, SP (Brazil)

2010-03-15T23:59:59.000Z

103

Use of inhibitors for scale control in brine-producing gas and oil wells  

SciTech Connect

Field and laboratory work have shown that calcium-carbonate scale formation in waters produced with natural gas and oil can be prevented by injection of phosphonate inhibitor into the formation, even if the formation is sandstone without calcite binging material. Inhibitor squeeze jobs have been carried out on DOE's geopressured-geothermal Gladys McCall brine-gas well and GRI's co-production wells in the Hitchcock field. Following the inhibitor squeeze on Gladys McCall, the well produced over five million barrels of water at a rate of approximately 30,000 BPD without calcium-carbonate scaling. Before the inhibitor squeeze, the well could not be produced above 15,000 BPD without significant scale formation. In the GRI brine-gas co-production field tests, inhibitor squeezes have been used to successfully prevant scaling. Laboratory work has been conducted to determine what types of oil field waters are subject to scaling. This research has led to the development of a saturation index and accompanying nomographs which allow prediction of when scale will develop into a problem in brine production.

Tomson, M.B.; Prestwich, S.

1986-01-01T23:59:59.000Z

104

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine  

SciTech Connect

This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally, three barrels of water are produced for each barrel of oil. Production in the United States is more mature; the US average is about 7 barrels of water per barrel of oil. Closer to home, in Texas the Permian Basin produces more than 9 barrels of water per barrel of oil and represents more than 400 million gallons of water per day processed and re-injected.

David B. Burnett

2005-09-29T23:59:59.000Z

105

Gas laser  

SciTech Connect

According to the invention, the gas laser comprises a housing which accommodates two electrodes. One of the electrodes is sectional and has a ballast resistor connected to each section. One of the electrodes is so secured in the housing that it is possible to vary the spacing between the electrodes in the direction of the flow of a gas mixture passed through an active zone between the electrodes where the laser effect is produced. The invention provides for a maximum efficiency of the laser under different operating conditions.

Kosyrev, F. K.; Leonov, A. P.; Pekh, A. K.; Timofeev, V. A.

1980-08-12T23:59:59.000Z

106

How much shale gas is produced in the United States? - FAQ ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

107

A nozzle array and ballast resistance for producing a glow discharge in a gas flow  

SciTech Connect

This paper describes a design for a nozzle-anode array equipped with a system of cathodes fitted at the axis of each nozzle together with liquid ballast resistors. The system is designed to produce a glow discharge in a supersonic gas flow. The circuit resistance is adjusted via the contact area between the electrode and the liquid. The nominal values of the resistances can be varied over the range 10/sup 1/-10/sup 4/..cap omega.., or set values can be produced with an accuracy of + or - 2%.

Alferov, V.I.; Bushmin, A.S.; Dmitriev, L.M.

1985-01-01T23:59:59.000Z

108

Oil and gas technology transfer activities and potential in eight major producing states. Volume 1  

Science Conference Proceedings (OSTI)

In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

Not Available

1993-07-01T23:59:59.000Z

109

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

Unknown

2003-04-30T23:59:59.000Z

110

Economic benefits of R and D on gas supply technologies. [Unconventioal natural gas resources which are tight sands, Devonian shale, coal seam gas, and gas co-produced with water  

SciTech Connect

Advanced natural gas supply technologies, if successful, could lower the average cost of gas to consumers by 18% and increase the expected gas demand by 2 quads/year by the year 2000. Advanced production techniques for unconventional gas will have by far the greatest impact on future gas prices, providing economic benefits of between $200 billion and $320 billion. Advanced SNG from coal will provide only a $9 billion benefit if unconventional gas meets all of its performance targets. However, higher demand and failure of unconventional gas R and D could raise the benefits of SNG research to $107 billion. SNG research provides a hedge value that increases the likelihood of receiving a positive payoff from gas supply R and D. Changing the performance goals for SNG research to emphasize cost reduction rather than acceleration of the date of commercialization would greatly increase the potential benefits of the program. 9 references, 8 figures, 5 tables.

Darrow, K.G.; Ashby, A.B.; Nesbitt, D.M.; Marshalla, R.A.

1985-01-01T23:59:59.000Z

111

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC's accomplishments during FY02. Activities were maintained at recent record levels. Strategic planning from multiple sources within the framework of the organization gives PTTC the vision to have even more impact in the future. The Houston Headquarters (HQ) location has strived to serve PTTC well in better connecting with producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database, exhibit at more trade shows and a new E-mail Technology Alert service are expanding PTTC's audience. All considered, the PTTC network has proven to be an effective way to reach domestic producers locally, regionally and nationally.

Unknown

2002-11-01T23:59:59.000Z

112

Proceedings of the 1999 Oil and Gas Conference: Technology Options for Producer Survival  

Science Conference Proceedings (OSTI)

The 1999 Oil & Gas Conference was cosponsored by the U.S. Department of Energy (DOE), Office of Fossil Energy, Federal Energy Technology Center (FETC) and National Petroleum Technology Office (NPTO) on June 28 to 30 in Dallas, Texas. The Oil & Gas Conference theme, Technology Options for Producer Survival, reflects the need for development and implementation of new technologies to ensure an affordable, reliable energy future. The conference was attended by nearly 250 representatives from industry, academia, national laboratories, DOE, and other Government agencies. Three preconference workshops (Downhole Separation Technologies: Is it Applicable for Your Operations, Exploring and developing Naturally Fractured Low-Permeability Gas Reservoirs from the Rocky Mountains to the Austin Chalk, and Software Program Applications) were held. The conference agenda included an opening plenary session, three platform sessions (Sessions 2 and 3 were split into 2 concurrent topics), and a poster presentation reception. The platform session topics were Converting Your Resources Into Reserves (Sessions 1 and 2A), Clarifying Your Subsurface Vision (Session 2B), and High Performance, Cost Effective Drilling, Completion, Stimulation Technologies (Session 3B). In total, there were 5 opening speakers, 30 presenters, and 16 poster presentations.

None available

2000-04-12T23:59:59.000Z

113

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

Unknown

2000-11-01T23:59:59.000Z

114

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

115

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

116

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

117

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

118

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

119

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

120

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

122

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

123

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

124

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

125

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

126

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

127

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

128

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

129

Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations  

SciTech Connect

Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

David B. Burnett; Mustafa Siddiqui

2006-12-29T23:59:59.000Z

130

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

131

Gas Week  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Gas WeekHouston, TexasSeptember 24, 2003

Information Center

2003-09-24T23:59:59.000Z

132

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

In pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions, the Petroleum Technology Transfer Council (PTTC) functions as a cohesive national organization that implements industry's directives through active regional programs. The role of the national headquarters (HQ) organization includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. PTTC relies on 10 Regional Lead Organizations (RLOs) as its main program delivery mechanism to industry. Through its regions, PTTC connects with independent oil and gas producers--through technology workshops, resources centers, websites, newsletters, and other outreach efforts. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY98, and its strategy for achieving further growth in the future.

Unknown

1998-10-31T23:59:59.000Z

133

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

Donald Duttlinger

1999-12-01T23:59:59.000Z

134

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

Unknown

1999-10-31T23:59:59.000Z

135

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

Unknown

2000-05-01T23:59:59.000Z

136

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. PTTC's Board made a strategic decision to relocate the Headquarters (HQ) office from Washington, DC to Houston, Texas. Driving force behind relocation was to better connect with independent producers, but cost savings could also be realized. Relocation was accomplished in late December 2000, with the HQ office being fully operational by January 2001. Early indications are that the HQ relocation is, in fact, enabling better networking with senior executives of independents in the Houston oil community. New Board leadership, elected in March 2001, will continue to effectively guide PTTC.

Unknown

2001-05-01T23:59:59.000Z

137

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

Science Conference Proceedings (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback confirms that producers are taking action with the information they receive. RLO Directors captured examples demonstrating how PTTC activities influenced industry activity. Additional follow-up in all regions explored industry's awareness of PTTC and the services it provides. PTTC publishes monthly case studies in the ''Petroleum Technology Digest in World Oil'' and monthly Tech Connections columns in the ''American Oil and Gas Reporter''. Email Tech Alerts are utilized to notify the O&G community of DOE solicitations and demonstration results, PTTC key technical information and meetings, as well as industry highlights. Workshop summaries are posted online at www.pttc.org. PTTC maintains an active exhibit schedule at national industry events. The national communications effort continues to expand the audience PTTC reaches. The network of national and regional websites has proven effective for conveying technology-related information and facilitating user's access to basic oil and gas data, which supplement regional and national newsletters. The regions frequently work with professional societies and producer associations in co-sponsored events and there is a conscious effort to incorporate findings from DOE-supported research, development and demonstration (RD&D) projects within events. The level of software training varies by region, with the Rocky Mountain Region taking the lead. Where appropriate, regions develop information products that provide a service to industry and, in some cases, generate moderate revenues. Data access is an on-going industry priority, so all regions work to facilitate access to public source databases. Various outreach programs also emanate from the resource centers, including targeted visits to producers.

Donald F. Duttlinger; E. Lance Cole

2003-12-15T23:59:59.000Z

138

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization efficiently has an impact on business economics as the focus remains on proven applicable technologies, which target cost reduction and efficiency gains.

Donald Duttlinger

2001-11-01T23:59:59.000Z

139

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

140

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

142

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

143

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

144

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

145

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

146

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

147

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

148

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

149

AGA Producing Region Natural Gas in Underground Storage - Change in Working  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 156,161 158,351 126,677 101,609 72,294 83,427 33,855 -43,870 -34,609 -17,003 -75,285 -121,212 1996 -180,213 -191,939 -220,847 -233,967 -253,766 -260,320 -246,398 -159,895 -134,327 -127,911 -138,359 -86,091 1997 -55,406 -14,740 101,915 102,564 121,784 132,561 86,965 58,580 38,741 67,379 80,157 28,119 1998 77,255 135,784 65,355 130,979 148,718 138,540 205,160 215,060 166,834 187,302 246,104 273,754

150

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

Unknown

2002-05-31T23:59:59.000Z

151

In situ gasification process for producing product gas enriched in carbon monoxide and hydrogen  

SciTech Connect

The present invention is directed to an in situ coal gasification process wherein the combustion zone within the underground coal bed is fed with air at increasing pressure to increase pressure and temperature in the combustion zone for forcing product gases and water naturally present in the coal bed into the coal bed surrounding the combustion zone. No outflow of combustion products occurs during the build-up of pressure and temperature in the combustion zone. After the coal bed reaches a temperature of about 2000.degree. F and a pressure in the range of about 100-200 psi above pore pressure the airflow is terminated and the outflow of the combustion products from the combustion zone is initiated. The CO.sub.2 containing gaseous products and the water bleed back into the combustion zone to react endothermically with the hot carbon of the combustion zone to produce a burnable gas with a relatively high hydrogen and carbon monoxide content. About 11 to 29 percent of the gas recovered from the combustion zone is carbon monoxide which is considerably better than the 4 to 10 percent carbon monoxide obtained by employing previously known coal gasification techniques.

Capp, John P. (Morgantown, WV); Bissett, Larry A. (Morgantown, WV)

1978-01-01T23:59:59.000Z

152

Treating Coalbed Natural Gas Produced Water for Beneficial Use By MFI Zeolite Membranes  

SciTech Connect

Desalination of brines produced from oil and gas fields is an attractive option for providing potable water in arid regions. Recent field-testing of subsurface sequestration of carbon dioxide for climate management purposes provides new motivation for optimizing efficacy of oilfield brine desalination: as subsurface reservoirs become used for storing CO{sub 2}, the displaced brines must be managed somehow. However, oilfield brine desalination is not economical at this time because of high costs of synthesizing membranes and the need for sophisticated pretreatments to reduce initial high TDS and to prevent serious fouling of membranes. In addition to these barriers, oil/gas field brines typically contain high concentrations of multivalent counter cations (eg. Ca{sup 2+} and SO{sub 4}{sup 2-}) that can reduce efficacy of reverse osmosis (RO). Development of inorganic membranes with typical characteristics of high strength and stability provide a valuable option to clean produced water for beneficial uses. Zeolite membranes have a well-defined subnanometer pore structure and extreme chemical and mechanical stability, thus showing promising applicability in produced water purification. For example, the MFI-type zeolite membranes with uniform pore size of {approx}0.56 nm can separate ions from aqueous solution through a mechanism of size exclusion and electrostatic repulsion (Donnan exclusion). Such a combination allows zeolite membranes to be unique in separation of both organics and electrolytes from aqueous solutions by a reverse osmosis process, which is of great interest for difficult separations, such as oil-containing produced water purification. The objectives of the project 'Treating Coalbed Natural Gas Produced Water for Beneficial Use by MFI Zeolite Membranes' are: (1) to conduct extensive fundamental investigations and understand the mechanism of the RO process on zeolite membranes and factors determining the membrane performance, (2) to improve the membranes and optimize operating conditions to enhance water flux and ion rejection, and (3) to perform long-term RO operation on tubular membranes to study membrane stability and to collect experimental data necessary for reliable evaluations of technical and economic feasibilities. Our completed research has resulted in deep understanding of the ion and organic separation mechanism by zeolite membranes. A two-step hydrothermal crystallization process resulted in a highly efficient membrane with good reproducibility. The zeolite membranes synthesized therein has an overall surface area of {approx}0.3 m{sup 2}. Multichannel vessels were designed and machined for holding the tubular zeolite membrane for water purification. A zeolite membrane RO demonstration with zeolite membranes fabricated on commercial alpha-alumina support was established in the laboratory. Good test results were obtained for both actual produced water samples and simulated samples. An overall 96.9% ion rejection and 2.23 kg/m{sup 2}.h water flux was achieved in the demonstration. In addition, a post-synthesis modification method using Al{sup 3+}-oligomers was developed for repairing the undesirable nano-scale intercrystalline pores. Considerable enhancement in ion rejection was achieved. This new method of zeolite membrane modification is particularly useful for enhancing the efficiency of ion separation from aqueous solutions because the modification does not need high temperature operation and may be carried out online during the RO operation. A long-term separation test for actual CBM produced water has indicated that the zeolite membranes show excellent ion separation and extraordinary stability at high pressure and produced water environment.

Robert Lee; Liangxiong Li

2008-03-31T23:59:59.000Z

153

A full fuel-cycle analysis of energy and emissions impacts of transportation fuels produced from natural gas  

DOE Green Energy (OSTI)

Because of its abundance and because it offers significant energy and evironmental advantages, natural gas has been promoted for use in motor vehicles. A number of transportation fuels are produced from natural gas; each is distinct in terms of upstream production activities and vehicle usage. In this study, the authors avaluate eight fuels produced from natural gas - compressed natural gas, liquefied petroleum gas, methanol, hydrogen, dimethyl ether, Fischer-Tropsch diesel, and electricity--for use in five types of motor vehicles--spark-ignition vehicles, compression-ignition vehicles, hybrid electric vehicles, battery-powered electric vehicles, and fuel-cell vehicles. Because of great uncertainties associated with advances both in fuel production and vehicle technologies, they evaluate near-term and long-term fuels and vehicle technologies separately. Furthermore, for long-term options, they establish both an incremental technology scenario and a leap-forward technology scenario to address potential technology improvements. The study reveals that, in general, the use of natural gas-based fuels reduces energy use and emissions relative to use of petroleum-based gasoline and diesel fuel, although different natural gas-based fuels in different vehicle technologies can have significantly different energy and emissions impacts.

Wang, M.Q.; Huang, H.S.

2000-01-25T23:59:59.000Z

154

How to estimate worth of minor value oil, gas producing properties at public auction  

Science Conference Proceedings (OSTI)

The purpose of this paper is to evaluate the divestiture of minor value working and royalty interests (worth less than $20,000) in producing oil and gas properties through the transaction medium of no-minimum, English open outcry public auctions. Specifically, the paper seeks to answer the question, What can the seller expect to receive for his minor value properties at a public auction, knowing only how he values those properties to himself To answer this question, a mathematical model that predicts the seller's expected present worth (EPW) as a function of the seller's Securities and Exchange Commission-case book value (X{sub s}), and the winning bid value (X{sub B}) is derived from classical auction theory.

Randall, B.L. (Unit Corp., Tulsa, OK (US))

1990-12-31T23:59:59.000Z

155

TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE  

Science Conference Proceedings (OSTI)

Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of potentially hazardous chemicals, and could be readily adapted to an automated system.

Lynn E. Katz; R.S. Bowman; E.J. Sullivan

2003-11-01T23:59:59.000Z

156

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

157

Gas separating  

DOE Patents (OSTI)

Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

Gollan, A.

1988-03-29T23:59:59.000Z

158

Natural gas production from Arctic gas hydrates  

Science Conference Proceedings (OSTI)

The natural gas hydrates of the Messoyakha field in the West Siberian basin of Russia and those of the Prudhoe Bay-Kuparuk River area on the North Slope of Alaska occur within a similar series of interbedded Cretaceous and Tertiary sandstone and siltstone reservoirs. Geochemical analyses of gaseous well-cuttings and production gases suggest that these two hydrate accumulations contain a mixture of thermogenic methane migrated from a deep source and shallow, microbial methane that was either directly converted to gas hydrate or was first concentrated in existing traps and later converted to gas hydrate. Studies of well logs and seismic data have documented a large free-gas accumulation trapped stratigraphically downdip of the gas hydrates in the Prudhoe Bay-Kuparuk River area. The presence of a gas-hydrate/free-gas contact in the Prudhoe Bay-Kuparuk River area is analogous to that in the Messoyakha gas-hydrate/free-gas accumulation, from which approximately 5.17x10[sup 9] cubic meters (183 billion cubic feet) of gas have been produced from the hydrates alone. The apparent geologic similarities between these two accumulations suggest that the gas-hydrated-depressurization production method used in the Messoyakha field may have direct application in northern Alaska. 30 refs., 15 figs., 3 tabs.

Collett, T.S. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

159

Impacts from oil and gas produced water discharges on the gulf of Mexico hypoxic zone.  

Science Conference Proceedings (OSTI)

Shallow water areas of the Gulf of Mexico continental shelf experience low dissolved oxygen (hypoxia) each summer. The hypoxic zone is primarily caused by input of nutrients from the Mississippi and Atchafalaya Rivers. The nutrients stimulate the growth of phytoplankton, which leads to reduction of the oxygen concentration near the sea floor. During the renewal of an offshore discharge permit used by the oil and gas industry in the Gulf of Mexico, the U.S. Environmental Protection Agency (EPA) identified the need to assess the potential contribution from produced water discharges to the occurrence of hypoxia. The EPA permit required either that all platforms in the hypoxic zone submit produced water samples, or that industry perform a coordinated sampling program. This paper, based on a report submitted to EPA in August 2005 (1), describes the results of the joint industry sampling program and the use of those results to quantify the relative significance of produced water discharges in the context of other sources on the occurrence of hypoxia in the Gulf of Mexico. In the sampling program, 16 facilities were selected for multiple sampling - three times each at one month intervals-- and another 34 sites for onetime sampling. The goal of the sampling program was to quantify the sources and amount of oxygen demand associated with a variety of Gulf of Mexico produced waters. Data collected included direct oxygen demand measured by BOD5 (5-day biochemical oxygen demand) and TOC (total organic carbon) and indirect oxygen demand measured by nitrogen compounds (ammonia, nitrate, nitrate, and TKN [total Kjeldahl nitrogen]) and phosphorus (total phosphorus and orthophosphate). These data will serve as inputs to several available computer models currently in use for forecasting the occurrence of hypoxia in the Gulf of Mexico. The output of each model will be compared for consistency in their predictions and then a semi-quantitative estimate of the relative significance of produced water inputs to hypoxia will be made.

Parker, M. E.; Satterlee, K.; Veil, J. A.; Environmental Science Division; ExxonMobil Production Co.; Shell Offshore

2006-01-01T23:59:59.000Z

160

Missouri Natural Gas Number of Gas and Gas Condensate ...  

U.S. Energy Information Administration (EIA)

Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Long-term contracts and asset specificity revisited : an empirical analysis of producer-importer relations in the natural gas industry  

E-Print Network (OSTI)

In this paper, we analyze structural changes in long-term contracts in the international trade of natural gas. Using a unique data set of 262 long-term contracts between natural gas producers and importers, we estimate the ...

Neumann, Anne

2006-01-01T23:59:59.000Z

162

AGA Producing Region Natural Gas in Underground Storage - Change in Working  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -32.80 -42.10 -53.10 -51.10 -47.60 -43.40 -38.60 -25.20 -18.80 -16.70 -19.80 -15.60 1997 -15.00 -5.60 52.10 45.80 43.50 39.10 22.20 12.30 6.70 10.60 14.30 6.00 1998 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.30 55.40 1999 56.40 52.20 46.30 24.20 18.80 19.30 8.80 0.30 5.30 -3.80 0.00 0.00 2000 -14.80 -32.50 -28.30 -30.80 -35.70 -34.40 -30.70 -30.60 -28.40 -22.30 -28.90 -46.70 2001 -38.30 -35.20 -37.70 -12.80 9.80 25.20 31.70 43.40 46.40 30.90 52.60 127.30 2002 127.50 140.90 136.10 82.90 59.20 34.80 18.30 10.40 3.10 -0.50 -14.40 -23.90

163

Development of the utilization of combustible gas produced in existing sanitary landfills: effects of corrosion at the Mountain View, CA Landfill Gas-Recovery Plant  

DOE Green Energy (OSTI)

Corrosion of equipment has occurred at the Mountain View, California Landfill Gas Recovery Plant. Corrosion is most severe on compressor valve seats and cages, tubes in the first and second stages of the interstage gas cooler, and first and second stage piping and liquid separators. Corrosion occurs because the raw landfill gas contains water, carbon dioxide, and oxygen. Some corrosion may also result from trace concentrations of organic acids present in the landfill gas. Corrosion of the third stage compressor, cooler, and piping does not occur because the gas is dehydrated immediately prior to the third stage. Controlling corrosion is necessary to maintain the mechanical integrity of the plant and to keep the cost of the gas competitive with natural gas. Attempts to reduce corrosion rates by injecting a chemical inhibitor have proved only partially successful. Recommendations for dealing with corrosion include earlier dehydration of the gas, selection of special alloys in critical locations, chemical inhibition, and regular plant inspections.

Not Available

1982-10-01T23:59:59.000Z

164

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Projects Exploration and Production Technologies Coalbed Natural Gas Produced-Water Treatment Using Gas Hydrate Formation at the Wellhead DE-FC26-05NT15551...

165

A new technology for producing hydrogen and adjustable ratio syngas from coke oven gas  

Science Conference Proceedings (OSTI)

About 15 billion Nm{sup 3} coke oven gas (COG) is emitted into the air in Shanxi Province in China as air pollutants. It is also a waste of precious chemical resources. In this study, COG was purified respectively by four methods including refrigeration, fiberglass, silica gel, and molecular sieve. Purified COG was separated by a prism membrane into two gas products. One consists mainly of H{sub 2} ({gt}90 vol %) and the other is rich in CH{sub 4} ({gt}60 vol %) with their exact compositions to vary with the membrane separation pressure and outlet gas flow ratio. The gas rich in CH{sub 4} was partially oxidized with oxygen in a high-temperature fixed-bed quartz reactor charged with coke particles of 10 mm size. At 1200-1300{sup o}C, a CH{sub 4} conversion of {gt}99% could be obtained. The H{sub 2}/CO ratio in the synthesis product gas can be adjusted in the range 0.3-1.4, very favorable for further C1 synthesis. 10 refs., 17 figs., 1t ab.

Jun Shen; Zhi-zhong Wang; Huai-wang Yang; Run-sheng Yao [Taiyuan University of Technology, Taiyuan (China). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

166

Oil and gas development in the United States in the early 1990`s: An expanded role for independent producers  

Science Conference Proceedings (OSTI)

Since 1991, the major petroleum companies` foreign exploration and development expenditures have exceeded their US exploration and development expenditures. The increasing dependence of US oil and gas development on the typically much smaller nonmajor companies raises a number of issues. Did those companies gain increased prominence largely through the reduced commitments of the majors or have they been significantly adding to the US reserve base? What are the characteristics of surviving and growing producers compared with companies exiting the US oil and gas business? Differences between majors` development strategies and those of other US oil and gas producers appear considerable. As the mix of exploration and development strategies in US oil and gas increasingly reflects the decisions of smaller, typically more specialized producers, what consequences can be seen regarding the costs of adding to US reserves? How are capital markets accessed? Are US oil and gas investments by the nonmajors likely to be undertaken only with higher costs of capital? This report analyzes these issues. 20 figs., 6 tabs.

NONE

1995-10-01T23:59:59.000Z

167

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per  

E-Print Network (OSTI)

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1

Phillips, David

168

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

169

Carbon Dioxide as Cushion Gas for Natural Gas Storage  

Carbon dioxide injection during carbon sequestration with enhanced gas recovery can be carried out to produce the methane while

170

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

171

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

172

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

173

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

174

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

175

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

176

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

177

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

178

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

179

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

180

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

182

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

183

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

184

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

185

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

186

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

187

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

188

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

189

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

190

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

191

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

192

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

193

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

194

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

195

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

196

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

197

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

198

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids ...  

U.S. Energy Information Administration (EIA)

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 ... produce unconventional gas economically. Production.

199

Impact of injecting inert cushion gas into a gas storage reservoir.  

E-Print Network (OSTI)

??Underground natural gas storage is a process which ensures constant supply of natural gas by storing the excess gas produced and quickly supply when required.… (more)

Lekkala, Sudheer R.

2009-01-01T23:59:59.000Z

200

Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well ...  

U.S. Energy Information Administration (EIA)

Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, ... Total (Gross Withdrawals ... natural gas wells divided by the number of producing wells, ...

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens ’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

202

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 15:

203

Mississippi Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

204

Structure and magnetic properties of Co-W clusters produced by inert gas condensation  

SciTech Connect

In this article, inert-gas condensation was used to synthesize Co-W clusters. The formation, structure, and magnetic properties of the clusters were investigated. Sub-10-nm clusters were obtained, and the structures and average sizes were strongly dependent on sputtering power. At low sputtering powers, the clusters were predominantly amorphous, while, at high sputtering power, the clusters were crystalline. X ray diffraction and transmission electron microscopy revealed clusters with hcp structure at high sputtering power. The magnetic properties were dependent on the sputtering power and temperature, with the highest coercivity of 810?Oe at 10 K for high sputtering power.

Golkar, Farhad; Kramer, Matthew; Zhang, Y.; McCallum, R.W.; Skomski, R.; Sellmyer, D.J.; Shield, J.E.

2012-03-06T23:59:59.000Z

205

Structure and magnetic properties of Co-W clusters produced by inert gas condensation  

Science Conference Proceedings (OSTI)

In this article, inert-gas condensation was used to synthesize Co-W clusters. The formation, structure, and magnetic properties of the clusters were investigated. Sub-10-nm clusters were obtained, and the structures and average sizes were strongly dependent on sputtering power. At low sputtering powers, the clusters were predominantly amorphous, while, at high sputtering power, the clusters were crystalline. X ray diffraction and transmission electron microscopy revealed clusters with hcp structure at high sputtering power. The magnetic properties were dependent on the sputtering power and temperature, with the highest coercivity of 810 Oe at 10 K for high sputtering power.

Golkar, Farhad [Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588 (United States); Kramer, M. J.; Zhang, Y.; McCallum, R. W. [Ames Laboratory, Ames, Iowa 50011 (United States); Skomski, R.; Sellmyer, D. J. [Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States); Shield, J. E. [Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States)

2012-04-01T23:59:59.000Z

206

Iron catalyst for preparation of polymethylene from synthesis gas and method for producing the catalyst  

DOE Patents (OSTI)

This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

Sapienza, R.S.; Slegeir, W.A.

1990-05-15T23:59:59.000Z

207

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

134,294 32,451 0.37 0 0.00 32 1.09 43,764 0.83 10,456 0.38 39,786 1.26 126,488 0.63 C o n n e c t i c u t Connecticut 54. Summary Statistics for Natural Gas Connecticut, 1992-1996...

208

Natural Gas  

Annual Energy Outlook 2012 (EIA)

3.91 119,251 0.60 229 7.81 374,824 7.15 2,867 0.10 189,966 6.01 915,035 4.57 O h i o Ohio 83. Summary Statistics for Natural Gas Ohio, 1992-1996 Table 1992 1993 1994 1995 1996...

209

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0.00 53 1.81 147,893 2.82 7,303 0.27 93,816 2.97 398,581 1.99 W i s c o n s i n Wisconsin 97. Summary Statistics for Natural Gas Wisconsin, 1992-1996 Table 1992 1993 1994...

210

Gas Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

Prices Gasoline Prices for U.S. Cities Click on the map to view gas prices for cities in your state. AK VT ME NH NH MA MA RI CT CT DC NJ DE DE NY WV VA NC SC FL GA AL MS TN KY IN...

211

Natural Gas  

Annual Energy Outlook 2012 (EIA)

10,799 1,953 0.02 0 0.00 0 0.00 2,523 0.05 24 0.00 2,825 0.09 7,325 0.04 V e r m o n t Vermont 93. Summary Statistics for Natural Gas Vermont, 1992-1996 Table 1992 1993 1994 1995...

212

Natural Gas  

Annual Energy Outlook 2012 (EIA)

845,998 243,499 2.75 135,000 0.68 35 1.19 278,606 5.32 7,239 0.26 154,642 4.90 684,022 3.42 P e n n s y l v a n i a Pennsylvania 86. Summary Statistics for Natural Gas...

213

Flue-gas carbon capture on carbonaceous sorbents: Toward a low-cost multifunctional Carbon Filter for 'Green' energy producers  

SciTech Connect

A low-pressure Carbon Filter Process (patent pending) is proposed to capture carbon dioxide (CO{sub 2}) from flue gas. This filter is filled with a low-cost carbonaceous sorbent, such as activated carbon or charcoal, which has a high affinity (and, hence, high capacity) to CO{sub 2} but not to nitrogen (N{sub 2}). This, in turn, leads to a high CO{sub 2}/N{sub 2} selectivity, especially at low pressures. The Carbon Filter Process proposed in this work can recover at least 90% of flue-gas CO{sub 2} of 90%+ purity at a fraction of the cost normally associated with the conventional amine absorption process. The Carbon Filter Process requires neither expensive materials nor flue-gas compression or refrigeration, and it is easy to heat integrate with an existing or grassroots power plant without affecting the cost of the produced electricity too much. An abundant supply of low-cost CO{sub 2} from electricity producers is good news for enhanced oil recovery (EOR) and enhanced coal-bed methane recovery (ECBMR) operators, because it will lead to higher oil and gas recovery rates in an environmentally sensitive manner. A CO{sub 2}-rich mixture that contains some nitrogen is much less expensive to separate from flue-gas than pure CO{sub 2}; therefore, mixed CO{sub 2}/N{sub 2}-EOR and CO{sub 2}/N{sub 2}-ECBMR methods are proposed to maximize the overall carbon capture and utilization efficiency.

Radosz, M.; Hu, X.D.; Krutkramelis, K.; Shen, Y.Q. [University of Wyoming, Laramie, WY (United States)

2008-05-15T23:59:59.000Z

214

HD gas analysis with Gas Chromatography and Quadrupole Mass Spectrometer  

E-Print Network (OSTI)

A gas analyzer system has been developed to analyze Hydrogen-Deuteride (HD) gas for producing frozen-spin polarized HD targets, which are used for hadron photoproduction experiments at SPring-8. Small amounts of ortho-H$_{2}$ and para-D$_{2}$ gas mixtures ($\\sim$0.01%) in the purified HD gas are a key to realize a frozen-spin polarized target. In order to obtain reliable concentrations of these gas mixtures in the HD gas, we produced a new gas analyzer system combining two independent measurements with the gas chromatography and the QMS. The para-H$_{2}$, ortho-H$_{2}$, HD, and D$_{2}$ are separated using the retention time of the gas chromatography and the mass/charge. It is found that the new gas analyzer system can measure small concentrations of $\\sim$0.01% for the otho-H$_2$ and D$_2$ with good S/N ratios.

T. Ohta; S. Bouchigny; J. -P. Didelez; M. Fujiwara; K. Fukuda; H. Kohri; T. Kunimatsu; C. Morisaki; S. Ono; G. Rouille; M. Tanaka; K. Ueda; M. Uraki; M. Utsuro; S. Y. Wang; M. Yosoi

2011-01-28T23:59:59.000Z

215

Combination gas-producing and waste-water disposal well. [DOE patent application  

DOE Patents (OSTI)

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, R.M.

1981-09-03T23:59:59.000Z

216

Process for producing methane from gas streams containing carbon monoxide and hydrogen  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

Frost, Albert C. (Congers, NY)

1980-01-01T23:59:59.000Z

217

Geologic, geochemical, and geographic controls on NORM in produced water from Texas oil, gas, and geothermal reservoirs. Final report  

DOE Green Energy (OSTI)

Water from Texas oil, gas, and geothermal wells contains natural radioactivity that ranges from several hundred to several thousand Picocuries per liter (pCi/L). This natural radioactivity in produced fluids and the scale that forms in producing and processing equipment can lead to increased concerns for worker safety and additional costs for handling and disposing of water and scale. Naturally occurring radioactive materials (NORM) in oil and gas operations are mainly caused by concentrations of radium-226 ({sup 226}Ra) and radium-228 ({sup 228}Ra), daughter products of uranium-238 ({sup 238}U) and thorium-232 ({sup 232}Th), respectively, in barite scale. We examined (1) the geographic distribution of high NORM levels in oil-producing and gas-processing equipment, (2) geologic controls on uranium (U), thorium (Th), and radium (Ra) in sedimentary basins and reservoirs, (3) mineralogy of NORM scale, (4) chemical variability and potential to form barite scale in Texas formation waters, (5) Ra activity in Texas formation waters, and (6) geochemical controls on Ra isotopes in formation water and barite scale to explore natural controls on radioactivity. Our approach combined extensive compilations of published data, collection and analyses of new water samples and scale material, and geochemical modeling of scale Precipitation and Ra incorporation in barite.

Fisher, R.

1995-08-01T23:59:59.000Z

218

Gas supplies of interstate natural gas pipeline companies, 1986  

SciTech Connect

The publication provides information on the total reserves, production, and deliverability capabilities of the 90 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company-owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing State and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico. 7 figs., 18 tabs.

Not Available

1987-12-18T23:59:59.000Z

219

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

can be exported to other CBM areas in the US. Benefits The opportunity to resolve the oil and gas industrys growing problem with producing, handling, and treating produced...

220

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Unconventional Natural Gas Los Alamos scientists are committed to the efficient and environmentally-safe development of major U.S. natural gas and oil resources....

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

222

,"Texas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Texas Natural Gas Exports...

223

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

224

,"Montana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Montana Natural Gas Exports...

225

,"Michigan Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Michigan Natural Gas Exports...

226

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

227

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network (OSTI)

by numerical simulation below. pipeline gas shalecushion gas sand shale CH4 working gas CH4 working gas sand

Oldenburg, Curtis M.

2003-01-01T23:59:59.000Z

228

GAS SEAL  

DOE Patents (OSTI)

A seal is described for a cover closing an opening in the top of a pressure vessel that may house a nuclear reactor. The seal comprises a U-shaped trough formed on the pressure vessel around the opening therein, a mass of metal in the trough, and an edge flange on the cover extending loosely into the trough and dipping into the metal mass. The lower portion of the metal mass is kept melted, and the upper portion, solid. The solid pontion of the metal mass prevents pressure surges in the vessel from expelling the liquid portion of the metal mass from the trough; the liquld portion, thus held in place by the solid portion, does not allow gas to go through, and so gas cannot escape through shrinkage holes in the solid portion.

Monson, H.; Hutter, E.

1961-07-11T23:59:59.000Z

229

Shale gas is natural gas trapped inside  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

230

Natural Gas Gross Withdrawals from Gas Wells  

U.S. Energy Information Administration (EIA)

Natural Gas Gross Withdrawals and Production (Volumes in Million Cubic Feet) Data Series: ... coalbed production data are included in Gas Well totals.

231

Natural Gas Gross Withdrawals from Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

232

Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs).

233

Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas: Gas in place at the time that a reservoir was converted to use as an underground storage reservoir, as in contrast to injected gas volumes. Natural Gas: A gaseous mixture...

234

Gas Metrology Portal  

Science Conference Proceedings (OSTI)

... automobile industry meeting more stringent … more. Audit of EPA Protocol Gas Suppliers EPA Protocol gas mixture calibration ...

2012-12-19T23:59:59.000Z

235

Renewable Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas JOHN DAVIS: The use of clean, domestic natural gas as highway fuel in place of imported oil is growing in popularity with fleets and trucking companies. While natural gas from underground deposits is arguably a limited resource, there is a renewable, eco-friendly resource that we have right here in the U.S.A. And we're here now to give you the straight poop! Every family, farm animal and food processing plant in America produces organic waste that creates a mix of methane, CO2 and other elements called bio gas when it decomposes. Rotten vegetables, moldy bread, last night's leftovers --- they all break down when our garbage gets to the land fill. Incredibly, for

236

Synthesis gas production  

SciTech Connect

Raw synthesis gas produced by the gasification of coal, heavy oil or similar carbonaceous material is contacted with a reforming catalyst at a temperature in the range between about 1000/sup 0/ and about 1800/sup 0/F and at a pressure between about 100 and about 2000 psig prior to adjustment of the carbon monoxide-to-hydrogen ratio and treatment of the gas to increase its Btu content. This catalytic reforming step eliminates C/sub 2/+ compounds in the gas which tend to form tarry downstream waste products requiring further treatment, obviates polymerization problems which may otherwise interfere with upgrading of the gas by means of the water gas shift and methanation reactions, and improves overall process thermal efficiency by making possible efficient low level heat recovery.

Kalina, T.; Moore, R.E.

1977-09-06T23:59:59.000Z

237

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

this report was peer reviewed by these contributors and their comments have been incorporated. Among key findings is that, for all cases examined on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol utilized as both E85 and E10 outperforms that of conventional (current) and of reformulated (future) gasoline with respect to energy use and greenhouse gas production. In many cases, the superiority of the energy and GHG result is quite pronounced (i.e., well outside the range of model "noise")

Michael Wang Christopher; Michael Wang; Christopher Saricks

1997-01-01T23:59:59.000Z

238

Gas from Veggies  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas from Veggies Gas from Veggies Name: Julie Location: N/A Country: N/A Date: N/A Question: Im doing my science experiment to see if the processing of food produces gas. I was told that you do this by getting the vegitables, grounding them up, mixing them with vinegar and putting it in a test tube and then place a balloon over it to see if gas is produced. First I tried mixing the foods (Im using canned, frozen and fresh broccoli first to see if it works) with the vinegar and put it in a test tube and I placed a balloon over it but no gas was produced. I then tried it again in heat and again in the cold and it still wouldnt work. I tried the experiment again and pureed the broccoli and mixed it with the vinegar, put the balloon over it and still no gas was produced. What could I be doing wrong? Im using 5% acidity vineger because that's the only kind I could find. Do I need a stronger one? Where can I get a stronger one? How much vinegar should I be using? How much of the broccoli should I be using? Do I have to do something to the broccoli first? Please try to answer my questions I really need help.

239

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

240

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,000 4,825 6,755 7,606 3,460 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 156,333 150,972 147,734 157,039 176,221 From Oil Wells.................................................. 15,524 16,263 14,388 12,915 11,088 Total................................................................... 171,857 167,235 162,122 169,953 187,310 Repressuring ...................................................... 8 0 0 0 0 Vented and Flared.............................................. 206 431 251 354 241 Wet After Lease Separation................................ 171,642 166,804

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,178 4,601 3,005 3,220 3,657 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 244,826 264,809 260,554 254,488 259,432 From Oil Wells.................................................. 36,290 36,612 32,509 29,871 31,153 Total................................................................... 281,117 301,422 293,063 284,359 290,586 Repressuring ...................................................... 563 575 2,150 1,785 1,337 Vented and Flared.............................................. 1,941 1,847 955 705 688 Wet After Lease Separation................................

242

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

243

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

244

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

245

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

246

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9,907 13,978 15,608 18,154 20,244 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,188,657 1,467,331 1,572,728 1,652,504 1,736,136 From Oil Wells.................................................. 137,385 167,656 174,748 183,612 192,904 Total................................................................... 1,326,042 1,634,987 1,747,476 1,836,115 1,929,040 Repressuring ...................................................... 50,216 114,407 129,598 131,125 164,164 Vented and Flared.............................................. 9,945 7,462 12,356 16,685 16,848

247

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

248

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60,577 63,704 65,779 68,572 72,237 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 5,859,358 4,897,366 4,828,188 4,947,589 5,074,067 From Oil Wells.................................................. 999,624 855,081 832,816 843,735 659,851 Total................................................................... 6,858,983 5,752,446 5,661,005 5,791,324 5,733,918 Repressuring ...................................................... 138,372 195,150 212,638 237,723 284,491 Vented and Flared.............................................. 32,010 26,823 27,379 23,781 26,947

249

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,700 16,350 17,100 16,939 20,734 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 4,260,529 1,398,981 1,282,137 1,283,513 1,293,204 From Oil Wells.................................................. 895,425 125,693 100,324 94,615 88,209 Total................................................................... 5,155,954 1,524,673 1,382,461 1,378,128 1,381,413 Repressuring ...................................................... 42,557 10,838 9,754 18,446 19,031 Vented and Flared.............................................. 20,266 11,750 10,957 9,283 5,015 Wet After Lease Separation................................

250

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 36,000 40,100 40,830 42,437 44,227 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 150,000 130,853 157,800 159,827 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 150,000 130,853 157,800 159,827 197,217 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 150,000 130,853 157,800 159,827 197,217

251

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 4,359 4,597 4,803 5,157 5,526 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 555,043 385,915 380,700 365,330 333,583 From Oil Wells .................................................. 6,501 6,066 5,802 5,580 5,153 Total................................................................... 561,544 391,981 386,502 370,910 338,735 Repressuring ...................................................... 13,988 12,758 10,050 4,062 1,307 Vented and Flared .............................................. 1,262 1,039 1,331 1,611 2,316 Wet After Lease Separation................................

252

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,321 4,331 4,544 4,539 4,971 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 61,974 71,985 76,053 78,175 87,292 From Oil Wells.................................................. 8,451 9,816 10,371 8,256 10,546 Total................................................................... 70,424 81,802 86,424 86,431 97,838 Repressuring ...................................................... 1 0 0 2 5 Vented and Flared.............................................. 488 404 349 403 1,071 Wet After Lease Separation................................ 69,936 81,397 86,075 86,027 96,762

253

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,051 3,521 3,429 3,506 3,870 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,545 71,543 76,915 R 143,644 152,495 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,545 71,543 76,915 R 143,644 152,495 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,545 71,543 76,915 R 143,644 152,495 Nonhydrocarbon Gases Removed

254

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,948 35,217 35,873 37,100 38,574 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,484,269 1,484,856 1,432,966 1,391,916 1,397,934 From Oil Wells.................................................. 229,437 227,534 222,940 224,263 246,804 Total................................................................... 1,713,706 1,712,390 1,655,906 1,616,179 1,644,738 Repressuring ...................................................... 15,280 20,009 20,977 9,817 8,674 Vented and Flared.............................................. 3,130 3,256 2,849 2,347 3,525 Wet After Lease Separation................................

255

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7,068 7,425 7,700 8,600 8,500 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 241,776 224,560 224,112 194,121 212,276 From Oil Wells.................................................. 60,444 56,140 56,028 48,530 53,069 Total................................................................... 302,220 280,700 280,140 242,651 265,345 Repressuring ...................................................... 2,340 2,340 2,340 2,340 2,340 Vented and Flared.............................................. 3,324 3,324 3,324 3,324 3,324 Wet After Lease Separation................................

256

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 13,487 14,370 14,367 12,900 13,920 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,545 81,723 88,259 87,608 94,259 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,545 81,723 88,259 87,608 94,259 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,545 81,723 88,259 87,608 94,259 Nonhydrocarbon Gases Removed

257

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,897 33,917 34,593 33,828 33,828 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 98,551 97,272 97,154 87,993 85,018 From Oil Wells.................................................. 6,574 2,835 6,004 5,647 5,458 Total................................................................... 105,125 100,107 103,158 93,641 90,476 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 105,125 100,107 103,158

258

Gas tracer composition and method. [Process to determine whether any porous underground methane storage site is in fluid communication with a gas producing well  

SciTech Connect

A process is described for determining whether any porous underground gaseous methane storage sites is in fluid communication with a gas producing well, and if there is fluid communication, determining which site is in the fluid communication comprising injecting a different gaseous tracer mixture into each of the sites at some location in each of the site in an amount such that the presence of the tracer mixture will be detectable in the gaseous methane stored therein, each of the mixture having the properties of (1) not occurring in natural supplies of methane, (2) diffusing through any underground methane storage site in a manner very similar in rate to methane, and (3) being substantially insoluble in petroleum distillates, after a period of time sufficient for each of the tracer mixtures to diffuse through the underground site from its injection location to the well, withdrawing a sample gaseous product from the well, testing the sample gaseous product for the presence of each of the tracer mixtures.

Malcosky, N.D.; Koziar, G.

1987-09-01T23:59:59.000Z

259

EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate pipeline system is defined as one that operates totally within a State, an intrastate pipeline company may have operations in more than one State. As long as these operations are separate, that is, they do not physically interconnect, they are considered intrastate, and are not jurisdictional to the Federal Energy Regulatory Commission (FERC). More than 90 intrastate natural gas pipelines operate in the lower-48 States.

260

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil...

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Natural Gas Consumption (Annual Supply & Disposition)  

Gasoline and Diesel Fuel Update (EIA)

New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil...

262

Natural gas monthly, July 1997  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

NONE

1997-07-01T23:59:59.000Z

263

Natural gas monthly, September 1993  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-09-27T23:59:59.000Z

264

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

265

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

States, acquire natural gas from foreign producers for resale States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes unconventional gas recovery from low permeability formations of sandstone and shale, and coalbeds. Foreign gas transactions may occur via either pipeline (Canada or Mexico) or transport ships as liquefied natural gas (LNG). Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 89 Figure 7. Oil and Gas Supply Model Regions Source: Energy Information Administration, Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

266

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

SciTech Connect

Natural gas reservoirs are obvious targets for carbon sequestration by direct carbon dioxide (CO{sub 2}) injection by virtue of their proven record of gas production and integrity against gas escape. Carbon sequestration in depleted natural gas reservoirs can be coupled with enhanced gas production by injecting CO{sub 2} into the reservoir as it is being produced, a process called Carbon Sequestration with Enhanced Gas Recovery (CSEGR). In this process, supercritical CO{sub 2} is injected deep in the reservoir while methane (CH{sub 4}) is produced at wells some distance away. The active injection of CO{sub 2} causes repressurization and CH{sub 4} displacement to allow the control and enhancement of gas recovery relative to water-drive or depletion-drive reservoir operations. Carbon dioxide undergoes a large change in density as CO{sub 2} gas passes through the critical pressure at temperatures near the critical temperature. This feature makes CO{sub 2} a potentially effective cushion gas for gas storage reservoirs. Thus at the end of the CSEGR process when the reservoir is filled with CO{sub 2}, additional benefit of the reservoir may be obtained through its operation as a natural gas storage reservoir. In this paper, we present discussion and simulation results from TOUGH2/EOS7C of gas mixture property prediction, gas injection, repressurization, migration, and mixing processes that occur in gas reservoirs under active CO{sub 2} injection.

Oldenburg, Curtis M.

2003-04-08T23:59:59.000Z

267

Alternative Fuels Data Center: Natural Gas Benefits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Delicious Rank Alternative Fuels Data Center: Natural Gas Benefits on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Benefits on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Laws & Incentives Natural Gas Benefits and Considerations Compressed and liquefied natural gas are clean, domestically produced alternative fuels. Using these fuels in natural gas vehicles increases

268

Natural gas monthly, November 1993  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-11-29T23:59:59.000Z

269

Natural gas monthly, April 1995  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 31 tabs.

NONE

1995-04-27T23:59:59.000Z

270

Natural gas monthly, June 1993  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-06-22T23:59:59.000Z

271

Natural gas monthly, July 1998  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

NONE

1998-07-01T23:59:59.000Z

272

Natural gas monthly: December 1993  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. Articles are included which are designed to assist readers in using and interpreting natural gas information.

Not Available

1993-12-01T23:59:59.000Z

273

Natural gas monthly, June 1999  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

NONE

1999-06-01T23:59:59.000Z

274

Natural gas monthly: September 1996  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

NONE

1996-09-01T23:59:59.000Z

275

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

industry in protecting our environment while exploring for and producing natural gas and oil. They are joined by Anadarko and other industry sponsors from GPRI to identify and...

276

Natural gas monthly, August 1997  

SciTech Connect

This report presents information on natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported.

NONE

1997-08-01T23:59:59.000Z

277

Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993  

Science Conference Proceedings (OSTI)

The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

Not Available

1993-12-01T23:59:59.000Z

278

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

279

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

280

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

282

dry natural gas production - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Dry natural gas production: The process of producing consumer-grade natural gas. Natural gas withdrawn from reservoirs is reduced by volumes used at the production ...

283

Energy Information Administration / Natural Gas Annual 2006 138  

Gasoline and Diesel Fuel Update (EIA)

8 Table 64. Summary Statistics for Natural Gas - Pennsylvania, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ... 40,830...

284

Energy Information Administration / Natural Gas Annual 2006 72  

Gasoline and Diesel Fuel Update (EIA)

2 Table 31. Summary Statistics for Natural Gas - Colorado, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ... 23,554...

285

Energy Information Administration / Natural Gas Annual 2005 72  

Annual Energy Outlook 2012 (EIA)

2 Table 31. Summary Statistics for Natural Gas - Colorado, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ... 22,117...

286

Texas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Gas Wells...

287

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...

288

Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million...

289

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and...

290

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price...  

Gasoline and Diesel Fuel Update (EIA)

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per...

291

North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) North Dakota Natural Gas Gross Withdrawals from Shale Gas...

292

Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals from Shale Gas...

293

Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Arkansas Natural Gas Gross Withdrawals from Shale Gas...

294

Montana Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

295

Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million...

296

Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

297

Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Virginia Natural Gas Gross Withdrawals from Shale Gas...

298

Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas...

299

California Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) California Natural Gas Gross Withdrawals from Shale Gas...

300

New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) New Mexico Natural Gas Gross Withdrawals from Shale Gas...

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Shale Gas...

302

West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Annual Download Data (XLS File) West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) West Virginia Natural Gas Gross Withdrawals from Shale Gas...

303

Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Shale Gas...

304

Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Shale Gas (Million...

305

Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Shale Gas...

306

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet)...

307

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million...

308

Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic...

309

South Dakota Natural Gas Withdrawals from Gas Wells (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) South Dakota Natural Gas Withdrawals from Gas Wells...

310

South Dakota Natural Gas Removed from Natural Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Removed from Natural Gas (Million Cubic Feet) South Dakota Natural Gas Removed from Natural Gas...

311

Application of microturbines to control emissions from associated gas  

SciTech Connect

A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

Schmidt, Darren D.

2013-04-16T23:59:59.000Z

312

Gas Utilities (New York)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

313

Gas amplified ionization detector for gas chromatography  

DOE Patents (OSTI)

A gas-amplified ionization detector for gas chromatography which possesses increased sensitivity and a very fast response time is described. Solutes eluding from a gas chromatographic column are ionized by uv photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the uv photoionization of at least a portion of each solute passing through the detector. 4 figs.

Huston, G.C.

1989-11-27T23:59:59.000Z

314

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) Eligibility...

315

South Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas...

316

International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas International Energy Outlook 2004 Natural Gas Natural gas is the fastest growing primary energy source in the IEO2004 forecast. Consumption of natural gas is projected...

317

Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was within the limits for landfilling inert residues. On the other hand, sulfate and chloride releases were found to comply with the limits for non-hazardous residues.

Seggiani, Maurizia, E-mail: m.seggiani@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Puccini, Monica, E-mail: m.puccini@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Raggio, Giovanni, E-mail: g.raggio@tiscali.it [Italprogetti Engineering SPA, Lungarno Pacinotti, 59/A, 56020 San Romano (Pisa) (Italy); Vitolo, Sandra, E-mail: s.vitolo@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy)

2012-10-15T23:59:59.000Z

318

New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Styrofoam cups are one of many Styrofoam cups are one of many products made from styrene monomer. Exelus Inc. (Livingston, NJ), established in 2000, develops and licenses "Cleaner-by- Design" chemical technologies to produce a vast array of products and materials used in consumer goods, transportation, and food processing. Currently, the company's principal process technologies are: ExSact - a refining technology that overcomes the environmental concerns, safety hazards and rising costs associated with conventional liquid acid technologies ExSyM - energy efficient, low cost SM production technology BTG - efficient, cost-effective conversion of biomass to clean, high-octane, gasoline-compatible fuel http://www.exelusinc.com/ New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces

319

Natural Gas Annual Archives  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

320

Liquefied Natural Gas  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EIA - Natural Gas Publications  

Annual Energy Outlook 2012 (EIA)

and a weather snapshot. Monthly Natural Gas Monthly Natural and supplemental gas production, supply, consumption, disposition, storage, imports, exports, and prices in the...

322

Natural Gas Annual 2005  

U.S. Energy Information Administration (EIA)

Oil and Gas Field Code Master List ... Hawaii, 2001-2005 ... Energy Information Administration/Natural Gas Annual 2005 vii 54.

323

Natural Gas Exports (Summary)  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

324

Gas scrubbing liquids  

DOE Patents (OSTI)

Fully chlorinated and/or fluorinated hydrocarbons are used as gas scrubbing liquids for preventing noxious gas emissions to the atmosphere.

Lackey, Walter J. (Oak Ridge, TN); Lowrie, Robert S. (Oak Ridge, TN); Sease, John D. (Knoxville, TN)

1981-01-01T23:59:59.000Z

325

Natural Gas Processed  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

326

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas prices, successful application of horizontal drilling, and hydraulic fracturing, as well as significant investments made by natural gas companies in production...

327

Natural Gas Dry Production  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

328

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

7, 2009 Next Release: May 14, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 6, 2009) Natural gas...

329

February Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

330

November Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

331

January Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

332

March Natural Gas Monthly  

Gasoline and Diesel Fuel Update (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

333

May Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

334

CONTINUOUS GAS ANALYZER  

DOE Patents (OSTI)

A reagent gas and a sample gas are chemically combined on a continuous basis in a reaction zone maintained at a selected temperature. The reagent gas and the sample gas are introduced to the reaction zone at preselected. constant molar rates of flow. The reagent gas and the selected gas in the sample mixture combine in the reaction zone to form a product gas having a different number of moles from the sum of the moles of the reactants. The difference in the total molar rates of flow into and out of the reaction zone is measured and indicated to determine the concentration of the selected gas.

Katz, S.; Weber, C.W.

1960-02-16T23:59:59.000Z

335

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

336

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

337

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

338

DOE-Sponsored Online Mapping Portal Helps Oil and Gas Producers Comply with New Mexico Compliance Rules  

Energy.gov (U.S. Department of Energy (DOE))

An online mapping portal to help oil and natural gas operators comply with a revised New Mexico waste pit rule has been developed by a team of New Mexico Tech researchers.

339

Natural gas monthly, June 1994  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is the executive summary from Natural Gas 1994: Issues and Trends. 6 figs., 31 tabs.

Not Available

1994-06-01T23:59:59.000Z

340

Natural gas monthly, April 1997  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

NONE

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Arizona - Natural Gas 2012 Million  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Arizona - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S3. Summary statistics for natural gas - Arizona, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6 6 5 5 5 Production (million cubic feet) Gross Withdrawals From Gas Wells 523 711 183 168 117 From Oil Wells * * 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

342

Natural gas monthly, May 1994  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured articles for this month are: Opportunities with fuel cells, and revisions to monthly natural gas data.

Not Available

1994-05-25T23:59:59.000Z

343

Natural gas monthly, November 1996  

Science Conference Proceedings (OSTI)

The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``US natural gas imports and exports-1995``. 6 figs., 24 tabs.

NONE

1996-11-01T23:59:59.000Z

344

Natural gas monthly, August 1995  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

NONE

1995-08-24T23:59:59.000Z

345

Natural gas monthly, June 1996  

Science Conference Proceedings (OSTI)

The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.

NONE

1996-06-24T23:59:59.000Z

346

Natural gas monthly, October 1997  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article in this issue is a special report, ``Comparison of Natural Gas Storage Estimates from the EIA and AGA.`` 6 figs., 26 tabs.

NONE

1997-10-01T23:59:59.000Z

347

Natural Gas Monthly, August 1984  

SciTech Connect

Dry gas production during August 1984 was estimated at 1441 billion cubic feet (Bcf), 8.4% above August 1983 dry gas production. Consumption of natural gas during August 1984 was an estimated 1182 Bcf, 3.7% above the August 1983 level. Compared to the previous July, residential and commercial consumption was down 4.6 and 6.2%, respectively, industrial consumption was up 13.2%, and electric utility consumption was up 11.1% during July 1984. The volume of working gas in underground storage reservoirs at the end of August 1984 was 5.8% below the August 31, 1983 level. The average wellhead price of natural gas in June 1984 was $2.61 per thousand cubic feet (Mcf). In June 1983, the average was $2.62 per Mcf. In August 1984, the average residential price of natural gas was $6.17 per Mcf. The comparable price in August 1983 was $6.16 per Mcf. The average wellhead (first sale) price for natural gas purchases projected for September 1984 by selected interstate pipeline companies was $2.67 per Mcf. In September 1983, the average price was $2.64 per Mcf. The average price projected for Old Gas (NGPA Sections 104, 105, and 106) in September 1984 was $1.23 per Mcf; for New Gas (NGPA Sections 102, 103, 108, and 109), $3.66 per Mcf; and for High Cost Gas (NGPA Section 107), $5.18 per Mcf. In September 1983, the prices projected for Old Gas, New Gas, and High Cost Gas averaged $1.35, $3.47, and $5.66 per Mcf, respectively. On September 26, 1984 the FERC approved extension of the authorized natural gas producer and pipeline special marketing programs (SMP) for another year. The North Great Plains coal gasification plant in North Dakota begun producing gas in July of this year.

Not Available

1984-10-01T23:59:59.000Z

348

Alternative Fuels Data Center: Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on Google Bookmark Alternative Fuels Data Center: Natural Gas on Delicious Rank Alternative Fuels Data Center: Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Natural Gas on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Laws & Incentives Natural Gas Fuel Prices Find natural gas fuel prices and trends. Natural gas is a domestically produced gaseous fuel, readily available

349

Natural Gas Market Regionalization and Implications  

Science Conference Proceedings (OSTI)

Natural gas producers, pipeline companies, electric utilities, and other end users all have a stake in understanding the dynamics of regional gas prices. This is especially true with evolving linkages between natural gas and power prices. This report addresses problems that appeared in the natural gas market during the winter of 1995/96 and again in 1996/97 when regional gas prices departed dramatically from their historic norms. Are regional gas price relationships becoming increasingly unpredictable?

1998-05-13T23:59:59.000Z

350

The Intense Radiation Gas  

E-Print Network (OSTI)

We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.

M. Marklund; P. K. Shukla; B. Eliasson

2004-10-14T23:59:59.000Z

351

Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts  

DOE Patents (OSTI)

In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.

Gorin, Everett (San Rafael, CA)

1979-01-01T23:59:59.000Z

352

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural Gas Pipeline Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

353

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

354

GAS STORAGE TECHNOLOGY CONSORTIUM  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

355

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

356

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 26, 2012 January 26, 2012 The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing nearly half of all U.S. natural gas production. | Image courtesy of the Office of Fossil Energy. Producing Natural Gas From Shale By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet. When you consider that 1 tcf of natural gas is enough to heat 15 million homes for one year, the importance of this resource to the nation becomes obvious. January 26, 2012 Natural Gas Production and U.S. Oil Imports Take a look at the Energy Information Administration's projections for

357

Natural gas monthly, April 1998  

Science Conference Proceedings (OSTI)

This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration (EIA). Estimates extend through April 1998 for many data series. The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, feature articles are presented designed to assist readers in using and interpreting natural gas information. This issue contains the special report, ``Natural Gas 1997: A Preliminary Summary.`` This report provides information on natural gas supply and disposition for the year 1997, based on monthly data through December from EIA surveys. 6 figs., 28 tabs.

NONE

1998-04-01T23:59:59.000Z

358

Transportation and Greenhouse Gas Mitigation  

E-Print Network (OSTI)

fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

359

Gas supplies of interstate natural gas pipeline companies 1985  

SciTech Connect

This publication provides information on the total reserves, production, and deliverability capabilities of the 91 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing state and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico and LNG from Algeria. 7 figs., 18 tabs.

Not Available

1986-11-14T23:59:59.000Z

360

Gas supplies of interstate natural gas pipeline companies, 1984  

SciTech Connect

This publication provides information on the total reserves, production, and deliverability capabilities of 89 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company-owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing state and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico and LNG from Algeria. 8 figs., 18 tabs.

Price, R.

1985-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High potential recovery -- Gas repressurization  

SciTech Connect

The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

Madden, M.P.

1998-05-01T23:59:59.000Z

362

Gas evolution from geopressured brines  

DOE Green Energy (OSTI)

The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

Matthews, C.S.

1980-06-01T23:59:59.000Z

363

Unusual plant features gas turbines  

SciTech Connect

Gas turbines were chosen by Phillips Petroleum Co. to operate the first gas-injection plant in the world to use gas-type turbines to drive reciprocating compressors. The plant is located in Lake Maracaibo, Venezuela. Gas turbines were chosen because of their inherent reliability as prime movers and for their lack of vibration. Reciprocating compressors were decided upon because of their great flexibility. Now, for the first time, the advantages of both gas turbines and reciprocating compressors are coupled on a very large scale. In this installation, the turbines will operate at about 5,000 rpm, while the compressors will run at only 270 rpm. Speed will be reduced through the giant gear boxes. The compressor platform rests on seventy- eight 36-in. piles in 100 ft of water. Piles were driven 180 ft below water level. To dehydrate the gas, Phillips will install a triethylene glycol unit. Two nearby flow stations will gather associated gas produced at the field and will pipe the gas underwater to the gas injection platform. Lamar Field is in the S. central area of Lake Maracaibo. To date, it has produced a 150 million bbl in 10 yr. Studies have indicated that a combination of waterflooding and repressuring by gas injection could double final recovery. Waterflooding began in 1963.

Franco, A.

1967-08-01T23:59:59.000Z

364

Natural gas monthly, February 1994  

SciTech Connect

The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1994-02-25T23:59:59.000Z

365

Natural gas monthly, October 1995  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary of the terms used in this report is provided to assist readers in understanding the data presented in this publication. 6 figs., 30 tabs.

NONE

1995-10-23T23:59:59.000Z

366

Nuclear stimulation of gas fields  

SciTech Connect

From National Technical Canadian Gas Association; Calgary, Alberta, Canada (17 Oct 1973). The technical bases of the emerging technology of nuclear stimulation of natural gas fields, the potential of this method for increasing the gas supply of the US, and public issues related to this technology are discussed. A technical appendix is provided with information on: reservoir producing characteristics; explosive design, availability, and cost; firing and space of explosives; economic parameters; and tabulated statistics on past and current projects on nuclear stimulation. (LCL)

Randolph, P.L.

1973-09-01T23:59:59.000Z

367

Unconventional Oil and Gas Resources  

Science Conference Proceedings (OSTI)

World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

none

2006-09-15T23:59:59.000Z

368

Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

369

Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

370

Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

371

Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

372

North Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

373

Montana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

374

West Virginia Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

375

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

376

Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

377

New York Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

378

Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

379

Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

380

Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

382

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network (OSTI)

as cushion gas for natural gas storage, Energy and Fuels,GAS RECOVERY AND NATURAL GAS STORAGE Curtis M. Oldenburgits operation as a natural gas storage reservoir. In this

Oldenburg, Curtis M.

2003-01-01T23:59:59.000Z

383

New Mexico Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

384

Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

385

EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Transportation Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow patterns. 5 major routes extend from the producing areas of the Southwest 4 routes enter the United States from Canada 2 originate in the Rocky Mountain area. A summary of the major corridors and links to details about each corridor are provided below. Corridors from the Southwest Region

386

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Authors: John and Deidre Boysen Venue:...

387

Evaluation of Membrane Treatment Technology to Optimize and Reduce Hypersalinity Content of Produced Brine for Reuse in Unconventional Gas Wells  

E-Print Network (OSTI)

Over 18 billion barrels of waste fluids are generated annually from oil and gas production in the United States. As a large amount of water is used for oilfield operations, treating and reusing produced water can cut the consumption of fresh water in well sites. This research has helped to develop a membrane process train for a mobile produced water treatment unit for treating oilfield produced brine for reuse. To design the process train, over 30 sets of combination tests at pilot laboratory scale were performed using pretreatment, microfiltration and nanofiltration processes. Membrane performance was selected based on high flux separation efficiency, high tolerance for solids and fluid treatments. Over 95 % solids rejection and greater than 80 % oil removal efficiency were obtained in all these tests. Process train (pre-treatment and membrane) performance was monitored by chemical analysis of permeate and models fitting experimental data for the process. From the results, hydrocarbon rejection was analyzed; total organic carbon rejection was 47.9 %, total carbon content averaged 37.3 % rejection and total inorganic carbon rejection was at 3.66 %. BTEX removal efficiency ranged from 0.98 % to 52.7 % with the progressive pretreatment methods of using cartridge filters. The nanofiltration membrane showed significant reduction in total dissolved solids and in both anionic and cationic species. The process train is seen to follow a sequence of treatment from cartridge and oil removal filter treatment to microfiltration treatment to ultrafiltration, followed by nanofiltration for the purpose of this research. Further research still needs to be done on to determine the kind of analytical test which will give real time feedback on effectiveness of filters. In summary, the process train developed by TAMU-GPRI possesses distinct advantages in treating oilfield produced brine using membrane technology. These advantages include high quality of permeate, reduced sludge and the possibility of total recycle water systems. The small space requirement, moderate capital costs and ease of operation associated with the use of the mobile unit membrane technology also makes it a very competitive alternative to conventional technologies.

Eboagwu, Uche

2011-08-01T23:59:59.000Z

388

Natural gas monthly, July 1990  

Science Conference Proceedings (OSTI)

This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

Not Available

1990-10-03T23:59:59.000Z

389

Measurements of gas permeability on crushed gas shale.  

E-Print Network (OSTI)

??In the last decade, more attention has been given to unconventional gas reservoirs, including tight gas shales. Accurate description of gas transport and permeability measurements… (more)

Guarnieri, R.V.

2012-01-01T23:59:59.000Z

390

EIA - Natural Gas Pipeline Network - Natural Gas Transmission...  

Annual Energy Outlook 2012 (EIA)

Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural...

391

Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Natural Gas Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate Program Eligibility Commercial Savings For Other Heating...

392

Baltimore Gas and Electric Company (Gas) - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For...

393

EIA - Natural Gas Pipeline Network - Generalized Natural Gas...  

Annual Energy Outlook 2012 (EIA)

Gas based on data through 20072008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic...

394

Natural Gas Gross Withdrawals from Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

395

EIA - Natural Gas Pipeline Network - Natural Gas Transportation...  

Gasoline and Diesel Fuel Update (EIA)

Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates...

396

Natural gas monthly, October 1991  

SciTech Connect

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. 16 figs., 33 tabs.

Not Available

1991-11-05T23:59:59.000Z

397

Natural gas monthly, August 1996  

Science Conference Proceedings (OSTI)

This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

NONE

1996-08-01T23:59:59.000Z

398

Gas separation and hot-gas cleanup  

DOE Green Energy (OSTI)

Catalytic gasification of coal to produce H{sub 2}-, CO-, and CH{sub 4}-rich mixtures of gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life,it is desired to separate as much of the inert components (i.e., CO{sub 2} and N{sub 2}) and impurities (i.e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before it enters the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. Researchers at the Energy & Environmental Research Center and Bend Research, Inc., investigated pressure-driven membranes as a method for accomplishing this gas separation and hot-gas cleanup. These membranes are operated at temperatures as high as 800{degrees}C and at pressures up to 300 psig. They have very small pore sizes that separate the undesirable gases by operating in the Knudsen diffusion region of mass transport (30 -50{Angstrom}) or in the molecular sieving region of mass transport phenomena (<5{Angstrom}). In addition, H{sub 2} separation through a palladium metal membrane proceeds via a solution-diffusion mechanism for atomic hydrogen. This allows the membranes to exhibit extremely high selectivity for hydrogen separation. The objective of this study was to determine the selectivity of the ceramic membranes for removing undesirable gases while allowing the desired gases to be concentrated in the permeate stream.

Swanson, M.L.

1996-11-01T23:59:59.000Z

399

Natural gas pipeline technology overview.  

Science Conference Proceedings (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

400

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

402

Gasification Evaluation of Gas Turbine Combustion  

DOE Green Energy (OSTI)

This report provides a preliminary assessment of the potential for use in gas turbines and reciprocating gas engines of gases derived from biomass by pyrolysis or partial oxidation with air. Consideration was given to the use of mixtures of these gases with natural gas as a means of improving heating value and ensuring a steady gas supply. Gas from biomass, and mixtures with natural gas, were compared with natural gas reformates from low temperature partial oxidation or steam reforming. The properties of such reformates were based on computations of gas properties using the ChemCAD computational tools and energy inputs derived from known engine parameters. In general, the biomass derived fuels compare well with reformates, so far as can be judged without engine testing. Mild reforming has potential to produce a more uniform quality of fuel gas from very variable qualities of natural gas, and could possibly be applied to gas from biomass to eliminate organic gases and condensibles other than methane.

Battelle

2003-12-30T23:59:59.000Z

403

December Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

DOEEIA-0130(9712) Distribution CategoryUC-950 Natural Gas Monthly December 1997 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC...

404

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

405

Southern California Gas Co  

Gasoline and Diesel Fuel Update (EIA)

Southern California Gas Co ... 236,147,041 98,326,527 274,565,356 690,930 139,093,560 748,823,414 Lone Star Gas Co......

406

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

407

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

408

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas futures also reversed gains made in the previous week. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased by 63 Bcf...

409

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Working gas in storage was 3,121 Bcf as of Friday, Oct 24, 2003, according to the Energy Information Administration (EIA) Weekly Natural Gas Storage Report. This is 2.7...

410

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

411

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

412

,"Kentucky Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,451,1,35,17,,,10,3,0,48...

413

,"Oklahoma Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,13889,36,837,1016,,,1129,181,...

414

,"Florida Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,151,-1,1,6,,,0,0,0,36...

415

,"Wyoming Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,6305,-3,226,165,,,884,391,10,...

416

,"Ohio Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,495,-3,48,11,,,113,0,31,60...

417

,"Kansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,11457,-3,122,171,,,219,21,7,7...

418

,"Utah Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,877,0,37,79,,,93,32,2,62...

419

Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Res., 104(B10), 22985-23003. Collett, T.S. (1992), Potential of gas hydrates outlined, Oil Gas J., 90(25), 84-87. 70 Cook, A.E., Goldberg, D., and R.L. Kleinberg (2008),...

420

Natural gas annual 1996  

Science Conference Proceedings (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

422

Landfill Gas | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Jump to: navigation, search TODO: Add description List of Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173"...

423

5. Natural Gas Liquids Statistics  

U.S. Energy Information Administration (EIA)

5. Natural Gas Liquids Statistics Natural Gas Liquids Proved Reserves U.S. natural gas liquids proved reserves decreased 7 percent to 7,459 million ...

424

Transportation and Greenhouse Gas Mitigation  

E-Print Network (OSTI)

Summary of transportation greenhouse gas mitigation optionsof alternative fuels. Low greenhouse gas fuels Mixing ofreplacement. Greenhouse gas budgets for households and

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

425

,"North Dakota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Exports...

426

Natural Gas Outlook  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Ohio Oil & Gas Association ConferenceMarch 12, 2004

Information Center

2004-03-12T23:59:59.000Z

427

Gas Turbine Engines  

Science Conference Proceedings (OSTI)

...times higher than atmospheric pressure.Ref 25The gas turbine was developed generally for main propulsion and power

428

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

with active programs. More information is available at: http:www.eia.doe.govcneafelectricitypagerestructuringrestructureelect.html. Information about natural gas...

429

Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

... 6 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ... 7 Task 6: Numerical Models for...

430

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

431

Natural gas annual 1995  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

432

Natural Gas Outlook  

Reports and Publications (EIA)

Presented to: Ohio Oil & Gas Association Conference, March 12, 2004 Presented by: Guy F. Caruso, Administrator, Energy Information Administration

Information Center

2004-03-12T23:59:59.000Z

433

Residual gas analysis device  

SciTech Connect

A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

Thornberg, Steven M. (Peralta, NM)

2012-07-31T23:59:59.000Z

434

Natural gas industry directory  

SciTech Connect

This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

NONE

1999-11-01T23:59:59.000Z

435

Valve for gas centrifuges  

DOE Patents (OSTI)

The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, C.A.; Rurbage, C.H.

1982-03-17T23:59:59.000Z

436

Gas turbine engines  

SciTech Connect

A core engine or gas generator is described for use in a range of gas turbine engines. A multi-stage compressor and a single stage supersonic turbine are mounted on a single shaft. The compressor includes a number of stages of variable angle and the gas generator has an annular combustion chamber.

MacDonald, A.G.

1976-05-18T23:59:59.000Z

437

Pennsylvania's Natural Gas Future  

E-Print Network (OSTI)

sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ Fossil backed by a growing portfolio of assets. #12;Shale Gas Geography 5 | MARCELLUS SHALE COALITION #12;Shale Permits Price #12;Pricing Trend of Oil and Gas in the US $- $5.00 $10.00 $15.00 $20.00 $25.00 USDper

Lee, Dongwon

438

Compressed Gas Cylinder Policy  

E-Print Network (OSTI)

, storage, and usage of compressed gas cylinders. 2.0 POLICY Colorado School of Mines ("Mines" or "the, storage, and usage requirements outlined below. This policy is applicable school-wide including all, or electrical circuits. Flammable gas cylinders must be stored in the building's gas cylinder storage cage until

439

Natural gas monthly  

Science Conference Proceedings (OSTI)

Monthly highlights of activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry are presented. Feature articles for this issue are: Natural Gas Overview for Winter 1983-1984 by Karen A. Kelley; and an Analysis of Natural Gas Sales by John H. Herbert. (PSB)

Not Available

1983-11-01T23:59:59.000Z

440

Oil & Natural Gas Technology DOE Award No.: FWP 49462  

E-Print Network (OSTI)

Used by Marcellus Shale Gas Producers Submitted by: John A. Veil Argonne National Laboratory Argonne, and gas shales. Figure 1 shows EIA projections of the source of natural gas supplies through 2030 productive oil and gas activities in the country today are shale gas plays. Figure 1 ­ U.S. Natural Gas

Boyer, Elizabeth W.

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ComEd, Nicor Gas, Peoples Gas & North Shore Gas - Bonus Rebate...  

Open Energy Info (EERE)

Rebates Central Air Conditioner Unit 14 SEER or above: 350 Central Air Conditioner Unit Energy Star rated: 500 Nicor Gas, Peoples Gas & North Shore Gas Furnace: 200 - 500...

442

Experimental Study of Main Gas Ingestion and Purge Gas Egress Flow in Model Gas Turbine Stages.  

E-Print Network (OSTI)

??Efficient performance of gas turbines depends, among several parameters, on the mainstream gas entry temperature. At the same time, transport of this high temperature gas… (more)

Balasubramanian, Jagdish Harihara

2010-01-01T23:59:59.000Z

443

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

444

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2008 6, 2008 Next Release: July 3, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Natural gas spot price movements were mixed this report week (Wednesday–Wednesday, June 18-25), with price decreases generally occurring in producing areas in the Gulf of Mexico region and price increases at trading locations in the Rockies, the Midcontinent, and the Northeast. During the report week, the Henry Hub spot price decreased $0.17 per million Btu (MMBtu) to $12.76. At the New York Mercantile Exchange (NYMEX), a trend of rising prices for futures contracts was at least temporarily interrupted. After trading at $13.20 per MMBtu on Monday, the futures contract for July delivery decreased by 45 cents in value over the next 2 days and ended the

445

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

446

NUCLEAR GAS ENGINE  

SciTech Connect

A preliminary design study of the nuclear gas engine, consisting of a gas-cooled reactor directly coupled to a reciprocating engine, is presented. The principles of operation of the proposed gas engine are outlined and typical variations anre discussed. The nuclear gas engine is compared with other reciprocating engines and air compressors. A comparison between the ideal and actual cycles is made, with particular attention given to pumping, heat, and other losses to be expected. The applications and development of the nuclear gas engine are discussed. (W.D.M.)

Fraas, A.P.

1958-09-25T23:59:59.000Z

447

Natural Gas Transmission and Distribution Module  

Reports and Publications (EIA)

Documents the archived version of the Natural Gas Transmission and Distribution Model that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 2013.

Joe Benneche

2013-07-18T23:59:59.000Z

448

Southwest Gas Corporation - Southwest Gas Corporation - Residential...  

Open Energy Info (EERE)

Insulation: 0.15sq ft Floor Insulation: 0.30sq ft Builders Energy Star Certified Home: 450 Natural Gas Tankless Water Heater: 450 Attic Insulation: 0.15sq ft Equipment...

449

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

450

Natural-gas liquids  

SciTech Connect

Casinghead gasoline or natural gasoline, now more suitably known as natural-gas liquids (NGL), was a nuisance when first found, but was developed into a major and profitable commodity. This part of the petroleum industry began at about the turn of the century, and more than 60 yr later the petroleum industry recovers approx. one million bbl of natural-gas liquids a day from 30 billion cu ft of natural gas processed in more than 600 gasoline plants. Although casinghead gasoline first was used for automobile fuel, natural-gas liquids now are used for fuel, industrial solvents, aviation blending stock, synthetic rubber, and many other petrochemical uses. Production from the individual plants is shipped by tank car, tank truck, pipeline, and tankers all over the world. Most of the natural-gas liquids come from wet natural gas which contains a considerable quantity of vapor, ranging from 0.5 to 6 gal/Mcf, and some particularly rich gases contain even more which can be liquefied. Nonassociated gas is generally clean, with a comparatively small quantity of gasoline, 0.1 to 0.5 gas/Mcf. The natural-gas liquids branch of the industry is build around the condensation of vapors in natural gas. Natural-gas liquids are processed either by the compression method or by adsorption processes.

Blackstock, W.B.; McCullough, G.W.; McCutchan, R.C.

1968-01-01T23:59:59.000Z

451

Natural gas sdtrategic plan  

SciTech Connect

The US Department of Energy`s natural gas program is aimed at meeting simultaneously our national energy needs, reducing oil imports, protecting our environment, and improving our economy The Natural Gas Strategic Plan for 1995 represents a Department-wide effort to articulate the key issues related to the expanded development and utilization of natural gas, and defines the roles of the federal government and US industry in partnering to accomplish the strategic goals defined. The four overarching goals of the Natural Gas Strategic Plan are to: foster the development of advanced natural gas technologies; encourage the adoption of advanced natural gas technologies in new and existing markets; support the removal of policy impediments to natural gas use in new and existing markets; and foster technologies and policies to maximize the environmental benefits of natural gas use. DOE`s proposed fiscal year (FY) 1996 budget represents a commitment to natural gas research, development, and demonstration (RD&D) from reservoir to end use. DOE has redirected and increased funding for its natural gas exploration, production, delivery and storage, processing, and utilization RD&D programs, shifting funds from other energy programs to programs that will enhance efficiency and advance the role of natural gas in our domestic energy resources portfolio.

1995-06-01T23:59:59.000Z

452

Gas Hydrate Storage of Natural Gas  

Science Conference Proceedings (OSTI)

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

453

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

454

Natural gas leak mapper  

DOE Patents (OSTI)

A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

2008-05-20T23:59:59.000Z

455

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands...

456

Backscatter absorption gas imaging system  

DOE Patents (OSTI)

A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

McRae, Jr., Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

457

Natural Gas Program Archive (Disk1)  

NLE Websites -- All DOE Office Websites (Extended Search)

Eastern U.S. Gas Eastern U.S. Gas Shales Eastern U.S. Gas Eastern U.S. Gas Shales Shales Program Program This DVD contains information related to research and development (R&D) undertaken by the U.S. Department of Energy (DOE) during the 1976-1995 time period. This R&D focused on improving industry understanding of ways to locate and produce natural gas from the fractured organic gas shales of the Eastern U.S. A second DVD is also available that includes similar information related to the five other R&D programs targeting unconventional natural gas during roughly the same time frame: Western U.S. Gas Sands (1977-1992), Methane Recovery from Coalbeds (1978-1982), Methane Hydrates (1982-1992), Deep Source Gas Project (1982-1992), and Secondary Gas Recovery (1987-1995). The following items are found on this DVD.

458

Gas Pipelines:- long, thin, bombs?  

Science Conference Proceedings (OSTI)

... Gas Pipelines:- long, thin, bombs? Gas pipelines attract substantial reseach to improve safety and cut costs. They operate ...

459

Natural Gas 1995: Preliminary Highlights  

U.S. Energy Information Administration (EIA)

Energy Information Administration / Natural Gas Monthly April 1996 1. ... Widespread economic growth ... Growth in electric utility gas con-

460

ELASTIC ROCK PROPERTIES OF TIGHT GAS SANDSTONES FOR RESERVOIR CHARACTERIZATION  

E-Print Network (OSTI)

and to locate the best locations to drill for them. The tight gas sands of the Piceance Basin have long been understanding of the way that fractures have controlled the production of gas in these tight gas sands an east to west trend of tight gas sand fields that produce a substantial amount of the total gas produced

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

COAL CLEANING BY GAS AGGLOMERATION  

SciTech Connect

The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

1998-09-30T23:59:59.000Z

462

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Maximum Rebate $1,000 Program Info Start Date 01/01/2013 Expiration Date 04/30/2013 State Illinois Program Type Utility Rebate Program Rebate Amount ComEd Rebates Central Air Conditioner Unit 14 SEER or above: $350 Central Air Conditioner Unit Energy Star rated: $500 Nicor Gas, Peoples Gas and North Shore Gas Furnace: $200 - $500 (varies based on gas company and unit installed) Provider ComEd Energy ComEd, Nicor Gas, Peoples Gas and North Shore Gas are offering a Complete System Replacement Rebate Program to residential customers. The program is

463

U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Biomass Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

464

Nebraska Natural Gas Summary  

Gasoline and Diesel Fuel Update (EIA)

4.86 6.22 2.97 3.98 1967-2010 4.86 6.22 2.97 3.98 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 7.67 8.12 5.87 5.62 5.11 4.31 1984-2012 Residential 11.15 11.11 9.34 8.95 8.84 8.68 1967-2012 Commercial 9.16 9.62 7.44 7.08 6.69 6.19 1967-2012 Industrial 7.97 9.12 6.02 5.85 5.61 4.34 1997-2012 Vehicle Fuel 15.10 15.29 1994-2012 Electric Power 8.97 W W W 5.74 3.93 1997-2012 Production (Million Cubic Feet) Number of Producing Gas Wells 186 322 285 276 322 270 1989-2012 Gross Withdrawals 1,560 3,083 2,916 2,255 1,980 1,328 1967-2012 From Gas Wells 1,331 2,862 2,734 2,092 1,854 1,317 1967-2012 From Oil Wells 228 221 182 163 126 11 1967-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0 0 2006-2012

465

Maryland Natural Gas Summary  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Wellhead NA NA NA NA 1967-2010 Imports 7.25 9.09 4.05 5.37 5.30 13.82 1999-2012 Pipeline and Distribution Use 1967-2005 Citygate 9.24 10.23 8.02 6.49 6.26 5.67 1984-2012 Residential 15.17 16.07 13.73 12.44 12.10 12.17 1967-2012 Commercial 12.30 13.12 10.87 9.87 10.29 10.00 1967-2012 Industrial 11.59 13.46 10.70 9.05 8.61 8.01 1997-2012 Vehicle Fuel 11.40 14.66 11.20 5.99 5.09 -- 1993-2012 Electric Power 7.89 11.16 5.42 5.77 5.44 W 1997-2012 Production (Million Cubic Feet) Number of Producing Gas Wells 7 7 7 7 8 9 1989-2012 Gross Withdrawals 35 28 43 43 34 44 1967-2012 From Gas Wells 35 28 43 43 34 44 1967-2012 From Oil Wells 0 0 0 0 0 0 2006-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells

466

Oregon Natural Gas Summary  

Gasoline and Diesel Fuel Update (EIA)

5.27 5.33 4.00 4.92 1979-2010 5.27 5.33 4.00 4.92 1979-2010 Pipeline and Distribution Use 1967-2005 Citygate 8.14 8.82 7.79 6.78 5.84 5.21 1984-2012 Residential 14.65 13.89 14.52 12.49 11.76 11.22 1967-2012 Commercial 12.36 11.57 11.86 10.10 9.60 8.91 1967-2012 Industrial 9.30 9.07 9.70 7.05 6.84 5.87 1997-2012 Vehicle Fuel 6.59 8.03 7.11 5.61 4.23 4.57 1992-2012 Electric Power 6.10 7.08 4.25 4.57 W W 1997-2012 Production (Million Cubic Feet) Number of Producing Gas Wells 18 21 24 26 24 27 1989-2012 Gross Withdrawals 409 778 821 1,407 1,344 770 1979-2012 From Gas Wells 409 778 821 1,407 1,344 770 1979-2012 From Oil Wells 0 0 0 0 0 0 1996-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0 0 2002-2012

467

Nevada Natural Gas Summary  

Gasoline and Diesel Fuel Update (EIA)

NA NA NA NA 2006-2010 NA NA NA NA 2006-2010 Pipeline and Distribution Use 1967-2005 Citygate 8.72 9.44 7.93 7.19 6.77 5.13 1984-2012 Residential 14.17 13.33 13.18 12.25 10.66 10.14 1967-2012 Commercial 12.03 11.21 10.92 9.77 8.07 7.43 1967-2012 Industrial 11.77 11.10 11.22 10.53 8.99 7.34 1997-2012 Vehicle Fuel 9.99 9.24 8.97 8.13 4.76 8.97 1991-2012 Electric Power 6.31 8.26 5.50 5.75 5.00 3.49 1997-2012 Production (Million Cubic Feet) Number of Producing Gas Wells 4 0 0 0 0 0 1996-2012 Gross Withdrawals 5 4 4 4 3 4 1991-2012 From Gas Wells 0 0 0 0 0 0 2006-2012 From Oil Wells 5 4 4 4 3 4 1991-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0 0 2006-2012 Repressuring 0 0 0 0 0 0 2006-2012

468

Missouri Natural Gas Summary  

Gasoline and Diesel Fuel Update (EIA)

1967-1997 1967-1997 Pipeline and Distribution Use 1967-2005 Citygate 7.53 8.03 7.06 6.17 5.85 5.27 1984-2012 Residential 13.42 13.36 12.61 11.66 12.02 12.25 1967-2012 Commercial 11.82 12.02 10.81 10.28 9.99 9.54 1967-2012 Industrial 10.84 11.32 9.55 8.70 8.54 7.93 1997-2012 Vehicle Fuel 8.44 8.66 7.86 6.34 6.11 5.64 1994-2012 Electric Power W W W W W W 1997-2012 Production (Million Cubic Feet) Number of Producing Gas Wells 0 0 0 0 53 100 1989-2012 Gross Withdrawals 0 0 0 0 0 0 1967-2012 From Gas Wells 0 0 0 0 0 0 1967-2012 From Oil Wells 0 0 0 0 0 0 2007-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0 0 2007-2012 Repressuring 0 0 0 0 0 0 2007-2012 Nonhydrocarbon Gases Removed

469

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

470

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

471

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

472

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

473

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

474

Flue gas desulfurization  

DOE Patents (OSTI)

The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

Im, K.H.; Ahluwalia, R.K.

1984-05-01T23:59:59.000Z

475

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network (OSTI)

gas reservoirs for carbon sequestration and enhanced gasproduction and carbon sequestration, Society of Petroleumfeasibiilty of carbon sequestration with enhanced gas

Oldenburg, Curtis M.

2003-01-01T23:59:59.000Z

476

Long-Term Contracts and Asset Specificity Revisited –An Empirical Analysis of Producer-Importer Relations in the Natural Gas Industry  

E-Print Network (OSTI)

Theoretical Perspective, Cambridge, CMI Working Paper. 16 Neumann, Anne, and Christian von Hirschhausen (2004) Less Long Term Gas to Europe? A Quantitative Analysis of European Long Term Gas-Supply Contracts, Zeitschrift für Energiewirtschaft, 28...

Neumann, Anne; von Hirschhausen, Christian

477

GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING  

SciTech Connect

Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

Howard S. Meyer

2002-06-30T23:59:59.000Z

478

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIAÂ’s Weekly Natural Gas Storage Report.

479

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, July 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 21, 2010) Natural gas prices rose across market locations in the lower 48 States during the report week. The Henry Hub natural gas spot price rose 31 cents, or 7 percent, during the week, averaging $4.70 per million Btu (MMBtu) yesterday, July 21. At the New York Mercantile Exchange (NYMEX), the price of the August 2010 natural gas futures contract for delivery at the Henry Hub rose about 21 cents, or 5 percent, ending the report week at $4.513 per MMBtu. Working natural gas in storage increased to 2,891 billion cubic feet (Bcf) as of Friday, July 16, according to EIAÂ’s Weekly Natural Gas Storage

480

GAS METERING PUMP  

DOE Patents (OSTI)

A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

George, C.M.

1957-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas producers gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Thermodynamics of Chaplygin gas  

E-Print Network (OSTI)

We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

Yun Soo Myung

2008-12-02T23:59:59.000Z

482

GAS DISCHARGE DEVICES  

DOE Patents (OSTI)

The construction of gas discharge devices where the object is to provide a gas discharge device having a high dark current and stabilized striking voltage is described. The inventors have discovered that the introduction of tritium gas into a discharge device with a subsequent electrical discharge in the device will deposit tritium on the inside of the chamber. The tritium acts to emit beta rays amd is an effective and non-hazardous way of improving the abovementioned discharge tube characteristics

Arrol, W.J.; Jefferson, S.

1957-08-27T23:59:59.000Z

483

Thermodynamics of Chaplygin gas  

E-Print Network (OSTI)

We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

Myung, Yun Soo

2008-01-01T23:59:59.000Z

484

Pulsed gas laser  

DOE Patents (OSTI)

A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

Anderson, Louis W. (Madison, WI); Fitzsimmons, William A. (Madison, WI)

1978-01-01T23:59:59.000Z

485

Valve for gas centrifuges  

DOE Patents (OSTI)

The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, Charles A. (Oak Ridge, TN); Burbage, Charles H. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

486

Drilling often results in both oil and natural gas production ...  

U.S. Energy Information Administration (EIA)

In 2011 and 2012, more than 50% of new wells produced both oil and natural gas. Despite this phenomenon, many traditional methods for estimating oil and natural gas ...

487

Hydrogen and Elemental Carbon Production from Natural Gas and ...  

... hydrogen fuel Applications and Industries Transportation and/or manufacturing industries; Industrial gas producers and/or oil and gas industry. ...

488

Energy Information Administration / Natural Gas Annual 2009 120  

Annual Energy Outlook 2012 (EIA)

0 Table 54. Summary Statistics for Natural Gas - Nebraska, 2005-2009 Number of Producing Gas Wells at End of Year ... 114 114 186 322...

489

Energy Information Administration / Natural Gas Annual 2009 132  

Annual Energy Outlook 2012 (EIA)

2 Table 60. Summary Statistics for Natural Gas - North Carolina, 2005-2009 Number of Producing Gas Wells at End of Year ... 0 0 0 0 0...

490

Energy Information Administration / Natural Gas Annual 2009 160  

Annual Energy Outlook 2012 (EIA)

0 Table 74. Summary Statistics for Natural Gas - Washington, 2005-2009 Number of Producing Gas Wells at End of Year ... 0 0 0 0 0...

491

Energy Information Administration / Natural Gas Annual 2009 122  

Annual Energy Outlook 2012 (EIA)

2 Table 55. Summary Statistics for Natural Gas - Nevada, 2005-2009 Number of Producing Gas Wells at End of Year ... 4 4 4 R 0 0...

492