National Library of Energy BETA

Sample records for gas pipeline transportation

  1. EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation

    U.S. Energy Information Administration (EIA) Indexed Site

    Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown

  2. EIA - Natural Gas Pipeline Network - Natural Gas Transportation Corridors

    U.S. Energy Information Administration (EIA) Indexed Site

    Map Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major U.S. Natural Gas Transportation Corridors, 2008

  3. EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation

    U.S. Energy Information Administration (EIA) Indexed Site

    Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow

  4. EIA - Natural Gas Pipeline Network - Transportation Process & Flow

    U.S. Energy Information Administration (EIA) Indexed Site

    Process and Flow About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Transportation Process and Flow Overview | Gathering System | Processing Plant | Transmission Grid | Market Centers/Hubs | Underground Storage | Peak Shaving Overview Transporting natural gas from the wellhead to the final customer involves several physical transfers of custody and multiple processing steps. A natural gas pipeline system begins at the natural gas

  5. Illinois user sues pipeline on refusal to transport gas

    SciTech Connect (OSTI)

    Barber, J.

    1985-12-02

    An Illinois steel company filed suit against Panhandle Eastern Pipeline Co. for refusing to transport natural gas after its gas transportation program ended on November 1. The company is asking for three times the amount it is losing, which is $7,000 per day, since being forced to purchase from a higher priced distribution company. The suit claims that Panhandle's refusal violates federal and state anti-trust laws and threatens the plant's continued operation. This is the first legal action by a single industrial user, but consumer groups have named over 20 major interstate pipelines for the same allegation when pipelines declined to participate in open access transportation under Order 436.

  6. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY,

  7. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor

    U.S. Energy Information Administration (EIA) Indexed Site

    Stations Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Compressor Stations Illustration, 2008 Map of U.S. Natural Gas Pipeline Compressor Stations Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Natural Gas Transportation Information System. The EIA has determined that the informational map displays here do not raise security

  8. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage by

    U.S. Energy Information Administration (EIA) Indexed Site

    Region/State Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Estimated Natural Gas Pipeline Mileage in the Lower 48 States, Close of 2008 Estimated Natural Gas Pipeline Mileage in the Lower 48 States, Close of 2008

  9. EIA - Natural Gas Pipeline Network - Generalized Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity Design Schematic Generalized Design Schematic About U.S. Natural Gas Pipelines- Transporting Natural Gas based on data through 2007/2008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic

  10. EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Interstate Natural Gas Pipeline Segment Two-thirds of the lower 48 States are almost totally dependent upon the interstate pipeline system for their supplies of natural gas. On the interstate pipeline grid, the long-distance, wide-diameter (20-42 inch), high capacity trunklines carry most of the natural gas that is transported throughout the

  11. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &

    U.S. Energy Information Administration (EIA) Indexed Site

    Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years

  12. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average

  13. EIA - Natural Gas Pipeline System - Western Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving

  14. EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline...

    Gasoline and Diesel Fuel Update (EIA)

    ... In some instances, an intrastate natural gas pipeline may also be classified as a "Hinshaw" pipeline. Although such pipelines receive all of their supplies from interstate pipeline ...

  15. GAS PIPELINE PIGABILITY

    SciTech Connect (OSTI)

    Ted Clark; Bruce Nestleroth

    2004-04-01

    In-line inspection equipment is commonly used to examine a large portion of the long distance transmission pipeline system that transports natural gas from well gathering points to local distribution companies. A piece of equipment that is inserted into a pipeline and driven by product flow is called a ''pig''. Using this term as a base, a set of terms has evolved. Pigs that are equipped with sensors and data recording devices are called ''intelligent pigs''. Pipelines that cannot be inspected using intelligent pigs are deemed ''unpigable''. But many factors affect the passage of a pig through a pipeline, or the ''pigability''. The pigability pipeline extend well beyond the basic need for a long round hole with a means to enter and exit. An accurate assessment of pigability includes consideration of pipeline length, attributes, pressure, flow rate, deformation, cleanliness, and other factors as well as the availability of inspection technology. All factors must be considered when assessing the appropriateness of ILI to assess specific pipeline threats.

  16. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  17. EIA - Natural Gas Pipeline System - Midwest Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Midwest Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty-six interstate and at least eight intrastate natural gas pipeline companies operate within the Midwest Region (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin). The principal sources of natural gas supply for the

  18. EIA - Natural Gas Pipeline System - Southwest Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily

  19. EIA - Natural Gas Pipeline System - Central Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve

  20. EIA - Natural Gas Pipeline System - Northeast Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These

  1. About U.S. Natural Gas Pipelines

    Reports and Publications (EIA)

    2007-01-01

    This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

  2. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three

  3. EIA - Natural Gas Pipeline Network - Natural Gas Transmission Path Diagram

    U.S. Energy Information Administration (EIA) Indexed Site

    Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Transmission Path Natural Gas Transmission Path

  4. Deliverability on the Interstate Natural Gas Pipeline System

    Reports and Publications (EIA)

    1998-01-01

    Examines the capability of the national pipeline grid to transport natural gas to various U.S. markets.

  5. Pipeline transportation of natural gas from the Gulf Coast to the Northeast

    SciTech Connect (OSTI)

    Boehm, J.C.

    1980-01-01

    Transcontinental Gas Pipe Line Corp.'s national gas pipeline system from the Gulf Coast producing area (where 75% of its supply lies offshore) extends for 1832 mi along the Gulf Coast through the southeastern Piedmont and north to terminate in New York City. It serves high-priority markets in 11 southern and Atlantic seaboard states with a daily flowing capacity of 3.0 billion cu ft/day and an additional 1.5 billion cu ft/day available from storage. Also discussed are gas conditioning for the removal of hydrogen sulfide, carbon dioxide, water vapor and entrained salt water and solids, and measurement of gas volume with a meter and gravitometer and of heating value with a calorimeter; gas transmission through 9,295 mi of pipeline, made up mostly of four, 30-42 in. dia parallel pipelines with 1,062,452 hp of compression capacity; LNG storage, including unique facilities at the Eminence, Miss., Salt Dome Storage facility and the Carlstadt, N.J., LNG plant; odorization; operations; and pipeline protection against third-party damage and against corrosion.

  6. EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Systems Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co

  7. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...

    Gasoline and Diesel Fuel Update (EIA)

    Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural ...

  8. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins Relative to

    U.S. Energy Information Administration (EIA) Indexed Site

    Major Natural Gas Pipeline Transportation Corridors Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major Supply Basins

  9. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  10. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    U.S. Energy Information Administration (EIA) Indexed Site

    Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in

  11. EIA - Natural Gas Pipeline Network - U.S. Natural Gas Pipeline Network Map

    U.S. Energy Information Administration (EIA) Indexed Site

    Network Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network, 2009 U.S. Natural Gas Pipeline Network Map The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for Providing Appropriate Access to Geospatial Data in Response to Security Concerns

  12. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Salt Cavern ...

  13. EIA - Natural Gas Pipeline Network - Expansion Process Flow Diagram

    U.S. Energy Information Administration (EIA) Indexed Site

    Development & Expansion > Development and Expansion Process Figure About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates ...

  14. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground ...

  15. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production ...

  16. EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Import/Export Pipelines As of the close of 2008 the United States has 58 locations where natural gas can be exported or imported. 24 locations are for imports only 18 locations are for exports only 13 locations are for both imports and exports 8 locations are liquefied natural gas (LNG) import facilities Imported natural gas in 2007 represented almost 16 percent

  17. Heavy oil transportation by pipeline

    SciTech Connect (OSTI)

    Gerez, J.M.; Pick, A.R.

    1996-12-31

    Worldwide there are a number of pipelines used to transport heavy crude oils. The operations are facilitated in a variety of ways. For example, the Alyeska pipeline is an insulated pipeline transporting warm oil over 800 miles. This 48-inch line experiences limited heat loss due to the insulation, volume of oil contained, and heat gain due to friction and pumping. Some European trunk lines periodically handle heavy and waxy crudes. This is achieved by proper sizing of batches, following waxy crudes with non-waxy crudes, and increased use of scrapers. In a former Soviet republic, the transportation of heavy crude oil by pipeline has been facilitated by blending with a lighter Siberian crude. The paper describes the pipeline transport of heavy crudes by Interprovincial Pipe Line Inc. The paper describes enhancing heavy oil transportation by emulsion formation, droplet suspension, dilution, drag reducing agents, and heating.

  18. EIA - Natural Gas Pipeline Network - Regulatory Authorities

    U.S. Energy Information Administration (EIA) Indexed Site

    Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it,

  19. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Aquifer Underground Natural Gas Storage Reservoir Configuration Aquifer Underground Natural Gas Well

  20. EIA - Natural Gas Pipeline Network - States Dependent on Interstate

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipelines Map States Dependent on Interstate Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates States in grey which are at least 85% dependent on the interstate pipeline network for their natural gas supply are: New England - Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Southeast - Florida, Georgia, North Carolina, South Carolina, Tennessee Northeast - Delaware, Maryland, New Jersey, New

  1. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies

  2. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Depleted Production Reservoir Underground Natural Gas Storage Well Configuration Depleted Production Reservoir Storage

  3. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... distribution, or storage operations. 2 Capacity ... as found in the Energy Information Administration, Natural Gas Transportation Information System, Natural Gas ...

  4. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  5. EIA - Natural Gas Pipeline Network - Region To Region System Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Levels Interregional Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Interregional Natural Gas Transmission Pipeline Capacity, Close of 2008 (Million cubic feet per day) Map of Interregional Natural Gas Transmission Pipeline Capacity in 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for

  6. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Facilities Map U.S. Underground Natural Gas Storage Facilities Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Underground Natural Gas Storage Facilities, Close of 2007 more recent map U.S. Underground Natural Gas Storage Facilities, 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for

  7. EIA - Natural Gas Pipeline Network - Natural Gas Market Centers and Hubs

    U.S. Energy Information Administration (EIA) Indexed Site

    Market Centers and Hubs About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Market Centers and Hubs in Relation to Major Natural Gas Transportation Corridors, 2009 Natural Gas Market Centers and Hubs in Relation to Major Natural Gas Transportation Corridors, 2009 DCP = DCP Midstream Partners LP; EPGT = Enterprise Products Texas Pipeline Company. Note: The relative widths of the various transportation corridors are based

  8. The 14th Pipeline and Gas Journal 500 report. [Statistical dimensions of leading US pipeline companies

    SciTech Connect (OSTI)

    Congram, G.E.

    1994-09-01

    This article presents compiled data on oil and gas pipeline systems in the US and includes specific information on mileage, volume of transported fluids, and cost information. It lists the rankings based on miles of pipeline, units of gas sold, number of customers, units of petroleum sold, and utility by production sales. Information is also presented in alphabetical format.

  9. EIA - Natural Gas Pipeline Network - Regional Definitions

    U.S. Energy Information Administration (EIA) Indexed Site

    Definitions Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Definitions The regions defined in the above map are based upon the 10 Federal Regions of the U.S. Bureau of Labor Statistics. The State groupings are as follows: Northeast Region - Federal Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. Federal Region 2: New Jersey, and New York. Federal Region 3:Delaware, District of

  10. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc.

  11. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Facilities Map LNG Peak Shaving and Import Facilities Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. LNG Peaking Shaving and Import Facilities, 2008 U.S. LNG Peak Shaving and Import Facilities, 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for Providing Appropriate Access to Geospatial

  12. EIA - Natural Gas Pipeline Network - Network Configuration & System Design

    U.S. Energy Information Administration (EIA) Indexed Site

    Network Configuration & System Design About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Network Configuration and System Design Overview | Transmission/Storage | Design Criteria | Importance of Storage| Overall Pipeline System Configuration Overview A principal requirement of the natural gas transmission system is that it be capable of meeting the peak demand of its shippers who have contracts for firm service. To meet this

  13. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Bulk Packaging Placarding Requirements - Placarding of Packages vs. Placarding Vehicle * LSASCO Scenarios - 7 - U.S. Department of Transportation Pipeline and Hazardous Materials...

  14. New Jersey Natural Gas Pipeline and Distribution Use (Million...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) New Jersey Natural Gas Pipeline and Distribution Use (Million Cubic ... Referring Pages: Natural Gas Pipeline & Distribution Use New Jersey Natural Gas ...

  15. New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Price (Dollars per Thousand Cubic Feet) New Jersey Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use New Jersey Natural Gas Prices Price ...

  16. New York Natural Gas Pipeline and Distribution Use (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) New York Natural Gas Pipeline and Distribution Use (Million Cubic ... Referring Pages: Natural Gas Pipeline & Distribution Use New York Natural Gas Consumption ...

  17. New Mexico Natural Gas Pipeline and Distribution Use (Million...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) New Mexico Natural Gas Pipeline and Distribution Use (Million Cubic ... Referring Pages: Natural Gas Pipeline & Distribution Use New Mexico Natural Gas ...

  18. New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Price (Dollars per Thousand Cubic Feet) New Mexico Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use New Mexico Natural Gas Prices Price ...

  19. North Dakota Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use North Dakota Natural Gas Prices Price ...

  20. North Carolina Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) North Carolina Natural Gas Pipeline and ... Price for Natural Gas Pipeline and Distribution Use North Carolina Natural Gas Prices ...

  1. North Carolina Natural Gas Pipeline and Distribution Use (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) North Carolina Natural Gas Pipeline and Distribution Use (Million ... Referring Pages: Natural Gas Pipeline & Distribution Use North Carolina Natural Gas ...

  2. North Dakota Natural Gas Pipeline and Distribution Use (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) North Dakota Natural Gas Pipeline and Distribution Use (Million ... Referring Pages: Natural Gas Pipeline & Distribution Use North Dakota Natural Gas ...

  3. Minnesota Natural Gas Pipeline and Distribution Use (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic ... Natural Gas Pipeline & Distribution Use Minnesota Natural Gas Consumption by End Use ...

  4. Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use Minnesota Natural Gas Prices Price for ...

  5. California Natural Gas Pipelines: A Brief Guide

    SciTech Connect (OSTI)

    Neuscamman, Stephanie; Price, Don; Pezzola, Genny; Glascoe, Lee

    2013-01-22

    The purpose of this document is to familiarize the reader with the general configuration and operation of the natural gas pipelines in California and to discuss potential LLNL contributions that would support the Partnership for the 21st Century collaboration. First, pipeline infrastructure will be reviewed. Then, recent pipeline events will be examined. Selected current pipeline industry research will be summarized. Finally, industry acronyms are listed for reference.

  6. Natural gas marketing and transportation

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners.

  7. The open-access era. [Regulations on natural gas pipeline access

    SciTech Connect (OSTI)

    Johnson, R. )

    1992-03-01

    This article examines the effects on the natural gas transportation industry that the Federal Energy Regulatory Commission's recent proposed rulemaking will have. The topics of the article include take-or-pay pricing, the changing role of the pipeline in the natural gas market, unbundling of the services a pipeline provides, and achieving the fullest possible use of the pipeline network.

  8. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Environmental Management (EM)

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the ...

  9. Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  10. Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  11. Pipeline issues shape southern FSU oil, gas development

    SciTech Connect (OSTI)

    1995-05-22

    To future production from southern republics of the former Soviet Union (FSU), construction and revitalization of pipelines are as important as the supply of capital. Export capacity will limit production and slow development activity in the region until new pipelines are in place. Plenty of pipeline proposals have come forward. The problem is politics, which for every proposal so far complicates routing or financing or both. Russia has made clear its intention to use pipeline route decisions to retain influence in the region. As a source of external pressure, it is not alone. Iran and Turkey also have made strong bids for the southern FSU`s oil and gas transport business. Diplomacy thus will say as much as commerce does about how transportation issues are settled and how quickly the southern republics move toward their potentials to produce oil and gas. The paper discusses possible routes and the problems with them, the most likely proposal, and future oil flows.

  12. Deliverability on the interstate natural gas pipeline system

    SciTech Connect (OSTI)

    1998-05-01

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  13. Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Natural Gas Pipeline Network DOE'S HYDROGEN ENERGY STORAGE FOR GRID AND TRANSPORTATION SERVICES WORKSHOP Sacramento, CA May 14, 2014 Brian Weeks Gas Technology Institute 2 2 Topics for Today >GTI Introduction >Natural Gas Infrastructure is Undergoing Changes >Questions that have been addressed >Two Scenarios >Unanswered Questions >CEC's Mobile Hydrogen Station 3 3 Company Overview ESTABLISHED 1941 > Independent, not-for-profit company established by natural gas

  14. Natural Gas Pipeline and System Expansions

    Reports and Publications (EIA)

    1997-01-01

    This special report examines recent expansions to the North American natural gas pipeline network and the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

  15. EIA - Natural Gas Pipeline Network - Regional/State Underground Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage Summary Regional/State Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Underground Natural Gas Storage, Close of 2007 Depleted-Reservoir Storage Aquifer Storage Salt-Cavern Storage Total Region/ State # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas

  16. Expansion and Change on the U.S. Natural Gas Pipeline Network 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 EIA Home > Natural Gas > Natural Gas Analysis Publications Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 Printer-Friendly Version Expansion and Change on the U.S. Natural Gas Pipeline Network - 2002 Text Box: This special report looks at the level of new capacity added to the national natural gas pipeline network in 2002 and the current capability of that network to transport supplies from production

  17. Pipeline transportation of heavy crude oil

    SciTech Connect (OSTI)

    Kessick, M.A.; St. Denis, C.E.

    1982-08-10

    Heavy crude oils are transported by pipeline from deposit location to a remote upgrading location by emulsifying the crude oil using deaerated sodium hydroxide solution, conveying the oilin-water emulsion through the pipeline, and recovery of the oil from the oil-in-water emulsion by inverting the emulsion and dewatering the resulting water-in-oil emulsion. The emulsion inversion may be effected using slaked lime, resulting in recovery of a substantial proportion of the sodium hydroxide used in the initial emulsification. The sodium hydroxide solution may be recycled by a separate pipeline for reuse or treated for discharge.

  18. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    SciTech Connect (OSTI)

    Di Bella, Francis A.

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary to relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.

  19. EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

  20. EIA - Natural Gas Pipeline Network - Natural Gas Import/Export Locations

    U.S. Energy Information Administration (EIA) Indexed Site

    Map Export Pipelines > Import/Export Locations Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Import/Export Locations, as of the end of 2008 Natural Gas Import and Export Locations Source: Energy Information Administration, Office of Oil and Gas, Natural Gas Division, Imports/Export Points Database. The EIA has determined that the informational map displays here do not raise security concerns, based

  1. Gas supplies of interstate natural gas pipeline companies, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-12-11

    This publication provides information on the total reserves, production, and deliverability capabilities of the 64 interstate pipeline companies required to file the Federal Energy Regulatory Commission (FERC) Form 15, ``Interstate Pipeline`s Annual Report of Gas Supply.`` Data reported on this form are not considered to be confidential. This publication is the 29th in a series of annual reports on the total gas supplies of interstate pipeline companies since the inception of individual company reports to the Federal Power Commission (FPC) in 1964 for report year 1963.

  2. New York Natural Gas Pipeline and Distribution Use Price (Dollars...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Price (Dollars per Thousand Cubic Feet) New York Natural Gas Pipeline and Distribution Use ... Price for Natural Gas Pipeline and Distribution Use New York Natural Gas Prices Price for ...

  3. EIA - Natural Gas Pipeline Network - Natural Gas Import/Export Locations

    U.S. Energy Information Administration (EIA) Indexed Site

    List Pipelines > Import/Export Location List About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Currently, there are 58 locations at which natural gas can be exported or imported into the United States, including 9 LNG (liquefied natural gas) facilities in the continental United States and Alaska (There is a tenth U.S. LNG import facility located in Puerto Rico). At 28 of these locations natural gas or LNG currently can only

  4. Pipeline and Gas Journal`s 1998 annual pipeline directory and equipment guide

    SciTech Connect (OSTI)

    1998-09-01

    The tables provide information on line pipe sizes, walls, grades, and manufacturing processes. Data are presented by manufacturer within each country. Also tabulated are engineering and construction service companies, crude oil pipeline companies, products pipeline companies, natural gas pipeline companies, gas distribution companies, and municipal gas systems in the US. There is also a Canadian and an international directory.

  5. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. 04_adams_nat_gas.pdf (9.97 MB) More Documents & Publications Evalutation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service Hydrogen Compatibility of

  6. The evaluation and restoration of a deteriorated buried gas pipeline

    SciTech Connect (OSTI)

    Dovico, R.; Montero, E.

    1996-12-31

    Historically, the Argentine gas transmission and distribution industry was owned and operated by the State. In 1992, by government decree, this entire industry was transferred to private owners and operators, and divided into two Gas Transmission Companies (TGN and TGS) and eight Gas Distribution Companies. The pipelines and related facilities had been left in an operating condition, however major capital investments were required to assure that the integrity, reliability and operability of the facilities were intact. These capital expenditures were mandatory in many areas as part of the privatization. Maintenance and rehabilitation tasks were developed for the entire transmission system, with the intent to reduce the number of unscheduled outages, optimize system maintenance costs, increase operation safety, and upgrade the pipeline to ensure compliance with the international code. Transportadora de Gas del Norte (TGN), operated by Nova Gas International of Calgary, Canada, consists of two major pipeline transmission systems. The North Line, which transports gas from Northern Argentina and Bolivia to markets south to Buenos Aires is a 24 inch, 3,000 Km system constructed in 1960. It was constructed using a field applied asphalt coating system. The Center West Line, which transports gas from central Argentina (Neuquen) to markets in the western part of the country and also the Buenos Aires area, is a 30 inch, 1,400 Km system constructed in 1981. It was constructed using a field applied polyethylene tape coating system.

  7. ,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1: U.S. Natural Gas Pipeline Imports From Canada (MMcf)" "Sourcekey","N9102CN2" "Date","U.S. Natural Gas Pipeline Imports From Canada (MMcf)" 26845,1027883 27210,959063 ...

  8. Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug ...

  9. Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ...

  10. Gas supplies of interstate natural gas pipeline companies, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-12-11

    This publication provides information on the total reserves, production, and deliverability capabilities of the 64 interstate pipeline companies required to file the Federal Energy Regulatory Commission (FERC) Form 15, Interstate Pipeline's Annual Report of Gas Supply.'' Data reported on this form are not considered to be confidential. This publication is the 29th in a series of annual reports on the total gas supplies of interstate pipeline companies since the inception of individual company reports to the Federal Power Commission (FPC) in 1964 for report year 1963.

  11. Expansion of the U.S. Natural Gas Pipeline Network

    Reports and Publications (EIA)

    2009-01-01

    Additions in 2008 and Projects through 2011. This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives.

  12. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect (OSTI)

    Not Available

    1990-12-18

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  13. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Broader source: Energy.gov (indexed) [DOE]

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building ...

  14. ,"U.S. Intrastate Natural Gas Pipeline Systems"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Co","Kinder Morgan Energy Partners LP ... Gas Storage LLC","Intrastate",100,30,"Midwest","MI",,,... "Cardinal Pipeline System","Quicksilver ...

  15. Natural Gas Pipeline Network: Changing and Growing

    Reports and Publications (EIA)

    1996-01-01

    This chapter focuses upon the capabilities of the national natural gas pipeline network, examining how it has expanded during this decade and how it may expand further over the coming years. It also looks at some of the costs of this expansion, including the environmental costs which may be extensive. Changes in the network as a result of recent regional market shifts are also discussed.

  16. Look at Western Natural Gas Infrastructure During the Recent El Paso Pipeline Disruption, A

    Reports and Publications (EIA)

    2000-01-01

    This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

  17. Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season

    Reports and Publications (EIA)

    2000-01-01

    This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

  18. Analysis of gas chilling alternatives for Arctic pipelines

    SciTech Connect (OSTI)

    Dvoiris, A.; McMillan, D.K.; Taksa, B.

    1994-12-31

    The operation of buried natural gas pipelines in Arctic regions requires installation of gas chilling facilities at compressor stations. These facilities are required in order to cool compressed pipeline gases to temperatures below that of permanently frozen surrounding soil. If these pipeline gas temperatures are too high, the frozen ground around the pipelines will eventually thaw. This is undesirable for many reasons amongst which are ground settlement and possible catastrophic failure of the pipeline. This paper presents the results of a study which compared several alternative methods of gas chilling for possible application at one of the compressor stations on the proposed new Yamal-Center gas pipeline system in the Russian Arctic. This technical and economic study was performed by Gulf Interstate Engineering (GIE) for GAZPROM, the gas company in Russia that will own and operate this new pipeline system. Geotechnical, climatical and other information provided by GAZPROM, coupled with information developed by GIE, formed the basis for this study.

  19. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thad M. Adams Materials Technology Section Savannah River National Laboratory DOE Hydrogen Pipeline R&D Project Review Meeting January 5-6, 2005 Evaluation of Natural Gas Pipeline ...

  20. Buried gas pipelines under vehicular crossings

    SciTech Connect (OSTI)

    Oey, H.S.; Greggerson, V.L.; Womack, D.P.

    1984-03-01

    This paper describes and evaluates the various methods used in the analysis and design of buried pipelines under vehicular crossings extracted from a vast number of literature. It was found that a unified treatment of the subject is currently not available and additional work is required. The study shows that there are sufficient data and technical information that can be integrated to produce sound design. Theoretical as well as empirical formulas are scrutinized and incorporated in their appropriate places. Design examples are presented, complete with the detail calculations. Where applicable nomographs and graphs are adapted as design aids. A brief review of the current safety codes pertaining to natural gas pipeline design is also presented.

  1. Pipeline transportation and underground storage are vital and complementary components of the U

    U.S. Energy Information Administration (EIA) Indexed Site

    Changes in U.S. Natural Gas Transportation Infrastructure in 2004 Energy Information Administration, Office of Oil and Gas, June 2005 1 This report looks at the level of growth that occurred within the U.S. natural gas transportation network during 2004. In addition, it includes a discussion and an analysis of recent gas pipeline development activities and an examination of additional projects proposed for completion over the next several years. Questions or comments on the contents of this

  2. EIA - Analysis of Natural Gas Imports/Exports & Pipelines

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    trends, offshore production shut-ins caused by infrastructure problems and hurricanes, imports and exports of pipeline and liquefied natural gas, and the above-average...

  3. Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network

    Broader source: Energy.gov (indexed) [DOE]

    the Natural Gas Pipeline Network DOE'S HYDROGEN ENERGY STORAGE FOR GRID AND ... >Unanswered Questions >CEC's Mobile Hydrogen Station 3 3 Company Overview ESTABLISHED ...

  4. ,"Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  5. ,"Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2014 ,"Release...

  6. ,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet ... Natural Gas Pipeline Imports From Canada (MMcf)",1,"Monthly","42016" ,"Release ...

  7. ,"Rhode Island Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  8. ,"New Jersey Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    eries","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  9. ,"North Carolina Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    s","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  10. ,"North Dakota Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  11. ,"New Hampshire Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    es","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  12. ,"New Mexico Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    eries","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  13. ,"New York Natural Gas Pipeline and Distribution Use Price (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  14. ,"U.S. Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01292016 9:45:31 AM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports From Mexico (MMcf)" "Sourcekey","N9102MX2" "Date","U.S. Natural Gas...

  15. Changes in the Pipeline Transportation Market

    Reports and Publications (EIA)

    1999-01-01

    This analysis assesses the amount of capacity that may be turned back to pipeline companies, based on shippers' actions over the past several years and the profile of contracts in place as of July 1, 1998. It also examines changes in the characteristics of contracts between shippers and pipeline companies.

  16. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect (OSTI)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  17. Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop

    Office of Environmental Management (EM)

    Gary L. Smith - Office of Waste Processing (EM-21) Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop 1 Dr. Gary L. Smith - Office of Waste Processing (EM-21) Dr. ...

  18. Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use (Million Cubic Feet) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2 2 3 2 2 2010's 2 2 3 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline & Distribution Use Hawaii Natural Gas

  19. Calexico, CA Natural Gas Pipeline Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Calexico, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 565 544 592 557 600 586 592 ...

  20. Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 252 1,324 824 1,017 871 770 ...

  1. Ogilby Mesa, CA Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Ogilby Mesa, CA Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 78 376 2013 16 7 - No ...

  2. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12 40 77 59 55 47 43 41 ...

  3. Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 39 24 19 15 18 16 15 16 16 18 ...

  4. Otay Mesa, CA Natural Gas Pipeline Imports from Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Mexico (Million Cubic Feet) Otay Mesa, CA Natural Gas Pipeline Imports from Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 236 86 93 110 ...

  5. El Paso, TX Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's ...

  6. El Paso, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  7. New Hampshire Natural Gas Pipeline and Distribution Use (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) New Hampshire Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  8. New Hampshire Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  9. North Troy, VT Natural Gas Pipeline Imports From Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) North Troy, VT Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's ...

  10. North Troy, VT Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) North Troy, VT Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  11. Alaskan Natural Gas Pipeline Developments (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

  12. Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery » Gaseous Hydrogen » Hydrogen Pipelines Hydrogen Pipelines Photo of a hydrogen pipeline. Gaseous hydrogen can be transported through pipelines much the way natural gas is today. Approximately 1,500 miles of hydrogen pipelines are currently operating in the United States. Owned by merchant hydrogen producers, these pipelines are located where large hydrogen users, such as petroleum refineries and chemical plants, are concentrated such as the Gulf Coast region. Transporting gaseous

  13. EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

  14. Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65

    SciTech Connect (OSTI)

    Hashemi, S. H.; Mohammadyani, D.

    2011-01-17

    The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

  15. Natural Gas Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market

    U.S. Energy Information Administration (EIA) Indexed Site

    Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e.,

  16. Natural Gas Transportation Resiliency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stations - Capacity firm versus peak day - Redundancy - Reliability * Pipeline(s) - Nominal Design Capacity (FERC 567) - Load factor by segment - Age and type of pipe - Level ...

  17. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues | Department of Energy Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and

  18. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    SciTech Connect (OSTI)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  19. Worldwide pipelines and contractors directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory contains information on the following: pipeline contractors; US natural gas pipelines; US crude oil pipelines; US product pipelines; Canadian pipelines and foreign pipelines.

  20. Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9 8 8 2000's 15 14 14 14 14 14 15 16 15 17 2010's 16 53 114 89 124 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline & Distribution Use Vermont Natural

  1. Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 2000's 808 1,164 877 859 658 585 494 753 943 837 2010's 1,753 2,399 762 844 1,300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline & Distribution Use

  2. Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13 15 45 2000's 62 23 49 34 39 40 18 16 18 22 2010's 140 464 1,045 970 1,040 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline & Distribution Use

  3. Pipeline transportation and underground storage are vital and complementary components of the U

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005 This report examines the amount of new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2005 and the areas of the country where those additions were concentrated. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2006 and 2008 and the market factors supporting these initiatives. Questions or comments on the contents of this article

  4. Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico...

    Gasoline and Diesel Fuel Update (EIA)

    Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Price of San Elizario, TX Natural Gas Pipeline Exports to Mexico (Dollars per...

  5. ,"Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet)" "Sourcekey","N9102CN3" "Date","Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars per Thousand ...

  6. McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  7. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    Fuel Cell Technologies Publication and Product Library (EERE)

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipeline

  8. Competition in the natural gas pipeline industry: An economic policy analysis

    SciTech Connect (OSTI)

    Gallick, E.C.

    1993-01-01

    The Federal Energy Regulatory Commission (FERC) currently regulates the price at which natural gas can be sold by regulated interstate natural gas pipelines. Whether pipelines should be deregulated depends, to an important extent, on the competitive nature of the market. The key question is whether pipelines can successfully raise price (i.e., the transport fee) and reduce output if the market is deregulated. In most natural gas pipeline markets, there are a small number of current suppliers. Opponents of deregulation argue that the unrestrained market power of pipelines in many local markets will introduce inefficiencies in the sale of natural gas. Implicit in their arguments is a narrow view of competition: the number of current suppliers. The competitive effect of potential entry is largely ignored. These commentators would argue that without potential entry, it may be true that the net social cost of deregulation exceeds the costs of maintaining present regulation. A study was conducted to determine the extent to which potential entry might constrain the exercise of market power by natural gas pipelines if price and entry regulation is removed. Potential entrants are defined in the context of antitrust markets. That is, these markets are consistent with the Department of Justice (DOJ) Merger Guidelines. The study attempts to quantify the effects of potential entry on the market power of current suppliers. The selection of potential entrants therefore considers a number of factors (such as the size of the nearby supplier and the distance to the market) that are expected to affect the likelihood of collision in a deregulated market. The policy implications of the study are reviewed.

  9. Montana Natural Gas Pipeline and Distribution Use (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,436 3,746 5,968 2000's ...

  10. Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 8,088 6,402 7,296 6,783 8,836 ...

  11. Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,249 5,761 5,912 5,065 6,188 ...

  12. U.S. Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Pipeline Volumes 221,550 260,709 241,243 231,341 235,818 243,017 1973-2016 Pipeline Prices 2.13 2.42 2.12 1.54 1.51 1.44 1989-2016 Liquefied Natural Gas Volumes 59 97 116 65 74 113 2013-2016 Liquefied Natural Gas Prices 8.12 8.21 8.58 8.74 7.88 7.72 2013-2016 Compressed Natural Gas Volumes 26 30 29 33 28 29 2014-2016 Compressed Natural Gas Prices 3.78 5.41 3.27 1.54 1.05 1.10 2014

  13. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    SciTech Connect (OSTI)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  14. Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996

    Reports and Publications (EIA)

    2007-01-01

    This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 states. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas.

  15. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Pipeline Exports to Canada (Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 2 2013 3 5 4 6 9 8 5 8 7 5 7 5 2014 8 11 10 8 8 5 6 6 6 6 6 7 2015 5 4 5 5 5 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied

  16. Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996

    U.S. Energy Information Administration (EIA) Indexed Site

    Compressor Stations on the Interstate Pipeline Network: Developments Since 1996 This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 States. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas. Questions or comments on the contents of this article may be directed to

  17. EIA - Natural Gas Pipeline System - Southeast Region

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Island and a new 875 MW natural gas fired power plant located in southeastern South Carolina. ... also from the developing coal-bed methane production sources in the State as well. ...

  18. Natural Gas Imports by Pipeline into the U.S. Form | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Pipeline into the U.S. Form Natural Gas Imports by Pipeline into the U.S. Form Excel Version of Natural Gas Imports by Pipeline into the U.S. Form.xlsx (11.83 KB) PDF Version of ...

  19. Natural Gas Exports by Pipeline out of the U.S. Form | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exports by Pipeline out of the U.S. Form Natural Gas Exports by Pipeline out of the U.S. Form Excel Version of Natural Gas Exports by Pipeline out of the U.S. Form.xlsx (11.73 KB) ...

  20. Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 656 782 801 2000's 876 863 851 1,689 2,256 2,224 2,737 2,976 3,013 2,921 2010's 2,992 4,161 6,256 4,954 4,912 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline

  1. Factors affecting ductile fracture in offshore gas pipelines

    SciTech Connect (OSTI)

    Maxey, W.A.

    1982-01-01

    The results are presented of experimental research conducted during the past 3 year with the objective of understanding ductile fracture propagation in the offshore environment. Experiments have been conducted to examine decompression phenomenon inside the carrier pipe when the exhausting gas is in a simulated deep-water environment. Ductile fracture experiments of 12-inch pipe in a simulated deep offshore environment also have been examined. The most current research is designed to examine the pressure waves in the water surrounding the pipeline that are caused by the sudden release of gas from a rupture and the resulting lower differential pressure across the pipe wall thickness. The research to date suggests that long running ductile fracture propagation in an offshore pipline is less probable than in an onshore pipeline. Future research is planned with a full-scale experiment in a water-filled quarry and in the real offshore environment.

  2. Assessment of the Adequacy of Natural Gas Pipeline Capacity in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast United States - November 2013 | Department of Energy Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 In 2005-06, the Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern United States to meet natural gas demand

  3. Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration, Office of Oil and Gas, July 2008 1 U.S. natural gas pipeline construction activity accelerated in 2007 with capacity additions to the grid totaling nearly 14.9 billion cubic feet (Bcf) of daily deliverability (Figure 1). These additions were the largest of any year in the Energy Information Administration's (EIA) 10-year database of pipeline construction activity. The increased level of natural gas pipeline construction activity in 2007 conformed to a growth

  4. ,"Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Canada (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for ... of U.S. Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic ...

  5. International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Dollars per Thousand Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.71 2.03 2.00 2.33 2000's 2.77 4.85 3.01 -- -- 11.20 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  6. International Falls, MN Natural Gas Pipeline Imports From Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Million Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,373 6,544 6,103 4,857 2000's 3,022 617 602 0 0 22 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  7. Danish sour-gas pipeline has subsea safety system

    SciTech Connect (OSTI)

    Thygesen, J.E. )

    1990-06-04

    Dansk Olie og Gasproduktion A/S has gained valuable experience installing a subsea safety system on a 30-in., 215-km (134-mile) subsea sour-gas pipeline. The system is designed to reduce the risk of explosion or suffocation of personnel aboard a nearby platform. It consists of a subsea check valve and a fullbore ball valve. Experience from operation of the system has been gained in pigging through the check valve, scour around the installation, repairs, and function tests. This is the basis for recommendations for operators intending to install subsea safety systems of the same or similar type.

  8. District of Columbia Natural Gas Pipeline and Distribution Use (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) (Million Cubic Feet) District of Columbia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 246 256 244 2000's 243 236 242 470 466 487 464 238 203 177 2010's 213 1,703 1,068 1,434 1,305 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  9. Otay Mesa, CA Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    0 0 1,717 0 0 0 2007-2014 Pipeline Prices -- -- 3.55 -- --

  10. Bolivia-Brazil gas pipeline about to take off; seen as litmus test for Southern Cone gas grid

    SciTech Connect (OSTI)

    1995-08-07

    After more than 4 decades of studies, plans, and shelved projects, the proposed Bolivia-Brazil gas pipeline is finally about to get off the ground. The 3,700 km gas pipeline will require an investment of at least $2 billion and is viewed by many as a litmus test for the developing gas market and energy integration of South America`s Southern Cone countries. Overall, industry officials see eventual emergence of two large integrated gas grids serving South America: one for the northern countries and another for the Southern Cone. This will enable the six countries with gas surplus to their needs to export the surplus to neighboring, gas-short countries. The northern gas-long countries are Venezuela, Colombia, and Trinidad and Tobago; those in the Southern Cone are Argentina, Bolivia, and Peru. The paper discusses financial details, project details, pipeline construction, the Petrobras strategy, Argentine pipeline projects, and other pipeline proposals.

  11. Leakage Risk Assessment of CO{sub 2} Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    SciTech Connect (OSTI)

    Mazzoldi, A.; Oldenburg, C. M.

    2013-12-17

    the pipeline route within the ADM plant. Leakage scenarios at sites along the route of the pipeline, where plant operations (e.g., vehicular and train transportation) seem to present a higher likelihood of accidental failure, for example due to vehicles or equipment crashing into the pipeline and completely severing it, were modeled by allowing them to have a double source consistent with the pipeline releasing high-pressure CO{sub 2} from both ends of the broken pipe after a full-bore offset rupture. Simulation results show that the built environment of the plant plays a significant role in the dispersion of the gas as leaking CO{sub 2} can impinge upon buildings and other infrastructure. In all scenarios simulated, the region of very high-concentration of CO{sub 2} is limited to a small area around the pipeline failure, suggesting the likelihood of widespread harmful CO{sub 2} exposure to plant personnel from pipeline leakage is low. An additional risk is posed by the blast wave that emanates from a high-pressure pipeline when it is breached quickly. We estimate the blast wave risk as low because it occurs only for a short time in the immediate vicinity of the rupture, and requires an instantaneous large-scale rupture to occur. We recommend consideration of signage and guard rails and posts to mitigate the likelihood of vehicles crashing into the pipeline. A standardized emergency response plan applicable to capture plants within industrial sites could be developed based on the IBDP that would be useful for other capture plants. Finally, we recommend carrying out coupled wellbore-reservoir blowout scenario modeling to understand the potential for hazardous conditions arising from an unexpected blowout at the wellhead.

  12. Remote laser detection of natural gas leakages from pipelines

    SciTech Connect (OSTI)

    Petukhov, V O; Gorobets, V A; Andreev, Yu M; Lanskii, G V

    2010-02-28

    A differential absorption lidar based on a tunable TEA CO{sub 2} laser emitting at 42 lines of the 'hot' 01{sup 1}1 - 11{sup 1}0 band in the range from 10.9 to 11.4 {mu}m is developed for detecting natural gas leakages from oil pipelines by measuring the ethane content in the atmosphere. The ethane detection sensitivity is 0.9 ppm km. The presence of methane does not distort the measurement results. The developed lidar can detect the natural gas leakage from kilometre heights at the flying velocities up to 200 km h{sup -1} and a probe pulse repetition rate of 5 Hz. (laser applications and other topics in quantum electronics)

  13. Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,938 5,564 7,250 2000's 7,365 5,070 4,363 4,064 3,798 2,617 2,825 2,115 2,047 2,318 2010's 3,284 3,409 3,974 544 309 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas

  14. Pipeline transportation and underground storage are vital and complementary components of the U

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Underground Storage Expansions in 2003 Energy Information Administration, Office of Oil and Gas, September 2004 1 Figure 1. Source: Energy Information Administration, Office of Oil and Gas, Natural Gas Pipeline Capacity and Construction Databases. 8,460 10,423 6,787 6,517 6,983 9,262 12,848 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 1998 1999 2000 2,001 2002 2003 2004 (Scheduled) Million Cubic Feet per Day Natural Gas Pipeline Capacity Additions, 1998-2004 Figure 1. Source:

  15. Permafrost problems as they affect gas pipelines (the frost heave problem)

    SciTech Connect (OSTI)

    Lipsett, G.B.

    1980-01-01

    The major problems associated with the construction of a large diameter gas pipeline in a permafrost region are outlined in this presentation. Data pertains to the design and construction of the Alaska Highway Gas Pipeline Project. One of the main problems is maintaining the permafrost in its frozen state. Large diameter pipelines operating at high capacity are heat generators. Therefore, it is necessary to refrigerate the gas to ensure that it remains below 0/sup 0/C at all points in the pipeline system. The pipeline also passes through unfrozen ground where the potential for frost heave exists. The conditions under which frost heave occurs are listed. The extent and location of potential frost heave problem areas must be determined and a frost heave prediction method must be established before construction begins. Another task involves development of design criteria for the pipeline/soil interaction analysis. Remedial methods for use during the operational phase are also discussed. (DMC)

  16. Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.20 0.20 1970's 0.21 0.22 0.23 0.27 0.29 0.54 0.58 0.83 0.98 1.11 1980's 1.78 2.12 2.56 3.07 2.88 2.97 2.73 2.68 2.53 2.17 1990's 2.06 2.29 2.44 1.97 1.88 1.66 2.63 2.68 2.27 2.48 2000's 3.12 3.94 NA -- -- -- - = No Data

  17. Detroit, MI Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 21 79 19 0 165 188 1996-2014 Pipeline Prices 4.53 8.37 5.17 -- 4.44 5.26 1996-2014

  18. Havre, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    1998 1999 2000 2001 2002 2003 View History Pipeline Volumes NA NA 1,309 NA NA 0 1998-2003 Pipeline Prices NA NA 3.66 NA NA -- 1998-2003

  19. U.S. Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Volumes 59 70 69 71 73 85 1973-2016 Pipeline Prices 1.50 1.22 0.82 1.03 1.12 1.43 1993

  20. Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,084 2,853 2,922 2000's 3,140 3,021 2,611 5,316 3,983 4,432 4,507 5,373 9,924 6,954 2010's 7,329 9,270 7,602 6,949 7,066 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  1. Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.46 1980's 3.26 3.73 4.32 4.53 4.35 3.88 3.20 2.16 2.14 2.14 1990's 1.70 1.74 1.77 1.79 1.87 1.79 1.35 2.09 1.98 2.22 2000's 3.65 3.66 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Ohio Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 19,453 17,641 17,441 2000's 18,490 15,502 16,215 14,872 12,757 13,356 12,233 13,740 11,219 16,575 2010's 15,816 14,258 9,559 10,035 12,661 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  3. Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 26,130 24,242 23,833 2000's 21,001 23,537 23,340 30,396 30,370 31,444 31,333 28,463 27,581 28,876 2010's 30,611 30,948 32,838 41,813 45,391 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  4. Oregon Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12,481 13,345 10,242 2000's 11,775 10,990 9,117 7,098 9,707 7,264 8,238 9,532 7,354 8,073 2010's 6,394 5,044 4,554 4,098 3,686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  5. Pennsylvania Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 39,173 32,532 36,597 2000's 38,486 33,013 37,143 33,556 28,989 30,669 27,406 34,849 37,223 41,417 2010's 47,470 51,220 37,176 37,825 36,323 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  6. Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,689 19,948 22,109 2000's 22,626 19,978 21,760 18,917 15,911 14,982 14,879 15,690 16,413 18,849 2010's 22,124 23,091 25,349 22,166 18,688 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  7. Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,935 2,788 2,561 2000's 2,674 4,161 5,984 7,347 8,278 8,859 11,156 11,970 11,532 10,239 2010's 10,347 11,374 12,902 13,441 14,061 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  8. Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5.25 4.00 4.17 4.00 2.80 2.64 1990's 2.85 2.86 2.96 2.89 2.89 1.05 1.09 1.09 1.40 1.86 2000's 4.39 5.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  9. Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,387 6,856 8,005 2000's 7,975 7,542 7,851 6,854 5,452 4,954 5,412 6,905 8,461 8,829 2010's 10,091 13,957 9,443 8,475 7,424 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  10. Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8,836 9,087 7,645 2000's 6,036 9,053 6,356 6,527 8,822 8,174 6,554 7,402 6,605 7,497 2010's 7,587 6,644 9,184 10,144 8,933 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  11. West Virginia Natural Gas Pipeline and Distribution Use (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (Million Cubic Feet) West Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 32,318 30,868 29,829 2000's 32,572 30,254 33,731 18,177 18,742 19,690 18,923 20,864 18,289 22,131 2010's 21,589 21,447 31,913 29,578 29,160 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  12. Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,544 4,284 4,151 2000's 4,058 2,869 3,812 3,526 3,302 3,700 3,109 2,851 2,654 1,648 2010's 2,973 2,606 1,780 2,803 3,629 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  13. Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10,773 7,327 7,274 2000's 5,617 6,979 5,229 6,647 6,842 6,599 6,313 7,039 7,060 6,597 2010's 8,679 10,259 7,206 7,428 7,025 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  14. Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 39,109 32,902 31,753 2000's 29,330 25,606 36,127 33,343 28,608 28,752 25,050 24,773 23,589 26,479 2010's 24,305 23,225 19,842 22,586 22,588 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  15. Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,854 15,750 16,632 2000's 13,826 14,912 11,993 14,279 10,143 8,254 6,510 11,885 12,957 12,558 2010's 13,708 12,451 8,604 7,157 8,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  16. Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 71,523 60,400 48,214 2000's 50,647 48,257 50,711 47,019 44,963 41,812 47,979 52,244 53,412 49,937 2010's 46,892 51,897 49,235 36,737 45,762 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  17. Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 23,776 20,733 22,355 2000's 26,359 22,036 26,685 27,129 27,198 27,742 25,532 25,961 23,518 23,468 2010's 24,904 23,537 20,496 18,713 19,347 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  18. Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 44,979 36,329 31,594 2000's 30,895 30,267 26,997 26,003 21,869 21,496 22,131 27,316 28,677 28,951 2010's 28,117 28,828 48,497 23,667 19,787 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  19. Missouri Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Missouri Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,456 5,495 6,744 2000's 7,558 1,918 2,555 3,003 3,237 2,556 2,407 2,711 7,211 3,892 2010's 5,820 7,049 4,973 5,626 6,184 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  20. Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10,461 11,535 13,736 2000's 14,092 13,161 13,103 14,312 12,545 14,143 13,847 14,633 17,090 19,446 2010's 20,807 17,898 16,660 15,283 14,990 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  1. Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0.26 0.27 0.28 0.28 0.30 0.35 0.57 0.58 0.50 0.14 1980's 0.73 1.13 0.60 0.86 0.61 0.63 0.61 0.65 1.01 1.13 1990's 1.08 1.32 1.12 1.11 1.11 1.24 1.17 1.34 1.23 0.82 2000's 1.34 1.84 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  2. Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 18,597 19,585 18,570 2000's 20,657 22,158 20,183 18,183 15,850 17,558 20,617 20,397 22,207 20,846 2010's 15,447 13,158 12,372 12,619 13,484 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  3. Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,591 10,192 8,979 2000's 8,749 8,676 7,854 8,369 7,791 8,943 10,630 10,235 9,927 9,125 2010's 9,544 11,286 10,606 11,437 11,580 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  4. California Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) California Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,493 8,587 9,341 2000's 9,698 10,913 9,610 8,670 12,969 10,775 7,023 8,994 7,744 6,386 2010's 9,741 10,276 12,906 10,471 22,897 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  5. Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12,371 9,240 8,380 2000's 9,282 10,187 10,912 9,647 10,213 13,305 12,945 13,850 15,906 17,065 2010's 14,095 13,952 10,797 9,107 8,451 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  6. Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,492 833 2,943 2000's 3,020 2,948 2,515 3,382 3,383 3,327 3,178 4,361 4,225 5,831 2010's 6,739 6,302 4,747 4,381 4,698 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  7. Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.00 1.33 1980's 3.67 3.68 3.91 3.80 4.00 3.75 2.71 2.95 3.10 1990's 3.10 2.88 3.01 3.19 3.02 3.02 3.51 2.98 2.40 2.22 2000's 4.29 3.58 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. District of Columbia Natural Gas Pipeline and Distribution Use Price

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) District of Columbia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3.94 4.73 4.37 4.16 3.61 3.02 2.94 3.03 1990's 2.99 2.78 2.95 2.58 2.13 1.97 3.02 2.97 2.52 2.39 2000's 4.63 5.36 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,644 3,830 6,822 2000's 7,087 6,531 11,096 9,562 10,572 9,370 11,942 10,092 9,547 10,374 2010's 22,798 13,546 16,359 12,494 3,468 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  10. Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,973 7,606 8,846 2000's 5,636 7,411 7,979 7,268 6,235 5,708 6,092 5,188 5,986 6,717 2010's 8,473 10,432 10,509 7,973 6,977 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  11. Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,186 5,496 4,512 2000's 5,939 6,556 5,970 4,538 5,763 5,339 6,507 7,542 6,869 7,031 2010's 7,679 5,201 5,730 5,940 3,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural

  12. South Carolina Natural Gas Pipeline and Distribution Use (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (Million Cubic Feet) South Carolina Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,940 3,163 3,589 2000's 3,461 2,919 3,156 2,807 2,503 2,427 2,292 2,609 2,604 2,847 2010's 3,452 3,408 3,416 2,529 2,409 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  13. Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,559 16,440 15,208 2000's 13,808 13,757 11,480 12,785 10,486 9,182 8,696 9,988 10,238 11,720 2010's 10,081 11,655 9,880 6,660 5,913 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  14. Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 82,115 65,800 70,397 2000's 62,014 69,598 88,973 56,197 55,587 81,263 85,262 89,666 109,488 117,219 2010's 79,817 85,549 138,429 294,316 274,451 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  15. Power line fault current coupling to nearby natural gas pipelines: Volume 3, Analysis of pipeline coating impedance: Final report

    SciTech Connect (OSTI)

    Dabkowski, J.; Frazier, M. J.

    1988-08-01

    This report is a compilation of results obtained from two research programs. The response of a pipeline and coating at the higher voltage excitation levels encountered under power line fault conditions appears to be dominated by conduction at holiday sites in the coating. A simple analytical model was developed for predicting the resistance of a pipeline coating holiday as a function of the voltage produced across the pipeline coating by a nearby faulted power transmission line. The model was initially validated using coated pipeline samples stressed by a capacitive discharge voltage. Additional validation tests were then performed at the Pacific Gas and Electric Company's High Voltage Engineering Research Facility using high voltage ac waveforms for fault simulation. The principle program objective was to develop, both by laboratory and controlled field testing, an electrical resistance characterization for the pipeline coating as a function of the applied voltage level. The development of this model will allow a more accurate prediction of coupled voltage levels to a pipeline during fault current conditions. 54 figs, 3 tabs.

  16. World pipeline construction patterns shifting away from big North American gas lines

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1992-02-10

    The pattern of world pipeline construction has begun to shift away from large diameter gas lines in North America. Total miles of gas pipelines planned this year and beyond have registered big increases in Europe and Asia- Pacific regions, more than offsetting decreased mileage of planned U.S. and Canadian gas projects. World products pipeline construction planned in 1992 and beyond shows the largest year to year gain, paced by projects in Latin America. Those are among highlights of this article. Many projects only under study or unlikely to be built are excluded from final mileage tallies.

  17. Mississippi's ratable-take rule preempted: Transcontinental Gas Pipeline Corp. v. State Oil and Gas Board

    SciTech Connect (OSTI)

    Box, A.L.

    1986-01-01

    While the Court's objections to Mississippi's ratable-take rules as applied to interstate pipelines are clear, conservation lawyers have concerns about the impact of the Transco decision upon state interests in oil and gas conservation and because the decision does not clarify the limits of preemption of state conservation legislation. A variety of state regulatory legislation challenges will likely result in different contexts. These could affect interest on royalties, payment procedures, and could even lead to conflicting regulations.

  18. Ogilby, CA Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    1,953 22,503 454 0 23 0 2007-2014 Pipeline Prices 2.83 4.76 3.65 -- 3.59

  19. Penitas, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1996 1998 1999 2000 2001 2002 View History Pipeline Volumes 253 40 NA NA NA NA 1996-2002 Pipeline Prices 1.72 2.04 1996-1998

  20. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 13,279 4,685 0 0 0 0 1998-2014 Pipeline Prices 4.10 4.30 -- -- -- -- 1998-2014

  1. El Paso, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1998 1999 2000 2001 2002 View History Pipeline Volumes 996 NA NA NA NA 1998-2002 Pipeline Prices 2.09 1998-1998

  2. Hidalgo, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 284 62 0 0 0 0 1996-2014 Pipeline Prices 4.40 4.21 -- -- -- -- 1996-2014

  3. A probe for in situ, remote, detection of defects in buried plastic natural gas pipelines

    SciTech Connect (OSTI)

    Mathur, M.P.; Spenik, J.L.; Condon, C.M.; Monazam, E.R.; Fincham, W.L.

    2007-12-18

    Several techniques are available to determine the integrity of in situ metal pipeline but very little is available in the literature to determine the integrity of plastic pipelines. Since the decade of the 1970s much of the newly installed gas distribution and transmission lines in the United States are fabricated from polyethylene or other plastic. A probe has been developed to determine the in situ integrity of plastic natural gas pipelines that can be installed on a traversing mechanism (pig) to detect abnormalities in the walls of the plastic natural gas pipeline from the interior. This probe has its own internal power source and can be deployed into existing natural gas supply lines. Utilizing the capacitance parameter, the probe inspects the pipe for flaws and records the data internally which can be retrieved later for analysis.

  4. Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.15 0.15 1970's 0.16 0.16 0.18 0.19 0.24 0.32 0.42 0.57 0.73 1.10 1980's 1.36 1.81 2.35 2.56 2.55 2.51 2.40 2.20 1.77 1.86 1990's 1.70 1.43 1.54 1.79 1.34 1.33 2.10 2.54 2.01 1.96 2000's 2.81 3.56 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  5. Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 1.65 1970's 0.18 0.18 0.19 0.22 0.26 0.27 0.36 0.58 0.66 0.99 1980's 1.45 1.83 2.53 2.75 2.71 2.48 2.30 2.06 2.10 1.83 1990's 1.85 1.62 1.79 1.72 1.64 1.36 2.12 2.34 1.90 2.04 2000's 3.49 3.21 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  6. Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.32 0.28 0.35 0.47 0.61 0.82 1.77 1.98 2.53 1980's 4.41 4.75 4.90 4.19 3.90 3.13 2.35 2.00 1.90 2.09 1990's 2.16 2.32 2.16 1.71 1.86 1.77 1.77 1.80 1.84 1.98 2000's 2.74 2.91 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA =

  7. Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.24 0.24 1970's 0.25 0.29 0.31 0.32 0.40 0.54 0.60 0.92 0.94 1.42 1980's 1.89 2.34 3.02 3.20 3.09 3.06 2.63 2.38 2.36 2.35 1990's 2.57 2.41 2.41 2.83 2.47 2.00 2.71 2.72 2.08 1.97 2000's 3.59 4.76 NA -- -- -- - = No Data Reported; -- = Not

  8. Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.20 1970's 0.20 0.22 0.23 0.26 0.29 0.32 0.47 0.72 1.10 1.32 1980's 1.84 2.59 3.00 3.10 3.15 3.12 3.11 2.37 2.30 2.60 1990's 2.17 3.02 2.24 2.34 2.13 1.93 2.63 2.95 2.55 2.21 2000's 3.13 4.90 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  9. Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.27 0.28 0.31 0.38 0.53 0.81 1.49 1.40 1980's 2.09 2.81 3.33 3.59 3.49 3.35 3.37 2.68 2.59 2.63 1990's 2.05 1.86 1.93 2.27 2.14 1.83 2.60 3.22 2.59 2.20 2000's 2.66 5.05 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  10. Washington Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Washington Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.24 0.28 0.33 0.44 0.65 0.78 1.67 1.92 2.38 1980's 3.92 4.34 4.72 3.98 3.72 3.12 2.52 2.11 1.99 2.06 1990's 2.04 1.98 1.89 1.37 1.84 1.78 1.77 1.89 1.76 2.03 2000's 3.07 2.82 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  11. Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.23 0.23 1970's 0.25 0.25 0.26 0.27 0.30 0.44 0.54 1.74 2.09 1.61 1980's 4.50 2.83 3.53 3.52 3.52 3.30 2.79 2.29 2.12 2.04 1990's 2.14 1.31 1.26 0.96 1.36 0.36 1.20 1.16 0.95 2.56 2000's 3.32 3.67 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  12. Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.21 0.21 1970's 0.21 0.23 0.25 0.27 0.28 0.38 0.45 0.81 0.86 1.21 1980's 1.73 2.18 2.91 3.21 3.02 3.11 2.78 2.52 2.69 2.17 1990's 2.17 2.46 2.51 1.38 1.03 1.05 2.47 2.58 2.27 2.16 2000's 3.69 4.18 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  13. Kansas Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.17 0.17 1970's 0.18 0.19 0.23 0.24 0.27 0.33 0.41 0.51 0.61 1.14 1980's 1.57 1.95 2.45 2.76 2.71 2.55 2.29 2.05 2.14 1.80 1990's 1.59 1.69 5.24 1.56 1.20 1.15 1.83 1.81 1.39 1.65 2000's 2.57 3.01 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA =

  14. Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.33 0.27 0.23 1970's 0.20 0.22 0.24 0.25 0.29 0.37 0.48 0.60 0.57 1.26 1980's 1.67 2.18 2.85 3.05 2.93 2.89 2.44 1.97 1.77 2.00 1990's 2.12 2.35 2.51 2.67 1.95 1.83 2.63 2.51 2.45 2.11 2000's 3.27 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  15. Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.05 1970's 0.20 0.21 0.23 0.24 0.28 0.39 0.50 0.81 0.96 1.30 1980's 1.81 2.36 2.91 3.13 3.00 2.90 2.48 1.97 1.96 2.07 1990's 1.98 2.25 2.25 2.40 1.44 1.61 2.58 2.59 2.22 1.98 2000's 3.10 3.76 NA -- -- - = No Data Reported; -- = Not Applicable; NA =

  16. Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.19 0.19 1970's 0.19 0.22 0.24 0.25 0.27 0.38 0.50 0.69 0.84 1.25 1980's 2.41 2.74 3.08 3.28 3.29 3.17 3.19 2.37 2.27 2.72 1990's 2.15 1.94 1.94 2.08 2.01 1.81 2.48 2.98 2.41 2.30 2000's 3.30 4.75 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  17. Massachusetts Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.23 0.26 0.25 1970's 0.32 0.36 0.37 0.38 0.40 0.42 0.62 0.68 0.94 1.24 1980's 1.65 2.30 4.29 4.11 3.36 3.60 3.22 2.14 2.46 2.71 1990's 2.67 2.79 2.91 2.71 2.13 2.00 2.74 2.67 2.27 1.86 2000's 2.14 3.06 NA -- -- -- - = No Data Reported; -- = Not

  18. Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.27 0.27 0.27 1970's 0.27 0.28 0.29 0.35 0.46 0.56 0.71 0.98 1.67 1.60 1980's 2.98 3.73 3.63 3.86 3.95 3.54 2.95 2.64 2.39 2.03 1990's 1.86 0.50 0.57 0.26 0.20 0.54 1.04 0.95 0.69 0.78 2000's 1.32 1.76 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  19. Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.19 1970's 0.20 0.21 0.23 0.24 0.28 0.36 0.46 0.73 0.88 1.28 1980's 1.75 2.34 2.91 3.06 2.94 2.92 2.44 1.99 1.87 2.09 1990's 2.11 2.33 2.34 2.37 1.98 1.82 2.63 2.62 2.33 2.19 2000's 3.37 4.28 NA -- -- - = No Data Reported; -- = Not Applicable; NA

  20. Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.21 0.23 0.25 0.26 0.29 0.39 0.48 0.80 0.87 1.20 1980's 1.71 2.12 2.81 3.04 2.92 2.86 2.61 2.41 2.78 1.94 1990's 1.77 2.05 2.31 2.01 0.91 1.19 2.34 2.43 2.02 2.14 2000's 2.48 4.86 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  1. Montana Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.12 0.11 0.11 1970's 0.11 0.12 0.17 0.21 0.23 0.42 0.46 0.73 0.83 1.16 1980's 1.29 1.90 2.87 3.00 3.04 2.51 2.28 1.86 1.65 1.57 1990's 1.75 1.76 1.63 2.15 1.53 1.16 1.44 1.77 1.72 2.12 2000's 2.96 2.48 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  2. Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.16 0.16 1970's 0.17 0.17 0.18 0.24 0.24 0.51 0.65 0.69 1.36 1.59 1980's 2.05 2.51 2.91 3.05 2.99 2.76 2.56 2.36 2.06 1.88 1990's 1.95 1.85 2.48 1.92 1.52 1.31 1.54 1.84 1.86 1.87 2000's 3.21 3.04 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  3. Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.17 0.17 0.19 0.22 0.28 0.36 0.44 0.64 0.75 1.29 1980's 1.62 2.22 2.86 3.16 2.83 2.79 2.22 1.49 1.79 1.50 1990's 1.65 1.26 1.25 1.68 1.28 1.19 1.80 2.20 1.90 2.08 2000's 3.61 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  4. Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.18 0.18 0.18 1970's 0.19 0.22 0.24 0.26 0.30 0.43 0.52 0.71 0.86 1.12 1980's 1.78 2.12 2.63 2.94 2.97 2.78 2.46 2.64 2.07 2.30 1990's 2.17 2.06 1.78 1.64 1.61 1.45 2.41 2.42 1.58 1.38 2000's 2.41 4.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  5. California Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) California Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.24 0.30 1970's 0.29 0.35 0.35 0.39 0.45 0.47 0.69 0.73 0.85 1.75 1980's 2.16 2.90 3.30 4.14 4.13 3.70 3.56 3.02 2.55 2.39 1990's 2.40 2.19 1.40 0.53 0.33 1.01 1.63 1.47 1.93 2.08 2000's 3.62 4.70 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  6. Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.17 1970's 0.18 0.19 0.21 0.22 0.27 0.49 0.72 1.00 1.31 1.53 1980's 2.17 2.58 2.78 2.78 2.81 2.62 2.71 2.57 2.24 1.75 1990's 1.75 1.79 1.89 1.86 1.78 1.45 1.97 2.44 1.98 1.66 2000's 3.89 3.86 NA -- -- - = No Data Reported; -- = Not Applicable; NA =

  7. Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.35 0.68 0.30 1970's 0.32 0.32 0.35 0.40 0.50 0.58 0.59 1.50 2.60 2.53 1980's 2.76 2.94 3.53 3.30 3.18 3.71 2.53 2.52 2.13 2.97 1990's 3.68 3.08 2.95 3.53 2.62 2.20 3.50 1.54 3.00 0.59 2000's 4.82 4.93 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  8. Florida Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.18 0.20 1970's 1.98 0.21 0.24 0.30 0.34 0.36 0.49 0.72 0.85 1.35 1980's 1.77 2.38 2.58 2.65 2.90 2.80 1.79 2.11 1.85 2.00 1990's 2.17 2.11 2.06 2.85 1.50 1.55 2.37 2.38 2.38 2.33 2000's 3.81 3.45 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  9. Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.20 0.22 0.23 0.25 0.28 0.32 0.36 0.67 0.90 1.35 1980's 2.10 2.78 3.11 3.22 3.26 3.23 3.32 2.50 2.41 2.69 1990's 2.19 2.08 2.08 2.24 2.14 1.93 2.62 3.09 2.48 2.18 2000's 3.30 4.57 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  10. Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.23 0.24 0.28 0.36 0.49 0.73 0.89 1.26 1980's 1.73 2.25 2.96 3.19 2.94 3.01 2.29 1.85 1.78 1.97 1990's 1.94 2.61 2.44 2.23 1.88 1.59 2.57 2.52 2.17 2.04 2000's 3.44 4.13 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  11. Microsoft Word - 2012-01-27 JAD Natural Gas Pipeline.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    835 Terminal Drive, Suite 101 Richland, Washington 99354 (301) 828-7342 www.jadenvironmental.com For Immediate Release January 27, 2012 JAD Environmental Selected to Study Environmental Impacts of Energy Department's Natural Gas Pipeline Project RICHLAND, Wash. - The U.S. Department of Energy (DOE) has selected JAD Environmental, LLC, to support the preparation of an Environmental Impact Statement (EIS) regarding its proposed natural gas pipeline extension to support facilities at its Hanford

  12. DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution System Operational Efficiency, Reducing Methane Emissions | Department of Energy DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions September 8, 2014 - 1:04pm Addthis Following the White House and the Department of Energy Capstone

  13. Roma, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Roma, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 1 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  14. Hidalgo, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 2,506 9,227 14,862 8,817 1996-2015 Pipeline Prices -- -- 3.47 3.92 4.68 2.28 1996

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 284 62 0 0 0 0 1996-2014 Pipeline Prices 4.40 4.21 -- -- -- -- 1996-2014

  15. Massena, NY Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    161,486 164,984 135,278 86,609 63,987 28,825 1982-2014 Import Price 5.90 4.86 4.77 3.69 5.49 8.00 198

    2011 2012 2013 2014 View History Pipeline Volumes 0 472 0 0 2011-2014 Pipeline Prices -- 2.96 -- -- 2011-2014

    5,595 3,965 3,992 4,147 3,819 3,049 1996-2015 Pipeline Prices 6.48 6.55 5.75 6.04 7.34 5.65

  16. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    These systems enter the region at the New Mexico-Arizona and Nevada-Utah state lines. The rest of the pipeline capacity into the region enters from Wyoming andor from Canada at ...

  17. Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    225 501 314 1,046 1,426 933 2007-2015 Pipeline Prices 3.52 3.12 1.87 2.66 3.45 1.71 2007

  18. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...

    Broader source: Energy.gov (indexed) [DOE]

    04-Adams to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. 04adamsnatgas.pdf (9.97 MB) More ...

  19. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Addition of water involves a humidification system, while pipeline gases have to be dry. ... offers a high density of sulfur capturing and a very low slip rate from the scrubber. ...

  20. Marysville, MI Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Pipeline Volumes 5,694 9,946 8,099 2,337 4,650 1,961 1996-2015 Pipeline Prices 4.44 4.42 2.99 4.15 6.86 2.73 1996-2015

  1. Natural Gas Transportation - Infrastructure Issues and Operational Trends

    Reports and Publications (EIA)

    2001-01-01

    This report examines how well the current national natural gas pipeline network has been able to handle today's market demand for natural gas. In addition, it identifies those areas of the country where pipeline utilization is continuing to grow rapidly and where new pipeline capacity is needed or is planned over the next several years.

  2. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prices using spot prices from producing areas, plus an allowance for interstate natural gas pipeline and local distribution company charges to transport the gas to market. Such a...

  3. Changes in U.S. Natural Gas Transportation Infrastructure in 2004

    Reports and Publications (EIA)

    2005-01-01

    This report looks at the level of growth that occurred within the U.S. natural gas transportation network during 2004. In addition, it includes discussion and an analysis of recent gas pipeline development activities and an examination of additional projects proposed for completion over the next several years.

  4. OMAE 1993: Proceedings. Volume 5: Pipeline technology

    SciTech Connect (OSTI)

    Yoon, M.; Murray, A.; Thygesen, J.

    1993-01-01

    This volume of conference proceedings is volume five of a five volume series dealing with offshore and arctic pipeline, marine riser, platforms, and ship design and engineering. This volume is a result of increased use of pipeline transportation for oil, gas, and liquid products and the resultant need for lower design and operating costs. Papers in this conference cover topics on environmental considerations, pipeline automation, computer simulation techniques, materials testing, corrosion protection, permafrost problems, pipeline integrity, geotechnical concerns, and offshore engineering problems.

  5. Crosby, ND Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Pipeline Exports to Canada (Million Cubic Feet) Crosby, ND Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Crosby, ND Liquefied Natural Gas to Canada

  6. Pittsburg, NH Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    18,297 19,826 47,451 63,446 52,160 77,866 1998-2015 Pipeline Prices 5.48 5.45 4.08 6.63 10.55 5.18 1998

  7. Sherwood, ND Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    476,855 448,967 433,713 432,497 433,227 419,749 1998-2015 Pipeline Prices 4.41 4.04 2.72 3.59 5.00 2.39 1998

  8. St. Clair, MI Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    5,591 5,228 3,531 6,019 16,409 9,024 1996-2015 Pipeline Prices 4.97 4.29 2.64 3.96 8.80 2.91 1996

  9. Waddington, NY Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    267,227 231,831 241,506 214,671 187,219 175,194 1996-2015 Pipeline Prices 5.44 4.99 3.87 5.58 8.54 5.0

  10. Warroad, MN Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    4,325 4,551 4,610 4,835 3,997 3,968 1996-2015 Pipeline Prices 4.69 4.17 3.06 3.94 5.95 3.32

  11. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) Indexed Site

    3,678 27,479 48,850 72,039 76,111 78,866 1998-2014 Pipeline Prices 3.95 4.50 4.10 2.86 3.81 4.63 1998...

  12. Babb, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    6,671 12,807 15,525 17,235 17,421 20,708 1996-2015 Pipeline Prices 3.86 3.98 2.47 3.13 4.05 2.34 1996

  13. Calais, ME Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    131,035 149,736 76,540 55,248 79,590 43,070 1998-2015 Pipeline Prices 4.94 4.40 3.44 4.86 9.70 11.22 1998

  14. Eastport, ID Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    708,806 606,099 634,194 686,449 608,147 673,531 1996-2015 Pipeline Prices 4.19 3.90 2.59 3.34 4.14 2.34

  15. Grand Island, NY Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    63,548 47,616 23,000 5,758 1,413 4,940 1996-2015 Pipeline Prices 5.20 4.68 3.01 3.92 9.80 4.23

  16. Massena, NY Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    5,595 3,965 3,992 4,147 3,819 3,049 1996-2015 Pipeline Prices 6.48 6.55 5.75 6.04 7.34 5.65

  17. Niagara Falls, NY Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    88,983 32,770 3,159 1,650 2,957 2,539 1996-2015 Pipeline Prices 5.43 4.68 3.22 4.04 5.08 3.2

  18. Noyes, MN Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    447,079 544,135 401,717 238,970 324,613 229,043 1996-2015 Pipeline Prices 4.49 4.15 2.86 3.87 5.59 2.88

  19. AGA totes up new U. S. gas-pipeline mileage, storage capacity

    SciTech Connect (OSTI)

    Not Available

    1994-07-04

    More than 8,000 miles of new US natural-gas transmission line or pipeline looping have been built, are under construction, or are proposed in 1993--94, the American Gas Association, Arlington, Va., states in its latest annual report on new construction. Additionally, AGA lists 47 proposed natural-gas storage projects in various stages of development to add more than 500 bcf of working-gas storage capacity and, if constructed, would increase total US working-gas storage capacity by nearly 20%. Throughout 1993 and 1994, more than $9 billion of new gas-pipeline construction projects have been in various stages of development. AGA classifies these projects as either built in 1993 or 1994 and operational, or currently under construction, or proposed and pending. In aggregate, the projects total 8,087 miles of new pipeline and pipeline looping, 1,098,940 hp of additional compression, and 15.3 bcfd of additional capacity. A table shows the regional breakout.

  20. Portal, ND Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2 2013 2014 View History Pipeline Volumes 0 123 0 1998-2014 Pipeline Prices -- 3.14 -- 1998-2014 Thousand Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's NA NA 3.47 -- -- -- -- 2010's -- 3.14 --

    Thousand Cubic Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1.65 3.35

    Feet)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 15 108

    Thousand Cubic Feet)

    Decade Year-0 Year-1

  1. Rhode Island Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 837 336 243 2000's 295 281 332 383 308 695 804 822 865 900 2010's 1,468 1,003 1,023 1,087 2,824 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline &

  2. Roma, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Roma, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2.06 2.61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of

  3. Evalutation of Natural Gas Pipeline Materials and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Objectives: To assist DOE-EE in evaluating the feasibility of using the existing natural gas transmission and distribution piping network for hydrogenmixed gas delivery ...

  4. Sample Format In-Transit Natural Gas (Pipeline) Monthly Sales...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (7) (8) (9) Origin & Final Destination Country (one country) Transit Country Initial Border Crossing Point Foreign Transporter at Initial Border Crossing U.S. Transporter at...

  5. “Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States” Report Now Available

    Broader source: Energy.gov [DOE]

    In 2013, OE conducted an assessment to determine how changes to the Northeast gas market may have affected the ability of the interstate pipeline system to meet natural gas demand for “essential human needs” in the event of a disruption in pipeline capacity.

  6. Pipeline Safety Research, Development and Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline and Hazardous Materials Safety Administration Pipeline Safety Research, Development and Technology Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Nov 2014 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Thank You! * We appreciate the opportunity to share! * Much to share about DOT natural gas infrastructure R&D * Many facets to the fugitive methane issue * DOT/DOE - We would like to restart the practice of

  7. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  8. Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications

    SciTech Connect (OSTI)

    Joule A. Bergerson; Lester B. Lave

    2005-08-15

    The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

  9. U.S. Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    St. Clair, MI International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake

  10. McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4,414 4,236 5,595 6,174 4,938 ...

  11. Whitlash, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -23,206 -28,616 82,844 18,423 -49,929 20,650 2000's 87,535 -108,544 6,061 16,905 -33,411 -6,052 -9,935 -2,132 -3,731 -65,419 2010's -19,131 -8,535 -74,234 119,255 -40,011

    7,707 7,062 6,571 5,387 5,128 4,651 1996-2015 Pipeline Prices 3.88 3.65 2.35 3.07 4.04 2.13

  12. Whitlash, MT Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -23,206 -28,616 82,844 18,423 -49,929 20,650 2000's 87,535 -108,544 6,061 16,905 -33,411 -6,052 -9,935 -2,132 -3,731 -65,419 2010's -19,131 -8,535 -74,234 119,255 -40,011

    7,707 7,062 6,571 5,387 5,128 4,651 1996-2015 Pipeline Prices 3.88 3.65 2.35 3.07 4.04 2.13

  13. A Pipeline Transport Correlation for Slurries with Small but Dense Particles

    SciTech Connect (OSTI)

    Poloski, Adam P.; Etchells, Arthur W.; Chun, Jaehun; Adkins, Harold E.; Casella, Andrew M.; Minette, Michael J.; Yokuda, Satoru T.

    2010-04-01

    Most correlations/models for minimum transport or critical velocity of slurry were developed for slurries composed of particles greater than ~100-200 ?m diameter with narrow particle-size distributions which is typical of the minerals industry. Many other process industries handle smaller particles. In particular waste slurries at the U.S. Department of Energy's Hanford Site have broad size distributions and significant fractions of smaller particles. Despite the size of these wastes, recent PNNL studies indicate that the small particles might be of sufficient density to pose a significant risk for pipeline deposition and plugging. To allow predictive assessment of deposition of fine dense particles for waste slurry transport at the U.S. DOE Hanford site, a pipeline-transport correlation for critical velocity was developed using a simple power-law between two dimensionless numbers important for slurry transport, the deposition Froude and Archimedes numbers. The correlation accords well with experimental data for slurries with Archimedes numbers <80 and is an adequate pipeline design guide for processing Hanford waste slurry.

  14. A Novel MagPipe Pipeline transportation system using linear motor drives

    SciTech Connect (OSTI)

    Fang, J.R.; Montgomery, D.B.; Roderick, L.

    2009-11-15

    A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.

  15. Crosby, ND Natural Gas Pipeline Imports From Canada

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Nigeria (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,362 2013 2,590 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Cove Point, MD LNG Imports from

  16. Highgate Springs, VT Natural Gas Pipeline Imports From Canada (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 109 2014 41 23 2015 46 39 34 41 41 39 40 41 43 37 2016 41 38 43 55 110 112 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of

  17. Grand Island, NY Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    142,244 106,454 75,641 59,266 15,575 7,155 1999-2014 Import Price 3.73 4.39 4.20 2.78 3.36 4.33 per Thousand Cubic Feet)

    Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.90 5.36 -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not

  18. Sample Format Natural Gas Imports by Pipeline Monthly Sales and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are: Northeast, Midwest, South, West Send to: The Office of Fossil Energy, Natural Gas Regulatory Activities, U.S. Dept. of Energy, FE-34, P.O. Box 44375 Washington, D.C....

  19. Sample Format Natural Gas Exports by Pipeline Monthly Sales and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (4) (5) (6) (7) (8) Destination Country Point of EXIT from U.S. Volume (Mcf at U.S. Border) Avg. Price at U.S. Border (U.S.MMBtu) Supplier(s) Foreign Transporter U.S....

  20. Transportation and storage infrastructure-the networks of pipelines, wires, st

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and storage infrastructure-the networks of pipelines, wires, storage, waterways, railroads, and other facilities-form the backbone of our energy system. Ensuring the resilience, reliability, safety, and security of transmission, storage, and distribution (TS&D) infrastructure is a national priority and vital to American competiveness, jobs, energy security, and a clean energy future. To address the challenge of an expanding and aging transportation and storage infrastructure, investments by

  1. North Troy, VT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    17,273 26,136 27,411 18,467 17,112 19,837 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 17,220 26,063 27,313 18,385 16,933 19,645 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 53 73 98 82 179 192 1979-2014 Dry Natural Gas 17,143 26,030 27,337 18,418 17,044 19,722 Separation

    17,220 26,063 27,313 18,385 16,933 19,645 1979-2014 Adjustments 154 -484 144 124 224 177 1979-2014 Revision Increases 1,168 2,594 3,093 2,913 2,527 2,378 1979-2014 Revision

  2. Portal, ND Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 10.18

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 10.18 2016 7.41

    Liquefied Natural Gas Exports (Million Cubic Feet) Portal, ND Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2 2016 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  3. Sample Format Natural Gas Imports by Pipeline Monthly Sales and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (4) (5) (6) (7) (8) (9) Country of Origin Point of ENTRY into U.S. Volume (Mcf at U.S. Border) Avg. Price at U.S. Border (U.S.MMBtu) Supplier(s) Foreign Transporter U.S....

  4. US pipelines report mixed results for 1993

    SciTech Connect (OSTI)

    True, W.R.

    1994-11-21

    US natural gas pipelines started 1994 in generally better conditions than a year earlier. These companies' operational and financial results for 1993 indicate modest but continuing improvement. Petroleum liquids pipelines, on the other hand, suffered reduced revenues and incomes last: increased deliveries and trunkline movement of liquid petroleum products failed fully to offset fewer barrels of crude oil moving through the companies' pipeline systems. Revenues, incomes, mileage operated, and other data are tracked in Oil and Gas Journal's exclusive Economics Report. Additionally, this report contains extensive data on actual costs of pipeline construction compared with what companies expected to spend at the time of projects' approvals. The paper also discusses the continuing shift of natural gas pipelines as merchants to role of transporter; what was spent; the US interstate network; pipeline mileage; deliveries; the top 10 companies; construction activities; cost trends; and cost components.

  5. Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 253 40 NA 2000's NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  6. "Changing Natural Gas Pipeline Throughputs in Canada"

    U.S. Energy Information Administration (EIA) Indexed Site

    Changing Natural Gas Pipeline Throughputs in Canada" Presented at 2015 EIA Energy Conference June 15, 2015 Margaret Skwara, National Energy Board Abha Bhargava, National Energy Board * National Energy Board Act * LNG Export and Import Licence Applications (summary and links to LNG export licence applications) * Market Snapshots (energy information updates; weekly updates) * Energy Futures Report (long term projections of supply and demand; Nov 2015 new release) * Regulatory Document Index

  7. Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 1,309 NA NA 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  8. Port Huron, MI Natural Gas Pipeline Imports From Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Million Cubic Feet) Port Huron, MI Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 262 278 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  9. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,382 29,595 30,309 30,632 34,015 35,551 1995-2016 Base Gas 9,640 9,640 9,640 9,640 10,450 10,450 1995-2016 Working Gas 24,742 19,955 20,669 20,992 23,565 25,101 1995-2016 Net Withdrawals -249 4,787 -713 -323 -3,383 -1,536 1993-2016 Injections 1,867 1,260 3,081 2,222 3,807 3,036 1994-2016 Withdrawals 1,618 6,047 2,367 1,898 424 1,500 1994-2016 Change in Working Gas from Same Period Previous Year Volume 4,628 4,615 13,768 13,039 9,452 5,305 1996-2016 Percent 23.0 30.1 199.5 163.9 67.0 26.8 1996

  10. International Falls, MN Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    103,836 97,724 92,441 90,746 90,218 93,116 1990-2016 Base Gas 77,198 77,171 77,164 77,161 77,161 77,159 1990-2016 Working Gas 26,638 20,553 15,277 13,584 13,057 15,957 1990-2016 Net Withdrawals 1,569 6,106 5,259 1,694 527 -2,905 1990-2016 Injections 213 166 119 201 439 2,997 1990-2016 Withdrawals 1,783 6,272 5,378 1,894 966 92 1990-2016 Change in Working Gas from Same Period Previous Year Volume 3,981 3,736 3,953 4,911 4,051 4,056 1990-2016 Percent 17.6 22.2 34.9 56.6 45.0 34.1

    114,274

  11. Otay Mesa, CA Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    25,868 24,021 23,538 23,895 24,917 27,133 1990-2016 Base Gas 11,186 11,186 11,186 11,186 11,186 11,186 1990-2016 Working Gas 14,682 12,835 12,352 12,709 13,731 15,947 1990-2016 Net Withdrawals 2,338 1,845 481 -362 -1,027 -1,218 1990-2016 Injections 143 402 336 1,069 1,027 2,228 1990-2016 Withdrawals 2,481 2,246 817 708 1,009 1990-2016 Change in Working Gas from Same Period Previous Year Volume -578 787 993 621 1,431 1,544 1990-2016 Percent -3.8 6.5 8.7 5.1 11.6 10.7 1990

    29,565 29,565 29,565

  12. Transcontinental Gas Pipeline Corp. v. Oil and Gas Board of Mississippi: the demise of state ratable-take requirements

    SciTech Connect (OSTI)

    Frankenburg, K.M.

    1988-01-01

    Natural gas was not widely used until the 1930s when the development of seamless pipe enabled gas to be delivered at high compression to markets far from the wellhead. Now the availability and relatively low cost of natural gas have resulted in its widespread use in both home heating and industry. Regulation of this important fuel is consequently a hotly debated issue. The scope and fundamental purpose of the Natural Gas and Policy Act of 1978 (NGPA) was recently the subject of the Supreme Court's opinion in Transcontinental Gas Pipeline Corp v. Oil and Gas Board of Mississippi (Transcontinental). In a five-to-four decision, the Court held that the NGPA pre-empted the enforcement of a state ratable-take requirement. This Note examines Justice Blackmun's majority opinion and the persuasive dissent presented by Justice Rehnquist in the court's decision. The effects of the decision, the Court's first interpretation of NPGA, will undoubtedly be quite significant.

  13. Sweetgrass, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 7 5 2014 8 11 10 8 8 5 6 6 6 6 6 7 2015 5 4 5 5 5 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's

  14. Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2014 View History Natural Gas Processed (Million Cubic Feet) 2,915 2014-2014 Total Liquids Extracted (Thousand Barrels) 173 2014-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 233 2014

    Approved 0MB No. 1905-0092. El A 457B (Expires May 31, 1990.) This survey is voluntary and authorized under the Federal Energy Administration Act of 1974 (Public Law 93-275} as amended. Information about specific households will be kept strictly confidential. The data will be summarized within

  15. Niagara Falls, NY Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    640,119 434,526 324,474 278,422 233,453 200,394 1982-2014 Import Price 4.67 5.43 4.96 3.83 5.59 8.60 1989-2014 Export Volume 0 0 38,783 68,843 184,071 201,691 1982-2014 Export Price -- -- 4.69 3.61 4.29 5.56 199

    223,532 202,549 188,208 183,548 185,119 196,365 1990-2016 Base Gas 114,992 114,956 114,913 114,853 114,603 114,779 1990-2016 Working Gas 108,540 87,594 73,296 68,695 70,516 81,586 1990-2016 Net Withdrawals 2,020 21,931 14,573 4,660 -1,571 -11,246 1990-2016 Injections 4,390 351 2,066

  16. Illinois Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    prices from producing areas, plus an allowance for interstate natural gas pipeline and local distribution company charges to transport the gas to market. Such a calculation...

  18. Coal transportation: a comparative spatial analysis between unit train and slurry pipeline

    SciTech Connect (OSTI)

    Soltanmohammadi-Sarab, M.

    1986-01-01

    After the 1973 Arab oil embargo and a drastic price rise in crude oil, the demand for coal and, subsequently, the price of coal rose to a new high, thus encouraging further production of coal. The increase in production occurred in most of the coal fields except those in some specific areas, such as West Virginia. Preliminary studies indicate that the high transportation cost of coal contributes to this slacking coal-production pattern. Three related objectives are studied in this dissertation: (a) finding the least-cost mode of coal transportation; (b) determining the new pattern of trade under the chosen mode of coal transportation; and (c) conducting a comparative static analysis of the coal market in the US. Engineering models are used to calculate the average costs of transportation. These models are adjusted for the appropriate economic applications. The mainland US is divided into five regions and the demand and supply of coal in each region is estimated. The estimated cost of coal transportation for both the slurry pipeline and the unit train reveals that the slurry is the lower cost mode of coal transportation for any given distance or amount of coal handled by the system.

  19. McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 1,118 NA 402 0 0 5,322 7,902 26,605 20,115 12,535 2010's 2,520 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  20. Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 12,651 2000's 8,390 2,984 571 0 0 2,656 3,880 22,197 20,653 13,279 2010's 4,685 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  1. Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dollars per Thousand Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 3.66 NA NA -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of

  2. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13,609 17,243 13,496 41,879 2000's 2,093 7,292 782 0 0 1,342 967 5,259 1,201 284 2010's 62 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  3. Port Huron, MI Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Dollars per Thousand Cubic Feet) Port Huron, MI Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2.07 2.06 2.21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of

  4. Optimization problems in natural gas transportation systems. A state-of-the-art review

    SciTech Connect (OSTI)

    Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado

    2015-03-24

    Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-term basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.

  5. Evalutation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service

    Office of Energy Efficiency and Renewable Energy (EERE)

    Objectives: To assist DOE-EE in evaluating the feasibility of using the existing natural gas transmission and distribution piping network for hydrogen/mixed gas delivery

  6. EIS-0152: Iroquois/Tennessee Phase I Pipeline Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to asses the environmental impacts of constructing and operating an interstate natural gas pipeline and associated infrastructure to transport gas from Canada and domestic sources to the New England Market, as proposed by the Iroquois Gas Transmission System and the Tennessee Gas Pipeline Company. The U.S. Department of Energy Office of Fossil Energy was a cooperating agency during statement development and adopted the statement on 9/1/1990.

  7. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen | Department of Energy Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Pipping of GH2 Pipeline. Background: FG 64 built in 50ies, KP added in 70ies, active mining area over total length hpwgw_questissues_campbell.pdf (1.02 MB) More Documents & Publications Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Hydrogen Pipeline Discussion EIS-0487:

  8. Annual pipeline directory and equipment guide

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    This issue reviews international pipeline and gas utility operations, design, and maintenance. It includes the identification of companies, their addresses, telephone numbers, company officers, and types of involvement with oil and gas pipeline issues. Specific categories addressed include companies involved in pipeline valves; engineering and construction services; pipe coating applicators; crude oil pipelines; natural gas pipelines; slurry pipelines; gas distribution utilities; and, pipeline manufacturers and suppliers.

  9. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2003-05-13

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

  10. Natural Gas Imports by Pipeline into the U.S. | Department of Energy

    Office of Environmental Management (EM)

    Vehicles & Fuels » Fuels » Natural Gas Fuel Basics Natural Gas Fuel Basics July 30, 2013 - 4:40pm Addthis Only about one-tenth of 1% of all the natural gas in the United States is currently used for transportation fuel. About one-third goes to residential and commercial uses, one-third to industrial uses, and one-third to electric power production. Natural gas has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic, non-corrosive, and

  11. U.S. Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) U.S. Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.21 1970's 0.21 0.22 0.23 0.25 0.30 0.40 0.51 0.77 0.90 1.32 1980's 1.85 2.39 2.97 3.15 3.04 2.92 2.52 2.17 2.10 2.01 1990's 1.95 1.87 2.07 1.97 1.70 1.49 2.27 2.29 2.01 1.88 2000's 2.97 3.55 NA -- -- -- - = No Data Reported; -- =

  12. Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.16 0.17 1970's 0.17 0.19 0.20 0.22 0.26 0.34 0.52 0.73 0.99 1.17 1980's 1.55 1.89 2.50 2.73 2.71 2.83 2.57 2.75 2.01 2.02 1990's 1.52 1.54 1.71 1.25 1.39 1.40 2.37 2.46 2.06 2.16 2000's 3.17 3.60 NA -- -- -- - = No Data Reported; -- =

  13. Rainfall-ground movement modelling for natural gas pipelines through landslide terrain

    SciTech Connect (OSTI)

    O`Neil, G.D.; Simmonds, G.R.; Grivas, D.A.; Schultz, B.C.

    1996-12-31

    Perhaps the greatest challenge to geotechnical engineers is to maintain the integrity of pipelines at river crossings where landslide terrain dominates the approach slopes. The current design process at NOVA Gas Transmission Ltd. (NGTL) has developed to the point where this impact can be reasonably estimated using in-house models of pipeline-soil interaction. To date, there has been no method to estimate ground movements within unexplored slopes at the outset of the design process. To address this problem, rainfall and slope instrumentation data have been processed to derive rainfall-ground movement relationships. Early results indicate that the ground movements exhibit two components: a steady, small rate of movement independent of the rainfall, and, increased rates over short periods of time following heavy amounts of rainfall. Evidence exists of a definite threshold value of rainfall which has to be exceeded before any incremental movement is induced. Additional evidence indicates a one-month lag between rainfall and ground movement. While these models are in the preliminary stage, results indicate a potential to estimate ground movements for both initial design and planned maintenance actions.

  14. Gas Shale Plays? The Global Transition

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and transportation capacity in the Horn River Basin is being expanded to provide improved market access for its growing shale gas production. Pipeline infrastructure is being...

  15. Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)

    SciTech Connect (OSTI)

    Melaina, M. W.

    2013-05-01

    This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

  16. Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.42 1980's 2.63 3.20 4.92 4.60 5.40 4.36 3.88 2.24 4.60 3.41 1990's 3.73 3.59 3.97 3.91 3.50 5.50 -- 2000's 4.65 3.69 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  17. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report for September 1980-November 1980

    SciTech Connect (OSTI)

    Eby, R.J.

    1980-12-01

    Work was performed in the following tasks in Phase I of the Pipeline Gas Demonstration Plant Program: Site Evaluation and Selection; Demonstration Plant Environmental Analysis; Feedstock Plans, Licenses, Permits and Easements; Demonstration Plant Definitive Design; Construction Planning; Economic Reassessment; Technical Support; Long Lead Procurement List; and Project Management. The Preliminary Construction Schedule was delivered to the Government on October 3, 1980, constituting an early delivery of the construction schedule called for in the scope of work for Task VI. The major work activity continues to be the effort in Task VI, Demonstration Plant Definitive Design, with two 30% Design Review meetings being held with the Government. Work in Task VII, Construction Planning, was initiated. Work has progressed satisfactorily in the other tasks in support of the Demonstration Plant Program. A Cost Change Proposal was submitted because of an increase in the scope of work and an extension of the schedule for Phase I to 47 months.

  18. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.26 2.31 2.03 2.09 2000's 5.85 4.61 2.26 -- -- 8.10 5.53 6.23 5.55 4.40 2010's 4.21 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  19. South Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,910 2,805 6,020 2000's 6,269 5,774 6,065 6,318 6,217 5,751 5,421 5,690 4,686 3,240 2010's 5,806 6,692 6,402 6,888 5,221 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  20. Minimum separation distances for natural gas pipeline and boilers in the 300 area, Hanford Site

    SciTech Connect (OSTI)

    Daling, P.M.; Graham, T.M.

    1997-08-01

    The U.S. Department of Energy (DOE) is proposing actions to reduce energy expenditures and improve energy system reliability at the 300 Area of the Hanford Site. These actions include replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing a new natural gas distribution system to provide a fuel source for many of these units, and constructing a central control building to operate and maintain the system. The individual heating units will include steam boilers that are to be housed in individual annex buildings located at some distance away from nearby 300 Area nuclear facilities. This analysis develops the basis for siting the package boilers and natural gas distribution systems to be used to supply steam to 300 Area nuclear facilities. The effects of four potential fire and explosion scenarios involving the boiler and natural gas pipeline were quantified to determine minimum separation distances that would reduce the risks to nearby nuclear facilities. The resulting minimum separation distances are shown in Table ES.1.

  1. Mapco's NGL Rocky Mountain pipeline

    SciTech Connect (OSTI)

    Isaacs, S.F.

    1980-01-01

    The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

  2. Seadrift/UCAR pipelines achieve ISO registration

    SciTech Connect (OSTI)

    Arrieta, J.R.; Byrom, J.A.; Gasko, H.M. )

    1992-10-01

    Proper meter station design using gas orifice meters must include consideration of a number of factors to obtain the best accuracy available. This paper reports that Union Carbide's Seadrift/UCAR Pipelines has become the world's first cross-country pipelines to comply with the International Standards Organization's quality criteria for transportation and distribution of ethylene. Carbide's organization in North America and Europe, with 22 of the corporation's businesses having the internationally accepted quality system accredited by a third-party registrar.

  3. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2003-11-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  4. Transportation of the MOAB Uranium Mill Tailings to White Mesa Mill by Slurry Pipeline

    SciTech Connect (OSTI)

    Hochstein, R. F.; Warner, R.; Wetz, T. V.

    2003-02-26

    The Moab uranium mill tailings pile, located at the former Atlas Minerals Corporation site approximately three miles north of Moab, Utah, is now under the control of the US Department of Energy (''DOE''). The location of the tailings pile adjacent to the Colorado River, and the ongoing contamination of groundwater and seepage of pollutants into the river, have lead to the investigation, as part of the final site remediation program, of alternatives to relocate the tailings to a qualified permanent disposal site. This paper will describe the approach being taken by the team formed between International Uranium (USA) Corporation (''IUC'') and Washington Group International (''WGINT'') to develop an innovative technical proposal to relocate the Moab tailings to IUC's White Mesa Mill south of Blanding, Utah. The proposed approach for relocating the tailings involves using a slurry pipeline to transport the tailings to the White Mesa Mill. The White Mesa Mill is a fully licensed, active uranium mill site that is uniquely suited for permanent disposal of the Moab tailings. The tailings slurry would be dewatered at the White Mesa Mill, the slurry water would be recycled to the Moab site for reuse in slurry makeup, and the ''dry'' tailings would be permanently disposed of in an approved below grade cell at the mill site.

  5. Optimization problems in natural gas transportation systems. A state-of-the-art review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado

    2015-03-24

    Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-termmore » basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.« less

  6. S. 1429: A Bill to amend the Natural Gas Pipeline Safety Act of 1968, as amended, and the Hazardous Liquid Pipeline Safety Act of 1979, as amended, to authorize appropriations for fiscal years 1992 and 1993, and for other purposes, introduced in the Senate of the United States, One Hundred Second Congress, First Session, June 28, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill would further amend the Natural Gas Pipeline Safety Act of 1968 and the Hazardous Liquid Pipeline Safety Act of 1979 to authorize appropriations for fiscal years 1992 and 1993. The bill authorizes $5,562,000 as appropriations for the Natural Gas Pipeline Safety Act and $1,391,000 as appropriations for the Hazardous Liquid Pipeline Safety Act for fiscal year ending September 30, 1992 and such sums as may be necessary for the fiscal year ending September 30, 1993.

  7. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    May 5, according to the Coast Guard. Natural Gas Transportation Update Alliance Pipeline Inc. experienced unforeseen mechanical difficulties while performing inspections at the...

  8. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and transportation efficiency. Due to economic efficiency Interstate Natural Gas Pipelines typically do not operate at their optimum design condition. So, most ...

  9. The unusual construction aspects of China`s Yacheng 13-1 gas pipeline -- The world`s second longest subsea pipeline

    SciTech Connect (OSTI)

    Woolgar, A.F.; Wilburn, J.S.; Zhao, X.

    1996-12-31

    There are many unusual construction aspects relating to China`s Yacheng 13-1 Pipeline. Initially planned as an onshore pipeline it was later to become Asia`s longest subsea pipeline. The route chosen resulted in an offshore pipeline requiring many unique and innovative construction techniques as well as unusual pipeline installation constraints. The pipeline was installed in two phases. The first phase of 707 km was to be the longest pipeline ever constructed within one lay season and with one lay vessel in a continuous program. Upon completion of the second phase of pipelay works, the world`s longest ever subsea pipeline flooding in one run of 778 kms was to follow. The Yacheng 13-1 construction requirements for pipelay and post installation works, including testing and commissioning were extremely demanding. This paper details how these requirements were met. It covers route selection constraints, construction techniques utilized and the demanding pigging and pre-commissioning operations performed.

  10. McAllen, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 12,535 2,520 0 0 0 0 1998-2014 Pipeline Prices 3.89 4.20 -- -- -- -- 1998-2014

  11. Ohio Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.23 0.23 1970's 0.23 0.27 0.28 0.30 0.32 0.43 0.53 0.87 1.01 1.37 1980's 1.92 2.33 3.04 3.42 3.28 3.28 2.79 2.64 2.43 2.54 1990's 2.61 2.66 2.83 2.53 2.50 2.03 2.88 2.80 3.20 2.63 2000's 3.41 5.18 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not

  12. Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.21 0.21 1970's 0.21 0.22 0.28 0.29 0.34 0.54 0.67 1.40 1.72 1.88 1980's 2.94 3.17 2.67 2.94 2.99 3.19 2.93 2.66 2.84 2.18 1990's 2.25 2.51 2.25 1.91 1.94 1.57 1.68 2.20 2.05 1.92 2000's 3.19 2.97 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not

  13. West Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) West Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.34 0.33 1970's 0.32 0.33 0.38 0.39 0.45 0.59 0.69 1.12 1.29 0.85 1980's 2.24 2.62 3.35 3.75 3.71 3.85 3.44 2.85 2.89 2.97 1990's 2.86 2.49 2.93 3.57 3.54 1.87 3.19 2.97 2.69 2.54 2000's 3.70 5.42 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  14. Idaho Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.21 0.22 1970's 0.22 0.24 0.28 0.34 0.44 0.60 0.72 1.65 1.95 2.45 1980's 3.93 3.95 4.19 3.69 3.55 3.15 2.67 2.08 2.00 2.05 1990's 2.06 1.99 1.89 1.76 1.86 1.78 1.79 1.83 1.67 2.04 2000's 3.52 3.49 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not

  15. Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.73 0.33 0.39 1970's 0.33 0.38 0.38 0.42 0.41 0.55 0.75 1.67 2.08 2.06 1980's 2.92 4.74 4.53 4.74 4.05 4.53 3.55 2.87 2.20 4.19 1990's 3.74 3.41 2.94 3.31 2.69 2.21 3.35 3.15 3.00 2.53 2000's 4.67 5.20 NA -- -- -- - = No Data Reported; -- = Not

  16. South Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) South Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.21 1970's 0.21 0.22 0.24 0.26 0.27 0.49 0.52 0.59 0.85 1.52 1980's 2.02 2.91 3.17 3.32 3.37 3.18 3.37 2.82 2.40 2.75 1990's 2.06 1.87 1.94 2.08 2.06 1.80 2.54 3.28 2.55 2.24 2000's 2.54 4.91 NA -- -- -- - = No Data Reported; -- = Not

  17. South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.22 0.20 1970's 0.20 0.20 0.30 0.33 0.31 0.50 0.55 0.63 0.78 1.20 1980's 1.71 2.20 2.91 3.31 3.32 3.46 2.69 2.17 2.05 1.91 1990's 2.13 1.42 1.22 1.80 1.36 1.03 1.75 2.13 1.68 2.12 2000's 3.76 3.28 NA -- -- -- - = No Data Reported; -- = Not

  18. Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.17 0.17 1970's 0.17 0.18 0.19 0.20 0.28 0.37 0.51 0.68 0.73 1.19 1980's 1.56 2.24 3.09 3.11 2.98 2.80 2.18 2.01 1.98 1.81 1990's 1.74 1.62 1.66 1.82 1.64 1.64 2.40 2.36 2.02 1.99 2000's 2.99 3.13 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not

  19. Magnetic flux leakage inspection of gas pipelines: Experience with a collapsible tool. Final report, July 1996

    SciTech Connect (OSTI)

    Scrivner, R.W.

    1996-07-01

    The Magnetic Flux Leakage (MFL) technique is the most commonly used method to inspect transmission pipelines for corrosion. A typical MFL tool operates in pipelines which have no restrictions. Reduced size valves, a 24 inch valve in a 30 inch pipeline, are one such restriction. A collapsible MFL tool was developed to allow pipelines with reduced size valves to be inspected without expensive valve replacement. The first use, in 1995, of a 30 inch tool succeeded in passing through the valves and inspecting the pipeline. The first use of a 36 inch tool railed due to a partially closed valve, damaging the tool. The tool was ultimately run after some repairs to the tool and most of the reduced size valves were replaced with full size valves. The results of the final run were very good. Additional use of the tools in 1996 has provided excellent results.

  20. Natural Gas Plant Liquids Production

    Gasoline and Diesel Fuel Update (EIA)

    Market Centers and Hubs: A 2003 Update EIA Home > Natural Gas > Natural Gas Analysis Publications Natural Gas Market Centers and Hubs: A 2003 Update Printer-Friendly Version "This special report looks at the current status of market centers/hubs in today's natural gas marketplace, examining their role and their importance to natural gas shippers, marketers, pipelines, and others involved in the transportation of natural gas over the North American pipeline network. Questions or

  1. Predictive and preventive maintenance of oil and gas production pipelines in the area North Monagas-Venezuela

    SciTech Connect (OSTI)

    Perez, M.A.L.

    1996-12-31

    Predictive maintenance of oil and gas production pipelines has allowed the prediction of operational failures. Specially due to the thermodynamic behavior of the produced fluids, contaminants present in the oil and gas such as sand, water, H{sub 2}S and CO{sub 2}, asphaltene deposition, high temperatures and pressures, physicochemical characteristics of the soil, etc. lead to risks of the installations. In order to minimize risks of failures, the author has established a control and monitoring preventive program of the variables that influence these conditions, such as: nondestructive testing, wall thickness measurements and two dimensional B Scan measurements to detect impurities, laminations and inclusions in the pipeline material, corrosion evaluation of pipelines, characterization of the soil corrosive potential of flow stations and compressing plants. Additionally, he has implemented predictive control through the application of external corrosion prevention techniques such as cathodic protection and coatings. For internal corrosion, the use of corrosion inhibitors, asphaltene dispersants and material selection are used. Increasing the protection through preventive and predictive maintenance can reduce the operational risks involved for the oil and gas production.

  2. Structural monitoring helps assess deformations in Arctic pipelines

    SciTech Connect (OSTI)

    Nyman, K.J.; Lara, P.F.

    1986-11-10

    Advanced structural monitoring systems can play an important role in the evaluation of arctic pipeline distortions along the alignment. These systems can influence pipeline design requirements, reduce capital costs, and improve operating reliability. Differential soil movements resulting from terrain instabilities are the main features which threaten a pipeline's structural integrity and affect the design of buried pipeline systems in the Arctic. Economic, aesthetic, and safety concerns make conventional buried construction an optimum design choice for an arctic crude-oil or gas-pipeline transportation system. However, variable frozen and thawed soil conditions underlying the pipeline along a discontinuous permafrost corridor pose a challenge to the design and operation of such systems. Crude-oil pipelines which must operate at elevated temperatures can be installed in unfrozen soils or in permafrost soils where initially frozen segments will exhibit limited settlement under the thawed conditions imposed by pipeline construction and operation. Ice-rich portions of the frozen alignment may have an unacceptable settlement potential for a warm buried pipeline. In contrast, natural-gas pipelines can be operated cold to increase throughput capability and to prevent the problems associated with thawing permafrost.

  3. Efforts to Harmonize Gas Pipeline Operations with the Demands of the Electricity Sector

    SciTech Connect (OSTI)

    Costello, Ken

    2006-12-15

    A possible future course of action is for pipelines to continue their efforts to provide new services with FERC approval. Over time, pipelines could satisfy power generators by giving them the flexibility and services they desire and for which they are willing to pay. Another possibility is that FERC will enact new rules governing regional electricity markets that would function similarly to nationwide business practices. (author)

  4. Natural Gas Market Centers: A 2008 Update

    Reports and Publications (EIA)

    2009-01-01

    This special report looks at the current status of market centers in today's natural gas marketplace, examining their role and their importance to natural gas shippers, pipelines, and others involved in the transportation of natural gas over the North American pipeline network.

  5. 1997 annual pipeline directory and equipment guide

    SciTech Connect (OSTI)

    1997-09-01

    This annual guide is divided into the following sections: Equivalent valve tables; Complete 1997 line pipe tables; Engineering and construction services; Crude oil pipeline companies; Slurry companies; Natural gas companies; Gas distribution pipeline companies; Municipal gas systems; Canadian pipeline companies; International pipeline companies; and Company index. The tables list component materials, manufacturers, and service companies.

  6. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-04-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  7. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-01-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  8. Feasibility study of Northeast Thailand Gas Pipeline Project. Final report. Part 2. Compressed natural gas. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    The volume is the second part of a three part study submitted to the Petroleum Authority of Thailand. Part II analyzes the potential use of compressed natural gas (CNG) as a transportation fuel for high mileage vehicles traveling the highway system of Thailand. The study provides an initial estimate of buses and trucks that are potential candidates for converting to natural gas vehicles (NGV). CNG technology is briefly reviewed. The types of refueling stations that may be sited along the highway are discussed. The estimated capital investments and typical layouts are presented. The report also discusses the issues involved in implementing a CNG program in Thailand, such as safety, user acceptability and the government's role.

  9. Liquefaction and Pipeline Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for ... mile Downtown: 1 to 8 in. Downtown: 4 to 20 in. Urban H2A Right of Way Oil & Gas Journal

  10. Neutral gas transport modeling with DEGAS 2

    SciTech Connect (OSTI)

    Stotler, D.; Karney, C.

    1993-10-01

    We are currently rewriting the neutral gas transport code, DEGAS with a view to not only making it faster, but also easing the process of including new physics. The goal is to make adding new species and reactions relatively simple so that the code can be rapidly adapted to new divertor physics regimes. DEGAS 2 will also be optimized for coupling to fluid plasma codes, incorporating many of the techniques utilized in B2-EIRENE. Finally, it is our intention that DEGAS 2, like DEGAS, be well-documented and easy to use. We ill present model calculations including ionization and charge exchange which will illustrate the way reactions are included into DEGAS 2 and will demonstrate operation of the code on a distributed network of workstations.

  11. Greenhouse Gas Emissions from Aviation and Marine Transportation...

    Open Energy Info (EERE)

    and Policies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies...

  12. Financing is next step in Brazil-Bolivia natural gas project. [Economic costs and benefits of a new natural gas pipeline project

    SciTech Connect (OSTI)

    Cajueiro Costa, A.S. )

    1993-11-01

    This paper reviews a new four billion dollar arrangement which would start a major gas network between Brazil and Bolivia. The proposed 2,200 mile long, 28 and 14 inch pipeline network would connect Bolivian reserves with the undeserved markets of southern Brazil. The paper briefly reviews the economic involvement and impacts on both countries and the current market for natural gas in Brazil. Because most of Brazil's energy is currently from hydroelectric power or petroleum, the new distribution network will have dramatic effects on industries which need this high-grade fuel source for operation. Financing of this project will be by Petrobras and 49 percent through stock options.

  13. Overview of interstate hydrogen pipeline systems.

    SciTech Connect (OSTI)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines

  14. Technique of estimation of actual strength of a gas pipeline section at its deformation in landslide action zone

    SciTech Connect (OSTI)

    Tcherni, V.P.

    1996-12-31

    The technique is given which permits determination of stress and strain state (SSS) and estimation of actual strength of a section of a buried main gas pipeline (GP) in the case of its deformation in a landslide action zone. The technique is based on the use of three-dimensional coordinates of axial points of the deformed GP section. These coordinates are received by a full-scale survey. The deformed axis of the surveyed GP section is described by the polynomial. The unknown coefficients of the polynomial can be determined from the boundary conditions at points of connection with contiguous undeformed sections as well as by use of minimization methods in mathematical processing of full-scale survey results. The resulting form of GP section`s axis allows one to determine curvatures and, accordingly, bending moments along all the length of the considered section. The influence of soil resistance to longitudinal displacements of a pipeline is used to determine longitudinal forces. Resulting values of bending moments and axial forces as well as the known value of internal pressure are used to analyze all necessary components of an actual SSS of pipeline section and to estimate its strength by elastic analysis.

  15. ,"Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016"

  16. World pipeline construction plans show increase into next century

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1995-02-06

    Plans for worldwide pipeline construction into the next century increased in the past year, especially for developing regions of Latin America and Asia-Pacific. Many of the projects involve large capacity, international gas pipeline systems. By contrast, pipeline construction in Canada, The US, and Europe will decline. Those trends and others are revealed in the latest Oil and Gas Journal pipeline construction data, derived from a survey of world pipeline operators, industry sources, and published information. More than 61,000 miles of crude oil, product, and natural gas pipeline are to be built in 1995 and beyond. The paper discusses Europe's markets, North Sea pipelines, expansion of German pipeline, pipelines in the UK, European and African gas, the trans-Mediterranean gas pipeline, Caspian Sea pipeline, Middle East pipelines, Asia-Pacific activity, South American gas lines, pipelines in Colombia, TransCanada line, Gulf of Mexico pipelines, other Gulf activities, and other US activity.

  17. Port of Morgan, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    690,466 658,934 730,988 695,152 518,386 509,242 1996-2015 Pipeline Prices 4.14 3.75 2.45 3.23 4.41 2.40 1996

  18. Hydrogen Pipeline Discussion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and

  19. Case Study - Natural Gas Regional Transport Trucks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas ............................................................................................................................. 4 Financial Benefits ........................................................................................................................................................... 4 Environmental and Energy Benefits ........................................................................................................................... 4 Project-Specific

  20. ANG Gathering and Processing Ltd. application for a permit to construct sour natural gas pipelines in the Edson area: Addendum to decision D97-18, application number 1007783

    SciTech Connect (OSTI)

    1997-12-31

    ANG Gathering and Processing Ltd. applied to the Alberta Energy and Utilities Board for a permit to construct and operate a gas gathering system consisting of about 222 kilometers of sour natural gas pipeline, and for approval to resume operation of a discontinued sour gas pipeline. This report presents the views of the applicant, the Board, and the various intervenors at the hearing held to consider various matters related to the ANG application. Issues considered include the need for the pipelines, route selection, and pipeline design and safety. The Board`s decision concludes the report.

  1. Natural Gas Market Centers and Hubs: A 2003 Update

    Reports and Publications (EIA)

    2003-01-01

    This special report looks at the current status of market centers/hubs in today's natural gas marketplace, examining their role and their importance to natural gas shippers, marketers, pipelines, and others involved in the transportation of natural gas over the North American pipeline network.

  2. A Global R&D Network Driving GE's Oil & Gas Technology Pipeline...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... GeothermalV Newest APS Fellow Driving Groundbreaking Sensing Technology in Oil & Gas unconventionalgasV New Pumping Technology for Unconventional Oil and Gas Wells

  3. Feed gas contaminant removal in ion transport membrane systems

    DOE Patents [OSTI]

    Underwood, Richard Paul; Makitka, III, Alexander; Carolan, Michael Francis

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  4. Successful revegetation of a gas pipeline right-of-way in a Gulf Coast barrier island ecosystem

    SciTech Connect (OSTI)

    Hinchman, R.R.; George, J.F.; Gaynor, A.J.

    1987-01-01

    This study evaluates the revegetation of a 30-m-wide right-of-way (ROW) following construction of a 76-cm-diameter natural gas pipeline across Padre Island, Texas, a Gulf Coast barrier island. ROW construction activities were completed in 1979 and included breaching of the foredunes, grading, trenching, pipeline installation, and leveling - which effectively removed all existing vegetation from the full length of the ROW. Following construction, the foredunes were rebuilt, fertilized, and sprigged with Panicum amarum, a native dune grass known as bitter panicum. The remainder of the ROW across the mid-island flats was allowed to revegetate naturally. Plant cover by species and total vegetative cover was measured on paired permanent transects on the ROW and in the adjacent undisturbed vegetation. These cover data show that the disturbed ROW underwent rapid vegetative recovery during the first two growing seasons, attaining 54% of the cover on the undisturbed controls. By 1984, the percent vegetative cover and plant species diversity on the ROW and the adjacent undisturbed control area were not significantly different and the ROW vegetation was visually indistinguishable from the surrounding plant communities. 9 refs., 3 figs., 2 tabs.

  5. 1982 worldwide pipeline construction will top 21,900 miles, $9. 5 billion

    SciTech Connect (OSTI)

    Hall, D.

    1982-07-01

    Reports that pipeline construction slowed slightly in 1982 because of lowered economic activity worldwide, with an upturn forecast for 1983. Explains that need for new pipelines to transport increasing amounts of oil and gas energy now being discovered, plus use of pipelines to transport other commodities in increasing amounts, has created a backlog of demand for facilities. Indicates that commodities suited for pipeline transport and getting consideration include crude oil; refined products; natural gas liquids; LPG; coal slurries; carbon dioxide (used for enhanced oil recovery); chemicals such as ammonia, ethane, ethylene, and similar petrochemical feedstocks; industrial gases such as oxygen, nitrogen; and solids slurries such as ores, wood chips, and other non-soluble minerals, even items such as wood chips and wood pulp for paper-making. Reveals that there are 10,396 miles of coal slurry pipeline planned for the US and 500 miles in Canada. Major US projects underway in the gas pipeline field include the 797-mile, 36-in. Trailblazer system in Nebraska, Wyoming, Colorado, and Utah. Products/ LPG/NGL pipelines underway include 105 miles of dual 4 and 6-in. line in Kansas. Crude pipeline activity includes 100 miles of 12-in. in California and 80 miles of 4 thru 40-in. in Alaska on the North Slope. Updates plans in Canada, Scotland, Denmark, Ireland, France, the Middle East, Australia, Southeast Asia, Mexico, South America and the USSR.

  6. Calculate Gas Phase Transport Properties of Pure Species and Mixtures

    Energy Science and Technology Software Center (OSTI)

    1997-10-20

    DRFM is a set of routines and data bases used to calculate gas phase transport properties of pure species and mixtures. The program(s) may stand alone or may be used as part of a larger simulation.

  7. Natural Gas Market Centers and Hubs: A 2003 Update

    U.S. Energy Information Administration (EIA) Indexed Site

    Market Centers and Hubs: A 2003 Update EIA Home > Natural Gas > Natural Gas Analysis Publications Natural Gas Market Centers and Hubs: A 2003 Update Printer-Friendly Version "This special report looks at the current status of market centers/hubs in today's natural gas marketplace, examining their role and their importance to natural gas shippers, marketers, pipelines, and others involved in the transportation of natural gas over the North American pipeline network. Questions or

  8. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Nancy Porter; Mike Sullivan; Chris Neary

    2003-05-01

    The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: two with composite liners and two without.

  9. Microsoft Word - Oil and Gas Pipelines_Statement_Dr Daniel Fine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Oil and an natural gas price recovery are required indefinitely to stabilize population and job markets. Its oil production, following the infusion of technology innovation, is at ...

  10. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  11. Champlain, NY Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) (Million Cubic Feet) Champlain, NY Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 63 2015 1 2 1 2 20 2016 56 76 20 20 3 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Champlain, NY LNG Imports from All Countries

  12. State Regulators Promote Consumer Choice in Retail Gas Markets

    Reports and Publications (EIA)

    1996-01-01

    Restructuring of interstate pipeline companies has created new choices and challenges for local distribution companies (LDCs), their regulators, and their customers. The process of separating interstate pipeline gas sales from transportation service has been completed and has resulted in greater gas procurement options for LDCs.

  13. New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques

    SciTech Connect (OSTI)

    Brown, T.D.; Taylor, C.E.; Bernardo, M.

    2010-01-01

    Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned

  14. Port of Del Bonita, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Port Huron, MI Liquefied Natural Gas Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1 2014 1 1 1 1 2 1 1 1 1 1 2015 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Port Huron, MI LNG Exports to All Countries

    to Canada (Million

  15. Feed gas contaminant control in ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis; Minford, Eric; Waldron, William Emil

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  16. Hot-Gas Filter Testing with a Transport Reactor Gasifier

    SciTech Connect (OSTI)

    Swanson, M.L.; Hajicek, D.R.

    2002-09-18

    Today, coal supplies over 55% of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being developed for advanced electric power generation is an integrated gasification combined cycle (IGCC) system that converts coal to a combustible gas, cleans the gas of pollutants, and combusts the gas in a gas turbine to generate electricity. The hot exhaust from the gas turbine is used to produce steam to generate more electricity from a steam turbine cycle. The utilization of advanced hot-gas particulate and sulfur control technologies together with the combined power generation cycles make IGCC one of the cleanest and most efficient ways available to generate electric power from coal. One of the strategic objectives for U.S. Department of Energy (DOE) IGCC research and development program is to develop and demonstrate advanced gasifiers and second-generation IGCC systems. Another objective is to develop advanced hot-gas cleanup and trace contaminant control technologies. One of the more recent gasification concepts to be investigated is that of the transport reactor gasifier, which functions as a circulating fluid-bed gasifier while operating in the pneumatic transport regime of solid particle flow. This gasifier concept provides excellent solid-gas contacting of relatively small particles to promote high gasification rates and also provides the highest coal throughput per unit cross-sectional area of any other gasifier, thereby reducing capital cost of the gasification island.

  17. Development of Protective Coatings for Co-Sequestration Processes and Pipelines

    SciTech Connect (OSTI)

    Bierwagen, Gordon; Huang, Yaping

    2011-11-30

    The program, entitled Development of Protective Coatings for Co-Sequestration Processes and Pipelines, examined the sensitivity of existing coating systems to supercritical carbon dioxide (SCCO2) exposure and developed new coating system to protect pipelines from their corrosion under SCCO2 exposure. A literature review was also conducted regarding pipeline corrosion sensors to monitor pipes used in handling co-sequestration fluids. Research was to ensure safety and reliability for a pipeline involving transport of SCCO2 from the power plant to the sequestration site to mitigate the greenhouse gas effect. Results showed that one commercial coating and one designed formulation can both be supplied as potential candidates for internal pipeline coating to transport SCCO2.

  18. China has 6,000-mile pipeline system

    SciTech Connect (OSTI)

    Ming, S.

    1983-08-01

    A dramatic change has taken place in China's oil transport system, with pipelines replacing tank-cars as the most important means of transport for crude oil and petroleum products. According to Petroleum Ministry officials, the volume of crude oil carried by China's pipeline system increased from 23.2 percent in 1971 to 65.6 percent in 1981, while the volume delivered by tank-cars declined from 61.11 percent to 8.4 percent. The remainder was transported by tankers. China's 9,700 km (6,000-mile) pipeline network includes 5,600 km (3,500 miles) designed to carry crude oil and more than 600 km (375 miles) for petroleum products, plus 3,400 km (2,100 miles), mostly in Sichuan province, for natural gas.

  19. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    more from the system than they nominate. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    that had been in place since February 1. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  1. Industry Research for Pipeline Systems Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Council International, Inc. DOE Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop -Industry Research for Pipeline Systems Panel Mike Whelan Director, Research Operations November 12, 2014 2 www.prci.org Pipeline Research Council Int'l. Overview  Founded in 1952 - Current Membership  39 Pipelines, over 350,000 miles of transmission pipe * Natural Gas and Hazardous Liquids Pipelines * 27 members are North American based - Remainder: Europe, Brazil, China,

  2. Pipeline in-service relocation engineering manual. Final report

    SciTech Connect (OSTI)

    Rosenfeld, M.J.

    1994-12-31

    When pipeline relocation is necessary, it is a common practice for pipeline operators to move the line while it contains gas or liquid product under pressure in order to avoid taking the line out of service. Reasons for this practice include lowering to accommodate a new crossing, raising for repair or recoating, or moving to avoid encroachment. Such operations increase the longitudinal stresses in the relocated section of pipeline. Usually, this has not caused significant problems. However, at least four pipeline failures have been associated with the movement of pipelines over the years. On October 22, 1991, the DOT Office of Pipeline Safety issued an `Alert Notice` to US pipeline operators urging them to conduct analyses prior to moving a pipeline, regardless of whether the line is in service during the operation or not; to determine the extent to which a pipeline may be safely moved, considering the material toughness as a factor; and specific procedures for the operation. The notice resulted from recommendations by the National Transportation Safety Board following their investigation of the North Blenheim failure. This document in intended to be a reasonably comprehensive manual for engineering a safe relocation of an operating pipeline in service. The major elements of the desired guidelines were perceived to already exist in various industry guidelines, standards, proceedings, and research reports. Those sources were compiled, compared and distilled into recommendations for designing a safe line relocation. This manual supplements existing guidelines such as API RP-1117 rather than superseding them; indeed, the user of this document would benefit by referring to them as well. Observance of recommendations made herein should satisfy the nominal requirements and concerns of regulators. However, this document could not possibly address every conceivable situation which might arise in line relocation, nor is it a substitute for independent engineering judgement.

  3. Trans ecuadorian pipeline; Mountainous pipeline restoration a logistical masterpiece

    SciTech Connect (OSTI)

    Hamilton, L. )

    1988-06-01

    The Trans Ecuadorian Pipeline pumped approximately 300,000 b/d of crude from fields in eastern Ecuador to an export terminal and refinery at Esmeraldas on the Pacific coast. The devastation resulting from an earthquake cut off the main portion of export income as well as domestic fuel supplies and propane gas. Approximately 25 km of the pipeline was destroyed. This article details how the pipeline was reconstructed, including both the construction of a temporary line and of permanent facilities.

  4. Kinder Morgan Central Florida Pipeline Ethanol Project

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    KINDER MORGAN CENTRAL FLORIDA PIPELINE ETHANOL PROJECT  In December 2008, Kinder Morgan began transporting commercial batches of denatured ethanol along with gasoline shipments in its 16-inch Central Florida Pipeline (CFPL) from Tampa to Orlando, making CFPL the first transmarket gasoline pipeline in the United States to do so. The 16-inch pipeline previously only transported regular and premium gasoline.  Kinder Morgan invested approximately $10 million to modify the line for ethanol

  5. U.S. Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    of Elements) Acquifers Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49 2000's 49 39 38 43 43 44 44 43 43 43 2010's 43 43 44 47 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of

  6. McAllen, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 472 Cubic Feet)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.92 3.04 2.78 2.81 2000's 4.25 4.96 4.08 6.08 7.06 9.34 8.95 7.78 9.69 6.85 2010's 6.48 6.55 5.75 6.04 7.34 5.65 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 07/29/2016 Next Release Date: 08/31/2016 Referring Pages: U.S. Price of Natural Gas

  7. Capsule injection system for a hydraulic capsule pipelining system

    DOE Patents [OSTI]

    Liu, Henry

    1982-01-01

    An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

  8. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect (OSTI)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-05-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  9. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect (OSTI)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-01-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  10. Possible Pathways for Increasing Natural Gas Use for Transportation (Presentation)

    SciTech Connect (OSTI)

    Zigler, B.

    2014-10-01

    A collaborative partnership of DOE National Laboratories is working with DOE to identify critical RD&D needs to significantly increase the speed and breadth of NG uptake into the transportation sector. Drivers for increased utilization of natural gas for transportation are discussed. Key needs in research, development, and deployment are proposed, as well as possible pathways to address those needs. This presentation is intended to serve as a catalyst to solicit input from stakeholders regarding what technical areas they deem the most important.

  11. Reasons for decision in the matter of Sable Offshore Energy Inc., application dated 9 June 1998 for approval of the plan, profile and book of reference respecting the detailed route of a subsea pipeline from the Thebaud platform to a landfall near Goldboro, Nova Scotia, and an onshore pipeline from the landfall point to the inlet of the gas processing plant located east of Goldboro, Nova Scotia: MH-4-98

    SciTech Connect (OSTI)

    1998-12-31

    The National Energy Board approved a natural gas pipeline to be built by the proponents of the Sable Offshore Energy Project within a specified 500-meter-wide corridor. The pipeline will run from an offshore platform near Sable Island to a gas plant on the Nova Scotia mainland. This report summarizes proceedings of hearings held to determine the detailed route of the pipeline within the specified corridor and to consider the most appropriate methods and timing of constructing the pipeline. Specific objections to the detailed route from holders of mineral rights licenses are noted and a Board decision on the detailed route is presented.

  12. U.S. interstate pipelines ran more efficiently in 1994

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-27

    Regulated US interstate pipelines began 1995 under the momentum of impressive efficiency improvements in 1994. Annual reports filed with the US Federal Energy Regulatory Commission (FERC) show that both natural-gas and petroleum liquids pipeline companies increased their net incomes last year despite declining operating revenues. This article discusses trends in the pipeline industry and gives data on the following: pipeline revenues, incomes--1994; current pipeline costs; pipeline costs--estimated vs. actual; current compressor construction costs; compressor costs--estimated vs. actual; US interstate mileage; investment in liquids pipelines; 10-years of land construction costs; top 10 interstate liquids pipelines; top 10 interstate gas pipelines; liquids pipeline companies; and gas pipeline companies.

  13. SEP Success Story: City in Colorado Fueling Vehicles with Gas...

    Broader source: Energy.gov (indexed) [DOE]

    Pictured above, a Grand Valley Transit bus is preparing to refuel. The City of Grand Junction built a 5-mile underground pipeline to transport compressed natural gas (CNG) from a ...

  14. Nebraska Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e.,

  15. EIS-0139: Trans-Alaska Gas System

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Yukon Pacific Corporation's proposed construction of the Trans-Alaska Gas System (TAGS), a 796.5-mile long, 36-inch diameter pipeline to transport high-pressured natural gas between Prudhoe Bay and a tidewater terminal and liquefied natural gas plant near Anderson Bay, Alaska.

  16. Radionuclide gas transport through nuclear explosion-generated fracture networks

    SciTech Connect (OSTI)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  17. Natural Gas Market Centers and Hubs: A 2003 Update

    U.S. Energy Information Administration (EIA) Indexed Site

    Market Centers and Hubs: A 2003 Update Energy Information Administration - October 2003 1 This special report looks at the current status of market centers/hubs in today=s natural gas marketplace, examining their role and their importance to natural gas shippers, marketers, pipelines, and others involved in the transportation of natural gas over the North American pipeline network. Questions or comments on the contents of this article should be directed to James Tobin at james.tobin@eia.doe.gov

  18. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  19. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  20. Application of the Granuflow Process to Pipeline-Transported Coal Slurry CRADA PC96-010, Final Report

    SciTech Connect (OSTI)

    Richard P. Killmeyer; Wu-Wey Wen

    1997-09-24

    In light of the current difficulties in processing fine coal and the potential for a significant increase in fines due to more demanding quality specifications, the U.S. Department of Energy's Federal Energy Technology Center (FETC) has been involved in the reconstitution of the fine clean coal resulting from advanced fine coal cleaning technologies. FETC has invented and developed a new strategy that combines fine-coal dewatering and reconstitution into one step. The process reduces the moisture content of the clean coal, and alleviates handling problems related to dustiness, stickiness, flowability, and freezing. This process has been named the GranuFlow Process. Early work successfully demonstrated the feasibility of the process for laboratory-scale vacuum filtration dewatering using asphalt emulsion. Further tests focused on the application of the process to a screen-bowl centrifuge via batch mode tests at 300 lb/hr. These tests produced roughly the same results as the laboratory filtration tests did, and they included some testing using Orimulsion, a bitumen emulsion. The Orimulsion seemed to offer greater potential for moisture reduction and was less affected by colder slurry temperatures. Most recently, FETC has conducted several series of tests in its Coal Preparation Process Research Facility. These tests dramatically showed the visible difference in the dewatered product by applying the GranuFlow Process, turning it from a clumpy, wet, sticky material into a granular, dry free-flowing product. In addition, it verified previous results with improvements in moisture content, dustiness, stickiness, and freezing. Orimulsion showed a significant benefit over asphalt emulsion in moisture reduction at additions more than 5%. The overall goal of this project was to successfully apply FETC'S GranuFlow Process to improve coal slurry pipeline operations. Williams Technologies, Inc. (WTI), a leader in pipeline technology, has an interest in reducing the moisture

  1. Gas lines chasing huge northeastern market

    SciTech Connect (OSTI)

    Watts, J.

    1982-03-01

    Gas for the Northeastern US market is the driving force behind three proposed projects to bring Canadian gas to the New England-New York area: the 360-mile New England States pipeline (Algonquin Gas Transmission Co., Transcontinental Gas Pipe Line Corp., Texas Eastern Transmission Corp., and Nova, an Alberta Corp.); the 261-mile Boundary Gas project (with Boundary Gas Inc., a consortium of 14 gas utilities with Tennessee Gas Pipeline Co. providing transportation); and the 158-mile Niagara pipeline (Transcontinental Gas Pipe Line Corp.). Although none has yet received government (US and Canadian) approval, at least one project - the New England States line - is expected to be operational by 1984, bringing 305 million CF of natural gas daily for US residential and industrial markets. Both countries stand to benefit from the three projects. For Canada, the sale of gas to New England provides a steady market for massive quantities of gas makes building a pipeline from gas-rich Alberta (that will also serve eastern Canada) economically feasible, and ensures the existence of a transportation network in the Maritime provinces for use when production begins off Newfoundland and Nova Scotia. For the US, the gas from Canada will help reduce the nation's dependence on foreign oil and provide additional supplies during the peakload winter season.

  2. Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates

    Reports and Publications (EIA)

    1995-01-01

    This report, summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns.

  3. Natural Gas as a Transportation Fuel: Benefits, Challenges, and Implementation (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2007-07-01

    Presentation for the Clean Cities Website highlighting the benefits, challenges, and implementation considerations when utilizing natural gas as a transportation fuel.

  4. U.S. pipelines continue gains into 1996

    SciTech Connect (OSTI)

    True, W.R.

    1996-11-25

    US interstate natural gas, crude oil, and petroleum product pipelines turned in health performances for 1995, continuing impressive efficiency improvements that were evident in 1994. Revenues and incomes earned from operations along with volumes moved are among data annually submitted to FERC and tracked by Oil and Gas Journal year to year in this exclusive report. This year`s report expands coverage of plans for new construction and completed-cost figures by including Canadian activity for the same 12-month period: July 1, 1995, to June 30, 1996. The paper includes data on the following: pipeline revenues, incomes--1995; North American pipeline costs, estimated; US pipeline costs, estimated vs. actual; North American compressor-construction costs; US compressor costs, estimated vs. actual; Canadian pipeline construction costs, actual; US interstate mileage; investment in liquids pipelines; 10 years of land construction costs; to 10 interstate liquids lines; top 10 interstate gas lines; liquids pipeline companies; and gas pipeline companies.

  5. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of the Alaska gas pipeline. The opening of ANWR might reduce the gas resource risk of building an Alaska gas pipeline, as the area has an estimated 3.6 trillion cubic...

  6. Pipeline Expansions

    Reports and Publications (EIA)

    1999-01-01

    This appendix examines the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It also includes those projects in Canada and Mexico that tie-in with the U.S. markets or projects.

  7. Natural Gas Vehicles Release Characterization and Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Administration, Office of Oil and Gas - April 2009 1 Natural gas market centers first began to develop in the late 1980s following the implementation of the initial open- access transportation initiative under the Federal Energy Regulatory Commission's (FERC) Order 436 (1985). 1 Market centers since have become a key component of the North American natural gas transportation network (see box, "Market Center Development"). Located at strategic points on the pipeline grid,

  8. Natural Gas Market Centers: A 2008 Update

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration, Office of Oil and Gas - April 2009 1 Natural gas market centers first began to develop in the late 1980s following the implementation of the initial open- access transportation initiative under the Federal Energy Regulatory Commission's (FERC) Order 436 (1985). 1 Market centers since have become a key component of the North American natural gas transportation network (see box, "Market Center Development"). Located at strategic points on the pipeline

  9. SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS

    SciTech Connect (OSTI)

    King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

    2003-11-21

    Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

  10. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect (OSTI)

    Stalheim, Mr. Douglas; Boggess, Todd; San Marchi, Chris; Jansto, Steven; Somerday, Dr. B; Muralidharan, Govindarajan; Sofronis, Prof. Petros

    2010-01-01

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best

  11. Price convergence in North America natural gas spot markets

    SciTech Connect (OSTI)

    King, M.; Cuc, M.

    1996-12-01

    Government policy changes and subsequent regulatory actions in Canada and the United States (US) in the mid-1980s led to effective deregulation of the commodity market for natural gas. This was done by price deregulation, unbundling of pipeline services, and the fostering of a competitive market through equal and open access to pipeline transportation capacity by all suppliers and users. This paper attempts to measure the degree of price convergence in the North American natural gas spot markets. 38 refs.

  12. Corporate Realignments and Investments in the Interstate Natural Gas Transmission System

    Reports and Publications (EIA)

    1999-01-01

    Examines the financial characteristics of current ownership in the natural gas pipeline industry and of the major U.S. interstate pipeline companies that transported the bulk of the natural gas consumed in the United States between 1992 and 1997, focusing on 14 parent corporations. It also examines the near-term investment needs of the industry and the anticipated growth in demand for natural gas during the next decade.

  13. Natural gas annual 1993 supplement: Company profiles

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  14. Weather, construction inflation could squeeze North American pipelines

    SciTech Connect (OSTI)

    True, W.R.

    1998-08-31

    Major North American interstate and interprovincial pipeline companies appear headed for a squeeze near-term: 1997 earnings from operations were down for the second straight year even as the companies expected new construction to begin this year or later to cost more. The effects of warmer-than-normal weather during 1997 in North America made a showing in annual reports filed by US regulated interstate oil and gas pipeline companies with the US Federal Energy Regulatory Commission (FERC). This paper contains data on the following: pipeline revenues, incomes--1997; North American pipeline costs; North American pipeline costs (estimated vs. actual); North American compressor construction costs; US compressor costs (estimated vs. actual); US interstate mileage; investment in liquids pipelines; 10 years of land construction costs; top 10 interstate liquids lines; top 10 interstate gas lines; liquids pipeline companies; and gas pipeline companies.

  15. TRU waste transportation -- The flammable gas generation problem

    SciTech Connect (OSTI)

    Connolly, M.J.; Kosiewicz, S.T.

    1997-11-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site`s inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons.

  16. Instrumented Pipeline Initiative

    SciTech Connect (OSTI)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  17. Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 250 citations and includes a subject term index and title list.)

  18. Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 250 citations and includes a subject term index and title list.)

  19. EIA's Natural Gas Production Data

    Reports and Publications (EIA)

    2009-01-01

    This special report examines the stages of natural gas processing from the wellhead to the pipeline network through which the raw product becomes ready for transportation and eventual consumption, and how this sequence is reflected in the data published by the Energy Information Administration (EIA).

  20. Issues facing the future use of Alaskan NorthSlope natural gas

    SciTech Connect (OSTI)

    Bowsher, C.A.

    1983-05-12

    The North Slope of Alaska contains over 26 trillion cubic feet of natural gas. In 1977, the President and the Congress approved construction of a 4800-mile gas pipeline to bring this gas to US consumers by 1983. However, completion of the project is not now expected until late 1989 at the earliest. This report examines the status and outlook for the Alaskan gas pipeline (the Alaska Natural Gas Transportation System). It also evaluates the pros and cons of (1) alternative systems to deliver this gas to market, including a gas pipeline with Alaska for export of liquefied natural gas; (2) processing the gas in Alaska by converting it to methanol and petrochemicals for export; and (3) using the gas within Alaska.

  1. Microsoft Word - Rockies Pipelines and Prices.doc

    Gasoline and Diesel Fuel Update (EIA)

    07 1 September 2007 Short-Term Energy Outlook Supplement: Natural Gas in the Rocky Mountains: Developing Infrastructure 1 Highlights * Recent natural gas spot market volatility in the Rocky Mountain States of Colorado, Utah, and Wyoming has been the result of increased production while consumption and pipeline export capacity have remained limited. This Supplement analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline

  2. Ion transport membrane module and vessel system with directed internal gas flow

    DOE Patents [OSTI]

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  3. Microsoft Word - EOC Activation - Pipeline Overpressurization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (EOC) has been activated as a precautionary measure after an over-pressurized pipeline vented about 100 gallons of liquid natural gas approximately two miles from the WIPP...

  4. EIS-0517: Port Arthur Liquefaction Project and Port Arthur Pipeline...

    Broader source: Energy.gov (indexed) [DOE]

    natural gas marine terminal along the Sabine-Neches ship channel (Jefferson County, Texas), about 35 miles of new pipeline, and associated facilities. DOE, Office of Fossil...

  5. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline hpwgw_permeability_integrity_feng.pdf (1.41 MB) More Documents & Publications Hydrogen permeability and Integrity of hydrogen

  6. The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...

    Open Energy Info (EERE)

    Outputs include: The tool outputs greenhouse gas emissions (including carbon dioxide, methane, nitrous oxide, carbon dioxide equivalent, and biogenic carbon dioxide) for each...

  7. Feed gas contaminant removal in ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

    2008-09-16

    Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

  8. Biomass and Natural Gas to Liquid Transportation Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Josephine Elia, Graduate Student, Princeton University

  9. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

    1996-11-12

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

  10. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 17. Plant section 2500 - Plant and Instrument Air

    SciTech Connect (OSTI)

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 17 which reports the design of Plant Section 2500 - Plant and Instrument Air. The plant and instrument air system is designed to provide dry, compressed air for a multitude of uses in plant operations and maintenance. A single centrifugal air compressor provides the total plant and instrument air requirements. An air drying system reduces the dew point of the plant and instrument air. Plant Section 2500 is designed to provide air at 100/sup 0/F and 100 psig. Both plant and instrument air are dried to a -40/sup 0/F dew point. Normal plant and instrument air requirements total 1430 standard cubic feet per minute.

  11. Fusion, mechanical joining methods pros, cons--Part 2. [Natural gas pipelines use of mechanical and fusion joints

    SciTech Connect (OSTI)

    Gunther, K.M. )

    1993-10-01

    Two basic techniques accepted by gas distribution utility companies for joining polyethylene pipe underground are fusion methods and mechanical joining. Washington Gas Light Co., uses the fusion methods for the most part and uses mechanical joints for repair and final tie-ins where fusion methods are impractical or impossible to use. Fusion methods used by gas industry users of plastic pipe are: butt fusion; socket fusion; saddle fusion; electrofusion. Mechanical pipe joining techniques or procedures include: factory made mechanical joints such as meter risers and transition fittings; hydraulic compression couplings; bolted and screwed compression couplings; stab type compression couplings; interior seal couplings. Every joining method has strengths, weaknesses, pitfalls and ways they can fail in service. The key is making the best selection based on such factors as location, temperature, conditions, available equipment, personnel training level and cost. No one method will do it all or every company would be using that particular method. Part 2 focuses on strengths, weaknesses, pitfalls and failure possibilities of the five mechanical techniques.

  12. Modeling the effect of gas transport on the formation of defects during thermolysis of powder moldings

    SciTech Connect (OSTI)

    Song, J.H.; Edirisinghe, M.J.; Evans, J.R.; Twizell, E.H.

    1996-04-01

    The removal of binder from ceramic or metal moldings by thermolysis involves the transport of degradation products through the parent organic phase and the vacated porous body. A numerical model has been developed to combine an equation which takes into account different gas-flow regimes with an equation for the transport of organic molecules in molten polymers. Computer modeling reveals the critical heating rate above which defects occur due to boiling of the polymer-monomer solution at the center of the molding. The situation in which a porous outer layer of the molding develops, offering resistance to flow of the evolved monomer gas, is then treated. This gives rise to a moving boundary with a variable concentration of diffusant which is dependent on the surface flux, gas transport coefficient and thickness of the porous layer. The contributions of diffusion and viscous flow to gas transport are considered. {copyright} {ital 1996 Materials Research Society.}

  13. Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by State, 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    The map below shows the amount of petroleum and natural gas consumed in the transportation sector by state for 2010. The pie charts for each state are scaled based on total consumption of petroleum...

  14. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    that had been in place since February 1. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  15. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    more from the system than they nominate. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  16. Water Transport Characteristics of Gas Diffusion Layer in a PEM Fuel Cell

    SciTech Connect (OSTI)

    Damle, Ashok S; Cole, J Vernon

    2008-11-01

    A presentation addressing the following: Water transport in PEM Fuel Cells - a DoE Project 1. Gas Diffusion Layer--Role and Characteristics 2. Capillary Pressure Determinations of GDL Media 3. Gas Permeability Measurements of GDL Media 4. Conclusions and Future Activities

  17. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  18. Magnetic pipeline for coal and oil

    SciTech Connect (OSTI)

    Knolle, E.

    1998-07-01

    A 1994 analysis of the recorded costs of the Alaska oil pipeline, in a paper entitled Maglev Crude Oil Pipeline, (NASA CP-3247 pp. 671--684) concluded that, had the Knolle Magnetrans pipeline technology been available and used, some $10 million per day in transportation costs could have been saved over the 20 years of the Alaska oil pipeline's existence. This over 800 mile long pipeline requires about 500 horsepower per mile in pumping power, which together with the cost of the pipeline's capital investment consumes about one-third of the energy value of the pumped oil. This does not include the cost of getting the oil out of the ground. The reason maglev technology performs superior to conventional pipelines is because by magnetically levitating the oil into contact-free suspense, there is no drag-causing adhesion. In addition, by using permanent magnets in repulsion, suspension is achieved without using energy. Also, the pumped oil's adhesion to the inside of pipes limits its speed. In the case of the Alaska pipeline the speed is limited to about 7 miles per hour, which, with its 48-inch pipe diameter and 1200 psi pressure, pumps about 2 million barrels per day. The maglev system, as developed by Knolle Magnetrans, would transport oil in magnetically suspended sealed containers and, thus free of adhesion, at speeds 10 to 20 times faster. Furthermore, the diameter of the levitated containers can be made smaller with the same capacity, which makes the construction of the maglev system light and inexpensive. There are similar advantages when using maglev technology to transport coal. Also, a maglev system has advantages over railroads in mountainous regions where coal is primarily mined. A maglev pipeline can travel, all-year and all weather, in a straight line to the end-user, whereas railroads have difficult circuitous routes. In contrast, a maglev pipeline can climb over steep hills without much difficulty.

  19. Portal, ND Natural Gas Liquefied Natural Gas Imports from Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Natural Gas Imports by Pipeline from Canada

  20. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    SciTech Connect (OSTI)

    Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.; Bauer, Stephen J.; Gardner, William Payton

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

  1. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    SciTech Connect (OSTI)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  2. New construction era reflected in East Texas LPG pipeline

    SciTech Connect (OSTI)

    Mittler, T.J. )

    1990-04-02

    Installation of 240 miles of 6, 10, and 12-in. LPG pipelines from Mont Belvieu to Tyler, Tex., has provided greater feedstock-supply flexibility to a petrochemical plant in Longview, Tex. The project, which took place over 18 months, included tie-ins with metering at four Mont Belvieu suppliers. The new 10 and 12-in. pipelines now transport propane while the new and existing parts of a 6-in. pipeline transport propylene.

  3. A novel configuration for coproducing transportation fuels and power from coal and natural gas

    SciTech Connect (OSTI)

    Gray, D.; Tomlinson, G.

    1998-07-01

    The US Department of Energy and Mitretek Systems have evolved and evaluated a concept that combines the use of gas and coal for the highly efficient production of electric power and high quality transportation fuels. In its simplest form, this coproduction cofeed (CoCo) concept consists of diverting coal-derived synthesis gas from the combined cycle power block of an Integrated Coal Gasification Combined Cycle (IGCC) unit to a slurry-phase Fischer-Tropsch (F-T) synthesis reactor. The unreacted synthesis gas from the F-T reactor, and imported natural gas are then combusted in the downstream combined cycle power generation unit. Combining processes in this manner accomplishes the equivalent of natural gas to liquid synthesis while eliminating the conversion losses associated with the production of synthesis gas from natural gas. The paper discusses the benefits of coproduction.

  4. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  5. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  6. North West Shelf pipeline. Part 2 (conclusion). Laying Australia's North West Shelf pipeline

    SciTech Connect (OSTI)

    Seymour, E.V.; Craze, D.J.; Ruinen, W.

    1984-05-14

    Details of the construction of Australia's North West Shelf gas pipeline cover the pipelaying operation, trunkline-to-riser tie-in, posttrenching, backfilling, slugcatcher construction, connection with the shore terminal, and hydrostatic testing.

  7. World pipeline work set for rapid growth

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This paper reports on international pipeline construction which has entered a fast-growth period, accelerated by the new political and economic realities around the world and increasing demand for natural gas, crude oil and refined petroleum products. Many projects are under way or in planning for completion in the mid- to late 1990s in Europe, South America, Asia and the Middle East. Pipeline And Gas Journal's projection calls for construction or other work on 30,700 miles of new natural gas, crude oil and refined products pipelines in the 1992-93 period outside Canada and the U.S. These projects will cost an estimated $30 billion-plus. Natural gas pipelines will comprise most of the mileage, accounting for almost 23,000 miles at an estimated cost of $26.3 billion. Products pipelines, planned or under construction, will add another 5,800 miles at a cost of $2.8 billion. Crude oil pipelines, at a minimum, will total 1,900 new miles at a cost of slightly under $1 billion.

  8. Transco drops self-help gas, forcing users back to utilities

    SciTech Connect (OSTI)

    Hines, V.

    1985-11-04

    Transcontinental Gas Pipe Line (Transco) responded to Federal Energy Regulatory Commission Order 436, which eliminates pipeline discretion over who can arrange contract carriage of gas the pipeline does not own, because some users will look for alternate shipping routes and others will experience a significant increase in energy costs. Transco and most other pipeline companies declined to adopt the order because it is too flawed from their point of view. The article quotes several users who are looking for alternative transportation or considering fuel substitutions because of the higher prices.

  9. Components in the Pipeline

    SciTech Connect (OSTI)

    Gorton, Ian; Wynne, Adam S.; Liu, Yan; Yin, Jian

    2011-02-24

    Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

  10. U.S., Canada pipeline work shows gain in 1994

    SciTech Connect (OSTI)

    Watts, J.

    1994-01-01

    Pipeline construction activity in the US and Canada is expected to be down slightly during 1994 from 1993 mileage, even though natural gas pipeline work remains steady on both sides of the border. Pipeline and Gas Journal and Pipeline and Utilities Construction estimate that a total of 3.638 miles of new gas, crude oil and refined products pipeline will be installed during 1994 in the US, down from a total of 4.278 miles built in 1993. Canadian 1994 work remains essentially unchanged in 1994, with 1,094 new miles compared to 1,091 miles in 1993. This paper reviews the proposed construction by region and company. It includes information on mileage, type pipeline, and estimated completion date.

  11. Energy policy act transportation study: Interim report on natural gas flows and rates

    SciTech Connect (OSTI)

    1995-11-17

    This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

  12. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

  13. Coal slurry pipelines: Blach Mesa and future projects

    SciTech Connect (OSTI)

    Brolick, H.J.

    1998-12-31

    Most people in the mining industry have some familiarity with pipelining of minerals in slurry form, however, many may not realize the extent that mineral slurry pipeline transport is used throughout the world. The author is referring to the shipment of the minerals in the raw or concentrate form, not tailings pipelines which are also commonplace in the minerals industry. There are over forty mineral pipelines around the world. The list covers a wide range of minerals, including copper ore concentrate, iron ore concentrate, limestone, phosphate concentrate, kaolin, Gilsonite and gold ore, with only eleven of the mineral pipelines located in the USA. It should be noted that one of the earliest slurry pipelines was a 108 mile coal slurry pipeline in Ohio, which started up in 1957. The pipeline only operated until 1963 when a railroad company literally bought out the transportation contract. This really was the beginning of the unit train concept. Each mineral has specific physical and chemical characteristics to be considered when evaluating transport by pipeline. The processing required at the pipeline origin, as well as at the pipeline termination, are also important factors in determining slurry pipeline feasibility. Transport distance, annual volume, and continuity of shipments are other important factors. One of the most difficult minerals to transport as a slurry is coal because the specific gravity is closer to water than most other minerals. Thus, the fine balance of creating enough fine particles to serve as a carrier for the coarser material, while at the same time having a material that can be economically dewatered is very sensitive and technical designs will vary with types of coal. Additionally, since coal is purchased for its thermal value, excess surface moisture can lower the value of the coal to the customer. One of the most successful slurry pipeline operations, and the only current operating long-distance coal slurry pipeline is the Black Mesa

  14. EIS-0020: Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Naval Petroleum and Oil Shale Reserves developed this supplement to a Department of Navy statement to evaluate the environmental impacts associated with a modified design of a proposed 250,000 barrels per day crude oil conveyance system from Naval Petroleum Reserve No. 1 to connect to the proposed SOHIO West Coast to Midcontinent Pipeline at Rialto, California.

  15. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  16. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect (OSTI)

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  17. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect (OSTI)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  18. Ion transport membrane reactor systems and methods for producing synthesis gas

    SciTech Connect (OSTI)

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  19. Carolina users sue Transco for natural gas carriage

    SciTech Connect (OSTI)

    Hume, M.

    1985-05-27

    Carolina Utility Customers Association, Inc., which represents 65 industrial natural gas users, is suing Transcontinental Gas Pipe Line Corp. on antitrust grounds to gain greater access to the system. The litigants claim that the pipeline is carrying only for users who would otherwise buy oil, which violates sections 1 and 2 of the Sherman Act. Similar suits are already in federal courts at a time when pipelines are also experiencing pressure to deliver more and cheaper gas to all users without class discrimination. Improved transportation would help industries, such as textiles, which are already at a competitive disadvantage due to imports.

  20. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

    2004-04-12

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to

  1. Keystone XL pipeline update

    Broader source: Energy.gov [DOE]

    Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

  2. Fiber Reinforced Composite Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rawls Savannah River National Laboratory This presentation does not contain proprietary, confidential, or otherwise restricted information Fiber Reinforced Composite Pipelines ...

  3. Natural Gas Pipeline & Distribution Use

    U.S. Energy Information Administration (EIA) Indexed Site

    70,174 674,124 687,784 730,790 833,061 835,757 1997-2014 Alabama 18,849 22,124 23,091 25,349 22,166 18,688 1997-2014 Alaska 2,318 3,284 3,409 3,974 544 309 1997-2014 Arizona 20,846...

  4. Natural gas monthly, July 1996

    SciTech Connect (OSTI)

    1996-07-01

    This document presents information pertaining to the natural gas industry. Data are included on production, consumption, distribution, and pipeline activities.

  5. Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    Broader source: Energy.gov [DOE]

    Numerous transportation strategies are directed at reducing energy use and greenhouse gas (GHG) emissions by changing the behavior of individual drivers or travelers. These behavioral changes may have the effect of reducing travel, shifting travel to more efficient modes, or improving the efficiency of existing travel. Since the 1970s, federal, regional, state and municipal agencies have tried to reduce energy use, emissions, and congestion by influencing travel behavior. This report reviews and summarizes the literature on relationships between these strategies and transportation-related energy use and GHG emissions to examine how changes to travel behavior can reduce transportation energy use and discuss the potential for federal actions to affect travel behavior.

  6. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  7. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners

  8. Overview of the design, construction, and operation of interstate liquid petroleum pipelines.

    SciTech Connect (OSTI)

    Pharris, T. C.; Kolpa, R. L.

    2008-01-31

    The U.S. liquid petroleum pipeline industry is large, diverse, and vital to the nation's economy. Comprised of approximately 200,000 miles of pipe in all fifty states, liquid petroleum pipelines carried more than 40 million barrels per day, or 4 trillion barrel-miles, of crude oil and refined products during 2001. That represents about 17% of all freight transported in the United States, yet the cost of doing so amounted to only 2% of the nation's freight bill. Approximately 66% of domestic petroleum transport (by ton-mile) occurs by pipeline, with marine movements accounting for 28% and rail and truck transport making up the balance. In 2004, the movement of crude petroleum by domestic federally regulated pipelines amounted to 599.6 billion tonmiles, while that of petroleum products amounted to 315.9 billion ton-miles (AOPL 2006). As an illustration of the low cost of pipeline transportation, the cost to move a barrel of gasoline from Houston, Texas, to New York Harbor is only 3 cents per gallon, which is a small fraction of the cost of gasoline to consumers. Pipelines may be small or large, up to 48 inches in diameter. Nearly all of the mainline pipe is buried, but other pipeline components such as pump stations are above ground. Some lines are as short as a mile, while others may extend 1,000 miles or more. Some are very simple, connecting a single source to a single destination, while others are very complex, having many sources, destinations, and interconnections. Many pipelines cross one or more state boundaries (interstate), while some are located within a single state (intrastate), and still others operate on the Outer Continental Shelf and may or may not extend into one or more states. U.S. pipelines are located in coastal plains, deserts, Arctic tundra, mountains, and more than a mile beneath the water's surface of the Gulf of Mexico (Rabinow 2004; AOPL 2006). The network of crude oil pipelines in the United States is extensive. There are approximately 55

  9. Subsea pipeline connection

    SciTech Connect (OSTI)

    Langner, C. G.

    1985-12-17

    A method and apparatus are provided for laying an offshore pipeline or flowline bundle to a deepwater subsea structure. The pipeline or flowline bundle is laid along a prescribed path, preferably U-shape, such that a pullhead at the terminus of the pipeline or flowline bundle falls just short of the subsea structure. A pull-in tool connected to the pipeline or flowline bundle by a short length of pull cable is then landed on and latched to the subsea structure, and the pipeline or flowline bundle is pulled up to the subsea structure by the pull-in tool and pull cable.

  10. Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs

    Broader source: Energy.gov [DOE]

    An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy

  11. Natural gas storage - end user interaction task 6

    SciTech Connect (OSTI)

    1997-05-01

    New opportunities have been created for underground gas storage as a result of recent regulatory developments in the energy industry. The Federal Energy Regulatory Commission (FERC) Order 636 directly changed the economics of gas storage nationwide. Pipelines have been required to {open_quotes}unbundle{close_quotes} their various services so that pipeline users can select only what they need from among the transportation, storage, balancing and the other traditional pipeline services. At the same time, the shift from Modified Fixed Variable (MFV) rate design to Straight Fixed Variable (SFV) rate design has increased the costs of pipeline capacity relative to underground storage and other supply options. Finally, the ability of parties that have contracted for pipeline and storage services to resell their surplus capacities created by Order 636 gives potential gas users more flexibility in assembling combinations of gas delivery services to create reliable gas deliverability. In response to Order 636, the last two years have seen an explosion in proposals for gas storage projects. This paper describes the market for natural gas storage.

  12. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2008-02-29

    There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

  13. World`s developing regions provide spark for pipeline construction

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1996-02-05

    This paper reviews the proposed construction of oil and gas pipelines which are underway or proposed to be started in 1996. It breaks down the projects by region of the world, type of product to be carried, and diameter of pipeline. It also provides mileage for each category of pipeline. Major projects in each region are more thoroughly discussed giving details on construction expenditures, construction problems, and political issues.

  14. Working Together to Address Natural Gas Storage Safety | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Address Natural Gas Storage Safety Working Together to Address Natural Gas Storage Safety April 1, 2016 - 11:15am Addthis Working Together to Address Natural Gas Storage Safety Franklin (Lynn) Orr Franklin (Lynn) Orr Under Secretary for Science and Energy Marie Therese Dominguez Marie Therese Dominguez Administrator, U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration As a part of the Administration's ongoing commitment to support state and

  15. Materials Solutions for Hydrogen Delivery in Pipelines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Objective: Develop materials technologies to minimize embrittlement of steels used for high-pressure transport of hydrogen pipeline_group_das_ms.pdf (1.14 MB) More Documents & Publications Materials Solutions for Hydrogen Delivery in Pipelines American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Workshop Summary Testing

  16. Bayou pipeline crossing requires helical pilings

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This paper discusses a routine inspection by Transcontinental Gas Pipe Line Corp. which revealed the approximately 100 ft of its 30-in gas pipeline in St. Landry Parish, La., had become suspended. The situation occurred in the West Atchafalaya Floodway after periods of heavy rain produced strong currents that scoured the soil from around and below the pipeline. To protect the pipeline from possible damage from overstressing, Transco awarded a lump-sum contract to Energy Structures Inc., Houston, to design and install pipeline supports. The pipeline supports engineered by ESI used helical-screw pilings instead of conventional driven pilings. The helical piles were manufactured by A.B. Chance Co., Centralia, Mo. Typically, helical pilings consist of steel pipe ranging from 3.5- to 8-in. diameter pipe with one or more helixes welded onto the pipe. Selection of the proper piling cross-section was based on design loads and soil conditions at the project locations. length was determined by the amount of pipeline suspension and on-site soil conditions.

  17. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    SciTech Connect (OSTI)

    Agnew, Kieran

    2013-07-01

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method

  18. Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.

    SciTech Connect (OSTI)

    Singh, M. K.; Moore, J. S.

    2002-03-04

    Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

  19. Natural gas information 1996 (1997 edition)

    SciTech Connect (OSTI)

    1997-09-16

    A detailed reference work on gas supply and demand covering not only the OECD countries but also the rest of the world, this publication contains essential information on LNG and pipeline trade, gas reserves, storage capacity, and prices. The main part of the book concentrates on OECD countries, showing a detailed gas supply and demand balance for each country and for three OECD regions: North America, Europe, and Asia-Pacific, as well as a breakdown of gas consumption by end-user. Import and export data are reported by source and destination. Also included are maps of the pipeline systems in 25 IEA countries and information on their ownership and operations, transit of gas, regulatory features, and transportation tariffs.

  20. Task 4 - natural gas storage - end user interaction

    SciTech Connect (OSTI)

    1997-02-18

    New opportunities have been created for underground gas storage as a result of recent regulatory developments in the energy industry. The Federal Energy Regulatory Commission (FERC) Order 636 directly changed the economics of gas storage nationwide. Pipelines have been required to {open_quotes}unbundle{close_quotes} their various services so that pipeline users can select only what they need from among the transportation, storage, balancing and the other traditional pipeline services. At the same time, the shift from Modified Fixed Variable (MFV) rate design to Straight Fixed Variable (SFV) rate design has increased the costs of pipeline capacity relative to underground storage and other supply options. Finally, the ability of parties that have contracted for pipeline and storage services to resell their surplus capacities created by Order 636 gives potential gas users more flexibility in assembling combinations of gas delivery services to create reliable gas deliverability. In response to Order 636, the last two years have seen an explosion in proposals for gas storage projects.