Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks...  

U.S. Energy Information Administration (EIA) Indexed Site

Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)","U.S. Gasoline Blending Components Stocks at Refineries, Bulk Terminals, and Natural Gas Plants...

2

Natural Gas Plant Stocks of Natural Gas Liquids  

Gasoline and Diesel Fuel Update (EIA)

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5,419 6,722 6,801 5,826 6,210 6,249 1993-2013 PADD 1 122 121 115 189 246 248 1993-2013 East Coast 1993-2010 Appalachian No. 1 122 121 115 189 246 248 1993-2013 PADD 2 959 891 880 1,129 1,104 1,041 1993-2013 Ind., Ill. and Ky. 311 300 298 308 262 260 1993-2013 Minn., Wis., N. Dak., S. Dak. 56 64 58 60 51 64 1993-2013 Okla., Kans., Mo. 592 527 524 761 791 717 1993-2013 PADD 3 3,810 5,007 5,032 3,817 4,246 4,272 1993-2013

3

,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1993" Monthly","9/2013","1/15/1993" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_stoc_st_a_epm0f_str_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_st_a_epm0f_str_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:32:19 AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1","MGFSXP11","MGFSXCT1","MGFS3_SDE_1","MGFSXFL1","MGFSXGA1","MGFS3_SME_1","MGFS3_SMD_1","MGFSXMA1","MGFS3_SNH_1","MGFSXNJ1","MGFSXNY1","MGFSXNC1","MGFSXPA1","MGFSXRI1","MGFSXSC1","MGFS3_SVT_1","MGFSXVA1","MGFSXWV1","MGFSXP21","MGFSXIL1","MGFSXIN1","MGFSXIA1","MGFS3_SKS_1","MGFSXKY1","MGFSXMI1","MGFSXMN1","MGFSXMO1","MGFS3_SNE_1","MGFS3_SND_1","MGFSXOH1","MGFSXOK1","MGFS3_SSD_1","MGFSXTN1","MGFSXWI1","MGFSXP31","MGFSXAL1","MGFSXAR1","MGFSXLA1","MGFSXMS1","MGFSXNM1","MGFSXTX1","MGFSXP41","MGFSXCO1","MGFSXID1","MGFSXMT1","MGFSXUT1","MGFSXWY1","MGFSXP51","MGFSXAK1","MGFSXAZ1","MGFSXCA1","MGFSXHI1","MGFSXNV1","MGFSXOR1","MGFSXWA1"

4

,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1993" Annual",2012,"6/30/1993" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_stoc_st_a_epm0f_str_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_st_a_epm0f_str_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:32:18 AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1","MGFSXP11","MGFSXCT1","MGFS3_SDE_1","MGFSXFL1","MGFSXGA1","MGFS3_SME_1","MGFS3_SMD_1","MGFSXMA1","MGFS3_SNH_1","MGFSXNJ1","MGFSXNY1","MGFSXNC1","MGFSXPA1","MGFSXRI1","MGFSXSC1","MGFS3_SVT_1","MGFSXVA1","MGFSXWV1","MGFSXP21","MGFSXIL1","MGFSXIN1","MGFSXIA1","MGFS3_SKS_1","MGFSXKY1","MGFSXMI1","MGFSXMN1","MGFSXMO1","MGFS3_SNE_1","MGFS3_SND_1","MGFSXOH1","MGFSXOK1","MGFS3_SSD_1","MGFSXTN1","MGFSXWI1","MGFSXP31","MGFSXAL1","MGFSXAR1","MGFSXLA1","MGFSXMS1","MGFSXNM1","MGFSXTX1","MGFSXP41","MGFSXCO1","MGFSXID1","MGFSXMT1","MGFSXUT1","MGFSXWY1","MGFSXP51","MGFSXAK1","MGFSXAZ1","MGFSXCA1","MGFSXHI1","MGFSXNV1","MGFSXOR1","MGFSXWA1"

5

Table 38. Coal Stocks at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Stocks at Coke Plants by Census Division Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 38. Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Census Division June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 Middle Atlantic w w w w East North Central 1,313 1,177 1,326 -1.0 South Atlantic w w w w East South Central w w w w U.S. Total 2,500 2,207 2,295 8.9 w = Data withheld to avoid disclosure. Note: Total may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration (EIA), Form EIA-5, 'Quarterly Coal Consumption and Quality Report - Coke Plants.'

6

,"California Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Processing",3,"Annual",2013,"6301967" ,"Release Date:","1031...

7

Gas Turbine Plants  

Science Journals Connector (OSTI)

In a cycle process of a gas turbine, the compressor load, as well as ... from the expansion of the hot pressurized flue gas. Either turbine, compressor and driven assembly are joined by ... shaft is thus divided,...

1992-01-01T23:59:59.000Z

8

"NATURAL GAS PROCESSING PLANT SURVEY"  

U.S. Energy Information Administration (EIA) Indexed Site

0.5 hours" "NATURAL GAS PROCESSING PLANT SURVEY" "FORM EIA-757" "Schedule A: Baseline Report " "This report is mandatory under the Federal Energy Administration Act of 1974 (Public...

9

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant  

Science Journals Connector (OSTI)

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant ... A natural gas combined cycle (NGCC) power plant with capacity of about 430 MW integrated to a chemical solvent absorber/stripping capture plant is investigated. ... The natural gas combined cycle (NGCC) is an advanced power generation technology that improves the fuel efficiency of natural gas. ...

Mehdi Karimi; Magne Hillestad; Hallvard F. Svendsen

2012-01-19T23:59:59.000Z

10

Sauget Plant Flare Gas Reduction Project  

E-Print Network [OSTI]

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

11

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2012,"6301979" ,"Release...

12

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2013,"6301979" ,"Release...

13

Oil and stock market activity when prices go up and down: the case of the oil and gas industry  

Science Journals Connector (OSTI)

We examine the asymmetric effects of daily oil price changes on equity returns, market betas, oil betas, return variances, and trading volumes for the US oil and gas industry. The responses of stock returns assoc...

Sunil K. Mohanty; Aigbe Akhigbe…

2013-08-01T23:59:59.000Z

14

California Federal Offshore Natural Gas Plant Liquids, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

15

Louisiana Offshore Natural Gas Plant Liquids Production Extracted...  

U.S. Energy Information Administration (EIA) Indexed Site

Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million...

16

California State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas Plant Liquids, Proved Reserves (Million Barrels) California State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

17

Gas plants, new fields spark production rise  

SciTech Connect (OSTI)

Gas plant construction is welcomed by operators in the Williston Basin, North Dakota. Petroleum and gas production has increased. The Montana portion of the Williston Basin shows new discoveries. Some secondary recovery efforts are in operation. Industrial officials share the same enthusiasm and optimism for rising production as they do for exploration potential in the basin. 5 tables.

Lenzini, D.

1980-04-01T23:59:59.000Z

18

Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code 0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 NAICS Code June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 311 Food Manufacturing 875 926 1,015 -13.9 312 Beverage and Tobacco Product Mfg. 26 17 19 35.8 313 Textile Mills 22 22 25 -13.9 315 Apparel Manufacturing w w w w 321 Wood Product Manufacturing w w w w 322 Paper Manufacturing 570 583

19

Colorado Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

2008 2009 2010 2011 2012 2013 View History Natural Gas Processed (Million Cubic Feet) 1,029,641 1,233,260 1,434,003 1,507,467 1,464,261 1,373,046 1967-2013 Total Liquids Extracted...

20

Gas treating alternatives for LNG plants  

SciTech Connect (OSTI)

This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

Clarke, D.S.; Sibal, P.W. [Mobil Technology Co., Dallas, TX (United States)

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Performance testing of natural gas plants  

SciTech Connect (OSTI)

Performance testing of natural-gas-extraction plants has become a valuable tool for improving recovery of plants operating below their optimum capabilities or maintaining the optimum recovery once it has been achieved. Many plants, whether turbo-expander, lean oil absorption, or straight refrigeration type, can drift from optimum recovery for one or several of many reasons. Sometimes this drift occurs without the plant operators being aware, or the reduction in recovery may be caused by operating problems of which the operator is aware but feels cannot be solved with the equipment available. A plant performance test may find the unknown problem or the test will show the problem can be solved and recoveries improved with existing equipment. Sometimes a computer simulation of the plant, using the test data, may be required to find or solve the problem.

Herrin, J.P.

1983-01-01T23:59:59.000Z

22

Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams  

DOE Patents [OSTI]

A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

Wilding, Bruce M; Turner, Terry D

2014-12-02T23:59:59.000Z

23

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network [OSTI]

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant.… (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

24

Oklahoma Natural Gas Plant Liquids, Expected Future Production...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Liquids, Expected Future Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

25

California--State Offshore Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Plant Liquids, Expected Future Production (Million Barrels) California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1...

26

Alabama Offshore Natural Gas Plant Liquids Production Extracted...  

Gasoline and Diesel Fuel Update (EIA)

Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0...

27

California Onshore Natural Gas Plant Liquids Production Extracted...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production Extracted in California (Million Cubic Feet) California Onshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade...

28

Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Expected Future Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1...

29

Alabama (with State Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Expected Future Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0...

30

California (with State Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Expected Future Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0...

31

Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

32

Texas State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

33

Gulf Of Mexico Natural Gas Plant Liquids Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Plant Liquids Production (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

34

Colorado Natural Gas Plant Liquids, Expected Future Production...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Expected Future Production (Million Barrels) Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

35

Federal Offshore California Natural Gas Plant Liquids Production...  

Gasoline and Diesel Fuel Update (EIA)

Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants Federal Offshore California Natural Gas Gross Withdrawals and Production...

36

Federal Offshore--California Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

37

Louisiana--State Offshore Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Expected Future Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

38

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

39

,"Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2...

40

Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

42

,"Louisiana (with State Offshore) Natural Gas Plant Liquids,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

43

,"Texas--State Offshore Natural Gas Plant Liquids, Expected Future...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2...

44

Federal Offshore--California Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Expected Future Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

45

,"Mississippi (with State Offshore) Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

46

,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

47

,"Federal Offshore--California Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Plant Liquids, Expected Future Production (Million...

48

,"California--State Offshore Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2...

49

,"Texas (with State Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

50

,"Louisiana--State Offshore Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2...

51

,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million...

52

,"California (with State Offshore) Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

53

,"Alabama (with State Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

54

,"Federal Offshore--Texas Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future Production (Million...

55

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1...

56

California--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Available; W Withheld to avoid disclosure of individual company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Natural Gas Plant Liquids Production...

57

Texas (with State Offshore) Natural Gas Plant Liquids, Expected...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

58

Louisiana (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

59

Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

60

California (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

California--State Offshore Natural Gas Plant Liquids Production...  

Gasoline and Diesel Fuel Update (EIA)

2014 Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants California State Offshore Natural Gas Gross Withdrawals and Production...

62

Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2...

63

Mississippi (with State Offshore) Natural Gas Plant Liquids,...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2...

64

Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Expected Future Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

65

Mississippi (with State Offshore) Natural Gas Plant Liquids,...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

66

Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

67

Texas (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

68

Lower 48 Federal Offshore Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

69

,"New York Natural Gas Lease and Plant Fuel Consumption (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

70

Natural Gas Processing Plants in the United States: 2010 Update  

Gasoline and Diesel Fuel Update (EIA)

This special report presents an analysis of natural gas processing plants This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations. Key Findings There were 493 operational natural gas processing plants in the United States with a combined operating capacity of 77 billion cubic feet (Bcf) per day. Overall, operating capacity increased about 12 percent between 2004 and 2009, not including the processing capacity in Alaska1. At the same time, the number of all processing plants in the lower 48 States decreased

71

How Gas Turbine Power Plants Work | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

72

Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Olinda Landfill Gas Recovery Plant Biomass Facility Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

73

California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 77 1980's 81 57 124 117 105 120 109 107 101 95 1990's 86 75 83 85 75 80 80 82 58 60 2000's 64 52 68 78 95 112 100 103 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 CA, San Joaquin Basin Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

74

Turbine Drive Gas Generator for Zero Emission Power Plants  

SciTech Connect (OSTI)

The Vision 21 Program seeks technology development that can reduce energy costs, reduce or eliminate atmospheric pollutants from power plants, provide choices of alternative fuels, and increase the efficiency of generating systems. Clean Energy Systems is developing a gas generator to replace the traditional boiler in steam driven power systems. The gas generator offers the prospects of lower electrical costs, pollution free plant operations, choices of alternative fuels, and eventual net plant efficiencies in excess of 60% with sequestration of carbon dioxide. The technology underlying the gas generator has been developed in the aerospace industry over the past 30 years and is mature in aerospace applications, but it is as yet unused in the power industry. This project modifies and repackages aerospace gas generator technology for power generation applications. The purposes of this project are: (1) design a 10 MW gas generator and ancillary hardware, (2) fabricate the gas generator and supporting equipment, (3) test the gas generator using methane as fuel, (4) submit a final report describing the project and test results. The principal test objectives are: (1) define start-up, shut down and post shutdown control sequences for safe, efficient operation; (2) demonstrate the production of turbine drive gas comprising steam and carbon dioxide in the temperature range 1500 F to 3000 F, at a nominal pressure of 1500 psia; (3) measure and verify the constituents of the drive gas; and (4) examine the critical hardware components for indications of life limitations. The 21 month program is in its 13th month. Design work is completed and fabrication is in process. The gas generator igniter is a torch igniter with sparkplug, which is currently under-going hot fire testing. Fabrication of the injector and body of the gas generator is expected to be completed by year-end, and testing of the full gas generator will begin in early 2002. Several months of testing are anticipated. When demonstrated, this gas generator will be the prototype for use in demonstration power plants planned to be built in Antioch, California and in southern California during 2002. In these plants the gas generator will demonstrate durability and its operational RAM characteristics. In 2003, it is expected that the gas generator will be employed in new operating plants primarily in clean air non-attainment areas, and in possible locations to provide large quantities of high quality carbon dioxide for use in enhanced oil recovery or coal bed methane recovery. Coupled with an emission free coal gasification system, the CES gas generator would enable the operation of high efficiency, non-polluting coal-fueled power plants.

Doyle, Stephen E.; Anderson, Roger E.

2001-11-06T23:59:59.000Z

75

Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

76

Colorado Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Proved Reserves (Million Barrels) Colorado Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

77

Colorado Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

78

Texas--State Offshore Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

79

Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

80

Texas--State Offshore Natural Gas Plant Liquids, Expected Future...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Expected Future Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alaska--State Offshore Natural Gas Plant Liquids Production,...  

Gasoline and Diesel Fuel Update (EIA)

Alaska--State Offshore Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

82

California Offshore Natural Gas Plant Liquids Production Extracted...  

U.S. Energy Information Administration (EIA) Indexed Site

Offshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's NA -...

83

Louisiana Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) Louisiana Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

84

Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Proved Reserves (Million Barrels) Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

85

Michigan Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Proved Reserves (Million Barrels) Michigan Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

86

Arkansas Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Million Barrels) Arkansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

87

Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Liquids, Proved Reserves (Million Barrels) Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

88

Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Million Barrels) Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

89

Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Liquids, Proved Reserves (Million Barrels) Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

90

California Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Liquids, Proved Reserves (Million Barrels) California Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

91

Texas--State Offshore Natural Gas Plant Liquids Production, Gaseous...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's NA - No Data...

92

Solar steam reforming of natural gas integrated with a gas turbine power plant  

Science Journals Connector (OSTI)

Abstract This paper shows a hybrid power plant wherein solar steam reforming of natural gas and a steam injected gas turbine power plant are integrated for solar syngas production and use. The gas turbine is fed by a mixture of natural gas and solar syngas (mainly composed of hydrogen and water steam) from mid-low temperature steam reforming reaction whose heat duty is supplied by a parabolic trough Concentrating Solar Power plant. A comparison is made between a traditional steam injected gas turbine and the proposed solution to underline the improvements introduced by the integration with solar steam reforming of the natural gas process. The paper also shows how solar syngas can be considered as an energy vector consequent to solar energy conversion effectiveness and the natural gas pipeline as a storage unit, thus accomplishing the idea of a smart energy grid.

Augusto Bianchini; Marco Pellegrini; Cesare Saccani

2013-01-01T23:59:59.000Z

93

An Evaluation of Gas Turbines for APFBC Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS Donald L. Bonk U.S. DOE National Energy Technology Laboratory Morgantown, West Virginia eMail: dbonk@netl.doe.gov phone: (304) 285-4889 Richard E. Weinstein, P.E. Parsons Infrastructure & Technology Group Inc. Reading, Pennsylvania eMail: richard.e.weinstein@parsons.com phone: (610) 855-2699 Abstract This paper describes a concept screening evaluation of gas turbines from several manufacturers that assessed the merits of their respective gas turbines for advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) applications. The following gas turbines were evaluated for the modifications expected for APFBC service: 2 x Rolls-Royce Industrial Trent aeroderivative gas turbine configurations; a 3 x Pratt & Whitney Turbo Power FT8 Twin-

94

Chapter 4 - Natural Gas–fired Gas Turbines and Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Abstract Gas turbines can burn a range of liquid and gaseous fuels but most burn natural gas. Power plants based on gas turbines are one of the cheapest types of plant to build, but the cost of their electricity depends heavily on the cost of their fuel. Two types of gas turbine are used for power generation: aero-derivative gas turbines and heavy-duty gas turbines. The former are used to provide power to the grid at times of peak demand. The latter are most often found in combined cycle power stations. These are capable of more than 60% efficiency. There are a number of ways of modifying the gas turbine cycle to improve efficiency, including reheating and intercooling. Micro-turbines have been developed for very small-scale generation of both electricity and heat. The main atmospheric emissions from gas turbines are carbon dioxide and nitrogen oxide.

Paul Breeze

2014-01-01T23:59:59.000Z

95

Rubber linings as surface protection in flue gas desulfurization plants  

SciTech Connect (OSTI)

The manufacturers of the German rubber lining industry have executed the rubber lining of over 1 million m{sup 2} of steel surfaces in over 150 scrubbers of flue gas desulfurization (FGD) plants, thereby effectively protecting them against corrosion. The application of rubber linings as surface protection in FGD plants has proven effective.

Fenner, J.

1997-04-01T23:59:59.000Z

96

CO2 Capture Membrane Process for Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

97

Wyoming-Colorado Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2012 2013 View History Natural Gas Processed (Million Cubic Feet) 69,827 75,855 2012-2013 Total Liquids Extracted (Thousand Barrels) 5,481 5,903 2012-2013 NGPL Production, Gaseous...

98

New Mexico Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2008 2009 2010 2011 2012 2013 View History Natural Gas Processed (Million Cubic Feet) 853,470 769,783 737,187 795,069 777,099 746,010 1967-2013 Total Liquids Extracted (Thousand...

99

Plant physiology Stomatal movements and gas exchanges  

E-Print Network [OSTI]

medium, Triticum df had a better water-use efficiency than T300 and rye. On the contrary, in the nutrient solution, T300 had a better water-use efficiency than its parental species. Under water stress, water loss exchange were lower than in control plants. stomata / water-use efficiency / osmotic stress / triticale

Paris-Sud XI, Université de

100

Natural Gas Plant Field Production: Natural Gas Liquids  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 PADD 1 1,525 1,439 2,394 2,918 2,821 2,687 1981-2013 East Coast 1993-2008 Appalachian No. 1 1,525 1,439 2,394 2,918 2,821 2,687 1993-2013 PADD 2 12,892 13,208 13,331 13,524 15,204 15,230 1981-2013 Ind., Ill. and Ky. 1,975 1,690 2,171 1,877 2,630 2,746 1993-2013

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Wood-Fired Gas Turbine Plant  

E-Print Network [OSTI]

-fired turbine, it probably seems that a wood gasification system must be involved. This is a proven and accepted method of producing gas to drive this type of power unit, but the fuel produced is a dirty fuel containing large amounts of me' ~ "'1 re, tars..., and other undesirable impurities that make it unsuitable for use as a fuel until a rather expensive cleanup process and residual waste disposal can take place. However, Aerospace Research felt that there must be a way to improve on the wood gasification...

Powell, S. H.; Hamrick, J. T.

102

Gas-dynamic characteristics of a noise and heat insulating jacket on a gas turbine in a gas pumping plant on emergency disconnection of the cooling fans  

Science Journals Connector (OSTI)

The paper discusses the operation of a gas turbine plant (GTP) when the fans in ... NHJ by a fan. The operation of gas-pumping plant involves working with brief (10 ... describing the motion of an ideal thermally...

P. V. Trusov; D. A. Charntsev; I. R. Kats…

2008-09-01T23:59:59.000Z

103

,"Natural Gas Plant Field Production: Natural Gas Liquids "  

U.S. Energy Information Administration (EIA) Indexed Site

Field Production: Natural Gas Liquids " Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Field Production: Natural Gas Liquids ",16,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_gp_a_epl0_fpf_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_a_epl0_fpf_mbbl_m.htm" ,"Source:","Energy Information Administration"

104

Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,270 1,530 1,924 1970's 2,251 2,419 2,847 2,725 1,649 1,760 3,043 3,210 2,134 2,889 1980's 1,320 1,580 3,278 3,543 5,236 4,575 4,715 5,799 4,983 4,767 1990's 6,031 3,502 3,381 4,145 3,252 3,069 3,299 2,275 1,706 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Pennsylvania Natural Gas Consumption by End Use Lease and Plant

105

Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,582 9,158 8,521 1970's 7,893 5,840 9,153 6,152 5,357 7,894 4,836 4,979 5,421 8,645 1980's 4,428 4,028 7,236 6,632 7,202 6,296 6,562 8,091 7,100 5,021 1990's 7,257 4,585 4,945 4,829 3,632 3,507 3,584 3,652 3,710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Mississippi Natural Gas Consumption by End Use Lease and Plant

106

Efficient gas stream cooling in Second-Generation PFBC plants  

SciTech Connect (OSTI)

The coal-fueled Advanced or Second-Generation Pressurized Fluidized Bed Combustor concept (APFBC) is an efficient combined cycle in which coal is carbonized (partially gasified) to fuel a gas turbine, gas turbine exhaust heats feedwater for the steam cycle, and carbonizer char is used to generate steam for a steam turbine while heating combustion air for the gas turbine. The system can be described as an energy cascade in which chemical energy in solid coal is converted to gaseous form and flows to the gas turbine followed by the steam turbine, where it is converted to electrical power. Likewise, chemical energy in the char flows to both turbines generating electrical power in parallel. The fuel gas and vitiated air (PFBC exhaust) streams must be cleaned of entrained particulates by high-temperature equipment representing significant extensions of current technology. The energy recovery in the APFBC cycle allows these streams to be cooled to lower temperatures without significantly reducing the efficiency of the plant. Cooling these streams would allow the use of lower-temperature gas cleanup equipment that more closely approaches commercially available equipment, reducing cost and technological risk, and providing an earlier path to commercialization. This paper describes the performance effects of cooling the two hottest APFBC process gas streams: carbonizer fuel gas and vitiated air. Each cooling variation is described in terms of energy utilization, cycle efficiency, and cost implications.

White, J.S.; Horazak, D.A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

1994-07-01T23:59:59.000Z

107

Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,225 1,736 1,807 1,582 4,278 2,390 2,537 1990's 27,720 36,088 36,741 35,503 37,347 39,116 40,334 40,706 39,601 41,149 2000's 42,519 42,243 44,008 44,762 44,016 43,386 38,938 41,197 40,286 39,447 2010's 37,316 35,339 37,397 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Alaska Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

108

Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,848 123,993 104,292 102,185 123,008 121,936 134,132 1990's 82,828 83,733 86,623 74,925 66,600 75,845 69,235 71,155 63,368 68,393 2000's 69,174 63,137 63,031 56,018 55,970 45,837 46,205 51,499 42,957 39,002 2010's 40,814 42,633 42,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Louisiana Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

109

Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,750 31,237 31,121 29,705 35,751 40,508 38,392 1990's 39,249 42,166 39,700 39,211 35,432 34,900 35,236 30,370 26,034 25,055 2000's 25,934 28,266 25,525 26,276 27,818 27,380 28,435 28,213 27,161 24,089 2010's 23,238 24,938 27,809 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Oklahoma Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

110

Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Wyoming Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

111

U.S. Federal Offshore Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) U.S. Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

112

Gas Turbine Cogeneration Plant for the Dade County Government Center  

E-Print Network [OSTI]

expansion plans, the system will efficiently produce additional electricity when chilled water demands are low. Houston, Texas The cogeneration plant consists of a Rolls-Royce gas turbine-generator set and a waste-heat recovery system which recovers... waste heat from the gas I tur bine exhaust. The waste-heat recovery syste~ con sists of a Zurn dual-pressure, heat recovery bpiler, a Thermo Electron dual-pressure, extraction /conden sing steam turbine generator set, and four Tra~e ab sorption...

Michalowski, R. W.; Malloy, M. K.

113

Analysis of Natural Gas Fuel Cell Plant Configurations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Natur Analysis of Natur al Gas Fuel Cell Plant Configur ations March 24, 2011 DOE/NETL-2011/1486 Analysis of Natur al Gas Fuel Cell Plant Configur ations Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

114

Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 121 116 93 1970's 79 55 70 71 75 68 61 45 64 49 1980's 41 29 40 55 61 145 234 318 272 254 1990's 300 395 604 513 513 582 603 734 732 879 2000's 586 691 566 647 634 700 794 859 1,008 1,295 2010's 4,578 8,931 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent Pennsylvania Natural Gas Plant Processing

115

Coking Plants, Coal-to-gas Plants, Gas Production and Distribution  

Science Journals Connector (OSTI)

This environmental brief covers various coal upgrading technologies, incl. coking and low-temperature carbonization as processes yielding the target products coke and gas plus tar products and diverse...

1995-01-01T23:59:59.000Z

116

Assessment of gas-side fouling in cement plants  

SciTech Connect (OSTI)

The purpose of this study is to provide an assessment of gas-side fouling in cement plants with special emphasis on heat recovery applications. Exhaust gases in the cement industry which are suitable for heat recovery range in temperature from about 400 to 1300 K, are generally dusty, may be highly abrasive, and are often heavily laden with alkalies, sulfates, and chlorides. Particulates in the exhaust streams range in size from molecular to about 100 ..mu..m in diameter and come from both the raw feed as well as the ash in the coal which is the primary fuel used in the cement industry. The major types of heat-transfer equipment used in the cement industry include preheaters, gas-to-air heat exchangers, waste heat boilers, and clinker coolers. The most important gas-side fouling mechanisms in the cement industry are those due to particulate, chemical reaction, and corrosion fouling. Particulate transport mechanisms which appear to be of greatest importance include laminar and turbulent mass transfer, thermophoresis, electrophoresis, and inertial impaction. Chemical reaction mechanisms of particular importance include the deposition of alkali sulfates, alkali chlorides, spurrite, calcium carbonate, and calcium sulfate. At sufficiently low temperatures, sulfuric acid and water can condense on heat exchanger surfaces which can cause corrosion and also attract particulates in the flow. The deleterious effects of gas-side fouling in cement plants are due to: (1) increased capital costs; (2) increased maintenance costs; (3) loss of production; and (4) energy losses. A conservative order-of-magnitude analysis shows that the cost of gas-side fouling in US cement plants is $0.24 billion annually.

Marner, W.J.

1982-09-01T23:59:59.000Z

117

The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants  

E-Print Network [OSTI]

1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power, Pennsylvania Presentation to the Natural Gas CCS Forum Washington, DC November 4, 2011 E.S. Rubin, Carnegie Mellon MotivationMotivation · Electric utilities again looking to natural gas combined cycle (NGCC

118

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network [OSTI]

- BACKGROUND: In December 2009, the Combined Heat and Power Plant at Cornell Cornell's conversion of a coal fired heating plant to natural Gas the power plant #12;

Keinan, Alon

119

Distillate Fuel Oil Refinery, Bulk Terminal, and Natural Gas Plant Stocks  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 91,312 93,175 97,872 97,384 98,180 87,471 1993-2013 PAD District 1 27,017 30,786 32,127 33,208 33,382 29,157 1993-2013 Connecticut 1,014 1,154 1,120 1,502 1,791 1,688 1993-2013 Delaware 560 578 385 599 686 319 1993-2013 District of Columbia 1993-2004 Florida 1,990 2,023 2,226 2,051 2,270 1,838 1993-2013 Georgia 1,192 1,278 1,161 1,174 1,257 1,003 1993-2013 Maine 1,180 1,147 1,033 969 1,076 1,200 1993-2013 Maryland 822 1,446 1,543 1,592 1,506 940 1993-2013 Massachusetts 1,258 1,358 1,615 1,490 1,827 2,066 1993-2013 New Hampshire 239 238 224 158 254 542 1993-2013 New Jersey 6,805 8,676 9,534 10,341 9,576 7,169 1993-2013 New York 2,734 3,650 3,433 4,141 3,783 3,601 1993-2013

120

U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. PAD District 1 Connecticut Delaware District of Columbia Florida Georgia Maine Maryland Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island South Carolina Vermont Virginia West Virginia PAD District 2 Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin PAD District 3 Alabama Arkansas Louisiana Mississippi New Mexico Texas PAD District 4 Colorado Idaho Montana Utah Wyoming PAD District 5 Alaska Arizona California Hawaii Nevada Oregon Washington Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

New generation enrichment monitoring technology for gas centrifuge enrichment plants  

SciTech Connect (OSTI)

The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

Ianakiev, Kiril D [Los Alamos National Laboratory; Alexandrov, Boian, S. [Los Alamos National Laboratory; Boyer, Brian, D. [Los Alamos National Laboratory; Hill, Thomas, R. [Los Alamos National Laboratory; Macarthur, Duncan, W. [Los Alamos National Laboratory; Marks, Thomas [Los Alamos National Laboratory; Moss, Calvin, E. [Los Alamos National Laboratory; Sheppard, Gregory, A. [Los Alamos National Laboratory; Swinhoe, Martyn, T. [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

122

Dynamic gas bearing turbine technology in hydrogen plants  

Science Journals Connector (OSTI)

Dynamic Gas Bearing Turbines - although applied for helium refrigerators and liquefiers for decades - experienced limitations for hydrogen applications due to restrictions in axial bearing capacity. With a new design concept for gas bearing turbines developed in 2004 axial bearing capacity was significantly improved enabling the transfer of this technology to hydrogen liquefiers. Prior to roll-out of the technology to industrial plants the turbine bearing technology passed numerous tests in R&D test benches and subsequently proved industrial scale demonstration at Linde Gas' hydrogen liquefier in Leuna Germany. Since its installation this turbine has gathered more than 16 000 successful operating hours and has outperformed its oil bearing brother in terms of performance maintainability as well as reliability. The present paper is based on Linde Kryotechnik AG's paper published in the proceedings of the CEC 2009 concerning the application of Dynamic Gas Bearing Turbines in hydrogen applications. In contrast to the former paper this publication focuses on the steps towards final market launch and more specifically on the financial benefits of this turbine technology both in terms of capital investment as well as operating expenses.

Klaus Ohlig; Stefan Bischoff

2012-01-01T23:59:59.000Z

123

Description of the Portsmouth Gas Centrifuge Enrichment Plant  

SciTech Connect (OSTI)

The Portsmouth Gas Centrifuge Enrichment Plant (GCEP) will be located at the site of the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio. The purpose of the facility is to provide enriching services for the production of low assay enriched uranium for civilian nuclear power reactors. The construction and operation of the GCEP is administered by the US Department of Energy. The facility will be operated under contract from the US Government. Control of the GCEP rests solely with the US Government, which holds and controls access to the technology. Construction of GCEP is expected to be completed in the mid-1990's. Many facility design and operating procedures are subject to change. Nonetheless, the design described in this report does reflect current thinking. Descriptions of the general facility and major buildings such as the process buildings, feed and withdrawal building, cylinder storage and transfer, recycle/assembly building, and a summary of the centrifuge uranium enriching process are provided in this report.

Arthur, W.B. (comp.)

1980-12-16T23:59:59.000Z

124

Plants in Your Gas Tank: From Photosynthesis to Ethanol  

K-12 Energy Lesson Plans and Activities Web site (EERE)

With ethanol becoming more prevalent in the media and in gas tanks, it is important for students to know from where it comes. This module uses a series of activities to show how energy and mass are converted from one form to another. It focuses on the conversion of light energy into chemical energy via photosynthesis. It then goes on to show how the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed.

125

Re-lining of scrubbers in flue gas desulfurization plants  

SciTech Connect (OSTI)

Rubber lining is used as corrosion protection material in scrubbers, tanks, pipe systems etc of European flue gas desulfurization plants. Although these rubber linings show in cases more than 15 years life, re-rubber lining is still necessary. Due to the expected higher availability of the power station units the time scale of such replacement must be kept to a minimum. As an efficient method for removal of the old lining the high pressure water systems has proven successful. Based on one such case of re-lining the working steps and time scale are demonstrated.

Fenner, J. [Keramchemie GmbH, Siershahn (Germany)

1999-11-01T23:59:59.000Z

126

Relining of scrubbers in flue gas desulfurization plants  

SciTech Connect (OSTI)

Rubber lining is used as a corrosion protection material in European flue gas desulfurization plants, for scrubbers, tanks, pipe systems, etc. Although these rubber linings can last more than 15 years, relining still is necessary. The difficulty of shutting down power station units requires that the time scale of this replacement be kept to a minimum. High-pressure water systems have proven successful as an efficient method for removal of the old lining. The working steps and time scale are demonstrated for one such relining case.

Fenner, J. [Keramchemie GmbH (Germany)

1999-09-01T23:59:59.000Z

127

Novel integrated gas turbine solar cogeneration power plant  

Science Journals Connector (OSTI)

Concentrating solar cogeneration power plants (CSCPP) may provide a key solution for the pressing freshwater deficits in the Middle East and North Africa (MENA) region and could be used in the future for export electricity to Europe. From this standpoint the current study was undertaken to include proposed schemes of CSCPP, that would fully exploit the potential of hybrid reverse osmosis (RO)/multi effect distillation (MED) seawater desalination. Thereby, the primary objective of the present study was to identify and investigate the effectiveness and thermodynamic performance of CSCPP schemes. To satisfy this objective, detailed computational model for key components in the plant has been developed and implemented on simulation computer code. The thermal effectiveness in the computational model was characterized by the condition of attaining a maximum fuel saving in the electrical power grid (EPG). The study result shows the effectiveness of proposed CSCPP schemes. Especially the integrated gas turbine solar cogeneration power plant (IGSCP) scheme seems to be an alternative of the most effective technologies in terms of technical, economic and environmental sustainability. For the case study (IGSCP and the design number of effects 10 for low-temperature MED unit) the economical effect amount 172.3 ton fuel/year for each MW design thermal energy of parabolic solar collector array (PSCA). The corresponding decrease in exhaust gases emission (nitrogen oxides (NOx) 0.681 ton/year MW, carbon dioxides (CO2) 539.5 ton/year MW). Moreover, the increase in the output of PSCA and, subsequently, in solar power generation, will also be useful to offset the normal reduction in performance experienced by gas turbine unit during the summer season. Hence, the influence of the most important design parameters on the effectiveness of ISGPP has been discussed in this paper.

Hussain Alrobaei

2008-01-01T23:59:59.000Z

128

Title: Net Energy Ratio and Greenhouse Gas Analysis of a Biogas Power Plant  

E-Print Network [OSTI]

of a Biogas Power Plant Author: W. Bauer Author Affiliation: Department and greenhouse gas analysis for a 1.45 MW (0.71 MW electrical) biogas power plant

Bauer, Wolfgang

129

Second law analysis of a natural gas-fired steam boiler and cogeneration plant.  

E-Print Network [OSTI]

??A second law thermodynamic analysis of a natural gas-fired steam boiler and cogeneration plant at Rice University was conducted. The analysis included many components of… (more)

Conklin, Eric D

2010-01-01T23:59:59.000Z

130

Multivariable robust control of a simulated hybrid solid oxide fuel cell gas turbine plant.  

E-Print Network [OSTI]

??This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built… (more)

Tsai, Alex, 1973-

2007-01-01T23:59:59.000Z

131

"NATURAL GAS PROCESSING PLANT SURVEY"  

U.S. Energy Information Administration (EIA) Indexed Site

1.5 hours" 1.5 hours" "NATURAL GAS PROCESSING PLANT SURVEY" "FORM EIA-757" "Schedule B: Emergency Status Report" "This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure to comply may result in criminal fines, civil penalties and other sanctions as provided by law. For further information concerning sanctions and data protections see the provision on sanctions and the provision concerning the confidentiality of information in the instructions. Title 18 USC 1001 makes it a criminal offense for any person knowingly and willingly to make to any Agency or Department of the United States any false, fictitious, or fraudulent statements as to any matter within its jurisdiction."

132

Systems approach used in the Gas Centrifuge Enrichment Plant  

SciTech Connect (OSTI)

A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.

Rooks, W.A. Jr.

1982-01-01T23:59:59.000Z

133

Off-Gas Cleaning in an FRG Reprocessing Plant  

Science Journals Connector (OSTI)

Technical Paper / Development of Nuclear Gas Cleaning and Filtering Techniques / Radiation Biology and Environment

Jürgen Furrer; Walter Weinländer

134

Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 115,177 140,290 179,117 1970's 193,209 195,072 197,967 206,833 194,329 189,541 172,584 166,392 161,511 165,515 1980's 142,171 142,423 128,858 124,193 132,501 117,736 115,604 124,890 120,092 121,425 1990's 119,405 129,154 132,656 130,336 128,583 146,048 139,841 150,008 144,609 164,794 2000's 164,908 152,862 152,724 124,955 133,434 103,381 105,236 110,745 94,785 95,359 2010's 102,448 95,630 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

135

Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,351 3,244 2,705 1970's 2,330 2,013 1,912 1,581 1,921 2,879 6,665 11,494 14,641 15,686 1980's 15,933 14,540 14,182 13,537 12,829 11,129 11,644 10,876 10,483 9,886 1990's 8,317 8,103 8,093 7,012 6,371 6,328 6,399 6,147 5,938 5,945 2000's 5,322 4,502 4,230 3,838 4,199 3,708 3,277 3,094 3,921 2,334 2010's 2,943 2,465 2,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013

136

California Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) California Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,803 32,639 30,334 1970's 29,901 27,585 24,156 17,498 17,201 15,221 14,125 13,567 13,288 10,720 1980's 8,583 7,278 14,113 14,943 15,442 16,973 16,203 15,002 14,892 13,376 1990's 12,424 11,786 12,385 12,053 11,250 11,509 12,169 11,600 10,242 10,762 2000's 11,063 11,060 12,982 13,971 14,061 13,748 14,056 13,521 13,972 13,722 2010's 13,244 12,095 12,755 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

137

Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,500 8,573 8,579 1970's 6,574 6,133 6,063 5,441 5,557 5,454 5,231 4,764 6,192 3,923 1980's 6,845 5,638 6,854 6,213 6,516 6,334 4,466 2,003 2,142 1,444 1990's 1,899 2,181 2,342 2,252 2,024 2,303 2,385 2,404 2,263 2,287 2000's 1,416 1,558 1,836 1,463 2,413 1,716 2,252 1,957 2,401 3,270 2010's 4,576 4,684 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

138

New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,149 48,635 50,484 1970's 52,647 53,810 54,157 55,782 54,986 56,109 61,778 72,484 77,653 62,107 1980's 59,457 60,544 56,857 56,304 58,580 53,953 51,295 65,156 63,355 61,594 1990's 66,626 70,463 75,520 83,193 86,607 85,668 108,341 109,046 106,665 107,850 2000's 110,411 108,958 110,036 111,292 105,412 101,064 99,971 96,250 92,579 94,840 2010's 91,963 90,291 84,562 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

139

Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 4,126 4,546 4,058 1970's 3,405 4,152 4,114 4,674 6,210 9,620 11,944 13,507 13,094 12,606 1980's 12,651 13,427 12,962 11,314 10,771 11,913 10,441 10,195 11,589 13,340 1990's 13,178 15,822 18,149 18,658 19,612 25,225 23,362 28,851 24,365 26,423 2000's 29,105 29,195 31,952 33,650 35,821 34,782 36,317 38,180 53,590 67,607 2010's 82,637 90,801 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

140

Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 236 1970's 225 281 243 199 501 694 661 933 1,967 4,845 1980's 4,371 4,484 4,727 4,709 5,123 5,236 4,836 4,887 4,774 5,022 1990's 4,939 4,997 5,490 5,589 5,647 5,273 5,361 4,637 4,263 18,079 2000's 24,086 13,754 14,826 11,293 15,133 13,759 21,065 19,831 17,222 17,232 2010's 19,059 17,271 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,150 5,428 4,707 1970's 4,490 3,592 3,199 2,969 2,571 2,404 2,421 2,257 2,394 2,986 1980's 3,677 5,008 5,602 7,171 7,860 8,420 6,956 7,859 6,945 6,133 1990's 6,444 6,342 6,055 5,924 5,671 5,327 4,937 5,076 5,481 5,804 2000's 6,021 6,168 5,996 5,818 6,233 6,858 7,254 7,438 7,878 10,140 2010's 11,381 14,182 26,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014

142

New Measures to Safeguard Gas Centrifuge Enrichment Plants  

SciTech Connect (OSTI)

As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

Whitaker, Jr., James [ORNL; Garner, James R [ORNL; Whitaker, Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA; Gilligan, Kimberly V [ORNL; Younkin, James R [ORNL; Hooper, David A [ORNL; Henkel, James J [ORNL; Krichinsky, Alan M [ORNL

2011-01-01T23:59:59.000Z

143

Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 433,684 457,117 447,325 1970's 466,016 448,288 470,105 466,143 448,993 435,571 428,635 421,110 393,819 352,650 1980's 350,312 345,262 356,406 375,849 393,873 383,719 384,693 364,477 357,756 343,233 1990's 342,186 353,737 374,126 385,063 381,020 381,712 398,442 391,174 388,011 372,566 2000's 380,535 355,860 360,535 332,405 360,110 355,589 373,350 387,349 401,503 424,042 2010's 433,622 481,308 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

144

Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,127 971 1,334 1970's 1,270 1,217 1,058 878 679 567 520 367 485 1,146 1980's 553 830 831 633 618 458 463 437 811 380 1990's 445 511 416 395 425 377 340 300 495 5,462 2000's 11,377 15,454 16,477 11,430 13,697 14,308 14,662 13,097 10,846 18,354 2010's 18,405 11,221 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent

145

Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,499 3,667 3,475 1970's 3,235 2,563 1,197 1,118 952 899 823 674 883 1,308 1980's 1,351 1,327 1,287 1,258 1,200 1,141 1,318 1,275 1,061 849 1990's 800 290 413 507 553 488 479 554 451 431 2000's 377 408 395 320 254 231 212 162 139 168 2010's 213 268 424 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent

146

Medium-Term Risk Management for a Gas-Fired Power Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Medium-Term Risk Management for a Gas-Fired Power Plant Medium-Term Risk Management for a Gas-Fired Power Plant Speaker(s): Afzal Siddiqui Date: October 11, 2012 - 12:00pm Location: 90-1099 Seminar Host/Point of Contact: Chris Marnay Electricity sectors in many countries have been deregulated with the aim of introducing competition. However, as a result, electricity prices have become highly volatile. Stochastic programming provides an appropriate method to characterise the uncertainty and to derive decisions while taking risk management into account. We consider the medium-term risk management problem of a UK gas-fired power plant that faces stochastic electricity and gas prices. In particular, the power plant makes daily decisions about electricity sales to and gas purchases from spot markets over a monthly

147

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

148

Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 614 566 532 512 575 1990's 519 545 472 490 500 496 621 785 776 833 2000's 921 785 783 598 615 603 575 528 464 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

149

Texas - RRC District 3 Onshore Natural Gas Plant Liquids, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 3 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 231 1980's 216 230 265 285 270 260 237 241 208 213 1990's 181 208 211 253 254 272 289 286 246 226 2000's 209 226 241 207 221 226 234 271 196 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 TX, RRC District 3 Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

150

Texas - RRC District 4 Onshore Natural Gas Plant Liquids, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 4 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 248 1980's 252 260 289 292 295 269 281 277 260 260 1990's 279 273 272 278 290 287 323 347 363 422 2000's 406 378 370 287 326 309 333 327 310 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 TX, RRC District 4 Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

151

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dexin Wang Dexin Wang Principal Investigator Gas Technology Institute 1700 South Mount Prospect Rd Des Plaines, Il 60018 847-768-0533 dexin.wang@gastechnology.org TransporT MeMbrane Condenser for WaTer and energy reCovery froM poWer planT flue gas proMIs/projeCT no.: nT0005350 Background One area of the U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program's research is being performed to develop advanced technologies to reuse power plant cooling water and associated waste heat and to investigate methods to recover water from power plant flue gas. Considering the quantity of water withdrawn and consumed by power plants, any recovery or reuse of this water can significantly reduce the plant's water requirements. Coal occurs naturally with water present (3-60 weight %), and the combustion

152

Defining the needs for gas centrifuge enrichment plants advanced safeguards  

SciTech Connect (OSTI)

Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using nondestructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared UF{sub 6} containers used in the process of enrichment at GCEPs. In verifying declared LEU production, the inspectors also take samples for off-site destructive assay (DA) which provide accurate data, with 0.1% to 0.5% measurement uncertainty, on the enrichment of the UF{sub 6} feed, tails, and product. However, taking samples of UF{sub 6} for off-site analysis is a much more labor and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of results and interruptions to the continuity of knowledge (CofK) of the samples during their storage and transit. This paper contains an analysis of possible improvements in unattended and attended NDA systems such as process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector's measurements and provide more effective and efficient IAEA GCEPs safeguards. We also introduce examples advanced safeguards systems that could be assembled for unattended operation.

Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril [Los Alamos National Laboratory; Marlowe, Johnna B [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

153

Modular high temperature gas-cooled reactor plant design duty cycle. Revision 3  

SciTech Connect (OSTI)

This document defines the Plant Design Duty Cycle (PCDC) for the Modular High Temperature Gas-cooled Reactor (MHTGR). The duty cycle is a set of events and their design number of occurrences over the life of the plant for which the MHTGR plant shall be designed to ensure that the plant meets all the top-level requirements. The duty cycle is representative of the types of events to be expected in multiple reactor module-turbine plant configurations of the MHTGR. A synopsis of each PDDC event is presented to provide an overview of the plant response and consequence. 8 refs., 1 fig., 4 tabs.

Chan, T.

1989-12-31T23:59:59.000Z

154

Gas treatment and by-products recovery of Thailand`s first coke plant  

SciTech Connect (OSTI)

Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

Diemer, P.E.; Seyfferth, W. [Krupp Uhde GmbH, Dortmund (Germany)

1997-12-31T23:59:59.000Z

155

Natural Gas Processing Plants in the United States: 2010 Update / Appendix  

Gasoline and Diesel Fuel Update (EIA)

Appendix Appendix The preceding report is the most comprehensive report published by the EIA on natural gas processing plants in the United States. The data in the report for the year 2008 were collected on Form EIA-757, Natural Gas Processing Survey Schedule A, which was fielded to EIA respondents in the latter part of 2008 for the first time. This survey was used to collect information on the capacity, status, and operations of natural gas processing plants and to monitor constraints of natural gas processing plants during periods of supply disruption in areas affected by an emergency, such as a hurricane. EIA received authorization to collect information on processing plants from the Office of Management and Budget in early 2008. The form consists of two parts, Schedule A and Schedule B. Schedule A is

156

Membrane Process to Sequester CO2 from Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MeMbrane Process to sequester co MeMbrane Process to sequester co 2 froM Power Plant flue Gas Background Carbon dioxide emissions from coal-fired power plants are believed to contribute significantly to global warming climate change. The direct approach to address this problem is to capture the carbon dioxide in flue gas and sequester it underground. However, the high cost of separating and capturing CO 2 with conventional technologies prevents the adoption of this approach. This project investigates the technical and economic feasibility of a new membrane process to capture CO 2 from power plant flue gas. Description Direct CO 2 capture from power plant flue gas has been the subject of many studies. Currently, CO 2 capture with amine absorption seems to be the leading candidate technology-although membrane processes have been suggested. The principal

157

Testing of power-generating gas-turbine plants at Russian electric power stations  

Science Journals Connector (OSTI)

This paper cites results of thermal testing of various types and designs of power-generating gas-turbine plants (GTP), which have been placed in service at electric-power stations in Russia in recent years. Therm...

G. G. Ol’khovskii; A. V. Ageev; S. V. Malakhov…

2006-07-01T23:59:59.000Z

158

Federal Offshore--Gulf of Mexico Natural Gas Plant Fuel Consumption...  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - No Data Reported;...

159

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Broader source: Energy.gov (indexed) [DOE]

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

160

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico States Gulf of Mexico States Gulf of Mexico States The Gulf of Mexico area, which includes the States of Texas, Louisiana, Mississippi, Alabama, and Florida, has in the past accounted for the majority of natural gas production. Processing plants are especially important in this part of the country because of the amount of NGLs in the natural gas produced and existence of numerous petro-chemical plants seeking that feedstock in this area. Consequently, the States along the Gulf of Mexico are home to the largest number of plants and the most processing capacity in the United States. Natural gas produced in this area of the country is typically rich in NGLs and requires processing before it is pipeline-quality dry natural gas. Offshore natural gas production can contain more than 4 gallons of

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Broader source: Energy.gov (indexed) [DOE]

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

162

Gas turbine power plant with supersonic shock compression ramps  

DOE Patents [OSTI]

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2008-10-14T23:59:59.000Z

163

Figure A1. Natural gas processing plant capacity in the United States, 2013 2012  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Figure A1. Natural gas processing plant capacity in the United States, 2013 2012 Table A2. Natural gas processing plant capacity, by state, 2013 (million cubic feet per day) Alabama 1,403 Arkansas 24 California 926 Colorado 5,450 Florida 90 Illinois 2,100 Kansas 1,818 Kentucky 240 Louisiana 10,737 Michigan 479 Mississippi 1,123

164

Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.  

SciTech Connect (OSTI)

Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

Wang, M.; Wu, M.; Huo, H.; Energy Systems

2007-04-01T23:59:59.000Z

165

Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant  

Science Journals Connector (OSTI)

Since the United States began a programme to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types—categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly—from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

Michael Wang; May Wu; Hong Huo

2007-01-01T23:59:59.000Z

166

Application of mechanical and electrical equipment in a natural gas processing plant  

SciTech Connect (OSTI)

In 1984 the Northwest Pipeline Corporation purchased and installed equipment for their Ignacio, Colorado, gas processing plant to extract ethane and heavier hydrocarbons from the gas arriving at their pipeline system from various natural gas producing sources. In addition to the basic turbo-expander required to achieve the very low gas temperatures in the process, the equipment includes gas turbine driven compressors, heat recovery steam generators, and a steam turbine driven electric power generator. This paper reviews the process itself, the various mechanical and electrical equipment involved, and some of the control system utilized to tie it all together.

Lang, R.P.; Mc Cullough, B.B.

1987-01-01T23:59:59.000Z

167

U.S. Total Imports Natural Gas Plant Processing  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Processing Area: U.S. Alabama Alabama Onshore-Alabama Alabama Offshore-Alabama Alaska Arkansas Arkansas-Arkansas California California Onshore-California California...

168

Host plant resistance to Whiteflies, Bemisia tabaci (Gennadius), Biotype B, (Homoptera: Aleyrodidae) in cotton race stocks for breeding improved cotton cultivars  

E-Print Network [OSTI]

to that of the putative known susceptibles (KS). These tests showed 6 converted race stocks to be significantly different (P ? 0.1) from the KS for at least one of the two selection criteria. Of these converted race stocks, M-9044-0154 and M-9044-0156 showed to have...

Ripple, Brandon Wayne

2004-09-30T23:59:59.000Z

169

Combined gas turbine-Rankine turbine power plant  

SciTech Connect (OSTI)

A combined gas turbine-Rankine cycle powerplant with improved part load efficiency is disclosed. The powerplant has a gas turbine with an organic fluid Rankine bottoming cycle which features an inter-cycle regenerator acting between the superheated vapor leaving the Rankine turbine and the compressor inlet air. The regenerator is used selectively as engine power level is reduced below maximum rated power.

Earnest, E.R.

1981-05-19T23:59:59.000Z

170

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas  

E-Print Network [OSTI]

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production Zhenyu (PWT) in offshore oil & gas production processes. Different from most existing facility- or material offshore and the oil industry expects this share to grow continuously in the future. In last decade, oil

Yang, Zhenyu

171

EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

172

Selection of an acid-gas removal process for an LNG plant  

SciTech Connect (OSTI)

Acid gas contaminants, such as, CO{sub 2}, H{sub 2}S and mercaptans, must be removed to a very low level from a feed natural gas before it is liquefied. CO{sub 2} is typically removed to a level of about 100 ppm to prevent freezing during LNG processing. Sulfur compounds are removed to levels required by the eventual consumer of the gas. Acid-gas removal processes can be broadly classified as: solvent-based, adsorption, cryogenic or physical separation. The advantages and disadvantages of these processes will be discussed along with design and operating considerations. This paper will also discuss the important considerations affecting the choice of the best acid-gas removal process for LNG plants. Some of these considerations are: the remoteness of the LNG plant from the resource; the cost of the feed gas and the economics of minimizing capital expenditures; the ultimate disposition of the acid gas; potential for energy integration; and the composition, including LPG and conditions of the feed gas. The example of the selection of the acid-gas removal process for an LNG plant.

Stone, J.B.; Jones, G.N. [Exxon Production Research, Houston, TX (United States); Denton, R.D. [Exxon Production Malaysia, Inc., Kuala Lumpur (Malaysia)

1996-12-31T23:59:59.000Z

173

Membrane Process to Capture CO2 from Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membrane Process to Capture CO Membrane Process to Capture CO 2 from Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

174

Renewable Energy Plants in Your Gas Tank: From Photosynthesis...  

Energy Savers [EERE]

Subject Bioenergy Summary With ethanol becoming more prevalent in the media and in gas tanks, it is important for students to know where it comes from. This module uses a series...

175

Effects of landfill gas on subtropical woody plants  

Science Journals Connector (OSTI)

An account is given of the influence of landfill gas on tree growth in the field at...Acacia confusa, Albizzia lebbek, Aporusa chinensis, Bombax malabaricum, Castanopsis fissa, Liquidambar formosana, Litsea gluti...

G. Y. S. Chan; M. H. Wong; B. A. Whitton

176

Louisiana Offshore-Louisiana Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2012 2013 View History Natural Gas Processed (Million Cubic Feet) 151,301 99,910 2012-2013 Total Liquids Extracted (Thousand Barrels) 3,378 2,694 2012-2013 NGPL Production,...

177

Alabama Offshore-Alabama Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

2012 2013 View History Natural Gas Processed (Million Cubic Feet) 53,348 53,771 2012-2013 Total Liquids Extracted (Thousand Barrels) 2,695 2,767 2012-2013 NGPL Production, Gaseous...

178

Exergetic analysis and evaluation of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant  

Science Journals Connector (OSTI)

The present work has been undertaken for energetic and exergetic analysis of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant. Comparative analysis has been conducted ...

V. Siva Reddy; S. C. Kaushik; S. K. Tyagi

2014-03-01T23:59:59.000Z

179

Greenhouse Gas emissions from California Geothermal Power Plants  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

Sullivan, John

180

Greenhouse Gas emissions from California Geothermal Power Plants  

SciTech Connect (OSTI)

The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

Sullivan, John

2014-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents [OSTI]

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

182

Thermodynamic evaluation of solar integration into a natural gas combined cycle power plant  

Science Journals Connector (OSTI)

Abstract The term integrated solar combined-cycle (ISCC) has been used to define the combination of solar thermal energy into a natural gas combined-cycle (NGCC) power plant. Based on a detailed thermodynamic cycle model for a reference ISCC plant, the impact of solar addition is thoroughly evaluated for a wide range of input parameters such as solar thermal input and ambient temperature. It is shown that solar hybridization into an NGCC plant may give rise to a substantial benefit from a thermodynamic point of view. The work here also indicates that a significant solar contribution may be achieved in an ISCC plant, thus implying substantial fuel savings and environmental benefits.

Guangdong Zhu; Ty Neises; Craig Turchi; Robin Bedilion

2015-01-01T23:59:59.000Z

183

Flue-gas sulfur-recovery plant for a multifuel boiler  

SciTech Connect (OSTI)

In October 1991, a Finnish fluting mill brought on stream a flue-gas desulfurization plant with an SO{sub 2} reduction capacity of 99%. The desulfurization plant enabled the mill to discontinue the use of its sulfur burner for SO{sub 2} production. The required makeup sulfur is now obtained in the form of sulfuric acid used by the acetic acid plant, which operates in conjunction with the evaporating plant. The mill`s sulfur consumption has decreased by about 6,000 tons/year (13.2 million lb/year) because of sulfur recycling.

Miettunen, J. [Tampella Power Inc., Tampere (Finland); Aitlahti, S. [Savon Sellu Oy, Kuopio (Finland)

1993-12-01T23:59:59.000Z

184

Feasibility study for alternate fuels production: unconventional natural gas from wastewater treatment plants. Volume II, Appendix D. Final report  

SciTech Connect (OSTI)

Data are presented from a study performed to determined the feasibility of recovering methane from sewage at a typical biological secondary wastewater treatment plant. Three tasks are involved: optimization of digester gas; digester gas scrubbing; and application to the East Bay Municipal Utility District water pollution control plant. Results indicate that excess digester gas can be used economically at the wastewater treatment plant and that distribution and scrubbing can be complex and costly. (DMC) 193 references, 93 figures, 26 tables.

Overly, P.; Tawiah, K.

1981-12-01T23:59:59.000Z

185

U.S. Total Stocks  

Gasoline and Diesel Fuel Update (EIA)

Reserve Non-SPR Refinery Tank Farms and Pipelines Leases Alaskan in Transit Bulk Terminal Pipeline Natural Gas Processing Plant Download Series History Download Series History...

186

Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization  

Science Journals Connector (OSTI)

The performance of Natural Gas Processing Plants (NGPPs) can be enhanced with the integration of Combined Cooling, Heating and Power (CCHP) generation schemes. This paper analyzes the integration of a trigeneration scheme within a NGPP, that utilizes waste heat from gas turbine exhaust gases to generate process steam in a Waste Heat Recovery Steam Generator (WHRSG). Part of the steam generated is used to power double-effect water–lithium bromide (H2O–LiBr) absorption chillers that provide gas turbine compressor inlet air-cooling. Another portion of the steam is utilized to meet part furnace heating load, and supplement plant electrical power in a combined regenerative Rankine cycle. A detailed techno-economic analysis of scheme performance is presented based on thermodynamic predictions obtained using Engineering Equation Solver (EES). The results indicate that the trigeneration system could recover 79.7 MW of gas turbine waste heat, 37.1 MW of which could be utilized by three steam-fired H2O–LiBr absorption chillers to provide 45 MW of cooling at 5 °C. This could save approximately 9 MW of electric energy required by a typical compression chiller, while providing the same amount of cooling. In addition, the combined cycle generates 22.6 MW of additional electrical energy for the plant, while process heating reduces furnace oil consumption by 0.23 MSCM per annum. Overall, the trigeneration scheme would result in annual natural gas fuel savings of approximately 1879 MSCM, and annual operating cost savings of approximately US$ 20.9 million, with a payback period of 1 year. This study highlights the significant economical and environmental benefits that could be achieved through implementation of the proposed integrated cogeneration scheme in NGPPs, particularly in elevated ambient temperature and humidity conditions such as encountered in Middle East facilities.

Sahil Popli; Peter Rodgers; Valerie Eveloy

2012-01-01T23:59:59.000Z

187

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Processing Capacity Processing plants are typically clustered close to major producing areas, with a high number of plants close to the Federal Gulf of Mexico offshore and the Rocky Mountain production areas (Figure 1). In terms of both the number of plants and processing capacity, about half of these plants are concentrated in the States along the Gulf of Mexico. Gulf States have been some of the most prolific natural gas producing areas. U.S. natural gas processing capacity showed a net increase of about 12 percent between 2004 and 2009 (not including the State of Alaska), with the largest increase occurring in Texas, where processing capacity rose by more than 4 Bcf per day. In fact, increases in Texas' processing capacity accounted for 57 percent of the total lower 48 States' capacity increase

188

Performance and Costs of CO2 Capture at Gas Fired Power Plants  

Science Journals Connector (OSTI)

Abstract This paper summarises the results from a study that assesses the performance and costs of natural gas fired combined cycle power plants with CCS. Information is provided on the designs of each of the plants, their power output, efficiency, greenhouse gas intensity, capital costs, operating and maintenance costs, levelised costs of electricity and costs of CO2 avoidance. Discussion and commentary on the key findings and recommendations is also included. The paper includes information on base load plant performance and costs, but part load performance and costs of operation at low annual capacity factors are also presented because operation at lower load factors may be necessary, particularly in future electricity systems that include high amounts of other low-CO2 generation plants.

Neil Smith; Geoff Miller; Indran Aandi; Richard Gadsden; John Davison

2013-01-01T23:59:59.000Z

189

A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Case Study from Norway on Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics Guillaume Quiviger and Howard Herzog (hjherzog@mit.edu; +1-617-253-0688) Massachusetts Institute of Technology (MIT) Room E40-471 1 Amherst Street Cambridge, MA 02139 INTRODUCTION On Thursday March 9, 2000, Norwegian Prime Minister Kjell Magne Bondevik's minority government resigned over a disagreement with the opposition about a controversial proposal to build two gas-fired power plants. The government had been rejecting the building of the proposed plants for months. Bondevik and his coalition government wanted to hold off construction until new technology, such as carbon sequestration, allowed building more environmentally friendly plants. They argued that their position was supported by European

190

Sensitivity studies for gas release from the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect (OSTI)

Sensitivity studies have been conducted for the gas release from the Waste Isolation Pilot Plant (WIPP) using the TOUGH2 computer code with performance measures of peak repository pressure and gas migration distance at 1000 years. The effect of formation permeabilities including impermeable halite, two-phase characteristic curves including different models and residual saturations, and other variations was studied to determine their impact on the performance of the WIPP repository. 15 refs., 7 figs., 2 tabs.

Webb, S.W.

1991-01-01T23:59:59.000Z

191

Advanced combustion technologies for gas turbine power plants  

SciTech Connect (OSTI)

Objectives are to develop actuators for enhancing the mixing between gas streams, increase combustion stability, and develop hgih-temperature materials for actuators and sensors in combustors. Turbulent kinetic energy maps of an excited jet with co-flow in a cavity with a partially closed exhaust end are given with and without a longitudinal or a transverse acoustic field. Dielectric constants and piezoelectric coefficients were determined for Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} ceramics.

Vandsburger, U. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical Engineering; Roe, L.A. [Arkansas Univ., Fayetteville, AR (United States). Dept. of Mechanical Engineering; Desu, S.B. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

1995-12-31T23:59:59.000Z

192

An economic analysis of solar hybrid steam injected gas turbine (STIG) plant for Indian conditions  

Science Journals Connector (OSTI)

Abstract Steam injection for power augmentation is one of the significant modifications of gas turbines that has been commercialized for natural gas-fired applications. The primary objective of this work is to demonstrate that the installation of a solar hybrid steam injected gas turbine plant (STIG) for power generation could have a lower installed cost and lower solar levelized tariff compared to the solar-only thermal power plant while producing a comparable energy output. An economic evaluation is presented for the locations Indore and Jaipur in India under constant, variable power and mixed power scenarios. The levelized tariff (LT) of solar hybrid STIG plant ranges 0.24–0.26 $/kWh, and the levelized tariff (solar only) or solar levelized tariff (SLT) of solar STIG plant ranges from 0.29 to 0.4 $/kWh in constant power (CP) and variable power (VP) scenarios. In case of mixed power (MP) scenario, the range of LT varies from 0.16 to 0.21 $/kWh for CP and VP modes basis. In this analysis, size of the solar STIG plant varies from 48 MW to 212 MW based on the steam to air ratio. The IRR and payback period varies between 12%–17% and 6.3–8 years for both CP and VP scenarios at Jaipur and Indore. Sensitivity analysis reports that the performance of the power plants depends, to a large degree, on boundary conditions such as fuel and equipment costs.

A. Immanuel Selwynraj; S. Iniyan; Guy Polonsky; L. Suganthi; Abraham Kribus

2014-01-01T23:59:59.000Z

193

MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS  

SciTech Connect (OSTI)

The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

2009-03-31T23:59:59.000Z

194

,"Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (MMcf)" Plant Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sin_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sin_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

195

,"South Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (MMcf)" Plant Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

196

Simulated coal gas MCFC power plant system verification. Final report  

SciTech Connect (OSTI)

The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

NONE

1998-07-30T23:59:59.000Z

197

Universal model for water costs of gas exchange by animals and plants  

E-Print Network [OSTI]

terrestrial animals and plants exchange O2 and CO2 with the atmosphere and thereby incur costs in the currency Hemphill Brown, University of New Mexico, Albuquerque, NM, and approved March 30, 2010 (received for review), the steepness of the gradients for gas and vapor, and the transport mode (convective or diffusive). Model

198

Wireless channel characterization and modeling in oil and gas refinery plants  

E-Print Network [OSTI]

Wireless channel characterization and modeling in oil and gas refinery plants Stefano Savazzi1 modeling approach is validated by experimental measurements in two oil refinery sites using industry standard ISA SP100.11a compliant commercial devices operating at 2.4GHz. I. INTRODUCTION The adoption

Savazzi, Stefano

199

Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream  

SciTech Connect (OSTI)

International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

Maston, V.A.

1997-12-01T23:59:59.000Z

200

Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,267 4,027 6,268 1970's 9,184 6,433 4,740 3,000 4,246 4,200 4,049 4,032 3,760 7,661 1980's 1,949 2,549 5,096 5,384 5,922 12,439 9,062 11,990 12,115 11,586 1990's 7,101 1,406 5,838 6,405 4,750 5,551 5,575 6,857 8,385 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Arkansas Natural Gas Consumption by End Use Lease and Plant

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,956 1,503 2,113 1970's 633 2,115 1,978 2,435 4,193 7,240 9,150 7,585 8,325 14,123 1980's 7,594 511 5,965 4,538 8,375 9,001 13,289 17,671 16,889 16,211 1990's 19,719 13,738 12,611 12,526 13,273 27,012 27,119 24,619 27,466 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Utah Natural Gas Consumption by End Use Lease and Plant

202

West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,052 2,276 0 1970's 2,551 3,043 3,808 2,160 1,909 1,791 1,490 1,527 1,233 1,218 1980's 2,482 2,515 6,426 5,826 7,232 7,190 6,658 8,835 8,343 7,882 1990's 9,631 7,744 8,097 7,065 8,087 8,045 6,554 7,210 6,893 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption West Virginia Natural Gas Consumption by End Use Lease and Plant

203

Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,828 1,992 2,277 1970's 2,317 2,212 1,509 1,238 1,206 1,218 1,040 1,107 1,160 1,214 1980's 989 1,040 9,772 8,361 9,038 9,095 6,335 3,254 2,942 2,345 1990's 3,149 2,432 2,812 3,262 2,773 2,647 2,426 2,457 2,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Kentucky Natural Gas Consumption by End Use Lease and Plant

204

Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,798 2,012 2,074 1970's 3,440 2,145 2,143 2,551 3,194 8,420 7,647 8,022 11,076 14,695 1980's 6,494 3,461 9,699 8,130 8,710 8,195 7,609 9,616 8,250 8,003 1990's 9,094 9,595 7,274 8,171 9,766 9,535 8,489 12,060 9,233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Michigan Natural Gas Consumption by End Use Lease and Plant

205

Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,904 5,188 6,183 1970's 5,091 6,148 5,924 4,281 3,683 2,315 2,754 2,972 2,792 4,796 1980's 3,425 1,832 2,012 1,970 2,069 2,138 1,808 2,088 1,994 1,766 1990's 2,262 1,680 1,871 2,379 2,243 2,238 2,401 2,277 2,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Montana Natural Gas Consumption by End Use Lease and Plant

206

Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,656 3,505 2,879 1970's 3,140 4,302 3,397 3,548 2,957 2,925 2,742 2,814 3,477 22,094 1980's 1,941 1,776 3,671 4,377 5,741 5,442 5,243 5,802 4,869 3,876 1990's 5,129 1,476 1,450 1,366 1,332 1,283 1,230 1,201 1,125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Ohio Natural Gas Consumption by End Use Lease and Plant

207

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LNG LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant engineering and supply LNG Petrochemicals Natural gas processing Atmospheric gases 3 Linde's alternative fuels portfolio Green hydrogen production - Magog, Quebec Renewable liquefied natural gas production - Altamont, CA Biogas fueling, LNG import terminal - Sweden

208

The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Historically, natural gas has been used to provide peak-load power at a relatively high cost per kilowatt-hour during the daytime intervals when electricity demands peak and cannot be supplied wholly by baseload generators. ... (1) This share is projected to grow to 47% by 2035, with natural gas accounting for 60% of new generating capacity additions between 2010 and 2035 in the Department of Energy’s reference case scenario. ... To answer this question we use the LCOE results above to generate a probabilistic difference in cost, recognizing that some parameters should have the same value for plants with and without CCS, such as the power block capital cost, natural gas price, and the plant labor rate. ...

Edward S. Rubin; Haibo Zhai

2012-02-14T23:59:59.000Z

209

U.S. Natural Gas Plant Field Production  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas Liquids 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 Pentanes Plus 9,772 10,464 10,689 11,270 11,542 11,167 1981-2013 Liquefied Petroleum Gases 64,284 66,268 64,249 67,770 70,834 70,029 1981-2013 Ethane 27,647 28,274 26,311 27,829 30,063 30,015 1981-2013 Propane 23,332 24,191 24,157 25,425 25,974 25,545 1981-2013 Normal Butane 5,876 6,383 6,543 6,399 6,508 6,893 1981-2013 Isobutane 7,429 7,420 7,238 8,117 8,289 7,576 1981-2013 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions, Sources, and Notes link above for more information on this table.

210

U.S. Natural Gas Plant Field Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Natural Gas Liquids 650,794 652,822 697,124 757,019 808,865 881,306 1981-2012 Pentanes Plus 95,899 96,530 98,904 101,155 106,284 116,002 1981-2012 Liquefied Petroleum Gases 554,895 556,292 598,220 655,864 702,581 765,304 1981-2012 Ethane 258,682 256,713 280,590 317,180 337,972 356,592 1981-2012 Propane 185,099 187,340 199,398 213,782 230,227 260,704 1981-2012 Normal Butane 46,833 48,976 49,528 56,655 57,399 65,555 1981-2012 Isobutane 64,281 63,263 68,704 68,247 76,983 82,453 1981-2012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions, Sources, and Notes link above for more information on this table.

211

"1. Moss Landing Power Plant","Gas","Dynegy -Moss Landing LLC",2529  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "1. Moss Landing Power Plant","Gas","Dynegy -Moss Landing LLC",2529 "2. Diablo Canyon","Nuclear","Pacific Gas & Electric Co",2240 "3. San Onofre","Nuclear","Southern California Edison Co",2150 "4. AES Alamitos LLC","Gas","AES Alamitos LLC",1997 "5. Castaic","Pumped Storage","Los Angeles City of",1620 "6. Haynes","Gas","Los Angeles City of",1524 "7. Ormond Beach","Gas","RRI Energy Ormond Bch LLC",1516 "8. Pittsburg Power","Gas","Mirant Delta LLC",1311 "9. AES Redondo Beach LLC","Gas","AES Redondo Beach LLC",1310

212

Report number ex. Ris-R-1234(EN) 1 Local CHP Plants between the Natural Gas and  

E-Print Network [OSTI]

distributed generation in Denmark. This paper deals with the CHP as intermediary between the natural gas of natural gas from the North Sea of which much is used for electricity and heat generation purposesReport number ex. Risø-R-1234(EN) 1 Local CHP Plants between the Natural Gas and Electricity

213

EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO GROUP VIII METAL  

E-Print Network [OSTI]

EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO with natural gas in spark ignition engines can increase for electric efficiency. In-situ H23 production for spark ignition engines fuelled by natural gas has therefore been investigated recently, and4 reformed

Paris-Sud XI, Université de

214

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Btu Content The natural gas received and transported by the major intrastate and interstate mainline transmission systems must be within a specific energy (Btu) content range. Generally, the acceptable Btu content is 1,035 Btu per cubic foot, with an acceptable deviation of +/-50 Btu. However, when natural gas is extracted, its Btu content can be very different from acceptable pipeline specifications. The Btu content of natural gas extracted varies depending on the presence of water, NGLs, as well as CO2, nitrogen, helium, and others. Significant amounts of NGLs in natural gas is generally associated with higher Btu values. Consistent with this, Btu values reported by plants in Texas and other Gulf of Mexico States are comparatively high (Table 3). On

215

Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report  

SciTech Connect (OSTI)

Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

Gillow, J.B.; Francis, A.

2011-07-01T23:59:59.000Z

216

Coordinated optimization of the parameters of the cooled gas-turbine flow path and the parameters of gas-turbine cycles and combined-cycle power plants  

Science Journals Connector (OSTI)

In the present paper, we evaluate the effectiveness of the coordinated solution to the optimization problem for the parameters of cycles in gas turbine and combined cycle power plants and to the optimization prob...

A. M. Kler; Yu. B. Zakharov; Yu. M. Potanina

2014-06-01T23:59:59.000Z

217

U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 383,077 389,525 367,572 348,731 408,115 398,180 429,269 1990's 428,657 456,954 460,571 448,822 423,878 427,853 450,033 426,873 401,314 399,509 2000's 404,059 371,141 382,503 363,903 366,341 355,193 358,985 365,323 355,590 362,009 2010's 368,830 384,248 408,316 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption U.S. Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

218

Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,659 2,240 6,864 1970's 4,748 8,459 16,056 15,217 14,402 17,842 15,972 17,336 15,895 12,153 1980's 30,250 15,249 94,232 97,828 111,069 64,148 72,686 116,682 153,670 192,239 1990's 193,875 223,194 234,716 237,702 238,156 292,811 295,834 271,284 281,872 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Alaska Natural Gas Consumption by End Use

219

New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,793 46,331 45,309 1970's 47,998 46,114 48,803 52,553 43,452 38,604 49,160 43,751 37,880 50,798 1980's 36,859 22,685 55,722 47,630 50,662 46,709 35,615 48,138 41,706 42,224 1990's 65,889 44,766 53,697 49,658 54,786 52,589 81,751 64,458 59,654 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption New Mexico Natural Gas Consumption by End Use

220

Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,668 2,361 2,604 1970's 2,726 3,231 4,676 7,202 5,822 7,673 7,739 9,124 10,619 21,610 1980's 7,041 7,093 13,673 10,000 10,560 10,829 9,397 12,095 11,622 12,221 1990's 17,343 23,883 21,169 24,832 24,347 25,130 27,492 29,585 31,074 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Colorado Natural Gas Consumption by End Use

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,133 16,163 14,691 1970's 14,067 13,990 12,773 12,462 11,483 12,008 15,998 13,697 12,218 3,950 1980's 1,017 13,759 3,514 4,100 4,563 4,710 3,974 5,194 4,014 3,388 1990's 6,939 11,583 8,462 8,256 11,306 11,342 11,603 8,572 8,309 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption North Dakota Natural Gas Consumption by End Use

222

Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,842 15,867 17,587 1970's 20,841 27,972 28,183 32,663 35,350 27,212 31,044 29,142 30,491 48,663 1980's 24,521 19,665 41,392 37,901 40,105 42,457 38,885 44,505 45,928 43,630 1990's 40,914 44,614 43,736 56,657 44,611 47,282 49,196 46,846 33,989 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Kansas Natural Gas Consumption by End Use

223

Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 65,167 84,259 103,361 1970's 98,417 101,126 98,784 80,233 80,780 79,728 84,025 77,631 82,046 128,475 1980's 59,934 56,785 91,465 79,230 91,707 88,185 84,200 104,415 100,926 90,225 1990's 111,567 88,366 92,978 99,869 91,039 80,846 73,039 81,412 61,543 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Oklahoma Natural Gas Consumption by End Use

224

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Regional Analysis Regional Analysis Alaska Alaska The State of Alaska had the third-largest processing capacity, trailing only Texas and Louisiana. While much of the natural gas processed in Alaska does not enter any transmission system and is instead re-injected into reservoirs, its processing capability is nonetheless significant. At 9.5 Bcf per day of processing capacity, the State of Alaska accounted for about 12 percent of total U.S. capacity. As of 2009, there were a total of 4 plants in the State, with the largest one reporting a capacity of 8.5 Bcf per day. Average plant size of 2.4 Bcf per day far exceeded any other State, with Illinois noting the next largest average plant size of 1.1 Bcf per day. In addition to the significant processing total capacity, plants in

225

A modeling and control approach to advanced nuclear power plants with gas turbines  

Science Journals Connector (OSTI)

Abstract Advanced nuclear power plants are currently being proposed with a number of various designs. However, there is a lack of modeling and control strategies to deal with load following operations. This research investigates a possible modeling approach and load following control strategy for gas turbine nuclear power plants in order to provide an assessment way to the concept designs. A load frequency control strategy and average temperature control mechanism are studied to get load following nuclear power plants. The suitability of the control strategies and concept designs are assessed through linear stability analysis methods. Numerical results are presented on an advanced molten salt reactor concept as an example nuclear power plant system to demonstrate the validity and effectiveness of the proposed modeling and load following control strategies.

Günyaz Ablay

2013-01-01T23:59:59.000Z

226

Natural Gas Processing Plants in the United States: 2010 Update / Table 1  

Gasoline and Diesel Fuel Update (EIA)

1. Natural Gas Processing Plant Capacity by State 1. Natural Gas Processing Plant Capacity by State Natural Gas Processing Capacity (Million Cubic Feet per Day) Number of Natural Gas Plants Average Plant Capacity (Million Cubic Feet per Day) Change Between 2004 and 2009 State 2009 Percent of U.S. Total 2009 Percent of U.S. Total 2004 2009 Capacity (Percent) Number of Plants Texas 19,740 25.5 163 33.1 95 121 24.7 -3 Louisiana 18,535 23.9 60 12.2 271 309 12.3 -1 Wyoming 7,273 9.4 37 7.5 154 197 5.1 -8 Colorado 3,791 4.9 44 8.9 49 86 81.1 1 Oklahoma 3,740 4.8 58 11.8 58 64 8.8 -1 New Mexico 3,022 3.9 24 4.9 137 126 -11.8 -1 Mississippi 2,273 2.9 4 0.8 262 568 44.6 -2 Illinois 2,102 2.7 2 0.4 1101 1,051 -4.6 0 Kansas 1,250 1.6 6 1.2 353 208 -64.6 -4 Alabama 1,248 1.6 12 2.4 87 104 -4.7 -3 Utah 1,185 1.5 12 2.4 61 99 22.2 -4 Michigan 977 1.3 10 2.0 30 98 102.2 -6 California 876 1.1 20 4.1 43 44 -15.5 -4 Arkansas 710 0.9 4 0.8 10 178

227

Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas  

DOE Patents [OSTI]

Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

2012-11-06T23:59:59.000Z

228

Performance evaluation and economic analysis of a gas turbine power plant in Nigeria  

Science Journals Connector (OSTI)

Abstract In this study, performance evaluation and economic analysis (in terms of power outage cost due to system downtime) of a gas turbine power plant in Nigeria have been carried out for the period 2001–2010. The thermal power station consists of nine gas turbine units with total capacity of 301 MW (9 × 31.5 MW). The study reveals that 64.3% of the installed capacity was available in the period. The percentage of shortfall of energy generated in the period ranged from 4.18% to 14.53% as against the acceptable value of 5–10%. The load factor of the plant is between 20.8% and 78.2% as against international best practice of 80%. The average availability of the plant for the period was about 64% as against industry best practice of 95%, while the average use factor was about 92%. The capacity factor of the plant ranged from 20.8% to 78.23% while the utilization factor ranged from 85.47% to 95.82%. For the ten years under review, there was energy generation loss of about 35.7% of expected energy generation of 26.411 TW h with consequent plant performance of 64.3%. The study further reveals that the 35.7% of generation loss resulted in revenue loss of about M$251 (approximately b40). The simple performance indicator developed to evaluate the performance indices and outage cost for the station can also be applicable to other power stations in Nigeria and elsewhere. Measures to improve the performance indices of the plant have been suggested such as training of operation and maintenance (O & M) personnel regularly, improvement in O & M practices, proper spare parts inventory and improvement in general housekeeping of the plant. From technical point of view, performance of the plant can be improved by retrofitting with a gas turbine air inlet cooling system, heat recovery system or adding modifications (inter-cooling or regeneration) to the simple gas turbine units.

S.O. Oyedepo; R.O. Fagbenle; S.S. Adefila; S.A. Adavbiele

2014-01-01T23:59:59.000Z

229

Environmentally Acceptable Endpoints for PAHs at a Manufactured Gas Plant Site  

Science Journals Connector (OSTI)

Samples from a former manufactured gas plant (MGP) site in Santa Barbara, CA, were tested to evaluate the environmentally acceptable endpoints (EAE) process for setting risk-based cleanup criteria. ... Several availability assays have been proposed, including chemical analyses, toxicity tests, desorption studies, and biological uptake, but there is no clear consensus on the relationship between different assays and the risks posed to human or ecological receptors (10?13). ...

Hans F. Stroo; Ron Jensen; Raymond C. Loehr; David V. Nakles; Anne Fairbrother; Cris B. Liban

2000-07-15T23:59:59.000Z

230

Wax formation assessment of condensate in South Pars gas processing plant sea pipeline (a case study)  

Science Journals Connector (OSTI)

The wax deposition from the gas condensate in South Pars gas processing plant causes a number of severe problems. These problems include: (1) deposits form on the reboiler tubes of stabilizer column and tend to reduce its duty (2) forcing periodic shut-down and removal of deposits (3) interrupting normal processing operations. An understanding of deposition, nature and propensity is necessary to mitigate the mentioned problems. In this work, the multi solid phase model is used to predict the wax precipitation from gas condensate fluid. For five different reservoir fluids, several methods were investigated to split the heavy hydrocarbon fraction into pseudo fractions. The results show that the Al-Meshari method is the most accurate one. Also, a set of consistent correlations were used to calculate the critical points, fusion properties and the acentric factor of the single carbon number groups in the extended composition. Finally the best methods for predicting the wax formation are selected and used to predict the wax formation in the sea line of South Pars gas processing plant. The modeling shows that wax precipitation starts at 293 K and 86 bar. At this pressure and temperature the pipeline is 94 km away from the wellhead.

M.R. Rahimpour; M. Davoudi; S.M. Jokar; I. Khoramdel; A. Shariati; M.R. Dehnavi

2013-01-01T23:59:59.000Z

231

Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 645,058 711,720 741,902 1970's 769,500 784,773 802,112 828,139 817,194 763,107 729,946 732,428 757,853 717,462 1980's 536,766 505,322 347,846 307,717 326,662 307,759 302,266 355,765 318,922 291,977 1990's 394,605 297,233 293,845 296,423 298,253 333,548 330,547 301,800 330,228 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption

232

Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators  

Science Journals Connector (OSTI)

Fossil fuel combustion leads to acidic pollutants like SO2 NOx HCl emission. Different control technologies are proposed however the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First using lime or limestone slurry leads to SO2 capture and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan the USA Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world nowadays. Description of the plant and results obtained has been presented in the paper.

Andrzej G. Chmielewski; Bogdan Tyminski; Zbigniew Zimek; Andrzej Pawelec; Janusz Licki

2003-01-01T23:59:59.000Z

233

Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 195,990 212,134 273,213 1970's 287,222 292,589 312,145 336,832 347,098 301,816 556,772 591,292 558,877 305,181 1980's 196,033 180,687 337,398 275,698 303,284 258,069 243,283 301,279 272,455 256,123 1990's 258,267 195,526 220,711 222,813 207,171 209,670 213,721 227,542 194,963 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption

234

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Processing Plant Utilization Data collected for 2009 show that the States with the highest total processing capacity are among the States with the highest average utilization rates. This is to be expected as most of the plants are located in production areas that have been prolific for many years. In fact, the five States situated along the Gulf of Mexico accounted for nearly 49 percent of total processing volume in 2009. The total utilization rate in the United States averaged 66 percent of total capacity in 2009 (Table 2). Plants in Alaska ran at 86 percent of total capacity during the year, the highest capacity utilization rate in the country. Texas had significant utilization capacity at 71 percent, for an average of 14 Bcf per day of natural gas in 2009. However, a number of

235

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect (OSTI)

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the U.S.

McDonald, C.F.; Nichols, M.K.

1987-01-01T23:59:59.000Z

236

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect (OSTI)

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the US.

McDonald, C.F.; Nichols, M.K.

1986-12-01T23:59:59.000Z

237

NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions  

SciTech Connect (OSTI)

This document is intended to provide a Next Generation Nuclear Plant (NGNP) Project tool in which to collect and identify key definitions, plant capabilities, and inputs and assumptions to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor (HTGR). These definitions, capabilities, and assumptions are extracted from a number of sources, including NGNP Project documents such as licensing related white papers [References 1-11] and previously issued requirement documents [References 13-15]. Also included is information agreed upon by the NGNP Regulatory Affairs group's Licensing Working Group and Configuration Council. The NGNP Project approach to licensing an HTGR plant via a combined license (COL) is defined within the referenced white papers and reference [12], and is not duplicated here.

Phillip Mills

2012-02-01T23:59:59.000Z

238

Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance  

SciTech Connect (OSTI)

A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ºF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

Andrew Seltzer; Zhen Fan

2011-03-01T23:59:59.000Z

239

Studies Estimating the Dermal Bioavailability of Polynuclear Aromatic Hydrocarbons from Manufactured Gas Plant Tar-Contaminated Soils  

Science Journals Connector (OSTI)

In vitro percutaneous absorption studies were performed with contaminated soils or organic extracts of contaminated soils collected at manufactured gas plant (MGP) sites. The MGP tar contaminated soils were found to contain a group of targeted polynuclear ...

Timothy A. Roy; Andrew J. Krueger; Barbara B. Taylor; David M. Mauro; Lawrence S. Goldstein

1998-08-22T23:59:59.000Z

240

Life cycle considerations of the flue gas desulphurization system at a lignite-fired power plant in Thailand  

Science Journals Connector (OSTI)

The Flue Gas Desulphurization (FGD) system has been installed at the biggest lignite-fired power generation plant in Thailand to reduce the large...2...emission. In order to understand the costs and benefits, bot...

Sate Sampattagul; Seizo Kato…

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

File:BOEMRE oil.gas.plant.platform.sta.brbra.map.4.2010.pdf | Open Energy  

Open Energy Info (EERE)

oil.gas.plant.platform.sta.brbra.map.4.2010.pdf oil.gas.plant.platform.sta.brbra.map.4.2010.pdf Jump to: navigation, search File File history File usage Federal Leases in Pacific Ocean, near Santa Barbara Channel Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 234 KB, MIME type: application/pdf) Description Federal Leases in Pacific Ocean, near Santa Barbara Channel Sources Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) Related Technologies Oil, Natural Gas Creation Date 2010-04 Extent Santa Barbara Channel Countries United States UN Region Northern America States California Locations of oil and separation and treatment plants, oil separation, gas processing, and treatment plants, oil spill response vessels, platforms,

242

Exergetic analysis of solar concentrator aided natural gas fired combined cycle power plant  

Science Journals Connector (OSTI)

This article deals with comparative energy and exergetic analysis for evaluation of natural gas fired combined cycle power plant and solar concentrator aided (feed water heating and low pressure steam generation options) natural gas fired combined cycle power plant. Heat Transfer analysis of Linear Fresnel reflecting solar concentrator (LFRSC) is used to predict the effect of focal distance and width of reflector upon the reflecting surface area. Performance analysis of LFRSC with energetic and exergetic methods and the effect, of concentration ratio and inlet temperature of the fluid is carried out to determine, overall heat loss coefficient of the circular evacuated tube absorber at different receiver temperatures. An instantaneous increase in power generation capacity of about 10% is observed by substituting solar thermal energy for feed water heater and low pressure steam generation. It is observed that the utilization of solar energy for feed water heating and low pressure steam generation is more effective based on exergetic analysis rather than energetic analysis. Furthermore, for a solar aided feed water heating and low pressure steam generation, it is found that the land area requirement is 7 ha/MW for large scale solar thermal storage system to run the plant for 24 h.

V. Siva Reddy; S.C. Kaushik; S.K. Tyagi

2012-01-01T23:59:59.000Z

243

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

244

Approach to IAEA material-balance verification at the Portsmouth Gas Centrifuge Enrichment Plant  

SciTech Connect (OSTI)

This paper describes a potential approach by which the International Atomic Energy Agency (IAEA) might verify the nuclear-material balance at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). The strategy makes use of the attributes and variables measurement verification approach, whereby the IAEA would perform independent measurements on a randomly selected subset of the items comprising the U-235 flows and inventories at the plant. In addition, the MUF-D statistic is used as the test statistic for the detection of diversion. The paper includes descriptions of the potential verification activities, as well as calculations of: (1) attributes and variables sample sizes for the various strata, (2) standard deviations of the relevant test statistics, and (3) the detection sensitivity which the IAEA might achieve by this verification strategy at GCEP.

Gordon, D.M.; Sanborn, J.B.; Younkin, J.M.; DeVito, V.J.

1983-01-01T23:59:59.000Z

245

stocked inventory.PDF  

Broader source: Energy.gov (indexed) [DOE]

08 08 AUDIT REPORT STOCKED INVENTORY AT THE SAVANNAH RIVER SITE U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES JUNE 2001 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "Stocked Inventory at the Savannah River Site" BACKGROUND The Department of Energy's (Department) management and operating contractor at the Savannah River Site, Westinghouse Savannah River Company (Westinghouse), is responsible for managing the majority of the Department's missions and associated stocked inventory at the site. As of March 2001, Westinghouse maintained about

246

,"Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_smt_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_smt_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

247

,"Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sks_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sks_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

248

,"Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sal_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sal_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

249

,"Oklahoma Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sok_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sok_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

250

,"California Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sca_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sca_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

251

,"Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sok_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sok_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

252

,"Michigan Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_smi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_smi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

253

,"Mississippi Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sms_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sms_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:50 PM"

254

,"Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_soh_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_soh_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

255

,"Louisiana Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

256

,"Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sut_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sut_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

257

,"Florida Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:48 PM"

258

,"Wyoming Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:54 PM"

259

,"Pennsylvania Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_spa_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_spa_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

260

,"Kentucky Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sky_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sky_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

,"Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sak_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sak_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

262

,"Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

263

,"Alaska Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sak_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sak_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:46 PM"

264

,"Arkansas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sar_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sar_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:47 PM"

265

,"Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sne_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sne_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

266

,"Nebraska Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sne_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sne_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:51 PM"

267

,"Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_spa_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_spa_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

268

,"Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

269

,"California Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sca_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sca_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:47 PM"

270

Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities)  

Broader source: Energy.gov [DOE]

With ethanol becoming more prevalent in the media and in gas tanks, it is important for students to know where it comes from. This module uses a series of four activities to show how energy and mass are converted from one form to another. It focuses on the conversion of light energy into chemical energy via photosynthesis, then goes on to show how the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed.

271

Thermodynamic analysis of a closed-cycle, solar gas-turbine plant  

Science Journals Connector (OSTI)

Thermodynamic analysis of a closed-cycle, Brayton gas-turbine plant with a heat exchanger powered by the sun has been studied. A Brayton cycle is simpler than a Rankine cycle and has an advantage in places where water is scarce and expensive. A simple expression is derived for calculating the efficiency of the cycle in terms of the compression pressure ratio, the pressure loss coefficient and the ratio of the lower to higher temperature in the cycle with the efficiency of various components. The maximum permissible pressure loss coefficient has also been calculated.

P. Gandhidasan

1993-01-01T23:59:59.000Z

272

Heat exchanger design considerations for high temperature gas-cooled reactor (HTGR) plants  

SciTech Connect (OSTI)

Various aspects of the high-temperature heat exchanger conceptual designs for the gas turbine (HTGR-GT) and process heat (HTGR-PH) plants are discussed. Topics include technology background, heat exchanger types, surface geometry, thermal sizing, performance, material selection, mechanical design, fabrication, and the systems-related impact of installation and integration of the units in the prestressed concrete reactor vessel. The impact of future technology developments, such as the utilization of nonmetallic materials and advanced heat exchanger surface geometries and methods of construction, is also discussed.

McDonald, C.F.; Vrable, D.L.; Van Hagan, T.H.; King, J.H.; Spring, A.H.

1980-02-01T23:59:59.000Z

273

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Journals Connector (OSTI)

Recently world has been confused by issues of energy resourcing including fossil fuel use global warming and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end?users particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN?IV reactors nuclear projects (HTGRs HTR VHTR) is also can produce hydrogen from the process. In the present study hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

2010-01-01T23:59:59.000Z

274

,"Colorado Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sco_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sco_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:48 PM"

275

,"Utah Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sut_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sut_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:53 PM"

276

,"Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_smi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_smi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

277

,"Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

278

,"Kansas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sks_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sks_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

279

,"Tennessee Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_stn_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_stn_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

280

,"Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sms_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sms_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"Montana Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_smt_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_smt_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:50 PM"

282

,"Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_stx_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_stx_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

283

Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant  

SciTech Connect (OSTI)

This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

Tsai A, Banta L, Tucker D

2010-08-01T23:59:59.000Z

284

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

SciTech Connect (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

285

RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS.  

SciTech Connect (OSTI)

Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders.

JOE,J.

2007-07-08T23:59:59.000Z

286

Study of Gas-steam Combined Cycle Power Plants Integrated with MCFC for Carbon Dioxide Capture  

Science Journals Connector (OSTI)

Abstract In the field of fossil-fuel based technologies, natural gas combined cycle (NGCC) power plants are currently the best option for electricity generation, having an efficiency close to 60%. However, they produce significant CO2 emissions, amounting to around 0.4 tonne/MWh for new installations. Among the carbon capture and sequestration (CCS) technologies, the process based on chemical absorption is a well-established technology, but markedly reduces the NGCC performances. On the other side, the integration of molten carbonate fuel cells (MCFCs) is recognized as an attractive option to overcome the main drawbacks of traditional CCS technologies. If the cathode side is fed by NGCC exhaust gases, the MCFC operates as a CO2 concentrator, beside providing an additional generating capacity. In this paper the integration of MCFC into a two pressure levels combined cycle is investigated through an energy analysis. To improve the efficiency of MCFC and its integration within the NGCC, plant configurations based on two different gas recirculation options are analyzed. The first is a traditional recirculation of exhaust gases at the compressor inlet; the second, mainly involving the MCFC stack, is based on recirculating a fraction of anode exhaust gases at the cathode inlet. Effects of MCFC operating conditions on energy and environmental performances of the integrated system are evaluated.

Roberto Carapellucci; Roberto Saia; Lorena Giordano

2014-01-01T23:59:59.000Z

287

The desulfurization of flue gas at the Mae Moh Power Plant Units 12 and 13  

SciTech Connect (OSTI)

As pollution of air, water and ground increasingly raises worldwide concern, the responsible national and international authorities establish and issue stringent regulations in order to maintain an acceptable air quality in the environment. In Thailand, the Electricity Generating Authority of Thailand (EGAT) takes full responsibility in environmental protection matters as well as in generating the electricity needed to supply the country`s very rapid power demand growth. Due to the rapidly increasing electricity demand of the country, EGAT had decided to install two further lignite-fired units of 300 MW each (Units 12 and 13) at the Mae Moh power generation station and they are now under construction. The arrangement and the capacity of all the power plant units are as shown. In 1989, EGAT started the work on the flue gas desulfurization system of Mae Moh power plant units 12 and 13 as planned. A study has been conducted to select the most suitable and most economical process for flue gas desulfurization. The wet scrubbing limestone process was finally selected for the two new units. Local limestone will be utilized in the process, producing a by-product of gypsum. Unfortunately, natural gypsum is found in abundance in Thailand, so the produced gypsum will be treated as landfill by mixing it with ash from the boilers of the power plants and then carrying it to the ash dumping area. The water from the waste ash water lake is utilized in the process as much as possible to minimize the requirement of service water, which is a limited resource. The Mae Moh power generation station is situated in the northern region of Thailand, 600 km north of Bangkok and about 30 km east of the town of Lampang, close to the Mae Moh lignite mine. Three lignite-fired units (Units 1-3) of 75 MW each, four units (Units 4-7) of 150 MW each and four units (Units 8-11) of 300 MW each are in operation.

Haemapun, C.

1993-12-31T23:59:59.000Z

288

Flexibility and operability analysis of a HEN-integrated natural gas expander plant  

Science Journals Connector (OSTI)

In the heat-exchanger network (HEN) literature, synthesis, design, and flexibility analyses of \\{HENs\\} are done independently from processes to which \\{HENs\\} are integrated. Such analyses are made mostly based on nominal operating conditions at which the HEN's source- and target-stream properties are evaluated. However, terminal-stream properties of \\{HENs\\} depend upon temperatures, pressures, and compositions of the process connected to the HEN. In this work, flexibility and operability issues of a HEN are investigated with rigorous simulations using the process flowsheet simulator HYSYS for a HEN-integrated natural gas turbo-expander plant (TEP) operating under ethane-recovery mode. The contribution of this work is threefold. First, the HEN-plant interactions are exemplified via the process flowsheet simulator. Second, flexibility and operability issues are tackled using the optimization capability of the flowsheet simulator. Third, for highly energy-integrated complex plants like the TEP, the difficulties or impossibilities of automated HEN synthesis and flexibility analysis with process flowsheet simulators are demonstrated.

Alp Er S. Konukman; Ugur Akman

2005-01-01T23:59:59.000Z

289

System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134  

SciTech Connect (OSTI)

The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

Annen, K.D.

1981-08-01T23:59:59.000Z

290

Building new power plants in a CO2 constrained world: A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and  

E-Print Network [OSTI]

including technologies for carbon sequestration. Norway's primary energy production is dominated by oilBuilding new power plants in a CO2 constrained world: A Case Study from Norway on Gas-Fired Power director. Most of the material used in this work are either courtesy of the persons I talked to in Norway

291

Competitiveness of Wind Power with the Conventional Thermal Power Plants Using Oil and Natural Gas as Fuel in Pakistan  

Science Journals Connector (OSTI)

Abstract The fossil fuels mainly imported oil and natural gas are major sources of electricity generation in Pakistan. The combustion of fossil fuels in thermal power plants has greater environmental impacts like air pollution and global warming. Additionally, the import of oil is a heavy burden on the poor economy of the country. Pakistan is a country with huge renewable sources; wind energy being the major one. This paper elucidate the cost-competitiveness of wind power with the conventional thermal power plants. In this regard, Levelized estimated cost of a 15MW wind power plant is compared with three types of conventional thermal power plants, namely (i) Oil-fired thermal power plant (ii) Natural gas-fire combine cycle power plant (iii) Diesel oil- fired gas turbine cycle 100MW each. The results show that the cost of wind energy is lowest with Rs. 3/kWh. It is concluded that the wind power is cost-competitive to the conventional thermal power plants in Pakistan. The cost estimation for wind energy is lowest of all others with Rs. 3/kWh.

A. Mengal; M.A. Uqaili; K. Harijan; Abdul Ghafoor Memon

2014-01-01T23:59:59.000Z

292

Greenhouse gas emission by wastewater treatment plants of the pulp and paper industry – Modeling and simulation  

Science Journals Connector (OSTI)

Abstract Greenhouse gas (GHG) emission and energy consumption in wastewater treatment plants (WWTPs) of the pulp and paper industry were modeled and estimated. Aerobic, anaerobic, and hybrid biological processes were used for the removal of contaminants. In addition to the removal of carbonaceous compounds, anaerobic digestion of the produced sludge and the removal of excess nitrogen in the effluent of treatment plants by nitrification/denitrification processes were incorporated in the model. Carbon dioxide, methane, and nitrous oxide were the major \\{GHGs\\} generated during the biological treatment, combustion, energy generation, and transportation. The generated biogas from the anaerobic processes was assumed to be recovered and used as a source of energy for the treatment plant, in an effort to reduce GHG emissions while decreasing the total energy needs of the WWTP. The established kinetic relationships of wastewater treatment processes along with mass and energy balances were employed for the simulation of different treatment systems and estimation of GHG emissions. Various sources of GHG emission were divided into on-site and off-site sources to simplify the modeling and simulation procedure. The overall GHG generation in the presence of biogas recovery was equal to 1.576, 3.026, and 3.271 kg CO2-equivalent/kg BOD by the three examined systems. The energy produced by the recovery and combustion of biogas could exceed the energy demands of all different treatment plants examined in this study and reduce off-site GHG emission. The generation of \\{GHGs\\} from aerobic and hybrid processes increased by 27% and 33.2%, respectively, when N2O emission from nitrogen removal processes was taken into consideration.

Omid Ashrafi; Laleh Yerushalmi; Fariborz Haghighat

2013-01-01T23:59:59.000Z

293

Capturing and Sequestering CO2 from a Coal-Fired Power Plant - Assessing the Net Energy and Greenhouse Gas Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capturing and Sequestering CO Capturing and Sequestering CO 2 from a Coal-fired Power Plant - Assessing the Net Energy and Greenhouse Gas Emissions Pamela L. Spath (pamela_spath @nrel.gov; (303) 275-4460) Margaret K. Mann (margaret_mann @nrel.gov; (303) 275-2921) National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 INTRODUCTION It is technically feasible to capture CO 2 from the flue gas of a coal-fired power plant and various researchers are working to understand the fate of sequestered CO 2 and its long term environmental effects. Sequestering CO 2 significantly reduces the CO 2 emissions from the power plant itself, but this is not the total picture. CO 2 capture and sequestration consumes additional energy, thus lowering the plant's fuel to electricity efficiency. To compensate for this, more fossil fuel must be

294

Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities  

SciTech Connect (OSTI)

A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

MM Hall

2006-01-31T23:59:59.000Z

295

Distillate Stocks Expected  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So let's get to what you want to know. What do we expect this upcoming winter? When EIA's demand forecast is combined with its outlook for production and net imports, distillate stocks are projected to remain towards the lower end of the normal range. We are forecasting about an 11 million barrel build between the end of July 2001 and the end of November 2001, slightly more than the average over the past 5 years (10 million barrels), but less than the average of the last 10 years (15 ½ million barrels). If, however, economic incentives are high enough, distillate stocks could build more, resulting in a higher distillate stock level heading into the winter. Of course, the reverse is true as well, if for example, the distillate fuel refining spread declines substantially. Since 1994,

296

PAD District III Stocks  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: PADD 3 (the Gulf Coast) inventories, at the end of July, stood at 33.5 million barrels and are well above the normal range for this time of year. Since we have a few months more to go until the beginning of the heating season, there is still time for the plentiful stocks in the Gulf Coast to find their way up into the Midwest. Thus, even though propane stocks in the Midwest are low, this could easily not be the case by the beginning of the heating season. One slight area of concern, however, is that the Texas Eastern Pipeline (TET) is experiencing brine problems due to heavy rains and record stock builds. To help alleviate the problem, some chemical companies are shifting their propane out of TET to other storage facilities. At this time we don't feel that this will negatively affect the propane market this

297

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Midwestern and Eastern States Midwestern and Eastern States Midwestern and Eastern States Midwestern and Eastern States combined accounted for about 13 percent of total U.S. processing capacity in 2009, accounting for the smallest portion of any region in the lower 48 States. The combined processing capacity in these States more than doubled, although a few of the States saw decreased capacity compared with 2004. Processing capacity in Illinois, Kansas, North Dakota, and Pennsylvania fell since 2004, with the highest decrease occurring in Kansas, which saw a 65 percent drop in processing capacity. At the same time, the number of plants in Kansas decreased by four. The decrease was likely the result of falling natural gas proved reserves, which decreased in this State between 1995 and 2005. While the proved reserves have

298

,"U.S. Natural Gas Plant Field Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1981" Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_gp_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:17:57 AM" "Back to Contents","Data 1: U.S. Natural Gas Plant Field Production" "Sourcekey","MNGFPUS1","MPPFPUS1","MLPFPUS1","METFPUS1","MPRFPUS1","MBNFPUS1","MBIFPUS1"

299

,"U.S. Natural Gas Plant Field Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1981" Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_gp_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:17:57 AM" "Back to Contents","Data 1: U.S. Natural Gas Plant Field Production" "Sourcekey","MNGFPUS1","MPPFPUS1","MLPFPUS1","METFPUS1","MPRFPUS1","MBNFPUS1","MBIFPUS1"

300

Transfer Entropy Analysis of the Stock Market  

E-Print Network [OSTI]

In terms of transfer entropy, we investigated the strength and the direction of information transfer in the US stock market. Through the directionality of the information transfer, the more influential company between the correlated ones can be found and also the market leading companies are selected. Our entropy analysis shows that the companies related with energy industries such as oil, gas, and electricity influence the whole market.

Baek, S K; Kwon, O; Moon, H T; Baek, Seung Ki; Jung, Woo-Sung; Kwon, Okyu; Moon, Hie-Tae

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Monte Carlo Analysis of Gas Centrifuge Enrichment Plant Process Load Cell Data  

SciTech Connect (OSTI)

As uranium enrichment plants increase in number, capacity, and types of separative technology deployed (e.g., gas centrifuge, laser, etc.), more automated safeguards measures are needed to enable the IAEA to maintain safeguards effectiveness in a fiscally constrained environment. Monitoring load cell data can significantly increase the IAEA s ability to efficiently achieve the fundamental safeguards objective of confirming operations as declared (i.e., no undeclared activities), but care must be taken to fully protect the operator s proprietary and classified information related to operations. Staff at ORNL, LANL, JRC/ISPRA, and University of Glasgow are investigating monitoring the process load cells at feed and withdrawal (F/W) stations to improve international safeguards at enrichment plants. A key question that must be resolved is what is the necessary frequency of recording data from the process F/W stations? Several studies have analyzed data collected at a fixed frequency. This paper contributes to load cell process monitoring research by presenting an analysis of Monte Carlo simulations to determine the expected errors caused by low frequency sampling and its impact on material balance calculations.

Garner, James R [ORNL; Whitaker, J Michael [ORNL

2013-01-01T23:59:59.000Z

302

The effect of stratigraphic dip on brine inflow and gas migration at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The natural dip of the Salado Formation at the Waste Isolation Pilot Plant (WIPP), although regionally only about 111, has the potential to affect brine inflow and gas-migration distances due to buoyancy forces. Current models, including those in WIPP Performance Assessment calculations, assume a perfectly horizontal repository and stratigraphy. With the addition of buoyancy forces due to the dip, brine and gas flow patterns can be affected. Brine inflow may increase due to countercurrent flow, and gas may preferentially migrate up dip. This scoping study has used analytical and numerical modeling to evaluate the impact of the dip on brine inflow and gas-migration distances at the WIPP in one, two, and three dimensions. Sensitivities to interbed permeabilities, two-phase curves, gas-generation rates, and interbed fracturing were studied.

Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Larson, K.W. [INTERA, Inc., Albuquerque, NM (United States)] [INTERA, Inc., Albuquerque, NM (United States)

1996-02-01T23:59:59.000Z

303

Selective Exhaust Gas Recycle with Membranes for CO2 Capture from Natural Gas Combined Cycle Power Plants  

Science Journals Connector (OSTI)

The combination of the combustion turbine (Brayton cycle) and steam turbine (Rankine cycle) yields a combined cycle power plant with efficiencies as high as 50%–55% (compared to 35%–40% in a typical subcritical pulverized coal power plant). ... Of course, it is also possible to combine these designs so that both parallel and series membranes are used. ...

Timothy C. Merkel; Xiaotong Wei; Zhenjie He; Lloyd S. White; J. G. Wijmans; Richard W. Baker

2012-11-27T23:59:59.000Z

304

Microbial gas generation under expected Waste Isolation Pilot Plant repository conditions  

SciTech Connect (OSTI)

Gas generation from the microbial degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository was investigated at Brookhaven National Laboratory. The biodegradation of mixed cellulosics (various types of paper) and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, neoprene, hypalon, and leaded hypalon) was examined. The rate of gas production from cellulose biodegradation in inundated samples incubated for 1,228 days at 30 C was biphasic, with an initial rapid rate up to approximately 600 days incubation, followed by a slower rate. The rate of total gas production in anaerobic samples containing mixed inoculum was as follows: 0.002 mL/g cellulose/day without nutrients; 0.004 mL/g cellulose/day with nutrients; and 0.01 mL/g cellulose/day in the presence of excess nitrate. Carbon dioxide production proceeded at a rate of 0.009 {micro}mol/g cellulose/day in anaerobic samples without nutrients, 0.05 {micro}mol/g cellulose/day in the presence of nutrients, and 0.2 {micro}mol/g cellulose/day with excess nitrate. Adding nutrients and excess nitrate stimulated denitrification, as evidenced by the accumulation of N{sub 2}O in the headspace (200 {micro}mol/g cellulose). The addition of the potential backfill bentonite increased the rate of CO{sub 2} production to 0.3 {micro}mol/g cellulose/day in anaerobic samples with excess nitrate. Analysis of the solution showed that lactic, acetic, propionic, butyric, and valeric acids were produced due to cellulose degradation. Samples incubated under anaerobic humid conditions for 415 days produced CO{sub 2} at a rate of 0.2 {micro}mol/g cellulose/day in the absence of nutrients, and 1 {micro}mol/g cellulose/day in the presence of bentonite and nutrients. There was no evidence of biodegradation of electron-beam irradiated plastic and rubber.

Francis, A.J.; Gillow, J.B.; Giles, M.R. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science

1997-03-01T23:59:59.000Z

305

Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

2014-01-27T23:59:59.000Z

306

Stocking Rate Decisions  

E-Print Network [OSTI]

to predict potential forage shortfalls, determine the im- pact of the decision on finances and other ranch re- sources, and make any necessary adjustments before the forage resource is harmed or financial problems occur. Through adequate planning and periodic... rates with limited knowledge of future forage and market conditions. But they can use past records, experience and range surveys to make realistic projections of forage and market conditions (Figure 3). Then, the planned stock- ing rate should...

White, Larry D.; McGinty, Allan

1999-02-15T23:59:59.000Z

307

In-Born Radio Frequency Identification Devices for Safeguards Use at Gas-Centrifuge Enrichment Plants  

SciTech Connect (OSTI)

Global expansion of nuclear power has made the need for improved safeguards measures at Gas Centrifuge Enrichment Plants (GCEPs) imperative. One technology under consideration for safeguards applications is Radio Frequency Identification Devices (RFIDs). RFIDs have the potential to increase IAEA inspector"s efficiency and effectiveness either by reducing the number of inspection visits necessary or by reducing inspection effort at those visits. This study assesses the use of RFIDs as an integral component of the "Option 4" safeguards approach developed by Bruce Moran, U.S. Nuclear Regulatory Commission (NRC), for a model GCEP [1]. A previous analysis of RFIDs was conducted by Jae Jo, Brookhaven National Laboratory (BNL), which evaluated the effectiveness of an RFID tag applied by the facility operator [2]. This paper presents a similar evaluation carried out in the framework of Jo’s paper, but it is predicated on the assumption that the RFID tag is applied by the manufacturer at the birth of the cylinder, rather than by the operator. Relevant diversion scenarios are examined to determine if RFIDs increase the effectiveness and/ or efficiency of safeguards in these scenarios. Conclusions on the benefits offered to inspectors by using in-born RFID tagging are presented.

Ward,R.; Rosenthal,M.

2009-07-12T23:59:59.000Z

308

Rotor dynamic analysis of GCEP (Gas Centrifuge Enrichment Plant) Tails Withdrawal Test Facility AC-12 compressor  

SciTech Connect (OSTI)

The reliable operation of the centrifugal compressors utilized in the gaseous diffusion process is of great importance due to the critical function of these machines in product and tails withdrawal, cascade purge and evacuation processes, the purge cascade and product booster applications. The same compressors will be used in equally important applications within the Gas Centrifuge Enrichment Plant (GCEP). In response to concern over the excessive vibration exhibited by the AC-12 compressor in the No. 3 position of the GCEP Tails Withdrawal Test Facility, a rotor-bearing dynamic analysis was performed on the compressor. This analysis included the acquisition and reduction of compressor vibration data, characterization and modeling of the rotorbearing system, a computer dynamic study, and recommendations for machine modification. The compressor dynamic analysis was performed for rotor speeds of 9000 rpm and 7200 to 7800 rpm, which includes all possible opreating speeds of the compressor in the GCEP Test Facility. While the analysis was performed on this particular AC-12 compressor, the results should be pertinent to other AC-12 applications as well. Similar diagnostic and analytical techniques can be used to evaluate operation of other types of centrifugal compressors.

Spencer, J.W.

1982-01-22T23:59:59.000Z

309

Analysis of the effectiveness of gas centrifuge enrichment plants advanced safeguards  

SciTech Connect (OSTI)

Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched uranium (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235U enrichment of declared UF6 containers used in the process of enrichment at GCEPs. This paper contains an analysis of possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive assay (DA) of samples that could reduce the uncertainty of the inspector's measurements. These improvements could reduce the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We also explore how a few advanced safeguards systems could be assembled for unattended operation. The analysis will focus on how unannounced inspections (UIs), and the concept of information-driven inspections (IDS) can affect probability of detection of the diversion of nuclear materials when coupled to new GCEPs safeguards regimes augmented with unattended systems.

Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinjoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

310

Application of systems engineering techniques (reliability, availability, maintainability, and dollars) to the Gas Centrifuge Enrichment Plant  

SciTech Connect (OSTI)

The systems engineering function for the Gas Centrifuge Enrichment Plant (GCEP) covers system requirements definition, analyses, verification, technical reviews, and other system efforts necessary to assure good balance of performance, safety, cost, and scheduling. The systems engineering function will support the design, installation, start-up, and operational phases of GCEP. The principal objectives of the systems engineering function are to: assure that the system requirements of the GCEP process are adequately specified and documented and that due consideration and emphasis are given to all aspects of the project; provide system analyses of the designs as they progress to assure that system requirements are met and that GCEP interfaces are compatible; assist in the definition of programs for the necessary and sufficient verification of GCEP systems; and integrate reliability, maintainability, logistics, safety, producibility, and other related specialties into a total system effort. This paper addresses the GCEP reliability, availability, maintainability, and dollars (RAM dollars) analyses which are the primary systems engineering tools for the development and implementation of trade-off studies. These studies are basic to reaching cost-effective project decisions. The steps necessary to achieve optimum cost-effective design are shown.

Boylan, J.G.; DeLozier, R.C.

1982-01-01T23:59:59.000Z

311

Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

SciTech Connect (OSTI)

More than 56,000 coal quality data records from five public data sets have been selected for use in this project. These data will be used to create maps showing where coals with low mercury and acid-gas emissions might be found for power plants classified by air-pollution controls. Average coal quality values, calculated for 51,156 commercial coals by U.S. county-of-origin, are listed in the appendix. Coal moisture values are calculated for commercially shipped coal from 163 U.S. counties, where the raw assay data (including mercury and chlorine values) are reported on a dry basis. The calculated moisture values are verified by comparison with observed moisture values in commercial coal. Moisture in commercial U.S. coal shows provincial variation. For example, high volatile C bituminous rank coal from the Interior province has 3% to 4% more moisture than equivalent Rocky Mountain province coal. Mott-Spooner difference values are calculated for 4,957 data records for coals collected from coal mines and exploration drill holes. About 90% of the records have Mott-Spooner difference values within {+-}250 Btu/lb.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2004-01-31T23:59:59.000Z

312

Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation  

SciTech Connect (OSTI)

Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Reimold, Benjamin A [Los Alamos National Laboratory; Ward, Steven L [Los Alamos National Laboratory; Howell, John [GLASGOW UNIV.

2010-09-13T23:59:59.000Z

313

NATIONAL ENERGY POLICY Taking Stock A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Taking Stock Taking Stock A merica's current energy challeng- es can be met with rapidly im- proving technology, dedicated leadership, and a comprehensive approach to our energy needs. Our challenge is clear-we must use tech- nology to reduce demand for energy, re- pair and maintain our energy infrastruc- ture, and increase energy supply. Today, the United States remains the world's undisput- ed technological leader; but recent events have demonstrated that we have yet to inte- grate 21st-century technology into an ener- gy plan that is focused on wise energy use, production, efficiency, and conservation. Prices today for gasoline, heating oil, and natural gas are dramatically higher than they were only a year ago. In Califor- nia, homeowners, farmers, and businesses face soaring electricity prices, rolling

314

Jim Stock | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Jim Stock Jim Stock About Us Jim Stock - Member - White House Council of Economic Advisers James H. Stock is a member of the Council of Economic Advisers and is responsible for offering the President objective advice on the formulation of economic policy. Stock was previously the Chief Economist for the Council of Economic Advisers. He is on leave from Harvard University where he is the Harold Hitchings Burbank Professor of Political Economy in the Department of Economics, with a dual appointment in the Harvard Kennedy School. Dr. Stock served as Chair of the Harvard Economics Department from 2006 to 2009 and has been a professor at Harvard continuously since 1983, with the exception of a two-year appointment at UC Berkeley from 1990 to 1991. His research focuses on macroeconomic forecasting, monetary policy, and

315

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents [OSTI]

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

316

Thermionic combustor application to combined gas and steam turbine power plants  

SciTech Connect (OSTI)

The engineering and economic feasibility of a thermionic converter topped combustor for a gas turbine is evaluated in this paper. A combined gas and steam turbine system was chosen for this study with nominal outputs of the gas and steam turbines of 70 MW and 30 MW, respectively. 7 refs.

Miskolczy, G.; Wang, C.C.; Lieb, D.P.; Margulies, A.E.; Fusegni, L.J.; Lovell, B.J.

1981-01-01T23:59:59.000Z

317

A Robust Infrastructure Design for Gas Centrifuge Enrichment Plant Unattended Online Enrichment Monitoring  

SciTech Connect (OSTI)

An online enrichment monitor (OLEM) is being developed to continuously measure the relative isotopic composition of UF6 in the unit header pipes of a gas centrifuge enrichment plant (GCEP). From a safeguards perspective, OLEM will provide early detection of a facility being misused for production of highly enriched uranium. OLEM may also reduce the number of samples collected for destructive assay and if coupled with load cell monitoring can provide isotope mass balance verification. The OLEM design includes power and network connections for continuous monitoring of the UF6 enrichment and state of health of the instrument. Monitoring the enrichment on all header pipes at a typical GCEP could require OLEM detectors on each of the product, tails, and feed header pipes. If there are eight process units, up to 24 detectors may be required at a modern GCEP. Distant locations, harsh industrial environments, and safeguards continuity of knowledge requirements all place certain demands on the network robustness and power reliability. This paper describes the infrastructure and architecture of an OLEM system based on OLEM collection nodes on the unit header pipes and power and network support nodes for groupings of the collection nodes. A redundant, self-healing communications network, distributed backup power, and a secure communications methodology. Two candidate technologies being considered for secure communications are the Object Linking and Embedding for Process Control Unified Architecture cross-platform, service-oriented architecture model for process control communications and the emerging IAEA Real-time And INtegrated STream-Oriented Remote Monitoring (RAINSTORM) framework to provide the common secure communication infrastructure for remote, unattended monitoring systems. The proposed infrastructure design offers modular, commercial components, plug-and-play extensibility for GCEP deployments, and is intended to meet the guidelines and requirements for unattended and remotely monitored safeguards systems.

Younkin, James R [ORNL; Rowe, Nathan C [ORNL; Garner, James R [ORNL

2012-01-01T23:59:59.000Z

318

Stocks, bonds and the  

Science Journals Connector (OSTI)

In this paper, we investigate the relative performance of stocks and bonds for various investment horizons on the French market. We use a new matched block bootstrap approach to take account of estimation risk. Furthermore, in the light of non-normality of returns, we use two different risk approaches as inputs in portfolio optimization: the traditional variance, and a downside risk measure, the semi-variance. Our results suggest that an investor should avoid bonds in the long run due to the time diversification effect.

Gilles Sanfilippo

2003-01-01T23:59:59.000Z

319

Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment  

SciTech Connect (OSTI)

Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

R. T. Jubin; D. M. Strachan; N. R. Soelberg

2013-09-01T23:59:59.000Z

320

Land O'Lakes Shaves Gas Usage through Steam System In-Plant Training  

Broader source: Energy.gov [DOE]

Twelve participants from 6 different facilities learned and practiced energy efficiency assessment skills during the recent in-plant training at a Land O'Lakes dairy plant in Carlisle, Pennsylvania...

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Economic comparison between coal-fired and liquefied natural gas combined cycle power plants considering carbon tax: Korean case  

Science Journals Connector (OSTI)

Economic growth is main cause of environmental pollution and has been identified as a big threat to sustainable development. Considering the enormous role of electricity in the national economy, it is essential to study the effect of environmental regulations on the electricity sector. This paper aims at making an economic analysis of Korea's power plant utilities by comparing electricity generation costs from coal-fired power plants and liquefied natural gas (LNG) combined cycle power plants with environmental consideration. In this study, the levelized generation cost method (LGCM) is used for comparing economic analysis of power plant utilities. Among the many pollutants discharged during electricity generation, this study principally deals with control costs related only to CO2 and NO2, since the control costs of SO2 and total suspended particulates (TSP) are already included in the construction cost of utilities. The cost of generating electricity in a coal-fired power plant is compared with such cost in a LNG combined cycle power plant. Moreover, a sensitivity analysis with computer simulation is performed according to fuel price, interest rates and carbon tax. In each case, these results can help in deciding which utility is economically justified in the circumstances of environmental regulations.

Suk-Jae Jeong; Kyung-Sup Kim; Jin-Won Park; Dong-soon Lim; Seung-moon Lee

2008-01-01T23:59:59.000Z

322

Specifications for fuel for a gas-turbine plant on a marine platform  

Science Journals Connector (OSTI)

Specifications for liquid and gaseous fuel obtained directly on a marine platform for a power plant based on...

E. P. Fedorov; L. S. Yanovskii…

2010-05-01T23:59:59.000Z

323

U.S. Propane Total Stocks  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: U.S. inventories of propane benefited from a late pre-season build that pushed inventories to over 65 million barrels by early November 2000, the second highest peak pre-heating season level since 1986. Although propane inventories were expected to remain within the normal range for the duration of the 2000-01 heating season, cold weather in November and December, along with recently high natural gas prices that discouraged propane production from gas processing, resulted in stocks falling below the normal range by the end of December. However, if the weather remains seasonally normal, and the recent decline in natural gas prices holds, EIA expects the propane inventory drawdown to slow. This is reflected in the data for January 19, which showed a draw of only 2.1 million barrels, compared to more than twice that

324

Approach to IAEA verification of the nuclear-material balance at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP)  

SciTech Connect (OSTI)

This paper describes a potential approach by which the International Atomic Energy Agency (IAEA) might verify the nuclear-material balance at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP), should that plant be placed under IAEA safeguards. The strategy makes use of the attributes and variables measurement verification approach, whereby the IAEA would perform independent measurements on a randomly selected subset of the items comprising the U-235 flows and inventories at the plant. In addition, the MUF-D statistic is used as the test statistics for the detection of diversion. The paper includes descriptions of the potential verification activities, as well as calculations of (a) attributes and variables sample sizes for the various strata, (b) standard deviations of the relevant test statistics, and (c) the sensitivity for detection of diversion which the IAEA might achieve by this verification strategy at GCEP.

Gordon, D.M.; Sanborn, J.B.; Younkin, J.M.; DeVito, V.J.

1982-01-01T23:59:59.000Z

325

Gas Pipeline Securities (Indiana)  

Broader source: Energy.gov [DOE]

This statute establishes that entities engaged in the transmission of gas by pipelines are not required to obtain the consent of the Utility Regulatory Commission for issuance of stocks,...

326

Studies on the Applicability of Biomarkers in Estimating the Systemic Bioavailability of Polynuclear Aromatic Hydrocarbons from Manufactured Gas Plant Tar-Contaminated Soils  

Science Journals Connector (OSTI)

The systemic bioavailability of polynuclear aromatic hydrocarbons (PAH) from ingested soils containing manufactured gas plant (MGP) tar was evaluated in mice. Soil and organic extract of each soil were incorporated into a diet and fed to mice for two ...

Aruna Koganti; Deborah A. Spina; Kimberly Rozett; Bing-Li Ma; Eric H. Weyand; Barbara B. Taylor; David M. Mauro

1998-08-25T23:59:59.000Z

327

The thermodynamic efficiency of the condensing process circuits of binary combined-cycle plants with gas-assisted heating of cycle air  

Science Journals Connector (OSTI)

The thermal efficiencies of condensing-type circuits of binary combined-cycle plants containing one, two, and three ... gas turbine unit, and with preheating of cycle air are analyzed by way of comparison ... ini...

V. P. Kovalevskii

2011-09-01T23:59:59.000Z

328

Determining the maximal capacity of a combined-cycle plant operating with afterburning of fuel in the gas conduit upstream of the heat-recovery boiler  

Science Journals Connector (OSTI)

The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from ... electric and therma...

V. M. Borovkov; N. M. Osmanova

2011-01-01T23:59:59.000Z

329

Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995  

SciTech Connect (OSTI)

This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

NONE

1995-03-01T23:59:59.000Z

330

Laboratory measurements of gas flow along a pressurized grout/membrane/halite interface for the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

A series of laboratory gas-flow tests has been performed on interfaces comprised of concrete, very low-density polyethylene membrane, and halite. These tests were conducted to (1) evaluate whether a meaningful test can be run to quantify the effectiveness of a membrane, and (2) aid in the design of an Alcove Gas Barrier at the Waste Isolation Pilot Plant (WIPP), where membranes of this type are being considered for use at the interface between the concrete or grout of the gas barrier structure and the surrounding halite. Over 400 longitudinal transient-flow and steady-state radial-flow tests have been completed. However, it is not clear from these tests that the test results can be meaningfully applied to the full-scale Alcove Gas Barrier configuration because the measured permeabilities are several orders of magnitude higher than the meter-scale in situ concrete seal tests conducted at the WIPP as part of the Small-Scale Seal Performance Tests. Results show that the membranes decrease gas permeability along the concrete/halite interface by one to two orders of magnitude to below 10{sup {minus}15} m{sup 2} for the simplified test configurations. 28 refs., 11 figs., 16 tabs.

Ucpirti, H.; Daemen, J.J.K. [Univ. of Nevada, Reno, NV (United States); Finley, R.E.; George, J.T. [Sandia National Labs., Albuquerque, NM (United States)

1995-01-01T23:59:59.000Z

331

Effect of explicit representation of detailed stratigraphy on brine and gas flow at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

Stratigraphic units of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) disposal room horizon includes various layers of halite, polyhalitic halite, argillaceous halite, clay, and anhydrite. Current models, including those used in the WIPP Performance Assessment calculations, employ a ``composite stratigraphy`` approach in modeling. This study was initiated to evaluate the impact that an explicit representation of detailed stratigraphy around the repository may have on fluid flow compared to the simplified ``composite stratigraphy`` models currently employed. Sensitivity of model results to intrinsic permeability anisotropy, interbed fracturing, two-phase characteristic curves, and gas-generation rates were studied. The results of this study indicate that explicit representation of the stratigraphy maintains higher pressures and does not allow as much fluid to leave the disposal room as compared to the ``composite stratigraphy`` approach. However, the differences are relatively small. Gas migration distances are also different between the two approaches. However, for the two cases in which explicit layering results were considerably different than the composite model (anisotropic and vapor-limited), the gas-migration distances for both models were negligible. For the cases in which gas migration distances were considerable, van Genuchten/Parker and interbed fracture, the differences between the two models were fairly insignificant. Overall, this study suggests that explicit representation of the stratigraphy in the WIPP PA models is not required for the parameter variations modeled if ``global quantities`` (e.g., disposal room pressures, net brine and gas flux into and out of disposal rooms) are the only concern.

Christian-Frear, T.L.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.

1996-04-01T23:59:59.000Z

332

Mining The Stock Market: Which Measure Is Best ? [Extended Abstract  

E-Print Network [OSTI]

in history), production capacities, population statistics, and sales amounts. Since the data sets occurring the price of the stock at the beginning of an operational day. Every time series is assigned to one out of 102 clusters (e.g. ``Computers (Hardware)'', ``Oil and Gas'', etc). Assuming this classification

333

Energy recovery during expansion of compressed gas using power plant low-quality heat sources  

DOE Patents [OSTI]

A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

2006-03-07T23:59:59.000Z

334

A real options approach to investing in the first nuclear power plant under cost uncertainty: comparison with natural gas power plant for the Tunisian case  

Science Journals Connector (OSTI)

This paper uses a real options approach to present a method for evaluating the first Nuclear Power Plant (NPP) investment in Tunisia in 2020. The evaluating model integrates the value of real options: option to wait in the standard discount cash flow analysis. According to the IAEA (2007), starting the first stage of a nuclear power programme makes it possible to construct the first NPP in second time. This study considers that the economic worth of the NPP investment depends on the production cost of the natural gas power plant. This study assumes that the profit realised by the NPP project, defined as the difference between natural gas and nuclear production costs, represented the cash flow of the NPP investment. However, the value of this cash flow is uncertain. This is an investment choice problem under uncertainty. The analysis proposes the optimal investment strategy in NPP project for the Tunisian government. Furthermore, the threshold value of investment cash flow defining the timing of starting NPP construction is calculated. [Received: July 10, 2008; Accepted: November 23, 2008

Mohamed Ben Abdelhamid; Chaker Aloui; Corinne Chaton

2009-01-01T23:59:59.000Z

335

Upgrading of Landfill Gas by Membranes — Experiences with Operating a Pilot Plant  

Science Journals Connector (OSTI)

In the last years the interest in using landfill gas as an energy source has risen ... has been constructed on the premises of a landfill dump in Neuss. In a two-stage-process, landfill gas is upgraded in order t...

R. Rautenbach; K. Welsch

1990-01-01T23:59:59.000Z

336

Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture  

SciTech Connect (OSTI)

The AVESTAR Center located at the U.S. Department of Energy’s National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a “gasification with CO{sub 2} capture” process simulator with a “combined cycle” power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTAR’s IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

Liese, E.; Zitney, S.

2012-01-01T23:59:59.000Z

337

Energy and Economic Analysis of the CO2 Capture from Flue Gas of Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Abstract Carbon capture and storage is considered as one of the key strategies for reducing the emissions of carbon dioxide from power generation facilities. Although post-combustion capture via chemical absorption is now a mature technology, the separation of CO2 from flue gases shows many issues, including the solvent degradation and the high regeneration energy requirement, that in turn reduces the power plant performances. Focusing on a triple pressure and reheat combined cycle with exhaust gas recirculation, this paper aims to evaluate the potential impacts of integrating a post-combustion capture system, based on an absorption process with monoethanolamine solvent. Energy and economic performances of the integrated system are evaluated varying the exhaust gas recirculation fraction and the CO2 capture ratio. The different configurations examined are then compared in terms of efficiency and rated capacity of the integrated system, as well as considering the cost of electricity generated and the cost of CO2 avoided.

Maura Vaccarelli; Roberto Carapellucci; Lorena Giordano

2014-01-01T23:59:59.000Z

338

Flue gas desulfurization : cost and functional analysis of large-scale and proven plants  

E-Print Network [OSTI]

Flue Gas Desulfurization is a method of controlling the emission of sulfurs, which causes the acid rain. The following study is based on 26 utilities which burn coal, have a generating capacity of at least 50 Megawatts ...

Tilly, Jean

1983-01-01T23:59:59.000Z

339

A RAM (Reliability Availability Maintainability) analysis of Consolidated Edison's Gowanus and Narrows gas turbine power plants  

SciTech Connect (OSTI)

A methodology is presented which accurately assesses the ability of gas turbine generating stations to perform their intended function (reliability) while operating in a peaking duty mode. The developed methodology alloys the RAM modeler to calculate the probability that a peaking unit will produce the energy demanded and in turn calculate the total energy lost during a given time period due to unavailability of individual components. The methodology was applied to Consolidated Edison's Narrows site which has 16 barge-mounted General Electric Frame 5 gas turbines operating under a peaking duty mode. The resulting RAM model was quantified using the Narrows site power demand and failure rate data. The model was also quantified using generic failure data from the Operational Reliability Analysis Program (ORAP) for General Electric Frame 5 peaking gas turbines. A problem description list and counter measures are offered for components contributing more than one percent to gas turbine energy loss. 3 refs., 18 figs., 12 tabs.

Johnson, B.W.; Whitehead, T.J.; Derenthal, P.J. (Science Applications International Corp., Los Altos, CA (USA))

1990-12-01T23:59:59.000Z

340

Use of piston expanders in plants utilizing energy of compressed natural gas  

Science Journals Connector (OSTI)

A comparative analysis has been performed of the suitability of using turbo-and piston (reciprocating) expanders in low-consumption units of natural gas...i...= 3–5 MPa. Two versions have been investigated: 1) mo...

A. I. Prilutskii

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

Broader source: Energy.gov [DOE]

Success story about LNG from landfill gas. Presented by Mike McGowan, Linde NA, Inc., at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

342

"1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220 "3. North Pole","Petroleum","Golden Valley Elec Assn Inc",144 "4. Bradley Lake","Hydroelectric","Homer Electric Assn Inc",126 "5. Anchorage 1","Gas","Anchorage Municipal Light and Power",88 "6. Snettisham","Hydroelectric","Alaska Electric Light&Power Co",78 "7. Bernice Lake","Gas","Chugach Electric Assn Inc",62 "8. Lemon Creek","Petroleum","Alaska Electric Light&Power Co",58

343

Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment  

Broader source: Energy.gov [DOE]

This case study describes how Terra Nitrogen Company saved 497,000 MMBtu and $3.5 million yearly after upgrading the steam system in its ammonia plant in Verdigris, Oklahoma.

344

Persistent collective trend in stock markets  

Science Journals Connector (OSTI)

Empirical evidence is given for a significant difference in the collective trend of the share prices during the stock index rising and falling periods. Data on the Dow Jones Industrial Average and its stock components are studied between 1991 and 2008. Pearson-type correlations are computed between the stocks and averaged over stock pairs and time. The results indicate a general trend: whenever the stock index is falling the stock prices are changing in a more correlated manner than in case the stock index is ascending. A thorough statistical analysis of the data shows that the observed difference is significant, suggesting a constant fear factor among stockholders.

Emeric Balogh; Ingve Simonsen; Bálint Zs. Nagy; Zoltán Néda

2010-12-13T23:59:59.000Z

345

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

346

Modeling gas and brine migration for assessing compliance of the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

At the request of the WIPP Project Integration Office (WPIO) of the DOE, the WIPP Performance Assessment (PA) Department of Sandia National Laboratories (SNL) has completed preliminary uncertainty and sensitivity analyses of gas and brine migration away from the undisturbed repository. This paper contains descriptions of the numerical model and simulations, including model geometries and parameter values, and a summary of major conclusions from sensitivity analyses. Because significant transport of contaminants can only occur in a fluid (gas or brine) medium, two-phase flow modeling can provide an estimate of the distance to which contaminants can migrate. Migration of gas or brine beyond the RCRA ``disposal-unit boundary`` or the Standard`s accessible environment constitutes a potential, but not certain, violation and may require additional evaluations of contaminant concentrations.

Vaughn, P. [Applied Physics, Inc., Albuquerque, NM (United States); Butcher, B. [Sandia National Labs., Albuquerque, NM (United States); Helton, J. [Arizona State Univ., Tempe, AZ (United States); Swift, P. [Tech. Reps., Inc., Albuquerque, NM (United States)

1993-10-01T23:59:59.000Z

347

Current status of MHI CO2 capture plant technology, large scale demonstration project and road map to commercialization for coal fired flue gas application  

Science Journals Connector (OSTI)

(1) It is becoming increasingly evident that the prolonged utilization of fossil fuels for primary energy production, especially coal which is relatively cheap and abundant, is inevitable and that Carbon Capture and Storage (CCS) technology can significantly reduce CO2 emissions from this sector thus allowing the continued environmentally sustainable use of this important energy commodity on a global basis. (2) MHI has co-developed the Kansai Mitsubishi Carbon Dioxide Recovery Process (KM-CDR Process™) and KS-1™ absorbent, which has been deployed in seven CO2 capture plants, now under commercial operation operating at a CO2 capture capacity of 450 metric tons per day (tpd). In addition, a further two commercial plants are now under construction all of which capture CO2 from natural gas fired flue gas boilers and steam reformers. Accordingly this technology is now available for commercial scale CO2 capture for gas boiler and gas turbine application. (3) However before offering commercial CO2 capture plants for coal fired flue gas application, it is necessary to verify the influence of, and develop countermeasures for, related impurities contained in coal fired flue gas. This includes the influence on both the absorbent and the entire system of the CO2 capture plant to achieve high operational reliability and minimize maintenance requirements. (4) Preventing the accumulation of impurities, especially the build up of dust, is very important when treating coal fired flue gas and MHI has undertaken significant work to understand the impact of impurities in order to achieve reliable and stable operating conditions and to efficiently optimize integration between the CO2 capture plant, the coal fired power plant and the flue gas clean up equipment. (5) To achieve this purpose, MHI constructed a 10 tpd CO2 capture demonstration plant at the Matsushima 1000 MW Power Station and confirmed successful, long term demonstration following ?5000 hours of operation in 2006–07 with 50% financial support by RITE, as a joint program to promote technological development with the private sector, and cooperation from J-POWER. (6) Following successful demonstration testing at Matsushima, additional testing was undertaken in 2008 to examine the impact of entrainment of higher levels of flue gas impurities (primarily \\{SOx\\} and dust by bypassing the existing FGD) and to determine which components of the CO2 recovery process are responsible for the removal of these impurities. Following an additional 1000 demonstration hours, results indicated stable operational performance in relation to the following impurities; (1) SO2: Even at higher SO2 concentrations were almost completely removed from the flue gas before entering the CO2 absorber. (2) Dust: The accumulation of dust in the absorbent was higher, leading to an advanced understanding of the behavior of dust in the CO2 capture plant and the dust removal efficiency of each component within the CO2 recovery system. The data obtained is useful for the design of large-scale units and confirms the operating robustness of the CO2 capture plant accounting for wide fluctuations in impurity concentrations. (7) This important coal fired flue gas testing showed categorically that minimizing the accumulation of large concentrations of impurities, and to suppress dust concentrations below a prescribed level, is important to achieve long-term stable operation and to minimize maintenance work for the CO2 capture plant. To comply with the above requirement, various countermeasures have been developed which include the optimization of the impurity removal technology, flue gas pre treatment and improved optimization with the flue gas desulfurization facility. (8) In case of a commercial scale CO2 capture plant applied for coal fired flue gas, its respective size will be several thousand tpd which represents a considerable scale-up from the 10 tpd demonstration plant. In order to ensure the operational reliability and to accurately confirm the influence and the behavior of the impurities in coal fired fl

Takahiko Endo; Yoshinori Kajiya; Hiromitsu Nagayasu; Masaki Iijima; Tsuyoshi Ohishi; Hiroshi Tanaka; Ronald Mitchell

2011-01-01T23:59:59.000Z

348

Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants  

SciTech Connect (OSTI)

This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

2003-12-31T23:59:59.000Z

349

Combined-cycle gas and steam turbine power plants. 2. edition  

SciTech Connect (OSTI)

First published in 1991, this book is the leading reference on technical and economic factors of combined-cycle applications now leading the trend toward merchant plants and the peaking power needed in newly deregulated markets around the world, this long-awaited second edition is more important than ever. In it, Kehlhofer -- an internationally recognized authority in the field of new combined-cycle power plants -- and his co-authors widen the scope and detail found in the first edition. Included are tips on system layout, details on controls and automation, and operating instructions. Loaded with case studies, reference tables, and more than 150 figures, this text offers solid advice on system layout, controls and automation, and operating and maintenance instructions. The author provides real-world examples to apply to one`s own applications. The contents include: Introduction; The electricity market; Thermodynamic principles of combined-cycle plants; Combined-cycle concepts; Applications of combined-cycle; Components; Control and automation; Operating and part load behavior; Environmental considerations; Developmental trends; Typical combined-cycle plants already built; Conclusion; Appendices; Conversions; Calculation of the operating performance of combined-cycle installations; Definitions of terms and symbols; Bibliography; and Index.

Kehlhofer, R.; Bachmann, R.; Nielson, H.; Warner, J.

1999-01-01T23:59:59.000Z

350

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Regional Analysis Regional Analysis Rocky Mountain States and California Rocky Mountain States and California The Rocky Mountain States, which include all of the States west of the Great Plains and Texas and those east of California, have seen significant natural gas production increases over the last decade. With the development of new production basins, including the San Juan Basin, Powder River Basin, and Green River Basin, natural gas processing capacity in this region has expanded significantly. In 2009, California and Rocky Mountain States accounted for a total of 16.9 Bcf per day or about 22 percent of total U.S. capacity. Since 2004, only California and New Mexico noted a decrease in overall processing capacity, falling by 17 and 12 percent, respectively. Processing capacity in all of the remaining States (Colorado, Montana, New

351

Current Status and Perspectives of Liquefied Natural Gas (LNG) Plant Design  

Science Journals Connector (OSTI)

The processes can be classified into three general categories based on the type of refrigeration cycle and equipment used: a cascade process using pure refrigerants, a mixed refrigerant process using refrigerant mixtures, and an expander process using expanders instead of Joule–Thomson (J–T) valves. ... To cool the nitrogen to a low-enough temperature to liquefy natural gas, the cLNG process uses both self-cooling and turbo expanders. ...

Wonsub Lim; Kwangho Choi; Il Moon

2012-12-15T23:59:59.000Z

352

Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report  

SciTech Connect (OSTI)

This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

Not Available

1986-10-01T23:59:59.000Z

353

Natural Gas Processing Plants in the United States: 2010 Update / Table 2  

Gasoline and Diesel Fuel Update (EIA)

2. Average Annual Flows and Utilization Rates for Processing Plants in the United States 2. Average Annual Flows and Utilization Rates for Processing Plants in the United States Average Annual Flows (Million Cubic Feet per Day) Minimum Plant Utilization Rate Maximum Plant Utilization Rate Average Utilization Rate (Percent) 2008 Percent of U.S. Total Texas 14,020 27.3 3 100 71 Louisiana 10,462 20.4 3 100 56 Alaska 8,105 15.8 77 100 86 Wyoming 4,462 8.7 21 100 61 Colorado 2,934 5.7 15 100 77 Oklahoma 2,789 5.4 12 100 75 New Mexico 2,221 4.3 17 95 73 Illinois 1,601 3.1 35 76 76 Kansas 852 1.7 51 84 68 Alabama 746 1.5 32 80 60 Utah 728 1.4 22 100 61 Mississippi 688 1.3 29 67 30 California 557 1.1 2 100 64 West Virginia 382 0.7 70 91 82 Kentucky 217 0.4 40 92 75 Michigan 182 0.4 5 100 19 North Dakota 158 0.3 33 94 80 Montana 89 0.2 27 88 54 Pennsylvania 36 0.1 43 89 70 Arkansas 27 0.1 3 90 4 Florida 20 0.0 22 22 22 Tennessee 16 0.0 64 64 64 TOTAL U.S. 51,289 100.0 2 100 66 Note: Average utilization rates are based on 2008 flows and 2009 capacity,

354

Quantum Brownian motion model for stock markets  

E-Print Network [OSTI]

We investigate the relevance between quantum open systems and stock markets. A Quantum Brownian motion model is proposed for studying the interaction between the Brownian system and the reservoir, i.e., the stock index and the entire stock market. Based on the model, we investigate the Shanghai Stock Exchange of China from perspective of quantum statistics, and thereby examine the behaviors of the stock index violating the efficient market hypothesis, such as fat-tail phenomena and non-Markovian features. Our interdisciplinary works thus help to discovery the underlying quantum characteristics of stock markets and develop new research fields of econophysics.

Meng, Xiangyi; Guo, Hong

2014-01-01T23:59:59.000Z

355

LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents.

Taylor-Pashow, K.; Nash, C.; McCabe, D.

2014-09-29T23:59:59.000Z

356

Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost and Performance Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia July 5, 2011 DOE/NETL- 2010/1402 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

357

Cost and Performance Baseline for Fossil Energy Plants; Volume 3c: Natural Gas Combined Cycle at Elevation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Baseline for Fossil Energy Plants Volume 3c: Natural Gas Combined Cycle at Elevation March 2011 DOE/NETL-2010/1396 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

358

LNG plants in the US and abroad. [Liquefied Natural Gas (LNG)  

SciTech Connect (OSTI)

The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT's LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

Blazek, C.F.; Biederman, R.T.

1992-01-01T23:59:59.000Z

359

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

360

Rapid Monitoring of Hydrocarbon Blending Stocks in Modified Aviation Turbine Fuels  

Science Journals Connector (OSTI)

......stocks in JP-4 aviation turbine fuel. Introduction High resolution capillary gas chromatography affords...principal Air Force aviation turbine fuel, and the incorporation...Model 3700 capillary gas chromatographic system...Products), to remove residual oxygen and/or water......

P.C. Hayes; Jr.; E.W. Pitzer

1984-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Stocking Rate: The Key Grazing Management Decision  

E-Print Network [OSTI]

Stocking rate is the most important grazing management decision a rancher makes. This publication covers all the factors involved in determining an appropriate stocking rate, including rainfall and forage production, range condition, and the forage...

Lyons, Robert K.; Machen, Richard V.

2001-07-19T23:59:59.000Z

362

Privacy Threats in Online Stock Quotes  

Science Journals Connector (OSTI)

Stock traders reveal information about their pending trades by their selection of stock performance data to retrieve from the web. Potentially malicious quote publishers have access to this information, and ca...

Peter Williams

2008-01-01T23:59:59.000Z

363

Essays on macroeconomic risks and stock prices  

E-Print Network [OSTI]

In this thesis, I study the relationship between macroeconomic risks and asset prices. In the first chapter, I establish that inflation risk is priced in the cross-section of stock returns: stocks that have low returns ...

Duarte, Fernando Manuel

2011-01-01T23:59:59.000Z

364

Islamic Finance Bulletin Conventional Stock Markets 2  

E-Print Network [OSTI]

by about 6 percent. There were signs of revival in the Tunisian economy after Qatar extended a USD 1- lar increased from oil importers, and as #12;StockMarkets Table 2: Evolution of Islamic Stock Markets

Meju, Max

365

Selection of potential IAEA inspection strategies involving cascade access at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP)  

SciTech Connect (OSTI)

This report has been prepared as a US contribution to Team 4 of the Hexapartite Safeguards Project. It provides to the Team 4 participants one example of an approach, which has been used in the United States, to developing a range of safeguards strategies involving differing degrees of access to cascade areas of centrifuge enrichment plants. Its purpose is to facilitate the work of other Hexapartite participants in completing Task II of Team 4's terms of reference. The scope of this report is limited to identifying safeguards approaches for the Portsmouth Gas Centrifuge Enrichment Plant (GCEP) which involve differing degrees of access to the cascade area. This report provides a method for selecting cascade access inspection strategies at GCEP which appear promising for more detailed evaluation. It is quite important to note, however, that the effectiveness and practicability of these strategies have not been established at the present. In addition, some strategies have been included on the basis of very preliminary calculations and considerations which have not been validated. Thus, some of these strategies may ultimately be rejected because they prove to be impracticable. Considerations of cost and the possible transfer of information and technology related to the production of enriched uranium will also be pertinent in considering the degrees and frequency of access to the cascade areas of centrifuge enrichment plants. This report describes the process for combining technical measures, implementation approaches and objectives to arrive at the total number of theoretically possible combinations. It then describes how these combinations may be reduced in a series of steps to a number that is more manageable for detailed evaluation. The process is shown schematically.

Not Available

1981-04-13T23:59:59.000Z

366

A transient flow model of compressible gas mixtures in a nuclear fuel processing plant  

SciTech Connect (OSTI)

A model was developed to predict mixture concentration profiles in a subatmospheric mixture of hydrogen, nitrogen, and oxygen during valve-switching between a process line and an atmospheric vent line. The switching event allows air in-leakage to the system during the period in which the routing valves are open. Hydrogen and oxygen concentrations must be predicted to assess the potential for developing combustible mixtures in the system. The model consists of a one-dimensional finite-difference representation of the transient momentum and mass conservation equations, associated constitutive relationships and an equation-of-state for compressible gas. The resulting equation set was solved with Advanced Continuous Simulation Language (ACSL).

Farman, R.F.; Brown, R.A.

1989-02-16T23:59:59.000Z

367

Sustainable Integration of Algal Biodiesel Production with Steam Electric Power Plants for Greenhouse Gas Mitigation  

Science Journals Connector (OSTI)

Because fossil fuel combustion power stations are responsible for over 65% of estimated carbon dioxide (CO2) emissions caused by power generation systems,(1) a major challenge facing this electric power sector is how to reconcile the growing global electricity demand with the increasing urgency to reduce CO2 emissions due to carbon dioxide being the main greenhouse gas (GHG) and, consequently, one of the most important contributors for the increase in anthropogenic climate change and global warming that distorts the ecological balance and environmental sustainability. ... Ng, R. T. L.; Tay, D. H. S.; Ng, D. K. S.Simultaneous process synthesis, heat and power integration in a sustainable integrated biorefinery Energy Fuels. 2012, 26, 7316– 7330 ... Integrated biorefinery emerged as noteworthy concept to integrate several conversion technologies to have more flexibility in product generation with energy self-sustained and reduce the overall cost of the process. ...

César G. Gutiérrez-Arriaga; Medardo Serna-González; José María Ponce-Ortega; Mahmoud M. El-Halwagi

2014-04-18T23:59:59.000Z

368

Reservoir oil bubblepoint pressures revisited; solution gasoil ratios and surface gas specific gravities  

E-Print Network [OSTI]

Reservoir oil bubblepoint pressures revisited; solution gas­oil ratios and surface gas specific, for bubblepoint pressure and other fluid properties, require use of stock-tank gas rate and specific gravity in estimating stock-tank vent gas rate and quality for compliance purposes. D 2002 Elsevier Science B.V. All

Valkó, Peter

369

High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The purpose of this report is to identify possible issues highlighted by these lessons learned that could apply to the NGNP in reducing technical risks commensurate with the current phase of design. Some of the lessons learned have been applied to the NGNP and documented in the Preconceptual Design Report. These are addressed in the background section of this document and include, for example, the decision to use TRISO fuel rather than BISO fuel used in the Peach Bottom reactor; the use of a reactor pressure vessel rather than prestressed concrete found in Fort St. Vrain; and the use of helium as a primary coolant rather than CO2. Other lessons learned, 68 in total, are documented in Sections 2 through 6 and will be applied, as appropriate, in advancing phases of design. The lessons learned are derived from both negative and positive outcomes from prior HTGR experiences. Lessons learned are grouped according to the plant, areas, systems, subsystems, and components defined in the NGNP Preconceptual Design Report, and subsequent NGNP project documents.

J. M. Beck; L. F. Pincock

2011-04-01T23:59:59.000Z

370

Purdue extension Toxic Plants  

E-Print Network [OSTI]

Service PLANTS Database/N.L.Britton,and A.Brown's An Illustrated Flora of the Northern United States Poisonous to Live- stock and Pets.See References (page 23) and Online Resources (page 24) for details is as safe as possible is to keep these plants out of your fields and pastures. To do this,proper weed

Holland, Jeffrey

371

Low Stocks Mean Tight Markets  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Like those for other petroleum products, gasoline inventories have been running below normal. As of the latest weekly data, stocks are about 5% lower than the low end of the normal range for this time of year. Behind all of the low product inventories are low crude oil inventories. Recall that the crude market tightened in 1999 when OPEC cut back production. Demand was greater than supply and inventories were used to make up the difference. They have not yet recovered. Crude oil inventories are running about 7% below the low end of the normal range for this time of year. After last week's very large stock draw, it appears inventories are the lowest that they have been since December 1975. The U.S. inventory data will be an important price barometer to

372

Optimal control system design of an acid gas removal unit for an IGCC power plants with CO2 capture  

SciTech Connect (OSTI)

Future IGCC plants with CO{sub 2} capture should be operated optimally in the face of disturbances without violating operational and environmental constraints. To achieve this goal, a systematic approach is taken in this work to design the control system of a selective, dual-stage Selexol-based acid gas removal (AGR) unit for a commercial-scale integrated gasification combined cycle (IGCC) power plant with pre-combustion CO{sub 2} capture. The control system design is performed in two stages with the objective of minimizing the auxiliary power while satisfying operational and environmental constraints in the presence of measured and unmeasured disturbances. In the first stage of the control system design, a top-down analysis is used to analyze degrees of freedom, define an operational objective, identify important disturbances and operational/environmental constraints, and select the control variables. With the degrees of freedom, the process is optimized with relation to the operational objective at nominal operation as well as under the disturbances identified. Operational and environmental constraints active at all operations are chosen as control variables. From the results of the optimization studies, self-optimizing control variables are identified for further examination. Several methods are explored in this work for the selection of these self-optimizing control variables. Modifications made to the existing methods will be discussed in this presentation. Due to the very large number of candidate sets available for control variables and due to the complexity of the underlying optimization problem, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. The second stage is a bottom-up design of the control layers used for the operation of the process. First, the regulatory control layer is designed followed by the supervisory control layer. Finally, an optimization layer is designed. In this paper, the proposed two-stage control system design approach is applied to the AGR unit for an IGCC power plant with CO{sub 2} capture. Aspen Plus Dynamics® is used to develop the dynamic AGR process model while MATLAB is used to perform the control system design and for implementation of model predictive control (MPC).

Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

373

Approach to IAEA material-balance verification with intermittent inspection at the Portsmouth Gas Centrifuge Enrichment Plant  

SciTech Connect (OSTI)

This paper describes a potential approach by which the International Atomic Energy Agency (IAEA) might verify the nuclear-material balance at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP) for the circumstance in which the IAEA inspections occur on an intermittent basis. The verification approach is a variation of the standard IAEA attributes/variables measurement-verification method. This alternative approach is useful and applicable at the Portsmouth GCEP, which will ship all its product and tails UF/sub 6/ to United States facilities not eligible for IAEA safeguards. The paper reviews some of the relevant results of the Hexapartite Safeguards Project (HSP), describes the standard IAEA material-balance-verification approach for bulk-handling facilities, and provides the procedures to be followed in handling and processing UF/sub 6/ cylinders at the Portsmouth GCEP. The paper then discusses the assumptions made in the approach, and derives a formula for the probability with which the IAEA could detect the diversion of a significant quantity of uranium (75 kg of U-235 in depleted, normal, and low-enriched uranium) if this method were applied. The paper also provides numerical examples of IAEA detection probability should the operator divert uranium from the feed, product, or tails streams for the Portsmouth GCEP with a capacity of 1100 tonnes of separative work per year.

Gordon, D.M.; Sanborn, J.B.

1984-05-18T23:59:59.000Z

374

Recent ORNL experience in site performance prediction: the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility  

SciTech Connect (OSTI)

The suitability of the Portsmouth Gas Centrifuge Enrichment Plant Landfill and the Oak Ridge, Tennessee, Central Waste Disposal Facility for disposal of low-level radioactive waste was evaluated using pathways analyses. For these evaluations, a conservative approach was selected; that is, conservatism was built into the analyses when assumptions concerning future events had to be made or when uncertainties concerning site or waste characteristics existed. Data from comprehensive laboratory and field investigations were used in developing the conceptual and numerical models that served as the basis for the numerical simulations of the long-term transport of contamination to man. However, the analyses relied on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Maximum potential doses to man were calculated and compared to the appropriate standards. Even under this conservative framework, the sites were found to provide adequate buffer to persons outside the DOE reservations and conclusions concerning site capacity and site acceptability were drawn. Our experience through these studies has shown that in reaching conclusions in such studies, some consideration must be given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and to quantitatively determine the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed.

Pin, F.G.

1985-01-01T23:59:59.000Z

375

Effect of short-term material balances on the projected uranium measurement uncertainties for the gas centrifuge enrichment plant  

SciTech Connect (OSTI)

A program is under way to design an effective International Atomic Energy Agency (IAEA) safeguards system that could be applied to the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). This system would integrate nuclear material accountability with containment and surveillance. Uncertainties in material balances due to errors in the measurements of the declared uranium streams have been projected on a yearly basis for GCEP under such a system in a previous study. Because of the large uranium flows, the projected balance uncertainties were, in some cases, greater than the IAEA goal quantity of 75 kg of U-235 contained in low-enriched uranium. Therefore, it was decided to investigate the benefits of material balance periods of less than a year in order to improve the sensitivity and timeliness of the nuclear material accountability system. An analysis has been made of projected uranium measurement uncertainties for various short-term material balance periods. To simplify this analysis, only a material balance around the process area is considered and only the major UF/sub 6/ stream measurements are included. That is, storage areas are not considered and uranium waste streams are ignored. It is also assumed that variations in the cascade inventory are negligible compared to other terms in the balance so that the results obtained in this study are independent of the absolute cascade inventory. This study is intended to provide information that will serve as the basis for the future design of a dynamic materials accounting component of the IAEA safeguards system for GCEP.

Younkin, J.M.; Rushton, J.E.

1980-02-05T23:59:59.000Z

376

Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alka

Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

2014-01-21T23:59:59.000Z

377

Coupled multiphase flow and closure analysis of repository response to waste-generated gas at the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect (OSTI)

A long-term assessment of the Waste Isolation Pilot Plant (WIPP) repository performance must consider the impact of gas generation resulting from the corrosion and microbial degradation of the emplaced waste. A multiphase fluid flow code, TOUGH2/EOS8, was adapted to model the processes of gas generation, disposal room creep closure, and multiphase (brine and gas) fluid flow, as well as the coupling between the three processes. System response to gas generation was simulated with a single, isolated disposal room surrounded by homogeneous halite containing two anhydrite interbeds, one above and one below the room. The interbeds were assumed to have flow connections to the room through high-permeability, excavation-induced fractures. System behavior was evaluated by tracking four performance measures: (1) peak room pressure; (2) maximum brine volume in the room; (3) total mass of gas expelled from the room; and (4) the maximum gas migration distance in an interbed. Baseline simulations used current best estimates of system parameters, selected through an evaluation of available data, to predict system response to gas generation under best-estimate conditions. Sensitivity simulations quantified the effects of parameter uncertainty by evaluating the change in the performance measures in response to parameter variations. In the sensitivity simulations, a single parameter value was varied to its minimum and maximum values, representative of the extreme expected values, with all other parameters held at best-estimate values. Sensitivity simulations identified the following parameters as important to gas expulsion and migration away from a disposal room: interbed porosity; interbed permeability; gas-generation potential; halite permeability; and interbed threshold pressure. Simulations also showed that the inclusion of interbed fracturing and a disturbed rock zone had a significant impact on system performance.

Freeze, G.A.; Larson, K.W. [INTERA Inc., Austin, TX (United States); Davies, P.B. [Sandia National Laboratories, Albuquerque, NM (United States)

1995-10-01T23:59:59.000Z

378

Distillate Stocks Expected to Remain Low  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: When EIA's demand forecast is combined with its outlook for production and net imports, distillate stocks are projected to remain low for the rest of the year. - Stocks are beginning at very low levels. The September 1 distillate fuel stock level (112 million barrels) is nearly 20% less than last year, and about 15% below the 10 year average for end of August levels. - But stocks on the East Coast, at 39.8 million barrels, are 39% behind year-ago levels, and about a similar percentage below end-of-August 10-year average levels. Over the last 10 years, the average stock build from the end of August through the end of November has been about 10 million barrels. We are forecasting about a 12 million barrel build, which does not reach the normal band. Forecast stocks peak at the end of November at 127 million

379

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

380

Utilization of a fuel cell power plant for the capture and conversion of gob well gas. Final report, June--December, 1995  

SciTech Connect (OSTI)

A preliminary study has been made to determine if a 200 kW fuel cell power plant operating on variable quality coalbed methane can be placed and successfully operated at the Jim Walter Resources No. 4 mine located in Tuscaloosa County, Alabama. The purpose of the demonstration is to investigate the effects of variable quality (50 to 98% methane) gob gas on the output and efficiency of the power plant. To date, very little detail has been provided concerning the operation of fuel cells in this environment. The fuel cell power plant will be located adjacent to the No. 4 mine thermal drying facility rated at 152 M British thermal units per hour. The dryer burns fuel at a rate of 75,000 cubic feet per day of methane and 132 tons per day of powdered coal. The fuel cell power plant will provide 700,000 British thermal units per hour of waste heat that can be utilized directly in the dryer, offsetting coal utilization by approximately 0.66 tons per day and providing an avoided cost of approximately $20 per day. The 200 kilowatt electrical power output of the unit will provide a utility cost reduction of approximately $3,296 each month. The demonstration will be completely instrumented and monitored in terms of gas input and quality, electrical power output, and British thermal unit output. Additionally, real-time power pricing schedules will be applied to optimize cost savings. 28 refs., 35 figs., 13 tabs.

Przybylic, A.R.; Haynes, C.D.; Haskew, T.A.; Boyer, C.M. II; Lasseter, E.L.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site  

E-Print Network [OSTI]

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

1994-01-01T23:59:59.000Z

382

Bachelor Project StockHome -Web Application  

E-Print Network [OSTI]

Bachelor Project StockHome - Web Application User interface for a financial analysis tool Gilad and assisting us during dark times. Last but not least, I would like to thank my friends who spent those long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 iii #12;Gilad Geron StockHome - Web Application A Technologies 31 A.1 Ruby

Lanza, Michele

383

TRAWLING AND THE STOCKS OF FISH  

Science Journals Connector (OSTI)

... before the Royal Society of Arts on January 27 on “Trawling and the Stocks of Fish”, Dr. E. S. Russell, director of fishery investigations, Ministry of Agriculture ... manner the problems which will confront us after the War in connexion with the national fish stocks of Great Britain and those of our near neighbours. In a summary of ...

1943-03-20T23:59:59.000Z

384

Systematic analysis of group identification in stock markets  

Science Journals Connector (OSTI)

We propose improved methods to identify stock groups using the correlation matrix of stock price changes. By filtering out the marketwide effect and the random noise, we construct the correlation matrix of stock groups in which nontrivial high correlations between stocks are found. Using the filtered correlation matrix, we successfully identify the multiple stock groups without any extra knowledge of the stocks by the optimization of the matrix representation and the percolation approach to the correlation-based network of stocks. These methods drastically reduce the ambiguities while finding stock groups using the eigenvectors of the correlation matrix.

Dong-Hee Kim and Hawoong Jeong

2005-10-25T23:59:59.000Z

385

Fuel gas conditioning process  

DOE Patents [OSTI]

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

386

Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant  

Science Journals Connector (OSTI)

This paper presents a case study of recovering the waste heat of the exhaust flue gas before entering a flue gas desulphurizer (FGD) in a 600 MW power plant. This waste heat can be recovered by installing a low pressure economizer (LPE) to heat the condensed water which can save the steam extracted from the steam turbine for heating the condensed water and then extra work can be obtained. The energy and water savings and the reduction of CO2 emission resulted from the LPE installation are assessed for three cases in a 600 MW coal-fired power plant with wet stack. Serpentine pipes with quadrate finned extensions are selected for the LPE heat exchanger which has an overall coefficient of heat transfer of 37 W/m2·K and the static pressure loss of 781 Pa in the optimized case. Analysis results show that it is feasible to install \\{LPEs\\} in the exhaust flue gas system between the pressurizing fan and the FGD, which has little negative impacts on the unit. The benefits generated include saving of standard coal equivalent (SCE) at 2–4 g/(kW·h) and saving of water at 25–35 t/h under full load operation with corresponding reduction of CO2 emission.

Chaojun Wang; Boshu He; Shaoyang Sun; Ying Wu; Na Yan; Linbo Yan; Xiaohui Pei

2012-01-01T23:59:59.000Z

387

Techno-economic assessment of substituting natural gas based heater with thermal energy storage system in parabolic trough concentrated solar power plant  

Science Journals Connector (OSTI)

Abstract Parabolic-trough (PT) concentrated solar power (CSP) plants are very vulnerable to daily fluctuations in solar radiation. This dependence can be mitigated through a hybridization of solar energy with natural gas based heaters that supply thermal energy during the night or whenever solar irradiance level is dimmed. However, there is more sustainable way for CSP plants to avoid power-generation-outages caused by transient weather conditions, i.e. installation of thermal energy storage (TES). Such a system stores surplus thermal energy provided by solar field during sunny hours and discharges it when the sun is not available. Shams-1 PT plant in Madinat-Zayed, United-Arab-Emirates (UAE) has two natural gas based components, i.e. steam-booster heater and heat transfer fluid (HTF) heater. In the current study, model of Shams-1 was developed and analyzed in the System Advisor Model (SAM) software. It has been attempted to replace the HTF heater with TES. A parametric study has been conducted to determine the size of the TES as well as the solar field such that the specified power target demand would be satisfied. The results of the parametric analysis showed that TES can't completely replace the HTF heater, within reasonable sizes. Nevertheless, consequent simulations depicts that TES increases the capacity factor on one hand and decreases fuel consumption on the other hand.

V. Poghosyan; Mohamed I. Hassan

2015-01-01T23:59:59.000Z

388

Design and modeling of 1–10 MWe liquefied natural gas-fueled combined cooling, heating and power plants for building applications  

Science Journals Connector (OSTI)

Abstract Decentralized, liquefied natural gas-fueled, trigeneration plants are considered as alternatives to centralized, electricity-only generating power plants to improve efficiency and minimize running costs. The proposed system is analyzed in terms of efficiency and cost. Electrical power is generated with a gas turbine, while waste heat is recovered and utilized effectively to cover heating and cooling needs for buildings located in the vicinity of the plant. The high quality of cooling energy carried in the LNG fluid is used to cool the air supply to the air compressor. Waste heat is recovered with heat exchangers to generate useful heating in the winter period, while in the summer period an integrated double-effect absorption chiller converts waste heat to useful cooling. For the base system (10 MWe), net electrical efficiency is up to 36.5%, while the primary energy ratio reaches 90%. The payback period for the base system is 4 years, for a lifecycle cost of 221.6 million euros and an investment cost of 13 million euros. The base system can satisfy the needs of more than 21,000 average households, while an equivalent conventional system can only satisfy the needs of 12,000 average households.

Alexandros Arsalis; Andreas Alexandrou

2015-01-01T23:59:59.000Z

389

Integrated modeling and experimental programs to predict brine and gas flow at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

Evaluation of the performance of the WIPP repository involves modeling of brine and gas flow in the host rocks of the Salado Formation, which consist of halite and anhydrite interbeds. Numerous physical, chemical, and structural processes, must be understood to perform this modeling. Gas generation within the repository is strongly coupled to the amount of brine inflow to the repository because brine aids in the corrosion of metals and associated generation of hydrogen gas. Increasing gas pressure in the repository decreases the rate of brine inflow. Ultimately, the gas pressure may exceed the brine pressure and gas may flow out of the repository. Relative-permeability curves and a correlation between threshold pressure and permeability taken from studies reported in the literature were used in PA models prior to being experimentally verified as appropriate for WIPP. In addition, interbed permeabilities were treated as constant and independent of effective stress in early models. Subsequently, the process of interbed fracturing (or fracture dilation) was recognized to limit gas pressures in the repository to values below lithostatic, and assumed (and unverified) relationships between porosity, permeability, and pore pressure were employed. Parameter-sensitivity studies performed using the simplified models identified important parameters for which site-specific data were needed. Unrealistic modeling results, such as room pressures substantially above lithostatic, showed the need to include additional processes in the models. Field and laboratory experimental programs have been initiated in conjunction with continued model development to provide information on important processes and parameters.

Beauheim, R.L.; Howarth, S.M.; Vaughn, P.; Webb, S.W.; Larson, K.W.

1995-01-01T23:59:59.000Z

390

Carbon dioxide recovery from an integrated coal gasifier, combined cycle plant using membrane separation and a CO2 gas turbine  

Science Journals Connector (OSTI)

A scheme is described for electricity production based on coal gasification with recovery of carbon dioxide. In this scheme, coal is gasified into a coal gas, consisting mainly of hydrogen and carbon monoxide. A ...

Chris Hendriks

1994-01-01T23:59:59.000Z

391

EIS-0002: Allocation of Petroleum Feedstock, Baltimore Gas & Electric Co., Sollers Point SNG Plant, Sollers Point, Baltimore County, MD  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration (ERA) developed this EIS to evaluate the social, economic and environmental impacts which may occur within the Baltimore Gas and Electric Company (BG&E) service area as a result of the ERA' s proposed decision to allocate up to 2,186,000 barrels per year of naphtha feedstock to BG&E to operate BG&E's existing synthetic natural gas facility located on Sollers Point in Baltimore County, Maryland.

392

,"Crude Oil and Petroleum Products Total Stocks Stocks by Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Stocks Stocks by Type" Total Stocks Stocks by Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks by Type",6,"Monthly","9/2013","1/15/1956" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_stoc_typ_a_ep00_sae_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_typ_a_ep00_sae_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

393

Does the Small White Butterfly (Pieris rapae L.) Aggregate Eggs on Plants with Greater Gas Exchange Activity?  

Science Journals Connector (OSTI)

Few studies have investigated insect egg-laying preferences in relation to photosynthesis or transpiration of their host plants. It has been suggested that intravarietal preferences of the small white butterfly (

A. Mark Langan; C. Philip Wheater; Peter J. Dunleavy

2001-07-01T23:59:59.000Z

394

Political Risk and Stock Market Development  

Science Journals Connector (OSTI)

This article examines empirically the relationship between political instability and stock market development in a small capital market (the Greek capital market). We measure socio-political instability by con...

Costas Siriopoulos; Dimitrios Asteriou

1998-01-01T23:59:59.000Z

395

Credit Conditions and Stock Return Predictability  

E-Print Network [OSTI]

This dissertation examines stock return predictability with aggregate credit conditions. The aggregate credit conditions are empirically measured by credit standards (Standards) derived from the Federal Reserve Board's Senior Loan Officer Opinion...

Park, Heungju

2012-10-19T23:59:59.000Z

396

Skewness in individual stocks at different investment  

Science Journals Connector (OSTI)

This paper examines the (a)symmetry of several individual stock returns at different investment horizons: daily, weekly and monthly. While some asymmetries are observed in daily returns, they disappear almost completely in weekly and monthly returns. The explanation for this fact lies in the convergence to normality that takes place when the investment horizon increases. These features allow one to question several financial models; in particular, they question the preference for positive skewness as a factor for investments in stock markets.

Amado Peiró

2002-01-01T23:59:59.000Z

397

Reversible Acid Gas Capture  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2009-08-01T23:59:59.000Z

398

Reversible Acid Gas Capture  

ScienceCinema (OSTI)

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2012-12-31T23:59:59.000Z

399

Potential effects of hydrogen sulfide gas from geothermal energy conversion on two plant species native to northern New Mexico  

SciTech Connect (OSTI)

Dry weight of topgrowth, water content of topgrowth, leaf nitrogen content, and leaf chlorophyll content were measured in well-watered, field-exposed little bluestem (Schizachyrium scoparium Nash.) and mountain brome (Bromus marginatus Nees.) plants fumigated with various mean levels of H/sub 2/S ranging from 0.05 to 3.58 ppM. The youngest fully expanded leaves were sampled for chlorophyll content after 60, 80, 100, and 140 and 60, 80, 120, and 140 h total of fumigation for little bluestem and mountain brome, respectively. All other responses were measured after 140 h total of fumigation. The plants received a 7-day fumigation-free period prior to the seventh week (140 h) of fumigations. Dry weight of little bluestem plants which received low concentrations of H/sub 2/S (0.11 ppM) increased by 94% of the control. Dry weight of little bluestem plants which received higher concentrations of H/sub 2/S (0.12 to 0.48 ppM) was reduced to the control level. At the highest H/sub 2/S concentration (2.39 ppM) dry weight of little bluestem was reduced by 44% of the control. Mountain brome was relatively unaffected at the different concentrations of H/sub 2/S until 3.58 ppM H/sub 2/S was received where dry weight was reduced by 37% of the control.

Gonzales, G.J.

1984-02-01T23:59:59.000Z

400

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

25, 2001 25, 2001 The industry stock build that began in April has continued into June as the latest weekly estimate indicates that more than 100 Bcf was again added to working gas storage levels. At the same time that natural gas stocks have been increasing, prices have been generally trending down. Prices at many major spot markets moved down most days last week and ended the week between 20 and 30 cents per MMBtu below Tuesday's prices. On the NYMEX futures market, the near-month (July) contract also ended the week down 25 cents from Tuesday's high of $3.981. Much of the country continued to enjoy moderate temperatures during last week, which saw the first day of summer (June 21) prices (See Temperature Map) (See Deviation from Normal Temperatures Map).

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonefficiency of a solar power plant with gas-turbine toppingfor a solar power plant with Brayton-cycle gas turbine

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

402

USE OF MAILBOX APPROACH, VIDEO SURVEILLANCE, AND SHORT-NOTICE RANDOM INSPECTIONS TO ENHANCE DETECTION OF UNDECLARED LEU PRODUCTION AT GAS CENTRIFUGE ENRICHMENT PLANTS.  

SciTech Connect (OSTI)

Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to detect undeclared LEU production with adequate detection probability. ''Mailbox'' declarations have been used in the last two decades to verify receipts, production, and shipments at some bulk-handling facilities (e.g., fuel-fabrication plants). The operator declares the status of his plant to the IAEA on a daily basis using a secure ''Mailbox'' system such as a secure tamper-resistant computer. The operator agrees to hold receipts and shipments for a specified period of time, along with a specified number of annual inspections, to enable inspector access to a statistically large enough population of UF{sub 6} cylinders and fuel assemblies to achieve the desired detection probability. The inspectors can access the ''Mailbox'' during randomly timed inspections and then verify the operator's declarations for that day. Previously, this type of inspection regime was considered mainly for verifying the material balance at fuel-fabrication, enrichment, and conversion plants. Brookhaven National Laboratory has expanded the ''Mailbox'' concept with short-notice random inspections (SNRIs), coupled with enhanced video surveillance, to include declaration and verification of UF{sub 6} cylinder operational data to detect activities associated with undeclared LEU production at GCEPs. Since the ''Mailbox'' declarations would also include data relevant to material-balance verification, these randomized inspections would replace the scheduled monthly interim inspections for material-balance purposes; in addition, the inspectors could simultaneously perform the required number of Limited-Frequency Unannounced Access (LFUA) inspections used for HEU detection. This approach would provide improved detection capabilities for a wider range of diversion activities with not much more inspection effort than at present.

BOYER, B.D.; GORDON, D.M.; JO, J.

2006-07-16T23:59:59.000Z

403

The effect of the Fukushima nuclear accident on stock prices of electric power utilities in Japan  

Science Journals Connector (OSTI)

The purpose of this study is to investigate the effect of the accident at the Fukushima Daiichi nuclear power station, which is owned by Tokyo Electric Power Co. (TEPCO), on the stock prices of the other electric power utilities in Japan. Because the other utilities were not directly damaged by the Fukushima nuclear accident, their stock price responses should reflect the change in investor perceptions on risk and return associated with nuclear power generation. Our first finding is that the stock prices of utilities that own nuclear power plants declined more sharply after the accident than did the stock prices of other electric power utilities. In contrast, investors did not seem to care about the risk that may arise from the use of the same type of nuclear power reactors as those at the Fukushima Daiichi station. We also observe an increase of both systematic and total risks in the post-Fukushima period, indicating that negative market reactions are not merely caused by one-time losses but by structural changes in society and regulation that could increase the costs of operating a nuclear power plant.

Shingo Kawashima; Fumiko Takeda

2012-01-01T23:59:59.000Z

404

E-Print Network 3.0 - assessing plant response Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plants Summary: gas plant technologies. The three technologies assessed are the gas turbine (GT) with heat recovery... 1 Using Auxiliary Gas Power for CCS Energy Needs in...

405

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

SciTech Connect (OSTI)

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

406

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasifiction combined sycle (IGCC) power plant with CO2 capture  

SciTech Connect (OSTI)

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

407

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

408

Property:StockSymbol | Open Energy Information  

Open Energy Info (EERE)

StockSymbol StockSymbol Jump to: navigation, search This is a property of type String. Pages using the property "StockSymbol" Showing 25 pages using this property. (previous 25) (next 25) A A.O. Smith + AOS + AAON + AAON + Alterra Power + MGMXF + Ameresco, Inc. + AMRC + Applied Materials + AMAT + Archer Daniels Midland + ADM + Autodesk + ADSK + C China Integrated Energy + CBEH + E EEMAP, Inc. + N/A + EnerNOC + ENOC + Evergreen Solar, Inc. + ESLR + ExxonMobil + XOM + G General Electric + GE + Geothermal Resources Council + Geothermal Resources Council + Goodwill Instrument + TPE 2423 + GreenShift Corporation + GERS.OB + Gulfsands Petroleum + AIM:GPX + H Helix Wind Corp. + HLXW + I ICF International + NASDAQ:ICFI + J Johnson Controls + JCI + M Molycorp Inc. + MCP +

409

U.S. Crude Oil Stocks  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: U.S. crude oil stocks stood at about 289 million barrels on September 8, according to EIA's latest survey. This puts them about 24 million barrels below the level seen at the same time last year. Current market conditions do not suggest much improvement in the near term. We probably ended last month (August 2000) with the lowest level for end-of-August crude oil stocks (289 million barrels) in the United States since 1976, when crude oil inputs to refineries were about 2 million barrels per day less than today. However, by EIA data, we have seen (at least slightly) lower crude stocks in recent months, including an end-December 1999 level of 284 million barrels. The American Petroleum Institute (API), which also surveys petroleum supply and demand

410

Cost and Performance Comparison Baseline for Fossil Energy Plants, Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Baseline Baseline for Fossil Energy Plants Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity September 2011 DOE/NETL-2010/1399 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring

411

Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants: August 2012 - December 2013  

SciTech Connect (OSTI)

High penetrations of wind and solar power plants can induce on/off cycling and ramping of fossil-fueled generators. This can lead to wear-and-tear costs and changes in emissions for fossil-fueled generators. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) determined these costs and emissions and simulated grid operations to investigate the full impact of wind and solar on the fossil-fueled fleet. This report studies the costs and benefits of retrofitting existing units for improved operational flexibility (i.e., capability to turndown lower, start and stop faster, and ramp faster between load set-points).

Venkataraman, S.; Jordan, G.; O'Connor, M.; Kumar, N.; Lefton, S.; Lew, D.; Brinkman, G.; Palchak, D.; Cochran, J.

2013-12-01T23:59:59.000Z

412

How the choice of multi-gas equivalency metrics affects mitigation options: The case of CO2 capture in a Brazilian coal-fired power plant  

Science Journals Connector (OSTI)

Abstract This study shows how the assessment of emissions reductions from CO2 capture is critically dependent on the choice of multi-gas equivalency metric and climate impact time horizon. This has implications for time-sensitive mitigation policies, in particular when considering relative impact of short-lifetime gases. CO2, CH4 and N2O emissions from a coal-fired power plant in Brazil are used to estimate and compare the CO2-equivalent emissions based on standard practice global warming potentials GWP-100 with the less common GWP-50 and variable GWP for impact target years 2050 and 2100. Emission reductions appear lower for the variable metric, when the choice of target year is critical: 73% in 2100 and 60% in 2050. Reductions appear more favorable using a metric with a fixed time horizon, where the choice of time horizon is important: 77% for GWP-100 and 71% for GWP-50. Since CH4 emissions from mining have a larger contribution in the total emission of a plant with capture compared to one without, different perspectives on the impact of CH4 are analyzed. Use of variable GWP implies that CH4 emissions appear 39% greater in 2100 than with use of fixed GWP and 91% greater in 2050.

Maria Cecilia P. Moura; David A. Castelo Branco; Glen P. Peters; Alexandre Salem Szklo; Roberto Schaeffer

2013-01-01T23:59:59.000Z

413

Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance  

SciTech Connect (OSTI)

Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 contains an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.

Not Available

1993-08-01T23:59:59.000Z

414

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner of landfill gas plant. References: Penrose Landfill Gas Conversion LLC1 This article is a stub....

415

Supply/Demand Forecasts Begin to Show Stock Rebuilding  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: During 1999, we saw stock draws during the summer months, when we normally see stock builds, and very large stock draws during the winter of 1999/2000. Normally, crude oil production exceeds product demand in the spring and summer, and stocks build. These stocks are subsequently drawn down during the fourth and first quarters (dark blue areas). When the market is in balance, the stock builds equal the draws. During 2000, stocks have gradually built, but following the large stock draws of 1999, inventories needed to have been built more to get back to normal levels. As we look ahead using EIA's base case assumptions for OPEC production, non-OPEC production, and demand, we expect a more seasonal pattern for the next 3 quarters. But since we are beginning the year with

416

Rangeland Drought Management for Texans: Stocking Rate and Grazing Management  

E-Print Network [OSTI]

This publication explains how stocking rates and grazing management decisions can help a ranch survive a drought. To deal with drought, a rancher must monitor forage supply and demand; use a conservative stocking rate and keep it flexible...

Hart, Charles R.; Carpenter, Bruce B.

2001-05-03T23:59:59.000Z

417

Metallurgical failure analysis for a blade failed in a gas-turbine engine of a power plant  

Science Journals Connector (OSTI)

The failed gas-turbine blades (first stage blades) (type Siemens V94.2 KWU) were acquired from TNB Research Sdn. Bhd: a subsidiary of Malaysian power-generation industry (TNB, Malaysia). The blades were sectioned for metallographic investigations. The microstructural characterization involved use of both optical as well as electron microscopes including application of EPMA technique. The Microstructures were compared for three spots selection i.e. leading edge of the blade (transverse and longitudinal), trailing edge of the blade (transverse and longitudinal), and centre (near the platform of the blade) (transverse and longitudinal). The material properties and behavior at high temperature were interpreted on the basis of the observed microstructures and the phases present in the alloy. The interpretations were related to the operating conditions of the turbine blade; and main cause of failure was found to be creep damage. Recommendations have been made for improved material performance.

Zainul Huda

2009-01-01T23:59:59.000Z

418

Predicting stock returns and assessing prediction performance  

Science Journals Connector (OSTI)

......found that in the USA, 47% of investments were made by households with an average annual turnover of over 75% of stocks held...effects in data from the USA, the UK, France, Germany and Japan, and conclude that data snooping is not a major problem......

Rose Baker; Alexander Belgorodskiy

2007-10-01T23:59:59.000Z

419

Wild oil prices, but brave stock markets! The case of GCC stock markets  

Science Journals Connector (OSTI)

Using a vector autoregression (VAR) analysis, this paper investigates the effect of the sharp increase in oil prices on stock market returns for five Gulf ... to 24 May, 2005. During this period oil price has bee...

Bashar Abu Zarour

420

Market Maker Inventories and Stock Prices Terrence Hendershott  

E-Print Network [OSTI]

complement past returns when predicting return reversals. A portfolio long high-inventory/low-return stocks and short low-inventory/high-return stocks yields 1.05% over the following 5 days. Order imbalancesMarket Maker Inventories and Stock Prices Terrence Hendershott U.C. Berkeley Mark S. Seasholes U

Kearns, Michael

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Assessment of the eel stock in Sweden, spring 2012  

E-Print Network [OSTI]

Assessment of the eel stock in Sweden, spring 2012 Aqua reports 2012:9 First post-evaluation of the Swedish Eel Management Plan Willem Dekker #12;Assessment of the eel stock in Sweden, spring 2012 First: Dekker, W. (2012). Assessment of the eel stock in Sweden, spring 2012. First post

422

Computational and experimental test of self starting regimes for the in-house needs of the PGU-450 steam-gas unit at the Kaliningrad TÉTs-2 Heating and Power Plant during supply disruptions  

Science Journals Connector (OSTI)

The major stages of a computational test of the self starting regimes for the in-house needs of unit No. 1 of the 450 MW steam-gas unit at the Kaliningrad TÉTs-2 Heating and Electric Power Plant during supply ...

S. N. Sakharov; V. A. Kuz’michev

2008-05-01T23:59:59.000Z

423

Displacing Natural Gas Consumption and Lowering Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels and thereby reduce their natural gas consumption. Opportunity gas fuels include biogas from animal and agri- cultural wastes, wastewater plants, and landfills, as well as...

424

Summary Short-Term Petroleum and Natural Gas Outlook  

Gasoline and Diesel Fuel Update (EIA)

Short-Term Petroleum and Natural Gas Outlook Short-Term Petroleum and Natural Gas Outlook 1/12/01 Click here to start Table of Contents Summary Short-Term Petroleum. and Natural Gas Outlook WTI Crude Oil Price: Base Case and 95% Confidence Interval Real and Nominal Crude Oil Prices OPEC Crude Oil Production 1999-2001 Total OECD Oil Stocks* U.S. Crude Oil Inventory Outlook U.S. Distillate Inventory Outlook Distillate Stocks Are Important Part of East Coast Winter Supply Retail Heating Oil and Diesel Fuel Prices Consumer Winter Heating Costs U.S. Total Gasoline Inventory Outlook Retail Motor Gasoline Prices* U.S. Propane Total Stocks Average Weekly Propane Spot Prices Current Natural Gas Spot Prices: Well Above the Recent Price Range Natural Gas Spot Prices: Base Case and 95% Confidence Interval Working Gas in Storage (Percentage Difference fron Previous 5-Year Average)

425

future science group 5ISSN 1759-726910.4155/BFS.12.76 2013 Future Science Ltd Special FocuS: advanced FeedStockS For advanced bioFuelS  

E-Print Network [OSTI]

S: advanced FeedStockS For advanced bioFuelS An overview of lignocellulosic biomass feedstock harvest per truck, to transport 3 million tons of biomass feedstock from harvest sites to bioconversion plant

426

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network [OSTI]

of natural gas in oil) STB Stock Tank Barrel ( one barrel oftank barrel (scf/STB). Gas solubility increases with pressure such that oilgas in oil is given by SGOR which has units of standard cubic feet per stock-tank

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

427

Natural Gas Reforming  

Broader source: Energy.gov [DOE]

Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This technology is an important pathway for near-term hydrogen production.

428

Oil price shocks and stock market returns: New evidence from the United States and China  

Science Journals Connector (OSTI)

Abstract This study examines the time-varying correlations between oil prices shocks of different types (supply-side, aggregate demand and oil-market specific demand as per Kilian (2009) who highlighted that “Not all oil shocks are alike”) and stock market returns, using a Scalar-BEKK model. For this study we consider the aggregate stock market indices from two countries, China and the US, reflecting the most important developing and developed financial markets in the world. In addition to the whole market, we also consider correlations from key selected industrial sectors, namely Metals & Mining, Oil & Gas, Retail, Technology and Banking. The sample period runs from 1995 until 2013. We highlight several key points: (i) correlations between oil price shocks and stock returns are clearly and systematically time-varying; (ii) oil shocks of different types show substantial variation in their impact upon stock market returns; (iii) these effects differ widely across industrial sectors; and finally (iv) China is seemingly more resilient to oil price shocks than the US.

David C. Broadstock; George Filis

2014-01-01T23:59:59.000Z

429

Gas visualization of industrial hydrocarbon emissions  

Science Journals Connector (OSTI)

Gases leaking from a polyethene plant and a cracker plant were visualized with the gas-correlation imaging technique. Ethene escaping from flares due to incomplete or erratic...

Sandsten, Jonas; Edner, Hans; Svanberg, Sune

2004-01-01T23:59:59.000Z

430

Aluminium in-use stocks in the state of Connecticut  

Science Journals Connector (OSTI)

The in-use stock of aluminium in the State of Connecticut, USA, has been established by an extensive “bottom-up” study. For year 2000, the results are a total stock of 1.2–1.4 Tg Al, or 360–400 kg Al per capita. The per capita stock amount is similar to that derived in a recent study in Japan. Infrastructure & buildings contains nearly 60% of the total stock, and transportation vehicles nearly 40%. The aluminium in equipment of various kinds amounts to only about 2% of the total, and packaging stock is less than 1%.

Korinti Recalde; Jinlong Wang; T.E. Graedel

2008-01-01T23:59:59.000Z

431

Techno-economic performance and cost reduction potential for the substitute/synthetic natural gas and power cogeneration plant with CO2 capture  

Science Journals Connector (OSTI)

Abstract The cogeneration of substitute/synthetic natural gas (SNG) and power from coal based plants with CO2 capture is an effective way to improve energy efficiency and to reduce CO2 emissions. In this paper, we evaluate the techno-economic performance of a SNG and power cogeneration technology with CO2 capture. Current localization level (the cost difference of a technology in different nations and districts) of each subunit of this technology is analyzed. The cost reduction potential of this technology is also predicted, and the role of technology localization and efficiency upgrade in cost reduction is investigated based on a range of learning rates and different coal prices from 90$/t to 150$/t. Results show that the unit investment of this cogeneration technology presented in our previous paper is around 1700$/kW currently and the investment of SNG synthesis, coal gasification and combined cycle unit comprises over 60% of the total investment. The equivalent SNG production cost is quite sensitive to coal prices and ranges from 0.15 to 0.50$/Nm3. Through localization, the unit investment of this technology can be decreased by 30% currently. The key technologies including coal gasification, SNG synthesis and high performance gas turbine need further localization because of their relatively low current localization levels and big localization potential. Through cost learning, the future investment of the technology can be decreased to 700–1100$/kW, which may be competitive with the unit investment of IGCC technology with CO2 capture and even may be lower than that of the pulverized coal power plant with CO2 capture. Technology localization and efficiency upgrade will play important roles in cost reduction, which can contribute 300–500$/kW and 125–225$/kW to cost reduction, respectively. The results presented in this paper indicate that the coal to SNG and power technology with CO2 capture is a promising and competitive option for energy saving and CO2 abatement, and can be a support for policy making, technology options etc.

Sheng Li; Hongguang Jin; Lin Gao; Xiaosong Zhang; Xiaozhou Ji

2014-01-01T23:59:59.000Z

432

Tebian Electric Apparatus Stock Co Ltd TBEA | Open Energy Information  

Open Energy Info (EERE)

Tebian Electric Apparatus Stock Co Ltd TBEA Tebian Electric Apparatus Stock Co Ltd TBEA Jump to: navigation, search Name Tebian Electric Apparatus Stock Co Ltd (TBEA) Place Changji, Xinjiang Autonomous Region, China Zip 831100 Sector Solar Product TBEA makes transformer products and aluminium foil, and also solar energy equipment. References Tebian Electric Apparatus Stock Co Ltd (TBEA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Tebian Electric Apparatus Stock Co Ltd (TBEA) is a company located in Changji, Xinjiang Autonomous Region, China . References ↑ "Tebian Electric Apparatus Stock Co Ltd (TBEA)" Retrieved from "http://en.openei.org/w/index.php?title=Tebian_Electric_Apparatus_Stock_Co_Ltd_TBEA&oldid=352059

433

Guadalupe Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Plant Biomass Facility Jump to: navigation, search Name Guadalupe Power Plant Biomass Facility Facility Guadalupe Power Plant Sector Biomass Facility Type Landfill Gas...

434

Optimizing Natural Gas Use: A Case Study  

E-Print Network [OSTI]

Optimization of Steam & Energy systems in any continuously operating process plant results in substantial reduction in Natural gas purchases. During periods of natural gas price hikes, this would benefit the plant to control their fuel budget...

Venkatesan, V. V.; Schweikert, P.

2007-01-01T23:59:59.000Z

435

California's Greenhouse Gas Policies: Local Solutions to a Global Problem?  

E-Print Network [OSTI]

greater than a current combined-cycle natural gas plant. Inemissions level based on a Combined Cycle Gas Turbine (CCGT)profiles worse than the combined cycle gas plants upon which

Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

2007-01-01T23:59:59.000Z

436

Application of pathways analyses for site performance prediction for the Gas Centrifuge Enrichment Plant and Oak Ridge Central Waste Disposal Facility  

SciTech Connect (OSTI)

The suitability of the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility for shallow-land burial of low-level radioactive waste is evaluated using pathways analyses. The analyses rely on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Conceptual and numerical models are developed using data from comprehensive laboratory and field investigations and are used to simulate the long-term transport of contamination to man. Conservatism is built into the analyses when assumptions concerning future events have to be made or when uncertainties concerning site or waste characteristics exist. Maximum potential doses to man are calculated and compared to the appropriate standards. The sites are found to provide adequate buffer to persons outside the DOE reservations. Conclusions concerning site capacity and site acceptability are drawn. In reaching these conclusions, some consideration is given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed. 18 refs., 9 figs.

Pin, F.G.; Oblow, E.M.

1984-01-01T23:59:59.000Z

437

Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1  

SciTech Connect (OSTI)

Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Station for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.

Borio, R.W.; Lewis, R.D.; Koucky, R.W. [ABB Power Plant Labs., Windsor, CT (United States)] [ABB Power Plant Labs., Windsor, CT (United States); Lookman, A.A. [Energy Systems Associates, Pittsburgh, PA (United States)] [Energy Systems Associates, Pittsburgh, PA (United States); Manos, M.G.; Corfman, D.W.; Waddingham, A.L. [Ohio Edison, Akron, OH (United States)] [Ohio Edison, Akron, OH (United States); Johnson, S.A. [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)] [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)

1996-04-01T23:59:59.000Z

438

Chapter Nine - Gas Sweetening  

Science Journals Connector (OSTI)

Abstract This chapter begins by reviewing the processing of natural gas to meet gas sales contract specifications. It then describes acid gas limitations for pipelines and gas plants, before detailing the most common acid gas removal processes, such as solid-bed, chemical solvent processes, physical solvent processes, direct conversion processes, distillation process, and gas permeation processes. The chapter discusses the selection of the appropriate removal process for a given situation, and it provides a detailed design procedure for a solid-bed and chemical solvent process. The chapter ends by supplying a sample design for a solid-bed and chemical solvent process.

Maurice I. Stewart Jr.

2014-01-01T23:59:59.000Z

439

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview Net additions to storage during the fourth week of April were estimated to have been over 100 Bcf-a record high level for the first month of the refill season. Compared to last year when only 36 Bcf or 1.2 Bcf per day were added to stocks in April, this year the industry appears to be taking advantage of the reduction in demand that typically occurs in April, the first shoulder month of the year, and the recent price declines. After beginning the week down, spot prices at the Henry Hub trended down most days last week to end trading on Friday at $4.49 per MMBtu-the lowest price since early November. On the NYMEX futures market, the near-month (June) contract also moved down most days and ended last week at $4.490-down $0.377 from the previous Friday. Some-early summer high temperatures last week in the Northeast and winter-like weather in the Rockies (See Temperature Map) (See Deviation from Normal Temperatures Map) appear to have had little impact on the natural gas markets as prices declined most days at most major locations.

440

ELECTRICITY AND NATURAL GAS DATA COLLECTION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION HISTORICAL ELECTRICITY AND NATURAL GAS DATA COLLECTION Formsand of Power Plants Semi-Annual Report ..................................... 44 CEC-1306D UDC Natural Gas Tolling Agreement Quarterly Report.......................... 46 i #12;Natural Gas Utilities and Retailers

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Overview - May 21, 2001 Somewhat warmer temperatures early in the week, especially in the South, provided a lift to natural gas spot and futures prices. (See Temperature Map) (See Deviation from Normal Temperatures Map) However, a report of another large stock build and a revised forecast for normal to below-normal temperatures over a larger area of the country turned the week's gains into losses. On a week-to-week basis, the spot price of natural gas at the Henry Hub dropped $0.10 to end Friday, May 18 at $4.15 per MMBtu, while the NYMEX price of natural gas for June delivery at the Henry Hub declined $0.013 to $4.291 per MMBtu. At 119 Bcf, net injections to storage for the week ended May 11, 2001, were the highest value for the 8-year period of weekly AGA data.

442

Last-Minute Energy Saving Stocking Stuffers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Last-Minute Energy Saving Stocking Stuffers Last-Minute Energy Saving Stocking Stuffers Last-Minute Energy Saving Stocking Stuffers December 23, 2013 - 12:13pm Addthis There are all sorts of small energy-efficient presents available for stuffing stockings this year. | Photo courtesy of ©iStockphoto.com/DNY59 There are all sorts of small energy-efficient presents available for stuffing stockings this year. | Photo courtesy of ©iStockphoto.com/DNY59 Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program How can I participate? Keep an eye out for these small, energy saving gifts as you do your last minute shopping this year. Looking for some last minute stocking stuffers to complement the holiday gifts you've purchased for your loved ones? We covered a few

443

Low Distillate Stocks Set Stage for Price Volatility  

Gasoline and Diesel Fuel Update (EIA)

Along with the recent rise in crude oil prices, low stocks of Along with the recent rise in crude oil prices, low stocks of distillate fuels left markets in a vulnerable position. As we went into our two biggest distillate demand months, January and February, U.S. distillate stocks were very low -- particularly on the East and Gulf Coasts. The East Coast is the primary heating oil region, and it depends heavily on production from the Gulf Coast as well. Distillate stocks in the U.S. and Europe were in surplus supply as recently as October, but distillate stocks did not build as they usually do during the late fall, and declined more sharply than usual in December. December stocks closed well below the normal range. The unusual drawdown, in contrast to the more normal building pattern, resulted in distillate inventory levels about 3 million barrels lower than the very low

444

Distillate Stocks Are Important Part of Northeast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

1 of 15 1 of 15 Notes: Why do stocks matter in the Northeast? Stocks are normally an important part of PADD 1 winter distillate supply. Over the last 5 years, they provided about 15% of supply during the peak winter months of January and February. One of the biggest stock draws we have seen was in January 1994, when a prolonged severe cold spell required 666 MB/D of stocks, covering almost 36% of demand for that month. PADD 1 refineries meet about 25% of demand during January and February, and other PADDs -- mostly PADD 3 -- supply 45-50% of the regionÂ’s needs. Imports generally supply about as much as stocks during the peak months, with most of the product coming from Canada, the Virgin Islands and Venezuela. Percentages do not tell the whole story. Stocks supply close to 300

445

Low Gasoline Stocks Indicate Increased Odds of Spring Volatility  

Gasoline and Diesel Fuel Update (EIA)

We cannot just focus on distillate. Gasoline will likely be our next We cannot just focus on distillate. Gasoline will likely be our next major concern. Gasoline stock levels have fallen well below the typical band for this time of year, primarily for the same reason distillate stocks fell to low levels -- namely relatively low production due to low margins. At the end of January, total gasoline inventories were almost 13 million barrels (6%) below the low end of the normal band. While gasoline stocks are generally not as important a supply source to the gasoline market this time of year as are distillate stocks to the distillate market, gasoline stocks still are needed. Gasoline stocks are usually used to help meet gasoline demand during February and March as refiners go through maintenance and turnarounds, but we do not have the

446

Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant LAW Melter and Melter Off-gas Process System Hazards Analysis _Oct 21-31  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-10-21 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities Dates of Activity : 10/21/13 - 10/31/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations (Independent Oversight) reviewed the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter and Off-gas systems, observed a

447

Status of the eel stock in Sweden in 2011  

E-Print Network [OSTI]

Status of the eel stock in Sweden in 2011 Willem Dekker Håkan Wickström Jan Andersson Aqua reports of the eel stock in Sweden in 2011 By Willem Dekker, Håkan Wickström & Jan Andersson October 2011 SLU: Dekker, W., Wickström, H. & Andersson, J. (2011). Status of the eel stock in Sweden in 2011. Aqua reports

448

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Overview Overview Lower prices and a report of another considerable net injection to stocks were featured in last week's gas markets. As of Friday, May 11, 2001, the spot price of natural gas at the Henry Hub dropped $0.24 from the previous Friday to $4.25 per MMBtu. The NYMEX price of natural gas for June delivery at the Henry Hub declined $0.212 for the week to $4.278 per MMBtu. A record-setting 108 Bcf was added to natural gas stocks for the week ended May 4, 2001. The demand for cooling is still somewhat limited as mild temperatures prevailed around most of the country. (See Temperature Map) (See Deviation from Normal Temperatures Map) Prices Mid-week prices were at the lowest level since early August. Even with an end-of-the-week influence from the futures market that caused a slight upturn, spot prices at the major supply hubs were $0.25 to $0.65 cents per MMBtu lower on a week-to-week basis with Katy, Texas ending at $4.23; the Henry Hub, Louisiana at $4.25; Midcon, Oklahoma at $4.11; and Opal, Wyoming at $3.30. Prices at the Chicago and New York citygates were lower as well, registering $4.35 and $4.65 at week's end, off a respective $0.27 and $0.20 per MMBtu for the week. SoCal provided the only exception to the generally lower trend as demand increased because of warmer temperatures. Natural gas prices receded before temperatures did, though. The effect of unscheduled maintenance on the PG&E Gas Transmission system was imperceptible to PG&E's large-volume purchasers. By Friday, the PG&E customers were paying $3.51 less at $4.18 while SoCal's citygate price was only $0.47 lower at $11.92.

449

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2001 8, 2001 Prices ended the week up slightly from where they started as a brief heat wave in the eastern half of the country caused a rise in prices (See Temperature Map) (See Deviation from Normal Temperatures Map) that was somewhat undone by the return of moderate temperatures and the report of another hefty stock build. On a Friday-to-Friday basis, the spot price at the Henry Hub increased by $0.25 to $3.88 per MMBtu compared with an increase of $0.23 to $0.33 at other major supply points in the eastern half of the country. In the same time period, the near-month (July delivery) futures contract was up less than 6 cents to $3.979 per MMBtu as of Friday, June 15, 2001. Prices in California rose substantially last Monday after coming off high inventory flow orders (OFOs) but ended the week close to or lower than the previous week due to another round of OFOs. For the past 7 weeks, weekly storage injections neared or exceeded 100 Bcf, bringing stocks to within less than a 1 percent difference from average levels. The string of record-breaking stock builds appears attributable to moderate spring temperatures and reduced cooling demand by natural-gas-fired electricity generation.

450

Automatic stock market trading based on Technical Analysis.  

E-Print Network [OSTI]

?? The theory of technical analysis suggests that future stock price developement can be foretold by analyzing historical price fluctuations and identifying repetitive patterns. A… (more)

Larsen, Fredrik

2007-01-01T23:59:59.000Z

451

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview: Monday, June 04, 2001 Stock builds slowed from their recent pace, even though spot prices continued their downward trend to end the week at the Henry Hub at $3.71 per MMBtu, which is a Friday-to-Friday decline of $0.14 per MMBtu. The NYMEX contract price for June delivery at the Henry Hub settled Tuesday at $3.738, the lowest close-out of a near month contract since the May 2000 contract. The July contract price was $3.930 per MMBtu on Friday, $0.103 lower than a week earlier. Mild weather in the Northeast and Midwest continued to suppress prices on the Eastern Seaboard, while a short burst of warm temperatures in southern California early in the week had the opposite effect on prices in that region. (See Temperature Map) (See Deviation from Normal Temperatures Map) Net injections to storage for the week ended Friday, May 25 were 99 Bcf, breaking a 4-week string of 100-plus net injections.

452

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

natural-gas- fired combined cycle generation, and the othernatural-gas-fired combined cycle plants. This assumptionplants were efficient combined cycle plants. The four

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

453

Natural Gas Plant Liquids Production  

Gasoline and Diesel Fuel Update (EIA)

Production Production (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2006 2007 2008 2009 2010 2011 View History U.S. 629 650 667 714 745 784 1979-2011 Alabama 3 2 7 5 6 6 1979-2011 Alaska 14 13 13 13 11 11 1979-2011 Arkansas 0 0 0 0 0 0 1979-2011 California 11 11 11 11 10 10 1979-2011 Coastal Region Onshore 1 1 1 1 1 1 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 10 10 10 10 9 9 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 26 27 38 48 58 63 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 18 18 18 16 16 16 1979-2011 Kentucky 3 3 3 4 5 4 1979-2011 Louisiana

454

California Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

195,272 198,213 204,327 180,648 169,203 164,401 1967-2013 Total Liquids Extracted (Thousand Barrels) 11,179 11,042 10,400 9,923 10,641 1983-2013 NGPL Production, Gaseous Equivalent...

455

TABLE52.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

2. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products by PAD a Distillate stocks located in the "Northeast Heating Oil Reserve" are not included....

456

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

457

Recent Trends in Crude Oil Stock Levels  

Gasoline and Diesel Fuel Update (EIA)

J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J 0 280 300 320 340 360 380 400 420 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 Average Range: 1993-1995 Recent Trends in Crude Oil Stock Levels by Aileen A. Bohn Energy Information Administration (EIA) data for March 1996 primary inventories of crude oil were the lowest recorded in almost 20 years. Crude oil inventories, which were generally on a downward trend since the beginning of 1995, fell below the average range in July 1995 and have yet to recover (Figure FE1). On September 27, 1996, crude oil stocks registered 303 million barrels, compared to a normal range of nearly 311 to 332 million barrels for September. 1 Low crude oil inventories can cause price volatility in crude oil markets. 2 When inventories are low, refiners resort to

458

Oil, economic growth and strategic petroleum stocks  

Science Journals Connector (OSTI)

Abstract An examination of over 40 years of data reveals that oil price shocks are invariably followed by 2–3 years of weak economic growth and weak economic growth is almost always preceded by an oil price shock. This paper reviews why the price-inelastic demand and supply of oil cause oil price shocks and why oil price shocks reduce economic growth through dislocations of labor and capital. This paper also reviews the current state of oil-supply security noting that previous episodes of supply instability appear to have become chronic conditions. While new unconventional oil production technologies have revitalized North American oil production, there are significant barriers to a world-wide uptake of these technologies. Strategic petroleum stocks could provide a large measure of protection to the world economy during an oil supply disruption if they are used promptly and in sufficient volume to prevent large oil-price spikes. Despite the large volume of world-wide emergency reserves, their effectiveness in protecting world economies is not assured. Strategic oil stocks have not been used in sufficient quantity or soon enough to avoid the economic downturns that followed past oil supply outages. In addition, the growth of U.S. oil production has reduced the ability of the U.S. Strategic Petroleum Reserve to protect the economy following a future oil supply disruption. The policy implications of these findings are discussed.

Carmine Difiglio

2014-01-01T23:59:59.000Z

459

Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas...

460

Table 2. U.S. Biodiesel Production, Sales, and Stocks  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Biodiesel Production, Sales, and Stocks U.S. Biodiesel Production, Sales, and Stocks (million gallons) Period 2011 January 35 22 9 17 4 February 40 27 13 17 1 March 60 41 17 19 2 April 71 47 22 21 2 May 77 50 27 23 2 June 81 62 24 19 (4)

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fish Stocks Rainer Froese, IFM-GEOMAR, Kiel, Germany  

E-Print Network [OSTI]

Fish Stocks Rainer Froese, IFM-GEOMAR, Kiel, Germany Daniel Pauly, University of British Columbia and consisting of four elements (species names, location, time, and source). Catches The fish (or other aquatic organisms) of a given stock killed during a certain period by the operation of fishing gear. This definition

Pauly, Daniel

462

Petrale Sole Stock Assessment Review (STAR) Panel Report  

E-Print Network [OSTI]

constituted a major uncertainty in the assessment (Figure 1), as did the appropriate natural mortality ratePetrale Sole Stock Assessment Review (STAR) Panel Report Hotel Deca, Seattle, Washington 20-24 June Leipzig PFMC Groundfish Advisory Subpanel (GAP) Stock Assessment Team (STAT) Melissa Haltuch NMFS

463

UCSF FOUNDATION DONATION OF SECURITIES: STOCKS AND MUTAL FUNDS  

E-Print Network [OSTI]

-over- UCSF FOUNDATION DONATION OF SECURITIES: STOCKS AND MUTAL FUNDS GIFT TO CURRENT ACCOUNT Thank you for your interest in making a gift of stocks or mutual fund shares to the UCSF Foundation. We Foundation of your donation. Broker Instructions -- Credit to: State Street Bank & Trust, DTC #997, UCSF

Yamamoto, Keith

464

UCSF FOUNDATION DONATION OF SECURITIES: STOCKS AND MUTAL FUNDS  

E-Print Network [OSTI]

-over- UCSF FOUNDATION DONATION OF SECURITIES: STOCKS AND MUTAL FUNDS GIFT TO ENDOWMENT ACCOUNT Thank you for your interest in making a gift of stocks or mutual funds shares to the UCSF Foundation. We to notify UCSF Foundation of your donation. · Broker Instructions -- Credit to: State Street Bank & Trust

Yamamoto, Keith

465

"Why Are Some Firms More Innovative? Knowledge Inputs, Knowledge Stocks,  

E-Print Network [OSTI]

"Why Are Some Firms More Innovative? Knowledge Inputs, Knowledge Stocks, and the Role of Global, Exporting, Knowledge and Technological Change Abstract Why do some firms create more knowledge than others stock of knowledge. But there is very little empirical evidence on production functions for new ideas

Sadoulet, Elisabeth

466

Detecting Stock Market Manipulation using Supervised Learning Algorithms  

E-Print Network [OSTI]

suspicious transactions in relation to market manipulation in stock market. We use a case studyDetecting Stock Market Manipulation using Supervised Learning Algorithms Koosha Golmohammadi, Osmar,Chile ddiaz@unegocios.cl Abstract-- Market manipulation remains the biggest concern of investors in today

Zaiane, Osmar R.

467

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect (OSTI)

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ``Monthly Power Plant Report.`` These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

468

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect (OSTI)

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

469

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

Stocks are normally an important part of East Coast winter Stocks are normally an important part of East Coast winter distillate supply, since they are the nearest source when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Over the last 10 years, stocks have provided about 15% of supply during the peak winter months of January and February. On average, stocks supply the East Coast with about 260 thousand barrels per day in January and 280 in February. Those supplies represent draws of about 8 million barrels in one month. In addition, East Coast refineries meet about 25% of demand during January and February, and other regions -- mostly the Gulf Coast -- supply 40-50% of the region's needs. Imports generally supply about as much as stocks during the peak

470

Recovery May Require Holding Stocks Level in February and March  

Gasoline and Diesel Fuel Update (EIA)

have dropped back as new supplies are appearing, but we still have dropped back as new supplies are appearing, but we still have nearly a month of winter ahead of us. Stocks cannot drop much farther. February 4 stock levels were just above the lowest month-end levels ever seen for PADD 1, which occurred in April 1996. For stocks to recover to the low end of the normal range, they would have to stay level in February in March, when normally they would be used to meet demand. Keeping stocks level would require finding supply to substitute for the average stock drops of 290 thousand barrels per day (8 million barrels) in February and 210 thousand barrels per day (6 million barrels) in March. If all of that supply were to come from imports, we would have to see distillate imports into PADD 1 double from their average levels of 7

471

Value-Added Stock Loan Participation Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Value-Added Stock Loan Participation Program Value-Added Stock Loan Participation Program Value-Added Stock Loan Participation Program < Back Eligibility Agricultural Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate RFA provides up to 45% of the loan up to $40,000 of loan principal Program Info Start Date 1994 State Minnesota Program Type State Loan Program Provider Minnesota Department of Agriculture The Value-Added Stock Loan Participation Program was created in 1994 and is designed to help farmers finance the purchase of stock in certain types of cooperative, limited liability company, or limited liability partnership that will produce a "value-added agricultural product." This may include wind energy and anaerobic-digestion cooperatives if they meet the

472

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Stocks are important in the Northeast because they are the nearest source of supply when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Stocks are normally an important part of East Coast winter distillate supply. Over the last 10 years, they provided about 15% of supply during the peak winter months of January and February. One of the biggest stock draws we have seen was in January 1994, when a prolonged severe cold spell required 666,000 barrels per day of stocks, covering almost 36% of demand for that month. On average, stocks supply the East Coast with about 260,000 barrels per day on average in January and 280,000 barrels per day in February. Those supplies represent draws of about 8 million barrels in one month.

473

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Why do stocks matter in the Northeast? They are the nearest source of supply when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Stocks are normally an important part of PADD 1 winter distillate supply. Over the last 10 years, they provided about 15% of supply during the peak winter months of January and February. One of the biggest stock draws we have seen was in January 1994, when a prolonged severe cold spell required 666 MB/D of stocks, covering almost 36% of demand for that month. Stocks supply the East Coast with about 260 MB/D on average in January and 280 MB/D in February. Those supplies represent draws of about 8 million barrels in one month. PADD 1 refineries meet about 25% of demand during January and

474

Distillate Stocks Are Important Part of Northeast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

The weather alone was not enough to cause the price spike. The low The weather alone was not enough to cause the price spike. The low stocks left the area vulnerable to sudden changes in the market, such as the weather change. Why do stocks matter in the Northeast? Stocks are normally an important part of PADD 1 winter distillate supply. Over the last 5 years, PADD 1 stocks provided about 15% of supply during the peak winter months of January and February. They are the closest source of supply to the consumer. PADD 1 depends on about 60% of its supply from distant sources such as the Gulf Coast or imports, which can take several weeks to travel to the Northeast. Even product from East Coast refineries, if capacity is available, may take a week before it is produced and delivered to the regions needing new supply. Thus, stocks must be able

475

Use of naphthenic base stocks in engine oil formulations  

SciTech Connect (OSTI)

The use of naphthenic base stocks in the formulation of engine oils has always been restricted due to certain physico-chemical properties (i.e. low oxidation stability, high volatility, great variation of the viscosity with the temperature) as well as the limited availability of this type of base oil in many parts of the world. This paper summarizes the experimental results followed in the development of a crankcase engine oil formulation SAE 40, API SF/CC with maximum usage of a naphthenic base stock MVIN-170 combined with HVI stocks and conventional additive technologies. The physico-chemical characterization of the MVIN-170 base stock, a conventional processed napthenic oil that Maraven (affiliate of PDVSA) commercializes from Isla Refinery of Curazao, is presented and compared with other napthenic oils coming from other crude sources of processes and with parafinic base stocks of equivalent viscosity.

Josefina, V.C.M.; Armando, I.R.

1988-01-01T23:59:59.000Z

476

On the stock control performance of intermittent demand estimators  

Science Journals Connector (OSTI)

The purpose of this paper is to assess the empirical stock control performance of intermittent demand estimation procedures. The forecasting methods considered are the simple moving average, single exponential smoothing, Croston's method and a new method recently developed by the authors of this paper. We first discuss the nature of the empirical demand data set (3000 stock keeping units) and we specify the stock control model to be used for experimentation purposes. Performance measures are then selected to report customer service level and stock volume differences. The out-of-sample empirical comparison results demonstrate the superior stock control performance of the new intermittent demand forecasting method and enable insights to be gained into the empirical utility of the other estimators.

Aris A. Syntetos; John E. Boylan

2006-01-01T23:59:59.000Z

477

Defining the needs for non-destructive assay of UF6 feed, product, and tails at gas centrifuge enrichment plants and possible next steps  

SciTech Connect (OSTI)

Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to detect undeclared LEU production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of UF{sub 6} bulk material used in the process of enrichment at GCEPS. The inspectors also take destructive assay (DA) samples for analysis off-site which provide accurate, on the order of 0.1 % to 0.5% uncertainty, data on the enrichment of the UF{sub 6} feed, tails, and product. However, DA sample taking is a much more labor intensive and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of the results and contains the possibility of the loss of the continuity of knowledge of the samples during the storage and transit of the material. Use of the IAEA's inspection sampling algorithm shows that while total sample size is fixed by the total population of potential samples and its intrinsic qualities, the split of the samples into NDA or DA samples is determined by the uncertainties in the NDA measurements. Therefore, the larger the uncertainties in the NDA methods, more of the sample taken must be DA samples. Since the DA sampling is arduous and costly, improvements in NDA methods would reduce the number of DA samples needed. Furthermore, if methods of on-site analysis of the samples could be developed that have uncertainties in the 1-2% range, a lot of the problems inherent in DA sampling could be removed. The use of an unattended system that could give an overview of the entire process giving complementary data on the enrichment process as well as accurate measures of enrichment and weights of the UF{sub 6} feed, tails, and product would be a major step in enhancing the ability of NDA beyond present attended systems. The possibility of monitoring the feed, tails, and product header pipes in such a way as to gain safeguards relevant flow and enrichment information without compromising the intellectual property of the operator including proprietary equipment and operational parameters would be a huge step forward. This paper contains an analysis of possible improvements in unattended and attended NDA systems including such process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector measurements reducing the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GeEPs safeguards.

Boyer, Brian D [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Moran, Bruce W [IAEA; Lebrun, Alain [IAEA

2009-01-01T23:59:59.000Z

478

Final Flue Gas Cleaning (FFGC)  

E-Print Network [OSTI]

Final Flue Gas Cleaning (FFGC) Pilot Plant. The pilot plant (FFGC-PP) will be used to test and evaluate removal of air pollution constituents from the flue gas of a 160 MW, Houston-area power plant operating on 100% petcoke. The two-week long test.... TABLE III FLUE GAS COMPOSITION PETCOKE FIRED POWER PLANT H 2 O 3.2 % O 2 4.9 % CO 2 17.7 % HCl 10 ppm SO 2 6800 ppm SO 3 300 ppm H2SO4 mist 690 ppm NOx 260 ppm...

Stinger, D. H.; Romero, M. H.

2006-01-01T23:59:59.000Z

479

Gas Turbine Manufacturers Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

480

A3. Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Natural Gas Processed and Liquids Extracted at Natural Gas Processing Plants by State, 1996 Table Plant Location Volume of Natural Gas Delivered to Processing Plants a (million cubic feet) Total Liquids Extracted b (thousand barrels) Extraction Loss (million cubic feet) State Production Out of State Production Natural Gas Processed Alabama..................................... 111,656 1,212 112,868 4,009 5,361 Alaska ........................................ 2,987,364 0 2,987,364 33,346 38,453 Arkansas.................................... 214,868 4,609 219,477 383 479 California.................................... 240,566 0 240,566 9,798 12,169 Colorado .................................... 493,748 215 493,963 16,735 23,362 Florida........................................ 5,900 2,614 8,514 1,630 1,649 Illinois.........................................

Note: This page contains sample records for the topic "gas plant stocks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Microsoft Word - Gas-Electricity Briefing Memo 072414 FINAL  

Energy Savers [EERE]

natural gas power plants to back up increasing amounts of intermittent wind and solar power. Though the electricity and natural gas pipeline industries have operated...

482

The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification  

E-Print Network [OSTI]

economic comparison of IGCC power plants with cold gas cleanup and hot gas cleanup units using Indian coals.

Luo, Qian

2012-01-01T23:59:59.000Z

483

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

E-Print Network [OSTI]

k. Integrated gasification combined cycle (IGCC) coal l. PCIntegrated Gasification Combined Cycle (IGCC) Power Plant,Analysis: Natural Gas Combined Cycle (NGCC) Power Plant,

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

484

CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS  

SciTech Connect (OSTI)

This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

2009-11-30T23:59:59.000Z

485

U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report  

SciTech Connect (OSTI)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

NONE

1998-12-01T23:59:59.000Z