Sample records for gas pipeline transportation

  1. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

  2. Natural Gas Pipeline Safety (Kansas)

    Broader source: Energy.gov [DOE]

    This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

  3. Gas Balancing Rules Must Take into account the Trade-off between Offering Pipeline Transport and Pipeline Flexibility in Liberalized Gas Markets

    E-Print Network [OSTI]

    Keyaerts, Nico

    This paper analyses the value and cost of line-pack flexibility in liberalized gas markets through the examination of the techno-economic characteristics of gas transport pipelines and the trade-offs between the different ...

  4. Gas Pipelines (Texas)

    Broader source: Energy.gov [DOE]

    This chapter applies to any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as any...

  5. Gas Utility Pipeline Tax (Texas)

    Broader source: Energy.gov [DOE]

    All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

  6. GAS PIPELINE PIGABILITY

    SciTech Connect (OSTI)

    Ted Clark; Bruce Nestleroth

    2004-04-01T23:59:59.000Z

    In-line inspection equipment is commonly used to examine a large portion of the long distance transmission pipeline system that transports natural gas from well gathering points to local distribution companies. A piece of equipment that is inserted into a pipeline and driven by product flow is called a ''pig''. Using this term as a base, a set of terms has evolved. Pigs that are equipped with sensors and data recording devices are called ''intelligent pigs''. Pipelines that cannot be inspected using intelligent pigs are deemed ''unpigable''. But many factors affect the passage of a pig through a pipeline, or the ''pigability''. The pigability pipeline extend well beyond the basic need for a long round hole with a means to enter and exit. An accurate assessment of pigability includes consideration of pipeline length, attributes, pressure, flow rate, deformation, cleanliness, and other factors as well as the availability of inspection technology. All factors must be considered when assessing the appropriateness of ILI to assess specific pipeline threats.

  7. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30T23:59:59.000Z

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  8. Pipelines and Underground Gas Storage (Iowa)

    Broader source: Energy.gov [DOE]

    These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

  9. EIA - Natural Gas Pipeline Network - Transportation Process & Flow

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline UtilizationProcess and Flow

  10. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    U.S. Energy Information Administration (EIA) Indexed Site

    Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Regional Overviews and Links to Pipeline...

  11. About U.S. Natural Gas Pipelines

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

  12. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...

    Gasoline and Diesel Fuel Update (EIA)

    Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground Natural Gas Storage...

  13. Gas Pipeline Securities (Indiana)

    Broader source: Energy.gov [DOE]

    This statute establishes that entities engaged in the transmission of gas by pipelines are not required to obtain the consent of the Utility Regulatory Commission for issuance of stocks,...

  14. Natural Gas Pipeline Utilities (Maine)

    Broader source: Energy.gov [DOE]

    These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the...

  15. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...

    U.S. Energy Information Administration (EIA) Indexed Site

    Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural...

  16. Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Natural Gas Pipeline Network DOE'S HYDROGEN ENERGY STORAGE FOR GRID AND TRANSPORTATION SERVICES WORKSHOP Sacramento, CA May 14, 2014 Brian Weeks Gas Technology Institute 2 2...

  17. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...

    Gasoline and Diesel Fuel Update (EIA)

    Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production Reservoir Underground...

  18. Gas Pipeline Safety (West Virginia)

    Broader source: Energy.gov [DOE]

    The Gas Pipeline Safety Section of the Engineering Division is responsible for the application and enforcement of pipeline safety regulations under Chapter 24B of the West Virginia Code and 49 U.S...

  19. Gas Pipeline Safety (Indiana)

    Broader source: Energy.gov [DOE]

    This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

  20. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01T23:59:59.000Z

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

  1. Altamont gas pipeline project delayed 1 year

    SciTech Connect (OSTI)

    Not Available

    1992-08-03T23:59:59.000Z

    Altamont Gas Transmission Co. will delay laying a 30 in., 620 mile pipeline to deliver Canadian gas to California until markets become more responsive. This paper reports that the decision will delay until November 1994 completion of the proposed 719 MMcfd, $612 million line. The original schedule called for construction to begin in spring 1993 with an in-service date of late 1993. Altamont pipeline is to transport gas from the US-Canadian border at Port of Wild Horse, Mont., to Opal, Wyo., where it will interconnect with the Kern River Transmission Co. pipeline to California. Altamont has obtained all regulatory approvals for its project. Altamont the project sponsors Tenneco Gas, Amoco Corp., and Entech Inc. support the decision to delay the start of construction.

  2. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-09-01T23:59:59.000Z

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  3. Network Connectivity and Price Convergency: Gas Pipeline Deregulation

    E-Print Network [OSTI]

    De Vany, Arthur; Walls, W. David

    1993-01-01T23:59:59.000Z

    Convergence: Gas Pipeline Deregulation Arthur De Vany W.Price Convergence: Gas Pipeline Deregulation Arthur De Vany

  4. Natural Gas Transmission Pipeline Siting Act (Florida)

    Broader source: Energy.gov [DOE]

    This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas...

  5. Optimization Problems in Natural Gas Transportation Systems

    E-Print Network [OSTI]

    Roger Z. Ríos-Mercado

    2015-03-02T23:59:59.000Z

    Mar 2, 2015 ... Abstract: This paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline ...

  6. Evalutation of Natural Gas Pipeline Materials and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed...

  7. Virginia Natural Gas's Hampton Roads Pipeline Crossing

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—covers Virginia Natural Gas's (VNG's) pipeline project at Hampton Roads Crossing (HRX).

  8. Pipeline Operations Program (Louisiana)

    Broader source: Energy.gov [DOE]

    The Pipeline Operations Program regulates the construction, acquisition, abandonment and interconnection of natural gas pipelines, as well as, the transportation and use of natural gas supplies.

  9. U. S. gas pipelines move to comply with Order 636

    SciTech Connect (OSTI)

    Not Available

    1992-06-15T23:59:59.000Z

    This paper reports that more US interstate gas pipelines have unveiled plans to comply with the Federal Energy Regulatory Commission's Order 636 megarestructuring rule. In the latest developments: Texas Eastern Transmission Corp. (Tetco) filed the first Order 636 compliance proposal with FERC outlining new transportation rates, operational issues, and services the company plans to offer. Tenneco Gas will eliminate a layer of managers and split marketing and transportation functions into four divisions to deal with Order 646. ANR Pipeline Co. made organizational changes expected to help it participate faster and more effectively under Order 636. The company in mid-May made gas sales a stand alone activity, reorganized system sales by region, and consolidated transportation and storage functions. FERC's long awaited megarestructuring rule, issued early in April, aims to assure the open access, interstate pipelines provide equal services for all gas supplies. Companies are to submit transition plans to FERC by Nov. 2.

  10. alaska gas pipeline: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 4 A moving horizon solution to the gas pipeline...

  11. arctic gas pipeline: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 3 A moving horizon solution to the gas pipeline...

  12. arctic gas pipelines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 3 A moving horizon solution to the gas pipeline...

  13. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Environmental Management (EM)

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

  14. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

  15. Deliverability on the interstate natural gas pipeline system

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  16. PID control of gas pipelines

    SciTech Connect (OSTI)

    Coltharp, B.; Bergmann, J. [Baker CAC, Kingwood, TX (United States)

    1996-09-01T23:59:59.000Z

    The use of low cost digital controllers for pipeline control is increasing as the reliability and cost improves. In pipeline applications, the proportional, integral, and derivative (PID) controller algorithm is often used. However, the unique problems associated with pipeline operation have caused manufacturers to modify the basic control algorithms. Features such as set point ramping, built in pressure control, freeze on input error, and high and low output limits help assure safe and predictable pipeline operation.

  17. SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL

    E-Print Network [OSTI]

    Boyer, Edmond

    1 SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL Hébrard, J.1 linked with Hydrogen/Natural gas mixtures transport by pipeline, the National Institute of Industrial scenario, i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential

  18. Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs

    E-Print Network [OSTI]

    Parker, Nathan

    2004-01-01T23:59:59.000Z

    Warren R. “U.S. interstate pipelines begin 1993 on upbeat. ”66. ? True, Warren R. “Current pipeline costs. ” Oil & GasWarren R. “U.S. interstate pipelines ran more efficiently in

  19. Pipeline Politics: Natural Gas in Eurasia 

    E-Print Network [OSTI]

    Landrum, William W.; Llewellyn, Benjamin B.; Limesand, Craig M.; Miller, Dante J.; Morris, James P.; Nowell, Kathleen S.; Sherman, Charlotte L.

    2010-01-01T23:59:59.000Z

    important to US efforts to reduce its reliance on Middle Eastern energy resources. Presently, pipelines in Eurasia stretch across thousands of miles throughout unstable political regions. Disruptions in gas and oil supplies negatively affect the economies...

  20. Energy Department Moves Forward on Alaska Natural Gas Pipeline...

    Broader source: Energy.gov (indexed) [DOE]

    guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's...

  1. EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

  2. Interstate Natural Gas Pipelines (Iowa)

    Broader source: Energy.gov [DOE]

    This statute confers upon the Iowa Utilities Board the authority to act as an agent of the federal government in determining pipeline company compliance with federal standards within the boundaries...

  3. Gas Pipelines, County Roads (Indiana)

    Broader source: Energy.gov [DOE]

    A contract with any Board of County Commissioners is required prior to the construction of a pipeline, conduit, or private drain across or along any county highway. The contract will include terms...

  4. The evaluation and restoration of a deteriorated buried gas pipeline

    SciTech Connect (OSTI)

    Dovico, R.; Montero, E.

    1996-12-31T23:59:59.000Z

    Historically, the Argentine gas transmission and distribution industry was owned and operated by the State. In 1992, by government decree, this entire industry was transferred to private owners and operators, and divided into two Gas Transmission Companies (TGN and TGS) and eight Gas Distribution Companies. The pipelines and related facilities had been left in an operating condition, however major capital investments were required to assure that the integrity, reliability and operability of the facilities were intact. These capital expenditures were mandatory in many areas as part of the privatization. Maintenance and rehabilitation tasks were developed for the entire transmission system, with the intent to reduce the number of unscheduled outages, optimize system maintenance costs, increase operation safety, and upgrade the pipeline to ensure compliance with the international code. Transportadora de Gas del Norte (TGN), operated by Nova Gas International of Calgary, Canada, consists of two major pipeline transmission systems. The North Line, which transports gas from Northern Argentina and Bolivia to markets south to Buenos Aires is a 24 inch, 3,000 Km system constructed in 1960. It was constructed using a field applied asphalt coating system. The Center West Line, which transports gas from central Argentina (Neuquen) to markets in the western part of the country and also the Buenos Aires area, is a 30 inch, 1,400 Km system constructed in 1981. It was constructed using a field applied polyethylene tape coating system.

  5. ,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2015 1:45:50 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports From Canada (MMcf)" "Sourcekey","N9102CN2" "Date","U.S. Natural Gas Pipeline Imports From Canada...

  6. Statistical Modeling of Corrosion Failures in Natural Gas Transmission Pipelines 

    E-Print Network [OSTI]

    Cobanoglu, Mustafa Murat

    2014-03-28T23:59:59.000Z

    Natural gas pipelines are a critical component of the U.S. energy infrastructure. The safety of these pipelines plays a key role for the gas industry. Therefore, the understanding of failure characteristics and their consequences are very important...

  7. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11...

  8. A Cheap Levitating Gas/Load Pipeline

    E-Print Network [OSTI]

    Alexander Bolonkin

    2008-12-02T23:59:59.000Z

    Design of new cheap aerial pipelines, a large flexible tube deployed at high altitude, for delivery of natural (fuel) gas, water and other payload over a long distance is delineated. The main component of the natural gas is methane which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg (1 pound). The lightweight film flexible pipeline can be located in air at high altitude and, as such, does not damage the environment. Using the lift force of this pipeline and wing devices payloads of oil, water, or other fluids, or even solids such as coal, cargo, passengers can be delivered cheaply at long distance. This aerial pipeline dramatically decreases the cost and the time of construction relative to conventional pipelines of steel which saves energy and greatly lowers the capital cost of construction. The article contains a computed project for delivery 24 billion cubic meters of gas and tens of million tons of oil, water or other payload per year.

  9. Pipeline Access and Market Integration in the Natural Gas Industry: Evidence from Cointegration Tests

    E-Print Network [OSTI]

    De Vany, Arthur; Walls, W. David

    1993-01-01T23:59:59.000Z

    System for Natural Gas Pipelines." Study prepared underin the Natural Gas Pipeline Industry. Ph.D. dissertation,the remaining barfers to pipeline integration. REFERENCES

  10. Method for route selection of transcontinental natural gas pipelines

    E-Print Network [OSTI]

    Kouroupetroglou, Georgios

    1 Method for route selection of transcontinental natural gas pipelines Fotios G. Thomaidis1@kepa.uoa.gr Abstract. The route of transcontinental natural gas pipelines is characterized by complexity, compared choices. Keywords: Optimum route method, natural gas, transcontinental pipelines, Caspian Region ­ E

  11. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect (OSTI)

    Not Available

    1990-12-18T23:59:59.000Z

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  12. Kern River natural gas pipeline commissioned

    SciTech Connect (OSTI)

    Not Available

    1992-03-16T23:59:59.000Z

    Kern River Gas Transmission Co., the biggest gas pipeline built in the U.S. in the last decade, has been commissioned. The system was dedicated Mar. 6 at a meter station in an oil field near Bakersfield, Calif. The $984 million, 904 mile pipeline is a 50-50 venture of Tenneco Inc. and Williams Cos. Planning for the project began about 7 years ago. Current operating capacity of the line is 700 MMcfd. Plans call for boosting capacity by 452 MMcfd with added compression. Most of the gas will go to thermal enhanced oil recovery projects in heavy oil fields in California. This paper reports that other customers include utilities, independent electrical power producers, and cogeneration projects.

  13. Pipeline safety. Information on gas distribution system operators reporting unaccounted for gas

    SciTech Connect (OSTI)

    Not Available

    1986-02-01T23:59:59.000Z

    According to Department of Transportation records, 92 of the 1491 gas distribution system operators reported high levels of unaccounted for gas (unaccounted for gas is the difference between the amount of gas purchased and sold) for 1984, the latest year for which data were available. Of the 92 gas system operators, 64 were municipals (gas systems owned by a governmental entity, such as a city or county) and 28 were nonmunicipals. Based on the data we reviewed, these 92 gas systems did not report any accidents during calendar year 1984. Part I provides more details on the unaccounted for gas of municipal gas systems. Federal and industry officials consider that unaccounted for gas in excess of 15% of gas purchases high and worthy of investigation. High levels of unaccounted for gas can occur for a number of reasons, including errors in metering and billing, not accounting for gas used by city or company facilities, and leaking gas pipelines. While it may, a leak does not always indicate a safety problem. For example, a slow leak in an open area may not be a safety hazard. The Secretary has the authority to regulate any liquid deemed hazardous when transported by pipeline, and therefore could regulate hazardous liquids not currently regulated including methanol and carbon dioxide. However, the Department of Transportation has no plans to regulate any additional liquids. Part II provides more details. 4 figs., 2 tabs.

  14. Systems analysis of hydrogen supplementation in natural gas pipelines

    SciTech Connect (OSTI)

    Hermelee, A.; Beller, M.; D'Acierno, J.

    1981-11-01T23:59:59.000Z

    The potential for hydrogen supplementation in natural gas pipelines is analyzed for a specific site from both mid-term (1985) and long-term perspectives. The concept of supplementing natural gas with the addition of hydrogen in the existing gas pipeline system serves to provide a transport and storage medium for hydrogen while eliminating the high investment costs associated with constructing separate hydrogen pipelines. This paper examines incentives and barriers to the implementation of this concept. The analysis is performed with the assumption that current developmental programs will achieve a process for cost-effectively separating pure hydrogen from natural gas/hydrogen mixtures to produce a separable and versatile chemical and fuel commodity. The energy systems formulation used to evaluate the role of hydrogen in the energy infrastructure is the Reference Energy System (RES). The RES is a network diagram that provides an analytic framework for incorporating all resources, technologies, and uses of energy in a uniform manner. A major aspect of the study is to perform a market analysis of traditional uses of resources in the various consuming sectors and the potential for hydrogen substitution in these sectors. The market analysis will focus on areas of industry where hydrogen is used as a feedstock rather than for its fuel-use opportunities to replace oil and natural gas. The sectors of industry where hydrogen is currently used and where its use can be expanded or substituted for other resources include petroleum refining, chemicals, iron and steel, and other minor uses.

  15. Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,,

    E-Print Network [OSTI]

    Jackson, Robert B.

    Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,, * Adrian Down, Nathan G increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic

  16. ,"International Falls, MN Natural Gas Pipeline Imports From Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    International Falls, MN Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

  17. ,"Highgate Springs, VT Natural Gas Pipeline Imports From Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    Highgate Springs, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","L...

  18. ,"Corsby, ND Natural Gas Pipeline Imports From Canada (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Corsby, ND Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  19. ,"Sault St Marie, MI Natural Gas Pipeline Exports to Canada ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sault St Marie, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

  20. ,"Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  1. ,"North Troy, VT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Troy, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  2. ,"Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  3. ,"Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  4. ,"Portal, ND Natural Gas Pipeline Imports From Canada (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Portal, ND Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  5. ,"New York Natural Gas Pipeline and Distribution Use Price (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic...

  6. The Importance of the Oil & Gas Industry to Northern Colorado and

    E-Print Network [OSTI]

    of Crude Oil 0% Pipeline Transportation of Natural Gas 3% Pipeline Transportation of Refined Petroleum,681 Natural Gas Distribution Natural Gas Liquid Extraction Pipeline Transportation of Crude Oil Pipeline Transportation of Refined... Pipeline Transportation of Natural Gas Petroleum Refineries Oil and Gas Pipeline

  7. EIA - Natural Gas Pipeline System - Southwest Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest Region About U.S. Natural Gas Pipelines

  8. Pipeline Safety Rule (Tennessee)

    Broader source: Energy.gov [DOE]

    The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

  9. Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedes

    E-Print Network [OSTI]

    Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operat

  10. Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestr

    E-Print Network [OSTI]

    Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation ope

  11. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect (OSTI)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01T23:59:59.000Z

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  12. Online Pipeline Transportation of Petroleum Products with no Due Dates 1

    E-Print Network [OSTI]

    Endler, Markus

    On­line Pipeline Transportation of Petroleum Products with no Due Dates 1 Ruy Luiz Milidi'u milidiu; 1 Introduction Petroleum products are typically transported through pipelines. Pipelines, 2001 Abstract: In this paper, we introduce a new model for pipeline transportation of petroleum

  13. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline Utilization & Capacity About

  14. Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin)

    Broader source: Energy.gov [DOE]

    Any utility proposing to construct a natural gas pipeline requiring a Certificate of Authority (CA) under Wis. Stat. §196.49 must prepare an application for Commission review.  These regulations ...

  15. "Assessment of the Adequacy of Natural Gas Pipeline Capacity...

    Broader source: Energy.gov (indexed) [DOE]

    its "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" report. The report is now available for downloading. In 2005-06, the Office of...

  16. Illinois Gas Pipeline Safety Act (Illinois)

    Broader source: Energy.gov [DOE]

    Standards established under this Act may apply to the design, installation, inspection, testing, construction, extension, operation, replacement, and maintenance of pipeline facilities. Whenever...

  17. The liquefied natural gas pipeline: a system study 

    E-Print Network [OSTI]

    Hazel, Thomas Ray

    1972-01-01T23:59:59.000Z

    THE LIQUEFIED NATURAL GAS PIPELINE: A SYSTEM STUDY A Thesis by THOMAS RAY HAZEL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1972 Major Subject...: Mechanical Engineering THE LIQUEFIED NATURAL GAS PIPELINE: A SYSTEM STUDY A Thesis by THOMAS RAY HAZEL Approved as to style and content by: Chairman o 'Committee) (Head of Department) (Member) (Member) (Member) (Member) (Member) May 1972 ABSTRACT...

  18. The liquefied natural gas pipeline: a system study

    E-Print Network [OSTI]

    Hazel, Thomas Ray

    1972-01-01T23:59:59.000Z

    THE LIQUEFIED NATURAL GAS PIPELINE: A SYSTEM STUDY A Thesis by THOMAS RAY HAZEL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1972 Major Subject...: Mechanical Engineering THE LIQUEFIED NATURAL GAS PIPELINE: A SYSTEM STUDY A Thesis by THOMAS RAY HAZEL Approved as to style and content by: Chairman o 'Committee) (Head of Department) (Member) (Member) (Member) (Member) (Member) May 1972 ABSTRACT...

  19. A Low-Cost Natural Gas/Freshwater Aerial Pipeline

    E-Print Network [OSTI]

    Alexander Bolonkin; Richard Cathcart

    2007-01-05T23:59:59.000Z

    Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

  20. Alaskan Natural Gas Pipeline Developments (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

  1. Natural Gas Pipeline Research: Best Practices in Monitoring Technology

    E-Print Network [OSTI]

    Natural Gas Pipeline Research: Best Practices in Monitoring Technology Energy Systems Research/index.html January 2012 The Issue California is the secondlargest natural gas consuming state in the United States, just behind Texas. About 85% of the natural gas consumed in California is delivered on interstate

  2. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    natural gas and liquefied petroleum gas have continued to make small contributions to transportation,transportation actions include electric power sector actions, eg coal to natural gas

  3. Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65

    SciTech Connect (OSTI)

    Hashemi, S. H. [Department of Mechanical Engineering, University of Birjand, POBOX 97175-376, Birjand (Iran, Islamic Republic of); Mohammadyani, D. [Materials and Energy Research Center (MERC) POBOX 14155-4777, Tehran (Iran, Islamic Republic of)

    2011-01-17T23:59:59.000Z

    The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

  4. EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

  5. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    SciTech Connect (OSTI)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01T23:59:59.000Z

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  6. Pipeline Transportation of Petroleum Products 1 Ruy Luiz Milidi'u

    E-Print Network [OSTI]

    Endler, Markus

    Pipeline Transportation of Petroleum Products 1 Ruy Luiz Milidi'u milidiu@inf.puc­rio.br Artur Introdution Petroleum products are typically transported in pipelines which are different from all other, 2000 Abstract: In this paper, we introduce a new model for pipeline transportation of petroleum

  7. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    Fuel Cell Technologies Publication and Product Library (EERE)

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipeline

  8. Leakage Risk Assessment of CO2 Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    E-Print Network [OSTI]

    Mazzoldi, A.

    2014-01-01T23:59:59.000Z

    S.M. , 2007, Natural Gas Pipeline Technology Overview.high-pressure natural- gas pipelines: J. Loss Prevention inrisk assessments of CO 2 pipelines, in Elsevier, ed. , 9th

  9. Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs

    E-Print Network [OSTI]

    Parker, Nathan

    2004-01-01T23:59:59.000Z

    future estimates of hydrogen pipelines. Construction Cost (does this mean for hydrogen pipelines? The objective of thisinto the cost of hydrogen pipelines. To this end I will

  10. EIA - Natural Gas Pipeline Network - Regional Definitions

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline Utilization &

  11. EIA - Natural Gas Pipeline Network - Regulatory Authorities

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline Utilization &Overview

  12. Scoping Study on the Safety Impact of Valve Spacing in Natural Gas Pipelines

    SciTech Connect (OSTI)

    Sulfredge, Charles David [ORNL

    2007-07-01T23:59:59.000Z

    The U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration (PHMSA) is responsible for ensuring the safe, reliable, and environmentally sound operation of the nation's natural gas and hazardous liquid pipelines. Regulations adopted by PHMSA for gas pipelines are provided in 49 CFR 192, and spacing requirements for valves in gas transmission pipelines are presented in 49 CFR 192.179. The present report describes the findings of a scoping study conducted by Oak Ridge National Laboratory (ORNL) to assist PHMSA in assessing the safety impact of system valve spacing. Calculations of the pressures, temperatures, and flow velocities during a set of representative pipe depressurization transients were carried out using a one-dimensional numerical model with either ideal gas or real gas properties for the fluid. With both ideal gas and real gas properties, the high-consequence area radius for any resulting fire as defined by Stevens in GRI-00/0189 was evaluated as one measure of the pipeline safety. In the real gas case, a model for convective heat transfer from the pipe wall is included to assess the potential for shut-off valve failures due to excessively low temperatures resulting from depressurization cooling of the pipe. A discussion is also provided of some additional factors by which system valve spacing could affect overall pipeline safety. The following conclusions can be drawn from this work: (1) Using an adaptation of the Stephens hazard radius criteria, valve spacing has a negligible influence on natural gas pipeline safety for the pipeline diameter, pressure range, and valve spacings considered in this study. (2) Over the first 30 s of the transient, pipeline pressure has a far greater effect on the hazard radius calculated with the Stephens criteria than any variations in the transient flow decay profile and the average discharge rate. (3) Other factors besides the Stephens criteria, such as the longer burn time for an accidental fire, greater period of danger to emergency personnel, increased unavoidable loss of gas, and possible depressurization cooling of the shut-off valves may also be important when deciding whether a change in the required valve spacing would be beneficial from a safety standpoint. (4) The average normalized discharge rate of {lambda}{sub avg} = 0.33 assumed by Stephens in developing his safety criteria is an excellent conservative value for natural gas discharge at the pressures, valve spacings, and pipe diameter used in this study. This conclusion remains valid even when real rather than ideal gas properties are considered in the analysis. (5) Significant pipe wall cooling effects (T{sub w} < -50 F or 228 K) can extend for a mile or more upstream from the rupture point within 30 s of a break. These conditions are colder than the temperature range specifications for many valve lubricants. The length of the low-temperature zone due to this cooling effect is also essentially independent of the system shut-off valve spacing or the distance between the break and a compressor station. (6) Having more redundant shut-off valves available would reduce the probability that pipe cooling effects could interfere with isolating the broken area following a pipeline rupture accident.

  13. Pipeline Politics: Natural Gas in Eurasia

    E-Print Network [OSTI]

    Landrum, William W.; Llewellyn, Benjamin B.; Limesand, Craig M.; Miller, Dante J.; Morris, James P.; Nowell, Kathleen S.; Sherman, Charlotte L.

    2010-01-01T23:59:59.000Z

    Eurasia is a major source of oil and natural gas, and events in the region have a great potential to destabilize global security patterns. Supplies of natural gas and oil from Eurasia are vital for the functioning of European economies, and also...

  14. EIA - Natural Gas Pipeline System - Western Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest Region About U.S. Natural Gas

  15. Use of intelligent pigs to detect stress corrosion cracking in gas pipelines

    SciTech Connect (OSTI)

    Culbertson, D.L. [Tenneco Energy, Houston, TX (United States)

    1996-08-01T23:59:59.000Z

    To ensure the integrity and serviceability of gas pipelines, operators periodically utilize intelligent pigging. This inspection technique has proven to be a cost effective approach for determining the condition of operating pipelines. Recent advancements in intelligent pigging technology are now aiding the pipeline industry in the detection of stress corrosion cracking.

  16. ,"Port of Del Bonita, MT Natural Gas Pipeline Imports From Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    Del Bonita, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  17. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline UtilizationProcess andStorage

  18. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline UtilizationProcess

  19. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline UtilizationProcessFacilities

  20. Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAINCommercialPipeline and

  1. Natural Gas Transportation Resiliency

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancyNationalNatural GasImports byTransportation

  2. Leakage Risk Assessment of CO{sub 2} Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    SciTech Connect (OSTI)

    Mazzoldi, A.; Oldenburg, C. M.

    2013-12-17T23:59:59.000Z

    The Illinois Basin Decatur Project (IBDP) is designed to confirm the ability of the Mt. Simon Sandstone, a major regional saline-water-bearing formation in the Illinois Basin, to store 1 million tons of carbon dioxide (CO{sub 2}) injected over a period of three years. The CO{sub 2} will be provided by Archer Daniels Midland (ADM) from its Decatur, Illinois, ethanol plant. In order to transport CO{sub 2} from the capture facility to the injection well (also located within the ADM plant boundaries), a high-pressure pipeline of length 3,200 ft (975 m) has been constructed, running above the ground surface within the ADM plant footprint. We have qualitatively evaluated risks associated with possible pipeline failure scenarios that lead to discharge of CO{sub 2} within the real-world environment of the ADM plant in which there are often workers and visitors in the vicinity of the pipeline. There are several aspects of CO{sub 2} that make its transportation and potential leakage somewhat different from other substances, most notable is its non-flammability and propensity to change to solid (dry ice) upon strong decompression. In this study, we present numerical simulations using Computational Fluid Dynamics (CFD) methods of the release and dispersion of CO{sub 2} from individual hypothetical pipeline failures (i.e., leaks). Failure frequency of the various components of a pipeline transportation system over time are taken from prior work on general pipeline safety and leakage modeling and suggest a 4.65% chance of some kind of pipeline failure over the three-years of operation. Following the Precautionary Principle (see below), we accounted for full-bore leakage scenarios, where the temporal evolution of the mass release rate from the high-pressure pipeline leak locations was simulated using a state-of-the-art Pipe model which considers the thermodynamic effects of decompression in the entire pipeline. Failures have been simulated at four representative locations along the pipeline route within the ADM plant. Leakage scenarios at sites along the route of the pipeline, where plant operations (e.g., vehicular and train transportation) seem to present a higher likelihood of accidental failure, for example due to vehicles or equipment crashing into the pipeline and completely severing it, were modeled by allowing them to have a double source consistent with the pipeline releasing high-pressure CO{sub 2} from both ends of the broken pipe after a full-bore offset rupture. Simulation results show that the built environment of the plant plays a significant role in the dispersion of the gas as leaking CO{sub 2} can impinge upon buildings and other infrastructure. In all scenarios simulated, the region of very high-concentration of CO{sub 2} is limited to a small area around the pipeline failure, suggesting the likelihood of widespread harmful CO{sub 2} exposure to plant personnel from pipeline leakage is low. An additional risk is posed by the blast wave that emanates from a high-pressure pipeline when it is breached quickly. We estimate the blast wave risk as low because it occurs only for a short time in the immediate vicinity of the rupture, and requires an instantaneous large-scale rupture to occur. We recommend consideration of signage and guard rails and posts to mitigate the likelihood of vehicles crashing into the pipeline. A standardized emergency response plan applicable to capture plants within industrial sites could be developed based on the IBDP that would be useful for other capture plants. Finally, we recommend carrying out coupled wellbore-reservoir blowout scenario modeling to understand the potential for hazardous conditions arising from an unexpected blowout at the wellhead.

  3. Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida)

    Broader source: Energy.gov [DOE]

    The regulation of natural gas intrastate transportation and sale is deemed to be an exercise of the police power of the state for the protection of the public welfare. The Public Service Commission...

  4. EIA - Natural Gas Pipeline Network - U.S. Natural Gas Pipeline Network Map

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline UtilizationProcess and

  5. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01T23:59:59.000Z

    Hydrogen (Natural Gas, pipeline) Hydrogen (Natural Gas,liquid H2 truck) Hydrogen (Coal, pipeline) Electricity (production? Hydrogen Production Mix Natural Gas, pipeline,

  6. Transportation Investment and

    E-Print Network [OSTI]

    Levinson, David M.

    Transportation Investment and Economic Development: Has the TIED turned? David Levinson University Transportation Investments was Historically Concomitant with Land and Economic Development #12;Canals Railways Surfaced Roads Crude Oil Pipelines Gas Pipelines Telegraph 1825 1985 Proportion of Maximum Extent Growth

  7. Statistical Modeling of Corrosion Failures in Natural Gas Transmission Pipelines

    E-Print Network [OSTI]

    Cobanoglu, Mustafa Murat

    2014-03-28T23:59:59.000Z

    and deterioration processes in pipeline networks. Therefore, pipeline operators need to rethink their corrosion prevention strategies. These results of corrosion failures are forcing the companies to develop accurate maintenance models based on failure frequency...

  8. Planning of Pipeline Oil Transportation with Interface Restrictions is a Difficult Problem

    E-Print Network [OSTI]

    Endler, Markus

    Planning of Pipeline Oil Transportation with Interface Restrictions is a Difficult Problem Ruy Luiz/03 December, 2003 Abstract: An important constrain when developing a schedule for the operation of an oil pipeline is the interface between adjacent products. Due to the resulting quality loss, some products

  9. Use of geographic information systems for applications on gas pipeline rights-of-way

    SciTech Connect (OSTI)

    Sydelko, P.J.; Wilkey, P.L.

    1992-01-01T23:59:59.000Z

    Geographic information system (GIS) applications for the siting and monitoring of gas pipeline rights-of-way (ROWS) were developed for areas near Rio Vista, California. The data layers developed for this project represent geographic features, such as landcover, elevation, aspect, slope, soils, hydrography, transportation, endangered species, wetlands, and public line surveys. A GIS was used to develop and store spatial data from several sources; to manipulate spatial data to evaluate environmental and engineering issues associated with the siting, permitting, construction, maintenance, and monitoring of gas pipeline ROWS; and to graphically display analysis results. Examples of these applications include (1) determination of environmentally sensitive areas, such as endangered species habitat, wetlands, and areas of highly erosive soils; (2) evaluation of engineering constraints, including shallow depth to bedrock, major hydrographic features, and shallow water table; (3) classification of satellite imagery for landuse/landcover that will affect ROWS; and (4) identification of alternative ROW corridors that avoid environmentally sensitive areas or areas with severe engineering constraints.

  10. Use of geographic information systems for applications on gas pipeline rights-of-way

    SciTech Connect (OSTI)

    Sydelko, P.J.

    1993-10-01T23:59:59.000Z

    Geographic information system (GIS) applications for the siting and monitoring of gas pipeline rights-of-way (ROWS) were developed for areas near Rio Vista, California. The data layers developed for this project represent geographic features, such as landcover, elevation, aspect, slope, soils, hydrography, transportation, endangered species, wetlands, and public line surveys. A GIS was used to develop and store spatial data from several sources; to manipulate spatial data to evaluate environmental and engineering issues associated with the siting, permitting, construction, maintenance, and monitoring of gas pipeline ROWS; and to graphically display analysis results. Examples of these applications include (1) determination of environmentally sensitive areas, such as endangered species habitat, wetlands, and areas of highly erosive soils; (2) evaluation of engineering constraints, including shallow depth to bedrock, major hydrographic features, and shallow water table; (3) classification of satellite imagery for land use/landcover that will affect ROWS; and (4) identification of alternative ROW corridors that avoid environmentally sensitive areas or areas with severe engineering constraints.

  11. Use of geographic information systems for applications on gas pipeline rights-of-way

    SciTech Connect (OSTI)

    Sydelko, P.J.; Wilkey, P.L.

    1992-12-01T23:59:59.000Z

    Geographic information system (GIS) applications for the siting and monitoring of gas pipeline rights-of-way (ROWS) were developed for areas near Rio Vista, California. The data layers developed for this project represent geographic features, such as landcover, elevation, aspect, slope, soils, hydrography, transportation, endangered species, wetlands, and public line surveys. A GIS was used to develop and store spatial data from several sources; to manipulate spatial data to evaluate environmental and engineering issues associated with the siting, permitting, construction, maintenance, and monitoring of gas pipeline ROWS; and to graphically display analysis results. Examples of these applications include (1) determination of environmentally sensitive areas, such as endangered species habitat, wetlands, and areas of highly erosive soils; (2) evaluation of engineering constraints, including shallow depth to bedrock, major hydrographic features, and shallow water table; (3) classification of satellite imagery for landuse/landcover that will affect ROWS; and (4) identification of alternative ROW corridors that avoid environmentally sensitive areas or areas with severe engineering constraints.

  12. Field tests of probes for detecting internal corrosion of natural gas transmission pipelines

    SciTech Connect (OSTI)

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, Michael S. (Intercorr International Inc.); Kane, Russell D. (Intercorr International Inc.); Meidinger, Brian (RMOTC-DOE)

    2005-01-01T23:59:59.000Z

    A field study was conducted to evaluate the use of electrochemical corrosion rate (ECR) probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. Results and interpretation will be reported from four different field tests. Flange and flush-mount probes were used in four different environments at a gas-gathering site and one environment but two different orientations at a natural gas plant. These sites were selected to represent normal and upset conditions in a gas transmission pipeline. The environments consisted of 2 different levels of humidified natural gas/organic/water mixtures removed from natural gas, and the environments at the 6 and 12 o'clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

  13. A preliminary investigation of the effects of environmentally assisted cracking on natural gas transmission pipelines 

    E-Print Network [OSTI]

    Curbo, Jason Wayne

    2005-08-29T23:59:59.000Z

    Concepts for the development of a model to predict natural gas transmission pipeline lifetime in a corrosive environment are constructed. Primarily, the effects of environmentally assisted cracking (EAC) are explored. Tensile test specimens from a...

  14. Common Pipeline Carriers (North Dakota)

    Broader source: Energy.gov [DOE]

    Any entity that owns, operates, or manages a pipeline for the purpose of transporting crude petroleum, gas, coal, or carbon dioxide within or through the state of North Dakota, or is engaged in the...

  15. Resilience-Based design of Natural Gas Pipelines G. P. Cimellaro, O. Villa

    E-Print Network [OSTI]

    Bruneau, Michel

    Resilience-Based design of Natural Gas Pipelines G. P. Cimellaro, O. Villa Department of Structural systems. No models are available in literature to measure the performance of natural gas network of natural or manmade hazard which might lead to the disruption of the system. The gas distribution network

  16. FRICTION FACTOR IN HIGH PRESSURE NATURAL GAS PIPELINES FROM ROUGHNESS MEASUREMENTS

    E-Print Network [OSTI]

    Gudmundsson, Jon Steinar

    FRICTION FACTOR IN HIGH PRESSURE NATURAL GAS PIPELINES FROM ROUGHNESS MEASUREMENTS DETERMINATION DU and Technology, Norway ABSTRACT Pressure drop experiments on natural gas flow at 80 to 120 bar pressure and high of natural gas at typical operating pressures (100-180 bar). At such Reynolds numbers the classical Colebrook

  17. Leakage Risk Assessment of CO2 Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    E-Print Network [OSTI]

    Mazzoldi, A.

    2014-01-01T23:59:59.000Z

    leak from an above-ground pipeline, the jet flow of CO 2 impinges on the ground without reconverting to gas.

  18. Intrastate Pipeline Safety (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the...

  19. Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation confers the rights and privileges of telegraph and telephone companies (S.C. Code 58-9) on pipeline and water companies, and contains several additional provisions pertaining to...

  20. When Barriers to Markets Fail: Pipeline Deregulation, Spot Markets, and the Topology of the Natural Gas Market

    E-Print Network [OSTI]

    De Vany, Arthur; Walls, W. David

    1992-01-01T23:59:59.000Z

    Experimental Research on Deregulation, natural Gas Pipelineto MarketsFail: Pipeline Deregulation,Spot Markets,and theto Markets Fall: Deregulation, Spot Markets, And the

  1. Pipelines (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates pipelines that are used to carry natural or synthetic gas at a pressure of more than 90 pounds per square inch, along with pipelines used to carry petroleum products and coal...

  2. Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks 

    E-Print Network [OSTI]

    Sprague, Stephen M.

    2011-02-22T23:59:59.000Z

    -to-energy (LFGTE) projects are underway in an attempt to curb emissions and make better use of this energy. The methane that is extracted from these landfills can be converted into a transportation fuel, sold as a pipeline-quality natural gas, operate turbines...

  3. EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2YonthlyEnergy

  4. EIA - Natural Gas Pipeline Network - Natural Gas Transportation Corridors

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)

  5. EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAgeDieselDiesel pricesMaps Combined

  6. Freight pipelines

    SciTech Connect (OSTI)

    Liu, H. (University of Missouri, Columbia, MO (US)); Round, G.F. (McMaster University (CA))

    1989-01-01T23:59:59.000Z

    This book presents papers on slurry pipelines, pneumatic pipelines, capsule pipelines, pipeline education, and pipeline research.

  7. Field evaluation of the British Gas elastic-wave vehicle for detecting stress corrosion cracking in natural gas transmission pipelines. Final report, June 1995

    SciTech Connect (OSTI)

    Culbertson, D.L.; Whitney, C.E.

    1995-07-01T23:59:59.000Z

    The objective of this project was to provide the gas pipeline industry with a more comprehensive understanding of the capabilities of the elastic-wave, in-line inspection system developed by British Gas (BG) for detecting stress corrosion cracking (SCC) in natural gas transmission pipelines.

  8. Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications

    SciTech Connect (OSTI)

    Joule A. Bergerson; Lester B. Lave [Carnegie Mellon University, Pittsburgh, PA (US)

    2005-08-15T23:59:59.000Z

    The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

  9. The Economics of CO2 Transport by Pipeline and Storage in Saline Aquifers and Oil Reservoirs

    E-Print Network [OSTI]

    The Economics of CO2 Transport by Pipeline and Storage in Saline Aquifers and Oil Reservoirs Sean T Description Date 0 Original document 1/29/2008 1 Estimate for carbon content of crude oil was incorrect (see p an invaluable summer at the Bureau of Economic Geology at the University of Texas at Austin working with Sue

  10. Economic principles and applications to natural gas pipelines and other industries

    SciTech Connect (OSTI)

    Kolbe, L.; Tye, W.; Myers, S.C.

    1993-12-31T23:59:59.000Z

    This book combines and expands several of the authors` papers on regulatory risk and a report on risk in the interstate natural gas pipeline industry which the authors prepared for the Interstate Natural Gas Association of America. The first four chapters present the authors` theory of risk in regulated industries. The remaining five chapters provide a detailed analysis of risk under historic and pending regulation of the interstate natural gas pipeline industry. An appendix provides an excellent, detailed and highly annotated regulatory history of interstate natural gas pipeline regulation from roughly the Natural Gas Policy Act of 1978 to 1990. In some 350 pages this book appears to make two primary points. First, rate base regulation is a camel, where the definition of a camel is a horse designed by a committee, or in the case of utility regulation, a horse designed by congress, state legislatures, and the courts. The second point is that realized rates of return in regulated utilities are subject to a reverse Lake Wobegone effect. In the regulatory world of the authors, all utility returns are below average. This book contains some interesting new ideas and some excellent insights into some old issues in rate base regulation. It is worth the somewhat tedious read just for the wealth of institutional information on the pipeline industry and its regulation.

  11. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2005-04-15T23:59:59.000Z

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  12. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc....

  13. A version of this appeared in Economic & Political Weekly (1999) XXXIV(18) Natural Gas Imports by South Asia: Pipelines or Pipedreams?

    E-Print Network [OSTI]

    1999-01-01T23:59:59.000Z

    A version of this appeared in Economic & Political Weekly (1999) XXXIV(18) Natural Gas Imports by South Asia: Pipelines or Pipedreams? TransAsia Pipeline System (TAPS): A Shared Natural Gas Pipeline situations where there are eager purchasers of natural gas (India and Pakistan), willing suppliers of natural

  14. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01T23:59:59.000Z

    natural gas reformation with pipeline distribution (64%),gas reformation (71%), centralized biomass gasification with pipeline distribution (pipeline distribution (65%), and onsite electrolysis (67%); and electricity generation from: biomass (40%), coal (45%) and natural gas

  15. Pipeline Safety (South Dakota)

    Broader source: Energy.gov [DOE]

    The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

  16. Natural disasters and the gas pipeline system. Topical report, August 1994-June 1995

    SciTech Connect (OSTI)

    Atallah, S.; Saxena, S.; Martin, S.B.; Willowby, A.B.; Alger, R.

    1996-11-15T23:59:59.000Z

    Episodic descriptions are provided of the effect of the Loma Prieta earthquake (1989) on the gas pipeline systems of Pacific Gas & Electric Company and the City of Palo Alto and of the Northridge earthquake (1994) on Southern California Gas` pipeline system. The emergency response plans and activities of South Carolina Electric & Gas Company during hurricane Hugo (1989) and of City Gas Company of Florida and other small gas companies during hurricane Andrew (1992) are also reviewed. Descriptions of the great Flood of 1993 and its effects on the operations of Iowa-Illinois Gas & Electric Company and Laclede Gas Company and of the San Jacinto River Floods on the transmission lines of Valero Gas Co. are also provided. Local and federal regulatory requirements, and the current practices by the gas industry for dealing with natural disasters, such as through preventive measures (e.g., strapping of water heaters, excess flow valves), and the tracking of weather-related events are described. The important role that preplanning and coordination with the local emergency response bodies and other gas utilities plays during a natural disaster is examined.

  17. A perspective on pipeline pricing under the Natural Gas Act

    SciTech Connect (OSTI)

    Threadgill, E.E.

    1995-12-31T23:59:59.000Z

    Pricing different services to a single class of customers, and pricing different services to the same or different classes of customers, are complex matters which, in many instances, are case specific. Cost responsibilities, market demands, and national policies should be taken into account in pricing pipeline services. But one fact is eminently clear, and that is that radically different {open_quotes}FERC incremental{close_quotes} rates for the same service to the same class of customers, depending upon the date upon which the customers signed contracts for an expansion of service, are unduly discriminatory and illegal under the NGA.

  18. EIA - Natural Gas Pipeline Network - Region To Region System Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline Utilization & Capacity

  19. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline Utilization &Overview and

  20. EIA - Natural Gas Pipeline Network - States Dependent on Interstate

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline Utilization

  1. Otay Mesa, CA Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) 0 86 537 1998-2014 Pipeline0 0

  2. EIS-0467: Hanford Site Natural Gas Pipeline, Richland, WA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    evaluate the environmental impacts of a proposal to enter into a contract with a licensed natural gas supplier in Washington State to construct, operate, and maintain a natural gas...

  3. Assessing the Potential of Using Hydrate Technology to Capture, Store and Transport Gas for the Caribbean Region

    E-Print Network [OSTI]

    Rajnauth, Jerome Joel

    2012-02-14T23:59:59.000Z

    there are infrastructural constraints such as lack of pipelines. The study shows the gas hydrate value chain for transportation of 5 MMscf/d of natural gas from Trinidad to Jamaica. The analysis evaluated the water required for hydrate formation, effect of composition...

  4. A Novel MagPipe Pipeline transportation system using linear motor drives

    SciTech Connect (OSTI)

    Fang, J.R.; Montgomery, D.B.; Roderick, L. [Magplane Technology Inc., Littleton, MA (United States)

    2009-11-15T23:59:59.000Z

    A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.

  5. A Pipeline Transport Correlation for Slurries with Small but Dense Particles

    SciTech Connect (OSTI)

    Poloski, Adam P.; Etchells, Arthur W.; Chun, Jaehun; Adkins, Harold E.; Casella, Andrew M.; Minette, Michael J.; Yokuda, Satoru T.

    2010-04-01T23:59:59.000Z

    Most correlations/models for minimum transport or critical velocity of slurry were developed for slurries composed of particles greater than ~100-200 ?m diameter with narrow particle-size distributions which is typical of the minerals industry. Many other process industries handle smaller particles. In particular waste slurries at the U.S. Department of Energy's Hanford Site have broad size distributions and significant fractions of smaller particles. Despite the size of these wastes, recent PNNL studies indicate that the small particles might be of sufficient density to pose a significant risk for pipeline deposition and plugging. To allow predictive assessment of deposition of fine dense particles for waste slurry transport at the U.S. DOE Hanford site, a pipeline-transport correlation for critical velocity was developed using a simple power-law between two dimensionless numbers important for slurry transport, the deposition Froude and Archimedes numbers. The correlation accords well with experimental data for slurries with Archimedes numbers <80 and is an adequate pipeline design guide for processing Hanford waste slurry.

  6. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

  7. New regulatory environment changing pipeline operations

    SciTech Connect (OSTI)

    Fields, J.H. (Northwest Pipeline Corp., Salt Lake City, UT (United States))

    1994-04-01T23:59:59.000Z

    This paper reviews the effects of deregulation of the natural gas and pipeline industry as a result of the Federal Energy Regulatory Commission's Orders 436, 500, and 636. It describes the changes as they affected Northwest Pipeline's structure and marketing strategies as the company had to move from a gas merchandiser to a gas transporter. It describes the capacity release options of the pipeline which allow the customers to buy, release, and renegotiate prices whenever they need to because of an increase or decrease in demand using current market prices. The paper discusses the natural gas distribution system which has evolved as a result of these regulations.

  8. An archaeological survey of the Proposed Natural Gas Pipeline Location Tie-in in Orange County, Texas

    E-Print Network [OSTI]

    Moore, William

    2015-06-16T23:59:59.000Z

    An archaeological investigation of approximately 1000 feet of a proposed 22,000 foot natural gas pipeline in southeastern Orange County, Texas was performed by Brazos Valley Research Associates of Bryan, Texas in August 2001. No archaeological sites...

  9. Economic Nonlinear Model Predictive Control for the Optimization of Gas Pipeline Networks

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    / 24 #12;Natural Gas Industry Motivation Natural Gas Industry Globally increasing demand & production of natural gas. Demand distribution (as of 2008) 21 % residential, 13 % Commercial, 34 % Industrial, 29 - Regulated, Deregulated markets Applying Economic Model Predictive Control to gas transportation. 1Zheng et

  10. Pipe line activity expected to maintain current levels throughout 1990s. [Global construction trends in natural gas and oil pipelines

    SciTech Connect (OSTI)

    Ives, G. Jr.

    1993-11-01T23:59:59.000Z

    This article consists of several smaller papers which discuss the construction projections for new oil and gas pipelines on a global basis, excluding the US and Canada. The paper provides numerous tables showing the projected types and mileages for proposed pipelines and the types of products to be shipped in each pipeline. The article features activities of individual countries and regions which have any significant oil or gas production. The individual papers are broken into continental regions including Europe, the North Sea, Africa, the Middle East, Indonesia, the Far East, Australia, Central America, and South America.

  11. Algorithms for Noisy Problems in Gas Transmission Pipeline Optimization \\Lambda

    E-Print Network [OSTI]

    linear interpolations of these data rather than the raw simulations, both to protect proprietary data trillion standard cubic feet of natural gas per year, representing roughly a third of worldwide consumption in such regions as Louisiana, the Texas Gulf Coast, and \\Lambda This research was supported by National Science

  12. Algorithms for Noisy Problems in Gas Transmission Pipeline Optimization

    E-Print Network [OSTI]

    linear interpolations of these data rather than the raw simulations, both to protect proprietary data trillion standard cubic feet of natural gas per year, representing roughly a third of worldwide consumption in such regions as Louisiana, the Texas Gulf Coast, and This research was supported by National Science Foundation

  13. Detecting internal corrosion of natural gas transmission pipelines: field tests of probes and systems for real-time corrosion measurement

    SciTech Connect (OSTI)

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Kane, R.D. (InterCorr International); Meidinger, B. (Rocky Mountain Oilfield Testing Center)

    2005-01-01T23:59:59.000Z

    A field study was conducted to evaluate the use of automated, multi-technique electrochemical corrosion-rate monitoring devices and probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. It involved measurement of real-time corrosion signals from operating pipelines. Results and interpretation were reported from four different field test locations. Standard flush-mount and custom flange probes were used in four different environments at a gas-gathering site and one environment but two different probe orientations at a natural gas site. These sites were selected to represent normal and upset conditions common in gas transmission pipelines. The environments consisted of two different levels of humidified natural gas, liquid hydrocarbon, and water from natural gas. Probe locations included the 6 and 12 o?clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. The probe data was monitored using completely remote solar powered systems that provided real-time data transmission via wireless back to a pipeline control station. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

  14. Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May Jun JulIndustrial

  15. Florida Natural Gas Pipeline and Distribution Use Price (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May Jun

  16. Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan FebCubic(Million CubicINVESTMENT245

  17. Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPriceIndustrial Consumers (Number of

  18. Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPriceIndustrial Consumers (Number

  19. Havre, MT Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAIN EIA PRODUCTS

  20. Hidalgo, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2 Week 30 0

  1. Highgate Springs, VT Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2 Monthly

  2. Highgate Springs, VT Natural Gas Pipeline Imports From Canada (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1

  3. Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-MonthExportsLease (Million

  4. EIS-0152: Iroquois, Tenn. Phase I, Pipeline Line Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to asses the environmental impacts of constructing and operating an interstate natural gas pipeline and associated infrastructure to transport gas from Canada and domestic sources to the New England Market, as proposed by the Iroquois Gas Transmission System and the Tennessee Gas Pipeline Company. The U.S. Department of Energy Office of Fossil Energy was a cooperating agency during statement development and adopted the statement on 9/1/1990.

  5. EIS-0152: Iroquois/Tennessee Phase I Pipeline Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to asses the environmental impacts of constructing and operating an interstate natural gas pipeline and associated infrastructure to transport gas from Canada and domestic sources to the New England Market, as proposed by the Iroquois Gas Transmission System and the Tennessee Gas Pipeline Company. The U.S. Department of Energy Office of Fossil Energy was a cooperating agency during statement development and adopted the statement on 9/1/1990.

  6. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    energy coupled with carbon capture and storage, could yieldcoal to natural gas shift, carbon capture and sequestration,

  7. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    thereby contributing to energy security. Most also reducesuch as improved energy security, many transport GHGincluding energy cost savings, oil security, and pollution

  8. Regulation changes create opportunities for pipeline manufacturers

    SciTech Connect (OSTI)

    Santon, J.

    1999-09-01T23:59:59.000Z

    The US Department of Transportation`s (DOT) Research and Special Programs Administration (RSPA) is proposing to change its safety standards for the repair of corroded or damaged steel pipe in gas and hazardous liquid pipelines. For pipeline operators, the expected revisions will allow new flexibility in approaches to pipeline repair. Less costly and less disruptive procedures will be acceptable. For manufacturers, the changes will open opportunities for development of corrosion repair technology. A highly competitive market in new repair technology can be expected to arise. Current regulations, new technologies, and proposed safety standards are described.

  9. Pittsburg, NH Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity on the U.S. Natural Gas PipelineDecade

  10. Natural Gas Exports by Pipeline out of the U.S. Form | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancyNationalNatural Gas Exports by Pipeline out

  11. Natural Gas Imports by Pipeline into the U.S. Form | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancyNationalNatural GasImports by Pipeline into

  12. How Safe Are Pipelines? Diana Furchtgott-Roth

    E-Print Network [OSTI]

    Calgary, University of

    18% 11% 14% 26% Natural Gas Distribution 25% 78% 76% 15% Hazardous Liquid 55% 11% 9% 53% #12;NumberHow Safe Are Pipelines? Diana Furchtgott-Roth Director, Economics21, Manhattan Institute Moving-Miles Transported: Petroleum Pipeline and Class I Rail Source: "Final Supplemental Environmental Impact Statement

  13. EIA - Natural Gas Pipeline Network - Natural Gas Import/Export Locations

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2YonthlyEnergyMap Export Pipelines

  14. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2003-05-13T23:59:59.000Z

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

  15. When Barriers to Markets Fail: Pipeline Deregulation, Spot Markets, and the Topology of the Natural Gas Market

    E-Print Network [OSTI]

    De Vany, Arthur; Walls, W. David

    1992-01-01T23:59:59.000Z

    Growth in Unbundled Natural Gas Transportation Services:Mergers and their Potential Impact on Natural Gas Markets."Natural Gas Monthly, DOE/EIA-0525. \\Vashington, D.C. : U.S.

  16. Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)

    SciTech Connect (OSTI)

    Melaina, M. W.

    2013-05-01T23:59:59.000Z

    This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

  17. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report for September 1980-November 1980

    SciTech Connect (OSTI)

    Eby, R.J.

    1980-12-01T23:59:59.000Z

    Work was performed in the following tasks in Phase I of the Pipeline Gas Demonstration Plant Program: Site Evaluation and Selection; Demonstration Plant Environmental Analysis; Feedstock Plans, Licenses, Permits and Easements; Demonstration Plant Definitive Design; Construction Planning; Economic Reassessment; Technical Support; Long Lead Procurement List; and Project Management. The Preliminary Construction Schedule was delivered to the Government on October 3, 1980, constituting an early delivery of the construction schedule called for in the scope of work for Task VI. The major work activity continues to be the effort in Task VI, Demonstration Plant Definitive Design, with two 30% Design Review meetings being held with the Government. Work in Task VII, Construction Planning, was initiated. Work has progressed satisfactorily in the other tasks in support of the Demonstration Plant Program. A Cost Change Proposal was submitted because of an increase in the scope of work and an extension of the schedule for Phase I to 47 months.

  18. Minimum separation distances for natural gas pipeline and boilers in the 300 area, Hanford Site

    SciTech Connect (OSTI)

    Daling, P.M.; Graham, T.M.

    1997-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is proposing actions to reduce energy expenditures and improve energy system reliability at the 300 Area of the Hanford Site. These actions include replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing a new natural gas distribution system to provide a fuel source for many of these units, and constructing a central control building to operate and maintain the system. The individual heating units will include steam boilers that are to be housed in individual annex buildings located at some distance away from nearby 300 Area nuclear facilities. This analysis develops the basis for siting the package boilers and natural gas distribution systems to be used to supply steam to 300 Area nuclear facilities. The effects of four potential fire and explosion scenarios involving the boiler and natural gas pipeline were quantified to determine minimum separation distances that would reduce the risks to nearby nuclear facilities. The resulting minimum separation distances are shown in Table ES.1.

  19. U. S. gas-pipeline construction will help producers and consumers

    SciTech Connect (OSTI)

    Johnson, E. Jr. (Booz Allen and Hamilton Inc., Dallas, TX (US)); Viscio, A.J. (Booz Allen and Hamilton Inc., San Francisco, CA (US))

    1991-11-04T23:59:59.000Z

    Changes currently under way in the U.S. gas-transmission grid will, on balance, benefit both producers and consumer. Wellhead prices will rise and burner-tip prices will fall. Those are the major results of a study by Booz Allen and Hamilton Inc. of how and to what magnitude producer and city gate prices will be affected by changes in the transmission grid. This paper follows an earlier study of the competitive effect of pipeline capacity on the transmission business. Some producers and some consumers, however, will be better off than others, the recent study indicates. Increasing the capacity to move gas between producing basins and markets will allow gas to find higher valued uses, a more optimal market solution. Producer prices will rise in basins gaining greater access to premium markets and will be lower elsewhere, relative to what they would be without the additional transmission. Similarly, consumers will see lower prices in markets on the downstream end of new capacity and higher prices elsewhere.

  20. Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)

  1. Overview of interstate hydrogen pipeline systems.

    SciTech Connect (OSTI)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01T23:59:59.000Z

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

  2. Transport properties of a meson gas

    E-Print Network [OSTI]

    D. Fernandez-Fraile; A. Gomez Nicola

    2007-07-09T23:59:59.000Z

    We present recent results on a systematic method to calculate transport coefficients for a meson gas (in particular, we analyze a pion gas) at low temperatures in the context of Chiral Perturbation Theory. Our method is based on the study of Feynman diagrams with a power counting which takes into account collisions in the plasma by means of a non-zero particle width. In this way, we obtain results compatible with analysis of Kinetic Theory with just the leading order diagram. We show the behavior with temperature of electrical and thermal conductivities and shear and bulk viscosities, and we discuss the fundamental role played by unitarity. We obtain that bulk viscosity is negligible against shear viscosity near the chiral phase transition. Relations between the different transport coefficients and bounds on them based on different theoretical approximations are also discussed. We also comment on some applications to heavy-ion collisions.

  3. FEATURE ARTICLE Pipeline Corrosion

    E-Print Network [OSTI]

    Botte, Gerardine G.

    F FEATURE ARTICLE Pipeline Corrosion Issues Related to Carbon Capture, Transportation, and Storage Capture, Transportation, and Storage--Aspects of Corrosion and Materials. "Until these new technologies are developed and applied, corrosion engineers are focusing on how to best design pipelines for CO2 transport

  4. Competition in a Network of Markets: The Natural Gas Industry

    E-Print Network [OSTI]

    Walls, W. David

    1992-01-01T23:59:59.000Z

    Growth in Unbundled Natural Gas Transportation Services:Purchasesby Interstate Natural Gas Pipelines Companies,1987.U.S. GPO, 1988. . Natural Gas Monthly. WashingtonD.C. : U.S.

  5. The role of natural gas as a vehicle transportation fuel

    E-Print Network [OSTI]

    Murphy, Paul Jarod

    2010-01-01T23:59:59.000Z

    This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

  6. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2003-11-12T23:59:59.000Z

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  7. The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline

    E-Print Network [OSTI]

    Bruneau, Steve

    ;Pipeline Repair Protocol 1 Leak detection and compressor shut down 2 Damage location 3 Excavate pipe 4 Murdoch Gorm Dunkirk Existing Gas Pipeline Proposed Gas Pipeline Existing Oil Pipeline 20" 30" 36" (2) 40 Gas Pipeline Proposed Gas Pipeline Existing Oil Pipeline 20" 30" 36" (2) 40" 40" 28" 42" 36" 40" 30

  8. Transportation of the MOAB Uranium Mill Tailings to White Mesa Mill by Slurry Pipeline

    SciTech Connect (OSTI)

    Hochstein, R. F.; Warner, R.; Wetz, T. V.

    2003-02-26T23:59:59.000Z

    The Moab uranium mill tailings pile, located at the former Atlas Minerals Corporation site approximately three miles north of Moab, Utah, is now under the control of the US Department of Energy (''DOE''). The location of the tailings pile adjacent to the Colorado River, and the ongoing contamination of groundwater and seepage of pollutants into the river, have lead to the investigation, as part of the final site remediation program, of alternatives to relocate the tailings to a qualified permanent disposal site. This paper will describe the approach being taken by the team formed between International Uranium (USA) Corporation (''IUC'') and Washington Group International (''WGINT'') to develop an innovative technical proposal to relocate the Moab tailings to IUC's White Mesa Mill south of Blanding, Utah. The proposed approach for relocating the tailings involves using a slurry pipeline to transport the tailings to the White Mesa Mill. The White Mesa Mill is a fully licensed, active uranium mill site that is uniquely suited for permanent disposal of the Moab tailings. The tailings slurry would be dewatered at the White Mesa Mill, the slurry water would be recycled to the Moab site for reuse in slurry makeup, and the ''dry'' tailings would be permanently disposed of in an approved below grade cell at the mill site.

  9. TGS pipeline primed for Argentine growth, CEO says

    SciTech Connect (OSTI)

    Share, J.

    1997-03-01T23:59:59.000Z

    Nowhere in Latin America has the privatization process been more aggressively pursued than in Argentina where President Carlos Menem has successfully turned over the bulk of state companies to the private sector. In the energy sector, that meant the divestiture in 1992 of Gas del Estado, the state-owned integrated gas transportation and distribution company. It was split in two transportation companies: Transportadora de Gas del Sur (TGS) and Transportadora de Gas del Norte (TGN), and eight distribution companies. TGS is the largest transporter of natural gas in Argentina, delivering more than 60 percent of that nation`s total gas consumption with a capacity of 1.9 Bcf/d. This is the second in a series of Pipeline and Gas Journal special reports that discuss the evolving strategies of the natural gas industry as it continues to restructure amid deregulation. The article focuses on TGS, the Argentine pipeline system in which Enron Corp. is a key participant.

  10. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report, December 1980-February 1981

    SciTech Connect (OSTI)

    Eby, R.J.

    1981-03-01T23:59:59.000Z

    Work was performed in the following areas of the Pipeline Gas Demonstration Plant Program: site evaluation and selection; demonstration plant environmental analysis; feedstock plans, licenses, permits and easements; demonstration plant definitive design; construction planning; economic reassessment; technical support; long lead procurement list; and project management. Major work activity continued to be the effort on Demonstration Plant Definitive Design. A Construction Readiness Audit was held on January 14 to 16, 1981 by a Government/Procon team to review the project and assess the readiness of the project to proceed into the construction phase. Documents for the 60% Design Review were prepared for ICGG review and submitted to the Contracting Officer's authorized representative prior to transmittal to the Corps of Engineers for review. The Corps of Engineers conducted a design audit. The primary objective of the audit was to prepare an independent estimate of the work remaining to complete Phase I of the project. Work continued on the production of a single bid package for the Demonstration Plant, suitable for release to a single constructor, and organized so it can be easily broken down into subpackages by construction specialty. A formal audit of the ICGG R/QA Plan and implementation thereof was performed February 11-12, 1981 by the Corps of Engineers. The Contract Deliverable Final Feedstock-Product-Waste Disposal Plan was delivered to the Government on February 25, 1981.

  11. Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K. Steiglitz; D. J. Kleitman

    E-Print Network [OSTI]

    Steiglitz, Kenneth

    Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K@jstor.org. http://www.jstor.org Mon Oct 22 13:48:01 2007 #12;OPTIMAL DESIGN OF OFFSHORE NATURAL-GAS PIPELINEAnolog,tj, Cambridge, Massachusetts (Received January 28, 1969) The exploitation of offshore natural gas reserves

  12. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-04-01T23:59:59.000Z

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  13. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-01-01T23:59:59.000Z

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  14. Solving Power-Constrained Gas Transportation Problems using an ...

    E-Print Network [OSTI]

    Björn Geißler

    2014-11-24T23:59:59.000Z

    Nov 24, 2014 ... Solving Power-Constrained Gas Transportation Problems using an MIP-based Alternating Direction Method. Björn Geißler (bjoern.geissler ...

  15. Greenhouse Gas Emissions from Aviation and Marine Transportation...

    Open Energy Info (EERE)

    Aviation and Marine Transportation: Mitigation Potentials and Policies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions from Aviation and Marine...

  16. Delivery of Hydrogen Produced from Natural Gas

    E-Print Network [OSTI]

    for transportation and stationary power. DOE Milestone #12;Hydrogen Delivery Options · Gaseous hydrogen - Pipelines, corrosion Gaseous hydrogen pipeline delivery program would share similar technology R&D areasDelivery of Hydrogen Produced from Natural Gas Christopher Freitas Office of Natural Gas

  17. Analytic prognostic for petrochemical pipelines

    E-Print Network [OSTI]

    Jaoude, Abdo Abou; El-Tawil, Khaled; Noura, Hassan; Ouladsine, Mustapha

    2012-01-01T23:59:59.000Z

    Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

  18. Analytic prognostic for petrochemical pipelines

    E-Print Network [OSTI]

    Abdo Abou Jaoude; Seifedine Kadry; Khaled El-Tawil; Hassan Noura; Mustapha Ouladsine

    2012-12-25T23:59:59.000Z

    Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

  19. Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation

    E-Print Network [OSTI]

    .S. CO2 emissions sources. U.S. CO2 transportation emissions sources by mode. #12;Center% of the carbon dioxide we produce. As such it is a leading candidate for greenhouse gas ((GHG) (CO2, NH4, HFCsTransportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation Oak Ridge

  20. Externality Regulation in Oil and Gas Encyclopedia of Energy, Natural Resource, and

    E-Print Network [OSTI]

    Garousi, Vahid

    Externality Regulation in Oil and Gas Chapter 56 Encyclopedia of Energy, Natural Resource that requires a pipeline to transport pro- duction from all producers at non-discriminatory rates. Compulsory resource, congestion exter- nality, minimum oil/gas ratio, monopsony power, pipeline transportation, no

  1. Feed gas contaminant removal in ion transport membrane systems

    DOE Patents [OSTI]

    Underwood, Richard Paul (Allentown, PA); Makitka, III, Alexander (Hatfield, PA); Carolan, Michael Francis (Allentown, PA)

    2012-04-03T23:59:59.000Z

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  2. Pipeline Carriers (Montana)

    Broader source: Energy.gov [DOE]

    Pipeline carriers transporting crude petroleum, coal, the products of crude petroleum or coal, or carbon dioxide produced in the combustion or gasification of fossil fuels are required to abide by...

  3. Pipeline transportation and underground storage are vital and complementary components of the U

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table 28. PADTABLE8.PDF TablePipeline

  4. Oil transportation in the global landscape : the Murmansk Oil Terminal and Pipeline proposal evaluated

    E-Print Network [OSTI]

    Roy, Ankur, 1976-

    2003-01-01T23:59:59.000Z

    Oil and transportation have been commingled since the first oil reserves were discovered. The importance of energy, namely oil, and the transportation of that energy from the producers to the consumers is persistently ...

  5. KRS Chapter 278: Natural Gas (Kentucky)

    Broader source: Energy.gov [DOE]

    The Public Service Commission may, by rule or order, authorize and require the transportation of natural gas in intrastate commerce by intrastate pipelines, or by local distribution companies with...

  6. EIS-0020: Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California

    Broader source: Energy.gov [DOE]

    The Office of Naval Petroleum and Oil Shale Reserves developed this supplemental statement to evaluate the environmental impacts associated with a modified design of a proposed 250,000 barrels per day crude oil conveyance system from Navel Petroleum Reserve No. 1 to connect to the proposed SOHIO West Coast to Midcontinent Pipeline at Rialto, California. This SEIS is a supplement to DOE/EIS-0020, Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California.

  7. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Nancy Porter; Mike Sullivan; Chris Neary

    2003-05-01T23:59:59.000Z

    The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: two with composite liners and two without.

  8. Transportation of Natural Gas and Petroleum (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute enables and regulates the exercise of eminent domain by persons, companies, corporations, or associations transporting crude oil, petroleum, gases, or other products within or through...

  9. Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel

    E-Print Network [OSTI]

    landfill biomethane to liquefied natural gas for use as transportation fuel. The aim is to develop, and liquefaction of biomethane. The resulting liquefied natural gas will consist of cryogenically liquefied. This project will also serve as a model for similar facilities in California to use native biogas resources

  10. Linking Oil Prices, Gas Prices, Economy, Transport, and Land Use

    E-Print Network [OSTI]

    Bertini, Robert L.

    Linking Oil Prices, Gas Prices, Economy, Transport, and Land Use A Review of Empirical Findings Hongwei Dong, Ph.D. Candidate John D. Hunt, Professor John Gliebe, Assistant Professor #12;Framework Oil-run Short and Long-run #12;Topics covered by this presentation: Oil price and macro-economy Gas price

  11. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  12. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty(MillionGlossaryOfPipelineHealthYear Jan Feb Mar

  13. RAILROAD STRATEGY FOR CRUDE OIL TRANSPORT: Considering Public Policy and Pipeline Competition

    E-Print Network [OSTI]

    Entekhabi, Dara

    of crude oil transportation by rail from the Alberta oil sands has been slower than the growth, stakeholders, and objectives for the bitumen transport system from the Alberta oil sands, and reviews: Existing railroad network: Some products shipped: Fig. 1: Predicted oil sands production growth

  14. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    Oil refinery Pipeline Storage Truck distribution Gas stationOil refinery Pipeline Storage Truck distribution Gas stationrefinery Pipeline Terminal storage Truck distribution Gas

  15. New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques

    SciTech Connect (OSTI)

    Brown, T.D.; Taylor, C.E.; Bernardo, M.

    2010-01-01T23:59:59.000Z

    Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, “Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle,” May 2008.

  16. Feed gas contaminant control in ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Minford, Eric (Laurys Station, PA); Waldron, William Emil (Whitehall, PA)

    2009-07-07T23:59:59.000Z

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  17. Natural gas pipelines after field price decontrol : a study of risk, return and regulation

    E-Print Network [OSTI]

    Carpenter, Paul R.

    1984-01-01T23:59:59.000Z

    This is a study of a regulated industry undergoing rapid change. For the first time in its history, following the partial decontrol of field prices in 1978, natural gas is being priced at a level which places it in direct ...

  18. City in Colorado Fueling Vehicles with Gas Produced from Wastewater...

    Broader source: Energy.gov (indexed) [DOE]

    the key facts? Grand Junction built a five mile pipeline to transport compressed natural gas (CNG) from its local wastewater treatment facility to its CNG station to fuel the city...

  19. Audit of Lone Star Gas Invoices and Billing Procedures, Task #3 

    E-Print Network [OSTI]

    Turner, W. D.; Liu, M.

    1997-01-01T23:59:59.000Z

    desires that Transporter (a) receive gas from Shipper (or its designee) at the Point(s) of Receipt hereinafter set forth and (b) redeliver gas to the Point(s) of Delivery hereinafter set forth; and WHEREAS, Transporter owns and operates a pipeline system... of this Agreement, (iii) available pipeline capacity necessary to maintain Transporter's sales service to its residential and commercial customers and higher priorities of sales service under tariffs filed with applicable regulatory authorities, and (iv) any other...

  20. Stochastic Aspects of Mass Transport in Gas Diffusion Layers

    E-Print Network [OSTI]

    Schmidt, Volker

    -Boltzmann, virtual materials design, mass transport, gas supply 1 #12;1 Introduction Polymer electrolyte fuel cells- tection of `optimal' microstructures is an important yet challenging task. In the industrial practice, however, the GDL is optimized by means of cost- and time-consuming experiments mainly based on a trial

  1. ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS

    E-Print Network [OSTI]

    (CO2) emission reduction estimates were obtained for each of the measures. The package of measures the problem of reducing greenhouse gas (GHG) emissions from the Canadian transportation sector. Reductions-makers will require estimates of both the potential emission reductions and the costs or benefits associated

  2. Capsule injection system for a hydraulic capsule pipelining system

    DOE Patents [OSTI]

    Liu, Henry (Columbia, MO)

    1982-01-01T23:59:59.000Z

    An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

  3. Bulletin of the Seismological Society of America, Vol. 93, No. 4, pp. 14271432, August 2003 Seismic Recordings of the Carlsbad, New Mexico, Pipeline Explosion

    E-Print Network [OSTI]

    Koper, Keith D.

    Transportation and Safety Board, and the general public. Introduction On 19 August 2000 a buried natural gas in southeastern New Mexico recorded signals from a natural gas pipeline explosion. Analysis of the par- ticle by the ignition of the vented natural gas. The nature of the third event is unclear; however, it was likely

  4. Pittsburg, NH Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity on the U.S. Natural Gas

  5. Port of Del Bonita, MT Natural Gas Pipeline Imports From Canada (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity on the U.S. Natural GasSugars,

  6. Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity on the U.S. Natural GasSugars,Feet)

  7. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan FebCubic(Million

  8. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan FebCubic(MillionThousand Cubic

  9. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan FebCubic(MillionThousand

  10. Grand Island, NY Natural Gas Pipeline Exports (Price) to Canada (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper Thousand Cubic81,898 63,548

  11. Grand Island, NY Natural Gas Pipeline Exports (Price) to Canada (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper Thousand Cubic81,898 63,548per

  12. Grand Island, NY Natural Gas Pipeline Exports to Canada (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper Thousand Cubic81,898

  13. Grand Island, NY Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper Thousand Cubic81,898Thousand Cubic

  14. Grand Island, NY Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper Thousand Cubic81,898Thousand

  15. Grand Island, NY Natural Gas Pipeline Imports From Canada (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper Thousand

  16. Havre, MT Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAIN EIA PRODUCTSCubic

  17. Havre, MT Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAIN EIA PRODUCTSCubicCubic

  18. Havre, MT Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAIN EIA

  19. Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAIN EIACubic Feet)

  20. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2 Week 30

  1. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2 Week

  2. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2 WeekYear

  3. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2

  4. Highgate Springs, VT Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week

  5. Highgate Springs, VT Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 WeekThousand

  6. IP CN Crosby, ND Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1ThisThousand

  7. IP CN Crosby, ND Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week

  8. Idaho Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-MonthExportsLease

  9. New Mexico Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural Gas Number ofIndustrial

  10. New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural Gas Number

  11. Supply Chain Management and Economic Valuation of Real Options in the Natural Gas

    E-Print Network [OSTI]

    Sadeh, Norman M.

    Supply Chain Management and Economic Valuation of Real Options in the Natural Gas and Liquefied Natural Gas Industry Mulan Xiaofeng Wang Submitted to the Tepper School of Business in Partial Fulfillment options in the natural gas and liquefied natural gas (LNG) industry, including gas pipeline transportation

  12. Possible Pathways for Increasing Natural Gas Use for Transportation (Presentation)

    SciTech Connect (OSTI)

    Zigler, B.

    2014-10-01T23:59:59.000Z

    A collaborative partnership of DOE National Laboratories is working with DOE to identify critical RD&D needs to significantly increase the speed and breadth of NG uptake into the transportation sector. Drivers for increased utilization of natural gas for transportation are discussed. Key needs in research, development, and deployment are proposed, as well as possible pathways to address those needs. This presentation is intended to serve as a catalyst to solicit input from stakeholders regarding what technical areas they deem the most important.

  13. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect (OSTI)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-05-01T23:59:59.000Z

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  14. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect (OSTI)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-01-01T23:59:59.000Z

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  15. Development of Protective Coatings for Co-Sequestration Processes and Pipelines

    SciTech Connect (OSTI)

    Gordon Bierwagen; Yaping Huang

    2011-11-30T23:59:59.000Z

    The program, entitled â??Development of Protective Coatings for Co-Sequestration Processes and Pipelinesâ?, examined the sensitivity of existing coating systems to supercritical carbon dioxide (SCCO2) exposure and developed new coating system to protect pipelines from their corrosion under SCCO2 exposure. A literature review was also conducted regarding pipeline corrosion sensors to monitor pipes used in handling co-sequestration fluids. Research was to ensure safety and reliability for a pipeline involving transport of SCCO2 from the power plant to the sequestration site to mitigate the greenhouse gas effect. Results showed that one commercial coating and one designed formulation can both be supplied as potential candidates for internal pipeline coating to transport SCCO2.

  16. Analysis and optimization of gas pipeline networks and surface production facilities for the Waskom Field--Harrison County, Texas

    E-Print Network [OSTI]

    Pang, Jason Ui-Yong

    1995-01-01T23:59:59.000Z

    in these simulation Surface facilities for the Waskom field include pipelines of varying, sizes, separators, compressors, valves, and production manifolds. After creating and verifying the field model, we determined that the field possesses greater compressor...

  17. An Archaeological Survey of the Proposed Donner Brown A-83 #1 Gas Pipeline in Western Newton County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-24T23:59:59.000Z

    An archaeological investigation of an 8260 foot pipeline (5.6 acres) in western Newton County, Texas was performed by Brazos Valley Research Associates of Bryan, Texas in July 2001. No archaeological sites were found to exist within the project...

  18. An Archaeological Survey of the Proposed ARCO Blackstone Mineral A-977 #1 Gas Pipeline in Jasper County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-24T23:59:59.000Z

    An archaeological investigation of an 1884 foot pipeline (1.3 acres) in western Jasper County, Texas was performed by Brazos Valley Research Associates (BVRA) of Bryan, Texas in July 2001. No archaeological sites were found to exist within...

  19. Hazardous Liquid Pipelines and Storage Facilities (Iowa)

    Broader source: Energy.gov [DOE]

    This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

  20. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  1. IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 1, FEBRUARY 2012 223 On Optimizing Autonomous Pipeline Inspection

    E-Print Network [OSTI]

    Li, Xin "Shane"

    health. As the most economical way to transport gas, oil, bio fuels, water resource, sewer, and so forth. For example, the leak of petroleum pipeline causes ocean pollution and ecocatastrophe. Regular inspections Editor T. Murphey and Editor J.-P. Laumond upon evaluation of the reviewers' comments. This work

  2. Economic Implications of Natural Gas Vehicle Technology in U.S. Private Automobile Transportation

    E-Print Network [OSTI]

    1 Economic Implications of Natural Gas Vehicle Technology in U.S. Private Automobile Transportation, Technology and Policy Program #12;2 #12;3 Implications of Natural Gas Vehicle Technology in U.S. Private natural gas resources, and the growing international liquefied natural gas (LNG) market, gas prices

  3. Assessing the Potential of Using Hydrate Technology to Capture, Store and Transport Gas for the Caribbean Region 

    E-Print Network [OSTI]

    Rajnauth, Jerome Joel

    2012-02-14T23:59:59.000Z

    natural gas as a hydrate while focusing on small scale transportation of natural gas to the Caribbean Islands. This work proposes a workflow for capturing, storing and transporting gas in the hydrate form, particularly for Caribbean situations where...

  4. Cathodic protection retrofit of an offshore pipeline

    SciTech Connect (OSTI)

    Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

    1997-09-01T23:59:59.000Z

    Cathodic protection (CP) anodes and corrosion coating on two offshore pipelines were damaged during deep water installation. In-situ methods for deep-water inspection and repair of the pipelines` CP and coating systems were developed and used. High-pressure natural gas Pipeline. A design was 5.6 miles of 8.625 in. OD by 0.406 in. W.T. API SL, Grade X-42, seamless line pipe. Pipeline B design was 0.3 miles of similar specification pipe. Both pipelines were mill-coated with 14 mil of fusion-bonded epoxy (FBE) corrosion coating. Girth welds were field-coated with FBE.

  5. Pipeline Setback Ordinance (Minnesota)

    Broader source: Energy.gov [DOE]

    This statute establishes the Office of Pipeline Safety to regulate pipelines in Minnesota. Among other duties, the office is responsible for implementing a Model Pipeline Setback Ordinance.

  6. Natural Gas as a Transportation Fuel: Benefits, Challenges, and Implementation (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2007-07-01T23:59:59.000Z

    Presentation for the Clean Cities Website highlighting the benefits, challenges, and implementation considerations when utilizing natural gas as a transportation fuel.

  7. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect (OSTI)

    Stalheim, Mr. Douglas [DGS Metallurgical Solutions Inc; Boggess, Todd [Secat; San Marchi, Chris [Sandia National Laboratories (SNL); Jansto, Steven [Reference Metals Company; Somerday, Dr. B [Sandia National Laboratories (SNL); Muralidharan, Govindarajan [ORNL; Sofronis, Prof. Petros [University of Illinois

    2010-01-01T23:59:59.000Z

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 800 and 3000 psi. This paper will describe the work performed on four commercially available pipeline steels in the presence of gaseous hydrogen at pressures relevant for transport in pipelines. Microstructures and mechanical property performances will be compared. In addition, recommendations for future work related to gaining a better understanding of steel pipeline performance in hydrogen service will be discussed.

  8. Natural gas annual 1993 supplement: Company profiles

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  9. Application of the Granuflow Process to Pipeline-Transported Coal Slurry CRADA PC96-010, Final Report

    SciTech Connect (OSTI)

    Richard P. Killmeyer; Wu-Wey Wen

    1997-09-24T23:59:59.000Z

    In light of the current difficulties in processing fine coal and the potential for a significant increase in fines due to more demanding quality specifications, the U.S. Department of Energy's Federal Energy Technology Center (FETC) has been involved in the reconstitution of the fine clean coal resulting from advanced fine coal cleaning technologies. FETC has invented and developed a new strategy that combines fine-coal dewatering and reconstitution into one step. The process reduces the moisture content of the clean coal, and alleviates handling problems related to dustiness, stickiness, flowability, and freezing. This process has been named the GranuFlow Process. Early work successfully demonstrated the feasibility of the process for laboratory-scale vacuum filtration dewatering using asphalt emulsion. Further tests focused on the application of the process to a screen-bowl centrifuge via batch mode tests at 300 lb/hr. These tests produced roughly the same results as the laboratory filtration tests did, and they included some testing using Orimulsion, a bitumen emulsion. The Orimulsion seemed to offer greater potential for moisture reduction and was less affected by colder slurry temperatures. Most recently, FETC has conducted several series of tests in its Coal Preparation Process Research Facility. These tests dramatically showed the visible difference in the dewatered product by applying the GranuFlow Process, turning it from a clumpy, wet, sticky material into a granular, dry free-flowing product. In addition, it verified previous results with improvements in moisture content, dustiness, stickiness, and freezing. Orimulsion showed a significant benefit over asphalt emulsion in moisture reduction at additions more than 5%. The overall goal of this project was to successfully apply FETC'S GranuFlow Process to improve coal slurry pipeline operations. Williams Technologies, Inc. (WTI), a leader in pipeline technology, has an interest in reducing the moisture content of the coal at the end of a coal slurry pipeline beyond what is being achieved with conventional mechanical dewatering technology. In addition, they would like to improve the handling characteristics of the dewatered coal. The GranuFlow Process has the potential of assisting in both of these areas, and its degree of applicability needed to be explored. A formal Cooperative Research and Development Agreement (CRADA) between FETC and WTI was signed in November 1996. This CRADA consisted of 6 tasks progressing from preliminary scoping tests to a commercial field test. Task 1 was completed in February 1997, and it provided sufficient information about the applicability of the GranuFlow Process to coal slurry pipelines that further testing was not needed at the present time. Thus the CRADA was terminated.

  10. Pipeline ADC Design Methodology

    E-Print Network [OSTI]

    Zhao, Hui

    2012-01-01T23:59:59.000Z

    Scaling vs. R. Figure 4.8 Pipeline ADC Structures. Figure2.4 A Pipelined ADC. Figure 3.1 Pipeline ADC Transfer Curve.Modes (b) data latency in pipeline ADC Figure 3.3 Detailed

  11. Liquid water transport in fuel cell gas diffusion layers Aimy Ming Jii Bazylak

    E-Print Network [OSTI]

    Victoria, University of

    Liquid water transport in fuel cell gas diffusion layers by Aimy Ming Jii Bazylak Bachelor means, without the permission of the author. #12;ii Liquid water transport in fuel cell gas diffusion State University) Abstract Liquid water management has a major impact on the performance and durability

  12. Natural gas transport by plastic pipes. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe failure analyses are examined. Bending, joining, and repair methods are discussed. Composite reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains a minimum of 88 citations and includes a subject term index and title list.)

  13. Oil and Gas CDT What happens inside a frack? Particle-laden fluid transport in

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT What happens inside a frack? Particle-laden fluid transport in fracture networks, or fracking, for shale gas or other unconventional gas sources involves inducing and propagating fractures, and the productivity of the fracked well will be lower. However proppants can jam inside fractures preventing

  14. PIPELINES AS COMMUNICATION NETWORK LINKS

    SciTech Connect (OSTI)

    Kelvin T. Erickson; Ann Miller; E. Keith Stanek; C.H. Wu; Shari Dunn-Norman

    2005-03-14T23:59:59.000Z

    This report presents the results of an investigation into two methods of using the natural gas pipeline as a communication medium. The work addressed the need to develop secure system monitoring and control techniques between the field and control centers and to robotic devices in the pipeline. In the first method, the pipeline was treated as a microwave waveguide. In the second method, the pipe was treated as a leaky feeder or a multi-ground neutral and the signal was directly injected onto the metal pipe. These methods were tested on existing pipeline loops at UMR and Batelle. The results reported in this report indicate the feasibility of both methods. In addition, a few suitable communication link protocols for this network were analyzed.

  15. Report of the Committee on oil pipeline regulation

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Safety, interpretations of FERC Opinion 154-B, and a variation on the theme of oil pipeline deregulation were the significant developments affecting oil pipelines in the year 1991 and early 1992. The introduction of amendments to the Hazardous Liquid Pipeline Safety Act will result in Department of Transportation Regulations concerning in-depth reporting requirements of pipeline incidents and more frequent testing procedures to insure the safety of the pipeline. In November, 1991, Congressman Synar introduced a bill to streamline Federal Energy Regulatory Commission (FERC) procedures concerning oil pipelines.

  16. Instrumented Pipeline Initiative

    SciTech Connect (OSTI)

    Thomas Piro; Michael Ream

    2010-07-31T23:59:59.000Z

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  17. Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston

    E-Print Network [OSTI]

    Jackson, Robert B.

    transmission and distribution pipelines for natural gas in the U. S. cause an average of 17 fatalities, 68 signatures w20& lighter (m ¼ À57.8&, Æ1.6& s.e., n ¼ 8). Repairing leaky natural gas distribution systems injuries, and $133 M in property damage each year (PHMSA, 2012). A natural gas pipeline explosion in San

  18. Ion transport membrane module and vessel system with directed internal gas flow

    DOE Patents [OSTI]

    Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

    2010-02-09T23:59:59.000Z

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  19. Natural Pipeline of America Check Presentation 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    An archaeological investigation of approximately 1000 feet of a proposed 22,000 foot natural gas pipeline in southeastern Orange County, Texas was performed by Brazos Valley Research Associates of Bryan, Texas in August 2001. No archaeological sites...

  20. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

    1996-11-12T23:59:59.000Z

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

  1. Pipeline Safety (Maryland)

    Broader source: Energy.gov [DOE]

    The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

  2. New U. S. gas lines will restructure North American grid flows

    SciTech Connect (OSTI)

    Spiegel, E.; Johnson, E. Jr. (Booz-Allen and Hamilton Inc., Dallas, TX (US)); Viscio, A.

    1990-12-10T23:59:59.000Z

    This paper reports that completion of several major U.S. natural-gas pipeline projects will significantly change relationships among suppliers, buyers, and transporters; alter pipeline flows and tariffs; and affect producer economics. The competitive and regulatory environment of the natural-gas industry continues to change under great uncertainty. Within this rapidly changing environment, many long-discussed but often-delayed pipeline projects are nearing or have entered the construction phase. These projects represent more than 5 bcf/day (bcfd) of capacity targeting three major markets that now consume an average of 23 bcfd.

  3. International Journal of Mass Spectrometry 219 (2002) 7377 Protein charge transport in gas phase

    E-Print Network [OSTI]

    Sheu, Sheh-Yi

    temperature limit, the rotational energy can be transferred with very high efficiency and hence one obtainsInternational Journal of Mass Spectrometry 219 (2002) 73­77 Protein charge transport in gas phase high charge transport efficiency. (Int J Mass Spectrom 219 (2002) 73­77) © 2002 Elsevier Science B

  4. Greenhouse gas emissions and the surface transport of freight in Canada

    E-Print Network [OSTI]

    Greenhouse gas emissions and the surface transport of freight in Canada Paul Steenhof a,*, Clarence committed to reducing its greenhouse gas (GHG) emissions to 6% below 1990 levels between 2008 and 2012's emissions of 740 million metric tonnes of carbon dioxide (mmTCO2e), and 41% of the CO2e emitted from

  5. Water Transport Characteristics of Gas Diffusion Layer in a PEM Fuel Cell

    SciTech Connect (OSTI)

    Ashok S. Damle; J. Vernon Cole

    2008-11-01T23:59:59.000Z

    A presentation addressing the following: Water transport in PEM Fuel Cells - a DoE Project 1. Gas Diffusion Layer--Role and Characteristics 2. Capillary Pressure Determinations of GDL Media 3. Gas Permeability Measurements of GDL Media 4. Conclusions and Future Activities

  6. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    SciTech Connect (OSTI)

    none,

    1981-05-01T23:59:59.000Z

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  7. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through July 1999.

  8. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through June 1998.

  9. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-12-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through November 1999.

  10. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through February 1999.

  11. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through April 1998.

  12. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-10-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through September 1999.

  13. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    2000-02-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through January 2000.

  14. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    2000-01-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through December 1999.

  15. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-11-01T23:59:59.000Z

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through October 1999.

  16. The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...

    Open Energy Info (EERE)

    calculation-toolsall-tools Cost: Free The Greenhouse Gas Protocol tool for mobile combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions...

  17. Biomass and Natural Gas to Liquid Transportation Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Josephine Elia, Graduate Student, Princeton University

  18. ,"Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate ProvedGas,Canada (Dollars per Thousand

  19. ,"Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate ProvedGas,Canada (Dollars per

  20. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    SciTech Connect (OSTI)

    Air Products and Chemicals

    2008-09-30T23:59:59.000Z

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  1. EIS-0139: Trans-Alaska Gas System Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Yukon Pacific Corporation (YPC) proposed construction of the Trans-Alaska Gas System (TAGS) a 796.5 mile long 36-inch diameter pipeline to transport High Pressured Natural Gas between Prudhoe Bay and a Tidewater terminal and LNG Plant near Anderson Bay, AK.

  2. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

    2005-07-20T23:59:59.000Z

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.

  3. Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to...

  4. Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing

    E-Print Network [OSTI]

    Davis, Lucas; Muehlegger, Erich

    2009-01-01T23:59:59.000Z

    gas distribution including installing and maintaining pipelines,pipeline From a research perspective, a signi?cant advantage of natural gas distribution

  5. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01T23:59:59.000Z

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  6. From {open_quotes}command and control{close_quotes} to risk management: The evolution of the federal natural gas pipeline safety program

    SciTech Connect (OSTI)

    Biancardi, P.; Bogardus, L.M.

    1995-12-31T23:59:59.000Z

    The pipeline industry essentially accepted the passage of the NGPSA in 1968 because it would provide one set of uniform regulations under the shield of federal preemption, thus relieving industry from the impossible burden of complying with inconsistent state and local requirements. The program developed, however, in response to the public`s misperception of infrequent but highly publicized accidents, rather than as a result of rational evaluation of actual pipeline safety risks. Like other federal agencies, the DOT has begun to reassess this method of regulation and today has a new vision of pipeline safety regulation. The DOT has embarked on a regulatory experiment which requires government-industry partnerships, greater public participation, and risk-based regulations. Whether or not this experiment succeeds, the DOT deserves credit for seeking new and innovative approaches to regulating the pipeline industry.

  7. Energy policy act transportation study: Interim report on natural gas flows and rates

    SciTech Connect (OSTI)

    NONE

    1995-11-17T23:59:59.000Z

    This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

  8. Natural gas monthly, July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This document presents information pertaining to the natural gas industry. Data are included on production, consumption, distribution, and pipeline activities.

  9. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    the liquefier or gas pipeline, significant leaks can occur,major section). leaks of gas from pipelines (in section ongas-engine pipeline compressors 268 Trains 268 Ships 268 Leaks

  10. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    of domestic gas distribution pipelines. These domesticand gas extraction, transport and distribution pipelines, to

  11. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31T23:59:59.000Z

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  12. PARTICLE TRANSPORTATION AND DEPOSITION IN HOT GAS FILTER VESSELS - A COMPUTATIONAL AND EXPERIMENTAL MODELING APPROACH

    SciTech Connect (OSTI)

    Goodarz Ahmadi

    2002-07-01T23:59:59.000Z

    In this project, a computational modeling approach for analyzing flow and ash transport and deposition in filter vessels was developed. An Eulerian-Lagrangian formulation for studying hot-gas filtration process was established. The approach uses an Eulerian analysis of gas flows in the filter vessel, and makes use of the Lagrangian trajectory analysis for the particle transport and deposition. Particular attention was given to the Siemens-Westinghouse filter vessel at Power System Development Facility in Wilsonville in Alabama. Details of hot-gas flow in this tangential flow filter vessel are evaluated. The simulation results show that the rapidly rotation flow in the spacing between the shroud and the vessel refractory acts as cyclone that leads to the removal of a large fraction of the larger particles from the gas stream. Several alternate designs for the filter vessel are considered. These include a vessel with a short shroud, a filter vessel with no shroud and a vessel with a deflector plate. The hot-gas flow and particle transport and deposition in various vessels are evaluated. The deposition patterns in various vessels are compared. It is shown that certain filter vessel designs allow for the large particles to remain suspended in the gas stream and to deposit on the filters. The presence of the larger particles in the filter cake leads to lower mechanical strength thus allowing for the back-pulse process to more easily remove the filter cake. A laboratory-scale filter vessel for testing the cold flow condition was designed and fabricated. A laser-based flow visualization technique is used and the gas flow condition in the laboratory-scale vessel was experimental studied. A computer model for the experimental vessel was also developed and the gas flow and particle transport patterns are evaluated.

  13. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect (OSTI)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01T23:59:59.000Z

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  14. Components in the Pipeline

    SciTech Connect (OSTI)

    Gorton, Ian; Wynne, Adam S.; Liu, Yan (Jenny); Yin, Jian

    2011-02-24T23:59:59.000Z

    Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

  15. Transportation and Greenhouse Gas Emissions Trading. Final Technical Report

    SciTech Connect (OSTI)

    Steve Winkelman; Tim Hargrave; Christine Vanderlan

    1999-10-01T23:59:59.000Z

    The authors conclude in this report that an upstream system would ensure complete regulatory coverage of transportation sector emissions in an efficient and feasible manner, and as such represents a key component of a national least-cost GHG emissions abatement strategy. The broad coverage provided by an upstream system recommends this approach over vehicle-maker based approaches, which would not cover emissions from heavy-duty vehicles and the aviation, marine and off-road sub-sectors. The on-road fleet approach unfairly and inefficiently burdens vehicle manufacturers with responsibility for emissions that they cannot control. A new vehicles approach would exclude emissions from vehicles on the road prior to program inception. The hybrid approach faces significant technical and political complications, and it is not clear that the approach would actually change behavior among vehicle makers and users, which is its main purpose. They also note that a trading system would fail to encourage many land use and infrastructure measures that affect VMT growth and GHG emissions. They recommend that this market failure be addressed by complementing the trading system with a program specifically targeting land use- and infrastructure-related activities. A key issue that must be addressed in designing a national GHG control strategy is whether or not it is necessary to guarantee GHG reductions from the transport sector. Neither an upstream system nor a downstream approach would do so, since both would direct capital to the least-cost abatement opportunities wherever they were found. They review two reasons why it may be desirable to force transportation sector reductions: first, that the long-term response to climate change will require reductions in all sectors; and second, the many ancillary benefits associated with transportation-related, and especially VMT-related, emissions reduction activities. If policy makers find it desirable to establish transportation-specific policies, they recommend (in addition to the land use policies mentioned above), that they combine an upstream trading system with a carbon efficiency standard similar to the current CAFE standard. Under this approach a fuel price signal would be complemented by incentives for manufacturers to produce more carbon efficient vehicles. To prevent vehicle manufacturers from being forced to pay more than other sectors for reducing GHG emissions, they recommend that the vehicle makers be allowed to pay a cash penalty equal to the market price of allowances in lieu of meeting carbon efficiency requirements.

  16. http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight

    E-Print Network [OSTI]

    http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation >>> Transportation operat > Freight traffic > Commodities > Travel time > Travel demand > http

  17. Pipeline Construction Guidelines (Indiana)

    Broader source: Energy.gov [DOE]

    The Division of Pipeline Safety of the Indiana Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has...

  18. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

    2004-04-12T23:59:59.000Z

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) Pipe diameter sizes range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.). The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.), with 95% using 558.8 mm (22 in.) pipe. An evaluation of potential repair methods clearly indicates that the project should continue to focus on the development of a repair process involving the use of GMAW welding and on the development of a repair process involving the use of fiber-reinforced composite liners.

  19. Will heat from the pipeline affect groundwater and surface water? Response by Professor James Goeke The temperature of a pipeline buried 4 feet would

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    of the pipeline as a way to check for leaks? Do you have any specific concerns regarding oil or natural gas1 Water Will heat from the pipeline affect groundwater and surface water? Response by Professor James Goeke ­ The temperature of a pipeline buried 4 feet would probably affect surface water

  20. Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs

    Broader source: Energy.gov [DOE]

    An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy

  1. EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322Development & Expansion

  2. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322Development & ExpansionInterstate

  3. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage by

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322Development &Region/State Mileage

  4. EIA - Natural Gas Pipeline Network - Generalized Natural Gas Pipeline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOrigin State Glossary HomeCapacity Design

  5. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2YonthlyEnergyMap

  6. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2YonthlyEnergyMapExpansion

  7. Keystone XL pipeline update

    Broader source: Energy.gov [DOE]

    Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

  8. KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS

    SciTech Connect (OSTI)

    K.C. Kwon

    2002-01-01T23:59:59.000Z

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 was examined in this report. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 130 mm particles are reacted with 18000-ppm hydrogen sulfide at 350-525 C. The range of space time of reaction gas mixtures is 0.069-0.088 s. The range of reaction duration is 4-180 s.

  9. Pipeline charging of coke ovens with a preheated charge

    SciTech Connect (OSTI)

    Karpov, A.V.; Khadzhioglo, A.V.; Kuznichenko, V.M.

    1983-01-01T23:59:59.000Z

    Work to test a pipeline charging method was conducted at the Konetsk Coke Works (a PK-2K coke oven system with a single gas main, oven width 407 mm, height 4300 mm, effective column 20.0 cm/sub 3/). This method consists of transporting the heated coal charge to the ovens through a pipe by means of steam. the charge is transported by high pressure chamber groups, and loaded by means of systems equipped with devices for separation, withdrawal and treatment of the spent steam. The principal goal of the present investigation was to test technical advances in the emission-free charging of preheated charges. The problem was, first, to create a reliable technology for separation of the steam from the charge immediately before loading it into the oven and, second, to provide a total elimination of emissions, thereby protecting the environment against toxic substances.

  10. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2008-02-29T23:59:59.000Z

    There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

  11. Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems 

    E-Print Network [OSTI]

    Freeman, Craig Matthew

    2013-11-25T23:59:59.000Z

    . In this work we contribute a numerical model which captures multicomponent desorption, diffusion, and phase behavior in ultra-tight rocks. We also describe a workflow for incorporating measured gas composition data into modern production analysis....

  12. Overview of the design, construction, and operation of interstate liquid petroleum pipelines.

    SciTech Connect (OSTI)

    Pharris, T. C.; Kolpa, R. L.

    2008-01-31T23:59:59.000Z

    The U.S. liquid petroleum pipeline industry is large, diverse, and vital to the nation's economy. Comprised of approximately 200,000 miles of pipe in all fifty states, liquid petroleum pipelines carried more than 40 million barrels per day, or 4 trillion barrel-miles, of crude oil and refined products during 2001. That represents about 17% of all freight transported in the United States, yet the cost of doing so amounted to only 2% of the nation's freight bill. Approximately 66% of domestic petroleum transport (by ton-mile) occurs by pipeline, with marine movements accounting for 28% and rail and truck transport making up the balance. In 2004, the movement of crude petroleum by domestic federally regulated pipelines amounted to 599.6 billion tonmiles, while that of petroleum products amounted to 315.9 billion ton-miles (AOPL 2006). As an illustration of the low cost of pipeline transportation, the cost to move a barrel of gasoline from Houston, Texas, to New York Harbor is only 3 cents per gallon, which is a small fraction of the cost of gasoline to consumers. Pipelines may be small or large, up to 48 inches in diameter. Nearly all of the mainline pipe is buried, but other pipeline components such as pump stations are above ground. Some lines are as short as a mile, while others may extend 1,000 miles or more. Some are very simple, connecting a single source to a single destination, while others are very complex, having many sources, destinations, and interconnections. Many pipelines cross one or more state boundaries (interstate), while some are located within a single state (intrastate), and still others operate on the Outer Continental Shelf and may or may not extend into one or more states. U.S. pipelines are located in coastal plains, deserts, Arctic tundra, mountains, and more than a mile beneath the water's surface of the Gulf of Mexico (Rabinow 2004; AOPL 2006). The network of crude oil pipelines in the United States is extensive. There are approximately 55,000 miles of crude oil trunk lines (usually 8 to 24 inches in diameter) in the United States that connect regional markets. The United States also has an estimated 30,000 to 40,000 miles of small gathering lines (usually 2 to 6 inches in diameter) located primarily in Texas, Oklahoma, Louisiana, and Wyoming, with small systems in a number of other oil producing states. These small lines gather the oil from many wells, both onshore and offshore, and connect to larger trunk lines measuring 8 to 24 inches in diameter. There are approximately 95,000 miles of refined products pipelines nationwide. Refined products pipelines are found in almost every state in the United States, with the exception of some New England states. These refined product pipelines vary in size from relatively small, 8- to 12-inch-diameter lines, to up to 42 inches in diameter. The overview of pipeline design, installation, and operation provided in the following sections is only a cursory treatment. Readers interested in more detailed discussions are invited to consult the myriad engineering publications available that provide such details. The two primary publications on which the following discussions are based are: Oil and Gas Pipeline Fundamentals (Kennedy 1993) and the Pipeline Rules of Thumb Handbook (McAllister 2002). Both are recommended references for additional reading for those requiring additional details. Websites maintained by various pipeline operators also can provide much useful information, as well as links to other sources of information. In particular, the website maintained by the U.S. Department of Energy's Energy Information Administration (EIA) (http://www.eia.doe.gov) is recommended. An excellent bibliography on pipeline standards and practices, including special considerations for pipelines in Arctic climates, has been published jointly by librarians for the Alyeska Pipeline Service Company (operators of the Trans-Alaska Pipeline System [TAPS]) and the Geophysical Institute/International Arctic Research Center, both located in Fairbanks (Barboza and Trebelhorn 2001)

  13. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-12-31T23:59:59.000Z

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

  14. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-08-17T23:59:59.000Z

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

  15. Gas Pipeline Safety Rules (Alabama)

    Broader source: Energy.gov [DOE]

    All public utilities and persons subject to this rule shall file with the commission an operating and maintenance plan as well as an emergency plan. All construction work involving the addition and...

  16. Natural gas transport by plastic pipes. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe failure analyses are examined. Bending, joining, and repair methods are discussed. Composite reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains a minimum of 89 citations and includes a subject term index and title list.)

  17. New technologies used in development of sour Fairway gas

    SciTech Connect (OSTI)

    Gallaher, D.M. (Shell Offshore Inc., New Orleans, LA (United States)); Mahoney, M.J. (Paragon Engineering Services Inc., Houston, TX (United States))

    1993-02-22T23:59:59.000Z

    Shell Offshore Inc.'s Fairway field project offshore Alabama served as a proving ground for many developmental materials and techniques to cope with the field's hot, sour gas. This is the first of two articles on the project's first-ever field use of bimetallic corrosion-resistant alloy (CRA) pipe as well as the project's extensive use of corrosion inhibition. Among the new technologies employed by Shell Offshore to develop the Norphlet sour-gas trend were: Use of CRA-clad subsea flow lines; Development of a corrosion-inhibitor program for subsea pipeline transport of high-temperature, wet Norphlet sour gas; Cathodic protection of subsea pipelines at elevated temperature; Use of coiled tubing for subsea utility pipelines; Induction bending of high-strength, CRA-clad pipe; Welding of CRA-clad and weld overlaid materials; and Manufacture of bimetallic CRA pipe by coextrusion, thermal-hydraulic, and explosive forming processes.

  18. Journal of Crystal Growth 241 (2002) 220230 Driving force for crystallization of gas hydrates

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    2002-01-01T23:59:59.000Z

    facilities and pipelines, deep ocean carbon dioxide sequestration, transportability of natural gases

  19. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    SciTech Connect (OSTI)

    Agnew, Kieran [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)] [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)

    2013-07-01T23:59:59.000Z

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method of breaching the pipe while maintaining containment to remove residual liquids, - Crimp and shear - remote crimping, cutting and handling of pipe using the excavator - Pipe jacking - a way of removing pipes avoiding excavations and causing minimal disturbance and disruption. The details of the decommissioning trial design, the techniques employed, their application and effectiveness are discussed and evaluated here in. (authors)

  20. Statistical Methods for Estimating the Minimum Thickness Along a Pipeline

    E-Print Network [OSTI]

    along the pipeline can be used to estimate corrosion levels. The traditional parametric model method for this problem is to estimate parameters of a specified corrosion distribution and then to use these parameters companies use pipelines to transfer oil, gas and other materials from one place to another. Manufactures

  1. State Natural Gas Regulation Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act gives the Nebraska Public Service Commission authority to regulate natural gas utilities and pipelines within the state, except as provided for in the Nebraska Natural Gas Pipeline Safety...

  2. Gas deliverability: Flexibility within the system

    SciTech Connect (OSTI)

    Tom, D. [Associated Power Services, Inc., Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    This paper presents the text of my comments to the national conference on Meeting the Challenges of the New Energy Industry: The Driving Forces Facing Electric Power Generators and the Natural Gas Industry. The F.E.R.C. gas tariffs and operational characteristics of the various gas pipeline systems contain numerous mechanisms and provide flexibility to their shippers. Pipeline customers are empowered with the ability to maximize their supply portfolio by utilizing the appropriate blend of transportation and storage services that best fits their demand needs. I have presented a brief overview of supply availability, seven topics that can enhance assurance of system delivery and an update on The Natural Gas Council`s Electric Generation Task Force.

  3. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report

    SciTech Connect (OSTI)

    Sutton, W.H.

    1997-06-30T23:59:59.000Z

    This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

  4. REAL-TIME ACTIVE PIPELINE INTEGRITY DETECTION (RAPID) SYSTEM FOR CORROSION DETECTION AND QUANTIFICATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    alone there are over 2 million miles of natural gas transmission and distribution pipeline providing 24REAL-TIME ACTIVE PIPELINE INTEGRITY DETECTION (RAPID) SYSTEM FOR CORROSION DETECTION detection Acellent has developed a Real-time Active Pipeline Integrity Detection (RAPID) system. The RAPID

  5. FERC Order 636 spawns flurry of U. S. gas storage projects

    SciTech Connect (OSTI)

    Not Available

    1993-10-25T23:59:59.000Z

    Precisely how storage utilization will affect U.S. gas markets is uncertain because many new players are offering storage services through mostly untested contractual arrangements. But a positive development is that available gas storage capacity in the U.S. is increasing. And that is due in large part to storage's relative value in markets taking on added luster as a result of Federal Energy Regulatory Commission Order 636, which takes effect Nov. 1. Order 636 in most cases ends interstate pipeline companies merchant functions, unbundles pipeline interstate gas transportation services and fees, and opens interstate transmission capacity to access by any qualified shipper on firm or interruptible basis. Interstate pipeline gas storage capacity is among the transportation services affected. As markets set values on controlling or aggregating gas supplies at given points on the U.S. interstate pipeline grid and on transporting those volumes to end use customers, storage will be valued according to its contribution in each supply chain. And because Order 636 allows storage to play a greater role in the supply chain, its value to producers, shippers, and consumers will grow as well. The paper discusses gas storage expansions, supply area storage, seasonal versus peak storage, salt cavern storage, storage service flexibility, and several specific storage facilities.

  6. Nigeria`s Escravos gas project starts up

    SciTech Connect (OSTI)

    Nwokoma, M. [Chevron Nigeria Ltd., Lekki (Nigeria)

    1998-04-20T23:59:59.000Z

    Nigeria`s Escravos gas project, Delta state, officially began late last year. The project -- 6,650 b/d of LPG and 1,740 b/d of condensate from 165 MMscfd of gas -- is the first attempt to rid Nigeria of incessant flares that have lit the Delta skies. Operator Chevron Nigeria Ltd. believes that the Escravos project will enable the joint venture to utilize a significant portion of the gas reserves, thus reducing gas flaring. The paper describes the background of the project, the gas fields, transport pipeline, process design, construction, and start-up.

  7. Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

  8. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-12-16T23:59:59.000Z

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  9. Survey of state water laws affecting coal slurry pipeline development

    SciTech Connect (OSTI)

    Rogozen, M.B.

    1980-11-01T23:59:59.000Z

    This report summarizes state water laws likely to affect the development of coal slurry pipelines. It was prepared as part of a project to analyze environmental issues related to energy transportation systems. Coal slurry pipelines have been proposed as a means to expand the existing transportation system to handle the increasing coal shipments that will be required in the future. The availability of water for use in coal slurry systems in the coal-producing states is an issue of major concern.

  10. Ductile fracture and structural integrity of pipelines & risers

    E-Print Network [OSTI]

    Kofiani, Kirki N. (Kirki Nikolaos)

    2013-01-01T23:59:59.000Z

    The Oil and Gas (O&G) industry has recently turned its interest towards deep and ultra-deep offshore installations in order to address the global increase of energy demand. Pipelines and risers are key components for the ...

  11. Pipeline Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities...

  12. 6/10/12 UK team advances measurement of gas bubbles in pipelines. | Technology news | Process Engineer... 1/2processengineering.theengineer.co.uk/.../1012631.article

    E-Print Network [OSTI]

    Sóbester, András

    process in the manufacturing, power, oil & gas and petrochemical industries. For instance, the sharp

  13. LASER TRIGGERED GAS SWITCHES UTILIZING BEAM TRANSPORT THROUGH 1 MO-cm DEIONIZED WATER.

    SciTech Connect (OSTI)

    Woodworth, Joseph Ray; Lehr, Jane [Sandia National Laboratories, Albuquerque, NM; Blickem, James R.; Wallace, Zachariah R.; Anaya, Victor Jr; Corley, John P; Lott, John; Hodge, Keith; Zameroski, Nathan D. [Sandia National Laboratories, Albuquerque, NM

    2005-11-01T23:59:59.000Z

    We report on the successful attempts to trigger high voltage pressurized gas switches by utilizing beam transport through 1 MO-cm deionized water. The wavelength of the laser radiation was 532 nm. We have investigated Nd: YAG laser triggering of a 6 MV, SF6 insulated gas switch for a range of laser and switch parameters. Laser wavelength of 532 nm with nominal pulse lengths of 10 ns full width half maximum (FWHM) were used to trigger the switch. The laser beam was transported through 67 cm-long cell of 1 MO-cm deionized water constructed with anti reflection UV grade fused silica windows. The laser beam was then focused to form a breakdown arc in the gas between switch electrodes. Less than 10 ns jitter in the operation of the switch was obtained for laser pulse energies of between 80-110 mJ. Breakdown arcs more than 35 mm-long were produced by using a 70 cm focusing optic.

  14. Program permits fast solution to pipeline loop requirements

    SciTech Connect (OSTI)

    Bierman, G.D.

    1983-10-31T23:59:59.000Z

    A program developed for the HP-41CV hand-held calculator can provide pipeline engineers with a quick and easy means for determining loop requirements on existing gas-transmission pipelines. Adding pipe in parallel to an existing pipeline, referred to as looping, is necessary to insure that with a given flow rate, the gas will arrive at a certain point on the pipeline with a pressure equal to or greater than the minimum required pressure. The automatic loop program calculates loop by first determining the total number of segments which require looping within the section of pipeline being evaluated. A section of pipe is usually the pipeline between compressor stations and is divided into segments by either receipt or delivery points along the pipeline. The number of segments which require looping is found by adding loop to individual segments until the final pressure (i.e., the pressure at the point of interest downstream on the pipeline) is equal to or greater than the specified design pressure.

  15. TRANSPORTATION ISSUES IN THE DELIVERY OF GTL PRODUCTS FROM ALASKAN NORTH SLOPE TO MARKET

    SciTech Connect (OSTI)

    Godwin Chukwu

    2004-01-01T23:59:59.000Z

    The Alaskan North Slope (ANS) is one of the largest hydrocarbon reserves in the United States where Gas-to-Liquids (GTL) technology can be successfully implemented. The proven and recoverable reserves of conventional natural gas in the developed and undeveloped fields in the Alaskan North Slope (ANS) are estimated to be 38 trillion standard cubic feet (TCF) and estimates of additional undiscovered gas reserves in the Arctic field range from 64 TCF to 142 TCF. Because the domestic gas market in the continental United States is located thousands of miles from the ANS, transportation of the natural gas from the remote ANS to the market is the key issue in effective utilization of this valuable and abundant resource. The focus of this project is to study the operational challenges involved in transporting the gas in converted liquid (GTL) form through the existing Trans Alaska Pipeline System (TAPS). A three-year, comprehensive research program was undertaken by the Petroleum Development Laboratory, University of Alaska Fairbanks, under cooperative agreement No. DE-FC26-98FT40016 to study the feasibility of transporting GTL products through TAPS. Cold restart of TAPS following an extended winter shutdown and solids deposition in the pipeline were identified as the main transportation issues in moving GTL products through the pipeline. The scope of work in the current project (Cooperative Agreement No. DE-FC26-01NT41248) included preparation of fluid samples for the experiments to be conducted to augment the comprehensive research program.

  16. BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    efforts were undertaken · Conversion took place during a period of less regulation on pipeline activityBP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines

  17. Photophoretic contribution to the transport of absorbing particles across combustion gas boundary layers

    SciTech Connect (OSTI)

    Castillo, J.L. (U.N.E.D., Madrid (Spain)); Mackowski, D.W.; Rosner, D.E. (Yale Univ., New Haven, CT (USA))

    1989-01-01T23:59:59.000Z

    Since radiation energy fluxes can be comparable to convective (Fourier) fluxes in large fossil-fuel-fired power stations and furnaces, the authors have examined particle drift (phoresis) induced by nonuniform photon-particle heating in a host gas. The authors analysis of the photophoretic velocity includes the important slipflow regime, and the numerical results show that photophoresis is a significant transport mechanism for micron-sized absorbing particles in high radiative transfer combustion environments, with equivalent photophoretic diffusivities (dimensionless photophoretic velocities) being as large as 10% of the better-known thermophoretic diffusivity (Rosner, 1980, 1985). Since previous experimental results (Rosner and Kim, 1984) demonstrated that thermophoresis causes over a 3-decade increase in particle deposition rates by convective diffusion, clearly, for small, absorbing particles, photophoresis will also be an important contributor to observed deposition rates. Accordingly, they present mass transfer coefficients for particle transport across laminar gaseous boundary layers, including both particle thermophoresis and photophoresis.

  18. Coal-log pipeline system development

    SciTech Connect (OSTI)

    Liu, H.

    1991-12-01T23:59:59.000Z

    Project tasks include: (1) Perform the necessary testing and development to demonstrate that the amount of binder in coal logs can be reduced to 8% or lower to produce logs with adequate strength to eliminate breakage during pipeline transportation, under conditions experienced in long distance pipeline systems. Prior to conducting any testing and demonstration, grantee shall perform an information search and make full determination of all previous attempts to extrude or briquette coal, upon which the testing and demonstration shall be based. (2) Perform the necessary development to demonstrate a small model of the most promising injection system for coal-logs, and tests the logs produced. (3) Conduct economic analysis of coal-log pipeline, based upon the work to date. Refine and complete the economic model. (VC)

  19. Code for Hydrogen Hydrogen Pipeline

    E-Print Network [OSTI]

    #12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

  20. Composites Technology for Hydrogen Pipelines

    E-Print Network [OSTI]

    Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff;Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate of pipeline per day. · $190k/mile capital cost for distribution pipelines · Hydrogen delivery cost below $1

  1. Analysis of Frequency, Magnitude and Consequence of Worst-Case Spills From the Proposed Keystone XL Pipeline

    E-Print Network [OSTI]

    Farritor, Shane

    approval to build the Keystone XL pipeline from Alber- ta, Canada to Texas. The pipeline will transport to a worst-case discharge and any smaller spills. The Keystone XL environmental assessment documents (e that the environmental assessment docu- ments for the Keystone XL pipeline are inadequate, and that they do not properly

  2. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    SciTech Connect (OSTI)

    DeLuchi, M.A. [Argonne National Lab., IL (United States); [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01T23:59:59.000Z

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  3. Leaving the Premedical Pipeline at Cal

    E-Print Network [OSTI]

    Kwan, Elizabeth

    2001-01-01T23:59:59.000Z

    Why students drop out of the pipeline to health professionsLeaving the Premedical Pipeline at Cal By Elizabeth Kwanattrition from the premedical pipeline is appropriate. Not

  4. Capturing Latino Students in the Academic Pipeline

    E-Print Network [OSTI]

    Gándara, Patricia; Larson, Katherine; Mehan, Hugh; Rumberger, Russell

    1998-01-01T23:59:59.000Z

    The Latino Educational Pipeline Why Latino Students are atSTUDENTS IN THE ACADEMIC PIPELINE CAPTURING LATINO STUDENTSIN THE ACADEMIC PIPELINE Patricia Gcindara, Editor Katherine

  5. Rnnotator Assembly Pipeline

    SciTech Connect (OSTI)

    Martin, Jeff [DOE Joint Genome Institute

    2010-06-03T23:59:59.000Z

    Jeff Martin of the DOE Joint Genome Institute discusses a de novo transcriptome assembly pipeline from short RNA-Seq reads on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  6. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-04-20T23:59:59.000Z

    There is growing interest regarding the potential size of a future U.S. dedicated carbon dioxide (CO2) pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale within the United States. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies (so called WRE450 and WRE550 stabilization scenarios) and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The analysis reveals that between 11,000 and 23,000 additional miles of dedicated CO2 pipeline might be needed in the U.S. before 2050 across these two cases. While that is a significant increase over the 3,900 miles that comprise the existing national CO2 pipeline infrastructure, it is critically important to realize that the demand for additional CO2 pipeline capacity will unfold relatively slowly and in a geographically dispersed manner as new dedicated CCS-enabled power plants and industrial facilities are brought online. During the period 2010-2030, the growth in the CO2 pipeline system is on the order of a few hundred to less than a thousand miles per year. In comparison during the period 1950-2000, the U.S. natural gas pipeline distribution system grew at rates that far exceed these projections in growth in a future dedicated CO2 pipeline system. This analysis indicates that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a major obstacle for the commercial deployment of CCS technologies in the U.S. Nevertheless, there will undoubtedly be some associated regulatory and siting issues to work through but these issues should not be unmanageable based on the size of infrastructure requirements alone.

  7. Recovery Act: 'Carbonsheds' as a Framework for Optimizing United States Carbon Capture and Storage (CCS) Pipeline Transport on a Regional to National Scale

    SciTech Connect (OSTI)

    Pratson, Lincoln

    2012-11-30T23:59:59.000Z

    Carbonsheds are regions in which the estimated cost of transporting CO{sub 2} from any (plant) location in the region to the storage site it encompasses is cheaper than piping the CO{sub 2} to a storage site outside the region. We use carbonsheds to analyze the cost of transport and storage of CO{sub 2} in deploying CCS on land and offshore of the continental U.S. We find that onshore the average cost of transport and storage within carbonsheds is roughly $10/t when sources cooperate to reduce transport costs, with the costs increasing as storage options are depleted over time. Offshore transport and storage costs by comparison are found to be roughly twice as expensive but t may still be attractive because of easier access to property rights for sub-seafloor storage as well as a simpler regulatory system, and possibly lower MMV requirements, at least in the deep-ocean where pressures and temperatures would keep the CO{sub 2} negatively buoyant. Agent-based modeling of CCS deployment within carbonsheds under various policy scenarios suggests that the most cost-effective strategy at this point in time is to focus detailed geology characterization of storage potential on only the largest onshore reservoirs where the potential for mitigating emissions is greatest and the cost of storage appears that it will be among the cheapest.

  8. Natural gas monthly, August 1997

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    This report presents information on natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported.

  9. Africa; Expanding market creates more gas lines

    SciTech Connect (OSTI)

    Quarles, W.R.; Thiede, K.; Parent, L.

    1990-11-01T23:59:59.000Z

    The authors report on pipeline development activities in Africa. They discuss how a growing European market for gas has increased potential pipeline construction in Africa, especially for Algeria, Egypt, and Libya.

  10. 6/10/12 The use of acoustic inversion to estimate the bubble size distribution in pipelines 1/2www.sciencedaily.com/releases/2012/05/120515104537.htm

    E-Print Network [OSTI]

    Sóbester, András

    6/10/12 The use of acoustic inversion to estimate the bubble size distribution in pipelines 1/2www gas bubbles in pipelines. The ability to measure gas bubbles in pipelines is vital technique for estimating the gas bubble size distribution (BSD) is to send sound waves through the bubble

  11. Pipeline Safety Program Oak Ridge National Laboratory

    E-Print Network [OSTI]

    programs prepared by pipeline operators in accordance with Federal pipeline safety regulations, grounding, and interference, · environmentally sensitive areas, · federal pipeline safety regulationsPipeline Safety Program Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U

  12. The Transportation Greenhouse Gas Inventory: A First Step Toward City-Driven Emissions Rationalization

    E-Print Network [OSTI]

    Ganson, Chris

    2008-01-01T23:59:59.000Z

    Passenger vehicles Residential Natural Gas ResidentialNatural Gas Residential Electricity Passenger vehiclesEnd Attribution, Vehicle Life Cycle Commercial Natural Gas

  13. Multiobjective Optimization of the Transport in Oil Pipelines J.M.de la Cruz, B.de Andres-Toro, A.Herrn, E.Besada Porta, P.Fernandez Blanco

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    to solve combinatorial problems. One of this problem is the distribution of petroleum products through oil of working is given. I. INTRODUCTION Distribution of petroleum product through oil pipeline networks distribution of petroleum products through oil pipelines networks using an evolutionary multiobjective

  14. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work...

  15. EIS-0433: Keystone XL Pipeline

    Broader source: Energy.gov [DOE]

    The proposed Keystone XL project consists of a 1,700-mile crude oil pipeline and related facilities that would primarily be used to transport Western Canadian Sedimentary Basin crude oil from an oil supply hub in Alberta, Canada to delivery points in Oklahoma and Texas. This EIS, prepared by the Department of State, evaluates the environmental impacts of the proposed Keystone XL project. DOE’s Western Area Power Administration, a cooperating agency, has jurisdiction over certain proposed transmission facilities (construction and operation of a short 230-kv transmission line and construction of a new substation). The State Department published a notice in the Federal Register on February 3, 2012, regarding the denial of the Keystone XL presidential permit (77 FR 5614).

  16. Programmable Graphics Pipelines Anjul Patney

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Programmable Graphics Pipelines By Anjul Patney B.Tech. (Indian Institute of Technology Delhi) 2007 as Abstractions for Computer Graphics 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Modern Graphics Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2

  17. CASE CRITICAL Keystone XL Pipeline

    E-Print Network [OSTI]

    Hall, Sharon J.

    CASE CRITICAL Keystone XL Pipeline: A Line in the Sand? Case Critical is presented by ASU's Global Professor, ASU's School of Geographical Sciences and Urban Planning The Keystone XL Pipeline, a large

  18. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops Contact Us User Meeting Archives Users' Executive Committee Getting to Berkeley...

  19. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Print Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops Contact Us User Meeting Archives Users' Executive Committee Getting to...

  20. 6/10/12 Technique Devised to Measure Pipeline Gas Bubbles | Science Business 1/2sciencebusiness.technewslit.com/?p=9481

    E-Print Network [OSTI]

    Sóbester, András

    of the blow out preventer was a key factor in the extensive damage caused by the BP/Deepwater Horizon oil spill in the Gulf of Mexico in 2010. Current methods for estimating bubble size distribution involve for Oil and Gas Eight Teams Funded for Research on Gulf Oil Spill Impact * * * NEW PRODUCTS ENGINEERING

  1. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis

    SciTech Connect (OSTI)

    Mattiozzi, Pierpaolo [Snamprogetti-Saipem, Via Toniolo, 1, 61032 Fano (Italy); Strom, Alexander [Institute of Geospheres Dynamics, Leninskiy Avenue, 38, Building 1, 119334, Moscow (Russian Federation)

    2008-07-08T23:59:59.000Z

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

  2. EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2YonthlyEnergy MarketsInterstate

  3. Coal slurry pipeline based midwest fuel hub

    SciTech Connect (OSTI)

    Huettenhain, H. [Bechtel Technology & Consulting San Francisco, CA (United States)

    1998-12-31T23:59:59.000Z

    Low sulfur Powder River Basin (PRB) coal is a sought after fuel to comply with the year 2000 emission regulation for utility boilers. PRB coal is presently not competitive East of the Mississippi mainly because of railroad switching requirements and boiler designs not compatible with the PRB fuel characteristics. The use of the Lakes for transportation is an exception. The Lakes shipping lanes however, are only open part of the year. It is proposed to construct a coal slurry pipeline from the center of Wyoming coalfields to a hub near Detroit with access to low cost waste energy from power generation stations. The coal slurry pipeline will transport up to 25 million tons per year of fine PRB coal which has been removed from the conventionally transported coal, namely coal transported by rail. The rail delivered coal will have less dust. The system fits the DOE Vision 21 concept to mine and utilize coal in highly efficient systems and with the least environmental impact. The PRB coal is of subbituminous rank and not directly compatible with the boilers in Michigan/Indiana/Ohio area, which are designed to burn bituminous coal. Upgrading of the PRB coal using the hydrothermal slurry upgrading process can transform the PRB coal into a higher Btu content fuel by removing a large portion of the inherent moisture. Such upgraded PRB coal has proven an excellent reactive fuel when burned conventionally as PC fuel, or even when burned in slurry form as Coal Water Fuel (CWF). The cost of the process can be recovered when the process is combined with a coal slurry pipeline transport system. The result is an upgraded competitive fuel or fuels, which can be used for co-firing or re-burning applications to reduce SO{sub 2} and NOx emissions of utility boilers. The fuels can be powdered for direct fuel injection into boilers or blast furnaces as well as CWF. Depending on the stability of the upgraded PRB coal, the pipeline product could also be dewatered and prepared for export. This paper describes the concept and preliminary cost information. It also reports on reactions of the industries, which could be involved in the complex system, namely, coal mining companies, railroads, pipeline operators, fuel suppliers, and utilities.

  4. Natural Gas Infrastructure Implications of Increased Demand from...

    Broader source: Energy.gov (indexed) [DOE]

    the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased...

  5. DOE Launches Natural Gas Infrastructure R&D Program Enhancing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions DOE Launches Natural Gas...

  6. Bibliography on northern pipelines in the former Soviet Union. Special report

    SciTech Connect (OSTI)

    Smallidge, E.R.

    1997-08-01T23:59:59.000Z

    In 1993 a pilot project between the Defense Technical Information Center and the U.S. Army Cold Regions Research and Engineering Laboratory resulted in a proposal to conduct a state-of-the-art review of technology and techniques for building, operating, and maintaining arctic natural gas and liquid petroleum pipelines in the former Soviet Union. The objectives of the pipeline review were to (1) Review the design, construction, operation, and maintenance procedures of oil and gas pipelines in the permafrost areas of eastern and western Siberia. (2) Assemble data on the evolution of Siberian pipelines, reflecting changes in size, modes of construction, and age. (3) Assemble data on maintenance procedures and practices, including inspection techniques with respect to corrosion, pipe wrinkling, and metal fatigue. (4) Assemble data on pipeline failures and attempt to predict life expectancy of different pipelines under the harsh arctic environment. (5) Evaluate the environmental impact of different pipeline construction techniques and relate it to ruptures and breaks. In conjunction with the study objectives, a literature search was conducted on northern pipelines in the former Soviet Union. References were compiled on dates of construction, location, route conditions, design, construction, maintenance, environmental impact, accidents, production management, and other pertinent facts. In the resulting bibliography, references are separated into three categories: Oil and Gas Pipelines, Construction, and Accidents. There is some repetition of references between the categories because some are relevant to more than one of the subject categories.

  7. Mobile sensor network to monitor wastewater collection pipelines

    E-Print Network [OSTI]

    Lim, Jungsoo

    2012-01-01T23:59:59.000Z

    Advanced pipeline monitoringDesign of mobile pipeline floating sensor “SewerSnortIllustration of mobile pipeline floating sensor monitoring

  8. Data-stationary pipelined machine

    SciTech Connect (OSTI)

    Abdou, I.E.

    1984-01-01T23:59:59.000Z

    The paper presents the data-stationary control concept of pipelined machines, with emphasis on its application in image processing systems. A parallel array of pipelined machines for image processing is considered, and data-stationary control is compared with time-stationary control. A system is proposed that is a parallel array of pipelined machines. Each pipeline is a multifunctional, statically configured, data-stationary device. The pipelines do not accommodate branching instructions or interrupts, and the design focus on vector processing only. The system can be used in other applications such as signal processing and arithmetic number crunching. 5 references.

  9. Hydrogen Pipeline Material Testing We provide critical data, measurement methods and models that enable safe

    E-Print Network [OSTI]

    fatigue data for pipeline materials including steel alloys currently being used (API X52), those proposed helping to inform and revise relevant codes and standards. Impact and Customers While pipelines are the safest, most economical way to transport fuels, the pa- rameters used for codes and standards

  10. Enhancing protection for unusually sensitive ecological areas from pipeline releases

    E-Print Network [OSTI]

    Sames, Christina; Fink, Dennis

    2001-01-01T23:59:59.000Z

    ECOLOGICAL AREAS FROM PIPELINE RELEASES Christina Sames;Administration, Office of Pipeline Safety, DPS-10/ 400 7thof a hazardous liquid pipeline accident. Pipeline operators

  11. The SINFONI pipeline

    E-Print Network [OSTI]

    Andrea Modigliani; Wolfgang Hummel; Roberto Abuter; Paola Amico; Pascal Ballester; Richard Davies; Christophe Dumas; Mattew Horrobin; Mark Neeser; Markus Kissler-Patig; Michele Peron; Juha Rehunanen; Juergen Schreiber; Thomas Szeifert

    2007-02-05T23:59:59.000Z

    The SINFONI data reduction pipeline, as part of the ESO-VLT Data Flow System, provides recipes for Paranal Science Operations, and for Data Flow Operations at Garching headquarters. At Paranal, it is used for the quick-look data evaluation. For Data Flow Operations, it fulfills several functions: creating master calibrations; monitoring instrument health and data quality; and reducing science data for delivery to service mode users. The pipeline is available to the science community for reprocessing data with personalised reduction strategies and parameters. The pipeline recipes can be executed either with EsoRex at the command line level or through the Gasgano graphical user interface. The recipes are implemented with the ESO Common Pipeline Library (CPL). SINFONI is the Spectrograph for INtegral Field Observations in the Near Infrared (1.1-2.45 um) at the ESO-VLT. SINFONI was developed and build by ESO and MPE in collaboration with NOVA. It consists of the SPIFFI integral field spectrograph and an adaptive optics module which allows diffraction limited and seeing limited observations. The image slicer of SPIFFI chops the SINFONI field of view on the sky in 32 slices which are re-arranged to a pseudo slit. The latter is dispersed by one of the four possible gratings (J, H, K, H+K). The detector thus sees a spatial dimension (along the pseudo-slit) and a spectral dimension. We describe in this paper the main data reduction procedures of the SINFONI pipeline, which is based on SPRED - the SPIFFI data reduction software developed by MPE, and the most recent developments after more than a year of SINFONI operations.

  12. Pipeline bottoming cycle study. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle working fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.

  13. Leakage Evaluated and Controlled from Industrial Process Pipeline by Optimum Gasket Assembly Stress

    E-Print Network [OSTI]

    Chen, Shu-Ching

    will ultimately result in a complete proposal to prevent any hazardous gas leaks in the process industries0 Leakage Evaluated and Controlled from Industrial Process Pipeline by Optimum Gasket Assembly and vehicles), but they have ignore the leakage between pipelines in process industries. When hazardous

  14. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    SciTech Connect (OSTI)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30T23:59:59.000Z

    This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a component of conventional high temperature water gas shift iron oxide based catalysts. The catalysts contained Fe-Al-Cr-Cu-O and were synthesized by co-precipitation. A series of catalysts were prepared with 5 to 50 wt% Al2O3, with 8 wt% Cr2O3, 4 wt% CuO, and the balance Fe2O3. All of the catalysts were compared to a reference WGS catalyst (88 wt% FeOx, 8 wt% Cr2O3, and 4 wt% CuO) with no alumina. Alumina addition to conventional high temperature water gas shift catalysts at concentrations of approximately 15 wt% increased CO conversion rates and increase thermal stability. A series of high temperature water gas shift catalysts containing iron, chromia, and copper oxides were prepared with small amounts of added ceria in the system Fe-Cr-Cu-Ce-O. The catalysts were also tested kinetically under WGS conditions. 2-4 wt% ceria addition (at the expense of the iron oxide content) resulted in increased reaction rates (from 22-32% higher) compared to the reference catalyst. The project goal of a 10,000 liter per day WGS-membrane reactor was achieved by a device operating on coal derived syngas containing significant amounts of carbon monoxide and hydrogen sulfide. The membrane flux was equivalent to 52 scfh/ft2 based on a 600 psi syngas inlet pressure and corresponded to membranes costing $191 per square foot. Over 40 hours of iv exposure time to syngas has been achieved for a double membrane reactor. Two modules of the Chart reactor were tested under coal syngas for over 75 hours with a single module tested for 50 hours. The permeance values for the Chart membranes were similar to the REB reactor though total flux was reduced due to significantly thicker membranes. Overall testing of membrane reactors on coal derived syngas was over 115 hours for all reactors tested. Testing of the REB double membrane device exceeded 40 hours. Performance of the double membrane reactor has been similar to the results for the single reactor with good maintenance of flux even after these long exposures to hydrogen sulfide. Of special interest is that the flux is highest at the start of each e

  15. Transportation in Developing Countries: An Overview of Greenhouse Gas Reduction Strategies

    E-Print Network [OSTI]

    Sperling, Daniel; Salon, Deborah

    2002-01-01T23:59:59.000Z

    South Africa, decades of Apartheid policies transformed much of the land use, transportation, and energy

  16. STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT

    SciTech Connect (OSTI)

    CROWE RD; APTHORPE R; LEE SJ; PLYS MG

    2010-04-29T23:59:59.000Z

    The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

  17. Transportation

    E-Print Network [OSTI]

    Vinson, Steve

    2013-01-01T23:59:59.000Z

    Transportation in ancient Egypt entailed the use of boats2007 Land transport in Roman Egypt: A study of economics andDieter 1991 Building in Egypt: Pharaonic stone masonry. New

  18. Transport Properties of He-N{sub 2} Binary Gas Mixtures for CBC Space Applications

    SciTech Connect (OSTI)

    Tournier, Jean-Michel P.; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States)

    2008-01-21T23:59:59.000Z

    In order to reduce the size and mass of the single-shaft turbo-machines, with little impact on the size of the heat transfer components in the CBC loop, He-Xe binary mixture with a molecular weight of 40 g/mole has been the working fluid of choice in space nuclear reactor power systems with Close Brayton Cycle (CBC) for energy conversion. This working fluid is also a suitable coolant for the fission reactors heat source designed with fast neutron energy spectra. For space nuclear reactors with thermal neutron energy spectra, however, the high capture neutron cross-section of Xe will reduce the beginning-of-life excess reactivity of the reactor, decreasing its effective operation lifetime. In addition, the neutron activation of Xe in the reactor will introduce a radioactivity source term in the CBC loop. Alternative working fluids with no activation concerns and comparable performance are N{sub 2} and the binary mixtures of He-N{sub 2}. This paper calculates the transport properties of these working fluids and compares their values to those of noble gas binary mixtures at the temperatures and pressures expected in CBC space reactor power system applications. Also investigated is the impact of using these working fluids on the pressure losses, heat transfer coefficient, and the aerodynamic loading of the blades in the CBC turbo-machines.

  19. 6/10/12 The use of acoustic inversion to estimate the bubble size distribution in pipelines 1/4energy-daily.com/.../The_use_of_acoustic_inversion_to_estimate_the_bubble_size_distribution_in_...

    E-Print Network [OSTI]

    Sóbester, András

    6/10/12 The use of acoustic inversion to estimate the bubble size distribution in pipelines 1 address ... yes . . . The use of acoustic inversion to estimate the bubble size distribution in pipelines devised a new method to more accurately measure gas bubbles in pipelines. The ability to measure gas

  20. Natural gas monthly, December 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This report presents information of interest to organizations associated with the natural gas industry. Data are presented on natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  1. The Gas/Electric Partnership 

    E-Print Network [OSTI]

    Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

    1997-01-01T23:59:59.000Z

    as this occurs. Through an Electric Power Research Institute initiative, an inter-industry organization, the Gas/Electric Partnership, has formed between the electric utilities and gas pipelines. The initial focus of this partnership is to explore issues...

  2. DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    Laporte, TX to near Lake Charles, LA. This system has approximately 228 miles of DOT regulated H2 pipeline of DOT regulated H2 pipeline. Portions of this system operating since early 1983. Pipeline sizeDOE Hydrogen Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia #12;Hydrogen Pipeline

  3. Natural Gas Pipe Line Companies (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations list standards and considerations for the design, construction, compression, metering, operation, and maintenance of natural gas pipelines, along with procedures for records,...

  4. Rates and rites of passage: The use of natural gas in power plants

    SciTech Connect (OSTI)

    Bloom, D.I. [Mayer, Brown & Platt, Washington, DC (United States)

    1995-12-31T23:59:59.000Z

    There are many advantages to the use of natural gas in new or repowered electric generating facilities. These include lower capital costs, positive environmental impacts, the use of proven technology, and an adequate resource base with a highly reliable and flexible transportation system. However, it is also clear that FERC`s regulation of pipeline rates and operating practices has a direct impact on the bottom line of electric generators. a sober understanding of these rules, a careful integration of the rules into project documents, and a more commercial approach to transportation contracts will enhance the revenues and control the risks of the financially successful gas-fired electric generators.

  5. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, Paolo R. (Pittsburgh, PA); Dederer, Jeffrey T. (Valencia, PA); Gillett, James E. (Greensburg, PA); Basel, Richard A. (Plub Borough, PA); Antenucci, Annette B. (Pittsburgh, PA)

    1996-01-01T23:59:59.000Z

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  6. Nondestructive inspection of the condition of oil pipeline cleaning units

    SciTech Connect (OSTI)

    Berdonosov, V.A.; Boiko, D.A.; Lapshin, B.M.; Chakhlov, V.L.

    1989-02-01T23:59:59.000Z

    One of the reasons for shutdowns of main oil pipelines is stoppage of the cleaning unit in cleaning of the inner surface of paraffin deposits caused by damage to the cleaning unit. The authors propose a method of searching for and determining the condition of the cleaning unit not requiring dismantling of the pipeline according to which the initial search for the cleaning unit is done with acoustic instruments (the increased acoustic noise at the point of stoppage of its is recorded) and subsequent inspection by a radiographic method. An experimental model of an instrument was developed making it possible to determine the location of a cleaning unit in an oil pipeline in stoppage of it from the acoustic noise. The instrument consists of two blocks, the remote sensor and the indicator block, which are connected to each other with a cable up to 10 m long. The design makes it possible to place the sensor at any accessible point of a linear part of the pipeline (in a pit, on a valve, etc.) while the indicator block may remain on the surface of the ground. The results obtained make it possible to adopt the optimum solutions on elimination of their malfunctioning and to prevent emergency situations without dismantling of the pipeline. With the equipment developed it is possible to inspect oil and gas pipelines with different reasons for a reduction in their throughput.

  7. New developments in pipeline charging preheated coal at Inland Steel

    SciTech Connect (OSTI)

    Sorensen, S.M. Jr.; Arsenault, A.A.; Rupp, P.A.

    1982-01-01T23:59:59.000Z

    The first commercial installation of a new pipeline oven charging system for preheated coal, designed by Dynamic Air, Inc., was made at Inland Steel's C Battery in October 1979. With the Dynamic Air charging sytem, production losses due to pipeline delays have been virtually eliminated, pipeline maintenance requirements have been reduced by 90%, conveying steam requirements have been significantly reduced, and oven charge weights have been increased by 500 kg (1000 lb). A test program was subsequently conducted during November and December 1980, to evaluate the use of nitrogen as a conveying medium for pipeline oven charging with the Dynamic Air system. The test results clearly demonstrated that the same weight of preheated coal could be charged into an oven by using either steam or nitrogen as the conveying medium. Moreover, it was found that pipeline oven charging with the Dynamic Air system is a function of the mass flow rate of the conveying medium. With nitrogen charging, an average 9% increase in oven charge rates was obtained at comparable conveying gas mass flow rates and charging bin pressures. In addition, average oven pressure during charging was reduced by approximately 40% and solids carryover was reduced by 100 kg (220 lb) per oven charge with nitrogen charging. It was found that solids carryover during pipeline oven charging is a function of the average pressure generated in the oven during charging, but it was also found that a large oven pressure surge at the end of the charge can produce excessive carryover to completely mask the effect.

  8. Economic implications of natural gas vehicle technology in U.S. private automobile transportation

    E-Print Network [OSTI]

    Kragha, Oghenerume Christopher

    2010-01-01T23:59:59.000Z

    Transportation represents almost 28 percent of the United States' energy demand. Approximately 95 percent of U.S. transportation utilizes petroleum, the majority of which is imported. With significant domestic conventional ...

  9. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01T23:59:59.000Z

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  10. Natural gas monthly

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This document highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Data presented include volume and price, production, consumption, underground storage, and interstate pipeline activities.

  11. Hydrodynamic forces on piggyback pipelines

    SciTech Connect (OSTI)

    Jakobsen, M.L.; Sayer, P. [Univ. of Strathclyde, Glasgow (United Kingdom)

    1995-12-31T23:59:59.000Z

    An increasing number of new offshore pipelines have been designed as bundles, mainly because of overall cost reductions. One popular way of combining two pipelines with different diameters is the piggyback configuration, with the smaller pipeline strapped on top of the main pipeline. The external hydrodynamic forces on this combination are at present very roughly estimated; pipeline engineers need more data to support their designs. This paper presents experimental results for the in-line hydrodynamic loading on three different piggyback set-ups. The models comprised a 0.4 m main pipeline, and three piggyback pipelines with diameters of 0.038 m, 0.059 m and 0.099 m. Each small pipeline was separately mounted to the main pipeline, with a gap equal to its own diameter. These model sizes lie approximately between half- and full-scale. Experiments were undertaken for K{sub C} between 5 and 42, and R{sub e} in the range 0.0 * 10{sup 4} to 8.5 * 10{sup 5}. The results based on Morison`s equation indicate that a simple addition of the separate forces acting on each cylinder underestimates the actual force by up to 35% at low K{sub C} (< {approximately} 10) and by as much as 100% in the drag-dominated regime (K{sub C} > {approximately} 20).

  12. RNA-Seq Pipeline in Galaxy

    E-Print Network [OSTI]

    Meng, Xiandong

    2014-01-01T23:59:59.000Z

    Assembly in Galaxy RNA-Seq q Pipeline p • QC : To find outRNA-Seq Pipeline in Galaxy Xiandong Meng 1 , Jeffrey Martinof California RNA--Seq Pipeline in Galaxy RNA Xiandong Meng

  13. Leaking Pipelines: Doctoral Student Family Formation

    E-Print Network [OSTI]

    Serrano, Christyna M.

    2008-01-01T23:59:59.000Z

    Sari M. “Why the Academic Pipeline Leaks: Fewer Men thanone reason the academic pipeline leaks. 31 Blair-Loy, Mary.to leak out of the “academic pipeline. ” The term “academic

  14. Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones

    E-Print Network [OSTI]

    You, Kehua

    2013-04-19T23:59:59.000Z

    Understanding the gas phase flow and transport of volatile organic compounds (VOCs) in unsaturated zones is indispensable to develop effective environmental remediation strategies, to create precautions for fresh water protection, and to provide...

  15. An experimental investigation of sediment drag forces on offshore pipelines in large scale drag tank

    E-Print Network [OSTI]

    Yin, Stanley Fuming

    1984-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE August 1984 Major Subject: Civil Engineering AN EXPERIMENTAL INVESTIGATION OF SEDIMENT DRAG FORCES ON OFFSHORE PIPELINES IN A LARGE SCALE DRAG TANK A Thesis by STANLEY FUMING YIN Approved as to style and content by... An ever increasing demand for petroleum products and energy has led to accelerated exploration and development of oil and gas deposits. Pipelines serve as an effective, efficient and reliable means of trans- porting the oil and gas from offshore...

  16. Hydrogen Pipeline Discussion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e&FundingDiscussion Hydrogen Pipeline

  17. Detection of the internal corrosion in pipeline

    E-Print Network [OSTI]

    2006-10-17T23:59:59.000Z

    Detection of the internal corrosion in pipeline. Hyeonbae Kang. In this talk I will explain our new methods to detect internal corrosions in pipelines.

  18. Machinist Pipeline/Apprentice Program Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Machinist PipelineApprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled...

  19. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01T23:59:59.000Z

    Extending the EU Emissions Trading Scheme to Aviation.Air Transport Emissions Trading Scheme Workshop, UKaviation in its GHG emission trading system (i.e. , by

  20. Conversion of associated natural gas to liquid hydrocarbons. Final report, June 1, 1995--January 31, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The original concept envisioned for the use of Fischer-Tropsch processing (FTP) of United States associated natural gas in this study was to provide a way of utilizing gas which could not be brought to market because a pipeline was not available or for which there was no local use. Conversion of gas by FTP could provide a means of utilizing offshore associated gas which would not require installation of a pipeline or re-injection. The premium quality F-T hydrocarbons produced by conversion of the gas can be transported in the same way as the crude oil or in combination (blended) with it, eliminating the need for a separate gas transport system. FTP will produce a synthetic crude oil, thus increasing the effective size of the resource. The two conventional approaches currently used in US territory for handling of natural gas associated with crude petroleum production are re-injection and pipelining. Conversion of natural gas to a liquid product which can be transported to shore by tanker can be accomplished by FTP to produce hydrocarbons, or by conversion to chemical products such as methanol or ammonia, or by cryogenic liquefaction (LNG). This study considers FTP and briefly compares it to methanol and LNG. The Energy International Corporation cobalt catalyst, ratio adjusted, slurry bubble column F-T process was used as the basis for the study and the comparisons. An offshore F-T plant can best be accommodated by an FPSO (Floating Production, Storage, Offloading vessel) based on a converted surplus tanker, such as have been frequently used around the world recently. Other structure types used in deep water (platforms) are more expensive and cannot handle the required load.

  1. Federal Perspective on Opportunities for Hydrogen and Natural Gas for Transportation„Including a Natural Gas Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartmentEnergyEnergyDepartment ofofFederal Perspective on

  2. ar-rich source gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: > Natural Gas Utilities Options Analysis for the Hydrogen Economy Hydrogen Pipeline R&D Project and Collaborators > Team - Gas Technology Institute -...

  3. EIA - Natural Gas Pipeline System - Central Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322DevelopmentConfiguration Salt

  4. EIA - Natural Gas Pipeline System - Midwest Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322DevelopmentConfigurationMidwest Region

  5. EIA - Natural Gas Pipeline System - Northeast Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322DevelopmentConfigurationMidwest

  6. EIA - Natural Gas Pipeline System - Southeast Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877

  7. Natural Gas Pipeline & Distribution Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996)2009 2010

  8. Natural Gas Pipeline & Distribution Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996)2009 201070,174 674,124 687,784

  9. Plastic buckling in gas transmission line-pipes, cold formed from thermo-mechanically-controlled rolling of low-allow steel plates

    E-Print Network [OSTI]

    Vishal, Vaibhaw, 1978-

    2007-01-01T23:59:59.000Z

    The need for energy infrastructure has led to transportation of gases over long distances. The strength-grade of pipeline steels used for transportation of gases has been increasing to reduce the cost of the overall pipeline ...

  10. Transport and deposition of particles in gas turbines: Effects of convection, diffusion, thermophoresis, inertial impaction and coagulation

    SciTech Connect (OSTI)

    Brown, D.P.; Biswas, P.; Rubin, S.G. [Univ. of Cincinnati, OH (United States)

    1994-12-31T23:59:59.000Z

    Aerosols are produced in a large number of industrial processes over a wide range of sizes. Of particular importance is deposition of coal and oil combustion aerosols in turbines. A model coupling the transport and the dynamics of aerosols to flow characteristics in gas turbines is presented. An order of magnitude analysis is carried out based on typical operational conditions for coal and oil combustion (neglecting coagulation) to determine the relative importance of various mechanisms on particle behavior. A scheme is then developed to incorporate a moment model of a log normally distributed aerosol to predict aerosol transport and dynamics in turbine flows. The proposed moment model reflects the contributions from convection, inertia, diffusion and thermophoresis. Aerosol behavior in various laminar 2-D and axisymmetric flows is considered in this study. Results are compared to published work in 1-D and 2-D planar and axisymmetric.

  11. Natural gas monthly

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  12. Shareholder Value and the Transformation of American Industries, 1984-2001

    E-Print Network [OSTI]

    Fligstein, Neil; Shin, Taek-Jin

    2007-01-01T23:59:59.000Z

    Pipelines, Except Natural Gas Transportation Services Communication Electric, Gas and Water Services Distribution

  13. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipping of GH2 Pipeline. Background: FG 64 built in 50ies, KP added in 70ies, active mining area over total length hpwgwquestissuescampbell.pdf More Documents & Publications...

  14. The LOFAR Transients Pipeline

    E-Print Network [OSTI]

    Swinbank, John D; Molenaar, Gijs J; Rol, Evert; Rowlinson, Antonia; Scheers, Bart; Spreeuw, Hanno; Bell, Martin E; Broderick, Jess W; Carbone, Dario; van der Horst, Alexander J; Law, Casey J; Wise, Michael; Breton, Rene P; Cendes, Yvette; Corbel, Stéphane; Eislöffel, Jochen; Falcke, Heino; Fender, Rob; Greißmeier, Jean-Mathias; Hessels, Jason W T; Stappers, Benjamin W; Stewart, Adam J; Wijers, Ralph A M J; Wijnands, Rudy; Zarka, Philippe

    2015-01-01T23:59:59.000Z

    Current and future astronomical survey facilities provide a remarkably rich opportunity for transient astronomy, combining unprecedented fields of view with high sensitivity and the ability to access previously unexplored wavelength regimes. This is particularly true of LOFAR, a recently-commissioned, low-frequency radio interferometer, based in the Netherlands and with stations across Europe. The identification of and response to transients is one of LOFAR's key science goals. However, the large data volumes which LOFAR produces, combined with the scientific requirement for rapid response, make automation essential. To support this, we have developed the LOFAR Transients Pipeline, or TraP. The TraP ingests multi-frequency image data from LOFAR or other instruments and searches it for transients and variables, providing automatic alerts of significant detections and populating a lightcurve database for further analysis by astronomers. Here, we discuss the scientific goals of the TraP and how it has been desig...

  15. INTERPRETATION OF TRACER SURFACE DIFFUSION EXPERIMENTS ON UO2 ROLES OF GAS AND SOLID TRANSPORT PROCESSES

    E-Print Network [OSTI]

    Olander, D.R.

    2013-01-01T23:59:59.000Z

    hydrogen. This extrapolation was made using Eq [2) and the values of the trans- port properties (hydrogen in the MK experiment means that the UO is probably not stoichiometric. That this transport property

  16. GREENHOUSE GAS EMISSION CONTROL OPTIONS: ASSESSING TRANSPORTATION AND ELECTRICITY GENERATION TECHNOLOGIES AND

    E-Print Network [OSTI]

    Kockelman, Kara M.

    power generation, energy policy, fuel economy ABSTRACT Prioritizing the numerous technology and policy Publications for book titled "Energy Consumption: Impacts of Human Activity, Current and Future Challenges, Environmental and Ecological Effects," August 2013. KEY WORDS: Greenhouse gases, transportation energy, electric

  17. Investigating the strategic impacts of natural gas on transportation fuel diversity and vehicle flexibility

    E-Print Network [OSTI]

    Chao, Alice K

    2013-01-01T23:59:59.000Z

    The near-total dependence of the U.S. transportation system on oil has been attributed to exposing consumers to price volatility, increasing the trade imbalance, weakening U.S. foreign policy options, and raising climate ...

  18. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01T23:59:59.000Z

    natural gas for heavy fuel oil (i.e. , residual fuel oil).fuel oil (also called heavy fuel oil (HFO)) can be replacedaboard ships (e.g. , heavy fuel oil and residual fuel oil)

  19. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01T23:59:59.000Z

    Liquefied natural gas (LNG), Wind power (sails) Aviationand Policies the use of LNG will result in a small 2 percentbe a much greater potential to use LNG aboard most ships if

  20. Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir

    SciTech Connect (OSTI)

    C. Cooper; M. Ye; J. Chapman

    2008-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to tritium migration.

  1. Economics of Electric Compressors for Gas Transmission

    E-Print Network [OSTI]

    Schmeal, W. R.; Hibbs, J. J.

    Three new factors are coming together to motivate gas pipeline firms to consider electric motors for replacement of older reciprocating gas engines for compressor systems, and for new compressor installations. These factors are environmental...

  2. Planned oil pipeline vital to economy of Kazakhstan

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The West Kazakhstan-Kumkol pipeline project is extremely vital to the economy of the Republic of Kazakhstan`s ultimate goal of transporting crude oil produced from the western part of the country eastward to Kumkol, from where it is further transported through existing pipelines to refineries in Chimkent in the south and Pavoldar in the northeast. The two refineries are now mainly supplied with west Siberian crudes imported through a pipeline that approaches Kazakhstan via Omsk. The planned pipeline will allow increased use of local crudes, thereby considerably improving a secure supply for the consumers while also increasing the flexibility of the nation`s overall import/export situation. The importance of this project is stressed by the Kazakh government which has officially classified it as a national priority project. The technical feasibility study of the project was prepared by ILF Consulting Engineers of Germany and Price Waterhouse Financial Consultants is conducting a study to determine the economical viability of the project. The overall cost is estimated at $1.1 billion, with the cost of Phase 1 placed at $600 million.

  3. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

  4. Latinas Straddling the Prison Pipeline through Gender (Non) Conformity

    E-Print Network [OSTI]

    Caraves, Jacqueline

    2014-01-01T23:59:59.000Z

    the School-to-Prison Pipeline/Building Abolition Futures.rights/school-prison-pipeline Retrieved: September 12, 2014Chicano Educational Pipeline. New York: Routledge ------(

  5. The pipeline and future of drug development in schizophrenia

    E-Print Network [OSTI]

    Gray, J A; Roth, B L

    2007-01-01T23:59:59.000Z

    The Pipeline and Future of Drug Development in SchizophreniaThe Drug Discovery Pipeline in Schizophrenia Keywords:discuss the current pipeline of drugs for schizophrenia,

  6. Decoupled Sampling for Graphics Pipelines

    E-Print Network [OSTI]

    Ragan-Kelley, Jonathan Millar

    We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at ...

  7. Pipeline Processing of VLBI Data

    E-Print Network [OSTI]

    C. Reynolds; Z. Paragi; M. Garrett

    2002-05-08T23:59:59.000Z

    As part of an on-going effort to simplify the data analysis path for VLBI experiments, a pipeline procedure has been developed at JIVE to carry out much of the data reduction required for EVN experiments in an automated fashion. This pipeline procedure runs entirely within AIPS, the standard data reduction package used in astronomical VLBI, and is used to provide preliminary calibration of EVN experiments correlated at the EVN MkIV data processor. As well as simplifying the analysis for EVN users, the pipeline reduces the delay in providing information on the data quality to participating telescopes, hence improving the overall performance of the array. A description of this pipeline is presented here.

  8. Pipelines programming paradigms: Prefab plumbing

    SciTech Connect (OSTI)

    Boeheim, C.

    1991-08-01T23:59:59.000Z

    Mastery of CMS Pipelines is a process of learning increasingly sophisticated tools and techniques that can be applied to your problem. This paper presents a compilation of techniques that can be used as a reference for solving similar problems

  9. REMOTE DETECTION OF INTERNAL PIPELINE CORROSION USING FLUIDIZED SENSORS

    SciTech Connect (OSTI)

    Narasi Sridhar; Garth Tormoen; Ashok Sabata

    2005-10-31T23:59:59.000Z

    Pipelines present a unique challenge to monitoring because of the great geographical distances they cover, their burial depth, their age, and the need to keep the product flowing without much interruption. Most other engineering structures that require monitoring do not pose such combined challenges. In this regard, a pipeline system can be considered analogous to the blood vessels in the human body. The human body has an extensive ''pipeline'' through which blood and other fluids are transported. The brain can generally sense damage to the system at any location and alert the body to provide temporary repair, unless the damage is severe. This is accomplished through a vast network of fixed and floating sensors combined with a vast and extremely complex communication/decision making system. The project described in this report mimics the distributed sensor system of our body, albeit in a much more rudimentary fashion. Internal corrosion is an important factor in pipeline integrity management. At present, the methods to assess internal corrosion in pipelines all have certain limitations. In-line inspection tools are costly and cannot be used in all pipelines. Because there is a significant time interval between inspections, any impact due to upsets in pipeline operations can be missed. Internal Corrosion Direct Assessment (ICDA) is a procedure that can be used to identify locations of possible internal corrosion. However, the uncertainties in the procedure require excavation and location of damage using more detailed inspection tools. Non-intrusive monitoring techniques can be used to monitor internal corrosion, but these tools also require pipeline excavation and are limited in the spatial extent of corrosion they can examine. Therefore, a floating sensor system that can deposit at locations of water accumulation and communicate the corrosion information to an external location is needed. To accomplish this, the project is divided into four main tasks related to wireless data transmission, corrosion sensor development, sensor system motion and delivery, and consideration of other pipeline operations issues. In the first year of the program, focus was on sensor development and wireless data transmission. The second year of the program, which was discontinued due to funding shortfall, would have focused on further wireless transmission development, packaging of sensor on wireless, and other operational issues. Because, the second year funding has been discontinued, recommendations are made for future studies.

  10. Pipeline corridors through wetlands -- Impacts on plant communities: Norris Brook Crossing Peabody, Massachusetts

    SciTech Connect (OSTI)

    Shem, L.M.; Van Dyke, G.D.; Zimmerman, R.E. [Argonne National Lab., IL (United States)

    1994-12-01T23:59:59.000Z

    The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of a survey conducted August 17--19, 1992, at the Norris Brook crossing in the town of Peabody, Essex County, Massachusetts. The pipeline at this site was installed during September and October 1990. A backhoe was used to install the pipeline. The pipe was assembled on the adjacent upland and slid into the trench, after which the backhoe was used again to fill the trench and cover the pipeline. Within two years after pipeline construction, a dense vegetative community, composed predominantly of native perennial species, had become established on the ROW. Compared with adjacent natural areas undisturbed by pipeline installation, there was an increase in purple loosestrife and cattail within the ROW, while large woody species were excluded from the ROW. As a result of the ROW`s presence, habitat diversity, edge-type habitat, and species diversity increased within the site. Crooked-stem aster, Aster prenanthoides (a species on the Massasschusetts list of plants of special concern), occurred in low numbers in the adjacent natural areas and had reinvaded the ROW in low numbers.

  11. 6/10/12 The use of acoustic inversion to estimate the bubble size distribution in pipelines | Science 5 Senses 1/4...globalproductivityforum.info/.../the-use-of-acoustic-inversion-to-estimate-the-bubble-size-distribu...

    E-Print Network [OSTI]

    Sóbester, András

    6/10/12 The use of acoustic inversion to estimate the bubble size distribution in pipelines method to more accurately measure gas bubbles in pipelines. The ability to measure gas bubbles in 2010. Currently, the most popular technique for estimating the gas bubble size distribution (BSD

  12. Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil

    SciTech Connect (OSTI)

    Wickramarachchi, Praneeth, E-mail: praneeth1977@yahoo.co.uk [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Kawamoto, Ken; Hamamoto, Shoichiro [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Nagamori, Masanao [Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115 (Japan); Moldrup, Per [Environmental Engineering Section, Dept. of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg (Denmark); Komatsu, Toshiko [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan)

    2011-12-15T23:59:59.000Z

    Highlights: > The effects of soil physical properties on gas transport parameters were investigated. > Higher values of D{sub p} and k{sub a} exhibited in the '+gravel' than the '-gravel' fraction at same soil-air content ({epsilon}). > Recent power law models for D{sub p} (WLR) and k{sub a} (RPL) were modified. > Model parameters were linearly related to easily measurable dry bulk density ({rho}{sub b}). - Abstract: Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, {rho}{sub b}, and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D{sub p}/D{sub o}, ratio of gas diffusion coefficients in soil and free air) and air permeability (k{sub a}) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting {rho}{sub b} values ranging from 1.40 to 2.10 g cm{sup -3}. Results showed that D{sub p} and k{sub a} values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2 mm) under variably-saturated conditions for a given soil-air content ({epsilon}), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D{sub p} and k{sub a} was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D{sub p}/D{sub f}, the ratio of measured D{sub p} to D{sub p} in total porosity (f), (ii) for air permeability k{sub a}/k{sub a,pF4.1}, the ratio of measured k{sub a} to k{sub a} at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content ({epsilon}) to total porosity (f) (air saturation). Based on the normalized parameters, predictive power-law models for D{sub p}({epsilon}/f) and k{sub a}({epsilon}/f) models were developed based on a single parameter (water blockage factor M for D{sub p} and P for k{sub a}). The water blockage factors, M and P, were found to be linearly correlated to {rho}{sub b} values, and the effects of dry bulk density on D{sub p} and k{sub a} for both '+gravel' and '-gravel' fractions were well accounted for by the new models.

  13. Method and apparatus for transport, introduction, atomization and excitation of emission spectrum for quantitative analysis of high temperature gas sample streams containing vapor and particulates without degradation of sample stream temperature

    DOE Patents [OSTI]

    Eckels, David E. (Ankeny, IA); Hass, William J. (Ames, IA)

    1989-05-30T23:59:59.000Z

    A sample transport, sample introduction, and flame excitation system for spectrometric analysis of high temperature gas streams which eliminates degradation of the sample stream by condensation losses.

  14. High Prices Show Stresses in New England Natural Gas Delivery...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Since 2012, limited supply from the Canaport and Everett liquefied natural gas (LNG) terminals coupled with congestion on the Tennessee and Algonquin pipelines have led to...

  15. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01T23:59:59.000Z

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  16. Citizen acceptance of new fossil fuel infrastructure: Value theory and Canada's Northern Gateway Pipeline

    E-Print Network [OSTI]

    and Bakken shale oil) to the Texas Gulf coast for refinement. This study explores citizen acceptance), which would transport unconventional oil (bitumen) 1,172 km from Alberta's oil sands to British Columbia Pipeline system) which would transport oil from Canada and the northern U.S. (including oil sands bitumen

  17. NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11

    E-Print Network [OSTI]

    McGaughey, Alan

    , W. Michael Griffin, H. Scott Matthews Projections of increased domestic supply, low prices, reduced gases (GHGs) when it displaces gasoline and diesel. However, in reality, the amount of GHG emissions failure: The use of compressed natural gas (CNG) instead of gasoline in cars and instead of diesel

  18. Microstructure orientation and nanoporous gas transport in semicrystalline block copolymer membranes

    E-Print Network [OSTI]

    Rubloff, Gary W.

    27 August 1999; accepted 30 August 1999 Abstract Gas permeability coefficients were obtained for CO2 properties has resulted in a variety of applications for high throughput membrane materials and low and He gases at room temperature in a semicrystalline ethylene/ethylene­propylene/ ethylene (E

  19. The effects of gas-fluid-rock interactions on CO2 injection and storage: Insights from reactive transport modeling

    SciTech Connect (OSTI)

    Xiao, Y.; Xu, T.; Pruess, K.

    2008-10-15T23:59:59.000Z

    Possible means of reducing atmospheric CO{sub 2} emissions include injecting CO{sub 2} in petroleum reservoirs for Enhanced Oil Recovery or storing CO{sub 2} in deep saline aquifers. Large-scale injection of CO{sub 2} into subsurface reservoirs would induce a complex interplay of multiphase flow, capillary trapping, dissolution, diffusion, convection, and chemical reactions that may have significant impacts on both short-term injection performance and long-term fate of CO{sub 2} storage. Reactive Transport Modeling is a promising approach that can be used to predict the spatial and temporal evolution of injected CO{sub 2} and associated gas-fluid-rock interactions. This presentation will summarize recent advances in reactive transport modeling of CO{sub 2} storage and review key technical issues on (1) the short- and long-term behavior of injected CO{sub 2} in geological formations; (2) the role of reservoir mineral heterogeneity on injection performance and storage security; (3) the effect of gas mixtures (e.g., H{sub 2}S and SO{sub 2}) on CO{sub 2} storage; and (4) the physical and chemical processes during potential leakage of CO{sub 2} from the primary storage reservoir. Simulation results suggest that CO{sub 2} trapping capacity, rate, and impact on reservoir rocks depend on primary mineral composition and injecting gas mixtures. For example, models predict that the injection of CO{sub 2} alone or co-injection with H{sub 2}S in both sandstone and carbonate reservoirs lead to acidified zones and mineral dissolution adjacent to the injection well, and carbonate precipitation and mineral trapping away from the well. Co-injection of CO{sub 2} with H{sub 2}S and in particular with SO{sub 2} causes greater formation alteration and complex sulfur mineral (alunite, anhydrite, and pyrite) trapping, sometimes at a much faster rate than previously thought. The results from Reactive Transport Modeling provide valuable insights for analyzing and assessing the dynamic behaviors of injected CO{sub 2}, identifying and characterizing potential storage sites, and managing injection performance and reducing costs.

  20. Improving Efficiency and Equity in Transportation Finance

    E-Print Network [OSTI]

    Watts, Michael

    2006-01-01T23:59:59.000Z

    Fueling Transportation Finance. ” Ian W. H. Parry andFueling Transportation Finance. ” Transportation ResearchFueling Transportation Finance: A Primer on the Gas Tax •

  1. Natural gas monthly, April 1997

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

  2. Hydrogen Pipeline Safety Our goal is to establish the codes and standards necessary

    E-Print Network [OSTI]

    in high-pressure gaseous hydrogen environments. Objective Impact and Customers · Gasoline consumption), Pacific Gas and Electric (PG&E), TransCanada, the Northeast Gas Association, Pacific Energy, Pipeline from other national laboratories and government agencies. The workshop report (NIST-IR 6649) includes

  3. Electron beam transport in gas-loaded free-electron lasers

    SciTech Connect (OSTI)

    Yariv, S.; Friedland, L. (Center for Plasma Physics, Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel (IL))

    1990-12-01T23:59:59.000Z

    The effects of the presence of helical wiggler and axial guide magnetic fields on the quality of the electron beam in a gas-loaded free-electron laser are investigated. The electron velocity space diffusion theory in the free-electron laser is developed and tested in Monte Carlo simulations. The theory is applied in estimating the collisional limitations on the interaction length of the laser. It is shown that two competing effects related to collisions cause the gain loss in gas-loaded free-electron lasers, i.e., (a) the growing phase mismatch between the electrons and the wave and (b) the destruction of the coherent transverse helical beam motion. The second effect dominates in the absence of the guide field, provided the wiggler field strength is sufficiently small.

  4. Masha Udensiva-Brenner: Can you tell us about Russia's role in the Eurasian gas market before and after the Central Asia-

    E-Print Network [OSTI]

    Qian, Ning

    become competitors harriman magazine | 11 iNtervieWS The CenTral asia-China PiPeline and russia's energy and after the Central Asia- China Pipeline? Holly Decker: When the Soviet Union collapsed, all gas pipelines transit fees for political and economic gains. Russia had tight control and tried to disrupt pipelines

  5. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect (OSTI)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01T23:59:59.000Z

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  6. Investigation of methane adsorption and its effect on gas transport in shale matrix through microscale and mesoscale simulations

    E-Print Network [OSTI]

    Li, ZhongZhen; Chen, Li; Kangd, Qinjun; He, Ya-Ling; Tao, Wen-Quan

    2015-01-01T23:59:59.000Z

    Methane adsorption and its effect on fluid flow in shale matrix are investigated through multi-scale simulation scheme by using molecular dynamics (MD) and lattice Boltzmann (LB) methods. Equilibrium MD simulations are conducted to study methane adsorption on the organic and inorganic walls of nanopores in shale matrix with different pore sizes and pressures. Density and pressure distributions within the adsorbed layer and the free gas region are discussed. The illumination of the MD results on larger scale LB simulations is presented. Pressure-dependent thickness of adsorbed layer should be adopted and the transport of adsorbed layer should be properly considered in LB simulations. LB simulations, which are based on a generalized Navier-Stokes equation for flow through low-permeability porous media with slippage, are conducted by taking into consideration the effects of adsorbed layer. It is found that competitive effects of slippage and adsorbed layer exist on the permeability of shale matrix, leading to di...

  7. INTERNAL REPAIR OF PIPELINES REVIEW & EVALUATION OF INTERNAL PIPELINE REPAIR TRIALS REPORT

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-09-01T23:59:59.000Z

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is generally ineffective at restoring the pressure containing capabilities of pipelines. Failure pressure for pipe repaired with carbon fiber-reinforced composite liner was greater than that of the un-repaired pipe section with damage, indicating that this type of liner is effective at restoring the pressure containing capability of pipe. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the next phase of this project.

  8. Method and system for pipeline communication

    SciTech Connect (OSTI)

    Richardson; John G. (Idaho Falls, ID)

    2008-01-29T23:59:59.000Z

    A pipeline communication system and method includes a pipeline having a surface extending along at least a portion of the length of the pipeline. A conductive bus is formed to and extends along a portion of the surface of the pipeline. The conductive bus includes a first conductive trace and a second conductive trace with the first and second conductive traces being adapted to conformally couple with a pipeline at the surface extending along at least a portion of the length of the pipeline. A transmitter for sending information along the conductive bus on the pipeline is coupled thereto and a receiver for receiving the information from the conductive bus on the pipeline is also couple to the conductive bus.

  9. Application of Momentum Transfer Theory for Ion and Electron Transport in Pure Gases and in Gas Mixtures

    SciTech Connect (OSTI)

    Jovanovic, J.V. [Institute of Physics, P.O.Box 68, 11080 Zemun, Belgrade (Serbia and Montenegro); Faculty of Mechanical Engineering, 11000 Belgrade (Serbia and Montenegro); Vrhovac, S. B. [Institute of Physics, P.O.Box 68, 11080 Zemun, Belgrade (Serbia and Montenegro)

    2004-12-01T23:59:59.000Z

    In this paper we have presented two applications of Momentum Transfer Theory (MTT), which were both aimed at obtaining reliable data for modeling of non-equilibrium plasma. Transport properties of ion swarms in presence of Resonant Charge Transfer (RCT) collisions are studied using Momentum Transfer Theory (MTT). Using the developed MTT we tested a previously available anisotropic set of cross-sections for Ar++Ar collisions bay making the comparisons with the available data for the transverse diffusion coefficient. We also developed an anisotropic set of Ne++Ne integral cross-sections based on the available data for mobility, longitudinal and transverse diffusion. Anisotropic sets of cross-sections are needed for Monte Carlo simulations of ion transport and plasma models. Application of Blanc's Law for drift velocities of electrons and ions in gas mixtures at arbitrary reduced electric field strengths E/n0 was studied theoretically and by numerical examples. Corrections for Blanc's Law that include effects of inelastic collisions were derived. In addition we have derived the common mean energy procedure that was proposed by Chiflikian in a general case both for ions and electrons. Both corrected common E/n0 and common mean energy procedures provide excellent results even for electrons at moderate E/n0 where application of Blanc's Law was regarded as impossible. In mixtures of two gases that have negative differential conductivity (NDC) even when neither of the two pure gases show NDC the Blanc's Law procedure was able to give excellent predictions.

  10. Computer Science and Information Technology Student Pipeline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising...

  11. In Situ Stabilization of Inactive Low Level Waste Pipelines in the Melton Valley Watershed at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Cange, J.; Cox, J. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Coye, St. [Sevenson Environmental Services, Inc., Niagara Falls, NY (United States); Skinner, R. [US DOE Oak Ridge Operations, Oak Ridge, TN (United States); Shaw, K. [Restoration Services, Inc., Oak Ridge, TN (United States); McGinley, S. [Pro2Serve, Oak Ridge, TN (United States)

    2008-07-01T23:59:59.000Z

    The Melton Valley watershed at Oak Ridge National Laboratory (ORNL) contained an inactive waste pipeline system consisting of approximately 12 kilometers of buried waste pipelines and over 142 m{sup 3} in surface/subsurface appurtenances (e.g., vents, valve pits, pump vaults, etc.). Historically, the system was used to transport liquid low level and process waste between generator facilities in Melton Valley, storage and disposal sites in Melton Valley, and storage/treatment facilities in Bethel Valley. The selected remedy in the Melton Valley Record of Decision (ROD) for inactive pipelines was isolation, removal, or stabilization. Pipeline remediation activities began in the summer of 2005 and were completed in the spring of 2006. The task entailed an iterative process of selecting pipeline access points, excavating and exposing pipelines, performing tapping, draining and cutting activities, either installing fittings for grouting or plugging and capping the lines. Grouting was accomplished using paired access points, with one location serving as the grout injection point and the other as vent/drain and grout confirmation point. Grouting was conducted by pumping a cement-bentonite grout into the specially installed fittings and typically proceeded from a low point to a high point to ensure complete filling of the pipeline (i.e., no void space). The project successfully grouted a total of 8,454 meters (linear distance) of pipeline; another 3,573 meters of pipeline was stabilized through isolation. (authors)

  12. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    SciTech Connect (OSTI)

    Huffman, Gerald

    2012-12-31T23:59:59.000Z

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation?s urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  13. Natural gas monthly, January 1999

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  14. Natural gas monthly, November 1998

    SciTech Connect (OSTI)

    NONE

    1998-11-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 27 tabs.

  15. Natural gas monthly, February 1999

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  16. Gas Transport and Exchange: Interaction Between O2 and CO2 CJ Brauner and JL Rummer, University of British Columbia, Vancouver, BC, Canada

    E-Print Network [OSTI]

    Wood, Spencer

    Gas Transport and Exchange: Interaction Between O2 and CO2 Exchange CJ Brauner and JL Rummer Nonlinear Bohr­Haldane Effect within the OEC Basis for the Interaction between O2 and CO2: Implications of Non-Steady-State Conditions for the Bohr­Haldane Effect Interaction between O2 and CO2 Exchange

  17. NAZ EDUCATION PIPELINE the-naz.org

    E-Print Network [OSTI]

    Amin, S. Massoud

    NAZ EDUCATION PIPELINE the-naz.org 1200 W. Broadway #250 | Minneapolis, MN 55411 | Family Academy is a foundational component of the NAZ "cradle to career" pipeline. NAZ families can enroll in the Family Academy college ready. Families and children move through a "cradle to career" pipeline that provides

  18. Modeling and Validation of Pipeline Specifications

    E-Print Network [OSTI]

    Mishra, Prabhat

    -on-Chip design process. Many existing approaches employ a bottom-up approach to pipeline validation, where description language (ADL) constructs, and thus allows a powerful top-down approach to pipeline validationModeling and Validation of Pipeline Specifications PRABHAT MISHRA and NIKIL DUTT University

  19. Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  20. COMPUTATIONAL OPTIMIZATION OF GAS COMPRESSOR ...

    E-Print Network [OSTI]

    2015-02-26T23:59:59.000Z

    Feb 26, 2015 ... When considering cost-optimal operation of gas transport net- works ..... The four most frequently used drive types are gas turbines, gas driven.

  1. Alternative energy sources for non-highway transportation: technical section

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Eighteen different alternative fuels were considered in the preliminary screening, from three basic resource bases. Coal can be used to provide 13 of the fuels; oil shale was the source for three of the fuels; and biomass provided the resource base for two fuels not provided from coal. In the case of biomass, six different fuels were considered. Nuclear power and direct solar radiation were also considered. The eight prime movers that were considered in the preliminary screening are boiler/steam turbine; open and closed cycle gas turbines; low and medium speed diesels; spark ignited and stratified charge Otto cycles; electric motor; Stirling engine; free piston; and fuel cell/electric motor. Modes of transport considered are pipeline, marine, railroad, and aircraft. Section 2 gives the overall summary and conclusions, the future outlook for each mode of transportation, and the R and D suggestions by mode of transportation. Section 3 covers the preliminary screening phase and includes a summary of the data base used. Section 4 presents the methodology used to select the fuels and prime movers for the detailed study. Sections 5 through 8 cover the detailed evaluation of the pipeline, marine, railroad, and aircraft modes of transportation. Section 9 covers the demand related issues.

  2. DEVELOPMENT OF DEPOSIT DETECTION SYSTEM IN PIPELINES OF THE STEELWORKS USING CS-137 GAMMA-RAY

    SciTech Connect (OSTI)

    Song, Won-Joon; Lee, Seung-Hee; Jeong, Hee-Dong [Research Institute of Industrial Science and Technology, 32 Hyoja-Dong, Nam-Ku, Pohang, 790-330 (Korea, Republic of)

    2008-02-28T23:59:59.000Z

    The deposit is built up in the pipeline of the steelworks by the chemical reaction among COG (coke oven gas), BFG (blast furnace gas), moisture, and steel in the high temperature environment and obstructs the smooth gas flow. In this study a gamma-ray system is developed to detect the deposit accumulated in pipelines and calculate the accumulation rate with respect to the cross section area of pipes. Cs-137 is used as the gamma-ray source and the system is designed to apply to pipes of various diameters. This system also includes the DB for storage and display of the measurement results so that it can be used for the efficient management of the pipelines.

  3. EIA - Natural Gas Pipeline Network - Natural Gas Transmission Path Diagram

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322Development &Region/State

  4. EIS-0433-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and Nebraska)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental impacts of a revised proposal for the Keystone XL pipeline and related facilities. The proposed facilities would transport crude oil from the Western Canadian Sedimentary Basin and the Williston Basin to existing pipeline facilities near Steele City, Nebraska, for onward transport to markets in the Texas Gulf Coast area. DOE is a cooperating agency. DOE's Western Area Power Administration has jurisdiction over certain proposed transmission facilities relating to the proposal, including construction and operation of a portion of a 230-kilovolt transmission line and construction and operation of two new substations and the expansion of six existing substations.

  5. Chris Jesshope! 2. Pipelined and

    E-Print Network [OSTI]

    Jesshope, Chris

    to sequential tasks: Op: A ; B ; C ; D A B C D Pipelined concurrency requires sequences of operations. Given Opi, 0in, we execute sub-tasks concurrently as follows: Opi: Ai+3||Bi+2||Ci+1||Di Ai+3 Bi+2 Ci+1 Di

  6. Overview of pipeline safety legislation

    SciTech Connect (OSTI)

    Caldwell, J. [Caldwell and Associates, Arlington, VA (United States)

    1995-12-31T23:59:59.000Z

    Pipeline regulation in the US as it has been known since 1968 is being changed. Several major actions are occurring in Government that will redirect the focus of pipeline safety regulation and how it is carried out by government and industry. The Congress is proposing to accept risk management as away of regulation and requiring risk assessment and cost analysis on all regulatory requirements. The DOT/OPS is developing a risk-prioritization program for regulatory activities to be used in evaluating existing regulations to identify those that are obsolete and need modifying or eliminating. The pipeline industry is taking on a proactive role in working with Congress and DOT/OPS to develop this agenda. For the first time in the regulatory history of pipeline safety, Congress, DOT/OPS, and the industry are talking to each other and working toward a common goal of less regulation, more flexible regulation, and placing the responsibility for safety in the hands of the industry.

  7. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01T23:59:59.000Z

    IEA, Biofuels for Transport: An International Perspective.Biofuels 80in50 Electric-drive 80in50 Actor-based 80in50 T TransportTransport - Overall gal fuel/hour 2050 Scenarios Fleet Share Efficient Biofuels

  8. Meeting an 80% Reduction in Greenhouse Gas Emissions from Transportation by 2050: A Case Study in California

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2009-01-01T23:59:59.000Z

    Agency, 2004. Biofuels for Transport: An Internationalproviding 59% of all transport miles. Biofuels are limitedbiofuels (16.3 gCO 2 e/MJ) are the primary fuels used in conventional vehicles (low ef?ciency) in all transport

  9. EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322DevelopmentConfiguration

  10. EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2YonthlyEnergyMap Export

  11. Fiber Reinforced Composite Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 Meeting Federal RegisterCoal1IntoFermiDon

  12. An approach for simulation of paraffin deposition in pipelines as a function of flow characteristics with a reference to Teesside oil pipeline

    SciTech Connect (OSTI)

    Hamouda, A.A.; Davidsen, S.

    1995-11-01T23:59:59.000Z

    Paraffin deposition is experienced in pipelines during transportation of oil when the oil temperature is cooled below its paraffin deposition temperature. The formed paraffin crystals in the bulk flow are believed to be transported by molecular, brownian diffusion and shear dispersion. Gravity settling mechanism in previous work in the authors` laboratory has been shown to contribute to the total paraffin deposition, however, to a lesser extent than the above mentioned mechanisms. The work done here demonstrates that the paraffin deposition by molecular diffusion mechanism is a dominant one. This is in agreement with other previous studies done on the paraffin deposition. In this study, however, experimental design was made to quantify this statement. The paraffin concentration gradient (dc/dr) is the driving force of the molecular diffusion mechanism (where r is the pipeline radius). In pipelines the cooling rate is one of many factors that affect the paraffin deposition profile. Equipment was designed to simulate the flow characteristics at pipeline pressure. A three dimensional model was developed for paraffin deposition rates at various flow regimes. The developed experimental approach and the designed equipment for simulating the pipeline conditions are presented in this paper.

  13. Gas Purchasing Strategies for the '90s 

    E-Print Network [OSTI]

    Schuler, S. H.

    1989-01-01T23:59:59.000Z

    significant portion of the nation's refining in petrochemical capacity. HL&P has 12,855 MW of generating capacity and sells approximately 25% of Texas' total electric utility sales. As a gas purchaser, HL&P is situated in "pipeline alley" and now has pipeline...

  14. Carbon Dioxide Transportation and Sequestration Act (Illinois)

    Broader source: Energy.gov [DOE]

    This Act applies to the application process for the issuance of a certificate of authority by an owner or operator of a pipeline designed, constructed, and operated to transport and to sequester...

  15. Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure

    SciTech Connect (OSTI)

    Li Rutao, E-mail: lrt851@126.com; Zuo Xiurong, E-mail: zuoxiurong@126.com; Hu Yueyue, E-mail: hucheng85@126.com; Wang Zhenwei, E-mail: wzw0530@126.com; Hu, Dingxu, E-mail: xiaohu369@163.com

    2011-08-15T23:59:59.000Z

    In order to satisfy the transportation of the crude oil and gas in severe environmental conditions, a ferrite/martensite dual-phase pipeline steel has been developed. After a forming process and double submerged arc welding, the microstructure of the base metal, heat affected zone and weld metal was characterized using scanning electron microscopy and transmission electron microscopy. The pipe showed good deformability and an excellent combination of high strength and toughness, which is suitable for a pipeline subjected to the progressive and abrupt ground movement. The base metal having a ferrite/martensite dual-phase microstructure exhibited excellent mechanical properties in terms of uniform elongation of 7.5%, yield ratio of 0.78, strain hardening exponent of 0.145, an impact energy of 286 J at - 10 deg. C and a shear area of 98% at 0 deg. C in the drop weight tear test. The tensile strength and impact energy of the weld metal didn't significantly reduce, because of the intragranularly nucleated acicular ferrites microstructure, leading to high strength and toughness in weld metal. The heat affected zone contained complete quenching zone and incomplete quenching zone, which exhibited excellent low temperature toughness of 239 J at - 10 deg. C. - Research Highlights: {yields}The pipe with ferrite/martensite microstructure shows high deformability. {yields}The base metal of the pipe consists of ferrite and martensite. {yields}Heat affected zone shows excellent low temperature toughness. {yields}Weld metal mainly consists of intragranularly nucleated acicular ferrites. {yields}Weld metal shows excellent low temperature toughness and high strength.

  16. Urethane coatings rehabilitate large crude oil pipeline

    SciTech Connect (OSTI)

    Kresic, W. [Interprovincial Pipe Line Inc., Edmonton, Alberta (Canada)

    1995-10-01T23:59:59.000Z

    Interprovincial Pipe Line Inc. (IPL) provides a vital transportation link for moving liquid petroleum resources from oil-producing areas of western Canada to refining centers and markets in eastern canada and the midwestern US. Together with Lakehead Pipe Line Co., Inc., the pipeline system consists of about 7,600 miles of pipe. Approximately 1.6 million bpd of crude oil and liquid hydrocarbons are transported by the system. Along with high-resolution inspection data, an in-house engineering critical assessment process based on Battelle`s NG-18 surface flaw equation was developed to identify corrosion anomalies needing structural reinforcement sleeve repairs. A majority of ht non-critical anomalies remained unearthed and were exposed to possible future growth which could become critical. Several rehabilitation methods were considered including on-going sleeve repair, selective pipe replacement, and coating reconditioning. Economics and logistics of sleeving programs and selective pipe replacement were well known at IPL. However, aspects of replacing a coating system over a relatively long length of pipe were not completely known. Preliminary cost estimates favored replacement of the coating over a massive sleeving program or pipe replacement. To gain further insight, IPL began a two-year pilot program to research long length coating replacement feasibility. Two sections of Line 3 ultimately were rehabilitated in this manner. This paper reviews the project.

  17. Optimization for Design and Operation of Natural Gas Transmission Networks

    E-Print Network [OSTI]

    Dilaveroglu, Sebnem 1986-

    2012-08-22T23:59:59.000Z

    and compressor stations. On an existing network, the model also optimizes the total flow through pipelines that satisfy demand to determine the best purchase amount of gas. A mixed integer nonlinear programming model for steady-state natural gas transmission...

  18. Remedial investigation report on the abandoned nitric acid pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    Upper East Fork Poplar Creek OU-2 consists of the Abandoned Nitric Acid Pipeline. This pipeline was installed in 1951 to transport liquid wastes {approximately} 4,800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. A total of nineteen locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The nineteen samples collected below the pipeline were analyzed by the Y-12 Plant laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. The results of the baseline human health risk assessment for the Abandoned Nitric Acid Pipeline contaminants of potential concern show no unacceptable risks to human health via incidental ingestion of soil, inhalation of dust, dermal contact with the soil, or external exposure to radionuclides in the ANAP soils, under the construction worker and/or the residential land-use scenarios.

  19. Environmental Life-cycle Assessment of Passenger Transportation An Energy, Greenhouse Gas, and Criteria Pollutant Inventory of Rail and Air Transportation

    E-Print Network [OSTI]

    Horvath, Arpad; Chester, Mikhail

    2008-01-01T23:59:59.000Z

    Selection in Life-Cycle Inventories Using Hybrid Approaches,and Criteria Pollutant Inventories of Automobiles, Buses,Criteria Pollutant Inventory of Rail and Air Transportation

  20. Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Transmission of Hydrogen --- 3 Copyright: #12;Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special