National Library of Energy BETA

Sample records for gas processors association

  1. Energy Department, Northwest Food Processors Association Set Energy

    Energy Savers [EERE]

    Efficiency Goals for Industry | Department of Energy Department, Northwest Food Processors Association Set Energy Efficiency Goals for Industry Energy Department, Northwest Food Processors Association Set Energy Efficiency Goals for Industry February 17, 2009 - 12:00am Addthis PORTLAND, OR - The U.S. Department of Energy (DOE) and the Northwest Food Processors Association today set ambitious goals to reduce energy use and carbon emissions in the industrial sector. DOE Industrial Technologies

  2. Energy Department, Northwest Food Processors Association Set...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    improve American global competitiveness, protect jobs, and strengthen the domestic manufacturing sector. The Northwest Food Processors show tremendous foresight by making...

  3. Memorandum of Understanding with Northwest Food Processors Association

    SciTech Connect (OSTI)

    2009-02-01

    The Northwest Food Processors Association (NWFPA) and the U.S. Department of Energy entered into this memorandum of understanding to work collaboratively to reduce energy intensity by 25% within ten years.

  4. Energy Department, Northwest Food Processors Association Set...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... their energy efficiency through innovative partnerships with national associations, state and local government agencies, non-profit organizations, and their related supply chains. ...

  5. A natural-gas fuel processor for a residential fuel cell system.

    SciTech Connect (OSTI)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.; Japan Institute of Energy

    2009-03-01

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor--namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor--were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing {approx} 48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  6. Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction

    DOE Patents [OSTI]

    Rosocha, Louis A.

    2006-06-20

    A device for processing gases includes a cylindrical housing in which an electrically grounded, metal injection/extraction gas supply tube is disposed. A dielectric tube surrounds the injection/extraction gas supply tube to establish a gas modification passage therearound. Additionally, a metal high voltage electrode circumscribes the dielectric tube. The high voltage electrode is energizable to create nonthermal electrical microdischarges between the high voltage electrode and the injection/extraction gas supply tube across the dielectric tube within the gas modification passage. An injection/extraction gas and a process gas flow through the nonthermal electrical microdischarges within the gas modification passage and a modified process gas results. Using the device contaminants that are entrained in the process gas can be destroyed to yield a cleaner, modified process gas.

  7. QER- Comment of Northeast Gas Association

    Broader source: Energy.gov [DOE]

    Please find enclosed comments of the Northeast Gas Association regarding the Quadrennial Energy Review. Thank you.

  8. QER- Comment of Canadian Gas Association

    Broader source: Energy.gov [DOE]

    SENT ON BEHALF OF TIMOTHY M. EGAN PRESIDENT AND CEO CANADIAN GAS ASSOCIATION Dear Quadrennial Energy Review Task Force, Please find attached the submission from the Canadian Gas Association to the Quadrennial Energy Review (QER) process.

  9. The Cell Processor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2005 IBM Corporation The Cell Processor Architecture & Issues 2 2005 IBM Corporation Agenda Cell Processor Overview Programming the Cell Processor Concluding Remarks 3 ...

  10. American Gas Association | Department of Energy

    Energy Savers [EERE]

    Association American Gas Association Memorandum Summarizing Ex Parte Communication PDF icon 111011_Ex_Parte.pdf More Documents & Publications Ex Parte Memorandum - Natural Resources Defense Council American Gas Association Ex Parte Communication Microsoft Word - AGA Comments on 2011 Regulatory Burden RFI

  11. White Paper Developed by the American Gas Association and American Public Gas Association

    Broader source: Energy.gov (indexed) [DOE]

    Developed by the American Gas Association and American Public Gas Association - 1 - ME1 19099445v.1 In the Upcoming Rulemaking on Amendments to the Minimum Efficiency Standards for Non- Weatherized Residential Gas Furnaces, DOE Should Employ Separate Product Classes for Condensing and Noncondensing Furnaces October 22, 2014 The Department of Energy should, in pursuing the rulemaking on amended residential furnace standards required by the court's order in American Public Gas Association v. DOE

  12. QER- Comment of National Propane Gas Association

    Broader source: Energy.gov [DOE]

    Ladies and Gentlemen: Please find attached the QER comments of the National Propane Gas Association. Please feel to contact us if we can provide further information. Thank you for your attention to our submission.

  13. Application of microturbines to control emissions from associated gas

    DOE Patents [OSTI]

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  14. Challenges associated with shale gas production | Department of Energy

    Energy Savers [EERE]

    Challenges associated with shale gas production Challenges associated with shale gas production PDF icon What challenges are associated with shale gas production? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Development Challenges: Air Shale Gas Development Challenges: Fracture Fluids

  15. Electric and Gas Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Gas Industries Association Jump to: navigation, search Name: Electric and Gas Industries Association Place: Sacramento, CA Zip: 95821 Website: www.egia.org Coordinates:...

  16. Cr-free Fe-based metal oxide catalysts for high temperature water gas shift reaction of fuel processor using LPG

    SciTech Connect (OSTI)

    lee, Joon Y.; Lee, Dae-Won; Lee, Kwan Young; Wang, Yong

    2009-08-15

    The goal of this study was to identify the most suitable chromium-free iron-based catalysts for the HTS (high temperature shift) reaction of a fuel processor using LPG. Hexavalent chromium (Cr6+) in the commercial HTS catalyst has been regarded as hazardous material. We selected Ni and Co as the substitution for chromium in the Fe-based HTS catalyst and investigated the HTS activities of these Crfree catalysts at LPG reformate condition. Cr-free Fe-based catalysts which contain Ni, Zn, or Co instead of Cr were prepared by coprecipitation method and the performance of the catalysts in HTS was evaluated under gas mixture conditions (42% H2, 10% CO, 37% H2O, 8% CO2, and 3% CH4; R (reduction factor): about 1.2) similar to the gases from steam reforming of LPG (100% conversion at steam/carbon ratio = 3), which is higher than R (under 1) of typically studied LNG reformate condition. Among the prepared Cr-free Febased catalysts, the 5 wt%-Co/Fe/20 wt%-Ni and 5 wt%-Zn/Fe/20 wt%-Ni catalysts showed good catalytic activity under this reaction condition simulating LPG reformate gas.

  17. Computer Processor Allocator

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    The Compute Processor Allocator (CPA) provides an efficient and reliable mechanism for managing and allotting processors in a massively parallel (MP) computer. It maintains information in a database on the health. configuration and allocation of each processor. This persistent information is factored in to each allocation decision. The CPA runs in a distributed fashion to avoid a single point of failure.

  18. American Gas Association Memorandum Summarizing Ex Parte Communication...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memorandum Summarizing Ex Parte Communication American Gas Association Memorandum Summarizing Ex Parte Communication On October 9, 2014, a workshop was hosted by the American Gas ...

  19. Texas Associated-Dissolved Natural Gas, Wet After Lease Separation...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

  20. Comments of the American Public Gas Association on the Smart...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comments from The American Public Gas Association on the Smart Grid RFI: Addressing policy and logisitcal challenges to smart grid implementation PDF icon The American Public Gas ...

  1. QER- Comment of Natural Gas Supply Association

    Broader source: Energy.gov [DOE]

    TO: Quadrennial Energy Review Task Force In response to the Department of Energy’s August 25, 2014 Federal Register Notice seeking input on the Quadrennial Energy Review, attached are comments from the Natural Gas Supply Association. Thank you for this opportunity to share our views on the important issue of energy infrastructure. If we can be of further assistance, please let me know. Regards,

  2. Natural gas industry directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

  3. Sequence information signal processor

    DOE Patents [OSTI]

    Peterson, John C. (Alta Loma, CA); Chow, Edward T. (San Dimas, CA); Waterman, Michael S. (Culver City, CA); Hunkapillar, Timothy J. (Pasadena, CA)

    1999-01-01

    An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.

  4. 3081/E processor

    SciTech Connect (OSTI)

    Kunz, P.F.; Gravina, M.; Oxoby, G.; Rankin, P.; Trang, Q.; Ferran, P.M.; Fucci, A.; Hinton, R.; Jacobs, D.; Martin, B.

    1984-04-01

    The 3081/E project was formed to prepare a much improved IBM mainframe emulator for the future. Its design is based on a large amount of experience in using the 168/E processor to increase available CPU power in both online and offline environments. The processor will be at least equal to the execution speed of a 370/168 and up to 1.5 times faster for heavy floating point code. A single processor will thus be at least four times more powerful than the VAX 11/780, and five processors on a system would equal at least the performance of the IBM 3081K. With its large memory space and simple but flexible high speed interface, the 3081/E is well suited for the online and offline needs of high energy physics in the future.

  5. New Mexico Associated-Dissolved Natural Gas, Reserves in Nonproducing...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade...

  6. ,"New Mexico Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  7. ,"Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  8. ,"Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  9. ,"Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  10. ,"Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  11. ,"Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  12. ,"Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  13. ,"Texas Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

  14. ,"West Virginia Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  15. ,"Louisiana State Offshore Associated-Dissolved Natural Gas,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  16. ,"California State Offshore Associated-Dissolved Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  17. ,"Texas State Offshore Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  18. ,"New York Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  19. QER- Comment of American Gas Association 4

    Broader source: Energy.gov [DOE]

    From: Peterson, Christopher (EIA)Sent: Tuesday, October 14, 2014 12:11 PMTo: Pierpoint, LaraSubject: FW: AGA comments to QER: Natural Gas Emissions Section

  20. Hardware multiplier processor

    DOE Patents [OSTI]

    Pierce, Paul E. (Albuquerque, NM)

    1986-01-01

    A hardware processor is disclosed which in the described embodiment is a memory mapped multiplier processor that can operate in parallel with a 16 bit microcomputer. The multiplier processor decodes the address bus to receive specific instructions so that in one access it can write and automatically perform single or double precision multiplication involving a number written to it with or without addition or subtraction with a previously stored number. It can also, on a single read command automatically round and scale a previously stored number. The multiplier processor includes two concatenated 16 bit multiplier registers, two 16 bit concatenated 16 bit multipliers, and four 16 bit product registers connected to an internal 16 bit data bus. A high level address decoder determines when the multiplier processor is being addressed and first and second low level address decoders generate control signals. In addition, certain low order address lines are used to carry uncoded control signals. First and second control circuits coupled to the decoders generate further control signals and generate a plurality of clocking pulse trains in response to the decoded and address control signals.

  1. American Gas Association (AGA) for DOE Furnace Product Class | Department

    Energy Savers [EERE]

    of Energy (AGA) for DOE Furnace Product Class American Gas Association (AGA) for DOE Furnace Product Class Thank you for the opportunity to brief your staff in recent weeks on an impact analysis of a national condensing furnace standard, which was conducted jointly by the American Gas Association (AGA), the American Public Gas Association (APGA), and the Gas Technology Institute (GTI). PDF icon AGA e-mail for DOE Furnace Product Class PDF icon AGA Cover Letter for Furnace Product Class White

  2. American Gas Association Ex Parte Communication | Department of Energy

    Energy Savers [EERE]

    Ex Parte Communication American Gas Association Ex Parte Communication On March 30, 2015, representatives of the American Gas Association (AGA) met with officials and staff of the U.S. Department of Energy (DOE) to discuss the notice of proposed rulemaking (NOPR) on minimum energy efficiency standards for residential natural gas furnaces. PDF icon AGA Memorandum Ex Parte Communication 4-3-15 PDF icon AGA Summary Statement for March 27 2015 Public Meeting FINAL More Documents & Publications

  3. American Gas Association Memorandum Summarizing Ex Parte Communication |

    Energy Savers [EERE]

    Department of Energy Memorandum Summarizing Ex Parte Communication American Gas Association Memorandum Summarizing Ex Parte Communication On October 9, 2014, a workshop was hosted by the American Gas Association and Washington Gas Light (WGL) at WGLs Training Facility in Springfield, VA. PDF icon AGA Memorandum Summarizing Ex Parte Communication PDF icon Condensing Heating and Water Heating Equipment Workshop Agenda PDF icon October 9th Workshop Presentation - Melissa Adams PDF icon October

  4. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure Factors to consider in the implementation of fueling stations and equipment Margaret Smith, New West Technologies (DOE HQ Technical Support) John Gonzales, National Renewable Energy Laboratory This document has been peer reviewed by the natural gas industry. September 2014 2 Introduction This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas

  5. Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Nebraska Associated-Dissolved Natural

  6. QER- Comment of American Gas Association 3

    Broader source: Energy.gov [DOE]

    Dear Ms. Pickett: Attached please find AGA's comments on natural gas vehicle fueling infrastructure as part of our response to the first phase of the DOE Quadrennial Energy Review (QER), consisting of a cover letter and attachments. Respectfully submitted, Kathryn Clay

  7. QER- Comment of American Gas Association 2

    Broader source: Energy.gov [DOE]

    Attached please find AGA's comments relating to critical issues facing the natural gas distribution industry, which we believe could be usefully addressed in the first phase of the DOE Quadrennial Energy Review (QER). Our comments as submitted here consist of a cover letter and four additional attachments. My colleague Pam Lacey has previously submitted AGA's comments relating to methane emissions under separate cover.

  8. Ethane from associated gas still the most economical

    SciTech Connect (OSTI)

    Farry, M.

    1998-06-08

    Ethane extracted from associated gas is one of the cheapest ways to produce ethylene. This is the conclusion reached by a set of recent studies on natural gas processing and conversion published by Chem Systems Ltd. Ethane cracking usually requires a large gas project for ethane to be produced in sufficient quantity for a world-scale cracker, limiting the number of cases where this is feasible. Ethane extracted from LNG plants is an alternative source of cracker feedstock. Although more costly, gas-to-olefins technology is a potential alternative to ethane cracking.

  9. Multimode power processor

    DOE Patents [OSTI]

    O'Sullivan, George A. (Pottersville, NJ); O'Sullivan, Joseph A. (St. Louis, MO)

    1999-01-01

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

  10. Multimode power processor

    DOE Patents [OSTI]

    O'Sullivan, G.A.; O'Sullivan, J.A.

    1999-07-27

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.

  11. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  12. Distributed processor allocation for launching applications in a massively connected processors complex

    DOE Patents [OSTI]

    Pedretti, Kevin (Goleta, CA)

    2008-11-18

    A compute processor allocator architecture for allocating compute processors to run applications in a multiple processor computing apparatus is distributed among a subset of processors within the computing apparatus. Each processor of the subset includes a compute processor allocator. The compute processor allocators can share a common database of information pertinent to compute processor allocation. A communication path permits retrieval of information from the database independently of the compute processor allocators.

  13. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 34 12 27 31 14 25 41 13 28 39 1990's 22 14 11 9 11 32 28 31 17 54 2000's 19 19 20 14 12 14 19 15 9 78 2010's 10 104 7 19 18 - = No

  14. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 67 1980's 73 66 74 80 114 105 66 61 71 105 1990's 126 108 85 53 43 27 47 51 47 31 2000's 35 26 33 27 20 20 21 30 45 38 2010's 36 62 62 43 58 - = No Data Reported; --

  15. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 51 1980's 122 89 81 108 77 91 98 97 101 68 1990's 86 66 61 53 55 53 51 42 52 67 2000's 70 85 94 112 130 161 195 219 197 312 2010's 302 270 289 304 325 - = No Data

  16. Florida Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 108 1980's 122 99 86 64 90 81 69 62 69 57 1990's 53 45 55 59 117 110 119 112 106 100 2000's 93 96 102 92 88 87 50 110 1 7 2010's 30 2 0 1 0 - = No Data Reported; -- =

  17. Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 93 44 49 - = No Data Reported; -- = Not

  18. Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 765 1980's 916 1,040 832 775 690 632 567 488 249 237 1990's 241 192 160 120 134 133 255 287 183 260 2000's 186 168 159 139 107 98 90 73 78 53

  19. Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 733 1980's 883 758 719 824 774 689 577 569 491 432 1990's 408 437 352 328 357 326 347 281 228 227 2000's 214 159 214 269 193 153 192 179 148 77 2010's 72 77 94 125 108

  20. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 100 46 141 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 1980's 194 184 174 194 189 157 150 145 157 145 1990's 67 136 133 93 85 104 89 56 38 41 2000's 39 30 38 37 40 46 44 37 12 20 2010's 29 46 82 135 189 - = No Data

  2. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    Gasoline and Diesel Fuel Update (EIA)

    After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 307 1980's 265 265 325 344 256 254 261 243 220 233 1990's 228 220 196 135 145 109 120 129 116 233 2000's 244 185 197

  3. California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas,

    Gasoline and Diesel Fuel Update (EIA)

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 207 162 103 114 162 185 149 155 158 141 1990's 110 120 100 108 108 115 112 143 153 174 2000's 203

  4. California Federal Offshore Associated-Dissolved Natural Gas, Wet After

    Gasoline and Diesel Fuel Update (EIA)

    Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 249 1980's 307 1,110 1,249 1,312 1,252 1990's 1,229 995 987 976 1,077 1,195 1,151 498 437 488 2000's 500 490 459 456 412 776 756

  5. Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 1980's 11 14 14 21 78 67 22 21 8 19 1990's 23 20 10 8 9 36 47 92 79 96 2000's 157 168 137 164 125 134 151 130 127 133 2010's 144 134 125 269 299 - = No Data

  6. Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318

  7. Ethanol Grain Processors LLC | Open Energy Information

    Open Energy Info (EERE)

    Processors LLC Jump to: navigation, search Name: Ethanol Grain Processors, LLC Place: Obion, Tennessee Zip: TN 38240 Product: Tennessee-based ethanol producer. Coordinates:...

  8. Geo processors USA | Open Energy Information

    Open Energy Info (EERE)

    processors USA Jump to: navigation, search Name: Geo-processors USA Place: California Zip: 91204 Sector: Carbon Product: California based Geo-procesors USA has developed an...

  9. New York Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New York Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  10. Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,360 2,391 2,128 1,794 1,741 1990's 1,554 1,394 1,167 926 980 1,001 1,039 1,016 911 979 2000's 807 796 670 586 557 588 561 641 1,235 1,072 2010's 679 639 773 870 908

  11. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    Gasoline and Diesel Fuel Update (EIA)

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,253 1980's 2,713 2,664 2,465 2,408 2,270 2,074 2,006 2,033 1,947 1,927 1990's 1,874 1,818 1,738 1,676 1,386

  12. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,961 1980's 3,345 2,660 2,663 2,546 2,507 1990's 2,400 2,213 2,093 1,982 1,698 1,619 1,583 1,820 1,879 2,150 2000's 2,198 1,922 1,900 1,810 2,006 2,585 2,155 2,193

  13. Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 1980's 200 259 206 173 208 167 190 219 177 236 1990's 510 682 762 1,162 1,088 1,072 1,055 533 772 781 2000's 960 1,025 1,097 1,186 1,293 1,326 1,541 1,838 2,010

  14. Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,246 1980's 2,252 2,441 2,426 2,269 2,244 2,149 2,191 2,017 1,894 1,785 1990's 1,820 1,406 1,483 1,550 1,342 1,228 1,023 1,015 1,196 1,238 2000's 1,113 1,109 1,177

  15. Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  16. Method for fast start of a fuel processor

    DOE Patents [OSTI]

    Ahluwalia, Rajesh K. (Burr Ridge, IL); Ahmed, Shabbir (Naperville, IL); Lee, Sheldon H. D. (Willowbrook, IL)

    2008-01-29

    An improved fuel processor for fuel cells is provided whereby the startup time of the processor is less than sixty seconds and can be as low as 30 seconds, if not less. A rapid startup time is achieved by either igniting or allowing a small mixture of air and fuel to react over and warm up the catalyst of an autothermal reformer (ATR). The ATR then produces combustible gases to be subsequently oxidized on and simultaneously warm up water-gas shift zone catalysts. After normal operating temperature has been achieved, the proportion of air included with the fuel is greatly diminished.

  17. Analog pulse processor

    DOE Patents [OSTI]

    Wessendorf, Kurt O.; Kemper, Dale A.

    2003-06-03

    A very low power analog pulse processing system implemented as an ASIC useful for processing signals from radiation detectors, among other things. The system incorporates the functions of a charge sensitive amplifier, a shaping amplifier, a peak sample and hold circuit, and, optionally, an analog to digital converter and associated drivers.

  18. Processor Emulator with Benchmark Applications

    Energy Science and Technology Software Center (OSTI)

    2015-11-13

    A processor emulator and a suite of benchmark applications have been developed to assist in characterizing the performance of data-centric workloads on current and future computer architectures. Some of the applications have been collected from other open source projects. For more details on the emulator and an example of its usage, see reference [1].

  19. Processor Frequency on the Cori Data Partition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Configuration » Processor Frequency on the Cori Data Partition Processor Frequency on the Cori Data Partition The Haswell processors in Cori's data partition have a "Turbo Boost" feature to dynamically adjust CPU frequency and achieve the maximum possible performance. When Turbo Boost is enabled, the processor operates at the maximum frequency allowed by the available power and thermal limits. Further, on Cori (unlike Edison), each core can operate at a different frequency. The

  20. Home Energy Score Program Overview for the American Gas Association Webinar

    Energy Savers [EERE]

    (Text Version) | Department of Energy Overview for the American Gas Association Webinar (Text Version) Home Energy Score Program Overview for the American Gas Association Webinar (Text Version) Below is the text version of the webinar, Home Energy Score Program Overview for the American Gas Association, presented on July 30, 2013. In addition to this text version of the audio, you can access the presentation slides and a recording of the webinar. Elizabeth Noll: Good afternoon. This is

  1. ,"Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  2. ,"Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  3. ,"Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  4. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

  5. Midwest Grain Processors MGP | Open Energy Information

    Open Energy Info (EERE)

    Midwest Grain Processors (MGP) Place: Lakota, Iowa Zip: 50451 Product: Iowa-based bioethanol producer using corn as feedstock. Coordinates: 48.042535, -98.335979 Show Map...

  6. Increases in 3He/4He in Fumarolic Gas Associated with the 1989...

    Open Energy Info (EERE)

    Beneath Mammoth Mountain, California Citation Michael L. Sorey,B. Mack Kennedy,William C. Evans,Christopher D. Farrar. 1990. Increases in 3He4He in Fumarolic Gas Associated with...

  7. Fuel processor and method for generating hydrogen for fuel cells

    DOE Patents [OSTI]

    Ahmed, Shabbir (Naperville, IL); Lee, Sheldon H. D. (Willowbrook, IL); Carter, John David (Bolingbrook, IL); Krumpelt, Michael (Naperville, IL); Myers, Deborah J. (Lisle, IL)

    2009-07-21

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  8. Launching applications on compute and service processors running under

    Office of Scientific and Technical Information (OSTI)

    different operating systems in scalable network of processor boards with routers (Patent) | SciTech Connect Patent: Launching applications on compute and service processors running under different operating systems in scalable network of processor boards with routers Citation Details In-Document Search Title: Launching applications on compute and service processors running under different operating systems in scalable network of processor boards with routers A multiple processor computing

  9. Effect of processor temperature on film dosimetry

    SciTech Connect (OSTI)

    Srivastava, Shiv P.; Das, Indra J.

    2012-07-01

    Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d{sub max.}, 10 Multiplication-Sign 10 cm{sup 2}, 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4-40.6 Degree-Sign C (85-105 Degree-Sign F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.

  10. Fuel Processor Enabled NOx Adsorber Aftertreatment System for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions...

  11. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Processors is an Agricultural Drying low temperature direct use geothermal facility in Brady Hot Springs E of Fernley, Nevada. This article is a stub. You can help OpenEI by...

  12. Ground movements associated with gas hydrate production. Final report

    SciTech Connect (OSTI)

    Siriwardane, H.J.; Kutuk, B.

    1992-03-01

    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ``stress equilibrium`` approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ``cavity`` generated by reservoir depletion. The present study is expected to provide a ``lower bound`` solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ``stress equilibrium`` approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ``cavity`` generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir.

  13. Development of an External Fuel Processor for a Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Daniel Birmingham; Crispin Debellis; Mark Perna; Anant Upadhyayula

    2008-02-28

    A 250 kW External Fuel Processor was developed and tested that will supply the gases needed by a pipeline natural gas fueled, solid oxide fuel cell during all modes of operation. The fuel processor consists of three major subsystems--a desulfurizer to remove fuel sulfur to an acceptable level, a synthesis gas generator to support plant heat-up and low load fuel cell operations, and a start gas generator to supply a non-flammable, reducing gas to the fuel cell during startup and shutdown operations. The desulfurization subsystem uses a selective catalytic sulfur oxidation process that was developed for operation at elevated pressure and removes the fuel sulfur to a total sulfur content of less than 80 ppbv. The synthesis gas generation subsystem uses a waterless, catalytic partial oxidation reactor to produce a hydrogen-rich mixture from the natural gas and air. An operating window was defined that allows carbon-free operation while maintaining catalyst temperatures that will ensure long-life of the reactor. The start gas subsystem generates an oxygen-free, reducing gas from the pipeline natural gas using a low-temperature combustion technique. These physically and thermally integrated subsystems comprise the 250 kW External Fuel Processor. The 250 kW External Fuel Processor was tested at the Rolls-Royce facility in North Canton, Ohio to verify process performance and for comparison with design specifications. A step wise operation of the automatic controls through the startup, normal operation and shutdown sequences allowed the control system to be tuned and verified. A fully automated system was achieved that brings the fuel processor through its startup procedure, and then await commands from the fuel cell generator module for fuel supply and shutdown. The fuel processor performance met all design specifications. The 250 kW External Fuel Processor was shipped to an American Electric Power site where it will be tested with a Rolls-Royce solid oxide fuel cell generator module.

  14. Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas,

    Gasoline and Diesel Fuel Update (EIA)

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 474 320 541 522 532 494 1990's 446 407 691 574 679 891 794 1,228 1,224 1,383 2000's 1,395 1,406 1,267

  15. Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 167 1980's 185 139 112 132 110 115 132 115 103 101 1990's 114 115 94 93 75 67 82 51 60 52 2000's 40 105 66 85 80 83 82 83 85 83 2010's 79 127 326 433 657 - = No Data Reported;

  16. Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Proved Reserves (Billion Cubic Feet) South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,304 1980's 2,134 1,871 1,789 1,582 1,488 1,792 1,573 1,380 1,338 1,273 1990's 1,106 995 853 649 678 720 627 599 630 599

  17. Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 449 251 260 207 231 1990's 207 207 154 157 168 148 157 130 98 120 2000's 129 145 84 79 61 63 56 65 686 513 2010's 107 51 128 88 68 - = No

  18. California State Offshore Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 226 1980's 160 244 232 221 206 1990's 188 55 59 63 59 56 47 54 39 58 2000's 86 80 85 76 85 89 85 79 54 53 2010's 63 79 65 75 76 - = No Data

  19. Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 209 1980's 172 180 216 175 170 260 241 205 204 251 1990's 333 401 361 191 151 248 446 68 51 67 2000's 69 43 47 48 45 57 61 72 60 67 2010's 267

  20. Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 0 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 484 1980's 546 456 489 537 617 560 537 482 424 364 1990's 311 298 396 264 264 254 253 227 234 241 2000's 289 255 271 252 249 253 316 436

  1. Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 955 1980's 921 806 780 747 661 570 517 512 428 430 1990's 407 352 308 288 299 245 252 235 204 202 2000's 115 65 70 81

  2. Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,416 1980's 1,292 1,005 890 765 702 684 596 451 393 371 1990's 301 243 228 215 191 209 246 368 394 182 2000's 176 140

  3. Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 1980's 75 44 47 52 44 40 69 118 101 136 1990's 116 89 126 141 148 47 53 68 89 49 2000's 128 83 65 62 58 51 57 50 40 21 2010's 8 40 53 177

  4. Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 868 1980's 954 869 881 943 938 874 822 811 728 695 1990's 668 638 606 607 547 611 562 578 580 545 2000's 464 412 400 387 402 344 276 247 412

  5. Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 234 1980's 332 292 214 338 292 276 244 282 264 196 1990's 214 157 170 187 181 276 232 260 204 190 2000's 114 88 57 69 76 73 74 62 68 102

  6. Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 653 1980's 520 685 704 705 776 780 666 737 727 721 1990's 768 759 748 633 631 640 692 596 557 616 2000's 693 634 737 927 994 1,037 1,196

  7. Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 249 274 299 255 274 290 263 267 241 212 1990's 214 200 184 178 148 138 121 147 199 180 2000's 209 124 140 125 110 126 105 139 158

  8. Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 25 24 24 10 20 19 1990's 17 8 7 4 3 7 6 10 5 6 2000's 1 2 5 6 9 3 1 3 5 3 2010's 3 5 6 3 0 - = No Data Reported; -- = Not Applicable; NA = Not

  9. New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 151 1980's 156 150 146 180 194 181 214 213 259 178 1990's 184 156 127 107 97 119 108 106 98 92 2000's 115 99 103 89 90 98 82 87 86 82 2010's

  10. North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717

  11. Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,047 1980's 1,417 800 984 1,635 1,178 938 898 594 480 589 1990's 371 376 381 343 315 355 399 391 342 402 2000's 469 340 346 304 208 184 174 101 99 97 2010's 90 74 223 314 208 - =

  12. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 1,001 895 872 - =

  13. West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 76 1980's 122 63 83 86 73 73 65 150 141 98 1990's 86 159 198 190 133 74 71 59 43 88 2000's 98 48 21 23 20 19 16 16 23 24 2010's 29 52 21 70 32 - = No Data

  14. Conversion of associated natural gas to liquid hydrocarbons. Final report, June 1, 1995--January 31, 1997

    SciTech Connect (OSTI)

    1997-12-31

    The original concept envisioned for the use of Fischer-Tropsch processing (FTP) of United States associated natural gas in this study was to provide a way of utilizing gas which could not be brought to market because a pipeline was not available or for which there was no local use. Conversion of gas by FTP could provide a means of utilizing offshore associated gas which would not require installation of a pipeline or re-injection. The premium quality F-T hydrocarbons produced by conversion of the gas can be transported in the same way as the crude oil or in combination (blended) with it, eliminating the need for a separate gas transport system. FTP will produce a synthetic crude oil, thus increasing the effective size of the resource. The two conventional approaches currently used in US territory for handling of natural gas associated with crude petroleum production are re-injection and pipelining. Conversion of natural gas to a liquid product which can be transported to shore by tanker can be accomplished by FTP to produce hydrocarbons, or by conversion to chemical products such as methanol or ammonia, or by cryogenic liquefaction (LNG). This study considers FTP and briefly compares it to methanol and LNG. The Energy International Corporation cobalt catalyst, ratio adjusted, slurry bubble column F-T process was used as the basis for the study and the comparisons. An offshore F-T plant can best be accommodated by an FPSO (Floating Production, Storage, Offloading vessel) based on a converted surplus tanker, such as have been frequently used around the world recently. Other structure types used in deep water (platforms) are more expensive and cannot handle the required load.

  15. Multi-processor including data flow accelerator module

    DOE Patents [OSTI]

    Davidson, George S.; Pierce, Paul E.

    1990-01-01

    An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.

  16. Summary report : universal fuel processor.

    SciTech Connect (OSTI)

    Coker, Eric Nicholas; Rice, Steven F.; Kemp, Richard Alan; Stewart, Constantine A.; Miller, James Edward; Cornelius, Christopher James; Staiger, Chad Lynn; Pickett, Lyle M.

    2008-01-01

    The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

  17. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect (OSTI)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  18. Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32,208 1980's 33,443 32,870 31,268 31,286 30,282 29,515 28,684 27,457 26,609 26,611 1990's 26,242 25,088 24,701 23,551 23,913 24,532 24,715 24,666

  19. Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 27,217 1980's 28,567 28,676 30,814 30,408 30,356 31,092 30,893 30,732 6,269 6,198 1990's 6,927 6,729 6,723 6,494 6,487 6,265 6,080 7,716 7,275 7,209 2000's 6,768 6,592 6,376

  20. Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,513 1980's 2,429 2,080 1,881 1,784 1,756 1,537 1,405 1,296 1,226 1,148 1990's 1,056 1,123 1,206 1,159 1,063 960

  1. Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,645 1980's 2,569 2,630 2,908 3,014 2,932 3,004 3,076 2,898 3,072 3,128 1990's 3,068 2,770 2,742 2,562 2,751 2,834 2,981 3,144 2,820 3,175

  2. Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,485 1980's 1,396 1,486 1,420 1,301 1,272 1,314 1,275 1,271 1,267 1,534 1990's 1,526 1,521 1,585 1,451 1,572 1,318 1,276 1,206 1,097 1,513

  3. U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,773 6,487 6,315 6,120 6,738 7,471 7,437 7,913 7,495 7,093 2000's 7,010 8,649 8,090 7,417 6,361 5,904 4,835 4,780 5,106 5,223 2010's 5,204

  4. New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,672 1980's 1,533 1,499 1,374 1,323 1,375 1,309 1,232 1,232 1,194 1,200 1990's 1,251 1,398 1,470 1,478 1,544 1,559 1,585 1,314 1,345 1,486 2000's

  5. New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,823 1980's 1,689 1,649 1,520 1,503 1,569 1,490 1,446 1,445 1,453 1,378 1990's 1,435 1,554 1,597 1,585 1,641 1,678 1,693 1,420 1,443 1,578 2000's 1,588 1,447 1,482

  6. Deep Trek Re-configurable Processor for Data Acquisition (RPDA)

    SciTech Connect (OSTI)

    Bruce Ohme; Michael Johnson

    2009-06-30

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop a high-temperature Re-configurable Processor for Data Acquisition (RPDA). The RPDA development has incorporated multiple high-temperature (225C) electronic components within a compact co-fired ceramic Multi-Chip-Module (MCM) package. This assembly is suitable for use in down-hole oil and gas applications. The RPDA module is programmable to support a wide range of functionality. Specifically this project has demonstrated functional integrity of the RPDA package and internal components, as well as functional integrity of the RPDA configured to operate as a Multi-Channel Data Acquisition Controller. This report reviews the design considerations, electrical hardware design, MCM package design, considerations for manufacturing assembly, test and screening, and results from prototype assembly and characterization testing.

  7. Table 12. Associated-dissolved natural gas proved reserves, reserves changes, an

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014" "billion cubic feet" ,,"Changes in Reserves During 2014" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved"

  8. Testing and operating a multiprocessor chip with processor redundancy

    SciTech Connect (OSTI)

    Bellofatto, Ralph E; Douskey, Steven M; Haring, Rudolf A; McManus, Moyra K; Ohmacht, Martin; Schmunkamp, Dietmar; Sugavanam, Krishnan; Weatherford, Bryan J

    2014-10-21

    A system and method for improving the yield rate of a multiprocessor semiconductor chip that includes primary processor cores and one or more redundant processor cores. A first tester conducts a first test on one or more processor cores, and encodes results of the first test in an on-chip non-volatile memory. A second tester conducts a second test on the processor cores, and encodes results of the second test in an external non-volatile storage device. An override bit of a multiplexer is set if a processor core fails the second test. In response to the override bit, the multiplexer selects a physical-to-logical mapping of processor IDs according to one of: the encoded results in the memory device or the encoded results in the external storage device. On-chip logic configures the processor cores according to the selected physical-to-logical mapping.

  9. 36556,"AECTRA REFG & MKTG",1,152,"MOTOR GAS, OTHER FINISHED"...

    U.S. Energy Information Administration (EIA) Indexed Site

    INC",9,134,"MOTOR GAS BLENDING COMPONENTS",1004,"PERTH AMBOY, NJ","NEW JERSEY",1,830,"SPAIN",245,0,0,"UNKNOWN PROCESSOR-NJ","UNKNOWN PROCESSOR-NJ","NJ","NEW JERSEY",1 36556,"BP...

  10. 31808,"AECTRA REFG & MKTG",1,133,"MOTOR GAS, FINISHED UNLEADED...

    U.S. Energy Information Administration (EIA) Indexed Site

    MKTG INC",7,134,"MOTOR GAS BLENDING COMPONENTS",1002,"ALBANY, NY","NEW YORK",1,830,"SPAIN",344,0,0,"UNKNOWN PROCESSOR-NJ","UNKNOWN PROCESSOR-NJ","NJ","NEW JERSEY",1...

  11. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Discoveries (Billion Cubic Feet) Field Discoveries (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 193 1980's 365 335 161 220 156 143 88 110 67 208 1990's 141 69 13 245 530 248 222 1,360 107 394 2000's 387 1,287 229 447 34 119 40 46 107 263 2010's 102 611 151 63 327 - = No Data Reported; -- = Not Applicable; NA = Not

  12. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    U.S. Energy Information Administration (EIA) Indexed Site

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 264 1980's 369 271 365 326 296 341 189 155 339 174 1990's 250 334 292 163 202 634 338 187 218 424 2000's 249 477 331 124 97 79 65 73 820 169 2010's 186 160 229 581 584 -

  13. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6,586 845 908 1,062 987 2,071 1,960 1,350 938 678 2010's 2,469 1,884 2,150 2,843 4,589 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,925 1980's 1,053 -1,079 843 1,564 -486 695 425 177 437 415 1990's 57 257 567 -302 163 345 164 262 -706 143 2000's -605 499 499 202 -21 126 -54 276 455 877 2010's -482 390 385 -649 1,396 - = No Data Reported; -- = Not Applicable; NA =

  15. Integral Fast Reactor fuel pin processor

    SciTech Connect (OSTI)

    Levinskas, D.

    1993-03-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  16. Integral Fast Reactor fuel pin processor

    SciTech Connect (OSTI)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  17. Interconnection arrangement of routers of processor boards in array of

    Office of Scientific and Technical Information (OSTI)

    cabinets supporting secure physical partition (Patent) | SciTech Connect Patent: Interconnection arrangement of routers of processor boards in array of cabinets supporting secure physical partition Citation Details In-Document Search Title: Interconnection arrangement of routers of processor boards in array of cabinets supporting secure physical partition A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective

  18. Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control | Department of Energy Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Catalytica Energy Systems PDF icon 2004_deer_catalytica.pdf More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx

  19. Interconnection arrangement of routers of processor boards in...

    Office of Scientific and Technical Information (OSTI)

    job to be launched on processors that use different operating systems. Authors: Tomkins, James L. 1 ; Camp, William J. 1 + Show Author Affiliations (Albuquerque, NM)...

  20. Launching applications on compute and service processors running...

    Office of Scientific and Technical Information (OSTI)

    job to be launched on processors that use different operating systems. Authors: Tomkins, James L. 1 ; Camp, William J. 1 + Show Author Affiliations (Albuquerque, NM)...

  1. Launching applications on compute and service processors running...

    Office of Scientific and Technical Information (OSTI)

    Technical Information Service, Springfield, VA at www.ntis.gov. A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable...

  2. Ground movements associated with gas hydrate production. Progress report, April 1, 1992--June 30, 1992

    SciTech Connect (OSTI)

    Siriwardane, H.J.

    1992-12-31

    An obvious consequence of hydrate dissociation is the compression of reservoir matrix causing displacements in the surrounding area. The reservoir compression is a time-dependent process which depends on the production rate. The ground movements cause additional stresses in the overburden which may result in rock mass fracture and failure. Rock failure may cause rubble formation or bulking in the fracture zone. This in turn can cause an increase in permeability for gas flow which may offset the reduction in permeability caused by closure of existing fractures during reservoir compression. The mechanics of ground movements during hydrate production can be more closely simulated by considering similarities with ground movements associated with subsidence in permafrost regions. The purpose of this research work is to investigate the potential strata movements associated with hydrate production by considering similarities with ground movements in permafrost regions. The work primarily involves numerical modeling of subsidence caused by hydrate dissociation. The investigation is based on the theories of continuum mechanics, thermomechanical behavior of frozen geo-materials, principles of rock mechanics and geomechanics. It is expected that some phases of the investigation will involve the use of finite element method, which is a powerful computer-based method which has been widely used in many areas of science and engineering. Parametric studies will be performed to predict expected strata movements and surface subsidence for different reservoir conditions and properties of geological materials. The results from this investigation will be useful in predicting the magnitude of the subsidence problem associated with gas hydrate production. The analogy of subsidence in permafrost regions may provide lower bounds for subsidence expected in hydrate reservoirs. Furthermore, it is anticipated that the results will provide insight into planning of hydrate recovery operations.

  3. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    SciTech Connect (OSTI)

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim storage, packaging, transportation, waste forms, waste treatment, decontamination and decommissioning issues; and low-level waste (LLW) and high-level waste (HLW) disposal.

  4. Signal processor for processing ultrasonic receiver signals

    DOE Patents [OSTI]

    Fasching, George E. (Morgantown, WV)

    1980-01-01

    A signal processor is provided which uses an analog integrating circuit in conjunction with a set of digital counters controlled by a precision clock for sampling timing to provide an improved presentation of an ultrasonic transmitter/receiver signal. The signal is sampled relative to the transmitter trigger signal timing at precise times, the selected number of samples are integrated and the integrated samples are transferred and held for recording on a strip chart recorder or converted to digital form for storage. By integrating multiple samples taken at precisely the same time with respect to the trigger for the ultrasonic transmitter, random noise, which is contained in the ultrasonic receiver signal, is reduced relative to the desired useful signal.

  5. U.S. Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs,

    U.S. Energy Information Administration (EIA) Indexed Site

    Wet (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,289 5,631 5,477 5,639 2000's 5,195 6,628 6,573 5,903 5,416 6,271 6,045 6,890 6,680 7,615 2010's 9,099 13,260 19,550 22,218 27,240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,405 1980's 3,405 3,316 3,248 3,355 3,518 3,454 3,443 3,351 3,192 3,099 1990's 2,936 2,968 3,031 2,868 2,907 2,886 2,938 3,022 3,136 3,313 2000's 3,299 3,193 2,988 2,855 2,742

  7. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,139 1980's 1,861 1,537 1,351 977 1,182 1,099 758 542 498 760 1990's 615 737 760 867 850 857 991 1,116 727 586 2000's 2,683 1,194 852 817 907 1,032 810 1,098 1,488 2,669 2010's 2,660 5,957 10,030 9,630 9,962 - = No Data Reported; -- = Not

  8. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,209 1980's 2,941 2,561 4,516 3,815 2,999 3,163 2,903 2,755 27,612 3,130 1990's 2,571 3,479 1,844 2,723 3,002 2,328 2,013 3,241 3,937 8,705 2000's 4,546 3,232 2,637 2,790 3,170 2,034 2,782 1,804 7,385 2,698 2010's 3,964

  9. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,517 1980's 5,283 4,349 5,580 3,695 4,313 4,308 3,856 3,734 4,152 4,603 1990's 4,804 3,698 2,850 3,239 4,519 3,527 3,234 4,925 5,005 11,226 2000's 3,884 3,259 3,587 3,044 4,009 3,281 5,372 5,400 2,943 5,522 2010's 4,983

  10. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6,921 1,145 1,064 1,040 1,004 1,655 1,726 1,115 662 564 2010's 1,146 1,338 1,131 1,733 4,058 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  11. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59,425 1980's 62,010 61,546 62,082 61,694 60,638 60,607 59,577 58,189 32,878 32,809 1990's 33,169 31,817 31,424 30,045 30,400 30,797 30,795 32,382 30,660 31,415 2000's 29,833 29,824 29,541 28,552 27,649 28,236 29,640 32,668 29,023 33,383

  12. Soft-core processor study for node-based architectures.

    SciTech Connect (OSTI)

    Van Houten, Jonathan Roger; Jarosz, Jason P.; Welch, Benjamin James; Gallegos, Daniel E.; Learn, Mark Walter

    2008-09-01

    Node-based architecture (NBA) designs for future satellite projects hold the promise of decreasing system development time and costs, size, weight, and power and positioning the laboratory to address other emerging mission opportunities quickly. Reconfigurable Field Programmable Gate Array (FPGA) based modules will comprise the core of several of the NBA nodes. Microprocessing capabilities will be necessary with varying degrees of mission-specific performance requirements on these nodes. To enable the flexibility of these reconfigurable nodes, it is advantageous to incorporate the microprocessor into the FPGA itself, either as a hardcore processor built into the FPGA or as a soft-core processor built out of FPGA elements. This document describes the evaluation of three reconfigurable FPGA based processors for use in future NBA systems--two soft cores (MicroBlaze and non-fault-tolerant LEON) and one hard core (PowerPC 405). Two standard performance benchmark applications were developed for each processor. The first, Dhrystone, is a fixed-point operation metric. The second, Whetstone, is a floating-point operation metric. Several trials were run at varying code locations, loop counts, processor speeds, and cache configurations. FPGA resource utilization was recorded for each configuration. Cache configurations impacted the results greatly; for optimal processor efficiency it is necessary to enable caches on the processors. Processor caches carry a penalty; cache error mitigation is necessary when operating in a radiation environment.

  13. Parallel processor-based raster graphics system architecture

    DOE Patents [OSTI]

    Littlefield, Richard J. (Seattle, WA)

    1990-01-01

    An apparatus for generating raster graphics images from the graphics command stream includes a plurality of graphics processors connected in parallel, each adapted to receive any part of the graphics command stream for processing the command stream part into pixel data. The apparatus also includes a frame buffer for mapping the pixel data to pixel locations and an interconnection network for interconnecting the graphics processors to the frame buffer. Through the interconnection network, each graphics processor may access any part of the frame buffer concurrently with another graphics processor accessing any other part of the frame buffer. The plurality of graphics processors can thereby transmit concurrently pixel data to pixel locations in the frame buffer.

  14. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Tight Western Sands

    SciTech Connect (OSTI)

    Riedel, E.F.; Cowan, C.E.; McLaughlin, T.J.

    1980-02-01

    Results of a study to identify and evaluate potential public health and safety problems and the potential environmental impacts from recovery of natural gas from Tight Western Sands are reported. A brief discussion of economic and technical constraints to development of this resource is also presented to place the environmental and safety issues in perspective. A description of the resource base, recovery techniques, and possible environmental effects associated with tight gas sands is presented.

  15. Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical Business Development Best Practices in Indian Country

    Office of Environmental Management (EM)

    CONVENTIONAL ENERGY (OIL, GAS & COAL) FORUM & ASSOCIATED VERTICAL BUSINESS DEVELOPMENT BEST PRACTICES IN INDIAN COUNTRY March 1, 2012 MANDALAY BAY RESORT AND CASINO NORTH CONVENTION CENTER 3950 Las Vegas Blvd. South, Las Vegas, NV 89119 The dynamic world of conventional energy (focusing on oil, gas and coal energy) is a critical piece of the American energy portfolio. This strategic energy forum will focus on recent trends, existing successful partnerships, and perspectives on the future

  16. Launching applications on compute and service processors running under different operating systems in scalable network of processor boards with routers

    DOE Patents [OSTI]

    Tomkins, James L. (Albuquerque, NM); Camp, William J. (Albuquerque, NM)

    2009-03-17

    A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure also permits easy physical scalability of the computing apparatus. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.

  17. ,"New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  18. ,"North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  19. ,"Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  20. ,"Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  1. ,"Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  2. ,"Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  3. ,"Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  4. ,"Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  5. ,"Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  6. ,"Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  7. ,"Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  8. ,"California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  9. ,"Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  10. ,"Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  11. ,"Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  12. ,"Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  13. ,"Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  14. ,"Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  15. ,"Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  16. ,"Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  17. ,"Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  18. ,"Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  19. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

  20. Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ANL-IN-00-030) - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry (ANL-IN-00-030) Argonne National Laboratory Contact ANL About This Technology <p> Figure 1. Schematic of a functional fuel processor</p> Figure 1. Schematic of a functional fuel processor

  1. Little Sioux Corn Processors LP | Open Energy Information

    Open Energy Info (EERE)

    LP Place: Iowa Zip: 51035 Product: Owners and operators of the 40m gallon per year bioethanol plant in Marcus, Iowa. References: Little Sioux Corn Processors LP1 This article...

  2. Use of DynamicAggregationProcessor | OpenEI Community

    Open Energy Info (EERE)

    Use of DynamicAggregationProcessor Home > Groups > Databus Hi, I'm trying to understand how the dynamicAggregation works. Do you have an example of URL ? Thank you Alex Submitted...

  3. Field-enhanced electrodes for additive-injection non-thermal plasma (NTP) processor

    DOE Patents [OSTI]

    Rosocha, Louis A. (Los Alamos, NM); Ferreri, Vincent (Westminster, CO); Kim, Yongho (Los Alamos, NM)

    2009-04-21

    The present invention comprises a field enhanced electrode package for use in a non-thermal plasma processor. The field enhanced electrode package includes a high voltage electrode and a field-enhancing electrode with a dielectric material layer disposed in-between the high voltage electrode and the field-enhancing electrode. The field-enhancing electrode features at least one raised section that includes at least one injection hole that allows plasma discharge streamers to occur primarily within an injected additive gas.

  4. Track recognition in 4 [mu]s by a systolic trigger processor using a parallel Hough transform

    SciTech Connect (OSTI)

    Klefenz, F.; Noffz, K.H.; Conen, W.; Zoz, R.; Kugel, A. . Lehrstuhl fuer Informatik V); Maenner, R. . Lehrstuhl fuer Informatik V Univ. Heidelberg . Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen)

    1993-08-01

    A parallel Hough transform processor has been developed that identifies circular particle tracks in a 2D projection of the OPAL jet chamber. The high-speed requirements imposed by the 8 bunch crossing mode of LEP could be fulfilled by computing the starting angle and the radius of curvature for each well defined track in less than 4 [mu]s. The system consists of a Hough transform processor that determines well defined tracks, and a Euler processor that counts their number by applying the Euler relation to the thresholded result of the Hough transform. A prototype of a systolic processor has been built that handles one sector of the jet chamber. It consists of 35 [times] 32 processing elements that were loaded into 21 programmable gate arrays (XILINX). This processor runs at a clock rate of 40 MHz. It has been tested offline with about 1,000 original OPAL events. No deviations from the off-line simulation have been found. A trigger efficiency of 93% has been obtained. The prototype together with the associated drift time measurement unit has been installed at the OPAL detector at LEP and 100k events have been sampled to evaluate the system under detector conditions.

  5. Multithreaded processor architecture for parallel symbolic computation. Technical report

    SciTech Connect (OSTI)

    Fujita, T.

    1987-09-01

    This paper describes the Multilisp Architecture for Symbolic Applications (MASA), which is a multithreaded processor architecture for parallel symbolic computation with various features intended for effective Multilisp program execution. The principal mechanisms exploited for this processor are multiple contexts, interleaved pipeline execution from separate instruction streams, and synchronization based on a bit in each memory cell. The tagged architecture approach is taken for Lisp program execution, and trap conditions are provided for future object manipulation and garbage collection.

  6. Review of trigger and on-line processors at SLAC

    SciTech Connect (OSTI)

    Lankford, A.J.

    1984-07-01

    The role of trigger and on-line processors in reducing data rates to manageable proportions in e/sup +/e/sup -/ physics experiments is defined not by high physics or background rates, but by the large event sizes of the general-purpose detectors employed. The rate of e/sup +/e/sup -/ annihilation is low, and backgrounds are not high; yet the number of physics processes which can be studied is vast and varied. This paper begins by briefly describing the role of trigger processors in the e/sup +/e/sup -/ context. The usual flow of the trigger decision process is illustrated with selected examples of SLAC trigger processing. The features are mentioned of triggering at the SLC and the trigger processing plans of the two SLC detectors: The Mark II and the SLD. The most common on-line processors at SLAC, the BADC, the SLAC Scanner Processor, the SLAC FASTBUS Controller, and the VAX CAMAC Channel, are discussed. Uses of the 168/E, 3081/E, and FASTBUS VAX processors are mentioned. The manner in which these processors are interfaced and the function they serve on line is described. Finally, the accelerator control system for the SLC is outlined. This paper is a survey in nature, and hence, relies heavily upon references to previous publications for detailed description of work mentioned here. 27 references, 9 figures, 1 table.

  7. Fuel processor temperature monitoring and control

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2002-01-01

    In one embodiment, the method of the invention monitors one or more of the following conditions: a relatively low temperature value of the gas stream; a relatively high temperature value of the gas stream; and a rate-of-change of monitored temperature. In a preferred embodiment, the rate of temperature change is monitored to prevent the occurrence of an unacceptably high or low temperature condition. Here, at least two temperatures of the recirculating gas stream are monitored over a period of time. The rate-of-change of temperature versus time is determined. Then the monitored rate-of-change of temperature is compared to a preselected rate-of-change of value. The monitoring of rate-of-change of temperature provides proactive means for preventing occurrence of an unacceptably high temperature in the catalytic reactor.

  8. ,"U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  9. An evaluation of gas field rules in light of current conditions and production practices in the Panhandle non-associated gas fields

    SciTech Connect (OSTI)

    Brady, C.L.; O`Rear, C.H.

    1996-09-01

    During the early years of development in the Panhandle fields the Rule of Capture was king. Under the Rule of Capture each property owner has the right to drill as many wells as desired at any location. Adjacent property owners protect their rights by doing the same. Courts adopted the Rule of Capture to protect mineral owners from liability due to migration of oil and gas across property boundary lines. This general practice {open_quotes}to go and do likewise{close_quotes} generally leads to enormous economic and natural resource waste. Established to offset the waste created under the Rule of Capture is the doctrine of Correlative Rights. Correlative Rights is the fight of each mineral owner to obtain oil and gas from a common source of supply under lawful operations conducted from his property. However, each mineral owner has a duty to every other mineral owner not to extract oil and gas in a manner injurious to the common source of supply. This paper will examine the historical context of these common law principles with regard to the Panhandle non-associated gas fields. Discovered in 1917, the Panhandle fields are ideal to evaluate the merit of statutes and regulations enacted in response to production practices. As in many Texas fields, proration in the Panhandle fields is the primary mechanism to protect correlative rights and prevent waste. Signed and made effective May 1989, the current field rules pre-date much of the enhanced recovery techniques that use well-head vacuum compression. This paper reviews the gas rules in the 1989 Texas Railroad Commission order in light of current reservoir conditions and production practices.

  10. Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC)

    SciTech Connect (OSTI)

    Mark Perna; Anant Upadhyayula; Mark Scotto

    2012-11-05

    Durability testing was performed on an external fuel processor (EFP) for a solid oxide fuel cell (SOFC) power plant. The EFP enables the SOFC to reach high system efficiency (electrical efficiency up to 60%) using pipeline natural gas and eliminates the need for large quantities of bottled gases. LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) is developing natural gas-fired SOFC power plants for stationary power applications. These power plants will greatly benefit the public by reducing the cost of electricity while reducing the amount of gaseous emissions of carbon dioxide, sulfur oxides, and nitrogen oxides compared to conventional power plants. The EFP uses pipeline natural gas and air to provide all the gas streams required by the SOFC power plant; specifically those needed for start-up, normal operation, and shutdown. It includes a natural gas desulfurizer, a synthesis-gas generator and a start-gas generator. The research in this project demonstrated that the EFP could meet its performance and durability targets. The data generated helped assess the impact of long-term operation on system performance and system hardware. The research also showed the negative impact of ambient weather (both hot and cold conditions) on system operation and performance.

  11. Global synchronization of parallel processors using clock pulse width modulation

    DOE Patents [OSTI]

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  12. Nonlinear stimulated Brillouin scattering based photonic signal processors

    SciTech Connect (OSTI)

    Minasian, Robert A.

    2014-10-06

    Recent new methods in photonic signal processing based on stimulated Brillouin scattering, that enable the realization of photonic mixers with high conversion efficiency, ultra-wide continuously tunable high-resolution microwave photonic filters and programmable switchable microwave photonic tunable filters, are presented. These processors provide new capabilities for the realisation of high-performance and high-resolution signal processing.

  13. Development of 50 kW Fuel Processor for Stationary Fuel Cell Applications

    SciTech Connect (OSTI)

    James F. Stevens; Balaji Krishnamurthy; Paolina Atanassova; Kerry Spilker

    2007-08-29

    The objective of the project was to develop and test a fuel processor capable of producing high hydrogen concentration (>98%) with less than ppm quantities of carbon dioxide and carbon monoxide at lower capital cost and higher efficiency, compared to conventional natural gas reformers. It was intended that we achieve our objective by developing simple reactor/process design, and high durability CO2 absorbents, to replace pressure swing adsorption (PSA) or membrane separators. Cost analysis indicated that we would not meet DOE cost goals so the project was terminated before construction of the full scale fuel processor. The work on adsorbent development was focused on the development of calcium oxide-based reversible CO2 absorbents with various microstructures and morphologies to determine the optimum microstructure for long-term reversible CO2 absorption. The effect of powder production process variables was systematically studied including: the final target compositions, the reagents from which the final products were derived, the pore forming additives, the processing time and temperature. The sorbent materials were characterized in terms of their performance in the reversible reaction with CO2 and correlation made to their microstructure.

  14. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic

  15. Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single...

  16. JV 38-APPLICATION OF COFIRING AND COGENERATION FOR SOUTH DAKOTA SOYBEAN PROCESSORS

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-11-01

    Cogeneration of heat and electricity is being considered by the South Dakota Soybean Processors for its facility in Volga, South Dakota, and a new facility to be located in Brewster, Minnesota. The Energy & Environmental Research Center has completed a feasibility study, with 40% funding provided from the U.S. Department of Energy's Jointly Sponsored Research Program to determine the potential application of firing biomass fuels combined with coal and comparative economics of natural gas-fired turbines. Various biomass fuels are available at each location. The most promising options based on availability are as follows. The economic impact of firing 25% biomass with coal can increase return on investment by 0.5 to 1.5 years when compared to firing natural gas. The results of the comparative economics suggest that a fluidized-bed cogeneration system will have the best economic performance. Installation for the Brewster site is recommended based on natural gas prices not dropping below a $4.00/MMBtu annual average delivered cost. Installation at the Volga site is only recommended if natural gas prices substantially increase to $5.00/MMBtu on average. A 1- to 2-year time frame will be needed for permitting and equipment procurement.

  17. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Devonian shale

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    The purpose of this study is to identify and examine potential public health and safety issues and the potential environmental impacts from recovery of natural gas from Devonian age shale. This document will serve as background data and information for planners within the government to assist in development of our new energy technologies in a timely and environmentally sound manner. This report describes the resource and the DOE eastern gas shales project in Section 2. Section 3 describes the new and developing recovery technologies associated with Devonian shale. An assessment of the environment, health and safety impacts associated with a typical fields is presented in Section 4. The typical field for this assessment occupies ten square miles and is developed on a 40-acre spacing (that is, there is a well in each 40-acre grid). This field thus has a total of 160 wells. Finally, Section 5 presents the conclusions and recommendations. A reference list is provided to give a greater plant. Based on the estimated plant cost and the various cases of operating income, an economic analysis was performed employing a profitability index criterion of discounted cash flow to determine an interest rate of return on the plant investment.

  18. Application of the FETI Method to ASCI Problems: Scalability Results on One Thousand Processors and Discussion of Highly Heterogeneous Problems

    SciTech Connect (OSTI)

    Bhardwaj, M.; Day, D.; Farhat, C.; Lesoinne, M; Pierson, K.; Rixen, D.

    1999-04-01

    We report on the application of the one-level FETI method to the solution of a class of substructural problems associated with the Department of Energy's Accelerated Strategic Computing Initiative (ASCI). We focus on numerical and parallel scalability issues, and on preliminary performance results obtained on the ASCI Option Red supercomputer configured with as many as one thousand processors, for problems with as many as 5 million degrees of freedom.

  19. Sequence information signal processor for local and global string comparisons

    DOE Patents [OSTI]

    Peterson, John C. (Alta Loma, CA); Chow, Edward T. (San Dimas, CA); Waterman, Michael S. (Culver City, CA); Hunkapillar, Timothy J. (Pasadena, CA)

    1997-01-01

    A sequence information signal processing integrated circuit chip designed to perform high speed calculation of a dynamic programming algorithm based upon the algorithm defined by Waterman and Smith. The signal processing chip of the present invention is designed to be a building block of a linear systolic array, the performance of which can be increased by connecting additional sequence information signal processing chips to the array. The chip provides a high speed, low cost linear array processor that can locate highly similar global sequences or segments thereof such as contiguous subsequences from two different DNA or protein sequences. The chip is implemented in a preferred embodiment using CMOS VLSI technology to provide the equivalent of about 400,000 transistors or 100,000 gates. Each chip provides 16 processing elements, and is designed to provide 16 bit, two's compliment operation for maximum score precision of between -32,768 and +32,767. It is designed to provide a comparison between sequences as long as 4,194,304 elements without external software and between sequences of unlimited numbers of elements with the aid of external software. Each sequence can be assigned different deletion and insertion weight functions. Each processor is provided with a similarity measure device which is independently variable. Thus, each processor can contribute to maximum value score calculation using a different similarity measure.

  20. Ultrafast Power Processor for Smart Grid Power Module Development

    SciTech Connect (OSTI)

    MAITRA, ARINDAM; LITWIN, RAY; lai, Jason; Syracuse, David

    2012-12-30

    This project’s goal was to increase the switching speed and decrease the losses of the power semiconductor devices and power switch modules necessary to enable Smart Grid energy flow and control equipment such as the Ultra-Fast Power Processor. The primary focus of this project involves exploiting the new silicon-based Super-GTO (SGTO) technology and build on prototype modules already being developed. The prototype super gate-turn-off thyristor (SGTO) has been tested fully under continuously conducting and double-pulse hard-switching conditions for conduction and switching characteristics evaluation. The conduction voltage drop measurement results indicate that SGTO has excellent conduction characteristics despite inconsistency among some prototype devices. Tests were conducted with two conditions: (1) fixed gate voltage and varying anode current condition, and (2) fixed anode current and varying gate voltage condition. The conduction voltage drop is relatively a constant under different gate voltage condition. In terms of voltage drop as a function of the load current, there is a fixed voltage drop about 0.5V under zero current condition, and then the voltage drop is linearly increased with the current. For a 5-kV voltage blocking device that may operate under 2.5-kV condition, the projected voltage drop is less than 2.5 V under 50-A condition, or 0.1%. If the device is adopted in a converter operating under soft-switching condition, then the converter can achieve an ultrahigh efficiency, typically above 99%. The two-pulse switching test results indicate that SGTO switching speed is very fast. The switching loss is relatively low as compared to that of the insulated-gate-bipolar-transistors (IGBTs). A special phenomenon needs to be noted is such a fast switching speed for the high-voltage switching tends to create an unexpected Cdv/dt current, which reduces the turn-on loss because the dv/dt is negative and increases the turn-off loss because the dv/dt is positive. As a result, the turn-on loss at low current is quite low, and the turn-off loss at low current is relatively high. The phenomenon was verified with junction capacitance measurement along with the dv/dt calculation. Under 2-kV test condition, the turn-on and turn-off losses at 25-A is about 3 and 9 mJ, respectively. As compared to a 4.5-kV, 60-A rated IGBT, which has turn-on and turn-off losses about 25 and 20 mJ under similar test condition, the SGTO shows significant switching loss reduction. The switching loss depends on the switching frequency, but under hard-switching condition, the SGTO is favored to the IGBT device. The only concern is during low current turn-on condition, there is a voltage bump that can translate to significant power loss and associated heat. The reason for such a current bump is not known from this study. It is necessary that the device manufacturer perform though test and provide the answer so the user can properly apply SGTO in pulse-width-modulated (PWM) converter and inverter applications.

  1. A2 Processor User's Manual for Blue Gene/Q

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A2 Processor User's Manual for Blue Gene/Q Note: This document and the information it contains are provided on an as-is basis. There is no plan for providing for future updates and corrections to this document. October 23, 2012 Version 1.3 Title Page ® Copyright and Disclaimer © Copyright International Business Machines Corporation 2010, 2012 Printed in the United States of America October 2012 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business

  2. ,"New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  3. ,"New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  4. ,"U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  5. ,"California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  6. ,"California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  7. ,"California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  8. ,"California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  9. ,"Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  10. ,"Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  11. ,"Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  12. Reactant gas composition for fuel cell potential control

    DOE Patents [OSTI]

    Bushnell, Calvin L. (Glastonbury, CT); Davis, Christopher L. (Tolland, CT)

    1991-01-01

    A fuel cell (10) system in which a nitrogen (N.sub.2) gas is used on the anode section (11) and a nitrogen/oxygen (N.sub.2 /O.sub.2) gaseous mix is used on the cathode section (12) to maintain the cathode at an acceptable voltage potential during adverse conditions occurring particularly during off-power conditions, for example, during power plant shutdown, start-up and hot holds. During power plant shutdown, the cathode section is purged with a gaseous mixture of, for example, one-half percent (0.5%) oxygen (O.sub.2) and ninety-nine and a half percent (99.5%) nitrogen (N.sub.2) supplied from an ejector (21) bleeding in air (24/28) into a high pressure stream (27) of nitrogen (N.sub.2) as the primary or majority gas. Thereafter the fuel gas in the fuel processor (31) and the anode section (11) is purged with nitrogen gas to prevent nickel (Ni) carbonyl from forming from the shift catalyst. A switched dummy electrical load (30) is used to bring the cathode potential down rapidly during the start of the purges. The 0.5%/99.5% O.sub.2 /N.sub.2 mixture maintains the cathode potential between 0.3 and 0.7 volts, and this is sufficient to maintain the cathode potential at 0.3 volts for the case of H.sub.2 diffusing to the cathode through a 2 mil thick electrolyte filled matrix and below 0.8 volts for no diffusion at open circuit conditions. The same high pressure gas source (20) is used via a "T" juncture ("T") to purge the anode section and its associated fuel processor (31).

  13. Unmixed fuel processors and methods for using the same

    DOE Patents [OSTI]

    Kulkarni, Parag Prakash (Tustin, CA); Cui, Zhe (Irvine, CA)

    2010-08-24

    Disclosed herein are unmixed fuel processors and methods for using the same. In one embodiment, an unmixed fuel processor comprises: an oxidation reactor comprising an oxidation portion and a gasifier, a CO.sub.2 acceptor reactor, and a regeneration reactor. The oxidation portion comprises an air inlet, effluent outlet, and an oxygen transfer material. The gasifier comprises a solid hydrocarbon fuel inlet, a solids outlet, and a syngas outlet. The CO.sub.2 acceptor reactor comprises a water inlet, a hydrogen outlet, and a CO.sub.2 sorbent, and is configured to receive syngas from the gasifier. The regeneration reactor comprises a water inlet and a CO.sub.2 stream outlet. The regeneration reactor is configured to receive spent CO.sub.2 adsorption material from the gasification reactor and to return regenerated CO.sub.2 adsorption material to the gasification reactor, and configured to receive oxidized oxygen transfer material from the oxidation reactor and to return reduced oxygen transfer material to the oxidation reactor.

  14. Image matrix processor for fast multi-dimensional computations

    DOE Patents [OSTI]

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  15. Optical apparatus for forming correlation spectrometers and optical processors

    DOE Patents [OSTI]

    Butler, Michael A. (Albuquerque, NM); Ricco, Antonio J. (Albuquerque, NM); Sinclair, Michael B. (Albuquerque, NM); Senturia, Stephen D. (Brookline, MA)

    1999-01-01

    Optical apparatus for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process.

  16. Image matrix processor for fast multi-dimensional computations

    DOE Patents [OSTI]

    Roberson, George P. (Tracy, CA); Skeate, Michael F. (Livermore, CA)

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  17. Optical apparatus for forming correlation spectrometers and optical processors

    DOE Patents [OSTI]

    Butler, M.A.; Ricco, A.J.; Sinclair, M.B.; Senturia, S.D.

    1999-05-18

    Optical apparatus is disclosed for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process. 24 figs.

  18. Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single Leg NOx Adsorber Systems | Department of Energy Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems 2003 DEER Conference Presentation: Catalytica Energy Systems Inc. PDF icon 2003_deer_betta.pdf More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx

  19. T-631: Cisco XR 12000 Series Shared Port Adapters Interface Processor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3.9.1, 3.9.2, 4.0.0, 4.0.1, 4.0.2, or 4.1.0 and has a SPA interface processor installed. ... an IPv4 address configured on any of the SPA interface processor interfaces. reference ...

  20. Massively parallel processor networks with optical express channels

    DOE Patents [OSTI]

    Deri, R.J.; Brooks, E.D. III; Haigh, R.E.; DeGroot, A.J.

    1999-08-24

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination. 3 figs.

  1. TIS (Technology Information System): The Intelligent Gateway Processor (IGP)

    SciTech Connect (OSTI)

    Hampel, V.E.; Barker, R.; Berch, M.; Kawin, R.; Lann, N.; McGrogan, S.; Sharpe, N.; Winiger, G.

    1984-10-01

    The Technology Information System (TIS) is an Intelligent Gateway Processor (IGP) capable of interconnecting heterogeneous information resources at geographically distributed locations in an automated, unified, and controlled manner. It augments the capabilities of personal computers and workstations of scientists and engineers by providing a shared directory to worldwide bibliographic and numeric resources and a library of self-guided procedures by which test, data, and graphs can be downloaded, reformatted, aggregated, analyzed, and shared among users and different host machines. The TIS link capability is used routinely for transcontinental tutorials and as a proactical means for the audiovisual linking of TIS users with experts at their respective locations. The IGP universal user interface permits changes and additions of available resources while running non-stop. The TIS/IGP at th Lawrence Livermore National Laboratory (LLNL) serves as the host system for several different communities of users who develop integrated information systems for personal and shared programmatic resources. The TIS local area network utilizes a 10 Mbps Ethernet which serves as a testbed for high-technology hardware and software.

  2. Massively parallel processor networks with optical express channels

    DOE Patents [OSTI]

    Deri, Robert J. (Pleasanton, CA); Brooks, III, Eugene D. (Livermore, CA); Haigh, Ronald E. (Tracy, CA); DeGroot, Anthony J. (Castro Valley, CA)

    1999-01-01

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination.

  3. Reliable appropriate topology design for multiple-processor systems

    SciTech Connect (OSTI)

    Chou, C.P.

    1987-01-01

    A Shift and Replace Graph which is a very appropriate candidate for the topology of a multiple-processor system is a function of two positive integers r and m, and is denoted as SRF(r,m). Pradhan and Reddy proved that the node connectivity of SRG(r,m) is at least r and also give a routing algorithm which generally requires 2m jumps if the number of node failures is no larger than r - 1. Later, Esfahanian and Hakimi proved that SRG(r,m) has maximum node connectivity 2r - 2 and give routing algorithms which require: (1) at most m + 3 + log/sub r/m jumps if 3 + log/sub r/m does not exceed m and the number of node failures is at most r - 1; (2) at most m + 5 + log/sub r/m jumps if 4 + log/sub r/m less than or equal to m and the number of node failures if less than or equal to 2r - 3; (3) all the other situations require no more than 2m jumps. By modifying the SRG(r,m), it is first proved that node connectivity of SRG(r,m) can be increased to: (1) 2r - 1 when r = 2, m = 2, and (2) 2r when (r = 2, m > 2) or (r > 2, m greater than or equal to 2, m greater than or equal to 2). The routing algorithms are also given for the modified SRG (r,m), which require at most 2m + 3 jumps when the number of node failures is less than or equal to 2r - 1.

  4. The Red Storm Architecture and Early Experiences With Multi-Core Processors

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect With Multi-Core Processors Citation Details In-Document Search Title: The Red Storm Architecture and Early Experiences With Multi-Core Processors Authors: Tomkins, James L [1] ; Brightwell, Ron [1] ; Camp, William J [1] ; Dosanjh, Sudip [1] ; Kelly, Suzanne M [1] ; Lin, Paul T. [1] ; Vaughan, Courtenay T. [1] ; Levesque, John [2] ; Tipparaju, Vinod [3] + Show Author Affiliations Sandia National Laboratories (SNL) Cray, Inc. ORNL Publication Date:

  5. The Red Storm Architecture and Early Experiences with Multi-core Processors

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect with Multi-core Processors Citation Details In-Document Search Title: The Red Storm Architecture and Early Experiences with Multi-core Processors The Red Storm architecture, which was conceived by Sandia National Laboratories and implemented by Cray, Inc., has become the basis for most successful line of commercial supercomputers in history. The success of the Red Storm architecture is due largely to the ability to effectively and efficiently solve a wide

  6. Comprehensive Lifecycle Planning and Management System For Addressing Water Issues Associated With Shale Gas Development In New York, Pennsylvania, And West Virginia

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2012-03-31

    The objective of this project is to develop a modeling system to allow operators and regulators to plan all aspects of water management activities associated with shale gas development in the target project area of New York, Pennsylvania, and West Virginia (??target area?), including water supply, transport, storage, use, recycling, and disposal and which can be used for planning, managing, forecasting, permit tracking, and compliance monitoring. The proposed project is a breakthrough approach to represent the entire shale gas water lifecycle in one comprehensive system with the capability to analyze impacts and options for operational efficiency and regulatory tracking and compliance, and to plan for future water use and disposition. It will address all of the major water-related issues of concern associated with shale gas development in the target area, including water withdrawal, transport, storage, use, treatment, recycling, and disposal. It will analyze the costs, water use, and wastes associated with the available options, and incorporate constraints presented by permit requirements, agreements, local and state regulations, equipment and material availability, etc. By using the system to examine the water lifecycle from withdrawals through disposal, users will be able to perform scenario analysis to answer "what if" questions for various situations. The system will include regulatory requirements of the appropriate state and regional agencies and facilitate reporting and permit applications and tracking. These features will allow operators to plan for more cost effective resource production. Regulators will be able to analyze impacts of development over an entire area. Regulators can then make informed decisions about the protections and practices that should be required as development proceeds. This modeling system will have myriad benefits for industry, government, and the public. For industry, it will allow planning all water management operations for a project or an area as one entity to optimize water use and minimize costs subject to regulatory and other constraints. It will facilitate analysis of options and tradeoffs, and will also simplify permitting and reporting to regulatory agencies. The system will help regulators study cumulative impacts of development, conserve water resources, and manage disposal options across a region. It will also allow them to track permits and monitor compliance. The public will benefit from water conservation, improved environmental performance as better system wide decisions are made, and greater supply of natural gas, with attendant lower prices, as costs are reduced and development is assisted through better planning and scheduling. Altogether, better economics and fewer barriers will facilitate recovery of the more than 300 trillion cubic feet of estimated recoverable natural gas resource in the Marcellus Shale in a manner that protects the environment.

  7. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  8. Evaluation of soft-core processors on a Xilinx Virtex-5 field programmable gate array.

    SciTech Connect (OSTI)

    Learn, Mark Walter

    2011-04-01

    Node-based architecture (NBA) designs for future satellite projects hold the promise of decreasing system development time and costs, size, weight, and power and positioning the laboratory to address other emerging mission opportunities quickly. Reconfigurable field programmable gate array (FPGA)-based modules will comprise the core of several of the NBA nodes. Microprocessing capabilities will be necessary with varying degrees of mission-specific performance requirements on these nodes. To enable the flexibility of these reconfigurable nodes, it is advantageous to incorporate the microprocessor into the FPGA itself, either as a hard-core processor built into the FPGA or as a soft-core processor built out of FPGA elements. This document describes the evaluation of three reconfigurable FPGA-based soft-core processors for use in future NBA systems: the MicroBlaze (uB), the open-source Leon3, and the licensed Leon3. Two standard performance benchmark applications were developed for each processor. The first, Dhrystone, is a fixed-point operation metric. The second, Whetstone, is a floating-point operation metric. Several trials were run at varying code locations, loop counts, processor speeds, and cache configurations. FPGA resource utilization was recorded for each configuration.

  9. Interconnection arrangement of routers of processor boards in array of cabinets supporting secure physical partition

    DOE Patents [OSTI]

    Tomkins, James L. (Albuquerque, NM); Camp, William J. (Albuquerque, NM)

    2007-07-17

    A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure includes routers in service or compute processor boards distributed in an array of cabinets connected in series on each board and to respective routers in neighboring row cabinet boards with the routers in series connection coupled to routers in series connection in respective neighboring column cabinet boards. The array can include disconnect cabinets or respective routers in all boards in each cabinet connected in a toroid. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.

  10. Method for simultaneous overlapped communications between neighboring processors in a multiple

    DOE Patents [OSTI]

    Benner, Robert E. (Albuquerque, NM); Gustafson, John L. (Albuquerque, NM); Montry, Gary R. (Albuquerque, NM)

    1991-01-01

    A parallel computing system and method having improved performance where a program is concurrently run on a plurality of nodes for reducing total processing time, each node having a processor, a memory, and a predetermined number of communication channels connected to the node and independently connected directly to other nodes. The present invention improves performance of performance of the parallel computing system by providing a system which can provide efficient communication between the processors and between the system and input and output devices. A method is also disclosed which can locate defective nodes with the computing system.

  11. T-631: Cisco XR 12000 Series Shared Port Adapters Interface Processor

    Energy Savers [EERE]

    Vulnerability | Department of Energy 31: Cisco XR 12000 Series Shared Port Adapters Interface Processor Vulnerability T-631: Cisco XR 12000 Series Shared Port Adapters Interface Processor Vulnerability May 26, 2011 - 3:35pm Addthis PROBLEM: A vulnerability was reported in Cisco IOS XR 12000. A remote user can cause denial of service conditions. PLATFORM: This vulnerability affects any device that is running Cisco IOS XR Software Releases 3.9.0, 3.9.1, 3.9.2, 4.0.0, 4.0.1, 4.0.2, or 4.1.0 and

  12. Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors

    SciTech Connect (OSTI)

    Shepard, Kenneth L

    2013-03-31

    In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile devices. These new approaches to scaled voltage regulation for computing devices also promise significant impact on electricity consumption in the United States and abroad by improving the efficiency of all computational platforms. In 2006, servers and datacenters in the United States consumed an estimated 61 billion kWh or about 1.5% of the nation's total energy consumption. Federal Government servers and data centers alone accounted for about 10 billion kWh, for a total annual energy cost of about $450 million. Based upon market growth and efficiency trends, estimates place current server and datacenter power consumption at nearly 85 billion kWh in the US and at almost 280 billion kWh worldwide. Similar estimates place national desktop, mobile and portable computing at 80 billion kWh combined. While national electricity utilization for computation amounts to only 4% of current usage, it is growing at a rate of about 10% a year with volume servers representing one of the largest growth segments due to the increasing utilization of cloud-based services. The percentage of power that is consumed by the processor in a server varies but can be as much as 30% of the total power utilization, with an additional 50% associated with heat removal. The approaches considered here should allow energy efficiency gains as high as 30% in processors for all computing platforms, from high-end servers to smart phones, resulting in a direct annual energy savings of almost 15 billion kWh nationally, and 50 billion kWh globally. The work developed here is being commercialized by the start-up venture, Ferric Semiconductor, which has already secured two Phase I SBIR grants to bring these technologies to the marketplace.

  13. QCD For Intel(R) Xeon Phi(tm) and Xeon(tm) processors

    Energy Science and Technology Software Center (OSTI)

    2014-09-11

    This library provides a library containing highly optimized Wilson-Dslash, Wilson Clover operator and Krylov subspace solvers for Lattice QCD simulations. The library is targeted at Intel(R) Xeon Phi(tm), and Intel(R) Xeon(tm) processors.

  14. Autothermal and partial oxidation reformer-based fuel processor, method for improving catalyst function in autothermal and partial oxidation reformer-based processors

    DOE Patents [OSTI]

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H. D.; Ahluwalia, Rajesh K.

    2013-01-08

    The invention provides a fuel processor comprising a linear flow structure having an upstream portion and a downstream portion; a first catalyst supported at the upstream portion; and a second catalyst supported at the downstream portion, wherein the first catalyst is in fluid communication with the second catalyst. Also provided is a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  15. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    from natural gas or refinery gas streams. It includes all products designated in ASTM Specification D1835 and Gas Processors Association Specifications for commercial...

  16. ARM: Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Nitin Bharadwaj

    1990-01-01

    Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

  17. Shale Gas Development Challenges: Air | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Shale Gas Development Challenges: Air PDF icon Shale Gas Development Challenges: Air More Documents & Publications Natural Gas from Shale: Questions and Answers Challenges associated with shale gas production How is shale gas produced?

  18. Shale Gas Development Challenges: Earthquakes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Earthquakes Shale Gas Development Challenges: Earthquakes PDF icon Shale Gas Development Challenges: Induced Seismic Events More Documents & Publications Natural Gas from Shale: Questions and Answers Challenges associated with shale gas production Shale Gas Development Challenges: Fracture Fluids

  19. Shale Gas Development Challenges: Surface Impacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Surface Impacts Shale Gas Development Challenges: Surface Impacts PDF icon Shale Gas Development Challenges: Surface Impacts More Documents & Publications Natural Gas from Shale: Questions and Answers Challenges associated with shale gas production Shale Gas Development Challenges: Fracture Fluids

  20. Method and apparatus for granting processors access to a resource

    DOE Patents [OSTI]

    Blumrich, Matthias A.; Salapura, Valentina

    2010-03-16

    An apparatus and method for granting one or more requesting entities access to a resource in a predetermined time interval. The apparatus includes a first circuit receiving one or more request signals, and implementing logic for assigning a priority to the one or more request signals, and, generating a set of first_request signals based on the priorities assigned. One or more priority select circuits for receiving the set of first_request signals and generating corresponding one or more fixed grant signals representing one or more highest priority request signals when asserted during the predetermined time interval. A second circuit device receives the one or more fixed grant signals generates one or more grant signals associated with one or more highest priority request signals assigned, the grant signals for enabling one or more respective requesting entities access to the resource in the predetermined time interval, wherein the priority assigned to the one or more request signals changes each successive predetermined time interval. In one embodiment, the assigned priority is based on a numerical pattern, the first circuit changing the numerical pattern with respect to the first_request signals generated at each successive predetermined time interval.

  1. Processor and method for developing a set of admissible fixture designs for a workpiece

    DOE Patents [OSTI]

    Brost, Randolph C. (4204 Landau NE, Albuquerque, NM 87111); Goldberg, Kenneth Y. (1006 W. Edgeware Rd., Los Angeles, CA 90026); Wallack, Aaron S. (244 Wilson Way, Albany, CA 94710); Canny, John (Computer Science Division, 529 Soda Hall, Berkeley, CA 94720-1776)

    1996-01-01

    A fixture process and method is provided for developing a complete set of all admissible fixture designs for a workpiece which prevents the workpiece from translating or rotating. The fixture processor generates the set of all admissible designs based on geometric access constraints and expected applied forces on the workpiece. For instance, the fixture processor may generate a set of admissible fixture designs for first, second and third locators placed in an array of holes on a fixture plate and a translating clamp attached to the fixture plate for contacting the workpiece. In another instance, a fixture vice is used in which first, second, third and fourth locators are used and first and second fixture jaws are tightened to secure the workpiece. The fixture process also ranks the set of admissible fixture designs according to a predetermined quality metric so that the optimal fixture design for the desired purpose may be identified from the set of all admissible fixture designs.

  2. Processor and method for developing a set of admissible fixture designs for a workpiece

    DOE Patents [OSTI]

    Brost, Randolph C. (4204 Landau NE., Albuquerque, NM 87111); Goldberg, Kenneth Y. (1006 W. Edgeware Rd., Los Angeles, CA 90026); Canny, John (Computer Science Division, 529 Soda Hall, UC Berkeley, CA 94720-1776); Wallack, Aaron S. (244 Wilson Way, Albany, CA 94710)

    1999-01-01

    Methods and apparatus are provided for developing a complete set of all admissible Type I and Type II fixture designs for a workpiece. The fixture processor generates the set of all admissible designs based on geometric access constraints and expected applied forces on the workpiece. For instance, the fixture processor may generate a set of admissible fixture designs for first, second and third locators placed in an array of holes on a fixture plate and a translating clamp attached to the fixture plate for contacting the workpiece. In another instance, a fixture vise is used in which first, second, third and fourth locators are used and first and second fixture jaws are tightened to secure the workpiece. The fixture process also ranks the set of admissible fixture designs according to a predetermined quality metric so that the optimal fixture design for the desired purpose may be identified from the set of all admissible fixture designs.

  3. An evaluation of MPI message rate on hybrid-core processors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barrett, Brian W.; Brightwell, Ron; Grant, Ryan; Hammond, Simon D.; Hemmert, K. Scott

    2014-11-01

    Power and energy concerns are motivating chip manufacturers to consider future hybrid-core processor designs that may combine a small number of traditional cores optimized for single-thread performance with a large number of simpler cores optimized for throughput performance. This trend is likely to impact the way in which compute resources for network protocol processing functions are allocated and managed. In particular, the performance of MPI match processing is critical to achieving high message throughput. In this paper, we analyze the ability of simple and more complex cores to perform MPI matching operations for various scenarios in order to gain insightmore » into how MPI implementations for future hybrid-core processors should be designed.« less

  4. An evaluation of MPI message rate on hybrid-core processors

    SciTech Connect (OSTI)

    Barrett, Brian W.; Brightwell, Ron; Grant, Ryan; Hammond, Simon D.; Hemmert, K. Scott

    2014-11-01

    Power and energy concerns are motivating chip manufacturers to consider future hybrid-core processor designs that may combine a small number of traditional cores optimized for single-thread performance with a large number of simpler cores optimized for throughput performance. This trend is likely to impact the way in which compute resources for network protocol processing functions are allocated and managed. In particular, the performance of MPI match processing is critical to achieving high message throughput. In this paper, we analyze the ability of simple and more complex cores to perform MPI matching operations for various scenarios in order to gain insight into how MPI implementations for future hybrid-core processors should be designed.

  5. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOE Patents [OSTI]

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  6. Processor and method for developing a set of admissible fixture designs for a workpiece

    DOE Patents [OSTI]

    Brost, R.C.; Goldberg, K.Y.; Canny, J.; Wallack, A.S.

    1999-01-05

    Methods and apparatus are provided for developing a complete set of all admissible Type 1 and Type 2 fixture designs for a workpiece. The fixture processor generates the set of all admissible designs based on geometric access constraints and expected applied forces on the workpiece. For instance, the fixture processor may generate a set of admissible fixture designs for first, second and third locators placed in an array of holes on a fixture plate and a translating clamp attached to the fixture plate for contacting the workpiece. In another instance, a fixture vise is used in which first, second, third and fourth locators are used and first and second fixture jaws are tightened to secure the workpiece. The fixture process also ranks the set of admissible fixture designs according to a predetermined quality metric so that the optimal fixture design for the desired purpose may be identified from the set of all admissible fixture designs. 44 figs.

  7. Processor and method for developing a set of admissible fixture designs for a workpiece

    DOE Patents [OSTI]

    Brost, R.C.; Goldberg, K.Y.; Wallack, A.S.; Canny, J.

    1996-08-13

    A fixture process and method is provided for developing a complete set of all admissible fixture designs for a workpiece which prevents the workpiece from translating or rotating. The fixture processor generates the set of all admissible designs based on geometric access constraints and expected applied forces on the workpiece. For instance, the fixture processor may generate a set of admissible fixture designs for first, second and third locators placed in an array of holes on a fixture plate and a translating clamp attached to the fixture plate for contacting the workpiece. In another instance, a fixture vice is used in which first, second, third and fourth locators are used and first and second fixture jaws are tightened to secure the workpiece. The fixture process also ranks the set of admissible fixture designs according to a predetermined quality metric so that the optimal fixture design for the desired purpose may be identified from the set of all admissible fixture designs. 27 figs.

  8. PPPL team wins 80 million processor hours on nation's fastest supercomputer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab team wins 80 million processor hours on nation's fastest supercomputer By John Greenwald January 26, 2016 Tweet Widget Google Plus One Share on Facebook Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) The U.S Department of Energy (DOE)

  9. PPPL team wins 80 million processor hours on nation's fastest supercomputer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab team wins 80 million processor hours on nation's fastest supercomputer By John Greenwald January 26, 2016 Tweet Widget Google Plus One Share on Facebook Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) The U.S Department of Energy (DOE)

  10. Forthcoming Upgrades to the ARM MMCRs: Improved Radar Processor and Dual-Polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forthcoming Upgrades to the ARM MMCRs: Improved Radar Processor and Dual-Polarization K. P. Moran, B. E. Martner, and K. A. Clark National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado C. Chanders Science and Technology Corporation Background The Atmospheric Radiation Measurement (ARM) Millimeter Wavelength Cloud Radars (MMCRs) are vertically pointing ground-based Doppler systems, designed for long-term, unattended operations. In spite of very low

  11. Shale gas - what happened? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gas - what happened? Shale gas - what happened? PDF icon It seems like shale gas came out of nowhere - what happened? More Documents & Publications Natural Gas from Shale: Questions and Answers Natural Gas from Shale Challenges associated with shale gas production

  12. Allocating application to group of consecutive processors in fault-tolerant deadlock-free routing path defined by routers obeying same rules for path selection

    DOE Patents [OSTI]

    Leung, Vitus J. (Albuquerque, NM); Phillips, Cynthia A. (Albuquerque, NM); Bender, Michael A. (East Northport, NY); Bunde, David P. (Urbana, IL)

    2009-07-21

    In a multiple processor computing apparatus, directional routing restrictions and a logical channel construct permit fault tolerant, deadlock-free routing. Processor allocation can be performed by creating a linear ordering of the processors based on routing rules used for routing communications between the processors. The linear ordering can assume a loop configuration, and bin-packing is applied to this loop configuration. The interconnection of the processors can be conceptualized as a generally rectangular 3-dimensional grid, and the MC allocation algorithm is applied with respect to the 3-dimensional grid.

  13. Shale Gas 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Oil & Gas » Shale Gas » Shale Gas 101 Shale Gas 101 Shale Gas 101 This webpage has been developed to answer the many questions that people have about shale gas and hydraulic fracturing (or fracking). The information provided below explains the basics, including what shale gas is, where it's found, why it's important, how it's produced, and challenges associated with production. Natural gas production from "shale" formations (fine-grained sedimentary

  14. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  15. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  16. World Natural Gas Model

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    RAMSGAS, the Research and Development Analysis Modeling System World Natural Gas Model, was developed to support planning of unconventional gaseoues fuels research and development. The model is a scenario analysis tool that can simulate the penetration of unconventional gas into world markets for oil and gas. Given a set of parameter values, the model estimates the natural gas supply and demand for the world for the period from 1980 to 2030. RAMSGAS is based onmore » a supply/demand framwork and also accounts for the non-renewable nature of gas resources. The model has three fundamental components: a demand module, a wellhead production cost module, and a supply/demand interface module. The demand for gas is a product of total demand for oil and gas in each of 9 demand regions and the gas share. Demand for oil and gas is forecast from the base year of 1980 through 2030 for each demand region, based on energy growth rates and price-induced conservation. For each of 11 conventional and 19 unconventional gas supply regions, wellhead production costs are calculated. To these are added transportation and distribution costs estimates associated with moving gas from the supply region to each of the demand regions and any economic rents. Based on a weighted average of these costs and the world price of oil, fuel shares for gas and oil are computed for each demand region. The gas demand is the gas fuel share multiplied by the total demand for oil plus gas. This demand is then met from the available supply regions in inverse proportion to the cost of gas from each region. The user has almost complete control over the cost estimates for each unconventional gas source in each year and thus can compare contributions from unconventional resources under different cost/price/demand scenarios.« less

  17. US crude oil, natural gas, and natural gas liquids reserves

    SciTech Connect (OSTI)

    Not Available

    1990-10-05

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

  18. Information coding of exciting laser pulses in an optical echo-processor

    SciTech Connect (OSTI)

    Rusanova, I A

    2013-07-31

    We report the possibility of controlling the distribution of quantum bits within an inhomogeneously broadened line of a resonant transition in recording and transforming information in optical echo-processors. We consider the efficiency of realisation of the elementary logic XOR gate based on a two-pulse excitation of a resonant medium with phase memory. The encoded information is incorporated into the temporal shape of laser pulses in the form of amplitude modulation of an 'echelon' of present ('1') and absent ('0') pulse-codes for obtaining more efficient logic elements that reduce the noise in a quantum communication channel. (optical information processing)

  19. Natural Gas Modernization Clearinghouse Stakeholders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives » Natural Gas Modernization Clearinghouse » Natural Gas Modernization Clearinghouse Stakeholders Natural Gas Modernization Clearinghouse Stakeholders Regulators EMATRIX Environmental Protection Agency (EPA) Natural Gas Star program Federal Energy Regulatory Commission (FERC) National Association of Regulatory Utility Commissioners (NARUC) Pipeline and Hazardous Materials Safety Administration (PHMSA) Industry groups American Gas Association (AGA) American Gas Foundation (AGF)

  20. Method and structure for skewed block-cyclic distribution of lower-dimensional data arrays in higher-dimensional processor grids

    DOE Patents [OSTI]

    Chatterjee, Siddhartha (Yorktown Heights, NY); Gunnels, John A. (Brewster, NY)

    2011-11-08

    A method and structure of distributing elements of an array of data in a computer memory to a specific processor of a multi-dimensional mesh of parallel processors includes designating a distribution of elements of at least a portion of the array to be executed by specific processors in the multi-dimensional mesh of parallel processors. The pattern of the designating includes a cyclical repetitive pattern of the parallel processor mesh, as modified to have a skew in at least one dimension so that both a row of data in the array and a column of data in the array map to respective contiguous groupings of the processors such that a dimension of the contiguous groupings is greater than one.

  1. Natural gas monthly

    SciTech Connect (OSTI)

    1996-05-01

    This document highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Data presented include volume and price, production, consumption, underground storage, and interstate pipeline activities.

  2. An Application Specific Memory Characterization Technique for Co-processor Accelerators

    SciTech Connect (OSTI)

    Alam, Sadaf R; Smith, Melissa C; Vetter, Jeffrey S

    2007-01-01

    Commodity accelerator technologies including reconfigurable devices and graphical processing units (GPUs) provide an order of magnitude performance improvement compared to mainstream microprocessor systems. A number of compute-intensive, scientific applications, therefore, can potentially benefit from commodity computing devices available in the form of co-processor accelerators. However, there has been little progress in accelerating production-level scientific applications using these technologies due to several programming and performance challenges. One of the key performance challenges is performance sustainability. While computation is often accelerated substantially by accelerator devices, the achievable performance is significantly lower once the data transfer costs and overheads are incorporated. We present an application-specific memory characterization technique for an FPGA-accelerated system that enabled us to reduce data transfer overhead for a scientific application by a factor of 5. We classify large data structures in the application according to their read and write characteristics and access patterns. This classification in turn enabled us to sustain a speedup of over three for a full-scale scientific application. Our proposed technique extends to applications that exhibit similar memory behavior and to co-processor accelerator systems that support data streaming and pipelining, and allow overlapped execution between the host and the accelerator device.

  3. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    SciTech Connect (OSTI)

    1998-09-30

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage caverns, and gas market area storage needs of these regions.

  4. A Processor to get UV-A and UV-B Radiation Products from the ECMWF Forecast

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System A Processor to get UV-A and UV-B Radiation Products from the ECMWF Forecast System Morcrette, Jean-Jacques European Centre for Medium-Range Weather Forecasts Category: Radiation A new processor for evaluating the UV-B and UV-A radiation at the surface, based on modifications to the current shortwave radiation scheme of the ECMWF forecast system is described. Sensitivity studies of the UV surface irradiance and Erythemal Dose Rate to spectral resolution, representation and atmospheric

  5. Intel, the Intel logo, Intel® Xeon Phi(tm), Intel® Xeon® Processor are tradema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIC & OpenMP 4 TCG Micro SSG DPD NERSC Threading Workshop, March 2015 © 2015 Intel Corporation High-performance Parallel Computing 2 Moving data is expensive! § Node-node § Socket-Socket; Processor-(co)processor § Core-core § SIMD lanes At each parallel level § Find enough parallelism § Decide the optimal granularity § Optimize locality/data movement § Ensure load balance § Reduce the impact of coordination and synchronization All the parallel units have

  6. Intel, the Intel logo, Intel® Xeon Phi(tm), Intel® Xeon® Processor are tradema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploiting multi-level parallelism in HPC applications Jeongnim Kim & TCG Micro March, 2015 © 2015 Intel Corporation Node Configuration / Compilers / Runtime 2 Endeavor† cluster § CPU: 2-socket/14 cores/56 threads - Processor: Intel® Xeon® processor E5-2697 V3 @ 2.60GHz (14 cores) with Intel® Hyper-Threading Technology 4 - Memory: 64GB § Coprocessor: Intel® Xeon Phi(tm) coprocessor 7120P - 61 cores @ 1.238 GHz, 4-way Intel® Hyper-Threading Technology, Memory: 15872 MB -

  7. System, methods and apparatus for program optimization for multi-threaded processor architectures

    DOE Patents [OSTI]

    Bastoul, Cedric; Lethin, Richard A; Leung, Allen K; Meister, Benoit J; Szilagyi, Peter; Vasilache, Nicolas T; Wohlford, David E

    2015-01-06

    Methods, apparatus and computer software product for source code optimization are provided. In an exemplary embodiment, a first custom computing apparatus is used to optimize the execution of source code on a second computing apparatus. In this embodiment, the first custom computing apparatus contains a memory, a storage medium and at least one processor with at least one multi-stage execution unit. The second computing apparatus contains at least two multi-stage execution units that allow for parallel execution of tasks. The first custom computing apparatus optimizes the code for parallelism, locality of operations and contiguity of memory accesses on the second computing apparatus. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.

  8. Lattice QCD with Domain Decomposition on Intel Xeon Phi Co-Processors

    SciTech Connect (OSTI)

    Heybrock, Simon; Joo, Balint; Kalamkar, Dhiraj D.; Smelyanskiy, Mikhail; Vaidyanathan, Karthikeyan; Wettig, Tilo; Dubey, Pradeep

    2014-12-01

    The gap between the cost of moving data and the cost of computing continues to grow, making it ever harder to design iterative solvers on extreme-scale architectures. This problem can be alleviated by alternative algorithms that reduce the amount of data movement. We investigate this in the context of Lattice Quantum Chromodynamics and implement such an alternative solver algorithm, based on domain decomposition, on Intel Xeon Phi co-processor (KNC) clusters. We demonstrate close-to-linear on-chip scaling to all 60 cores of the KNC. With a mix of single- and half-precision the domain-decomposition method sustains 400-500 Gflop/s per chip. Compared to an optimized KNC implementation of a standard solver [1], our full multi-node domain-decomposition solver strong-scales to more nodes and reduces the time-to-solution by a factor of 5.

  9. High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects

    DOE Patents [OSTI]

    Deri, Robert J. (Pleasanton, CA); DeGroot, Anthony J. (Castro Valley, CA); Haigh, Ronald E. (Arvada, CO)

    2002-01-01

    As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

  10. Support and utilization of the LSI-11 processor family at SLAC

    SciTech Connect (OSTI)

    Kieffer, J.; Logg, C.A.; Farwell, D.E.

    1981-01-01

    Microcomputer systems based on the DEC LSI-11 processor family have been in use at SLAC for five years. They are used for a wide variety of applications. The support of these systems is divided into three general areas: engineering, maintenance, and software. Engineering specifies the system to match user requirements. SLAC has been able to design one general purpose system which can be tailored to fit many specific requirements. Maintenance provides system and component diagnostic services and repair. Software support includes software consulting services, assistance in systems design, and the development and support of special purpose operating systems and programs. These support functions are handled as subtasks by three teams in the SLAC Electronics Instrumentation Group. Each of these teams utilizes several LSI-11 systems in the performance of its primary tasks. They work closely together to jointly provide overall support for the larger SLAC community.

  11. Natural gas monthly, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  12. Natural gas monthly, April 1999

    SciTech Connect (OSTI)

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  13. Natural gas monthly, September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-27

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  14. Natural gas monthly, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-06-22

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  15. Natural gas monthly, July 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-27

    The Natural Gas Monthly NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  16. Natural gas monthly, September 1995

    SciTech Connect (OSTI)

    1995-09-27

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  17. Natural gas monthly, April 1995

    SciTech Connect (OSTI)

    1995-04-27

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 31 tabs.

  18. Spatio-Temporal Signal Twice-Whitening Algorithms on the hx3100 Ultra-Low Power Multicore Processor

    SciTech Connect (OSTI)

    Humble, Travis S; Mitra, Pramita; Barhen, Jacob; Schleck, Bryan; Polcari, John; Traweek, Michael

    2010-01-01

    While modern signal detection theory fully accounts for spatially distributed sensors, exploiting these techniques for real-time sensing using large, underwater acoustic arrays requires advances in the spatio-temporal signal processing algorithms. In particular, the computational complexity of many spatio-temporal processing techniques is so large that conventional computer processors lack sufficient throughput to provide real-time processing of large spatio-temporal data sets. These limits are exacerbated when constraints, such as power consumption or footprint, reduce the available computational resources. In this report, we demonstrate an implementation of a signal twice-whitening algorithm that is better suited for processing spatio-temporal data in real time. We emphasize these advances by implementing data whitening on the Coherent Logix hx3100 processor, a programmable multicore processor intended for low-power and high-throughput signal processing. These results serve as an example of how the novel capabilities available from emerging multicore processor platforms can provide real-time, software-defined processing of large data sets acquired by spatially distributed sensing.

  19. Polyport atmospheric gas sampler

    DOE Patents [OSTI]

    Guggenheim, S. Frederic (Teaneck, NJ)

    1995-01-01

    An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

  20. Fact Sheet: DOE/National Association of Regulatory Utility Commissione...

    Office of Environmental Management (EM)

    DOENational Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership Fact Sheet: DOENational Association of Regulatory Utility...

  1. Oil and Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business Development Executive John Russell Business Development Executive Richard P. Feynman Center for Innovation (505) 665-3941 Email thumbnail of Business Development Executive Don Hickmott Business Development Executive Richard P. Feynman Center for Innovation (505) 667-8753 Email Los Alamos' efforts in fossil energy R&D

  2. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report ?? Phase I

    SciTech Connect (OSTI)

    Mark S. Schmalz

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G} for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient parallel computation of particle and fluid dynamics simulations. These problems occur throughout DOE, military and commercial sectors: the potential payoff is high. We plan to license or sell the solution to contractors for military and domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government agencies (hydrological and environmental simulations), and medical applications (e.g., in tomographic image reconstruction). Keywords - High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation. Summary for Members of Congress - Department of Energy has many simulation codes that must compute faster, to be effective. The Phase I research parallelized particle/fluid simulations for rocket combustion, for high-performance computing systems.

  3. Gas ampoule-syringe

    DOE Patents [OSTI]

    Gay, D.D.

    1985-02-02

    A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

  4. Gas ampoule-syringe

    DOE Patents [OSTI]

    Gay, Don D. (Aiken, SC)

    1986-01-01

    A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one end and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

  5. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect (OSTI)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  6. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect (OSTI)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

  7. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  8. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  9. The Fortran-P Translator: Towards Automatic Translation of Fortran 77 Programs for Massively Parallel Processors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    O'keefe, Matthew; Parr, Terence; Edgar, B. Kevin; Anderson, Steve; Woodward, Paul; Dietz, Hank

    1995-01-01

    Massively parallel processors (MPPs) hold the promise of extremely high performance that, if realized, could be used to study problems of unprecedented size and complexity. One of the primary stumbling blocks to this promise has been the lack of tools to translate application codes to MPP form. In this article we show how applications codes written in a subset of Fortran 77, called Fortran-P, can be translated to achieve good performance on several massively parallel machines. This subset can express codes that are self-similar, where the algorithm applied to the global data domain is also applied to each subdomain. Wemore » have found many codes that match the Fortran-P programming style and have converted them using our tools. We believe a self-similar coding style will accomplish what a vectorizable style has accomplished for vector machines by allowing the construction of robust, user-friendly, automatic translation systems that increase programmer productivity and generate fast, efficient code for MPPs.« less

  10. Global-Aware and Multi-Order Context-Based Prefetching for High-Performance Processors

    SciTech Connect (OSTI)

    Chen, Yong; Zhu, Huaiyu; Roth, Philip C; Jin, Hui; Sun, Xian-He

    2011-01-01

    Data prefetching is widely used in high-end computing systems to accelerate data accesses and to bridge the increasing performance gap between processor and memory. Context-based prefetching has become a primary focus of study in recent years due to its general applicability. However, current context-based prefetchers only adopt the context analysis of a single order, which suffers from low prefetching coverage and thus limits the overall prefetching effectiveness. Also, existing approaches usually consider the context of the address stream from a single instruction but not the context of the address stream from all instructions, which further limits the context-based prefetching effectiveness. In this study, we propose a new context-based prefetcher called the Global-aware and Multi-order Context-based (GMC) prefetcher. The GMC prefetcher uses multi-order, local and global context analysis to increase prefetching coverage while maintaining prefetching accuracy. In extensive simulation testing of the SPEC-CPU2006 benchmarks with an enhanced CMP$im simulator, the proposed GMC prefetcher was shown to outperform existing prefetchers and to reduce the data-access latency effectively. The average Instructions Per Cycle (IPC) improvement of SPEC CINT2006 and CFP2006 benchmarks with GMC prefetching was over 55% and 44% respectively.

  11. Natural gas monthly, August 1995

    SciTech Connect (OSTI)

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  12. Natural Gas Monthly, October 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-10

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature articles are: US Production of Natural Gas from Tight Reservoirs: and Expanding Rule of Underground Storage.

  13. Natural gas monthly, December 1997

    SciTech Connect (OSTI)

    1997-12-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The article this month is entitled ``Recent Trends in Natural Gas Spot Prices.`` 6 figs., 27 tabs.

  14. Natural gas monthly, March 1997

    SciTech Connect (OSTI)

    1997-03-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas analysis and geographic information systems.`` 6 figs., 27 tabs.

  15. Natural gas monthly, May 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-25

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured articles for this month are: Opportunities with fuel cells, and revisions to monthly natural gas data.

  16. Natural gas monthly, May 1997

    SciTech Connect (OSTI)

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  17. Natural gas monthly, April 1997

    SciTech Connect (OSTI)

    1997-04-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

  18. Evaluation of the Leon3 soft-core processor within a Xilinx radiation-hardened field-programmable gate array.

    SciTech Connect (OSTI)

    Learn, Mark Walter

    2012-01-01

    The purpose of this document is to summarize the work done to evaluate the performance of the Leon3 soft-core processor in a radiation environment while instantiated in a radiation-hardened static random-access memory based field-programmable gate array. This evaluation will look at the differences between two soft-core processors: the open-source Leon3 core and the fault-tolerant Leon3 core. Radiation testing of these two cores was conducted at the Texas A&M University Cyclotron facility and Lawrence Berkeley National Laboratory. The results of these tests are included within the report along with designs intended to improve the mitigation of the open-source Leon3. The test setup used for evaluating both versions of the Leon3 is also included within this document.

  19. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  20. Colorado Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  1. Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  2. Missouri Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  3. Michigan Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  4. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. Tennessee Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  6. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  7. Mississippi Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  8. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  9. Illinois Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  10. Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. Maryland Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  12. Louisiana Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  13. Investigating the effectiveness of many-core network processors for high performance cyber protection systems. Part I, FY2011.

    SciTech Connect (OSTI)

    Wheeler, Kyle Bruce; Naegle, John Hunt; Wright, Brian J.; Benner, Robert E., Jr.; Shelburg, Jeffrey Scott; Pearson, David Benjamin; Johnson, Joshua Alan; Onunkwo, Uzoma A.; Zage, David John; Patel, Jay S.

    2011-09-01

    This report documents our first year efforts to address the use of many-core processors for high performance cyber protection. As the demands grow for higher bandwidth (beyond 1 Gbits/sec) on network connections, the need to provide faster and more efficient solution to cyber security grows. Fortunately, in recent years, the development of many-core network processors have seen increased interest. Prior working experiences with many-core processors have led us to investigate its effectiveness for cyber protection tools, with particular emphasis on high performance firewalls. Although advanced algorithms for smarter cyber protection of high-speed network traffic are being developed, these advanced analysis techniques require significantly more computational capabilities than static techniques. Moreover, many locations where cyber protections are deployed have limited power, space and cooling resources. This makes the use of traditionally large computing systems impractical for the front-end systems that process large network streams; hence, the drive for this study which could potentially yield a highly reconfigurable and rapidly scalable solution.

  14. USE OF A DIESEL FUEL PROCESSOR FOR RAPID AND EFFICIENT REGENERATION OF SINGLE LEG NOX ADSORBER SYSTEMS

    SciTech Connect (OSTI)

    Betta, R; Cizeron, J; Sheridan, D; Davis, T

    2003-08-24

    Lean NOx adsorber systems are one of the primary candidate technologies for the control of NOx from diesel engines to meet the 2007-2010 US emissions regulations, which require a 90% reduction of NOx from the 2004 regulations. Several of the technical challenges facing this technology are regeneration at low exhaust temperatures and the efficient use of diesel fuel to minimize fuel penalty. A diesel processor system has been developed and tested in a single leg NOx adsorber configuration on a diesel engine test stand. During NOx adsorber regeneration, this fuel processor system performs reduces the exhaust O2 level to zero and efficiently processes the diesel fuel to H2 and CO. Combined with a Nox adsorber catalyst, this system has demonstrated NOx reduction above 90%, regeneration of the NOx adsorber H2/CO pulses as short as 1 second and fuel penalties in the 3 to 4% range at 50% load. This fuel processor system can also be used to provide the desulfation cycle required with sulfur containing fuels as well as providing thermal management for PM filter regeneration.

  15. Natural gas monthly, October 1995

    SciTech Connect (OSTI)

    1995-10-23

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary of the terms used in this report is provided to assist readers in understanding the data presented in this publication. 6 figs., 30 tabs.

  16. Natural gas monthly, February 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-25

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  17. Natural gas monthly, February 1996

    SciTech Connect (OSTI)

    1996-03-01

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  18. Natural gas monthly, March 1998

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

  19. Natural gas monthly, May 1995

    SciTech Connect (OSTI)

    1995-05-24

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  20. Natural gas monthly, August 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-05

    This report highlights activities, events, and analyses of interest to public and private sector oganizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 33 tabs.

  1. Natural gas monthly, July 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  2. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  3. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  4. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect (OSTI)

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  5. System and method to determine thermophysical properties of a multi-component gas

    DOE Patents [OSTI]

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2003-08-05

    A system and method to characterize natural gas hydrocarbons using a single inferential property, such as standard sound speed, when the concentrations of the diluent gases (e.g., carbon dioxide and nitrogen) are known. The system to determine a thermophysical property of a gas having a first plurality of components comprises a sound velocity measurement device, a concentration measurement device, and a processor to determine a thermophysical property as a function of a correlation between the thermophysical property, the speed of sound, and the concentration measurements, wherein the number of concentration measurements is less than the number of components in the gas. The method includes the steps of determining the speed of sound in the gas, determining a plurality of gas component concentrations in the gas, and determining the thermophysical property as a function of a correlation between the thermophysical property, the speed of sound, and the plurality of concentrations.

  6. Natural gas monthly, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured article for this month is on US coalbed methane production.

  7. Natural gas monthly, October 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-05

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. 16 figs., 33 tabs.

  8. Gas-sensing optrode

    DOE Patents [OSTI]

    Hirschfeld, Tomas B. (Livermore, CA)

    1988-01-01

    An optrode is provided for sensing dissolved gases or volatile components of a solution. A fiber optic is provided through which light from an associated light source is transmitted from a first end to a second end. A bubble forming means, such as a tube, is attached to the second end of the fiber optic, and an indicator material is disposed in cooperation with the bubble forming means adjacent to the second end of the fiber optic such that it is illuminated by light emanating from the second end. The bubble forming means causes a gas bubble to form whenever the optrode is immersed in the fluid. The gas bubble separates the indicator material from the fluid. Gases, or other volatile components, of the fluid are sensed as they diffuse across the gas bubble from the fluid to the indicator material.

  9. Gas-sensing optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1988-04-12

    An optrode is provided for sensing dissolved gases or volatile components of a solution. A fiber optic is provided through which light from an associated light source is transmitted from a first end to a second end. A bubble forming means, such as a tube, is attached to the second end of the fiber optic, and an indicator material is disposed in cooperation with the bubble forming means adjacent to the second end of the fiber optic such that it is illuminated by light emanating from the second end. The bubble forming means causes a gas bubble to form whenever the optrode is immersed in the fluid. The gas bubble separates the indicator material from the fluid. Gases, or other volatile components, of the fluid are sensed as they diffuse across the gas bubble from the fluid to the indicator material. 3 figs.

  10. Mitigation of cache memory using an embedded hard-core PPC440 processor in a Virtex-5 Field Programmable Gate Array.

    SciTech Connect (OSTI)

    Learn, Mark Walter

    2010-02-01

    Sandia National Laboratories is currently developing new processing and data communication architectures for use in future satellite payloads. These architectures will leverage the flexibility and performance of state-of-the-art static-random-access-memory-based Field Programmable Gate Arrays (FPGAs). One such FPGA is the radiation-hardened version of the Virtex-5 being developed by Xilinx. However, not all features of this FPGA are being radiation-hardened by design and could still be susceptible to on-orbit upsets. One such feature is the embedded hard-core PPC440 processor. Since this processor is implemented in the FPGA as a hard-core, traditional mitigation approaches such as Triple Modular Redundancy (TMR) are not available to improve the processor's on-orbit reliability. The goal of this work is to investigate techniques that can help mitigate the embedded hard-core PPC440 processor within the Virtex-5 FPGA other than TMR. Implementing various mitigation schemes reliably within the PPC440 offers a powerful reconfigurable computing resource to these node-based processing architectures. This document summarizes the work done on the cache mitigation scheme for the embedded hard-core PPC440 processor within the Virtex-5 FPGAs, and describes in detail the design of the cache mitigation scheme and the testing conducted at the radiation effects facility on the Texas A&M campus.

  11. QER- Comment of American Gas Association 1

    Broader source: Energy.gov [DOE]

    Attached please find AGA's comments on methane emissions issues in the first phase of the DOE Quadrennial Energy Review (QER), consisting of a cover letter and attachments. Dr. Kathryn Clay will be submitting AGA's comments on other aspects of the QER. Please let me know if you have any questions.

  12. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  13. Fact Sheet: DOE/National Association of Regulatory Utility Commissione...

    Energy Savers [EERE]

    Fact Sheet: DOENational Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership Summary: Building on many years of productive...

  14. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.; Wagner, Anne W.; Thornton, John

    2015-05-01

    Full Paper Submission for: Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electric power and, heating and cooling capability to commercial and industrial facilities directly onsite, while increasing energy efficiency, security of energy supply, grid independence and enhancing the environmental and economic situation for the site. Food processing industries often have simultaneous requirements for heat, steam, chilling and electricity making them well suited for the use of such systems to supply base-load or as peak reducing generators enabling reduction of overall energy use intensity. This paper documents analysis from a project evaluating opportunities enabled by CCHPDG for emission and cost reductions and energy storage systems installed onsite at food processing facilities. In addition, this distributed generation coupled with energy storage demonstrates a non-wires solution to delay or eliminate the need for upgrades to electric distribution systems. It was found that a dairy processing plant in the Pacific Northwest currently purchasing 15,000 MWh/yr of electricity and 190,000 MMBtu/yr of gas could be provided with a 1.1 MW CCHP system reducing the amount of electric power purchased to 450 MWh/yr while increasing the gas demand to 255,000 MMBtu/yr. The high percentage of hydro-power in this region resulted in CO2 emissions from CCHP to be higher than that attributed to the electric utility/regional energy mix. The value of this work is in documenting a real-world example demonstrating the value of CCHP to facility owners and financial decision makers to encourage them to more seriously consider CCHP systems when building or upgrading facilities.

  15. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  16. Conventional Energy Forum & Associated Vertical Business Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New discoveries New oil and gas production methods Associated research and development Support industry opportunities and new markets emerging in the traditional energy sector This ...

  17. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    SciTech Connect (OSTI)

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  18. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    SciTech Connect (OSTI)

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  19. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    natural gas demand, thereby contributing to larger net injections of natural gas into storage. Other Market Trends: EIA Releases The Natural Gas Annual 2006: The Energy...

  20. NETL: Natural Gas Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Resources Useful for heating, manufacturing, and as chemical feedstock, natural gas has the added benefit of producing fewer greenhouse gas emissions than other fossil...

  1. Natural Gas Applications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  2. Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  3. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  4. New York Natural Gas Reserves Summary as of Dec. 31

    Gasoline and Diesel Fuel Update (EIA)

    196 281 253 184 144 143 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 196 271 245 178 138 138 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease...

  5. Hydrogen gas relief valve

    DOE Patents [OSTI]

    Whittlesey, Curtis C.

    1985-01-01

    An improved battery stack design for an electrochemical system having at least one cell from which a gas is generated and an electrolyte in communication with the cell is described. The improved battery stack design features means for defining a substantially closed compartment for containing the battery cells and at least a portion of the electrolyte for the system, and means in association with the compartment means for selectively venting gas from the interior of the compartment means in response to the level of the electrolyte within the compartment means. The venting means includes a relief valve having a float member which is actuated in response to the level of the electrolyte within the compartment means. This float member is adapted to close the relief valve when the level of the electrolyte is above a predetermined level and open the relief valve when the level of electrolyte is below this predetermined level.

  6. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.; Wagner, Anne W.; Thornton, John

    2015-04-02

    ABSTRACT Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electricity, heat, and cooling power to buildings and industrial processes directly onsite, while significantly increasing energy efficiency, security of energy supply, and grid independence. Fruit, vegetable, dairy and meat processing industries with simultaneous requirements for heat, steam, chilling and electricity, are well suited for the use of such systems to supply base-load electrical demand or as peak reducing generators with heat recovery in the forms of hot water, steam and/or chilled water. This paper documents results and analysis from a pilot project to evaluate opportunities for energy, emission, and cost for CCHP-DG and energy storage systems installed onsite at food processing facilities. It was found that a dairy processing plant purchasing 15,000 MWh of electricity will need to purchase 450 MWh with the integration of a 1.1 MW CCHP system. Here, the natural gas to be purchased increased from 190,000 MMBtu to 255,000 MMBtu given the fuel requirements of the CCHP system. CCHP systems lower emissions, however, in the Pacific Northwest the high percentage of hydro-power results in CO2 emissions from CCHP were higher than that attributed to the electric utility/regional energy mix. The value of this paper is in promoting and educating financial decision makers to seriously consider CCHP systems when building or upgrading facilities. The distributed generation aspect can reduce utility costs for industrial facilities and show non-wires solution benefits to delay or eliminate the need for upgrades to local electric transmission and distribution systems.

  7. Flammable Gas Detection for the D-Zero Gas System

    SciTech Connect (OSTI)

    Spires, L.D.; Foglesong, J.; /Fermilab

    1991-02-11

    The use of flammable gas and high voltage in detector systems is common in many experiments at Fermilab. To mitigate the hazards associated with these systems, Fermilab Engineering Standard SD-45B (Ref. 1) was adopted. Since this note is meant to be a guide and not a mandatory standard, each experiment is reviewed for compliance with SD-45B by the flammable gas safety subcommittee. Currently, there are only two types of flammable gas in use, ethane (Appendix A) and methane (Appendix B). The worst flammable-gas case is C2H6 (ethane), which has an estimated flow rate that is 73% of the CH4 (methane) flow but a heat of combustion (in kcal/g-mole) that is 173% of that of methane. In the worst case, if ethane were to spew through its restricting orifice into its gas line at 0 psig and then through a catastrophic leak into Room 215 (TRD) or Room 511 (CDC/FDCNTX), the time that would be required to build up a greater than Class 1 inventory (0.4kg H2 equivalent) would be 5.2 hours (Ref. 2). Therefore a worst-case flammable gas leak would have to go undetected for over 5 hours in order to transform a either mixing room to an environment with a Risk Class greater than Class 1. The mixing systems, gas lines, and detectors themselves will be thoroughly leak checked prior to active service. All vessels that are part of the mixing systems will be protected from overpressure by safety valves vented outside the building. Both the input and output of all detector volumes are protected from overpressure in the same way. The volume immediately outside the central tracking detectors is continuously purged by nitrogen from boiloff from the main nitrogen dewar at the site. However, if flammable gas were to build up in the mixing rooms or particular detector areas, no matter how unlikely, flammable gas detectors that are part of the interlock chain of each gas mixing system will shut down the appropriate system. This includes shutting off the output of flammable gas manifolds within the gas shed. Similarly, if a fire were to break out anywhere in the D-ZERO Hall, fire sensors would stop the output of all flammable gas manifolds within the gas shed, by unpowering electrically controlled solenoid valves that are normally closed in the event of a power failure. Fire sensor contacts have not yet been installed.

  8. Natural Gas Basics

    SciTech Connect (OSTI)

    NREL Clean Cities

    2010-04-01

    Fact sheet answers questions about natural gas production and use in transportation. Natural gas vehicles are also described.

  9. EIAs Proposed Definitions for Natural Gas Liquids

    Gasoline and Diesel Fuel Update (EIA)

    Definitions for Natural Gas Liquids 1 June 14, 2013 EIA's Proposed Definitions for Natural Gas Liquids Term Current Definition Proposed Definition Note Lease condensate Condensate (lease condensate): A natural gas liquid recovered from associated and non associated gas wells from lease separators or field facilities, reported in barrels of 42 U.S. gallons at atmospheric pressure and 60 degrees Fahrenheit. Lease condensate: Light liquid hydrocarbons recovered from lease separators or field

  10. Real-time geo-registration of imagery using COTS graphics processors

    DOE Patents [OSTI]

    Flath, Laurence M. (Livermore, CA); Kartz, Michael W. (Tracy, CA)

    2009-06-30

    A method of performing real-time geo-registration of high-resolution digital imagery using existing graphics processing units (GPUs) already found in current personal computers, rather than the main central processing unit (CPU). Digital image data captured by a camera (along with inertial navigation system (INS) data associated with the image data) is transferred to and processed by the GPU to perform the calculations involved in transforming the captured image into a geo-rectified, nadir-looking image. By using the GPU, the order-of-magnitude increase in throughput over conventional software techniques makes real-time geo-registration possible without the significant cost of custom hardware solutions.

  11. Trends in gas turbine development

    SciTech Connect (OSTI)

    Day, W.H.

    1999-07-01

    This paper represents the Gas Turbine Association's view of the gas turbine industry's R and D needs following the Advanced Turbine Systems (ATS) Program which is funded by the U.S. Department of Energy (DOE). Some of this information was discussed at the workshop Next Generation Gas Turbine Power Systems, which was held in Austin, TX, February 9--10, 1999, sponsored by DOE-Federal Energy Technology Center (FETC), reference 1. The general idea is to establish public-private partnerships to reduce the risks involved in the development of new technologies which results in public benefits. The recommendations in this paper are focused on gas turbines > 30 MW output. Specific GTA recommendations on smaller systems are not addressed here. They will be addressed in conjunction with DOE-Energy Efficiency.

  12. Natural Gas Monthly August 1998

    SciTech Connect (OSTI)

    1998-08-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. Explanatory notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication.

  13. Underground natural gas storage reservoir management

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  14. Arctic Oil and Natural Gas Potential

    Reports and Publications (EIA)

    2009-01-01

    This paper examines the discovered and undiscovered Arctic oil and natural gas resource base with respect to their location and concentration. The paper also discusses the cost and impediments to developing Arctic oil and natural gas resources, including those issues associated with environmental habitats and political boundaries.

  15. Natural gas monthly, October 1990. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-12-28

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 7 figs., 34 tabs.

  16. Method and apparatus for combinatorial logic signal processor in a digitally based high speed x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, William K. (1300 Mills St., Menlo Park, CA 94025); Zhou, Zhiquing (Carl) (Fremont, CA)

    1999-01-01

    A high speed, digitally based, signal processing system which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system livetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired.

  17. Method and apparatus for combinatorial logic signal processor in a digitally based high speed x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, W.K.

    1999-02-16

    A high speed, digitally based, signal processing system is disclosed which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system lifetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired. 31 figs.

  18. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  19. Oil and Natural Gas Program Commericialized Technologies and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Using innovative technologies normally associated with ... pre-treatment process to treat and recycle ... Gas Gathering and Flow Line Tool Vortex Flow LLC's new SX ...

  20. State Oil and Gas Boards | Open Energy Information

    Open Energy Info (EERE)

    and protect the correlative rights of ownership associated with the production of oil, natural gas and brine, while protecting the environment during the production process,...

  1. CombinePlt and CombineThs user manual: Merging multiple, processor-local plot and time-history data bases produced during a parallel calculation. Revision 1

    SciTech Connect (OSTI)

    Procassini, R.J.; DeGroot, A.J.

    1995-09-21

    The CombinePlt and CombineThs post-processing utilities are designed to merge the data in multiple, processor-local plot and time-history data bases produced by the parallel versions of the analysis codes DYNA3D, NIKE3D or PING into a serial database which is compatible with the existing versions of the GRIZ and THUG visualization tools. These utilities make use of the partition assignment file produced by the PartMesh suite for pre-processing utilities to map the data from the processor-local order to global order. These utilities are also capable of translating 64-bit IEEE data bases into 32-bit IEEE data bases which are required for post-processing with GRIZ or THUG on an SGI workstation.

  2. CombinePlt and CombineThs user manual: Merging multiple, processor-local plot and time-history data bases produced during a parallel calculation

    SciTech Connect (OSTI)

    Procassini, R.J.; DeGroot, A.J.

    1995-06-01

    The CombinePlt and CombineThs post-processing utilities are designed to merge the data in multiple, processor-local plot and time-history data bases produced by the parallel versions of the analysis codes DYNA3D, NIKE3D or PING into a serial data base which is compatible with the existing versions of the GRIZ and THUG visualization tools. These utilities make use of the partition assignment file produced by the PartMesh suite of pre-processing utilities to map the data from the processor-local order to global order. These utilities are also capable of translating 64-bit IEEE data bases into 32-bit IEEE data bases which are required for post-processing with GRIZ or THUG on an SGI workstation.

  3. Multi-cluster processor operating only select number of clusters during each phase based on program statistic monitored at predetermined intervals

    DOE Patents [OSTI]

    Balasubramonian, Rajeev (Sandy, UT); Dwarkadas, Sandhya (Rochester, NY); Albonesi, David (Ithaca, NY)

    2009-02-10

    In a processor having multiple clusters which operate in parallel, the number of clusters in use can be varied dynamically. At the start of each program phase, the configuration option for an interval is run to determine the optimal configuration, which is used until the next phase change is detected. The optimum instruction interval is determined by starting with a minimum interval and doubling it until a low stability factor is reached.

  4. Natural Gas Regulation - Other Gas-Related Information Sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Regulation - Other Gas-Related Information Sources Natural Gas Regulation - Other Gas-Related Information Sources The single largest source of energy information...

  5. Natural gas 1998: Issues and trends

    SciTech Connect (OSTI)

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  6. Natural gas monthly, July 1995

    SciTech Connect (OSTI)

    1995-07-21

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. Explanatory Notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided in the Data Sources section. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication. All natural gas volumes are reported at a pressure base of 14.73 pounds per square inch absolute (psia) and at 60 degrees Fahrenheit. Cubic feet are converted to cubic meters by applying a factor of 0.02831685.

  7. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  8. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of the Alaska gas pipeline. The opening of ANWR might reduce the gas resource risk of building an Alaska gas pipeline, as the area has an estimated 3.6 trillion cubic...

  9. Gas amplified ionization detector for gas chromatography

    DOE Patents [OSTI]

    Huston, Gregg C. (LaBelle, PA)

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  10. Shale gas is natural gas trapped inside

    Energy Savers [EERE]

    Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of this resource was considered uneconomical to produce. But Office of Fossil Energy (FE) research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, protective environmental practices and data development, making hundreds of trillions of cubic feet of gas technically recoverable where

  11. Miscellaneous Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    349 363 393 233 188 185 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 271 353 270 219 169 167 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 78 10 104 7 19 18 1979-2014 Dry Natural Gas 349 350 379 222 179 17

  12. Mississippi Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    22 858 868 612 600 563 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 884 822 806 550 557 505 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 38 36 62 62 43 58 1979-2014 Dry Natural Gas 917 853 860 607 595 558

  13. Montana Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    93 959 792 616 590 686 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 681 657 522 327 286 361 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 312 302 270 289 304 325 1979-2014 Dry Natural Gas 976 944 778 602 575 667

  14. Federal Offshore, Pacific (California) Natural Gas Reserves Summary as of

    U.S. Energy Information Administration (EIA) Indexed Site

    Dec. 31 740 725 711 652 264 243 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 9 3 0 0 0 0 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 731 722 711 652 264 243 1979-2014 Dry Natural Gas 739 724 710 651 261 240

  15. Florida Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    7 56 6 16 15 0 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 0 26 4 16 14 0 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 7 30 2 0 1 0 1979-2014 Dry Natural Gas 7 56 6 16 15 0

  16. Gas scrubbing liquids

    DOE Patents [OSTI]

    Lackey, Walter J. (Oak Ridge, TN); Lowrie, Robert S. (Oak Ridge, TN); Sease, John D. (Knoxville, TN)

    1981-01-01

    Fully chlorinated and/or fluorinated hydrocarbons are used as gas scrubbing liquids for preventing noxious gas emissions to the atmosphere.

  17. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas...

  18. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  19. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    , 2008 Next Release: July 10, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, June 25, natural gas spot prices...

  1. Historical Natural Gas Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  2. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  3. Historical Natural Gas Annual

    Gasoline and Diesel Fuel Update (EIA)

    8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  4. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    cooling demand for natural gas. Meanwhile, it became increasingly clear that Hurricane Frances likely would not pose a significant threat to natural gas production in the Gulf of...

  5. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    more from the system than they nominate. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  6. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    that had been in place since February 1. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  7. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    strong price contango during the report week, mitigated withdrawals of natural gas from storage. Other Market Trends: EIA Releases New Report on U.S. Greenhouse Gas Emissions:...

  8. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of natural gas vehicles. The Department of Energys Office of Energy Efficiency and Renewable Energy reports that there were 841 compressed natural gas (CNG) fuel stations and 41...

  9. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5, 2009 Next Release: July 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 24, 2009) Natural gas...

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    ability to process gas. The company's Main Pass 260 line to Pascagoula Gas Plant in Jackson, Mississippi, will not be available for transportation services. While the plant is...

  11. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Market Trends: MMS Announces New Incentives for Gulf Gas Production: The Minerals Management Service (MMS) unveiled proposed new incentives to increase deep gas production...

  12. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Next Release: November 6, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 29) Natural gas...

  13. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9, 2008 Next Release: June 26, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, June 11, natural gas spot prices...

  14. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prices using spot prices from producing areas, plus an allowance for interstate natural gas pipeline and local distribution company charges to transport the gas to market. Such a...

  15. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Weekly Underground Natural Gas Storage Report. The sample change occurred over a transition period that began with the release of the Weekly Natural Gas Storage Report (WNGSR)...

  16. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 12, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Spot gas at most market locations (outside the Rocky Mountain Region) traded...

  17. Stochastic PArallel Rarefied-gas Time-accurate Analyzer

    Energy Science and Technology Software Center (OSTI)

    2014-01-24

    The SPARTA package is software for simulating low-density fluids via the Direct Simulation Monte Carlo (DSMC) method, which is a particle-based method for tracking particle trajectories and collisions as a model of a multi-species gas. The main component of SPARTA is a simulation code which allows the user to specify a simulation domain, populate it with particles, embed triangulated surfaces as boundary conditions for the flow, overlay a grid for finding pairs of collision partners,more » and evolve the system in time via explicit timestepping. The package also includes various pre- and post-processing tools, useful for setting up simulations and analyzing the results. The simulation code runs either in serial on a single processor or desktop machine, or can be run in parallel using the MPI message-passing library, to enable faster performance on large problems.« less

  18. Fact Sheet: DOE/National Association of Regulatory Utility Commissioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Infrastructure Modernization Partnership | Department of Energy DOE/National Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership Fact Sheet: DOE/National Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership The following fact sheet outlines one of the Department of Energy's series of actions, partnerships, and stakeholder commitments to help modernize the nation¹s natural gas

  19. Downhole Dynamometer Data Processor

    Energy Science and Technology Software Center (OSTI)

    1996-08-19

    The Downhole Dynamometer Database contains data taken during tests made on a number of different wells using both a surface dynamometer and a number of different downhole dynamometer tools. DOWNDYN allows the user to perform four different functions on the database: select a data file, choose information from the file, and either plot or export that information.

  20. Sandia Motion Measurement Processor

    Energy Science and Technology Software Center (OSTI)

    2003-03-01

    SANDIA-MMP is used to estimate the motion of the belly and wing pods of an aircraft given various indirect in-flight measurements.

  1. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons

    SciTech Connect (OSTI)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. Concentrations in produced water discharge plume/receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  2. Annual Greenhouse Gas and Sustainability Data Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greenhouse Gas and Sustainability Data Report Annual Greenhouse Gas and Sustainability Data Report This Excel workbook (version 6-1) is a tool to use for comprehensive reporting of fiscal year 2015 for energy, costs, square footage, and associated operational data for calculating and reporting greenhouse gas data. This document is to be used by top-tier Federal departments and agencies. This Data Report collects agency-aggregated data necessary for calculating scope 1, 2, and 3 greenhouse gas

  3. Business Case for Compressed Natural Gas in Municipal Fleets | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Business Case for Compressed Natural Gas in Municipal Fleets Business Case for Compressed Natural Gas in Municipal Fleets This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas. PDF icon 47919.pdf More Documents & Publications QER - Comment of American Gas Association 3 Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current

  4. The Compelling Case for Natural Gas Vehicles | Department of Energy

    Energy Savers [EERE]

    The Compelling Case for Natural Gas Vehicles The Compelling Case for Natural Gas Vehicles Presentation-given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting-covers the natural gas vehicle (NGV) market, the benefits of NGVs, the growing selection of NGVs, and more. PDF icon fupwg_spring12_yborra.pdf More Documents & Publications QER - Comment of American Gas Association 3 Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development asdfadfa

  5. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  6. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  7. Characterization of Field-Aged Exhaust Gas Recirculation Cooler Deposits |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Field-Aged Exhaust Gas Recirculation Cooler Deposits Characterization of Field-Aged Exhaust Gas Recirculation Cooler Deposits Characterized field-aged exhaust gas recirculation coolers from 7 engine manufacturers, discussed differences and commonalities, and provided understanding of cooler fouling and prevention. PDF icon deer10_lance.pdf More Documents & Publications Materials Issues Associated with EGR Systems Materials Issues Associated with EGR Systems Materials

  8. Federal Perspective on Opportunities for Hydrogen and Natural Gas for Transportation„Including a Natural Gas Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Perspective on Opportunities for Hydrogen and Natural Gas for Transportation Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles - Workshop American Gas Association, Washington, D.C. Fred Joseck Fuel Cell Technologies Office Office of Sustainable Transportation U.S. Department of Energy September 9, 2014 2 | Fuel Cell Technologies Office eere.energy.gov The Potential for Natural Gas in Transportation With ample NG resources available , four potential pathways to

  9. Future of Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts * Supply vs. Capacity * Sources * Consumption * Pipeline system * Gas Interruptions - Operational Flow Orders * Pricing Federal Utility Partnership Working Group November 5-6, 2014 Cape Canaveral, FL Sources of Natural Gas * Mine * Import * Remove from storage Federal Utility Partnership Working Group November 5-6,

  10. TAURUS: an interactive post-processor for the analysis codes NIKE3D, DYNA3D, TACO3D, and GEMINI. Revision 1

    SciTech Connect (OSTI)

    Brown, B.E.; Hallquist, J.O.

    1984-05-01

    This report provides a user's manual for the post-processor, TAURUS. TAURUS reads the binary plot files generated by the two and three dimensional finite element codes currently used at LLNL and plots contours, time histories, and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS is operational on the CRAY-1, 7600, and VAX computers.

  11. TAURUS: an interactive post-processor for the analysis codes NIKE3D, DYNA3D, TACO3D, and GEMINI

    SciTech Connect (OSTI)

    Brown, B.E.; Hallquist, J.O.

    1982-07-01

    This report provides a user's manual for the post-processor, TAURUS. TAURUS reads the binary plot files generated by the three-dimensional finite element codes currently used at LLNL and plots contours, time histories, and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS is operational on the CRAY-1 and 7600 computers.

  12. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  13. Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  14. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  15. Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  16. Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  17. New York Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  18. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  19. North Dakota Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  20. West Virginia Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  1. South Dakota Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  2. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  3. U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  4. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  6. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  7. ,"Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  8. ,"Texas - RRC District 3 Onshore Associated-Dissolved Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation,...

  9. ,"Texas - RRC District 4 Onshore Associated-Dissolved Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation,...

  10. ,"Texas - RRC District 2 Onshore Associated-Dissolved Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation,...

  11. Natural gas monthly, September 1991. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-10-18

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production distribution consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia.

  12. EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation

    Gasoline and Diesel Fuel Update (EIA)

    Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown

  13. Nevada Natural Gas Wellhead (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value Nevada Natural Gas Wellhead Value and Marketed Production

  14. NATURAL GAS FROM SHALE: Questions and Answers

    Office of Environmental Management (EM)

    Challenges are Associated with Shale Gas Production? Developing any energy resource - whether conventional or non-conventional like shale - carries with it the possibility and risk of environmental, public health, and safety issues. Some of the challenges related to shale gas production and hydraulic fracturing include: * Increased consumption of fresh water (volume and sources); * Induced seismicity (earthquakes) from shale flowback water disposal;Chemical disclosure of fracture fluid

  15. LA, State Offshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    728 386 519 519 420 341 1981-2014 Natural Gas Nonassociated, Wet After Lease Separation 215 279 468 391 332 273 1981-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 513 107 51 128 88 68 1981-2014 Dry Natural Gas 701 371 502 502 402 327 1981-2014 Natural Gas Liquids (Million Barrels) 1981

  16. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  17. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Estimated Natural Gas Pipeline Mileage in the...

  18. EIA - Natural Gas Pipeline Network - Natural Gas Transmission...

    U.S. Energy Information Administration (EIA) Indexed Site

    Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural...

  19. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 2,414 Bcf as of Friday, January 9,...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 821 Bcf as of May 2, according to...

  1. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Natural gas stocks stood at 2,155 Bcf as of Friday, July 9,...

  2. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage as of September 2 totaled 2,669 Bcf,...

  3. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    the Northeast were expected to be in the single digits. Prices off Transcontinental Gas Pipe Line in New York and Algonquin Gas Transmission in the New England region yesterday...

  4. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, C.M.

    1996-12-10

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  5. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    by 14.4 percent. During this period, U.S. manufacturers used less petroleum and coal in manufacturing processes. This expansion of gas use occurred although natural gas prices to...

  6. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    withdrawal from working gas storage reported last Thursday. A contributing factor to the run-up in natural gas prices could be climbing crude oil prices, which rallied late last...

  7. EIA - Natural Gas Publications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    these data from 2005 to 2009 are presented for each State. (12282010) U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves: 2009 National and State...

  8. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    week's gas markets. As of Friday, May 11, 2001, the spot price of natural gas at the Henry Hub dropped 0.24 from the previous Friday to 4.25 per MMBtu. The NYMEX price of...

  9. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    York Mercantile Exchange (NYMEX), the August 2011 natural gas contract price also lost ground over the week, closing at 4.217 per MMBtu on Wednesday. The natural gas rotary rig...

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    York Mercantile Exchange (NYMEX), the August 2011 natural gas contract price also lost ground over the week, closing at 4.315 per MMBtu on Wednesday. The natural gas rotary rig...

  11. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of natural gas into storage. However, shut-in natural gas production in the Gulf of Mexico reduced available current supplies, and so limited net injections during the report...

  12. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    while the OFO was in effect. Pacific Gas and Electric Company extended a systemwide high-inventory OFO on its California Gas Transmission system through Saturday, July 5. It was...

  13. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    the OFO customers who delivered more than 110 percent of their actual gas usage into the system would be assessed for charges. Pacific Gas and Electric Company issued a...

  14. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  15. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  16. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  17. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    gas in storage, as well as decreases in the price of crude oil. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,905 Bcf as of...

  18. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  19. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of natural gas into storage, despite robust inventories. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,258 Bcf as of...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

  1. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas inventories...

  2. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Working gas in storage was 3,121 Bcf as of Friday, Oct 24, 2003, according to the Energy Information Administration (EIA) Weekly Natural Gas Storage Report. This is 2.7...

  3. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    gas in combination with water. Gas hydrate is thought to exist in great abundance in nature and has the potential to be a significant new energy source to meet future energy...

  4. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heating-related demand for natural gas that limited the size of the net addition to storage. The economic incentives for storing natural gas for next winter are considerably...

  5. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, Conrad M. (Antioch, CA)

    1996-01-01

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

  6. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    on Thursday, May 9, 2002. A sample of EIA's report can be seen at: Weekly Gas Storage Test Page. The Natural Gas Weekly Market Update report will convert to the new data series...

  7. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    The report provides an overview of U.S. international trade in 2008 as well as historical data on natural gas imports and exports. Net natural gas imports accounted for only 13...

  8. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of 1 Tcf from the 1994 estimate of 51 Tcf. Ultimate potential for natural gas is a science-based estimate of the total amount of conventional gas in the province and is an...

  9. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    10 (next release 2:00 p.m. on March 17) Natural gas spot prices increased this week (Wednesday to Wednesday, March 2-9) as a late season cold front moved into major gas-consuming...

  10. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next heating season. Net injections reported in today's release of EIA's Weekly Natural Gas Storage Report brought natural gas storage supplies to 2,163 Bcf as of Friday, June 1,...

  11. Natural gas annual 1996

    SciTech Connect (OSTI)

    1997-09-01

    This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

  12. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    delivery volumes. Northern Natural Gas Company issued a system overrun limitation (SOL) for all market-area zones for gas day February 21, 2008. The SOL was the result of...

  13. Landfill Gas | Open Energy Information

    Open Energy Info (EERE)

    Gas Jump to: navigation, search TODO: Add description List of Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173...

  14. Natural gas annual 1995

    SciTech Connect (OSTI)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  15. Residual gas analysis device

    DOE Patents [OSTI]

    Thornberg, Steven M. (Peralta, NM)

    2012-07-31

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  16. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    . Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis...

  17. ARM - Methane Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Gas Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Methane Gas Methane gas is another naturally occurring greenhouse gas. It is produced as a result of microbial activity in the absence of oxygen. Pre-industrial concentrations of methane were about 700 ppb and in 1994 they were up

  18. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Independence Avenue, SW Washington, DC 20585 . Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  19. Liquefied Natural Gas for Trucks and Buses

    SciTech Connect (OSTI)

    James Wegrzyn; Michael Gurevich

    2000-06-19

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

  20. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect (OSTI)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  1. Static gas expansion cooler

    DOE Patents [OSTI]

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  2. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  3. Table 4.3 Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 1949-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 1949-2010 Year Crude Oil 1 Natural Gas (Dry) Natural Gas Liquids 1 Total Thousand Barrels Million Cubic Feet 2 Thousand Barrels COE 3 Thousand Barrels Thousand Barrels COE 3 Thousand Barrels COE 3 American Petroleum Institute and American Gas Association Data<//td> 1949 24,649,489 179,401,693 32,013,150 3,729,012 3,069,146 59,731,785 1950 25,268,398 184,584,745 32,938,034 4,267,663 3,495,219 61,701,652 1951 27,468,031

  4. Natural gas leak mapper

    DOE Patents [OSTI]

    Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  5. Gas revenue increasingly significant

    SciTech Connect (OSTI)

    Megill, R.E.

    1991-09-01

    This paper briefly describes the wellhead prices of natural gas compared to crude oil over the past 70 years. Although natural gas prices have never reached price parity with crude oil, the relative value of a gas BTU has been increasing. It is one of the reasons that the total amount of money coming from natural gas wells is becoming more significant. From 1920 to 1955 the revenue at the wellhead for natural gas was only about 10% of the money received by producers. Most of the money needed for exploration, development, and production came from crude oil. At present, however, over 40% of the money from the upstream portion of the petroleum industry is from natural gas. As a result, in a few short years natural gas may become 50% of the money revenues generated from wellhead production facilities.

  6. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, Kwan H. (Lisle, IL); Ahluwalia, Rajesh K. (Clarendon Hills, IL)

    1985-01-01

    A process and apparatus for removing sulfur oxide from combustion gas to form Na.sub.2 SO.sub.4 and for reducing the harmful effects of Na.sub.2 SO.sub.4 on auxiliary heat exchangers in which a sodium compound is injected into the hot combustion gas forming liquid Na.sub.2 SO.sub.4 in a gas-gas reaction and the resultant gas containing Na.sub.2 SO.sub.4 is cooled to below about 1150.degree. K. to form particles of Na.sub.2 SO.sub.4 prior to contact with at least one heat exchanger with the cooling being provided by the recycling of combustion gas from a cooled zone downstream from the introduction of the cooling gas.

  7. Students' Association

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Student's Association (SA) Executive Board by email at saleaders@lanl.gov. We look forward to meeting you For new students... Join us on Facebook Check out Living in Los...

  8. Gas Hydrate Storage of Natural Gas

    SciTech Connect (OSTI)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

  9. U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Refinery Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  10. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    SciTech Connect (OSTI)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  11. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  12. Safety aspects of gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely.

  13. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  14. Oil & Gas Research | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional resources is focused on developing the data and modeling tools needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. Fugitive Emissions | Produced Water Management | Subsurface Fluid & Gas Migration | Induced Seismicity Offshore Resources Building the scientific understanding and

  15. Ohio Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    896 832 758 1,235 3,201 7,193 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 799 742 684 1,012 2,887 6,985 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 97 90 74 223 314 208 1979-2014 Dry Natural Gas 896 832 758 1,233 3,161 6,72

  16. EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida |

    Office of Environmental Management (EM)

    Department of Energy 6: Emera CNG, LLC Compressed Natural Gas Project, Florida EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida SUMMARY This EA will evaluate the potential environmental impacts associated with a proposal by Emera CNG, LLC that would include Emera's CNG plant facilities to receive, dehydrate, and compress gas to fill pressure vessels with an open International Organization for Standardization (ISO) container frame mounted on trailers. Emera plans to truck the

  17. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOE Patents [OSTI]

    Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA)

    1996-01-01

    A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.

  18. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOE Patents [OSTI]

    Ruka, R.J.; Basel, R.A.

    1996-03-12

    A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.

  19. Two-tank working gas storage system for heat engine

    DOE Patents [OSTI]

    Hindes, Clyde J. (Troy, NY)

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  20. Process and system for removing impurities from a gas

    DOE Patents [OSTI]

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.