Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

/Gas Plant Operators Monthly Petroleum Product Sales Report. As  

U.S. Energy Information Administration (EIA)

sales to refiners and gas plant operators represented on the list. When using this list, ... (CNG Transmission) Dominion Transmission . DCP Midstream Partners.

2

EIA-782A EXCLUSIONARY LIST INSTRUCTIONS /Gas Plant Operators ...  

U.S. Energy Information Administration (EIA)

sales to refiners and gas plant operators represented on the list. When using this list, ... CNG Transmission (Dominion Field Serv.) Coastal Markets Limited .

3

Gas Fired Power Plants: Investment Timing, Operating Flexibility and Abandonment  

E-Print Network (OSTI)

Many firms are considering investment in gas fired power plants. We consider a firm holding a license, i.e. an option, to build a gas fired power plant. The operating cash flows from the plant depend on the spark spread, defined as the difference between the unit price of electricity and cost of gas. The plant produces electricity when the spark spread exceeds emission costs, otherwise the plant is ramped down and held idle. The owner has also an option to abandon the plant and realize the salvage value of the equipment. We compute optimal entry and exit threshold values for the spark spread. Also the effects of emission costs on the value of installing CO2 capture technology are analyzed.

Stein-erik Fleten; Erkka Näsäkkälä

2003-01-01T23:59:59.000Z

4

Optimization system for operation of gas cogeneration power plant  

Science Conference Proceedings (OSTI)

The paper presents a distributed control system for the realization of cogenerative supply of electricity and heat and, in given case, for their combination with waste heat recovery, particularly in combined (gas-steam) cycle industrial power plants. ... Keywords: cogenerative gas power plant, control of distributed parameter systems, optimization, process control

Ion Miciu

2008-09-01T23:59:59.000Z

5

Case history of industrial plant steam system layup for direct-fired gas operations  

Science Conference Proceedings (OSTI)

This paper presents the facts of an industrial plant steam system layup for direct fired gas operations. Fuel price savings indicated that gas firing a paper dryer, the largest steam user in the plant, would pay for itself in one year. Conversion work is detailed. Primary gas distribution was achieved by using one line of the steam loop. Machine water heating, power venting, space heating, and air makeup heating, among other conversions, are also specified.

Stacy, G.N.

1983-06-01T23:59:59.000Z

6

EIA-782A REFINERS’/GAS PLANT OPERATORS’ MONTHLY ...  

U.S. Energy Information Administration (EIA)

interested in receiving this free software, contact the Electronic Data Collection Support Staff at (202) 586-9659. Mail forms to: Oil & Gas ...

7

Proceedings of symposium on operation and maintenance of synthetic gas plants  

SciTech Connect

The Symposium on Operation and Maintenance of Synthetic Gas Plants sponsored by the Gas Processors Association and the American Petroleum Institute (Division of Refining) was held at the Statler Hilton Hotel, Dallas, Texas, October 10, 1973. Four papers have been entered individually into EDB. (LTN)

1973-01-01T23:59:59.000Z

8

Apparatus and method for partial-load operation of a combined gas and steam turbine plant  

SciTech Connect

Apparatus and method are disclosed for the partial load operation of a combined gas turbine and steam turbine plant, including a shaft being connected to the gas turbine and drivable at a given nominal speed of rotation, a first generator being connected to the shaft and electrically connectible to an electric network, a compressor being connected to the shaft and connected upstream of the gas turbine in gas flow direction, a heat exchanger having an output and a variable heat supply and being connected upstream of the gas turbine in gas flow direction, a steam generator for the steam turbine being connected downstream of the gas turbine in gas flow direction for receiving exhaust gases therefrom, a second generator being connected to the steam turbine and electrically connectible to the electric network for supplying given nominal power thereto along with the first generator, means for giving to the electric network and taking away from the network at least part of the nominal power if the shaft rotates at less than the nominal speed of rotation, and means for reducing the speed of rotation of the gas turbine for preventing a substantial drop in temperature at the output of the heat exchanger if the heat supply of the heat exchanger is reduced.

Becker, B.; Finckh, H.; Meyer-pittroff, R.

1982-07-20T23:59:59.000Z

9

An Integrated Framework for Gas Turbine Based Power Plant Operational Modeling and Optimization .  

E-Print Network (OSTI)

??The deregulation of the electric power market introduced a strong element of competition. Power plant operators strive to develop advanced operational strategies to maximize the… (more)

Zhao, Yongjun

2005-01-01T23:59:59.000Z

10

Plant Operational Status - Pantex Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Status Plant Operational Status Page Content Operational Status Shift 1 - Day The Pantex Plant is open for normal operations. All personnel are to report for duty according to...

11

Gas turbine effects on integrated-gasification-combined-cycle power plant operations  

SciTech Connect

This study used detailed thermodynamic modeling procedures to assess the influence of different gas turbine characteristics and steam cycle conditions on the design and off-design performance of integrated gasification-combined-cycle (IGCC) power plants. IGCC plant simulation models for a base case plant with Texaco gasifiers and both radiant and convective syngas coolers were developed, and three different types of gas turbines were evaluated as well as non-reheat and reheat steam systems. Results indicated that improving the gas turbine heat rate significantly improves the heat rate of the IGCC power plant. In addition results indicated that using a reheat steam system with current gas turbines improves IGCC performance, though as gas turbine efficiency increases, the impact of using a reheat steam system decreases. Increasing gas turbine temperatures from 1985{degree}F to 2500{degree}F was also found to have the potential to reduce overall IGCC system heat rates by approximately 700 BTU/kWh. The methodologies and models developed for this work are extremely useful tools for investigating the impact of specific gas turbine and steam cycle conditions on the overall performance of IGCC power plants. Moreover, they can assist utilities during the preliminary engineering phase of an IGCC project in evaluating the cost effectiveness of using specific gas turbines and steam cycles in the overall plant design. 45 refs., 20 figs., 10 tabs.

Eustis, F.H. (Stanford Univ., CA (USA). High Temperature Gasdynamics Lab.)

1990-03-01T23:59:59.000Z

12

150 kW PEM Stationary Power Plant Operating on Natural Gas -...  

NLE Websites -- All DOE Office Websites (Extended Search)

reformate. Insights gained from these studies will be applied towards designing a power plant, such as described above, that meets the following 2015 DOE targets: Operating...

13

Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant  

DOE Patents (OSTI)

A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

Zafred, Paolo R. (Pittsburgh, PA); Dederer, Jeffrey T. (Valencia, PA); Gillett, James E. (Greensburg, PA); Basel, Richard A. (Plub Borough, PA); Antenucci, Annette B. (Pittsburgh, PA)

1996-01-01T23:59:59.000Z

14

Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant  

DOE Patents (OSTI)

A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

1996-11-12T23:59:59.000Z

15

Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants  

SciTech Connect

Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

2008-07-15T23:59:59.000Z

16

Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation  

SciTech Connect

A control system for a combined cycle electric power plant is described. It contains: at least one gas turbine including an exit through which heated exhaust gases pass; means for generating steam coupled to said gas turbine exit for transferring heat from the exhaust gases to a fluid passing through the steam generator; a steam turbine coupled to the steam generator and driven by the steam supplied thereby; means for generating electric power by the driving power of the turbines; condenser means for receiving and converting the spent steam from the steam turbine into condensate; and steam generating means comprising a low pressure storage tank, a first heat exchange tube, a boiler feedwater pump for directing fluid from a low pressure storage tank through the first heat exchange tube, a main storage drum, a second heat exchange tube, and a high pressure recirculation pump for directing fluid from the main storage pump through the second heat exchange tube. The control system monitors the temperature of the exhaust gas turbine gases as directed to the steam generator and deactuates the steam turbine when a predetermined temperature is exceeded.

Martz, L.F.; Plotnick, R.J.

1974-08-08T23:59:59.000Z

17

Paste Plant Operations  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... It now provides data extraction features that aggregate system ... DUBAL Carbon Plant management team defined and implemented a 3-year strategic ... how to best approach Paste Plant operating and maintenance activities.

18

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

Demirel, Melik C.

19

Automatic system for optimization of operation of a gas cogeneration power plant  

Science Conference Proceedings (OSTI)

The system is made with main distributed components: - first level: Industrial Computers placed in Control Room (monitors thermal and electrical processes based on the data provided by the second level); - second level: PLCs which collects data from ... Keywords: automation system, cogenerative power plant, control, monitoring, real time

Ion Miciu

2008-07-01T23:59:59.000Z

20

Unusual plant features gas turbines  

SciTech Connect

Gas turbines were chosen by Phillips Petroleum Co. to operate the first gas-injection plant in the world to use gas-type turbines to drive reciprocating compressors. The plant is located in Lake Maracaibo, Venezuela. Gas turbines were chosen because of their inherent reliability as prime movers and for their lack of vibration. Reciprocating compressors were decided upon because of their great flexibility. Now, for the first time, the advantages of both gas turbines and reciprocating compressors are coupled on a very large scale. In this installation, the turbines will operate at about 5,000 rpm, while the compressors will run at only 270 rpm. Speed will be reduced through the giant gear boxes. The compressor platform rests on seventy- eight 36-in. piles in 100 ft of water. Piles were driven 180 ft below water level. To dehydrate the gas, Phillips will install a triethylene glycol unit. Two nearby flow stations will gather associated gas produced at the field and will pipe the gas underwater to the gas injection platform. Lamar Field is in the S. central area of Lake Maracaibo. To date, it has produced a 150 million bbl in 10 yr. Studies have indicated that a combination of waterflooding and repressuring by gas injection could double final recovery. Waterflooding began in 1963.

Franco, A.

1967-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream  

DOE Green Energy (OSTI)

International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

Maston, V.A.

1997-12-01T23:59:59.000Z

22

NUCLEAR PLANT OPERATIONS AND  

E-Print Network (OSTI)

NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: neutron flux, cur- rent noise, vibration diagnostics: Swedish Nuclear Power Inspectorate SE- 10658 Stockholm, Sweden. NUCLEAR TECHNOLOGY VOL. 131 AUG. 2000 239 by the Swedish Nuclear Power Inspectorate, contract 14.5-980942-98242. REFERENCES 1. A. M. WEINBERG and H. C

Pázsit, Imre

23

Primer on Flexible Operations in Fossil Plants  

Science Conference Proceedings (OSTI)

This primer describes the significant changes that have occurred over the past decade in the duty cycles of fossil power plants and the implications for plant equipment and costs. These changes include the increasing shift in coal-fired and natural-gas-fired power plants from high-capacity-factor, baseloaded operation to various modes of flexible operation, including load-following and low-load operation. ...

2013-09-27T23:59:59.000Z

24

Thailand gas project now operational  

SciTech Connect

Now operational, Phase 1 of Thailand's first major natural gas system comprises one of the world's longest (264 miles) offshore gas lines. Built for the Petroleum Authority of Thailand (PTT), this system delivers gas from the Erawan field in the Gulf of Thailand to two electrical power plants near Bangkok, operated by the Electricity Generating Authority of Thailand (EGAT). The project required laying about 360 miles of pipeline, 34-in., 0.625 in.-thick API-5LX-60 pipe offshore and 28-in., 0.406 in.-thick API-5LX-60 onshore. The offshore pipe received a coal-tar coating, a 3.5-5.0 in. concrete coating, and zinc sacrificial-anode bracelets. The onshore line was coated with the same coal-tar enamel and, where necessary, with concrete up to 4.5 in. thick. Because EGAT's two power plants are the system's only customers, no more pipeline will be constructed until deliveries, currently averaging about 100 million CF/day, reach the 250 million CF/day level. The project's second phase will include additional pipelines as well as an onshore distribution network to industrial customers.

Horner, C.

1982-08-01T23:59:59.000Z

25

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

26

Optimize control of natural gas plants  

SciTech Connect

Multivariable constraint control (MCS) has a very beneficial and profitable impact on the operation of natural gas plants. The applications described operate completely within a distributed control system (DCS) or programmable logic controllers (PLCs). That makes MCS accessible to almost all gas plant operators. The technology's relative ease of use, low maintenance effort and software sensor,'' make it possible to operate these control applications without increasing technical support staff. MCS improves not only profitability but also regulatory compliance of gas plants. It has been applied to fractionation units, cryogenic units, amine treaters, sulfur recovery units and utilities. The application typically pay for the cost of software and engineering in less than one month. If a DCS is installed within such a project the advanced control applications can generate a payout in less than one year. In the case here (an application on the deethanizers of a 500 MMscfd gas plant) product revenue increased by over $2 million/yr.

Treiber, S.; Walker, J.; Tremblay, M. de (Treiber Controls Inc., Toronto, Ontario (Canada)); Delgadillo, R.L.; Velasquez, R.N.; Valarde, M.J.G. (PEMEX, Villahermosa (Mexico))

1994-04-01T23:59:59.000Z

27

Gas Turbine Optimum Operation.  

E-Print Network (OSTI)

??Many offshore installations are dependent on power generated by gas turbines and a critical issue is that these experience performance deterioration over time. Performance deterioration… (more)

Flesland, Synnøve Mangerud

2010-01-01T23:59:59.000Z

28

New type gas-injection plant readied  

SciTech Connect

A unique gas-injection plant is about to go on stream in Venezuela's Lake Maracaibo. The $10-million installation, designed for unattended operation, is a joint venture of Phillips Petroleum Co., as operator for itself, and Cia. Shell de Venezuela. The plant, housed on a 120 by 130-ft platform, will be the first in the world to use gas turbines to drive reciprocating compressors. The 130 MMscfd facility will use 2 General Electric 15,000-hp gas turbines with gear reducers to drive a pair of 4-stage Cooper- Bessemer LM-8 compressors. No previous attempt has ever been made to drive this type of unit by gas turbines. Phillips says the gas turbines were selected because of inherent flexibility reliability as prime movers, and lack of vibration--an important advantage in offshore gas plants.

Franco, A.

1967-07-17T23:59:59.000Z

29

NUCLEAR PLANT OPERATIONS AND  

E-Print Network (OSTI)

reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed--has been benchmarked against measurements.30 At the Ringhals nuclear power plant, this measurement is car a measurement performed at the PWR Unit 4 of the Ring hals Nuclear Power Plant was available to us

Demazière, Christophe

30

NUCLEAR PLANT OPERATIONS AND  

E-Print Network (OSTI)

reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed reactivity effects--has been benchmarked against measurements.30 At the Ringhals nuclear power plant a measurement performed at the PWR Unit 4 of the Ring- hals Nuclear Power Plant was available to us

Demazière, Christophe

31

Liens for Oil and Gas Operations (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section contains regulations concerning lien allowances made to operators of oil and gas operations.

32

"NATURAL GAS PROCESSING PLANT SURVEY"  

U.S. Energy Information Administration (EIA) Indexed Site

2 3 "Operator Company:" "PART 3. CONTACTS" "Section A: Contact information during an emergency (such as a hurricane):" "Processing Plant Operations Contact:",,,...

33

,"California Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

34

,"Texas Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

35

Improving steam turbine-gas turbine plants  

SciTech Connect

Leningrad Polytechnic Institute investigated the main characteristics of combined plants according to their structure, determined by very important parameters. The following parameters were selected: utilization factor (ratio of heat added to the steam-water working medium from the heat of the exhaust gases to the entire amount of heat added to the steam-water working medium) and fuel consumption factor (ratio of heat from fuel added to the steam-water working medium to the entire consumption of heat in the combined plant). It is concluded that steam turbine-gas turbine plants working at comparatively low gas temperatures (about 800/sup 0/C) must be constructed as plants of maximum capacity, i.e., with large steam flows. Gas turbine-steam turbine plants with high-temperature gas turbines operating at a high utilization factor (approaching binary plants) ensure a qualitative rise in efficiency and have high flexibility characteristics. They are the most promising power plants. A long-term plan for development of combined plants on the basis of standard steam turbine and gas turbine equipment, the production of which is planned in the USSR and in Comecon countries, is required. This plan must be closely connected with solution of the problem of using coals for gas turbine plants.

Kirillov, I.I.; Arsen' ev, L.V.; Khodak, E.A.; Romakhova, G.A.

1979-01-01T23:59:59.000Z

36

Greenhouse Gas Emissions from Building and Operating Electric  

E-Print Network (OSTI)

Greenhouse Gas Emissions from Building and Operating Electric Power Plants in the Upper Colorado requires a life cycle perspective. This paper compares greenhouse gas (GHG) emissions from three renewable, and natural gas power plants is estimated for four time periods after construction. The assessment

Kammen, Daniel M.

37

Natural Gas Processing Plants in the United States: 2010 Update  

Gasoline and Diesel Fuel Update (EIA)

This special report presents an analysis of natural gas processing plants This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations. Key Findings There were 493 operational natural gas processing plants in the United States with a combined operating capacity of 77 billion cubic feet (Bcf) per day. Overall, operating capacity increased about 12 percent between 2004 and 2009, not including the processing capacity in Alaska1. At the same time, the number of all processing plants in the lower 48 States decreased

38

Natural Gas Processing Plant- Sulfur (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

39

Sauget Plant Flare Gas Reduction Project  

E-Print Network (OSTI)

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams.

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

40

First U. S. sulfreen unit in Dakota gas plant  

SciTech Connect

This article describes the first natural gas processing plant in the U.S. that uses Sulfreen as the optimum process for tail gas cleanup. A minimum overall recovery of 98.9% is expected. The Sulfreen process appears to be a viable tail gas treater for Claus units in the U.S., providing high overall recoveries and process reliability. The North Dakota plant joins more than 30 other units operating in Canada, Greece, China and throughout Europe.

Davis, G.W.

1985-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Successful operation of a large LPG plant. [Kuwait  

SciTech Connect

The LPG plant located at Mina-Al Ahmadi, Kuwait, is the heart of Kuwait Oil Co.'s massive Gas Project to use the associated gas from Kuwait's oil production. Operation of this three-train plant has been very successful. A description is given of the three process trains consisting of four basic units: extraction, fractionation, product treating, and refrigeration. Initial problems relating to extraction, fractionation, product treating and, refrigeration are discussed. 1 ref.

Shtayieh, S.; Durr, C.A.; McMillan, J.C.; Collins, C.

1982-03-01T23:59:59.000Z

42

,"Texas Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

43

,"California Underground Natural Gas Storage - All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301967"...

44

,"Texas Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301967" ,"Release...

45

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network (OSTI)

Cornell's conversion of a coal fired heating plant to natural Gas University began operating with natural gas, instead of the coal-fired generators of the coal that had been stockpiled, the Plant is running completely on natural gas

Keinan, Alon

46

Gas consumption shrinks in commercial laundry plant  

SciTech Connect

The submerged-exhaust water-heating system with heat-recovery economizer operates above 90% efficiency compared to the 60% efficiency of the plant's old system. The system will require 3,936 therms/week compared to 5,887 with the old generator. Bubbles from the submerged downcomer tube rise through the surrounding bath, transferring heat through the gas-liquid interface as they rise to the surface. Heat transfer to the liquid bath is immediate and efficiency is high.

1981-09-01T23:59:59.000Z

47

Hanford Waste Tank Plant PIA, Richland Operations Office | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Waste Tank Plant PIA, Richland Operations Office Hanford Waste Tank Plant PIA, Richland Operations Office Hanford Waste Tank Plant PIA, Richland Operations Office Hanford...

48

Realities of Chiller Plant Operation: Utility Impacts on Owner Operating  

NLE Websites -- All DOE Office Websites (Extended Search)

Realities of Chiller Plant Operation: Utility Impacts on Owner Operating Realities of Chiller Plant Operation: Utility Impacts on Owner Operating Costs and Societal Environmental Issues Speaker(s): Don Aumann Date: March 21, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Satkartar K. Kinney Don Aumann, a Senior Consultant from BKi in Oakland, will present an overview of two projects he completed for the electric utility industry. The first, a case study evaluation of a hybrid chiller plant in Jefferson City, Missouri, demonstrates the importance of carefully evaluating the impact of utility rate structures on plant operating costs. The building owner, another engineering consultant, and the local utility representatives were confused by the rates and missed an opportunity to cut chiller-plant operating costs by about 20%, totaling $15,000 per year. In

49

New Jersey Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators New Jersey Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

50

Rhode Island Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas into Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage (Annual Supply &...

51

Microsoft Word - RBL-RUL_Gas-Plant  

Office of Legacy Management (LM)

Page 1 Project Rulison Monitoring Results For Separated Water at a Natural Gas Plant, Parachute, Colorado U.S. Department of Energy Office of Legacy Management Grand Junction,...

52

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2011,"6301979" ,"Release Date:","81...

53

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2011,"6301979" ,"Release...

54

,"Texas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

55

,"New Mexico Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

56

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

57

Tidd PFBC Demonstration Plant operation and testing  

Science Conference Proceedings (OSTI)

The Tidd PFBC Demonstration Plant, located in Brilliant, Ohio, is in its third year of operation and testing. The plant has achieved many of its original performance goals and test objectives; however, current emissions standards and the projected performance of competing technologies have caused a reassessment of the program goals. This paper provides a review of PFBC technology and discusses project goals and milestones achieved. Emphasis is placed on environmental performance and on projected modifications to be undertaken to improve sulfur capture and reduce calcium/sulfur molar ratio. A large-scale hot gas clean up demonstration is also in progress at Tidd. The demonstration has been providing information on ceramic barrier filter technology since its commissioning in October 1992. The Tidd Plant has met both its performance guarantees for emissions and its environmental permit limits. However, the tightening of government environmental standards and the projected performance of competing technologies have required a reassessment of the goals of AEP`s PFBC program. Efforts are focusing on achieving better environmental performance, particularly with respect to sulfur capture and sorbent utilization.

Marrocco, M.; Hafer, D.R.

1993-05-01T23:59:59.000Z

58

Tidd PFBC Demonstration Plant operation and testing  

Science Conference Proceedings (OSTI)

The Tidd PFBC Demonstration Plant, located in Brilliant, Ohio, is in its third year of operation and testing. The plant has achieved many of its original performance goals and test objectives; however, current emissions standards and the projected performance of competing technologies have caused a reassessment of the program goals. This paper provides a review of PFBC technology and discusses project goals and milestones achieved. Emphasis is placed on environmental performance and on projected modifications to be undertaken to improve sulfur capture and reduce calcium/sulfur molar ratio. A large-scale hot gas clean up demonstration is also in progress at Tidd. The demonstration has been providing information on ceramic barrier filter technology since its commissioning in October 1992. The Tidd Plant has met both its performance guarantees for emissions and its environmental permit limits. However, the tightening of government environmental standards and the projected performance of competing technologies have required a reassessment of the goals of AEP's PFBC program. Efforts are focusing on achieving better environmental performance, particularly with respect to sulfur capture and sorbent utilization.

Marrocco, M.; Hafer, D.R.

1993-01-01T23:59:59.000Z

59

Proceedings: EPRI Manufactured Gas Plants 2003 Forum  

SciTech Connect

The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

None

2004-02-01T23:59:59.000Z

60

Power Plant Practices to Ensure Cable Operability  

Science Conference Proceedings (OSTI)

Installation practices as well as environmental conditions affect the operability of electrical cables in power plants. This report evaluates operability criteria for nuclear power plant cables, good practices for cable installation, and cable maintenance and surveillance. As a reference source for utility practices, this report suggests potential improvements that could benefit the industry.

1992-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gas turbine electric plant construction cost and annual production expenses. First annual publication, 1972  

SciTech Connect

By the end of 1972, gas turbine power plants owned and operated by U.S. utilities had a capacity of 27,918 MW. Data from the 1972 annual reports filed with the Federal Power Commission by utility systems are presented which show the plant cost, generating expenses, capacity and generation, and plant and equipment characteristics of 299 gas turbine plants. (LCL)

1972-01-01T23:59:59.000Z

62

Reducing Emissions in Plant Flaring Operations  

E-Print Network (OSTI)

Since 2006, one of the largest integrated energy and chemical companies in the world has actively pushed toward optimization and upgrading of pipelines, refineries and petrochemical plants in China for the purpose of minimizing energy consumption, lowering emissions and maximizing production. Saving energy and reducing emissions are the internal requirements for every division of this major corporation. To achieve the public goals the company set, they issued a five year plan called Methods on Energy and Water Saving Management which was applied to all operating equipment in the 13 company owned oil and gas fields, the 22 refineries and 3 pipeline companies. The plan for the refineries focused on key areas such as improving energy efficiency, utilizing latest technologies and reducing green house gas emissions.1 The company also created a Green Team with the objective of achieving zero injury, zero pollution, and zero accidents for all production facilities. These Green Teams advocated the company's new HSE (Health Safety & Environment) culture by eliminating energy-consuming and highly polluting production equipment and facilities that fell behind in the use of technologically advanced equipment.

Duck, B.

2011-01-01T23:59:59.000Z

63

Energy Saving in Ammonia Plant by Using Gas Turbine  

E-Print Network (OSTI)

An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore, if the thermal energy of this gas is utilized effectively, the gas turbine could be superior to effectively, the gas turbine could be superior to other thermal engines in view of total energy effectiveness. As a typical example of the above use of the gas turbine, its application in the ammonia plant has now been realized. In addition to the use of the gas turbine as the driver for the process air compressor which was driven by the steam turbine, its exhaust gas is introduced to the ammonia reformer. It leads to the saving of the reformer fuel, and subsequently the energy saving of the reformer section in the plant of about 20% has been achieved. This paper describes the outline of the project, energy saving effectiveness and investigation for the application of the gas turbine in the ammonia plant.

Uji, S.; Ikeda, M.

1981-01-01T23:59:59.000Z

64

Hydrate Control for Gas Storage Operations  

Science Conference Proceedings (OSTI)

The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

Jeffrey Savidge

2008-10-31T23:59:59.000Z

65

Gas turbine-steam power plant  

SciTech Connect

The pressure vessel of the gas turbine-steam power plant is provided with a recuperator and a heat exchanger in order to reduce the temperature of the hot flue gas before separating out gas-entrained particles. The dust separator is connected to the recuperator on a secondary side so that the hot gas can be reheated for delivery to the gas turbine. By cooling the flue gas before entering the separator, use can be made of electrostatic dust filters or cloth filters.

Aguet, E.

1984-07-31T23:59:59.000Z

66

Gas Turbine Technology, Part B: Components, Operations and Maintenance  

E-Print Network (OSTI)

This paper builds on Part A and discusses the hardware involved in gas turbines as well as operations and maintenance aspects pertinent to cogeneration plants. Different categories of gas turbines are reviewed such as heavy duty aeroderivative, single and split shaft. The pros and cons of different types are reviewed. Gas turbine component types - axial and centrifugal compressors and different turbine types, along with combustor types will be discussed. Important considerations during machine specifications are also reviewed. Practical aspects such as coatings, materials, fuel handling and auxiliary systems will also be highlighted. Operations and maintenance aspects including Preventative Maintenance, Repairs, Fuel and Air Filtration, Compressor Washing and Reliability is discussed. Typical operating and maintenance costs are provided. This paper presents an extensive bibliography to enable readers to follow up any topic in detail.

Meher-Homji, C. B.; Focke, A. B.

1985-05-01T23:59:59.000Z

67

Gas Turbine Upgrades for Enhancing Operational Flexibility  

Science Conference Proceedings (OSTI)

Over the last several years, gas turbines owners have had to adapt their operating profiles to adjust to an ever changing environment that has included a dramatic run-up in gas prices, the halt (or collapse) of deregulation efforts in regions of the United States, the bankruptcy or near bankruptcy of industry giants, and an overall squeeze in profitability. In recent years, these externalities have been further exacerbated by the push for renewable portfolio standards (RPS), which mandate how much energy...

2009-01-09T23:59:59.000Z

68

California Federal Offshore Natural Gas Plant Liquids, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

69

California State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

70

California - Los Angeles Basin Onshore Natural Gas Plant Liquids...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

71

California--Coastal Region Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Coastal Region Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--Coastal Region Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels)...

72

California - Coastal Region Onshore Natural Gas Plant Liquids...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California - Coastal Region Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

73

Louisiana - South Onshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana - South Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

74

Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

75

California--San Joaquin Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

76

Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

77

California--Los Angeles Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

78

Natural Gas Processing Plants in the United States: 2010 Update...  

Gasoline and Diesel Fuel Update (EIA)

3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates...

79

South Dakota Natural Gas Lease and Plant Fuel Consumption (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease and Plant Fuel...

80

Microsoft Word - RBL-RUL_Gas-Plant  

Office of Legacy Management (LM)

Page 1 Project Rio Blanco Monitoring Results For Separated Water at a Natural Gas Plant, Parachute, Colorado U.S. Department of Energy Office of Legacy Management Grand Junction,...

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Combustion gas turbine/steam generator plant  

SciTech Connect

A fired steam generator is described that is interconnected with a gas turbine/steam generator plant having at least one gas turbine group followed by an exhaust-gas steam generator. The exhaust-gas steam generator has a preheater and an evaporator. The inlet of the preheater is connected to a feedwater distribution line which also feeds a preheater in the fired steam generator. The outlet of the preheater is connected to the evaporator of the fired steam generator. The evaporator outlet of the exhaust-gas steam generator is connected to the input of a superheater in the fired steam generator.

Aguet, E.

1975-11-18T23:59:59.000Z

82

Gas Companies Operating Within the State of Connecticut (Connecticut...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Companies Operating Within the State of Connecticut (Connecticut) Gas Companies Operating Within the State of Connecticut (Connecticut) Eligibility Agricultural Commercial...

83

Demonstration Development Project: Plant Operational Flexibility  

Science Conference Proceedings (OSTI)

This report provides a summary of the EPRI Generation Sector initiative on flexible plant operations through 2012. The initiative objectives are to identify industry research needs related to increased flexible operation, to coordinate the sector research, and to communicate with stakeholders within the Electric Power Research Institute (EPRI) and the advisory structure. A detailed review of the Generation Sector ...

2012-12-12T23:59:59.000Z

84

Natural Gas Processing Plants in the United States: 2010 ...  

U.S. Energy Information Administration (EIA)

Natural Gas Processing Plants and Production Basins, 2009 Source: U.S. Energy Information Administration, GasTran Natural Gas Transportation ...

85

Industrial Fuel Gas Demonstration Plant Program. Annual progress report, January-December 1979  

SciTech Connect

The objective of the Industrial Fuel Gas Demonstration Plant Program is to demonstrate the feasibility of converting agglomerating and high sulfur coal to clean fuel gas and utilizing this gas in a commercial application. Specific objectives are to conduct process analysis, design, construction, testing, operation and evaluation of a plant based on the U-Gas process for converting coal to industrial fuel gas. Phase I of the MLGW Industrial Fuel Gas Demonstration Plant Program started in September, 1977. In the first quarter of 1978, a conceptual design of a commercial plant was started, together with environmental monitoring activities and technical support work at the U-Gas pilot plant. After a series of successful pilot plant runs during the October 1978-March 1979 period, design work on the Demonstration Plant commenced. With the exception of Task I - Design and Evaluation of Commercial Plant, the majority of all other efforts were completed in 1979. These tasks are listed.

None

1980-01-01T23:59:59.000Z

86

Tennessee Natural Gas Plant Processing  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 View History Natural Gas Processed (Million Cubic Feet) 6,146 6,200 1989-2011 Total Liquids Extracted (Thousand Barrels) 347 356 2010-2011 Extraction Loss...

87

Operating and Maintaining a 465MW Cogeneration Plant  

E-Print Network (OSTI)

The on-line avilability of the five Frame-7E gas turbine generators installed at the 465MW Lyondell Cogeneration Plant was 90% and 95.2% respectively for the first two years of operation (1986-87). The 140MW steam turbine generator availability was well over 98% each year. Such favorable results are due primarily to the (1) formal training programs utilized before and continued after plant startup, (2) redundancies designed into the critical components of the plant, (3) the immediate actions taken on failures or near-failures, (4) a sound preventive maintenance program, and (5) improvements performed promptly on discovered design, operating, and maintenance weaknesses uncovered during the early months of operation.

Theisen, R. E.

1988-09-01T23:59:59.000Z

88

California - Los Angeles Basin Onshore Natural Gas Plant ...  

U.S. Energy Information Administration (EIA)

California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves New Field Discoveries (Million Barrels)

89

California - Los Angeles Basin Onshore Natural Gas Plant ...  

U.S. Energy Information Administration (EIA)

California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels)

90

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels per Day)

91

EIS-0225: Continued Operation of the Pantex Plant and Associated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components EIS-0225: Continued Operation of the Pantex Plant and Associated Storage of Nuclear...

92

Value Operating Flexibility in Advanced Coal Plants  

Science Conference Proceedings (OSTI)

This report describes a preliminary study of the potential value of the operating flexibility available from advanced coal plant designs and carbon capture and storage (CCS) systems. Assessing value requires new analytical approaches capable of examining plant outputs (e.g., syngas, air products, electricity, emissions) in the context of varying power market conditions and significant climate policy and fuel price uncertainties. Accounting for flexibility options in capacity planning may create opportuni...

2009-12-22T23:59:59.000Z

93

Investigating the efficiency of gas turbines in off-design operation  

SciTech Connect

Experimental data on the performance of gas turbines for eight gas turbine power plants are presented and compared for the purpose of determining the efficiency of gas turbines in off-design operation such as during start-up or at less than rated speeds. (LCL)

Ol' Khovskii, G.G.; Ol' Khovskaya, N.I.

1978-01-01T23:59:59.000Z

94

Comparison of intergrated coal gasification combined cycle power plants with current and advanced gas turbines  

Science Conference Proceedings (OSTI)

Two recent conceptual design studies examined ''grass roots'' integrated gasification-combined cycle (IGCC) plants for the Albany Station site of Niagara Mohawk Power Corporation. One of these studies was based on the Texaco Gasifier and the other was developed around the British Gas Co.-Lurgi slagging gasifier. Both gasifiers were operated in the ''oxygen-blown'' mode, producing medium Btu fuel gas. The studies also evaluated plant performance with both current and advanced gas turbines. Coalto-busbar efficiencies of approximately 35 percent were calculated for Texaco IGCC plants using current technology gas turbines. Efficiencies of approximately 39 percent were obtained for the same plant when using advanced technology gas turbines.

Banda, B.M.; Evans, T.F.; McCone, A.I.; Westisik, J.H.

1984-08-01T23:59:59.000Z

95

PHYSICAL PLANT OPERATING POLICY AND PROCEDURE  

E-Print Network (OSTI)

PHYSICAL PLANT OPERATING POLICY AND PROCEDURE PP/OP 04.07: Insulation, Asbestos Containing Building for the implementation and maintenance of an active insulation, asbestos containing building material abatement program is identified. 2. Procedures a. Insulation and Asbestos Containing Building Material Removal (1) Only certified

Gelfond, Michael

96

AVESTAR Center for Operational Excellence of Electricity Generation Plants  

Science Conference Proceedings (OSTI)

To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for us

Zitney, Stephen

2012-08-29T23:59:59.000Z

97

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network (OSTI)

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant.… (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

98

Alaska Natural Gas Underground Storage Net Withdrawals All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

99

Connecticut Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

100

Alaska Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Delaware Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

102

Wisconsin Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

103

Georgia Natural Gas Underground Storage Net Withdrawals All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

104

Georgia Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

105

Idaho Natural Gas Underground Storage Net Withdrawals All Operators...  

Annual Energy Outlook 2012 (EIA)

Net Withdrawals All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

106

Idaho Natural Gas Underground Storage Injections All Operators...  

Gasoline and Diesel Fuel Update (EIA)

Underground Storage Injections All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

107

Pantex Plant Operational Awareness Oversight, May 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PTX-2013-05-20 PTX-2013-05-20 Site: Pantex Plant Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness Oversight of the Pantex Plant Dates of Activity : 05/20/2013 - 05/23/2013 Report Preparer: William Macon Activity Description/Purpose: This Office of Health, Safety and Security (HSS) activity was an operational awareness site visit to discuss an upcoming July outage for replacing information systems, determine the status of the new High Explosives Pressing Facility (HEPF) under construction, review the master assessment schedule activities for the remainder of fiscal year 2013, and monitor other ongoing site activities. Result: 1. The site lead discussed the Integrated Production Planning and Execution System (IPRO) with the Babcock and Wilcox

108

Alabama (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

109

Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

110

Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

111

California (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

112

Saudi Aramco Gas Operations Energy Efficiency Program  

E-Print Network (OSTI)

Saudi Aramco Gas Operations (GO) created energy efficiency strategies for its 5-year business plan (2011-2015), supported by a unique energy efficiency program, to reduce GO energy intensity by 26% by 2015. The program generated an energy savings of $ 8.8 MM, equivalent to 5% energy intensity reduction in 2011 as compared to 2010 level. The program works through a structured process, pre-set energy targets, installations of online energy management tools, and implementation of key high impact energy efficiency initiatives and completion of energy conservation projects. The long-term fruit of the program was recognized as a best practice to be adapted by most of Saudi Aramco facilities. The generation of innovative energy saving ideas under implementation resulted in potential energy savings of $23 MM. This paper confirms what many others in the industry have found, the opportunity is significant. The author illustrates GO organization crafted a structured energy efficiency program and innovative approaches to unlock the full potential of higher standards of energy efficiency performance. Gas Operation energy efficiency program will ideally translates energy intensity strategies into realities and transforms the missed opportunities into practical tactics for capturing the millions of dollars of savings potential that exist across GO facilities.

Al-Dossary, F. S.

2012-01-01T23:59:59.000Z

113

Operating experiences and measurements on turbo sets of CCGT-cogeneration plants in Germany  

Science Conference Proceedings (OSTI)

Five closed-cycle gas turbine cogeneration plants have been built and commissioned in the Federal Republic of Germany. In all cases the working fluid was air. The facilities were designed as cogeneration plants to supply electricity as well as heat to electrical and heating networks. Each of the plants accumulated more than 100,000 operating hours. One of them, which has exceeded 160,000 hours of operation, is still working. An account has already been given of the experience with the air heaters of these plants, which were fired with coal, oil, gas, or combinations of these. This paper records the experience obtained with the turbo sets.

Bammert, K.

1987-01-01T23:59:59.000Z

114

Louisiana - North Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana - North Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

115

Texas - RRC District 10 Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 10 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

116

Texas - RRC District 6 Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 6 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

117

New Mexico - East Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) New Mexico - East Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

118

New Mexico - West Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) New Mexico - West Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

119

Texas - RRC District 2 Onshore Natural Gas Plant Liquids, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 2 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

120

Texas - RRC District 8 Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 8 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Texas - RRC District 9 Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 9 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

122

Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

123

Texas State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

124

Texas - RRC District 1 Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 1 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

125

Texas - RRC District 5 Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 5 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

126

Water Extraction from Coal-Fired Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

2006-06-30T23:59:59.000Z

127

Operational strategies for dispatchable combined cycle plants, Part I  

SciTech Connect

The Brush Cogeneration Facility is a dual-unit, combined cycle, cogeneration plant operating in a daily cycling, automatically-dispatchable mode. According to the PSCO tariff for cogenerators, the Independent Power Production Facility Policy, the highest payment schedule is reserved for those facilities capable of automatic generation control (AGC), the so-called `Category 4A Facilities.` AGC entails the ability to receive microwave signals from PSCO`s Load Control Center at Lookout Mountain, Colorado, and automatically adjust output at a rate of 2% of contract maximum load per minute, over at least the top 40% of contract load range. Perhaps the most critical equipment modification enabling AGC was the re-enabling of automatic variable inlet guide vane (IGV) control. During control system modifications for automatic IGVs, the operators realized that the Woodward NetCon control system`s capabilities of control, monitoring and information display were better than anticipated. The relative ease with which IGV changes were made encouraged the operating team to continue to maximize efficiency and optimize plant operations. In fact, the ease of use and modification led to the purchase of an additional NetCon system for plant-wide performance monitoring. The retrofit of the gas turbine control system with the NetCon system was a success. 1 tab.

Nolan, J.P.; Landis, F.P. [Brush Cogeneration Facility, Brush, CO (United States)

1996-07-01T23:59:59.000Z

128

Signature Metabolites at Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report presents results of research to demonstrate the biodegradation component of natural attenuation at former manufactured gas plant (MGP) sites. Researchers developed a target compound list of signature metabolites, biochemical intermediates of mono- and polycyclic aromatic hydrocarbon (MAH and PAH) biodegradation. They identified and tested appropriate methods of chemical analysis for these metabolites in MGP groundwater and sediments. Emphasis was placed on identifying natural microbiological ...

2008-10-14T23:59:59.000Z

129

Hydrogen and Oxygen Gas Monitoring System Design and Operation  

DOE Green Energy (OSTI)

This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the gases or vapors, liquids with volatility need sensors near the potential sources of release, nature and concentration of gas releases, natural and mechanical ventilation, detector installation locations not vulnerable to mechanical or water damage from normal operations, and locations that lend themselves to convenient maintenance and calibration. The guidance also states that sensors should be located in all areas where hazardous accumulations of gas may occur. Such areas might not be close to release points but might be areas with restricted air movement. Heavier than air gases are likely to accumulate in pits, trenches, drains, and other low areas. Lighter than air gases are more likely to accumulate in overhead spaces, above drop ceilings, etc. In general, sensors should be located close to any potential sources of major release of gas. The paper gives data on monitor sensitivity and expected lifetimes to support the monitor selection process. Proper selection of indoor and outdoor locations for monitors is described, accounting for the vapor densities of hydrogen and oxygen. The latest information on monitor alarm setpoint selection is presented. Typically, monitors require recalibration at least every six months, or more frequently for inhospitable locations, so ready access to the monitors is an important issue to consider in monitor siting. Gas monitors, depending on their type, can be susceptible to blockages of the detector element (i.e., dus

Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

2007-06-01T23:59:59.000Z

130

Hot gas cleanup and gas turbine aspects of an advanced PFBC power plant  

SciTech Connect

The overall objective of the second-generation PFBC development program is to advance this concept to a commercial status. Three major objectives of the current Phase 2 program activities are to: Separately test key components of the second-generation PFBC power plant at sub-scale to ascertain their performance characteristics, Revise the commercial plant performance and economic predictions where necessary, Prepare for a 1.6 MWe equivalent Phase 3 integrated subsystem test of the key components. The key components of the plant, with respect to development risk, are the carbonizer, the circulating PFBC unit, the ceramic barrier filter, and the topping combustor. This paper reports on the development and testing of one key component -- the ceramic barrier filter for the carbonizer fuel gas. The objective of the Phase 2 carbonizer ceramic barrier filter testing has been to confirm filter performance and operability in the carbonizer fuel gas environment.

Robertson, A. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Bruck, G.J.; Smeltzer, E.E. (Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center)

1992-01-01T23:59:59.000Z

131

The effects of variable operation on RO plant performance  

E-Print Network (OSTI)

Optimizations of reverse osmosis (RO) plants typically consider steady state operation of the plant. RO plants are subject to transient factors that may make it beneficial to produce more water at one time than at another. ...

Williams, Christopher Michael, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

132

Demonstration plant engineering and design. Phase I. The pipeline gas demonstration plant. Volume 9. Plant Section 800: product gas compression and drying  

SciTech Connect

Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase scheduled to be completed in June 1981. One of the major efforts of Phase I is the completion of the process design and the project engineering design of the Demonstration Plant. This design effort has been completed. A report of the design effort is being issued in 24 volumes. This is Volume 9 which reports the design of Plant Section 800 - Product Gas Compression and Drying. Plant Section 800 compresses, cools, and drys the SNG product to conditions and specifications required for pipeline use. A conventional triethylene glycol (TEG) gas drying unit is employed to reduce the moisture content of the SNG to less than 7 pounds per million standard cubic feet. The product SNG has a minimum pressure of 800 psig and a maximum temperature of 100/sup 0/F. This section also includes the product gas analysis, metering, and totalizing instruments. It is designed to remove 3144 pounds of water from 19 million SCFC of SNG product. Volume 9 contains the following design information: process operation; design basis; heat and material balance; stream compositions; utility, chemical and catalyst summary; major equipment and machinery list; major equipment and machinery requisitions; instrument list; instrument requisitions; line lists; process flow diagram; engineering flow diagrams; and section plot plan.

Not Available

1981-01-01T23:59:59.000Z

133

Techno-socio-economic study of bio-gas plants  

Science Conference Proceedings (OSTI)

This study covers technological, social and economic aspects of the biogas program in Chitawan, Nepal. Many interesting facts are revealed which may be useful for future planning of Nepalese biogas programs. Concerning the social aspects, only big farmers (having more than 4 bighas of land and more than 10 domestic animals) were found to have biogas plants. No farmer who had a biogas plant was illiterate. As for the technical aspects of the total gas ovens used in the area, 66% were of BTI design. Most of the ovens were of 0.45-m/sup 3/ capacity. The life of BTI ovens was found to be shorter than the life of ovens of other companies. BTI ovens are not useful when farmers have to use a big pot for cooking. All farmers of the area were found to be convinced of the utility of the biogas plant. With regard to the economic aspects of using biogas plants, farmers were able to save 53% of the total expenditure which they had been spending for fuel. Wood consumption was reduced to 50% by using biogas. The internal rate of return of a 2.8-m/sup 3/ biogas plant was found to be 14% assuming that the plant would last for 20 years. Most of the farmers in the area did not have biogas plants. The main reason given was that there were not enough capital and cattle to begin such an operation.

Not Available

1981-01-01T23:59:59.000Z

134

PHYSICAL PLANT OPERATING POLICY AND PROCEDURE  

E-Print Network (OSTI)

natural gas supply contract and gas transportation agreement when required for Texas Tech University a proposal for supplying natural gas. Standard contract is available on the GLO website at http: The GLO also has natural gas reserves and is a bidder. If the state (GLO) can supply gas to Texas Tech

Rock, Chris

135

Gas Centrifuge Enrichment Plant Safeguards System Modeling  

SciTech Connect

The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems used in enrichment facilities. This research focuses on analyzing the effectiveness of the safeguards in protecting against the range of safeguards concerns for enrichment plants, including diversion of attractive material and unauthorized modes of use. We developed an Extend simulation model for a generic medium-sized centrifuge enrichment plant. We modeled the material flow in normal operation, plant operational upset modes, and selected diversion scenarios, for selected safeguards systems. Simulation modeling is used to analyze both authorized and unauthorized use of a plant and the flow of safeguards information. Simulation tracks the movement of materials and isotopes, identifies the signatures of unauthorized use, tracks the flow and compilation of safeguards data, and evaluates the effectiveness of the safeguards system in detecting misuse signatures. The simulation model developed could be of use to the International Atomic Energy Agency IAEA, enabling the IAEA to observe and draw conclusions that uranium enrichment facilities are being used only within authorized limits for peaceful uses of nuclear energy. It will evaluate improved approaches to nonproliferation concerns, facilitating deployment of enhanced and cost-effective safeguards systems for an important part of the nuclear power fuel cycle.

Elayat, H A; O'Connell, W J; Boyer, B D

2006-06-05T23:59:59.000Z

136

Operation and Maintenance Experiences of Pumped-Storage Plants  

Science Conference Proceedings (OSTI)

Owners, operators, and designers of hydroelectric pumped-storage plants now have access to the combined operation and maintenance (O&M) knowledge of more than 30 operating plants around the world. The lessons learned should maximize the benefits of solutions developed for typical operational problems.

1991-05-13T23:59:59.000Z

137

,"U.S. Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301935" ,"Release Date:","9302013" ,"Next Release Date:","10312013" ,"Excel File Name:","ngstorsumd...

138

,"New Mexico Underground Natural Gas Storage - All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301967" ,"Release...

139

Multivariable model predictive control for a gas turbine power plant  

Science Conference Proceedings (OSTI)

In this brief, constrained multi variable model predictive control (MPC) strategy is investigated for a GE9001E gas turbine power plant. So the rotor speed and exhaust gas temperature are controlled manipulating the fuel command and compressor inlet ... Keywords: ARX, gas turbine, identification, modeling, multivariable control, power plant, predictive control

Hadi Ghorbani; Ali Ghaffari; Mehdi Rahnama

2008-05-01T23:59:59.000Z

140

Annual Steam-Electric Plant Operation and Design Data (EIA-767 data file)  

Gasoline and Diesel Fuel Update (EIA)

Electricity data files > Form EIA-767 Electricity data files > Form EIA-767 Form EIA-767 historical data files Data Released: November 02, 2006 Next Release: None(discontinued) Annual steam-electric plant operation and design data Historical data files contain annual data from organic-fueled or combustible renewable steam-electric plants with a generator nameplate rating of 10 or more megawatts. The data are derived from the Form EIA-767 "Steam-Electric Plant Operation and Design Report." The files contains data on plant operations and equipment design (including boilers, generators, cooling systems, flue gas desulfurizations, flue gas particulate collectors, and stacks). Beginning in the data year 2001, nuclear plant data were no longer collected by the survey.

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Gas characterization system operation, maintenance, and calibration plan  

DOE Green Energy (OSTI)

This document details the responsibilities and requirements for operation, maintenance, and calibration of the Gas Characterization Systems (GCS) analytical instrumentation. It further, defines the division of responsibility between the Characterization Monitoring Development organization and Tank Farms Operations.

Tate, D.D.

1996-03-04T23:59:59.000Z

142

Power plants with topping gas turbines and coal gasification planning of new plants and upgrading of existing plants  

Science Conference Proceedings (OSTI)

This paper reports on existing and new power plants improved environmentally and economically by integrating gas turbines in the plant process. The rate of additional firing has an influence on the overall plant efficiency. The influence of the additional firing of natural gas-fired power plants is compared to that of power plants with integrated coal gasification. The differences are explained. The result of the examination lead to recommendations for the design of new plants and for upgrading of existing plants. The advantages of topping gas turbines are shown by examples of new power plants and upgraded plants.

Schoedel, J.; Mertens, K. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

143

Canada Oil and Gas Operations Act (Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this Act is to promote safety, the protection of the environment, the conservation of oil and gas resources, joint production arrangements, and economically efficient infrastructures.

144

New generation enrichment monitoring technology for gas centrifuge enrichment plants  

SciTech Connect

The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

Ianakiev, Kiril D [Los Alamos National Laboratory; Alexandrov, Boian, S. [Los Alamos National Laboratory; Boyer, Brian, D. [Los Alamos National Laboratory; Hill, Thomas, R. [Los Alamos National Laboratory; Macarthur, Duncan, W. [Los Alamos National Laboratory; Marks, Thomas [Los Alamos National Laboratory; Moss, Calvin, E. [Los Alamos National Laboratory; Sheppard, Gregory, A. [Los Alamos National Laboratory; Swinhoe, Martyn, T. [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

145

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Process for Power Plant Flue Gas Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D)...

146

Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

147

Louisiana--North Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

148

Louisiana--South Onshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Louisiana--South Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

149

Lower 48 Federal Offshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

150

Federal Offshore--California Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

151

New Mexico--West Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) New Mexico--West Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

152

Federal Offshore--Texas Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

153

New Mexico--East Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) New Mexico--East Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

154

Lower 48 States Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Lower 48 States Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

155

Texas (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

156

Miscellaneous States Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

157

Texas--State Offshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

158

Louisiana--State Offshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

159

California--State Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) California--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

160

California Natural Gas Lease and Plant Fuel Consumption (Million...  

Annual Energy Outlook 2012 (EIA)

and Plant Fuel Consumption (Million Cubic Feet) California Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

162

Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Lease and Plant Fuel Consumption (Million Cubic Feet) Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

163

,"Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",20...

164

,"Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011 ,"Release...

165

EIA-816 MONTHLY NATURAL GAS PLANT LIQUIDS REPORT INSTRUCTIONS ...  

U.S. Energy Information Administration (EIA)

EIA-816, Monthly Natural Gas Plant Liquids Report Page 3 Inputs During Month Report only inputs of normal butane being converted by an isomerization process into ...

166

,"North Dakota Natural Gas Plant Liquids Production, Gaseous...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

167

,"Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet)",1,"Annual",2012...

168

Illinois Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Illinois Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

169

Table 18. Natural gas plant liquids proved reserves and production...  

Gasoline and Diesel Fuel Update (EIA)

: Natural gas plant liquids proved reserves and production, 2009 - 2011 (excludes Lease Condensate) million barrels Reserves Production State and Subdivision 2009 2010 2011 2009...

170

Miscellaneous States Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

171

Kentucky Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

172

,"U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Bcf)",1,"Monthly","92013" ,"Release...

173

Michigan Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

174

Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

175

Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

176

Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

177

Florida Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

178

Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

179

Colorado Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

180

Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mississippi (with State Offshore) Natural Gas Plant Liquids,...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

182

Montana Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

183

Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Annual Energy Outlook 2012 (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

184

Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

185

Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

186

,"New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

187

Utah Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

188

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Proved Reserves (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

189

Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

190

,"Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

191

West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

192

,"Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

193

Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

194

,"Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

195

,"West Virginia Natural Gas Plant Liquids Production, Gaseous...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

196

,"U.S. Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","10312013"...

197

,"Lower 48 Federal Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

198

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

199

,"Louisiana--State Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

200

,"Alabama (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

202

,"Mississippi (with State Offshore) Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

203

,"Louisiana (with State Offshore) Natural Gas Plant Liquids,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

204

,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million...

205

,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

206

,"Federal Offshore--California Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

207

Federal Offshore--California Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

208

California (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

209

,"California--San Joaquin Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

210

,"California--State Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million...

211

,"California--Coastal Region Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--Coastal Region Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

212

,"California--Los Angeles Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

213

,"California (with State Offshore) Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million...

214

,"Colorado Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

215

Optical Gas Sensors for Advanced Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

Presentation Title, Optical Gas Sensors for Advanced Coal-Fired Power Plants. Author(s), Paul Ohodnicki, Congjun Wang, Douglas Kauffman, Kristi Kauffman, ...

216

,"Michigan Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

217

,"New Mexico Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

218

,"New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

219

Natural gas processing plant data now available - Today in ...  

U.S. Energy Information Administration (EIA)

The EIA-757 survey has a baseline portion, Schedule A, to track the country's population of natural gas plants, and an emergency activation portion, ...

220

Texas (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

,"Texas (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million...

222

,"Federal Offshore--Texas Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

223

,"Texas--State Offshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million...

224

Circuit arrangement for starting and operating a gas discharge laser  

SciTech Connect

A circuit arrangement is described for starting and operating a gas discharge laser having a starting phase and an operating phase. It consists of two supply lines for supplying a direct current to the gas discharge laser, a ballast resistor connected in at least one of the supply lines, and circuit means in shunt with the ballast resistor through which a starting current flows during the starting phase of the gas discharge laser.

Bolhuis, P.J.

1989-04-25T23:59:59.000Z

225

Demonstration plant engineering and design. Phase I: the pipeline gas demonstration plant. Volume 7. Plant Section 500 - shift/methanation  

Science Conference Proceedings (OSTI)

Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the completion of the process design and the project engineering design of the Demonstration Plant. A report of the design effort is being issued in 24 volumes. This is Volume 7 which reports the design of Plant Section 500 - Shift/Methanation. The shift/methanation process is used to convert the purified synthesis gas from the Rectisol unit (Plant Section 400) into the desired high-Btu SNG product. This is accomplished in a series of fixed-bed adiabatic reactors. Water is added to the feed gas to the reactors to effect the requisite reactions. A nickel catalyst is used in the shift/methanation process, and the only reaction products are methane and carbon dioxide. The carbon dioxide is removed from the SNG in Plant Sectin 600 - CO/sub 2/ Removal. After carbon dioxide removal from the SNG, the SNG is returned to Plant Section 500 for final methanation. The product from the final methanation reactor is an SNG stream having a gross heating value of approximately 960 Btu per standard cubic foot. The shift/methanation unit at design conditions produces 19 Million SCFD of SNG from 60 Million SCFD of purified synthesis gas.

Not Available

1981-01-01T23:59:59.000Z

226

Paducah Plant Begins Enrichment Operations after Five Parties Strike  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plant Begins Enrichment Operations after Five Parties Plant Begins Enrichment Operations after Five Parties Strike Agreement Paducah Plant Begins Enrichment Operations after Five Parties Strike Agreement May 1, 2012 - 12:00pm Addthis This cylinder hauler at Paducah’s Babcock & Wilcox Conversion Services plant delivers the first of DOE’s 14-ton depleted uranium cylinders to USEC for re-enrichment as part of a five-party agreement that is extending enrichment operations at the 60-year-old plant for another year, delaying increased costs at the site for DOE. This cylinder hauler at Paducah's Babcock & Wilcox Conversion Services plant delivers the first of DOE's 14-ton depleted uranium cylinders to USEC for re-enrichment as part of a five-party agreement that is extending enrichment operations at the 60-year-old plant for another year, delaying

227

Maryland Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2012 (EIA)

6,104 53,825 53,540 55,026 57,959 59,418 1990-2013 Base Gas 45,677 45,677 45,677 45,677 45,677 45,677 1990-2013 Working Gas 10,427 8,147 7,862 9,349 12,281 13,740 1990-2013 Net...

228

Wyoming Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

94,235 91,816 90,464 90,588 89,999 89,825 1990-2013 Base Gas 74,349 74,318 74,296 74,321 73,267 72,140 1990-2013 Working Gas 19,886 17,498 16,168 16,267 16,732 17,685 1990-2013 Net...

229

Alabama Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

7,348 26,574 28,455 28,958 28,160 28,582 1995-2013 Base Gas 8,050 8,050 8,050 8,050 8,050 8,050 1995-2013 Working Gas 19,298 18,524 20,405 20,908 20,110 20,532 1995-2013 Net...

230

Nebraska Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2012 (EIA)

26,333 25,408 25,055 25,858 26,866 27,234 1990-2013 Base Gas 20,031 20,031 20,031 20,031 20,031 20,031 1990-2013 Working Gas 6,302 5,377 5,024 5,827 6,835 7,203 1990-2013 Net...

231

Vehicle Investment and Operating Costs and Savings for Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Investment and Operating Costs and Savings for Greenhouse Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies October 7, 2013 - 1:17pm Addthis YOU ARE HERE: Step 4 To help estimate costs of implementing greenhouse gas (GHG) mitigation strategies for vehicles, the table below provides the initial investment, operating costs, and operating savings for each strategy. Table 1. Types and Ranges of Initial Investment Requirements and Annual Operating Costs and Savings. Strategies Initial Investment Operating Costs Operating Savings Consolidate trips Time to research & coordinate routes None Eliminate fleet vehicle trips; reduce cost & time (fuel, maintenance, etc) associated with fleet vehicle use. Could result in decreasing inventory & need for vehicles leading to long-term savings

232

When Laboratory Work and Operating Plant Don't Agree ...  

Science Conference Proceedings (OSTI)

... carbonate leach process was used to produce nickel from Mayari ores at the Nicaro plant in Oriente Province, Cuba. While operation was generally successful

233

Realities of Chiller Plant Operation: Utility Impacts on Owner...  

NLE Websites -- All DOE Office Websites (Extended Search)

plant operating costs. The building owner, another engineering consultant, and the local utility representatives were confused by the rates and missed an opportunity to cut...

234

Pantex Plant Operational Awareness Oversight Report _July 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PTX-2012-07-19 Site: Pantex Plant Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness...

235

Anti-polluting power plant using compressors and gas turbines  

SciTech Connect

An electric power generating plant includes at least two compressors having matched operating characteristics, alternators and turbines and boilers having combustion chambers connected to the turbines. The compressors, alternators and turbines are operatively interconnected such that during no power demand periods the compressors are driven in a series arrangement by the alternators, functioning as electric motors, to store a supply of pressurized air in an air storage tank, and during normal and peak power demand periods the turbines, supplied by the combustion chambers of the boilers, drive the compressors, functioning in parallel relationship, which feed respective ones of the boilers with enriched air and a gas recycled after expansion by one of the turbines. During the normal and peak power demand periods pressurized air previously stored in the air storage tank by the compressors is fed to the combustion chamber of one of the boilers.

Rigollot, G.A.

1977-09-20T23:59:59.000Z

236

A Wood-Fired Gas Turbine Plant  

E-Print Network (OSTI)

This paper covers the research and development of a wood-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T-56 aircraft engine (the industrial version is the 501-k). A Westinghouse 3,000-kW generator is used on the prototype facility with a Philadelphia gear system reducing the 14,000-rpm turbine output speed to the 3,600-rpm generator operating speed. Fuel is fed into the combustor by a rotary valve system. The swirling effect of the cyclone combustor ensures that residence time is adequate to completely burn all solid particles in the combustor ahead of the cyclone filter. Burning of particles on the metal walls of the cyclone filter could cause overheating and deterioration of the walls. This wood-fired gas turbine unit could provide a low cost source of power for areas where conventional methods are now prohibitive and provide a means for recovering energy from a source that now poses disposal problems.

Powell, S. H.; Hamrick, J. T.

1986-06-01T23:59:59.000Z

237

POWER PLANT OPERATIONS REPORT - Energy Information Administration  

U.S. Energy Information Administration (EIA)

This schedule must be completed by plants with a total steam turbine capacity of 10 megawatts and abovethat burn organic fuels. Report only fuels consumed in the ...

238

Pantex Plant Operational Awareness Oversight, May 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awareness Oversight of the Pantex Plant Dates of Activity : 05202013 - 05232013 Report Preparer: William Macon Activity DescriptionPurpose: This Office of Health,...

239

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

240

How Gas Turbine Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

TECHNICAL AND OPERATING SUPPORT FOR PILOT DEMONSTRATION OF MORPHYSORB ACID GAS REMOVAL PROCESS  

SciTech Connect

Over the past 14 years, the Gas Technology Institute and jointly with Uhde since 1997 developing Morphysorb{reg_sign} a new physical solvent-based acid gas removal process. Based on extensive laboratory, bench, pilot-plant scale experiments and computer simulations, DEGT Gas Transmission Company, Canada (DEGT) has chosen the process for use at its Kwoen processing facility near Chetwynd, British Columbia, Canada as the first commercial application for the Morphysorb process. DOE co-funded the development of the Morphysorb process in various stages of development. DOE funded the production of this report to ensure that the results of the work would be readily available to potential users of the process in the United States. The Kwoen Plant is designed to process 300 MMscfd of raw natural gas at 1,080-psia pressure. The sour natural gas contains 20 to 25 percent H{sub 2}S and CO{sub 2}. The plant reduces the acid gas content by about 50% and injects the removed H{sub 2}S and CO{sub 2} into an injection well. The Kwoen plant has been operating since August 2002. Morphysorb{reg_sign} is a physical solvent-based process used for the bulk removal of CO{sub 2} and/or H{sub 2}S from natural gas and other gaseous streams. The solvent consists of N-Formyl morpholine and other morpholine derivatives. This process is particularly effective for high-pressure and high acid-gas applications and offers substantial savings in investment and operating cost compared to competitive physical solvent-based processes. GTI and DEGT first entered into an agreement in 2002 to test the Morphysorb process at their Kwoen Gas Treating Plant in northern BC. The process is operating successfully without any solvent related problems and has between DEGTC and GTI. As of December 2003, about 90 Bcf of sour gas was processed. Of this about 8 Bcf of acid gas containing mainly H{sub 2}S and CO{sub 2} was injected back into the depleted reservoir and 82 Bcf sent for further processing at DEGTC's Pine River Plant. This report discusses the operational performance at Kwoen plant during the performance test as well as the solvent performance since the plant started up. The Morphysorb performance is assessed by Duke Energy according to five metrics: acid gas pickup, recycle gas flow, total hydrocarbon loss in acid gas stream, Morphysorb solvent losses and foaming related problems. Plant data over a period of one year show that the Morphysorb solvent has performed extremely well in four out of five of these categories. The fifth metric, Morphysorb solvent loss, is being evaluated over a longer-term period in order to accurately assess it. However, the preliminary indications based on makeup solvent used to date are that solvent losses will also be within expectations. The analysis of the solvent samples indicates that the solvent is very stable and did not show any sign of degradation. The operability of the solvent is good and no foaming related problems have been encountered. According to plant operators the Morphysorb unit runs smoothly and requires no special attention.

Nagaraju Palla; Dennis Leppin

2004-02-01T23:59:59.000Z

242

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

243

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; ...

244

Assessment of Natural Gas Combined Cycle (NGCC) Plants with  

E-Print Network (OSTI)

Assessment of Natural Gas Combined Cycle (NGCC) Plants with CO2 Capture and Storage Mike Gravely.5 Million Annual Budget FY 10/11 · $62.5 million electric · $24 million natural gas · Program Research Areas:45 Bevilacqua-Knight, Inc's Role and Reference Documents Rich Myhre ­ Bevilacqua-Knight, Inc 3:05 Pacific Gas

245

Hybrid evolutionary optimization of the operation of pipeless plants  

Science Conference Proceedings (OSTI)

Pipeless plants are a new production concept in chemical engineering in which automated guided vehicles (AGVs) transport the substances in mobile vessels between processing stations. In the operation of such plants, decisions have to be made on the scheduling ... Keywords: AGV routing, Evolutionary algorithm, Genetic algorithm, Pipeless plant, Scheduling, Simulation

Sabine Piana; Sebastian Engell

2010-06-01T23:59:59.000Z

246

Gas turbine power plant with supersonic gas compressor - Energy ...  

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on ...

247

Natural Gas Processing Plants in the United States: 2010 Update / Appendix  

Gasoline and Diesel Fuel Update (EIA)

Appendix Appendix The preceding report is the most comprehensive report published by the EIA on natural gas processing plants in the United States. The data in the report for the year 2008 were collected on Form EIA-757, Natural Gas Processing Survey Schedule A, which was fielded to EIA respondents in the latter part of 2008 for the first time. This survey was used to collect information on the capacity, status, and operations of natural gas processing plants and to monitor constraints of natural gas processing plants during periods of supply disruption in areas affected by an emergency, such as a hurricane. EIA received authorization to collect information on processing plants from the Office of Management and Budget in early 2008. The form consists of two parts, Schedule A and Schedule B. Schedule A is

248

Construction or Extended Operation of Nuclear Plant (Vermont) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction or Extended Operation of Nuclear Plant (Vermont) Construction or Extended Operation of Nuclear Plant (Vermont) Construction or Extended Operation of Nuclear Plant (Vermont) < Back Eligibility Investor-Owned Utility Utility Program Info State Vermont Program Type Siting and Permitting Any petition for approval of construction of a nuclear energy generating plant within the state, or any petition for approval of the operation of a nuclear energy generating plant beyond the date established in a certificate of public good issued under this title, must be submitted to the public service board no later than four years before the date upon which the approval may take effect. Upon receipt of a petition for approval of construction or operation as provided under this section, the public service board shall notify the

249

AVESTAR Center for clean energy plant operators of the future  

Science Conference Proceedings (OSTI)

Clean energy plants in the modern grid era will increasingly exploit carbon capture, utilization, and storage (CCUS), fuel/product flexibility, and load following. Integrated power/process plants will require next generation of well-trained engineering and operations professionals. High-fidelity dynamic simulators are well suited for training, education, and R&D on clean energy plant operations. Combining Operator Training System (OTS) with 3D virtual Immersive Training System (ITS) enables simultaneous training of control room and plant field operators of the future. Strong collaboration between industry, academia, and government is required to address advanced R&D challenges. AVESTAR Center brings together simulation technology and world-class expertise focused on accelerating development of clean energy plants and operators of the future.

Zitney, S.

2012-01-01T23:59:59.000Z

250

Canada Oil and Gas Operations Act (Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Canada Oil and Gas Operations Act (Canada) Canada Oil and Gas Operations Act (Canada) Canada Oil and Gas Operations Act (Canada) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info Start Date 1985 Program Type Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines Siting and Permitting Provider Canada National Energy Board The purpose of this Act is to promote safety, the protection of the environment, the conservation of oil and gas resources, joint production arrangements, and economically efficient infrastructures.

251

Improved Gas Turbines for LBTU Syngas Fuel Operation  

Science Conference Proceedings (OSTI)

Gas turbine engines running on syngas can take advantage of that fuel's high mass flow per BTU. Optimizing performance while keeping all operating parameters within acceptable limits was the result of a G.E. project.

1997-01-03T23:59:59.000Z

252

Control of waste gas from a thermal EOR operation  

SciTech Connect

This paper summarizes a waste-gas treatment system designed to control emissions from thermal EOR wells. This case study discusses the need, design, installation, and operation of the system.

Peavy, M.A.; Braun, J.E. (Oryx Energy Co. (US))

1991-06-01T23:59:59.000Z

253

Development of I&C Strategies for Plant Flexible Operations  

Science Conference Proceedings (OSTI)

Flexible operation of power plants to meet the needs of the power market will become an increasing need with deregulation and competition. Additional revenue streams are available to plants that can provide ancillary services -- and not just traditional power -- for the power system. This report provides a review of instrumentation and control (I&C) strategies for the flexible operation of power plants as applied in the United Kingdom market and documents the lessons learned.

2004-03-12T23:59:59.000Z

254

Producer gas power plants can cut the oil bills of the developing countries  

SciTech Connect

As a power-generation fuel substitute in developing countries, producer gas from coal, biomass, or waste could reduce oil-import bills while assuring a steady fuel supply. An international working group formed at the Royal Swedish Academy of Sciences is assisting developing countries in setting up simple producer-gas plants consisting of a downdraft gasifier, cyclone, filter, and cooler. Sweden gained expertise in this technology during World War II and now manufactures much of the equipment needed for producer-gas facilities. Depending on oil price, a dual-fuel power plant (15% diesel oil, 85% producer gas) could compete economically with a diesel-only plant, assuming extra labor requirements of 20 min/hr of operation for the gas-fired facility.

Not Available

1982-02-01T23:59:59.000Z

255

Summary of Gas Turbine Operation on Liquid Biofuels  

Science Conference Proceedings (OSTI)

Biodiesel, an alternative liquid biofuel option for stationary gas turbines, has gained much interest in the past decade. This report documents recent biodiesel field tests on aeroderivative and frame class gas turbines. Pollutant emissions and engine performance for these gas turbineswhich include models from General Electric, Siemens, Pratt Whitney, and Alstomwere plotted, compared, and analyzed to determine trends, similarities, and noticeable differences. In addition, the report documents engine oper...

2011-12-13T23:59:59.000Z

256

Thermal Flue Gas Desulfurization Wastewater Treatment Processes for Zero Liquid Discharge Operations  

Science Conference Proceedings (OSTI)

This report presents a worldwide inventory of power plant flue gas desulfurization (FGD) blowdown treatment systems using thermal technologies to achieve zero liquid discharge (ZLD) water management. The number of thermal treatment systems presently operating is very few, with the majority using chemical pretreatment followed by evaporation in a brine concentrator and crystallizer and finally dewatering of the residual salts. Of the operating thermal ZLD systems identified, six are located in Italy and o...

2010-12-31T23:59:59.000Z

257

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orders Mirant Power Plant to Operate Under Limited Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances Docket No. EO-05-01. Order No. 202-05-3: Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. DOE Orders Mirant Power Plant to Operate Under Limited Circumstances More Documents & Publications Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant Compliance Plan

258

Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Olinda Landfill Gas Recovery Plant Biomass Facility Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Direct coal-fired gas turbines for combined cycle plants  

SciTech Connect

The combustion/emissions control island of the CFTCC plant produces cleaned coal combustion gases for expansion in the gas turbine. The gases are cleaned to protect the turbine from flow-path degeneration due to coal contaminants and to reduce environmental emissions to comparable or lower levels than alternate clean coal power plant tedmologies. An advantage of the CFTCC system over other clean coal technologies using gas turbines results from the CFTCC system having been designed as an adaptation to coal of a natural gas-fired combined cycle plant. Gas turbines are built for compactness and simplicity. The RQL combustor is designed using gas turbine combustion technology rather than process plant reactor technology used in other pressurized coal systems. The result is simpler and more compact combustion equipment than for alternate technologies. The natural effect is lower cost and improved reliability. In addition to new power generation plants, CFTCC technology will provide relatively compact and gas turbine compatible coal combustion/emissions control islands that can adapt existing natural gas-fired combined cycle plants to coal when gas prices rise to the point where conversion is economically attractive. Because of the simplicity, compactness, and compatibility of the RQL combustion/emission control island compared to other coal technologies, it could be a primary candidate for such conversions.

Rothrock, J.; Wenglarz, R.; Hart, P.; Mongia, H.

1993-11-01T23:59:59.000Z

260

Gas Reactor International Cooperative Program. Interim report. Construction and operating experience of selected European Gas-Cooled Reactors  

SciTech Connect

The construction and operating experience of selected European Gas-Cooled Reactors is summarized along with technical descriptions of the plants. Included in the report are the AVR Experimental Pebble Bed Reactor, the Dragon Reactor, AGR Reactors, and the Thorium High Temperature Reactor (THTR). The study demonstrates that the European experience has been favorable and forms a good foundation for the development of Advanced High Temperature Reactors.

1978-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Minnesota Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 5,535 5,563 5,789 6,051 6,354 6,516 1990-2013

262

Louisiana Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 481,448 506,368 537,381 569,532 588,760 616,097 1990-2013

263

Virginia Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 7,627 7,917 7,809 8,111 7,771 8,769 1997-2013

264

Oregon Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 18,802 21,071 24,355 26,317 27,099 27,826 1990-2013

265

California Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 494,687 526,990 548,682 551,855 553,972 563,219 1990-2013

266

Utah Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 93,084 97,539 101,216 104,637 109,135 112,135 1990-2013

267

Alabama Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 28,455 28,958 28,160 28,582 28,018 29,312 1995-2013

268

Indiana Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 87,254 89,244 91,822 94,240 97,911 101,106 1990-2013

269

Washington Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 30,412 33,787 37,711 40,833 43,621 45,359 1990-2013

270

Texas Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 638,154 659,387 666,457 668,068 696,056 730,492 1990-2013

271

Ohio Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 390,648 417,691 447,275 468,055 493,454 516,625 1990-2013

272

California Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 494,687 526,990 548,682 551,855 553,972 563,219 1990-2013

273

Oklahoma Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 270,117 293,368 310,075 317,797 325,829 340,801 1990-2013

274

Mississippi Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 188,580 205,724 214,887 222,273 217,684 229,843 1990-2013

275

Kansas Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 200,725 214,725 228,046 244,878 256,709 266,439 1990-2013

276

Kentucky Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 165,997 174,089 181,856 187,293 192,663 201,374 1990-2013

277

Arkansas Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 11,133 11,575 11,977 12,383 12,816 13,020 1990-2013

278

Iowa Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 215,593 221,664 230,749 245,317 261,998 273,823 1990-2013

279

Utah Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 97,539 101,216 104,637 109,135 112,135 113,539 1990-2013

280

Colorado Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 70,182 74,046 80,390 87,199 94,797 100,693 1990-2013

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Illinois Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 746,993 774,182 809,958 842,081 876,844 917,781 1990-2013

282

Oklahoma Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 293,368 310,075 317,797 325,829 340,801 351,660 1990-2013

283

Mississippi Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 205,724 214,887 222,273 217,684 229,843 244,371 1990-2013

284

Louisiana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 506,368 537,381 569,532 588,760 616,097 641,658 1990-2013

285

Indiana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 89,244 91,822 94,240 97,911 101,106 102,341 1990-2013

286

Tennessee Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 340 340 340 340 340 340 1997-2013

287

Minnesota Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 5,563 5,789 6,051 6,354 6,516 6,874 1990-2013

288

Oregon Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 21,071 24,355 26,317 27,099 27,826 28,494 1990-2013

289

Virginia Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 7,917 7,809 8,111 7,771 8,769 9,216 1997-2013

290

Missouri Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 10,867 11,358 11,873 12,197 12,433 12,660 1990-2013

291

Maryland Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 53,540 55,026 57,959 59,418 61,671 62,862 1990-2013

292

Washington Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 30,412 33,787 37,711 40,833 43,621 45,359 1990-2013

293

Ohio Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 390,648 417,691 447,275 468,055 493,454 516,625 1990-2013

294

Pennsylvania Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 567,796 613,368 634,789 656,308 693,662 712,848 1990-2013

295

Pennsylvania Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 520,387 567,796 613,368 634,789 656,308 693,662 1990-2013

296

Nebraska Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 25,055 25,858 26,866 27,234 29,408 31,383 1990-2013

297

Missouri Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 10,867 11,358 11,873 12,197 12,433 12,660 1990-2013

298

Texas Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 582,834 638,154 659,387 666,457 668,068 696,056 1990-2013

299

Arkansas Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 11,133 11,575 11,977 12,383 12,816 13,020 1990-2013

300

Montana Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 205,601 207,626 210,385 214,435 219,447 224,995 1990-2013

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Michigan Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 643,563 706,443 777,107 839,963 906,927 972,307 1990-2013

302

Michigan Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 643,563 706,443 777,107 839,963 906,927 972,307 1990-2013

303

Alaska Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 28,203 29,473 30,384 31,284 32,766 34,652 2013-2013

304

Montana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 207,626 210,385 214,435 219,447 224,995 224,335 1990-2013

305

Wyoming Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 90,464 90,588 89,999 89,825 91,028 93,007 1990-2013

306

Illinois Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 746,993 774,182 809,958 842,081 876,844 917,781 1990-2013

307

Iowa Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 209,512 215,593 221,664 230,749 245,317 261,998 1990-2013

308

Alaska Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 28,203 29,473 30,384 31,284 32,766 34,652 2013-2013

309

Kansas Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 200,725 214,725 228,046 244,878 256,709 266,439 1990-2013

310

California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 77 1980's 81 57 124 117 105 120 109 107 101 95 1990's 86 75 83 85 75 80 80 82 58 60 2000's 64 52 68 78 95 112 100 103 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 CA, San Joaquin Basin Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

311

Gas turbine operating and maintenance experience in Saudi Arabia  

SciTech Connect

Operation and maintenance of the gas turbines in Saudi Arabia, utilized to drive crude oil shipping pumps and process gas compressors, are discussed. Operation on wet, sour gas is taken into account, emphasizing the hot corrosion problem and the approaches taken to solve it. Intake air filtration is examined, indicating that as a result of an in depth study it was decided to retrofit the turbines with a three stage air filtration system. The methods for applying corrosion resistant coatings to the blades are considered, as are the overhaul logistics and the repair procedures.

Anderson, A.W.

1979-03-01T23:59:59.000Z

312

PHYSICAL PLANT OPERATING POLICY AND PROCEDURE  

E-Print Network (OSTI)

, streams, and lakes. f. Water Reuse Sump: A sump at Plant 1 that collects rain water, cooling tower spray, acid station wash water and other sources and returns them to the cooling towers for reuse. g. Water, or grounds. PP/OP 08.13 #12;Page 2 2. Potential Sources of Storm Water Contamination a. West Cooling Tower

Rock, Chris

313

Automated gas transfer systems for low pressure operations  

Science Conference Proceedings (OSTI)

The introduction of new components and the modification of commercially available hardware have been instrumental in the automation of low pressure gas transfer systems. The benefits from the automation have been faster sample operation, increased precision and a safer environment for the operator.

Baker, R.W.; Hoseus, N.L.

1988-01-22T23:59:59.000Z

314

Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities  

SciTech Connect

This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

1989-01-01T23:59:59.000Z

315

AVESTAR Center for Operational Excellence of Clean Energy Plants  

Science Conference Proceedings (OSTI)

To address challenges in attaining operational excellence for clean energy plants, the U.S. Department of Energy's National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR{trademark}). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This presentation will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission energy plants.

Zitney, Stephen

2012-01-01T23:59:59.000Z

316

AVESTAR Center for Operational Excellence of Clean Energy Plants  

Science Conference Proceedings (OSTI)

To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energy’s National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR™). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This presentation will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission energy plants.

Zitney, S.E.

2012-05-01T23:59:59.000Z

317

Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

318

Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

319

U.S. Natural Gas Plant Liquids Reserves, Estimated Production...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Reserves, Estimated Production (Million Barrels) U.S. Natural Gas Plant Liquids Reserves, Estimated Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

320

Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U.S. Natural Gas Plant Liquids, Reserves Revision Decreases ...  

Gasoline and Diesel Fuel Update (EIA)

Decreases (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

322

Mississippi Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) Mississippi Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

323

California Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) California Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

324

New Mexico Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

325

Louisiana--North Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

326

U.S. Natural Gas Plant Liquids, Reserves Acquisitions (Million...  

Gasoline and Diesel Fuel Update (EIA)

Acquisitions (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

327

U.S. Natural Gas Plant Liquids, Reserves Adjustments (Million...  

Annual Energy Outlook 2012 (EIA)

Adjustments (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

328

North Dakota Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) North Dakota Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

329

U.S. Natural Gas Plant Liquids, Reserves Extensions (Million...  

Annual Energy Outlook 2012 (EIA)

Extensions (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

330

Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

331

Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

332

Colorado Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

333

Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

334

Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

335

Louisiana Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) Louisiana Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

336

Kentucky Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

337

Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

338

Kansas Natural Gas Plant Liquids, Reserves Based Production ...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

339

New Mexico Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) New Mexico Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

340

Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Arkansas Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Arkansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

342

Utah Natural Gas Plant Liquids, Reserves Based Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

343

Florida Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Florida Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

344

West Virginia Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) West Virginia Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

345

U.S. Natural Gas Plant Liquids, Reserves Revision Increases ...  

Annual Energy Outlook 2012 (EIA)

Increases (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

346

Montana Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Montana Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

347

North Dakota Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

348

Oklahoma Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

349

Michigan Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Michigan Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

350

Arkansas Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

351

Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

352

California Natural Gas Plant Fuel Consumption (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Fuel Consumption (Million Cubic Feet) California Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

353

Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

354

Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million Barrels)  

U.S. Energy Information Administration (EIA)

Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 583:

355

East Coast (PADD 1) Gas Plant Production of Normal Butane ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Gas Plant Production of Normal Butane-Butylene (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; ...

356

Michigan Natural Gas Plant Fuel Consumption (Million Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Fuel Consumption (Million Cubic Feet) Michigan Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

357

New Mexico Natural Gas Plant Fuel Consumption (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

358

Texas Natural Gas Plant Fuel Consumption (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Texas Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

359

Texas--State Offshore Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

360

Gas Turbine Plant Modeling for Dynamic Simulation.  

E-Print Network (OSTI)

?? Gas turbines have become effective in industrial applications for electric and thermal energy production partly due to their quick response to load variations. A… (more)

Endale Turie, Samson

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Plant Fuel Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA)

... electric power price data are for regulated electric ... Gas volumes delivered for vehicle fuel are included in the State monthly totals from January 2011 ...

362

Cyclic Operation of Power Plant: Technical, Operational and Cost Issues -- An International Seminar: Proceedings: ''Two Shifting'' Seminar  

SciTech Connect

Because of changes in demand and competition within the power industry, fossil fuel plants in many countries are now subject to two-shift operation, that is, generating power for 10-15 hours during the day only, usually in combination with a complete shutdown on weekends. Other fossil-fueled units, although running around the clock, need to follow changes in electricity demand. This mode of functioning, in which temperatures and pressures are never stable for more than a few hours, is referred to as ''cyclic operation of plant.'' The aim of the seminar at which these papers were presented was to identify the basic causes of component and equipment problems in two-shift operation, and to begin to identify procedures that could minimize operating and maintenance costs. The papers cover the following topics: Session 1: Plant Operation Experience and Design Issues; Session 2: Materials Issues; Session 3: Cost, Manpower and Management Issues; Session 4: Plant Automation Issues; Session 5: Hot Section Gas Turbine Issues; and Session 6: HRSG [heat recovery steam generator] Issues.

None

2001-01-01T23:59:59.000Z

363

Davis PV plant operation and maintenance manual  

DOE Green Energy (OSTI)

This operation and maintenance manual contains the information necessary to run the Photovoltaics for Utility Scale Applications (PVUSA) test facility in Davis, California. References to more specific information available in drawings, data sheets, files, or vendor manuals are included. The PVUSA is a national cooperative research and demonstration program formed in 1987 to assess the potential of utility scale photovoltaic systems.

NONE

1994-09-01T23:59:59.000Z

364

Qualification Standard for Power Plant Operators  

Science Conference Proceedings (OSTI)

The complexities of electrical generation demand expectations beyond the potential of a traditional training program. The challenge -- to maintain a capable workforce that evolves with new technology -- is a dynamic system within the electrical generation industry. Qualification standards and operator competency are critical components of this dynamic training system.

2000-12-20T23:59:59.000Z

365

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Orders Mirant Power Plant to Operate Under Limited DOE Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances December 20, 2005 - 11:44am Addthis DOE finds emergency; determines plant will help electric reliability WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. "After weighing all of the information, I believe an emergency situation exists, and that issuance of this order is in the public interest. This order will provide the level of electricity reliability necessary to keep

366

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orders Mirant Power Plant to Operate Under Limited Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances December 20, 2005 - 11:44am Addthis DOE finds emergency; determines plant will help electric reliability WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. "After weighing all of the information, I believe an emergency situation exists, and that issuance of this order is in the public interest. This order will provide the level of electricity reliability necessary to keep

367

Optimal operation of a virtual power plant with risk management  

Science Conference Proceedings (OSTI)

In the evolving smart power systems (or smart grids), distributed generators (DG) and virtual power plants (VPP) have major roles in providing electric energy for microgrids. This paper studies the optimal operation of a VPP in a microgrid considering ...

H. Taheri; A. Rahimi-Kian; H. Ghasemi; B. Alizadeh

2012-01-01T23:59:59.000Z

368

Research of Heat Storage Tank Operation Modes in Cogeneration Plant.  

E-Print Network (OSTI)

??The dissertation investigates typical operation modes of the heat storage tank in the small-scale cogeneration (CHP) plant, analyses formation of thermal stratifi-cation in such storage… (more)

Streckien?, Giedr?

2011-01-01T23:59:59.000Z

369

Generation Maintenance Application Center: Fuel Gas System for Combustion Turbine Combined Cycle Plant Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to assist personnel involved with the maintenance of the fuel gas system at a gas turbine combined cycle facility, including good maintenance practices, preventive maintenance techniques and troubleshooting guidance. BackgroundCombustion turbine combined cycle (CTCC) facilities utilize various components that can be unique to this particular type of power plant. As such, owners and operators of CTCC facilities may find ...

2013-05-15T23:59:59.000Z

370

AVESTAR Center for operational excellence of electricity generation plants  

SciTech Connect

To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energy’s National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR™). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment.

Zitney, S.

2012-01-01T23:59:59.000Z

371

An Evaluation of Gas Turbines for APFBC Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS Donald L. Bonk U.S. DOE National Energy Technology Laboratory Morgantown, West Virginia eMail: dbonk@netl.doe.gov phone: (304) 285-4889 Richard E. Weinstein, P.E. Parsons Infrastructure & Technology Group Inc. Reading, Pennsylvania eMail: richard.e.weinstein@parsons.com phone: (610) 855-2699 Abstract This paper describes a concept screening evaluation of gas turbines from several manufacturers that assessed the merits of their respective gas turbines for advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) applications. The following gas turbines were evaluated for the modifications expected for APFBC service: 2 x Rolls-Royce Industrial Trent aeroderivative gas turbine configurations; a 3 x Pratt & Whitney Turbo Power FT8 Twin-

372

Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves  

SciTech Connect

1 inch gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

MISKA, C.R.

2000-09-03T23:59:59.000Z

373

Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves  

SciTech Connect

1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fall closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

VAN KATWIJK, C.

2000-10-23T23:59:59.000Z

374

Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves  

SciTech Connect

1 inch gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

MISKA, C.R.

2000-11-13T23:59:59.000Z

375

Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves  

SciTech Connect

1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

VAN KATWIJK, C.

2000-06-06T23:59:59.000Z

376

An expert system prototype for designing natural gas cogeneration plants  

Science Conference Proceedings (OSTI)

Cogeneration plants are units that simultaneously produce electricity and useful heat from the same fuel. In such plants different components (prime movers, pumps, steam generators, etc.) are combined in order to meet electricity and useful heat loads ... Keywords: Cogeneration, Engineering design, Expert systems, Natural gas

José Alexandre Matelli; Edson Bazzo; Jonny Carlos da Silva

2009-05-01T23:59:59.000Z

377

Simulated coal gas MCFC power plant system verification  

DOE Green Energy (OSTI)

The following tasks are included in this project: Commercialization; Power plant development; Manufacturing facilities development; Test facility development; Stack research; and Advanced research and technology development. This report briefly describes the subtasks still to be completed: Power plant system test with reformed natural gas; Upgrading of existing, US government-owned, test facilities; and Advanced MCFC component research.

NONE

1998-02-01T23:59:59.000Z

378

US nuclear power plant operating cost and experience summaries  

Science Conference Proceedings (OSTI)

NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

Kohn, W.E.; Reid, R.L.; White, V.S.

1998-02-01T23:59:59.000Z

379

Case study: City of Industry landfill gas recovery operation  

DOE Green Energy (OSTI)

Development of civic, recreation, and conservation facilities throughout a 150-acre site which had been used for waste disposal from 1951 to 1970 is described. The history of the landfill site, the geology of the site, and a test well program to assess the feasibility of recoverying landfill gas economically from the site are discussed. Based on results of the test well program, the City of Industry authorized the design and installation of a full-scale landfill gas recovery system. Design, construction, and operation of the system are described. The landfill gas system provides fuel for use in boilers to meet space heating and hot water demands for site development (MCW)

None

1981-11-01T23:59:59.000Z

380

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Operation and control of space-based solar energy power plants with CCGT using helium as a working medium  

Science Conference Proceedings (OSTI)

The features of a Space-based Solar Energy Power Plant for electric power generation with a closed cycle gas turbine running on Helium are discussed. The system is intended for generating both electricity and process heat for industrial manufacturing processes in a large space station. A system overview for operation and control of such a plant is presented.

Sutsch, A.

1986-01-01T23:59:59.000Z

382

Annual radiological environmental operating report: Browns Ferry Nuclear Plant, 1992. Operations Services/Technical Programs  

Science Conference Proceedings (OSTI)

This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant (BFN) in 1992. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. Small amounts of Co-60 and Cs-134 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public.

Not Available

1993-04-01T23:59:59.000Z

383

Dimensioning and operating wind-hydrogen plants in power markets  

Science Conference Proceedings (OSTI)

This paper presents a two-step method for dimensioning and time-sequential operation of Wind-hydrogen (H2) plants operating in power markets. Step 1 involves identification of grid constraints and marginal power losses through load flow simulations. ... Keywords: distributed generation, hydrogen, quadratic optimization, renewable energy, weak grids, wind power

Christopher J. Greiner; Magnus Korpås; Terje Gjengedal

2008-07-01T23:59:59.000Z

384

Operational Flexibility Guidelines for Gas Turbine Low NOx Combustion Systems  

Science Conference Proceedings (OSTI)

Gas turbine low-NOx combustion systems can differ in hardware from manufacturer to manufacturer, but the principle is the same. Low-NOx combustors reduce peak flame temperatures by mixing fuel and air before combustion and by keeping the fuel-to-air ratio as low (lean) as possible, while still maintaining combustion stability over the broadest possible operating range. Low-NOx combustion systems are inherently more complex than diffusion combustion systems, a fact that impacts operational flexibility, re...

2011-12-14T23:59:59.000Z

385

Plant-life extension planning for an operating LMFBR  

SciTech Connect

The study concluded that continued EBR-II operation is certainly feasible for well beyond 10 more years, and that continued demonstration of the unique inherent safety and operability features of a pool-type liquid-metal-cooled reactor and the demonstration of a reasonable operating lifetime are very important and will provide invaluable information for the design and development of the next generation nuclear power plants.

King, R.W.

1985-01-01T23:59:59.000Z

386

Defining the needs for gas centrifuge enrichment plants advanced safeguards  

Science Conference Proceedings (OSTI)

Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using nondestructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared UF{sub 6} containers used in the process of enrichment at GCEPs. In verifying declared LEU production, the inspectors also take samples for off-site destructive assay (DA) which provide accurate data, with 0.1% to 0.5% measurement uncertainty, on the enrichment of the UF{sub 6} feed, tails, and product. However, taking samples of UF{sub 6} for off-site analysis is a much more labor and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of results and interruptions to the continuity of knowledge (CofK) of the samples during their storage and transit. This paper contains an analysis of possible improvements in unattended and attended NDA systems such as process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector's measurements and provide more effective and efficient IAEA GCEPs safeguards. We also introduce examples advanced safeguards systems that could be assembled for unattended operation.

Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril [Los Alamos National Laboratory; Marlowe, Johnna B [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

387

"1. Rhode Island State Energy Partners","Gas","FPL Energy Operating Serv Inc",528  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "1. Rhode Island State Energy Partners","Gas","FPL Energy Operating Serv Inc",528 "2. Manchester Street","Gas","Dominion Energy New England, LLC",447 "3. Tiverton Power Plant","Gas","Tiverton Power Inc",250 "4. Ocean State Power II","Gas","Ocean State Power II",219 "4. Ocean State Power","Gas","Ocean State Power Co",219 "6. Pawtucket Power Associates","Gas","Pawtucket Power Associates LP",63 "7. Ridgewood Providence Power","Other Renewables","Ridgewood Power Management LLC",24 "8. Central Power Plant","Gas","State of Rhode Island",10

388

Chiller Plant Operations and Maintenance 4  

E-Print Network (OSTI)

Although heating and cooling systems provide a useful service by keeping occupants comfortable, they also account for a significant portion of a building’s energy use—typically about a quarter. However, it is possible to lessen this impact in both central and unitary systems by increasing their efficiency. This chapter identifies opportunities for improving the performance of heating and cooling systems. Cooling systems generally have higher space-conditioning capacities than heating systems because waste heat from people, lighting, and office equipment supplies a large portion of a building’s heating requirement. Although their higher capacities often translate into more opportunities for savings from cooling systems, significant savings can still be had from heating systems. Following the steps outlined in previous stages of this manual should have reduced cooling and heating loads (Figure 9.1). Many existing systems are oversized to begin with, so it may now be possible to justify replacing the current system with a properly sized one—or retrofitting it to operate more efficiently. When replacing system components, it is extremely important to size the equipment properly to meet current loads. Besides saving energy, proper sizing will

Chiller Plant Retrofits

2008-01-01T23:59:59.000Z

389

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions  

E-Print Network (OSTI)

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk-emission and efficient gas turbine technology made combined-cycle gas turbine power plants the "resource of choice

390

Effects of delaying the operation of a nuclear power plant  

Science Conference Proceedings (OSTI)

This report documents a study of an actual 24-month nuclear power plant licensing delay. A representative utility was chosen for examination. The research was oriented toward determination of the licensing delay's impact on the utility's operating results, ratepayers, and security issues. The methodology utilized to estimate those impacts involved the recursive interaction of a generation costing program to estimate replacement fuel costs and a financial regulatory model to concomitantly determine the impact on the utility, its ratepayers and security issues. The latter model was executed under six alternate scenarios: (1) no delay in the plant's operation; (2) a 24-month delay; (3) a 24-month delay but further assuming all replacement power was generated by coal-fired plants; (4) a 24-month delay assuming all replacement power from oil-fired plants; (5) no delay but assuming the capital cost of the plant was twice as large; and (6) a 24-month delay with the capital cost of the plant twice as large. Three primary conclusions were made. First, under all scenarios, a 24-month delay in operation of the plant has an adverse impact on the utility's internal generation of funds. Second, although electricity rates are not appreciably affected by the delay, the direction of electricity price changes is contingent on the source of fuel used for replacement power. Finally, a 24-month delay has an adverse impact on the indicators used to evaluate the financial soundness of the utility in all cases under consideration.

Hill, L.J.; Rainey, J.A.; Tepel, R.C.; Van Dyke, J.W.

1983-12-01T23:59:59.000Z

391

Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

Sims, A.V.

1983-06-01T23:59:59.000Z

392

Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

Sims, A.V.

1983-06-01T23:59:59.000Z

393

Valuing Gas Power Plants with CO2 Capture and Tradable Quotas  

E-Print Network (OSTI)

We analyze investment in a gas fired power plant in a regime with tradable quotas for CO 2 emissions and with an option to install CO 2 capture technology. Such equipment is very costly and we find that high subsidies are required to entice the investors to install it, even when the captured CO 2 can be sold for enhanced oil recovery. Investment valuation is based on market prices of long term prices of energy forward contracts. The plant's operating flexibility and the investment delay opportunity under gas and electricity price uncertainty is taken into account. Based on prices from the Scandinavian electricity market and the UK natural gas market we find that the power plant investment should be delayed.

Thomas Dobbe; Stein-erik Fleten; Sjur Sigmo; T Power Plant Lifetime [years

2003-01-01T23:59:59.000Z

394

Profitability Comparison Between Gas Turbines and Gas Engine in Biomass-Based Power Plants Using Binary Particle Swarm Optimization  

Science Conference Proceedings (OSTI)

This paper employs a binary discrete version of the classical Particle Swarm Optimization to compare the maximum net present value achieved by a gas turbines biomass plant and a gas engine biomass plant. The proposed algorithm determines the optimal ...

P. Reche López; M. Gómez González; N. Ruiz Reyes; F. Jurado

2007-06-01T23:59:59.000Z

395

Natural Gas Plant Field Production: Natural Gas Liquids  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 PADD 1 1,525 1,439 2,394 2,918 2,821 2,687 1981-2013 East Coast 1993-2008 Appalachian No. 1 1,525 1,439 2,394 2,918 2,821 2,687 1993-2013 PADD 2 12,892 13,208 13,331 13,524 15,204 15,230 1981-2013 Ind., Ill. and Ky. 1,975 1,690 2,171 1,877 2,630 2,746 1993-2013

396

Natural Gas Plant Stocks of Natural Gas Liquids  

Gasoline and Diesel Fuel Update (EIA)

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5,419 6,722 6,801 5,826 6,210 6,249 1993-2013 PADD 1 122 121 115 189 246 248 1993-2013 East Coast 1993-2010 Appalachian No. 1 122 121 115 189 246 248 1993-2013 PADD 2 959 891 880 1,129 1,104 1,041 1993-2013 Ind., Ill. and Ky. 311 300 298 308 262 260 1993-2013 Minn., Wis., N. Dak., S. Dak. 56 64 58 60 51 64 1993-2013 Okla., Kans., Mo. 592 527 524 761 791 717 1993-2013 PADD 3 3,810 5,007 5,032 3,817 4,246 4,272 1993-2013

397

Extensive expansion at Karsto gas plant under way  

SciTech Connect

By 2000, the gas and condensate plant at Karsto, Norway, will have been expanded extensively: gas-processing capacity will increase to 2.2 bscfd from current 775 MMscfd; and production capacity for LPG, naphtha, and condensate will reach approximately 10 million metric tons/year (mty). Prompting this expansion is the landing of Karsto in 2000 of a 42-in., rich-gas pipeline from Haltenbanken, offshore mid-Norway, and installation of the 42-in. Europipe II dry-gas pipeline from Karsto to Germany. In the same period, several spin-off projects adding value to the overall concept may be constructed. These could include a 350-mw power plant and ethane-shipment facilities. Total investment at Karsto in the next 3--4 years will reach approximately $1.1 billion (US). Civil work began in June 1997; the detail engineering contract was awarded in August 1997. The paper describes the project.

Svenes, S. [Den Norske Stats Oljeselskap AS, Haugesund (Norway)

1998-07-27T23:59:59.000Z

398

Demonstration plant for IGCC using the U-GAS process  

SciTech Connect

Tampella, Ltd., in cooperation with the Institute of Gas Technology (IGT), is developing the gasification technology for U-GAS{reg_sign} to produce electricity from coal using the integrated gasification combined-cycle (IGCC). The concept of IGCC is to join the clean burning gasification island with a more efficient gas and stream turbine island to produce electric power with minimal environmental impact. IGT has developed the U-GAS process to produce a low- or medium-Btu gas from different types of coal feedstocks. The process uses a combination of fluidized=bed gasification and ash agglomeration in a single-stage reactor. A 30-tons/day-capacity pilot plant located in Chicago has been used to develop the process. Feedstocks ranging from relatively unreactive metallurgical coke to highly reactive peat have been gasified successfully in the this pilot plant, indicating its ability to handle a feedstock with widely varying properties. A new 10 megawatt pilot plant has been designed and is under construction in Tampere, Finland, as the first step toward the commercialization of this technology. Tampella is planning to design and deliver a commercial-scale IGCC demonstration plant by 1994. 7 refs., 5 figs.

Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Salo, K. [Tampella Power, Tampere (Finland)

1991-12-01T23:59:59.000Z

399

L-Reactor Operation Savannah River Plant Aiken, SC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51371 (F.R.) 51371 (F.R.) NOTICES DEPARTMENT OF ENERGY L-Reactor Operation, Savannah River Plant Aiken, South Carolina; Finding of No Significant Impact Monday, August 23, 1982 *36691 The Department of Energy (DOE) proposes to resume operation of L- Reactor at its Savannah River Plant at Aiken, South Carolina, as soon as it is ready for operation, scheduled for October 1983. The environmental impacts of the resumption of operation have been evaluated in an environmental assessment (DOE/EA-0195), prepared in accordance with the National Environmental Policy Act of 1969 (NEPA) as implemented by regulations promulgated by the Council on Environmental Quality (CEQ) (40 CFR Parts 1500 -1508, November 1978) and DOE implementing guidelines (45 FR 20694, March 28, 1980). Based on the analysis in the assessment, DOE has

400

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

402

Design and operation of a geopressurized-geothermal hybrid cycle power plant  

DOE Green Energy (OSTI)

Geopressured-geothermal resources can contribute significantly to the national electricity supply once technical and economic obstacles are overcome. Power plant performance under the harsh conditions of a geopressured resource was unproven, so a demonstration power plant was built and operated on the Pleasant Bayou geopressured resource in Texas. This one megawatt facility provided valuable data over a range of operating conditions. This power plant was a first-of-a-kind demonstration of the hybrid cycle concept. A hybrid cycle was used to take advantage of the fact that geopressured resources contain energy in more than one form -- hot water and natural gas. Studies have shown that hybrid cycles can yield thirty percent more power than stand-alone geothermal and fossil fuel power plants operating on the same resource. In the hybrid cycle at Pleasant Bayou, gas was burned in engines to generate electricity directly. Exhaust heat from the engines was then combined with heat from the brine to generate additional electricity in a binary cycle. Heat from the gas engine was available at high temperature, thus improving the efficiency of the binary portion of the hybrid cycle. Design power output was achieved, and 3445 MWh of power were sold to the local utility over the course of the test. Plant availability was 97.5% and the capacity factor was over 80% for the extended run at maximum power production. The hybrid cycle power plant demonstrated that there are no technical obstacles to electricity generation at Pleasant Bayou. 14 refs., 38 figs., 16 tabs.

Campbell, R.G.; Hattar, M.M.

1991-02-01T23:59:59.000Z

403

HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability  

SciTech Connect

The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation.

McDonald, C.F.

1980-04-01T23:59:59.000Z

404

New Measures to Safeguard Gas Centrifuge Enrichment Plants  

SciTech Connect

As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

Whitaker, Jr., James [ORNL; Garner, James R [ORNL; Whitaker, Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA; Gilligan, Kimberly V [ORNL; Younkin, James R [ORNL; Hooper, David A [ORNL; Henkel, James J [ORNL; Krichinsky, Alan M [ORNL

2011-01-01T23:59:59.000Z

405

Optimization for Design and Operation of Natural Gas Transmission Networks  

E-Print Network (OSTI)

This study addresses the problem of designing a new natural gas transmission network or expanding an existing network while minimizing the total investment and operating costs. A substantial reduction in costs can be obtained by effectively designing and operating the network. A well-designed network helps natural gas companies minimize the costs while increasing the customer service level. The aim of the study is to determine the optimum installation scheduling and locations of new pipelines and compressor stations. On an existing network, the model also optimizes the total flow through pipelines that satisfy demand to determine the best purchase amount of gas. A mixed integer nonlinear programming model for steady-state natural gas transmission problem on tree-structured network is introduced. The problem is a multi-period model, so changes in the network over a planning horizon can be observed and decisions can be made accordingly in advance. The problem is modeled and solved with easily accessible modeling and solving tools in order to help decision makers to make appropriate decisions in a short time. Various test instances are generated, including problems with different sizes, period lengths and cost parameters, to evaluate the performance and reliability of the model. Test results revealed that the proposed model helps to determine the optimum number of periods in a planning horizon and the crucial cost parameters that affect the network structure the most.

Dilaveroglu, Sebnem 1986-

2012-12-01T23:59:59.000Z

406

Gas turbine power plant with supersonic shock compression ramps  

SciTech Connect

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2008-10-14T23:59:59.000Z

407

Worcester Solenoid Actuated Gas Operated MCO Isolation Valves  

SciTech Connect

These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as Integral parts of the actuator that are used in different process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) for MCO isolation to either reduce air in leakage or loss of He. All valves have coupling for transverse actuator mounting.

VAN KATWIJK, C.

2000-06-06T23:59:59.000Z

408

Worchester Solenoid Actuated Gas Operated MCO Isolation Valves  

Science Conference Proceedings (OSTI)

These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as integral parts of the actuator that are used in process streams within the CWF hood. The valves fail closed (on loss of pressure or electrical) to prevent MCO vent drain to either reduce air In-leakage or loss of He. The valves have couplings for transverse actuator mounting.

MISKA, C.R.

2000-11-13T23:59:59.000Z

409

Worcester Solenoid Actuated Gas Operated MCO Isolation Valves  

Science Conference Proceedings (OSTI)

These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as integral parts of the actuator that are used in different process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) for MCO isolation to either reduce air leakage or loss of He. All valves have coupling for transverse actuator mounting.

MISKA, C.R.

2000-11-13T23:59:59.000Z

410

Worcester Solenoid Actuated Gas Operated MCO Isolation Valves  

Science Conference Proceedings (OSTI)

These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as integral parts of the actuator that are used in different process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) for MCO isolation to either reduce air in leakage or loss of He. All valves have coupling for transverse actuator mounting.

MISKA, C.R.

2000-09-03T23:59:59.000Z

411

Worchester Solenoid Actuated Gas Operated MCO Isolation Valves  

SciTech Connect

These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as integral parts of the actuator that are used in process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) to prevent MCO vent drain to either reduce air in-leakage or loss of He. The valves have couplings for transverse actuator mounting.

VAN KATWIJK, C.

2000-06-06T23:59:59.000Z

412

Operational Awareness Site Visi to the Pantex Plant, October 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report - Rev. 0 Report Number: HIAR PTX-2011-10-28 Activity Report - Rev. 0 Report Number: HIAR PTX-2011-10-28 Site: Pantex Plant Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Operational Awareness Site Visit to the Pantex Plant Dates of Activity: 10/24/2011 - 10/28/2011 Report Preparer William Macon Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) operational awareness site visit was for the Pantex Plant site lead to discuss the design/construction of the new high explosives pressing facility (HEPF) and the scheduling of fiscal year (FY) 2012 independent oversight activities. Result: The HSS site lead attended daily Integrated Plan of the Day meetings and met with numerous Pantex Site Office (PXSO)

413

,"Natural Gas Plant Field Production: Natural Gas Liquids "  

U.S. Energy Information Administration (EIA) Indexed Site

Field Production: Natural Gas Liquids " Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Field Production: Natural Gas Liquids ",16,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_gp_a_epl0_fpf_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_a_epl0_fpf_mbbl_m.htm" ,"Source:","Energy Information Administration"

414

Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,270 1,530 1,924 1970's 2,251 2,419 2,847 2,725 1,649 1,760 3,043 3,210 2,134 2,889 1980's 1,320 1,580 3,278 3,543 5,236 4,575 4,715 5,799 4,983 4,767 1990's 6,031 3,502 3,381 4,145 3,252 3,069 3,299 2,275 1,706 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Pennsylvania Natural Gas Consumption by End Use Lease and Plant

415

Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,582 9,158 8,521 1970's 7,893 5,840 9,153 6,152 5,357 7,894 4,836 4,979 5,421 8,645 1980's 4,428 4,028 7,236 6,632 7,202 6,296 6,562 8,091 7,100 5,021 1990's 7,257 4,585 4,945 4,829 3,632 3,507 3,584 3,652 3,710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Mississippi Natural Gas Consumption by End Use Lease and Plant

416

Efficient gas stream cooling in Second-Generation PFBC plants  

SciTech Connect

The coal-fueled Advanced or Second-Generation Pressurized Fluidized Bed Combustor concept (APFBC) is an efficient combined cycle in which coal is carbonized (partially gasified) to fuel a gas turbine, gas turbine exhaust heats feedwater for the steam cycle, and carbonizer char is used to generate steam for a steam turbine while heating combustion air for the gas turbine. The system can be described as an energy cascade in which chemical energy in solid coal is converted to gaseous form and flows to the gas turbine followed by the steam turbine, where it is converted to electrical power. Likewise, chemical energy in the char flows to both turbines generating electrical power in parallel. The fuel gas and vitiated air (PFBC exhaust) streams must be cleaned of entrained particulates by high-temperature equipment representing significant extensions of current technology. The energy recovery in the APFBC cycle allows these streams to be cooled to lower temperatures without significantly reducing the efficiency of the plant. Cooling these streams would allow the use of lower-temperature gas cleanup equipment that more closely approaches commercially available equipment, reducing cost and technological risk, and providing an earlier path to commercialization. This paper describes the performance effects of cooling the two hottest APFBC process gas streams: carbonizer fuel gas and vitiated air. Each cooling variation is described in terms of energy utilization, cycle efficiency, and cost implications.

White, J.S.; Horazak, D.A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

1994-07-01T23:59:59.000Z

417

Field testing the Raman gas composition sensor for gas turbine operation  

Science Conference Proceedings (OSTI)

A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 ?m ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

2012-01-01T23:59:59.000Z

418

Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation  

E-Print Network (OSTI)

In specifying a cogeneration or independent power plant, the owner should be especially aware of the influences which electric utilities and regulatory bodies will have on key parameters such as size, efficiency, design, reliability/ availability, operating capabilities and modes, etc. This paper will note examples of some of the major factors which could impact the project developer and his economics, as well as discuss potential mitigation measures. Areas treated include wheeling, utility ownership interests, dispatchability, regulatory acceptance and other considerations which could significantly affect the plant definition and, as a result, its attendant business and financing structure. Finally, suggestions are also made for facilitating the process of integration with the electric utility.

Felak, R. P.

1986-06-01T23:59:59.000Z

419

Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,225 1,736 1,807 1,582 4,278 2,390 2,537 1990's 27,720 36,088 36,741 35,503 37,347 39,116 40,334 40,706 39,601 41,149 2000's 42,519 42,243 44,008 44,762 44,016 43,386 38,938 41,197 40,286 39,447 2010's 37,316 35,339 37,397 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Alaska Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

420

Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,750 31,237 31,121 29,705 35,751 40,508 38,392 1990's 39,249 42,166 39,700 39,211 35,432 34,900 35,236 30,370 26,034 25,055 2000's 25,934 28,266 25,525 26,276 27,818 27,380 28,435 28,213 27,161 24,089 2010's 23,238 24,938 27,809 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Oklahoma Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,848 123,993 104,292 102,185 123,008 121,936 134,132 1990's 82,828 83,733 86,623 74,925 66,600 75,845 69,235 71,155 63,368 68,393 2000's 69,174 63,137 63,031 56,018 55,970 45,837 46,205 51,499 42,957 39,002 2010's 40,814 42,633 42,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Louisiana Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

422

Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Wyoming Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

423

Initial assessment of the operability of the VHTR-HTSE nuclear hydrogen plant.  

DOE Green Energy (OSTI)

The generation of hydrogen from nuclear power will need to compete on three fronts: production, operability, and safety to be viable in the energy marketplace of the future. This work addresses the operability of a coupled nuclear and hydrogen-generating plant while referring to other work for progress on production and safety. Operability is a measure of how well a plant can meet time-varying production demands while remaining within equipment limits. It can be characterized in terms of the physical processes that underlie operation of the plant. In this work these include the storage and transport of energy within components as represented by time constants and energy capacitances, the relationship of reactivity to temperature, and the coordination of heat generation and work production for a near-ideal gas working fluid. Criteria for assessing operability are developed and applied to the Very High Temperature Reactor coupled to the High Temperature Steam Electrolysis process, one of two DOE/INL reference plant concepts for hydrogen production. Results of preliminary plant control and stability studies are described. A combination of inventory control in the VHTR plant and flow control in the HTSE plant proved effective for maintaining hot-side temperatures near constant during quasi-static change in hydrogen production rate. Near constant electrolyzer outlet temperature is achieved by varying electrolyzer cell area to control cell joule heating. It was found that rates of temperature change in the HTSE plant for a step change in hydrogen production rate are largely determined by the thermal characteristics of the electrolyzer. It's comparatively large thermal mass and the presence of recuperative heat exchangers result in a tight thermal coupling of HTSE components to the electrolyzer. It was found that thermal transients arising in the chemical plant are strongly damped at the reactor resulting in a stable combined plant. The large Doppler reactivity component, three times greater than next reactivity component, per unit temperature, is mainly responsible. This is the case even when one of the conditions for out-of-phase oscillations between reactor inlet and outlet temperature, a large time for transport of process heat between the reactor and chemical plant, exists.

Vilim, R. B.; Nuclear Engineering Division

2007-11-01T23:59:59.000Z

424

MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS  

Science Conference Proceedings (OSTI)

The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

2009-03-31T23:59:59.000Z

425

Pantex Plant Operational Awareness Oversight Report _July 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

PTX-2012-07-19 PTX-2012-07-19 Site: Pantex Plant Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness Oversight of the Pantex Plant Dates of Activity : 07/16/2012-07/19/2012 Report Preparer: William Macon Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to perform an operational awareness site visit primarily to review the status of the Babcock & Wilcox Technical Services Pantex, LLC (B&W Pantex) Documented Safety Analysis Upgrade Initiative (DSAUGI) project and the National Nuclear Security Administration (NNSA) response to recent Defense Nuclear Facilities Safety Board (DNFSB) concerns regarding nuclear explosive safety (NES) issues at the Pantex

426

Pantex Plant Operational Awareness Oversight Report _July 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PTX-2012-07-19 PTX-2012-07-19 Site: Pantex Plant Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness Oversight of the Pantex Plant Dates of Activity : 07/16/2012-07/19/2012 Report Preparer: William Macon Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to perform an operational awareness site visit primarily to review the status of the Babcock & Wilcox Technical Services Pantex, LLC (B&W Pantex) Documented Safety Analysis Upgrade Initiative (DSAUGI) project and the National Nuclear Security Administration (NNSA) response to recent Defense Nuclear Facilities Safety Board (DNFSB) concerns regarding nuclear explosive safety (NES) issues at the Pantex

427

Guide for monitoring equipment environments during nuclear plant operation  

Science Conference Proceedings (OSTI)

This guide is intended to assist utilities in formulating and implementing improved monitoring programs by providing guidance on why, where and how to track environmental conditions such as temperature, radiation, and humidity for equipment in nuclear power plants during operation. The guide describes steps for implementing programs. It also gives advantages, disadvantages and costs for a variety of monitoring methods and devices such as sensors with recording devices, thermographic surveys, and passive thermal and radiation integrating devices. The guide also contains twenty technical papers presented at an environmental monitoring workshop covering the subjects of plant experience with elevated temperatures, plant environmental monitoring programs, and techniques for monitoring temperature and radiation. These individual papers have been cataloged separately.

Danahy, J.W.; Evans, R.W. (Grove Engineering, Inc., Rockville, MD (United States))

1991-06-01T23:59:59.000Z

428

NETL: News Release - DOE's Strategic Gas Center Now Operational  

NLE Websites -- All DOE Office Websites (Extended Search)

the Strategic Center for Natural Gas will oversee federal research efforts in gas exploration, production and storage, infrastructure reliability, and advanced gas use...

429

Water Hammer Handbook for Nuclear Plant Engineers and Operators  

Science Conference Proceedings (OSTI)

Water hammer events continue to be responsible for costly equipment damage and plant outages. This Water Hammer Handbook is designed to help utility engineers prevent, mitigate, and accommodate water hammer events. The handbook provides assessment techniques, design approaches, and operating procedures. Also included are a root cause summary and an extensive overview of BWR and PWR water hammer experience on a system-by-system basis.

1996-10-04T23:59:59.000Z

430

Evaluating the Effects of Power Plant Operations on Aquatic Communities  

Science Conference Proceedings (OSTI)

This report provides a summary of impingement survival studies conducted at steam-electric power plants since 1970, along with guidance for their interpretation and use. This information will be of value to permit applicants, risk assessors, and risk managers in estimating impingement effects, designing future impingement survival studies, and evaluating potential fish protection benefits of technologies, operational measures, and habitat restorations and enhancements. The report is a companion to EPRI r...

2003-10-22T23:59:59.000Z

431

Texas - RRC District 7B Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 7B Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

432

U.S. Federal Offshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) U.S. Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

433

Texas - RRC District 7C Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 7C Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

434

Texas - RRC District 8A Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 8A Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

435

Off-site regeneration of gas-plant molecular sieves  

SciTech Connect

The use of regenerated molecular sieve, significantly reduces the operating costs associated with adsorption, dehydration, and processing gas-treating equipment. Laboratory analysis have proven an effective tool in predicting the regenerability of sieve and the expected effectiveness of the regeneration. 2 figures, 1 table.

Moses, J.R. (Catalyst Recovery Canada, Ltd., Calgary, Alberta); Auger, L.E.

1983-03-01T23:59:59.000Z

436

Weekly U.S. Refiner, Blender, and Gas Plant Net Production of ...  

U.S. Energy Information Administration (EIA)

Weekly U.S. Refiner, Blender, and Gas Plant Net Production of Propane and Propylene (Thousand Barrels per Day)

437

Paducah and Portsmouth Sites Advance Operations at DUF6 Plants | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Portsmouth Sites Advance Operations at DUF6 Plants and Portsmouth Sites Advance Operations at DUF6 Plants Paducah and Portsmouth Sites Advance Operations at DUF6 Plants November 1, 2011 - 12:00pm Addthis First cylinder enters plant. First cylinder enters plant. Paducah and Portsmouth Sites Advance Operations at DUF6 Plants First cylinder enters plant. Paducah and Portsmouth Sites Advance Operations at DUF6 Plants Paducah and Portsmouth - Babcock & Wilcox Conversion Services (BWCS) began work at the Paducah and Portsmouth sites in March with the goal of making two depleted uranium hexafluoride (DUF6) conversion plants fully operational. The DOE site operations contactor achieved that goal at 3:43 p.m. Sept. 30 when all seven conversion lines at the plants were designated fully operational. "Our next goal is to bring all seven lines to steady state commercial

438

Analysis of Natural Gas Fuel Cell Plant Configurations  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Natur Analysis of Natur al Gas Fuel Cell Plant Configur ations March 24, 2011 DOE/NETL-2011/1486 Analysis of Natur al Gas Fuel Cell Plant Configur ations Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

439

Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 121 116 93 1970's 79 55 70 71 75 68 61 45 64 49 1980's 41 29 40 55 61 145 234 318 272 254 1990's 300 395 604 513 513 582 603 734 732 879 2000's 586 691 566 647 634 700 794 859 1,008 1,295 2010's 4,578 8,931 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent Pennsylvania Natural Gas Plant Processing

440

Sediment Capping Resource Guide for Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report describes tools and techniques applicable to design and implementation of sediment capping remedies at former manufactured gas plant (MGP) sites. It includes a number of practical case studies describing cap designs and cap construction experience. The report is intended as a sediment capping resource guide to be used with EPRI's 2007 Handbook of Remedial Alternatives for MGP Sites with Contaminated Sediments (EPRI report 1012592).

2008-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Groundwater Closure Strategy for Former Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

Utilities responsible for Manufactured Gas Plant (MGP) remediation must navigate numerous challenges in order to attain regulatory closure. Typically, the first strategic focus is on source remediation: to locate, treat or remove MGP residuals that constitute ongoing sources of impacts to receptors (e.g., direct contact, soil vapor, or groundwater). Often the last compliance piece that must fall into place is compliance with regulatory criteria for groundwater. The state-specific regulatory closure ...

2012-12-12T23:59:59.000Z

442

Solvent Extraction for Remediation of Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

EPRI has assessed the feasibility of using a solvent extraction process to remove coal tar from the subsurface or to treat contaminated soil excavated from manufactured gas plant (MGP) sites. The assessment indicates that in situ solvent extraction may recover a significant amount of tar from the subsurface within a reasonable timeframe, provided subsurface conditions are conducive to process implementation. This work will help utilities searching for cost-effective technologies to remediate MGP sites.

1993-02-18T23:59:59.000Z

443

Fuel gas main replacement at Acme Steel's coke plant  

SciTech Connect

ACME Steel's Chicago coke plant consists of two 4-meter, 50-oven Wilputte underjet coke-oven batteries. These batteries were constructed in 1956--1957. The use of blast furnace gas was discontinued in the late 1960's. In 1977--1978, the oven walls in both batteries were reconstructed. Reconstruction of the underfire system was limited to rebuilding the coke-oven gas reversing cocks and meter in orifices. By the early 1980's, the 24-in. diameter underfire fuel gas mains of both batteries developed leaks at the Dresser expansion joints. These leaks were a result of pipe loss due to corrosion. Leaks also developed along the bottoms and sides of both mains. A method is described that permitted pushing temperatures to be maintained during replacement of underfire fuel gas mains. Each of Acme's two, 50-oven, 4-metric Wilputte coke-oven, gas-fired batteries were heated by converting 10-in. diameter decarbonizing air mains into temporary fuel gas mains. Replacement was made one battery at a time, with the temporary 10-in. mains in service for five to eight weeks.

Trevino, O. (Acme Steel Co., Chicago, IL (United States). Chicago Coke Plant)

1994-09-01T23:59:59.000Z

444

Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants  

SciTech Connect

This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant.

1992-06-01T23:59:59.000Z

445

Evaluation of the Implementation of Contained Recovery of Oily Waste (CROW(TM)) Enhanced Recovery at a Manufactured Gas Plant Site  

Science Conference Proceedings (OSTI)

This report describes the implementation of an enhanced tar recovery remediation system at a former Manufactured Gas Plant (MGP) site. The project included investigations, treatability and testing, cost analysis, system design, construction, and operations.

1999-11-03T23:59:59.000Z

446

EDF Nuclear Power Plants Operating Experience with MOX fuel  

Science Conference Proceedings (OSTI)

EDF started Plutonium recycling in PWR in 1987 and progressively all the 20 reactors, licensed in using MOX fuel, have been loaded with MOX assemblies. At the origin of MOX introduction, these plants operated at full power in base load and the core management limited the irradiation time of MOX fuel assemblies to 3 annual cycles. Since 1995 all these reactors can operate in load follow mode. Since that time, a large amount of experience has been accumulated. This experience is very positive considering: - Receipt, handling, in core behaviour, pool storage and shipment of MOX fuel; - Operation of the various systems of the plant; - Environment impact; - Radioprotection; - Safety file requirements; - Availability for the grid. In order to reduce the fuel cost and to reach a better adequacy between UO{sub 2} fuel reprocessing flow and plutonium consumption, EDF had decided to improve the core management of MOX plants. This new core management call 'MOX Parity' achieves parity for MOX and UO{sub 2} assemblies in term of discharge burn-up. Compared to the current MOX assembly the Plutonium content is increased from 7,08% to 8,65% (equivalent to natural uranium enriched to respectively 3,25% and 3,7%) and the maximum MOX assembly burn-up moves from 42 to 52 GWd/t. This amount of burn-up is obtained from loading MOX assemblies for one additional annual cycle. Some, but limited, adaptations of the plant are necessary. In addition a new MOX fuel assembly has been designed to comply with the safety criteria taking into account the core management performances. These design improvements are based on the results of an important R and D program including numerous experimental tests and post-irradiated fuel examinations. In particular, envelope conditions compared to MOX Parity neutronic solicitations has been extensively investigated in order to get a full knowledge of the in reactor fuel behavior. Moreover, the operating conditions of the plant have been evaluated in many details and finally no important impact is anticipated. The industrial maturity of plutonium recycling activities is fully demonstrated and a new progress can be done with a complete confidence. The licensing process of 'MOX Parity' core management is in progress and its implementation on the 20 PWR is now expected at mid 2007. (author)

Thibault, Xavier [EDF Generation, Tour EDF Part Dieu - 9 rue des Cuirassiers B.P.3181 - 69402 Lyon Cedex 03 (France)

2006-07-01T23:59:59.000Z

447

Gas Release During Saltwell Pumping: Interpretation of Operational Data  

DOE Green Energy (OSTI)

The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive waste that is a complex mix of radioactive and chemical products. Of these, 67 are known or suspected to have leaked liquid into the surrounding soil, while 82 are considered sound (Hanlon 1999). To minimize the amount of material that potentially could leak into the surrounding soil, all of the SSTs are scheduled to have drainable liquid removed and to be designated as interim stabilized. Of the SSTs, 119 have been declared stabilized, and only 30 require further processing (Hanlon 1999). Many of the tanks have been declared stabilized administratively, with only 45 tanks having had drainable liquid removed. The pending consent decree between the Washington State Department of Ecology and the Office of River Protection. (U.S. District Court Eastern District of Washington, 1999) sets a milestone to complete interim stabilization by September 2004. While process equipment exists for removing drainable liquid, and its operation is well known from previous pumping campaigns, a number of safety issues associated with the release and potential ignition of flammable gases within the tanks needs to be addressed. The safety concerns associated with flammable gases stem from the observation that some of the waste in the SSTs generates and retains hazardous quantities of flammable gases, including hydrogen, nitrous oxide, and ammonia. Of the 30 SSTs remaining to be declared interim stabilized, 29 need to have drainable liquid removed by saltwell pumping (waste in tank 241-C-106 will be removed by sluicing), and 16 of these are on the Flammable Gas Watch List (FGWL) (Hopkins 1995; Hanlon 1999). Most of these tanks are in Facility Group 2 (Noorani 1997); that is, it is believed that tank operations may induce the release of significant quantities of flammable gas, but gas release does not occur spontaneously. In particular, saltwell pumping to remove the interstitial liquid from SSTs is expected to cause the release of much of the retained gas, both insoluble (principally hydrogen) and soluble (principally ammonia), posing a number of safety concerns (Peurrung et al. 1997; Meader 1996).

J.L. Huckaby; L.M. Peurrung; P.A. Gauglitz

1999-09-16T23:59:59.000Z

448

pH Adjustment of Power Plant Cooling Water with Flue Gas/Fly Ash  

to fossil fuel burning power plants to control mineral precipitation in cooling water. Flue gas, which is 10% CO2, could be diverted into a plant’s cooling water

449

Final environmental information volume for the coke oven gas cleaning project at the Bethlehem Steel Corporation Sparrows Point Plant  

Science Conference Proceedings (OSTI)

Bethelehem Steel Corporation (BSC) is planning to conduct a demonstration project involving an integrated system that can be retrofitted into coke oven gas handling systems to address a variety of environmental and operational factors in a more cost-effective manner. Successful application of this technology to existing US coke plants could: (1) reduce emissions of sulfur dioxide, cyanide, and volatile organic compounds (including benzene) (2) reduce the cost and handling of processing feed chemicals, (3) disposal costs of nuisance by-products and (4) increase reliability and reduce operation/maintenance requirements for coke oven gas desulfurization systems. The proposed system will remove sulfur from the coke oven gas in the form of hydrogen sulfide using the ammonia indigenous to the gas as the primary reactive chemical. Ammonia and hydrogen cyanide are also removed in this process. The hydrogen sulfide removed from the coke oven gas in routed to a modified Claus plant for conversion to a saleable sulfur by-product. Ammonia and hydrogen cyanide will be catalytically converted to hydrogen, nitrogen, carbon dioxide, and carbon monoxide. The tail gas from the sulfur recovery unit is recycled to the coke oven gas stream, upstream of the new gas cleaning system. The proposed demonstration project will be installed at the existing coke oven facilities at BSC's Sparrows Point Plant. This volume describes the proposed actions and the resulting environmental impacts. 21 refs., 19 figs., 9 tabs.

Not Available

1990-04-24T23:59:59.000Z

450

Cesium Isotope Ratios as Indicators of Nuclear Power Plant Operations  

SciTech Connect

There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive 135Cs/137Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these 135Cs/137Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample.

Darin Snyder; James Delmore; Troy Tranter; Nick Mann; Michael Abbott; John Olson

2011-11-01T23:59:59.000Z

451

Cognitive skill training for nuclear power plant operational decision making  

SciTech Connect

Training for operator and other technical positions in the commercial nuclear power industry traditionally has focused on mastery of the formal procedures used to control plant systems and processes. However, decisionmaking tasks required of nuclear power plant operators involve cognitive skills (e.g., situation assessment, planning). Cognitive skills are needed in situations where formal procedures may not exist or may not be as prescriptive, as is the case in severe accident management (SAM). The Westinghouse research team investigated the potential cognitive demands of SAM on the control room operators and Technical Support Center staff who would be most involved in the selection and execution of severe accident control actions. A model of decision making, organized around six general cognitive processes, was developed to identify the types of cognitive skills that may be needed for effective performance. Also, twelve SAM scenarios were developed to reveal specific decision-making difficulties. Following the identification of relevant cognitive skills, 19 approaches for training individual and team cognitive skills were identified. A review of these approaches resulted in the identification of general characteristics that are important in effective training of cognitive skills.

Mumaw, R.J.; Swatzler, D.; Roth, E.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Thomas, W.A. [Quantum Technologies, Inc., Oak Brook, IL (United States)

1994-06-01T23:59:59.000Z

452

COMBUSTION SOURCES OF UNREGULATED GAS PHASE NITROGENEOUS SPECIES  

E-Print Network (OSTI)

of two power plants operating on natural gas. The N ofindings in a natural fired power of gas plant consisting of

Matthews, Ronald D.

2013-01-01T23:59:59.000Z

453

Advanced Gas Turbine Guidelines Summary of Overall Operating History and Experience from GE 7F in Peaking Operation  

Science Conference Proceedings (OSTI)

This guideline report describes the operating history, performance, and maintenance protocol for advanced gas turbine units. It details the effects of peaking service on the integrity and life of hot-gas-path parts such as buckets and combustors and the frequency of hot gas path inspections. The results have serious implications for the reliability, availability, and maintainability of these units when subjected to peaking operation.

1997-09-30T23:59:59.000Z

454

Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report  

DOE Green Energy (OSTI)

This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

Francfort; Donald Karner; Roberta Brayer

2006-09-01T23:59:59.000Z

455

International safeguards at the feed and withdrawal area of a gas centrifuge uranium enrichment plant  

SciTech Connect

This paper discusses the application of International Atomic Energy Agency (IAEA) safeguards at a model gas centrifuge uranium enrichment plant designed for the production of low-enriched uranium; particular emphasis is placed upon the verification by the IAEA of the facility material balance accounting. After reviewing the IAEA safeguards objectives and concerns at such a plant, the paper describes the material accountancy performed by the facility operator, and discusses strategies by which the operator might attempt to divert a portion of the declared nuclear materials. Finally, the paper discusses the verification of the declared material balance, including sampling strategies, attributes and variables measurements, and nondestructive measurements to improve the efficiency of the inspection measures.

Gordon, D.M.; Sanborn, J.B.

1979-01-01T23:59:59.000Z

456

Solid oxide fuel cell/gas turbine power plant cycles and performance estimates  

DOE Green Energy (OSTI)

SOFC pressurization enhances SOFC efficiency and power performance. It enables the direct integration of the SOFC and gas turbine technologies which can form the basis for very efficient combined- cycle power plants. PSOFC/GT cogeneration systems, producing steam and/or hot water in addition to electric power, can be designed to achieve high fuel effectiveness values. A wide range of steam pressures and temperatures are possible owing to system component arrangement flexibility. It is anticipated that Westinghouse will offer small PSOFC/GT power plants for sale early in the next decade. These plants will have capacities less than 10 MW net ac, and they will operate with efficiencies in the 60-65% (net ac/LHV) range.

Lundberg, W.L.

1996-12-31T23:59:59.000Z

457

Implications of a Regime-Switching Model on Natural Gas Storage Valuation and Optimal Operation  

E-Print Network (OSTI)

Implications of a Regime-Switching Model on Natural Gas Storage Valuation and Optimal Operation-switching model for the risk adjusted natural gas spot price and study the implications of the model on the valuation and optimal operation of natural gas storage facilities. We calibrate the model parameters to both

Forsyth, Peter A.

458

Pilot-plant technical assessment of wet flue gas desulfurization using limestone  

Science Conference Proceedings (OSTI)

An experimental study was performed on a countercurrent pilot-scale packed scrubber for wet flue gas desulfurization (FGD). The flow rate of the treated flue gas was around 300 Nm{sup 3}/h, so the pilot-plant capacity is one of the largest with respect to other published studies on a pilot-plant wet FGD. The tests were carried out at an SO{sub 2} inlet concentration of 2000 ppm by changing the recycle slurry pH to around 4.8 and the L/G ratio to between 7.5 and 15. Three types of limestone were tested, obtaining desulfurization efficiencies from 59 to 99%. We show the importance of choosing an appropriate limestone in order to get a better performance from the FGD plant. Thus, it is important to know the reactivity (on a laboratory scale) and the sorbent utilization (on a pilot-plant scale) in order to identify if a limestone is reactive enough and to compare it with another type. In addition, by using the transfer-unit concept, a function has been obtained for the desulfurization efficiency, using the L/G ratio and the recycle slurry pH as independent variables. The Ca/S molar ratio is related to these and to the SO{sub 2} removal efficiency. This function, together with a simplified function of the operation variable cost, allows us to determine the pair (L/G ratio and pH) to achieve the desired SO{sub 2} removal with the minimum operation cost. Finally, the variable operation costs between packed towers and spray scrubbers have been compared, using as a basis the pilot packed tower and the industrial spray column at the Compostilla Power Station's FGD plant (in Leon, Spain).

Ortiz, F.J.G.; Vidal, F.; Ollero, P.; Salvador, L.; Cortes, V.; Gimenez, A. [University of Seville, Seville (Spain)

2006-02-15T23:59:59.000Z

459

Operation of a 200-kW PAFC Unit on Anaerobic Digestor Gas  

Science Conference Proceedings (OSTI)

The anaerobic digestor process used by over 90% of wastewater treatment plants generates methane-rich gas as a byproduct. This report describes the initial phases of a twelve-month demonstration project in which a fuel cell power plant in Yonkers, New York, is being successfully run on anaerobic digestor gas (ADG).

1997-12-30T23:59:59.000Z

460

Long-range global warming impact of gaseous diffusion plant operation  

SciTech Connect

The DOE gaseous diffusion plant complex makes extensive use of CFC-114 as a primary coolant. As this material is on the Montreal Protocol list of materials scheduled for production curtailment, a substitute must be found. In addition to physical cooling properties, the gaseous diffusion application imposes the unique requirement of chemical inertness to fluorinating agents. This has narrowed the selection of a near-term substitute to two fully fluorinated material, FC-318 and FC-3110, which are likely to be strong, long-lived greenhouse gases. In this document, calculations are presented showing, for a number of plausible scenarios of diffusion plant operation and coolant replacement strategy, the future course of coolant use, greenhouse gas emissions (including coolant and power-related indirect CO{sub 2} emissions), and the consequent global temperature impacts of these scenarios.

Trowbridge, L.D.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Material Consolidation, Rendering, and Disposal Studies of Gas Holders at Former Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report presents results of full-scale field implementation studies conducted in conjunction with an evaluation of EPRI-sponsored bench-scale mixing tests. The study was designed to complement bench-scale mixing studies that correlated those results to full-scale remedial actions at former manufactured gas plant (MGP) sites. The field implementation study included a review of potentially applicable remedial approaches, site characterization, bench-scale treatability tests, and results of site remedia...

2001-12-13T23:59:59.000Z

462

Advanced Gas Turbine Guidelines: Rotating Blade Temperature Measurement System (BTMS)--Supplement No. 1: Durability Surveillance at Florida Power & Light Company's Martin Plant  

Science Conference Proceedings (OSTI)

The blade scans performed by EPRI's Blade Temperature Measurement System (BTMS) represent an important source of blade metal temperature data. These advanced gas turbine guidelines describe the design, installation, and operation of the BTMS in a utility power plant operating General Electric MS7221FA advanced gas turbines. The guidelines include an analysis of blade temperature scans as well as a summary of lessons learned under baseload operating conditions.

1999-04-26T23:59:59.000Z

463

Direct Chlorination Process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5% hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90% excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process Compared to the Stretford Process, the Direct Chlorination process requires about one-third the initial capital investment and about one-fourth the net daily expenditure. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

Sims, A.V.

1983-06-01T23:59:59.000Z

464

Constrained model predictive control implementation for a heavy-duty gas turbine power plant  

Science Conference Proceedings (OSTI)

In this paper, model predictive control (MPC) strategy is implemented to a GE9001E gas turbine power plant. A linear model is developed for the gas turbine using conventional mathematical models and ARX identification procedure. Also a process control ... Keywords: ARX, PID, gas turbine, identification, modeling, multivariable control, power plant, predictive control

Hadi Ghorbani; Ali Ghaffari; Mehdi Rahnama

2008-06-01T23:59:59.000Z

465

Comparative Assessment of Coal-and Natural Gas-fired Power Plants under a  

E-Print Network (OSTI)

Comparative Assessment of Coal- and Natural Gas-fired Power Plants under a CO2 Emission Performance standard (EPS) for pulverized coal (PC) and natural gas combined cycle (NGCC) power plants; · Evaluate · Coal-fired Power Plant: Supercritical pulverized coal (SC PC) Illinois #6 Coal Capacity Factor 75

466

Operational Performance Evaluation of Boiler 9 at the TAMU Power Plant at College Station, Submitted to the Power Plant of Texas A&M University  

E-Print Network (OSTI)

As part of the engineering assistance project, the ESL staff worked with operating staff at the power plant: (1) to evaluate the boiler efficiency of boiler 9 by using combustion analysis; (2) to evaluate gas and steam meters by using measured air flow rate; (3) to identify air leakage through the pre-heater by balancing 0, before and after the pre-heater; and (4) to correct air and steam metered data.

Wei, G.; Veteto, B.; Liu, M.

1996-01-01T23:59:59.000Z

467

Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site  

Science Conference Proceedings (OSTI)

This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

L.E. Demick

2011-10-01T23:59:59.000Z

468

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

469

EIA-782A REFINERS’/GAS PLANT OPERATORS’ MONTHLY PETROLEUM ...  

U.S. Energy Information Administration (EIA)

Washington, D. C. 20585 ... Reporting Option (PEDRO) is a Windows-based ... - The 50 States and the District of Columbia. APPENDIX A:

470

Evaluation of In Situ Thermal Stabilization at a Former Manufactured Gas Plant  

Science Conference Proceedings (OSTI)

In Situ Thermal Stabilization (ISTS) is an emerging technology that has been proposed for the remediation of residual organic contamination at a former Manufactured Gas Plant (MGP) site in the southeastern United States. As described in this report, a test program was designed to verify the effectiveness of ISTS to treat the contaminants of concern, as well as to identify any adverse impacts (e.g., ground settling) to operations on an adjacent set of railroad tracks. A further goal of the testing was to ...

2009-11-13T23:59:59.000Z

471

Small-Scale, Biomass-Fired Gas Turbine Plants Suitable for Distributed and Mobile Power Generation  

Science Conference Proceedings (OSTI)

This study evaluated the cost-effectiveness of small-scale, biomass-fired gas turbine plants that use an indirectly-fired gas turbine cycle. Such plants were originally thought to have several advantages for distributed generation, including portability. However, detailed analysis of two designs revealed several problems that would have to be resolved to make the plants feasible and also determined that a steam turbine cycle with the same net output was more economic than the gas turbine cycle. The incre...

2007-01-19T23:59:59.000Z

472

Mid-summer heat pushes up natural gas use at electric power plants ...  

U.S. Energy Information Administration (EIA)

... revenue and prices, power plants, fuel use, ... four Regional Transmission Organizations—Midwest Independent System Operator (MISO), the PJM Interconnection ...

473

Recent Developments and Operating Experience with British Incinerator Plant  

E-Print Network (OSTI)

the plants have water spray attemperation. Problems have arisen from spray controls, in keeping nozzles clean

Columbia University

474

Support and control system of the Waste Isolation Pilot Plant gas generation experiment glovebox  

SciTech Connect

A glovebox was designed and fabricated to house test containers loaded with contact handled transuranic (CH-TRU) waste. The test containers were designed to simulate the environmental characteristics of the caverns at the Waste Isolation Pilot Plant (WIPP). The support and control systems used to operate and maintain the Gas Generation Experiment (GGE) include the following: glovebox atmosphere and pressure control, test container support, glovebox operation support, and gas supply and exhaust systems. The glovebox atmosphere and pressure control systems consist of various components used to control both the pressure and quality of the argon atmosphere inside the glovebox. The glovebox pressure is maintained by three separate pressure control systems. The primary pressure control system is designed to maintain the glovebox at a negative pressure with the other two control systems serving as redundant safety backups. The quality of the argon atmosphere is controlled using a purifying bed system that removes oxygen and moisture. Glovebox atmosphere contaminants that are monitored on a continuous or periodic basis include moisture, oxygen, and nitrogen. The gas generation experiment requires the test containers to be filled with brine, leak tested, maintained at a constant temperature, and the gas head space of the test container sampled on a periodic basis. Test container support systems consisting of a brine addition system, leak test system, heating system, and gas sampling system were designed and implemented. A rupture disk system was constructed to provide pressure relief to the test containers. Operational requirements stipulated that test container temperature and pressure be monitored and collected on a continuous basis. A data acquisition system (DAS) was specifically designed to meet these requirements.

Benjamin, W.W.; Knight, C.J.; Michelbacher, J.A.; Rosenberg, K.E.

1997-09-01T23:59:59.000Z

475

Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

476

Texas--RRC District 5 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 5 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

477

Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

478

Texas--RRC District 1 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 1 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

479

Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

480

Texas--RRC District 8A Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 8A Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "gas plant operators" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Texas--RRC District 7B Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 7B Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

482

Texas--RRC District 7C Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 7C Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

483

Texas--RRC District 6 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 6 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

484

Texas--RRC District 10 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 10 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

485

Texas--RRC District 9 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 9 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

486

Texas--RRC District 8 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 8 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

487

Title: Net Energy Ratio and Greenhouse Gas Analysis of a Biogas Power Plant  

E-Print Network (OSTI)

of a Biogas Power Plant Author: W. Bauer Author Affiliation: Department and greenhouse gas analysis for a 1.45 MW (0.71 MW electrical) biogas power plant

Bauer, Wolfgang

488

Co-Removal of Mercury from Coal-Fired Power Plant Flue Gas with...  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion conditions, and air pollution control devices upstream of a power plant FGD system have an impact on the types and concentration of flue gas mercury at the...

489

U.S. Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

490

Second law analysis of a natural gas-fired steam boiler and cogeneration plant.  

E-Print Network (OSTI)

??A second law thermodynamic analysis of a natural gas-fired steam boiler and cogeneration plant at Rice University was conducted. The analysis included many components of… (more)

Conklin, Eric D

2010-01-01T23:59:59.000Z

491

,"Texas--RRC District 1 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 1 Natural Gas Plant Liquids, Proved Reserves (Million...

492

,"Texas--RRC District 8 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 8 Natural Gas Plant Liquids, Proved Reserves (Million...

493

,"Texas--RRC District 5 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 5 Natural Gas Plant Liquids, Proved Reserves (Million...

494

,"Texas--RRC District 6 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 6 Natural Gas Plant Liquids, Proved Reserves (Million...

495

,"Texas--RRC District 7B Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 7B Natural Gas Plant Liquids, Proved Reserves (Million...

496

,"Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

497

,"Texas--RRC District 9 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 9 Natural Gas Plant Liquids, Proved Reserves (Million...

498

,"Texas--RRC District 8A Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 8A Natural Gas Plant Liquids, Proved Reserves (Million...

499

,"Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

500

,"Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Proved Reserves (Million...