Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

2

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

3

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

4

EIA - Natural Gas Pipeline System - Central Region  

U.S. Energy Information Administration (EIA) Indexed Site

Central Region Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve interstate natural gas pipeline systems enter the region from the south and east while four enter from the north carrying Canadian supplies. The average utilization rates on those shipping Canadian natural gas tend to be higher than those carrying domestic supplies.

5

EIA - Natural Gas Pipeline System - Southwest Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southwest Region Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily exporters of the region's natural gas production to other parts of the country and Mexico, while an extensive Gulf of Mexico and intrastate natural gas pipeline network is the main conduit for deliveries within the region. More than 56,000 miles of natural gas pipeline on more than 66 intrastate natural gas pipeline systems (including offshore-to-onshore and offshore Gulf of Mexico pipelines) deliver natural gas to the region's local natural gas distribution companies and municipalities and to the many large industrial and electric power facilities located in the region.

6

EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Links Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co Interstate Northeast Alliance Pipeline Co Interstate Central, Midwest Anaconda Pipeline System Gathering Gulf of Mexico ANR Pipeline Co Interstate Midwest ANR Storage Co Interstate Midwest Arkansas Oklahoma Gas Co Intrastate Southwest Arkansas Western Pipeline Co Intrastate

7

EIA - Natural Gas Pipeline System - Midwest Region  

U.S. Energy Information Administration (EIA)

Natural Gas Pipelines in the Midwest Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links. Overview Twenty-six interstate and at ...

8

High temperature gas reactor and energy pipeline system  

SciTech Connect

Under contract to the General Electric Co. as a part of a DOE-sponsored program, the Energy Systems Analysis Group at the Institute of Gas Technology examined the following aspects of the high temperature gas reactor closed loop chemical energy pipeline concept: (1) pipeline transmission and storage system design; (2) pipeline and storage system cost; (3) methane reformer interface; and (4) system safety and environmental aspects. This work focuses on the pipeline and storage system concepts, pipeline size, compressor power, and storage facility requirements were developed for 4 different types of pipeline systems to obtain system cost estimates. Each pipeline system includes a synthesis-gas pipeline from the reformer to the methanator, a methane-rich gas pipeline from the methanator to the reformer, a water return line from the methanator to the reformer, and storage for the synthesis gas, methane-rich gas and water.

Daniels, E.; Blazek, C.; Pflasterer, G.R.; Allen, D.C.

1981-01-01T23:59:59.000Z

9

Natural Gas Pipeline and System Expansions  

U.S. Energy Information Administration (EIA)

Energy Information Administration / Natural Gas Monthly April 1997 vii This special report examines recent expansions to the North American natural gas pipeline network

10

High temperature gas reactor and energy pipeline system  

DOE Green Energy (OSTI)

A study was made of the following aspects of the High Temperature Gas Reactor (HTGR) Closed Loop Chemical Energy Pipeline (CEP) concept: pipeline transmission and storage system design, pipeline and storage system cost, methane reformer interface, and system safety and environmental aspects. This paper focuses on the pipeline and storage system concepts. Pipeline size, compressor power, and storage facility requirements were developed for four different types of pipeline systems to obtain system cost estimates. Each pipeline system includes a synthesis-gas pipeline from the reformer to the methanator, a methane-rich gas pipeline from the methanator to the reformer, a water return line from the methanator to the reformer, and storage for the synthesis gas, methane-rich gas and water.

Daniels, E.; Blazek, C.; Allen, D.C.; Pflasterer, G.R.

1980-12-19T23:59:59.000Z

11

EIA - Natural Gas Pipeline System - Southeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southeast Region Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee). Fifteen of the twenty-one interstate natural gas pipelines originate in the Southwest Region and receive most of their supplies from the Gulf of Mexico or from the States of Texas and/or Louisiana.

12

Natural Gas Pipeline and System Expansions  

Reports and Publications (EIA)

This special report examines recent expansions tothe North American natural gas pipeline networkand the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

Information Center

1997-04-01T23:59:59.000Z

13

Natural Gas Pipeline and System Expansions, 1997-2000  

U.S. Energy Information Administration (EIA)

complement CNG’s planned improvement to its system for Pipeline Company’s Express 500 is one such proposal, with flowing gas between Leidy, Pennsylvania, ...

14

Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System  

SciTech Connect

The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

2005-06-01T23:59:59.000Z

15

EIA - Natural Gas Pipeline Network - Network Configuration & System Design  

U.S. Energy Information Administration (EIA) Indexed Site

Network Configuration & System Design Network Configuration & System Design About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Network Configuration and System Design Overview | Transmission/Storage | Design Criteria | Importance of Storage| Overall Pipeline System Configuration Overview A principal requirement of the natural gas transmission system is that it be capable of meeting the peak demand of its shippers who have contracts for firm service. To meet this requirement, the facilities developed by the natural gas transmission industry are a combination of transmission pipelines to bring the gas to the market areas and of underground natural gas storage sites and liquefied natural gas (LNG) peaking facilities located in the market areas.

16

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

Gasoline and Diesel Fuel Update (EIA)

through 20072008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary...

17

Gas Pipeline ASD Application Study: Business Plan for the Application of ASDs to a Section of a Gas Pipeline System  

Science Conference Proceedings (OSTI)

An adjustable speed drive (ASD) offers opportunities to operate a gas pipeline in a more energy efficient manner. This report focuses on the appropriate system requirements and includes data used to determine those requirements. It also provides a business plan for progressively applying ASDs to a 600-mile section of gas pipeline in order to realize full energy savings and operational improvements.

1999-04-02T23:59:59.000Z

18

Deliverability on the interstate natural gas pipeline system  

SciTech Connect

Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

1998-05-01T23:59:59.000Z

19

EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate pipeline system is defined as one that operates totally within a State, an intrastate pipeline company may have operations in more than one State. As long as these operations are separate, that is, they do not physically interconnect, they are considered intrastate, and are not jurisdictional to the Federal Energy Regulatory Commission (FERC). More than 90 intrastate natural gas pipelines operate in the lower-48 States.

20

EIA - Natural Gas Pipeline Network - Region To Region System ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines ... The EIA has determined that the informational map displays here do not raise security ...

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

22

Gas Pipelines:- long, thin, bombs?  

Science Conference Proceedings (OSTI)

... Gas Pipelines:- long, thin, bombs? Gas pipelines attract substantial reseach to improve safety and cut costs. They operate ...

23

GAS PIPELINE PIGABILITY  

Science Conference Proceedings (OSTI)

In-line inspection equipment is commonly used to examine a large portion of the long distance transmission pipeline system that transports natural gas from well gathering points to local distribution companies. A piece of equipment that is inserted into a pipeline and driven by product flow is called a ''pig''. Using this term as a base, a set of terms has evolved. Pigs that are equipped with sensors and data recording devices are called ''intelligent pigs''. Pipelines that cannot be inspected using intelligent pigs are deemed ''unpigable''. But many factors affect the passage of a pig through a pipeline, or the ''pigability''. The pigability pipeline extend well beyond the basic need for a long round hole with a means to enter and exit. An accurate assessment of pigability includes consideration of pipeline length, attributes, pressure, flow rate, deformation, cleanliness, and other factors as well as the availability of inspection technology. All factors must be considered when assessing the appropriateness of ILI to assess specific pipeline threats.

Ted Clark; Bruce Nestleroth

2004-04-01T23:59:59.000Z

24

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural Gas Pipeline Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

25

,"U.S. Intrastate Natural Gas Pipeline Systems"  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Systems" Intrastate Natural Gas Pipeline Systems" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Intratstate Natural Gas Pipelines By Region",1,"Periodic",2007 ,"Release Date:","application/vnd.ms-excel" ,"Next Release Date:","application/vnd.ms-excel" ,"Source:","Energy Information Administration" ,"Excel File Name:","PipeIntra.xls" ,"Available from Web Page:","http://www.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/intrastate.html" ,"For Help, Contact:","infoctr@eia.doe.gov"

26

Natural gas pipeline technology overview.  

Science Conference Proceedings (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

27

About U.S. Natural Gas Pipelines  

Reports and Publications (EIA)

This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

Information Center

2007-06-01T23:59:59.000Z

28

Natural Gas Pipeline Safety (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

29

EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment  

Gasoline and Diesel Fuel Update (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

30

Deliverability on the Interstate Natural Gas Pipeline System  

U.S. Energy Information Administration (EIA)

pipeline companies are handling the secondary market for The overall scope and content of the report was ... Average Length of Long-Term Firm ...

31

Pipeline Access and Market Integration in the Natural Gas Industry: Evidence from Cointegration Tests  

E-Print Network (OSTI)

System for Natural Gas Pipelines." Study prepared underin the Natural Gas Pipeline Industry. Ph.D. dissertation,the remaining barfers to pipeline integration. REFERENCES

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

32

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > U.S ... The EIA has determined that the informational map displays here do not raise security ...

33

Natural Gas Pipeline Research: Best Practices in Monitoring Technology  

E-Print Network (OSTI)

Natural Gas Pipeline Research: Best Practices in Monitoring Technology Energy Systems Research pipelines from outofstate supply basins located in the southwestern United States, the Rocky Mountains, and Canada. These pipelines run throughout the state, including underneath high population areas

34

Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)  

Science Conference Proceedings (OSTI)

Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

2006-06-30T23:59:59.000Z

35

Deliverability on the Interstate Natural Gas Pipeline System  

U.S. Energy Information Administration (EIA)

Energy Information Administration / Natural Gas Monthly May 1998 vii The following article is the Executive Summary from the recently published report Deliverability ...

36

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelinesk > Development & Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years from the time it is first announced until the new pipe is placed in service. The project can take longer if it encounters major environmental obstacles or public opposition. A pipeline development or expansion project involves several steps: Determining demand/market interest

37

Gas Pipeline Safety (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

38

Expansion of the U.S. Natural Gas Pipeline Network:  

Gasoline and Diesel Fuel Update (EIA)

Expansion of the U.S. Natural Gas Pipeline Network: Expansion of the U.S. Natural Gas Pipeline Network: Additions in 2008 and Projects through 2011 This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives. Questions or comments on this article should be directed to Damien Gaul at damien.gaul@eia.doe.gov or (202) 586-2073. Robust construction of natural gas infrastructure in 2008 resulted in the completion of 84 pipeline projects in the lower 48 States, adding close to 4,000 miles of natural gas pipeline. These completions of new natural gas pipelines and expansions of existing pipelines in the United States

39

Pipeline and Gas Journal`s 1998 annual pipeline directory and equipment guide  

Science Conference Proceedings (OSTI)

The tables provide information on line pipe sizes, walls, grades, and manufacturing processes. Data are presented by manufacturer within each country. Also tabulated are engineering and construction service companies, crude oil pipeline companies, products pipeline companies, natural gas pipeline companies, gas distribution companies, and municipal gas systems in the US. There is also a Canadian and an international directory.

NONE

1998-09-01T23:59:59.000Z

40

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gas Utility Pipeline Tax (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

42

Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season  

Reports and Publications (EIA)

This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

Information Center

2000-10-01T23:59:59.000Z

43

U.S. Natural Gas Pipeline and Underground Storage Expansions ...  

U.S. Energy Information Administration (EIA)

Pipeline transportation and underground storage are vital and complementary components of the U.S. natural gas system. While mainline gas transmission ...

44

Expansion of the U.S. Natural Gas Pipeline Network  

Reports and Publications (EIA)

Additions in 2008 and Projects through 2011 - This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives.

Information Center

2009-09-30T23:59:59.000Z

45

Detecting internal corrosion of natural gas transmission pipelines: field tests of probes and systems for real-time corrosion measurement  

Science Conference Proceedings (OSTI)

A field study was conducted to evaluate the use of automated, multi-technique electrochemical corrosion-rate monitoring devices and probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. It involved measurement of real-time corrosion signals from operating pipelines. Results and interpretation were reported from four different field test locations. Standard flush-mount and custom flange probes were used in four different environments at a gas-gathering site and one environment but two different probe orientations at a natural gas site. These sites were selected to represent normal and upset conditions common in gas transmission pipelines. The environments consisted of two different levels of humidified natural gas, liquid hydrocarbon, and water from natural gas. Probe locations included the 6 and 12 o?clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. The probe data was monitored using completely remote solar powered systems that provided real-time data transmission via wireless back to a pipeline control station. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Kane, R.D. (InterCorr International); Meidinger, B. (Rocky Mountain Oilfield Testing Center)

2005-01-01T23:59:59.000Z

46

EIA - Natural Gas Pipeline Network - Generalized Natural Gas...  

Annual Energy Outlook 2012 (EIA)

Gas based on data through 20072008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic...

47

Integrity assurance of natural gas transmission pipelines  

Science Conference Proceedings (OSTI)

Natural gas transmission pipelines have proven to be a safe and efficient means for transporting the trillions of cubic feet of natural gas used annually in the United States. Since the peak of construction of these pipelines occurred between 1950 and the mid-1960s, their average age is now over thirty years. However, replacement of these pipelines because of age would be prohibitively expensive and unnecessary. Preventive maintenance and rehabilitation programs put into practice by the pipeline industry provides the key to ensuring the continued integrity of the transmission pipeline system. This article reviews the preventive maintenance practices commonly used by the gas industry. These practices include right-of-way patrols, corrosion control procedures, in-line inspection with intelligent or smart pigs that inspect the pipe while traveling through the inside of the pipe, direct access inspection of the pipe from bellhole excavations, and hydrostatic retesting of pipelines. When pipelines are properly maintained, these practices can ensure the integrity and long-term serviceability of transmission pipelines well into the 21st Century. 11 refs., 5 figs., 1 tab.

Posakony, G.J. (J-TECH Consulting, Richland, WA (United States))

1993-05-01T23:59:59.000Z

48

EIA - Natural Gas Pipeline Network - Depleted Reservoir ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

49

Gas Pipeline Securities (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline Securities (Indiana) Gas Pipeline Securities (Indiana) Eligibility Utility Investor-Owned Utility Industrial MunicipalPublic Utility Rural Electric Cooperative Fuel...

50

Natural Gas Pipeline Projects Completed in 2003  

U.S. Energy Information Administration (EIA)

Table 2. Natural Gas Pipeline Projects Completed in 2003; Ending Region & State: Begins in State - Region: Pipeline/Project Name: FERC Docket ...

51

Gas Pipelines (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipelines (Texas) Gas Pipelines (Texas) Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local Government...

52

Natural Gas Transmission Pipeline Siting Act (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas transmission pipelines. The Act intends to achieve a reasonable balance between the need for the natural

53

Laboratory Evaluation of an Electrochemical Noise System for Detection of Localized and General Corrosion of Natural Gas Transmission Pipelines  

SciTech Connect

Gas transmission pipelines are susceptible to both internal (gas side) and external (soil side) corrosion attack. Internal corrosion is caused by the presence of salt laden moisture, CO{sub 2}, H{sub 2}S, and perhaps O{sub 2} in the natural gas. Internal corrosion usually manifests itself as general corrosion. However, the presence of chlorides in entrained water also can lead to pitting corrosion damage. The electrochemical noise technique can differentiate general from localized corrosion and provide estimates of corrosion rates without external perturbation of the corroding system. It is increasingly being applied to field and industrial installations for in situ corrosion monitoring. It has been used here to determine its suitability for monitoring internal and external corrosion damage on gas transmission pipelines. Corrosion measurements were made in three types of environments: (1) aqueous solutions typical of those found within gas pipelines in equilibrium with th e corrosive components of natural gas; (2) biologically-active soils typical of wetlands; and (3) a simulated, unpressurized, internal gas/liquid gas pipeline environment. Multiple sensor designs were evaluated in the simulated pipe environment. Gravimetric measurements were conducted in parallel with the electrochemical noise measurements to validate the results.

Bullard, S.J.; Covino, B.S., Jr.; Russell, J.H.; Holcomb, G.R.; Cramer, S.D.; Ziomek-Moroz, M.; Eden, D.

2003-03-16T23:59:59.000Z

54

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in local markets, it is the interstate pipeline system's long-distance, high-capacity trunklines that supply most of the major natural gas markets in the United States. Of the six geographic regions defined in this analysis, the Southwest Region contains the largest number of individual natural gas pipeline systems (more than 90) and the highest level of pipeline mileage (over 106,000).

55

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

56

California Interstate Natural Gas Pipeline Capacity Levels ...  

U.S. Energy Information Administration (EIA)

PG&E Gas Transmission - NW Tuscarora Pipeline (Malin OR) 110 Mmcf/d 2,080 Mmcf/d Total Interstate Pipeline Capacity into California 7,435 Mmcf/d Net Natural Gas ...

57

Application Filing Requirements for Natural Gas Pipeline Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin) Application Filing Requirements for Natural Gas Pipeline Construction Projects...

58

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

59

Pipeline constraints in wholesale natural gas markets.  

E-Print Network (OSTI)

??Natural gas markets in the United States depend on an extensive network of pipelines to transport gas from production fields to end users. While these… (more)

Avalos, Roger George.

2012-01-01T23:59:59.000Z

60

Differential-drive in-pipe robot for moving inside urban gas pipelines  

Science Conference Proceedings (OSTI)

Pipelines for the urban gas-supply system require a robot possessing outstanding mobility and advanced control algorithms, since they are configured with various pipeline elements, such as straight pipelines, elbows, and branches. We present a comprehensive ...

Se-gon Roh; Hyouk Ryeol Choi

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Growing demand for gas spawns pipeline projects  

Science Conference Proceedings (OSTI)

This paper reports that burgeoning demand for gas is fueling pipeline construction in Eastern and Western hemispheres. In the East, the North Sea is the focal point for activity. And in the West, the U.S. gas market is the power behind construction. As predictions of U.S. gas demand increase, Canadian pipeliners adjust expansion plans to be ready to capture greater shares of markets. Canada's TransCanada Pipelines Ltd. is racing to step up its share of the U.S. market. TransCanada's Western Gas Marketing Ltd. sold 242.3 bcf of gas in the 3 months ended last June 30, a 9.8% increase from last year. TransCanada reported lower volumes sold into Canadian markets, while exports into the U.S. continued to rise. Gas Research Institute (GRI) projects Canadian gas exports to the U.S. by 2000 will reach 2 tcf/year and LNG exports 800 bcf/year. U.S. gas supplies could increase to 23.9 tcf/year by 2010, mostly from Lower 48 production. GRI says supplies from Canada will make up the balance. In the past 2 years, TransCanada has spent about $1 billion expanding its interprovincial main line system.

Not Available

1991-09-09T23:59:59.000Z

62

EIA - Natural Gas Pipeline Network - Natural Gas Transmission...  

Annual Energy Outlook 2012 (EIA)

Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural...

63

EIA - Natural Gas Pipeline Network - Natural Gas Transportation...  

Gasoline and Diesel Fuel Update (EIA)

Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates...

64

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

65

Network Connectivity and Price Convergency: Gas Pipeline Deregulation  

E-Print Network (OSTI)

pipeline tariffs and gas prices were regulated (Mulherin,failed, in equMizing gas prices across the geographicallyNetwork Connectivity and Price Convergence: Gas Pipeline

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

66

Communication systems vital to Colombian pipeline  

Science Conference Proceedings (OSTI)

Construction of the Centro Oriente Gas Pipeline represents a major step in Colombia`s goal to strengthen the emerging natural gas business. With construction beginning in 1995, the Centro Oriente is scheduled to begin operation early this year transporting 150 MMcf/d. The 779-kilometer (484-mile) pipeline ranging in diameter from 22-inch to 12-inches, provides the central transportation link between major gas suppliers in both the northern and western regions of Colombia and new markets throughout their immediate regions as well as in the central and eastern regions. TransCanada, operating company for the Centro Oriente pipeline, will develop and manage the support organizations required to operate and maintain the system. The central control system for the CPC is the Gas SCADA system, ADACS, provided by Bristol Babcock Inc. (BBI). This control system provides the data acquisition and control capabilities necessary to operate the entire pipeline safely and efficiently from Burcaramanga.

Serrato, E. [Ecopetrol, Bogota (Colombia); Mailloux, R. [Bristol Babcock Inc., Watertown, CT (United States)

1997-02-01T23:59:59.000Z

67

Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K. Steiglitz; D. J. Kleitman  

E-Print Network (OSTI)

Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K@jstor.org. http://www.jstor.org Mon Oct 22 13:48:01 2007 #12;OPTIMAL DESIGN OF OFFSHORE NATURAL-GAS PIPELINEAnolog,tj, Cambridge, Massachusetts (Received January 28, 1969) The exploitation of offshore natural gas reserves

Steiglitz, Kenneth

68

EIA - Natural Gas Pipeline Network - Transporting Natural Gas in ...  

U.S. Energy Information Administration (EIA)

8 LNG (liquefied natural gas) import facilities and 100 LNG peaking facilities (see map). Learn more about the natural gas pipeline network:

69

EIA - Natural Gas Pipeline Network - Natural Gas Import/Export ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural ... The EIA has determined that the informational map displays here do not raise security ...

70

BLOCKAGE DETECTION IN NATURAL GAS PIPELINES BY TRANSIENT ANALYSIS.  

E-Print Network (OSTI)

??Pipelines are the most reliable means for the transportation of natural gas. A major problem of flow assurance in natural gas pipelines is solid deposition… (more)

ADELEKE, NAJEEM

2010-01-01T23:59:59.000Z

71

Penitas, TX Natural Gas Pipeline Imports From Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico...

72

Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico...

73

Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Alamo, TX Natural Gas Pipeline Exports to Mexico...

74

St. Clair, MI Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) St. Clair, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet) St. Clair, MI Natural Gas Pipeline Exports to...

75

Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Ogilby, CA Natural Gas Pipeline Exports to Mexico...

76

Nevada Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Pipeline and Distribution...

77

Idaho Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic...

78

Delaware Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and...

79

Kansas Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Kansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Pipeline and Distribution...

80

California Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) California Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) California Natural Gas Pipeline and...

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

California Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) California Natural Gas Pipeline and Distribution Use (Million Cubic Feet) California Natural Gas Pipeline and Distribution Use...

82

Nevada Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic...

83

Delaware Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million...

84

Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Exports...

85

Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...

86

Minnesota Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use (Million...

87

Oregon Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic...

88

Alabama Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and...

89

Roma, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Roma, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Roma, Texas Natural Gas Pipeline Exports to Mexico...

90

Kansas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic...

91

Calexico, CA Natural Gas Pipeline Exports to Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Calexico, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Calexico, CA Natural Gas Pipeline Exports to Mexico...

92

Utah Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic...

93

Washington Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Washington Natural Gas Pipeline and Distribution Use...

94

Alabama Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million...

95

Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Penitas, TX Natural Gas Pipeline Exports to Mexico...

96

Massachusetts Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Massachusetts Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Massachusetts Natural Gas Pipeline and Distribution Use...

97

Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use (Million...

98

Special Provisions Affecting Gas, Water, or Pipeline Companies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Savings Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina) Special Provisions Affecting Gas, Water, or Pipeline...

99

Florida Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Florida Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Pipeline and...

100

Indiana Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use (Million...

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Clint, TX Natural Gas Pipeline Exports to Mexico...

102

Virginia Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use (Million...

103

Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Exports to Mexico...

104

Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million...

105

Ohio Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic...

106

Texas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Texas Natural Gas Pipeline and Distribution Use (Million Cubic...

107

Louisiana Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use (Million...

108

Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic...

109

Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Exports...

110

Georgia Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use (Million...

111

Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Pipeline and...

112

Florida Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Florida Natural Gas Pipeline and Distribution Use (Million...

113

Vermont Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use (Million...

114

Massachusetts Natural Gas Pipeline and Distribution Use Price...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Massachusetts Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Pipeline...

115

Arizona Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use (Million...

116

Montana Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Montana Natural Gas Pipeline and Distribution Use (Million...

117

Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Wisconsin Natural Gas Pipeline and...

118

Wisconsin Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Wisconsin Natural Gas Pipeline and Distribution Use (Million...

119

Vermont Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Pipeline and...

120

Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million...

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use (Million...

122

Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use (Million...

123

Pennsylvania Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Pennsylvania Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use...

124

Niagara Falls, NY Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Niagara Falls, NY Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Niagara Falls, NY Natural Gas Pipeline Exports...

125

Tennessee Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use (Million...

126

Maine Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Pipeline and Distribution...

127

Douglas, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Douglas, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Douglas, AZ Natural Gas Pipeline Exports to Mexico...

128

Mississippi Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use...

129

Otay Mesa, CA Natural Gas Pipeline Exports to Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Otay Mesa, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Otay Mesa, CA Natural Gas Pipeline Exports to Mexico...

130

Connecticut Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use...

131

Maine Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Maine Natural Gas Pipeline and Distribution Use (Million Cubic...

132

Maryland Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use (Million...

133

Michigan Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use (Million...

134

Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use (Million...

135

Ogilby, CA Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Ogilby, CA Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Ogilby, CA Natural Gas Pipeline Exports...

136

Colorado Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use (Million...

137

Niagara Falls, NY Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Niagara Falls, NY Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Niagara Falls, NY Natural Gas Pipeline...

138

Rio Bravo, Texas Natural Gas Pipeline Exports to Mexico (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Rio Bravo, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Rio Bravo, Texas Natural Gas Pipeline Exports to...

139

Romas, Texas Natural Gas Pipeline Exports (Price) Mexico (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Romas, Texas Natural Gas Pipeline Exports (Price) Mexico (Dollars per Thousand Cubic Feet) Romas, Texas Natural Gas Pipeline...

140

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

142

South Dakota Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use...

143

Massena, NY Natural Gas Pipeline Exports to Canada (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Massena, NY Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Massena, NY Natural Gas Pipeline Exports to Canada...

144

Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Nogales, AZ Natural Gas Pipeline Exports to Mexico...

145

Gas supplies of interstate natural gas pipeline companies, 1986  

SciTech Connect

The publication provides information on the total reserves, production, and deliverability capabilities of the 90 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company-owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing State and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico. 7 figs., 18 tabs.

Not Available

1987-12-18T23:59:59.000Z

146

Feasibility study of Northeast Thailand Gas Pipeline Project. Final report. Part 3. Gas transmission pipeline. Export trade information  

SciTech Connect

The volume is the third part of a three part report submitted to the Petroleum Authority of Thailand. Part III examines the feasibility of constructing a gas pipeline from the Nam Phong gas field in the northeast region to the existing natural gas pipeline network in the central region. It contains information concerning the system analysis, route investigation and selection, the order of magnitude cost estimate and the economic and financial analysis.

1989-09-01T23:59:59.000Z

147

EIA - Natural Gas Pipeline Network - Transportation Process & Flow  

U.S. Energy Information Administration (EIA) Indexed Site

Process and Flow Process and Flow About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Transportation Process and Flow Overview | Gathering System | Processing Plant | Transmission Grid | Market Centers/Hubs | Underground Storage | Peak Shaving Overview Transporting natural gas from the wellhead to the final customer involves several physical transfers of custody and multiple processing steps. A natural gas pipeline system begins at the natural gas producing well or field. Once the gas leaves the producing well, a pipeline gathering system directs the flow either to a natural gas processing plant or directly to the mainline transmission grid, depending upon the initial quality of the wellhead product.

148

Construction advances on gas pipeline in Germany  

Science Conference Proceedings (OSTI)

This paper reports that construction is well under way on a pipeline to transport gas form the North Sea and Russia into the heart of Germany. Mitte Deutchland Anbindungs Leitung (Midal) gas pipeline, under construction for Winershall AG and partner Gazprom, the Russian state gas company, will extend more than 640 km from the North Sea coast to Ludwigshafen in Southwest Germany. en route, the line will make more than 100 river crossings. Midal will connect with the joint ventures' Sachesen-Thurigen-Erdgas Leitung (Stegal) pipeline, which moves Russian gas into eastern Germany and Wintershall's gas storage site at Rehden. Wintershall Erdgas Handelshaus GmbH, set up to manage the joint venture project, divided the pipeline route into six parts, hiring different contractors to lay each section.

Not Available

1992-09-28T23:59:59.000Z

149

EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelines Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Import/Export Pipelines As of the close of 2008 the United States has 58 locations where natural gas can be exported or imported. 24 locations are for imports only 18 locations are for exports only 13 locations are for both imports and exports 8 locations are liquefied natural gas (LNG) import facilities Imported natural gas in 2007 represented almost 16 percent of the gas consumed in the United States annually, compared with 11 percent just 12 years ago. Forty-eight natural gas pipelines, representing approximately 28 billion cubic feet (Bcf) per day of capacity, import and export natural gas between the United States and Canada or Mexico.

150

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

Warren R. “U.S. interstate pipelines begin 1993 on upbeat. ”66. ? True, Warren R. “Current pipeline costs. ” Oil & GasWarren R. “U.S. interstate pipelines ran more efficiently in

Parker, Nathan

2004-01-01T23:59:59.000Z

151

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE  

E-Print Network (OSTI)

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT Contract Number: #500 GAS PIPELINE ASSESSMENT #50010050 Legal Notice This information was prepared by Gas Technology;CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT #50010050 Task 3Summary Report AssessmentofCurrentlyAvailablePipeline

152

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE  

E-Print Network (OSTI)

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT Contract Number: #500 GAS PIPELINE ASSESSMENT #500-10-050 Legal Notice This information was prepared by Gas Technology;CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT #500-10-050 Baseline Technology Assessment for Pipeline Integrity

153

EIA - Natural Gas Pipeline Network - Regulatory Authorities  

U.S. Energy Information Administration (EIA) Indexed Site

Regulatory Authorities Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it, interstate natural gas pipeline companies were required to restructure their operations by November 1993 and split-off any non-regulated merchant (sales) functions from their regulated transportation functions. This new requirement meant that interstate natural gas pipeline companies were allowed to only transport natural gas for their customers. The restructuring process and subsequent operations have been supervised closely by FERC and have led to extensive changes throughout the interstate natural gas transportation segment which have impacted other segments of the industry as well.

154

Gas Pipeline Safety (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline Safety (West Virginia) Pipeline Safety (West Virginia) Gas Pipeline Safety (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Safety and Operational Guidelines Provider Public Service Commission of West Virginia The Gas Pipeline Safety Section of the Engineering Division is responsible for the application and enforcement of pipeline safety regulations under Chapter 24B of the West Virginia Code and 49 U.S.C. Chapter 601,

155

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...  

Annual Energy Outlook 2012 (EIA)

with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major...

156

Natural Gas Pipeline & Distribution Use  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Data Series: Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential...

157

EIA - Natural Gas Pipeline Network - U.S. Natural Gas Pipeline ...  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Pipeline Network, 2009 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of ...

158

EIA - Natural Gas Pipeline Network - Regional/State ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

159

EIA - Natural Gas Pipeline Network - Salt Cavern Storage ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

160

EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Rules for Pipeline Public Utilities, Rules for Gas Service and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Savings Rules for Pipeline Public Utilities, Rules for Gas Service and Safety (New Hampshire) Rules for Pipeline...

162

Ruby natural gas pipeline begins service today (July 28, 2011 ...  

U.S. Energy Information Administration (EIA)

El Paso Corporation's Ruby Pipeline (Ruby), the largest natural gas pipeline project dedicated to serving the Western United States since the ...

163

Pipeline Access and Market Integration in the Natural Gas Industry: Evidence from Cointegration Tests  

E-Print Network (OSTI)

NattmdGas Pipeline of America(NGPL) Northern Natural GasNatural Gas Pipeline of America (NGPL) Teanease~Gas PipelineGas Pipeline of America(NGPL) Northern Natural Gas (NOR’H-I)

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

164

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network (OSTI)

Evaluation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service Retrofitting Existing NG Pipelines fro Hydrogen/Hythane Service New Pipeline Installation and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

165

Model relaxations for the fuel cost minimization of steady-state gas pipeline networks  

Science Conference Proceedings (OSTI)

Natural gas, driven by pressure, is transported through pipeline network systems. As the gas flows through the network, energy and pressure are lost due to both friction between the gas and the pipes' inner wall, and heat transfer between the gas and ... Keywords: Compressor stations, Lower bounds, Natural gas, Nonconvex objective, Pipelines, Steady state, Transmission networks

Suming Wu; R. Z. Ríos-Mercado; E. A. Boyd; L. R. Scott

2000-01-01T23:59:59.000Z

166

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005  

Gasoline and Diesel Fuel Update (EIA)

percent increase in capacity additions (see percent increase in capacity additions (see Box, "Capacity Measures," p. 4). Indeed, less new natural gas pipeline mileage was added in 2005 than in any year during the past decade. 1 Energy Information Administration, Office of Oil and Gas, August 2006 1 In 2005, at least 31 natural gas pipeline projects of varying profiles 2 were completed in the lower 48 States and the Gulf of Mexico (Figure 3, Table 1). Of these, 15 were expansions (increases in capacity) on existing natural gas pipelines while the other 16 were 9 system extensions or laterals associated with existing natural gas pipelines, 5 new natural gas pipeline systems, and 2 oil pipeline conversions. Expenditures for natural gas pipeline development amounted to less than $1.3

167

Corrosion cracking of gas-carrying pipelines  

Science Conference Proceedings (OSTI)

Samples of soil and other materials adhering to the outer and inner surfaces of pipeline coatings, and pieces of rupture pipe were studied to investigate causes of gas-carrying pipeline failures in Pakistan. Chemical analysis of the ruptured pipe shows the pipeline steel had no material flaw. X-ray diffraction studies of the soil reveal that it contains clay and nonclay minerals normally found. The material adhering to the coating facing the pipeline surface contains carbonates and bicarbonates of sodium, namely, nahcolite and trona. This study shows that nahcolite and trona, as products of cathodic protection that were then synthesized in the vicinity of the pipeline surface, could have attacked the pipe surface over the years and caused corrosion.

Hussain, K.; Shaukat, A.; Hassan, F.

1989-02-01T23:59:59.000Z

168

Interstate Natural Gas Pipelines (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute confers upon the Utilities Board the authority to act as an agent of the federal government in determining pipeline company compliance with federal standards within the boundaries of...

169

Method of pipeline transportation of natural gas  

SciTech Connect

A USSR-developed method for transporting natural gas in the form of hydrates increases pipeline transmission capacity by at least 3-4 times as compared to a conventional pipeline and reduces the specific capital investment since thin-walled carbon-steel pipes can be used instead of cryogenic-resistant ones. In the approach, natural gas in hydrate form is loaded into wheeled containers or capsules which are then propelled through a pipeline by compressed and cooled natural gas. The physical state of the gas hydrates is preserved during their transport by keeping the pressure between 715 and 285 psi (50 and 20 kg/sq cm) and the temperature between -40/sup 0/ and +14/sup 0/F (-40/sup 0/ and -10/sup 0/C).

Chersky, N.V.; Klimenko, A.P.; Bokserman, J.I.; Kalina, A.I.; Karimov, F.A.

1975-06-10T23:59:59.000Z

170

Transportation and Handling of Medium Btu Gas in Pipelines  

Science Conference Proceedings (OSTI)

Coal-derived medium btu gas can be safely transported by pipeline over moderate distances, according to this survey of current industrial pipeline practices. Although pipeline design criteria will be more stringent than for natural gas pipelines, the necessary technology is readily available.

1984-03-01T23:59:59.000Z

171

Overview of interstate hydrogen pipeline systems.  

DOE Green Energy (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

172

NETL: News Release - National Labs to Strengthen Natural Gas Pipeline's  

NLE Websites -- All DOE Office Websites (Extended Search)

National Labs to Strengthen Natural Gas Pipelines' Integrity, Reliability National Labs to Strengthen Natural Gas Pipelines' Integrity, Reliability DOE Receives 24 Proposals, Valued at Half Billion Dollars, For Technologies to Improve Power Plants, Cut Emissions MORGANTOWN, WV - To identify and develop advanced technology for the nation's natural gas pipelines, the Energy Department is calling upon the national labs to assist private industry in developing innovative technologies that establish a framework for future natural gas transmission and distribution systems. The laboratories will help 11 government-industry cost-shared projects, many of which center around detection devices designed to prevent pipeline damage, DOE selected earlier this year (see May 31, 2001, announcement). DOE estimates that natural gas consumption will increase by 60 percent by 2020, placing an unaccustomed demand on the U.S.'s aging natural gas infrastructure. The already-selected 11 projects address that need by demonstrating robotics and other sophisticated ways of bolstering strength, and, therefore, the integrity and reliability of the pipelines the crisscross the country.

173

Gas supplies of interstate natural gas pipeline companies 1985  

SciTech Connect

This publication provides information on the total reserves, production, and deliverability capabilities of the 91 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing state and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico and LNG from Algeria. 7 figs., 18 tabs.

Not Available

1986-11-14T23:59:59.000Z

174

Gas supplies of interstate natural gas pipeline companies, 1984  

SciTech Connect

This publication provides information on the total reserves, production, and deliverability capabilities of 89 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company-owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing state and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico and LNG from Algeria. 8 figs., 18 tabs.

Price, R.

1985-12-04T23:59:59.000Z

175

A Cheap Levitating Gas/Load Pipeline  

E-Print Network (OSTI)

Design of new cheap aerial pipelines, a large flexible tube deployed at high altitude, for delivery of natural (fuel) gas, water and other payload over a long distance is delineated. The main component of the natural gas is methane which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg (1 pound). The lightweight film flexible pipeline can be located in air at high altitude and, as such, does not damage the environment. Using the lift force of this pipeline and wing devices payloads of oil, water, or other fluids, or even solids such as coal, cargo, passengers can be delivered cheaply at long distance. This aerial pipeline dramatically decreases the cost and the time of construction relative to conventional pipelines of steel which saves energy and greatly lowers the capital cost of construction. The article contains a computed project for delivery 24 billion cubic meters of gas and tens of million tons of oil, water or other payload per year.

Alexander Bolonkin

2008-12-02T23:59:59.000Z

176

A Cheap Levitating Gas/Load Pipeline  

E-Print Network (OSTI)

Design of new cheap aerial pipelines, a large flexible tube deployed at high altitude, for delivery of natural (fuel) gas, water and other payload over a long distance is delineated. The main component of the natural gas is methane which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg (1 pound). The lightweight film flexible pipeline can be located in air at high altitude and, as such, does not damage the environment. Using the lift force of this pipeline and wing devices payloads of oil, water, or other fluids, or even solids such as coal, cargo, passengers can be delivered cheaply at long distance. This aerial pipeline dramatically decreases the cost and the time of construction relative to conventional pipelines of steel which saves energy and greatly lowers the capital cost of construction. The article contains a computed project for delivery 24 billion cubic meters of gas and tens of million tons of oil, water or other payload per year.

Bolonkin, Alexander

2008-01-01T23:59:59.000Z

177

U.S. Natural Gas Pipeline Exports (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline Exports (Million Cubic Feet) U.S. Natural Gas Pipeline Exports (Million Cubic Feet) Decade Year-0...

178

U.S. Natural Gas Pipeline Exports (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline Exports (Million Cubic Feet) U.S. Natural Gas Pipeline Exports (Million Cubic Feet) Year Jan Feb...

179

U.S. Natural Gas Pipeline Imports (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline Imports (Million Cubic Feet) U.S. Natural Gas Pipeline Imports (Million Cubic Feet) Decade Year-0...

180

U.S. Natural Gas Pipeline Imports (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline Imports (Million Cubic Feet) U.S. Natural Gas Pipeline Imports (Million Cubic Feet) Year Jan Feb...

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Markets indicate possible natural gas pipeline constraints in the ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... This difference reflects expectations about the likelihood of capacity constraints associated with moving natural gas on pipelines ...

182

Application Filing Requirements for Natural Gas Pipeline Construction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin) Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Wisconsin Program Type Siting and Permitting Any utility proposing to construct a natural gas pipeline requiring a Certificate of Authority (CA) under Wis. Stat. §196.49 must prepare an

183

Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Pipeline Intrastate Regulatory Act Transmission Pipeline Intrastate Regulatory Act (Florida) Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Program Info State Florida Program Type Safety and Operational Guidelines Provider Florida Public Service Commission The regulation of natural gas intrastate transportation and sale is deemed to be an exercise of the police power of the state for the protection of the public welfare. The Public Service Commission is empowered to fix and regulate rates and services of natural gas transmission companies, including, without limitation, rules and regulations for determining the

184

Evalutation of Natural Gas Pipeline Materials and Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Thad Adams, George Rawls, Poh-Sang Lam and Robert Sindelar Savannah River National...

185

Pipelines and Underground Gas Storage (Iowa) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of...

186

Application Filing Requirements for Natural Gas Pipeline Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Savings Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin) Application Filing Requirements for Natural Gas...

187

Rio Bravo, Texas Natural Gas Pipeline Exports (Price) Mexico...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Rio Bravo, Texas Natural Gas Pipeline Exports (Price) Mexico (Dollars per Thousand Cubic Feet) Rio Bravo, Texas Natural Gas...

188

New natural gas pipeline capacity adds service into Florida ...  

U.S. Energy Information Administration (EIA)

Source: U.S. Energy Information Administration based on BENTEK Energy, LLC Note: Daily natural gas flow data and daily pipeline capacity derived from Florida's Gas ...

189

EIA - Natural Gas Pipeline Network - Expansion Process Flow Diagram  

Annual Energy Outlook 2012 (EIA)

Natural Gas based on data through 20072008 with selected updates Development and Expansion Process For Natural Gas Pipeline Projects Figure showing the expansion process...

190

EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...  

Annual Energy Outlook 2012 (EIA)

Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground...

191

EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...  

Annual Energy Outlook 2012 (EIA)

Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production...

192

NETL: News Release - Robot Successfully Inspects Live Natural Gas Pipeline  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2004 22, 2004 Robot Successfully Inspects Live Natural Gas Pipeline in New York Field Test is a First for Natural Gas Industry BROCKPORT, NY - In a recent field demonstration filled with "firsts," a self-powered robot developed by the Northeast Gas Association, Carnegie Mellon University, and the Department of Energy's National Energy Technology Laboratory successfully inspected a mile of a live natural gas distribution main in Brockport, New York. Known as EXPLORER, the remote-controlled robot was launched and retrieved four times on October 8 with no interruption in customer service. The system successfully made its way through an 8-inch diameter pipeline owned and operated by Rochester Electric & Gas, and maneuvered several 70- to 90-degree bends.

193

Natural Gas Pipeline & Distribution Use  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Natural Gas Consumption by End Use (Million Cubic Feet) Data Series: Total Consumption Lease and...

194

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

the construction costs of natural gas, oil, and petroleumR. “Current pipeline costs. ” Oil & Gas Journal; Nov 21,cost projections for over 20,000 miles of natural gas, oil, and

Parker, Nathan

2004-01-01T23:59:59.000Z

195

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

Adjustments in 1991. ” Oil & Gas Journal; Nov 23, 1992; 90,begin 1993 on upbeat. ” Oil & Gas Journal; Nov 22, 1993; 91,Current pipeline costs. ” Oil & Gas Journal; Nov 21, 1994;

Parker, Nathan

2004-01-01T23:59:59.000Z

196

Optimal design of a gas transmission network: A case study of the Turkish natural gas pipeline network system.  

E-Print Network (OSTI)

??Turkey is located between Europe, which has increasing demand for natural gas and the geographies of Middle East, Asia and Russia, which have rich and… (more)

Gunes, Ersin Fatih

2013-01-01T23:59:59.000Z

197

Capsule injection system for a hydraulic capsule pipelining system  

DOE Patents (OSTI)

An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

Liu, Henry (Columbia, MO)

1982-01-01T23:59:59.000Z

198

Power Line Fault Current Coupling to Nearby Natural Gas Pipelines, Volumes 1-3  

Science Conference Proceedings (OSTI)

The Electromagnetic and Conductive Coupling Analysis of Powerlines and Pipelines (ECCAPP) computer program provides an easy-to-use method for analyzing the effects of transmission lines on gas pipelines. The program models conductive and inductive interference, enabling electrical and gas engineers to identify these effects and design mitigation systems when necessary.

1987-11-24T23:59:59.000Z

199

EIA - Natural Gas Pipeline Network - States Dependent on Interstate  

U.S. Energy Information Administration (EIA) Indexed Site

States Dependent on Interstate Pipelines States Dependent on Interstate Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates States in grey which are at least 85% dependent on the interstate pipeline network for their natural gas supply are: New England - Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Southeast - Florida, Georgia, North Carolina, South Carolina, Tennessee Northeast - Delaware, Maryland, New Jersey, New York, District of Columbia Midwest - Illinois, Indiana, Minnesota, Ohio, Wisconsin Central - Iowa, Missouri, Nebraska, South Dakota West - Arizona, California, Idaho, Nevada, Oregon, Washington Interstate Natural Gas Supply Dependency, 2007 Map: Interstate Natural Gas Supply Dependency

200

Gas Pipeline Safety Rules (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Gas Pipeline Safety Rules (Alabama) Gas Pipeline Safety Rules (Alabama) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Alabama Program Type Safety and Operational Guidelines All public utilities and persons subject to this rule shall file with the commission an operating and maintenance plan as well as an emergency plan. All construction work involving the addition and/or the replacement of gas

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EIS-0467: Hanford Site Natural Gas Pipeline, Richland, WA  

Energy.gov (U.S. Department of Energy (DOE))

DOE announces its intent to prepare an EIS for the Acquisition of a Natural Gas Pipeline and Natural Gas Utility Service at the Hanford Site, Richland, Washington (Natural Gas Pipeline or NGP EIS), and initiate a 30-day public scoping period.

202

EIA - Analysis of Natural Gas Imports/Exports & Pipelines  

Gasoline and Diesel Fuel Update (EIA)

Imports/Exports & Pipelines Imports/Exports & Pipelines 2010 U.S Natural Gas Imports and Exports: 2009 This report provides an overview of U.S. international natural gas trade in 2009. Natural gas import and export data, including liquefied natural gas (LNG) data, are provided through the year 2009 in Tables SR1-SR9. Categories: Imports & Exports/Pipelines (Released, 9/28/2010, Html format) Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format)

203

"Elemental sulphur" formation in natural gas transmission pipelines.  

E-Print Network (OSTI)

??[Truncated abstract] The ‘elemental sulphur’ deposition problem is a fairly recent phenomenon for gas transmission pipelines. Although known for a number of decades to cause… (more)

Pack, David J.

2005-01-01T23:59:59.000Z

204

NETL: News Release - Putting the Squeeze on Natural Gas Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

July 27, 2005 Putting the Squeeze on Natural Gas Pipelines Tool Allows for Above-Ground Repairs of Large, Underground Distribution Lines WASHINGTON, DC - A joint effort between...

205

,"U.S. Natural Gas Pipeline Imports From Mexico (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"U.S. Natural Gas Pipeline Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

206

,"Hidalgo, TX Natural Gas Pipeline Imports From Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Hidalgo, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

207

,"Rhode Island Natural Gas Pipeline and Distribution Use Price...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005...

208

,"Warroad, MN Natural Gas Pipeline Exports to Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Warroad, MN Natural Gas Pipeline Exports to Canada (Million Cubic Feet)",1,"Annual",2003 ,"Release Date:","172014"...

209

,"North Troy, VT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Troy, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

210

,"Portal, ND Natural Gas Pipeline Imports From Canada (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

Portal, ND Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

211

,"Penitas, TX Natural Gas Pipeline Imports From Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Penitas, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2002 ,"Release Date:","172014" ,"Next...

212

,"Rio Bravo, Texas Natural Gas Pipeline Exports to Mexico (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Rio Bravo, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

213

,"Pittsburg, NH Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pittsburg, NH Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

214

,"Warroad, MN Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Warroad, MN Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

215

,"International Falls, MN Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

216

,"Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

217

,"Marysville, MI Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Marysville, MI Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

218

,"Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

219

,"Massena, NY Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Massena, NY Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

220

,"Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

,"Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

222

,"Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

223

,"Calais, ME Natural Gas Pipeline Imports From Canada (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Calais, ME Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

224

,"Havre, MT Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Havre, MT Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2003 ,"Release Date:","172014" ,"Next...

225

,"Sherwood, ND Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Sherwood, ND Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

226

,"Babb, MT Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Babb, MT Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

227

,"Eastport, ID Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Eastport, ID Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

228

,"Waddington, NY Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Waddington, NY Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

229

,"Sherwood, ND Natural Gas Pipeline Exports to Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Sherwood, ND Natural Gas Pipeline Exports to Canada (Million Cubic Feet)",1,"Annual",2006 ,"Release Date:","172014"...

230

,"Sumas, WA Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Sumas, WA Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

231

,"Highgate Springs, VT Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","L...

232

,"Noyes, MN Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Noyes, MN Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

233

,"Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

234

Pipeline Annual Data - 1996 Gas Transmission Annuals Data (Zip...  

NLE Websites -- All DOE Office Websites (Extended Search)

Blogs Let's Talk Energy Beta You are here Data.gov Communities Energy Data Pipeline Annual Data - 1996 Gas Transmission Annuals Data (Zip) Dataset Summary Description...

235

,"Roma, Texas Natural Gas Pipeline Exports to Mexico (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Roma, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

236

New pipeline project could lower natural gas transportation costs ...  

U.S. Energy Information Administration (EIA)

... natural gas transportation costs to New York City could be reduced with the expansion of the existing Texas Eastern Transmission pipeline from Linden, New ...

237

,"El Paso, TX Natural Gas Pipeline Imports From Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","El Paso, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2002 ,"Release Date:","12122013"...

238

Statistics of interstate natural gas pipeline companies, 1990  

Science Conference Proceedings (OSTI)

This report presents financial and operating information of all major interstate natural gas pipeline companies that operated in the United States during 1990. (VC)

Not Available

1992-04-09T23:59:59.000Z

239

Pipeline Annual Data - 1997 Gas Distribution Annuals Data (Zip) | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Gas Distribution Annuals Data (Zip) 7 Gas Distribution Annuals Data (Zip) Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Pipeline Annual Data - 1997 Gas Distribution Annuals Data (Zip) Dataset Summary Description Pipeline operators (for gas distribution, gas transmission, and hazardous liquid pipelines) are required to submit an annual report to the Pipeline and Hazardous Materials Safety Administration's Office of Pipeline Safety. The report includes information about the operator, a description of their system (main, services), leaks eliminated/repaired during the year, excavation damage, excess flow valves, and other information. Beginning in 2010, the form also includes information regarding integrity management programs.

240

Method and system for pipeline communication  

DOE Patents (OSTI)

A pipeline communication system and method includes a pipeline having a surface extending along at least a portion of the length of the pipeline. A conductive bus is formed to and extends along a portion of the surface of the pipeline. The conductive bus includes a first conductive trace and a second conductive trace with the first and second conductive traces being adapted to conformally couple with a pipeline at the surface extending along at least a portion of the length of the pipeline. A transmitter for sending information along the conductive bus on the pipeline is coupled thereto and a receiver for receiving the information from the conductive bus on the pipeline is also couple to the conductive bus.

Richardson; John G. (Idaho Falls, ID)

2008-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Illinois Gas Pipeline Safety Act (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Gas Pipeline Safety Act (Illinois) Illinois Gas Pipeline Safety Act (Illinois) Illinois Gas Pipeline Safety Act (Illinois) < Back Eligibility Commercial Utility Program Info State Illinois Program Type Safety and Operational Guidelines Provider Illinois Commerce Commission Standards established under this Act may apply to the design, installation, inspection, testing, construction, extension, operation, replacement, and maintenance of pipeline facilities. Whenever the Commission finds a particular facility to be hazardous to life or property, it may require the person operating such facility to take the steps necessary to remove the hazard. Each person who engages in the transportation of gas or who owns or operates pipeline facilities shall file with the Commission a plan for inspection and maintenance of each pipeline facility owned or operated by

242

Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moves Forward on Alaska Natural Gas Pipeline Loan Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm Addthis WASHINGTON, DC - The Department of Energy tomorrow, Friday, May 27, will publish a Notice of Inquiry in the Federal Register seeking public comment on an $18 billion loan guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's 35 trillion cubic feet of proven natural gas reserves, and would be a major step forward in meeting America's growing energy needs and reducing our dependence on foreign sources of energy. It would also fulfill the Bush Administration's policy to bring Alaska's natural gas reserves to market.

243

Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moves Forward on Alaska Natural Gas Pipeline Loan Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm Addthis WASHINGTON, DC - The Department of Energy tomorrow, Friday, May 27, will publish a Notice of Inquiry in the Federal Register seeking public comment on an $18 billion loan guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's 35 trillion cubic feet of proven natural gas reserves, and would be a major step forward in meeting America's growing energy needs and reducing our dependence on foreign sources of energy. It would also fulfill the Bush Administration's policy to bring Alaska's natural gas reserves to market.

244

EIA - Natural Gas Pipeline Network - Regional Definitions  

U.S. Energy Information Administration (EIA) Indexed Site

Definitions Map Definitions Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Definitions The regions defined in the above map are based upon the 10 Federal Regions of the U.S. Bureau of Labor Statistics. The State groupings are as follows: Northeast Region - Federal Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. Federal Region 2: New Jersey, and New York. Federal Region 3:Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia. Southeast Region - Federal Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee. Midwest Region - Federal Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, and

245

New natural gas pipeline capacity adds service into Florida ...  

U.S. Energy Information Administration (EIA)

The lack of natural gas storage in Florida, as well as limited areas of gas production, makes the State dependent on two main supply pipelines for most of its natural ...

246

,"U.S. Natural Gas Pipeline Imports From Mexico (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"12132013 3:53:53 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports From Mexico (MMcf)" "Sourcekey","N9102MX2" "Date","U.S. Natural Gas...

247

,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"12132013 3:53:51 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports From Canada (MMcf)" "Sourcekey","N9102CN2" "Date","U.S. Natural Gas...

248

A simulated investment analysis for a gas pipeline company  

Science Conference Proceedings (OSTI)

The supply and demand schedules for gas pipeline companies are probabilistic in form and dynamistic in nature. These factors, along with the other uncertainties associated with gas supply investment decisions, must be considered in order to properly ...

Hal Miller

1973-01-01T23:59:59.000Z

249

Acoustic system for communication in pipelines  

DOE Patents (OSTI)

A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

Martin, II, Louis Peter (San Ramon, CA); Cooper, John F. (Oakland, CA)

2008-09-09T23:59:59.000Z

250

Competition and Prices in the Deregulated Gas Pipeline Network: A Multivariate Cointegration Analysis  

E-Print Network (OSTI)

of spot markets located on NGPL’s pipeline system in fiveI-Iouston/Katy Florida Gas NGPL Tennessee Texas EasternNorth Texas--Paahandle ANl~ NGPL Northern Panhandle Eastern

Walls, W. David

1993-01-01T23:59:59.000Z

251

Adaptive noise cancellation schemes for magnetic flux leakage signals obtained from gas pipeline inspection  

Science Conference Proceedings (OSTI)

Nondestructive evaluation of the gas pipeline system is most commonly performed using magnetic flux leakage (MFL) techniques. A major segment of this network employs seamless pipes. The data obtained From MFL inspection of seamless pipes is contaminated ...

M. Afzal; R. Polikar; L. Udpa; S. Udpa

2001-05-01T23:59:59.000Z

252

EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Transportation Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow patterns. 5 major routes extend from the producing areas of the Southwest 4 routes enter the United States from Canada 2 originate in the Rocky Mountain area. A summary of the major corridors and links to details about each corridor are provided below. Corridors from the Southwest Region

253

Pipeline Annual Data - 1996 Gas Distribution Annuals Data (Zip) | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Distribution Annuals Data (Zip) Distribution Annuals Data (Zip) Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Pipeline Annual Data - 1996 Gas Distribution Annuals Data (Zip) Dataset Summary Description Pipeline operators (for gas distribution, gas transmission, and hazardous liquid pipelines) are required to submit an annual report to the Pipeline and Hazardous Materials Safety Administration's Office of Pipeline Safety. The report includes information about the operator, a description of their system (main, services), leaks eliminated/repaired during the year, excavation damage, excess flow valves, and other information. Beginning in 2010, the form also includes information regarding integrity management programs.

254

Energy Department Moves Forward on Alaska Natural Gas Pipeline...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm Addthis WASHINGTON, DC - The Department of Energy tomorrow, Friday, May 27, will publish a Notice of Inquiry...

255

Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars...  

Annual Energy Outlook 2012 (EIA)

Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

256

Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars...  

Annual Energy Outlook 2012 (EIA)

Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

257

Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per...  

Annual Energy Outlook 2012 (EIA)

Dollars per Thousand Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

258

South Carolina Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) South Carolina Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

259

District of Columbia Natural Gas Pipeline and Distribution Use...  

Gasoline and Diesel Fuel Update (EIA)

Price (Dollars per Thousand Cubic Feet) District of Columbia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

260

Iowa Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) Iowa Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,309...

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

New Hampshire Natural Gas Pipeline and Distribution Use Price...  

Annual Energy Outlook 2012 (EIA)

Price (Dollars per Thousand Cubic Feet) New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

262

New Mexico Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) New Mexico Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

263

North Carolina Natural Gas Pipeline and Distribution Use Price...  

Gasoline and Diesel Fuel Update (EIA)

Price (Dollars per Thousand Cubic Feet) North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

264

West Virginia Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) West Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

265

New Jersey Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) New Jersey Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

266

District of Columbia Natural Gas Pipeline and Distribution Use...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) District of Columbia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

267

Rhode Island Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

268

Natural gas pipeline capacity additions in 2011 - Today in ...  

U.S. Energy Information Administration (EIA)

The U.S. Energy Information Administration estimates that U.S. natural gas pipeline companies added about 2,400 miles of new pipe to the grid as part ...

269

New York Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) New York Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

270

South Carolina Natural Gas Pipeline and Distribution Use Price...  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) South Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

271

North Carolina Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) North Carolina Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

272

New Hampshire Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) New Hampshire Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

273

Illinois Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Illinois Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

274

North Dakota Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) North Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

275

North Troy, VT Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

Million Cubic Feet) North Troy, VT Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

276

International Falls, MN Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

per Thousand Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

277

St. Clair, MI Natural Gas Pipeline Imports From Canada (Million ...  

U.S. Energy Information Administration (EIA)

St. Clair, MI Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 14,132:

278

Niagara Falls, NY Natural Gas Pipeline Imports From Canada ...  

U.S. Energy Information Administration (EIA)

Niagara Falls, NY Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2011: 9,497: 6,894: 4,421: 2,459 ...

279

Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Million Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA...

280

Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 2 2013 3 5 4 6 9...

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sherwood, ND Natural Gas Pipeline Exports to Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

to Canada (Million Cubic Feet) Sherwood, ND Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

282

Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per...  

Gasoline and Diesel Fuel Update (EIA)

Dollars per Thousand Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

283

International Falls, MN Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

284

Sherwood, ND Natural Gas Pipeline Exports (Price) Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

(Price) Canada (Dollars per Thousand Cubic Feet) Sherwood, ND Natural Gas Pipeline Exports (Price) Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

285

North Troy, VT Natural Gas Pipeline Imports From Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

Dollars per Thousand Cubic Feet) North Troy, VT Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

286

,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Pipeline...

287

OPUS-97: A Generalized Operational Pipeline System  

E-Print Network (OSTI)

. OPUS is the platform on which the telemetry pipeline at the Hubble Space Telescope Science Institute is running currently. OPUS was developed both to repair the mistakes of the past, and to build a system which could meet the challenges of the future. The production pipeline inherited at the Space Telescope Science Institute was designed a decade earlier, and made assumptions about the environment which were unsustainable. While OPUS was developed in an environment that required a great deal of attention to throughput, speed, e#ciency, flexibility, robustness and extensibility, it is not just a "big science" machine. The OPUS platform, our baseline product, is a small compact system designed to solve a specific problem in a robust way. The OPUS platform handles communication with the OPUS blackboard; individual processes within this pipeline need have no knowledge of OPUS, of the blackboard, or of the pipeline itself. The OPUS API is an intermediate pipeline product. In addition to t...

J. Rose

1998-01-01T23:59:59.000Z

288

Computer Systems to Oil Pipeline Transporting  

E-Print Network (OSTI)

Computer systems in the pipeline oil transporting that the greatest amount of data can be gathered, analyzed and acted upon in the shortest amount of time. Most operators now have some form of computer based monitoring system employing either commercially available or custom developed software to run the system. This paper presented the SCADA systems to oil pipeline in concordance to the Romanian environmental reglementations.

Chis, Timur

2009-01-01T23:59:59.000Z

289

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network (OSTI)

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

Alexander Bolonkin; Richard Cathcart

2007-01-05T23:59:59.000Z

290

QUANTITATIVE ANALYSIS OF RISK FACTORS AFFECTING TRANSPORTATION OF NATURAL GAS USING PIPELINES.  

E-Print Network (OSTI)

??In the United States today, there are thousands of miles, long grids and networks of pipelines conveying natural gas across the nation. Recent pipeline leaks… (more)

Uzoh, Chukwuma

2011-01-01T23:59:59.000Z

291

Assessment of Crack in Corrosion Defects in Natural Gas Transmission Pipelines.  

E-Print Network (OSTI)

??Pipelines are one of the safest forms of transportation for oil and gas. However, pipelines may experience some defects, such as cracks, corrosion and cracks… (more)

Hosseini, Seyed Aliakbar

2010-01-01T23:59:59.000Z

292

Policies of System Level Pipeline Modeling  

E-Print Network (OSTI)

Pipelining is a well understood and often used implementation technique for increasing the performance of a hardware system. We develop several SystemC/C++ modeling techniques that allow us to quickly model, simulate, and evaluate pipelines. We employ a small domain specific language (DSL) based on resource usage patterns that automates the drudgery of boilerplate code needed to configure connectivity in simulation models. The DSL is embedded directly in the host modeling language SystemC/C++. Additionally we develop several techniques for parameterizing a pipeline's behavior based on policies of function, communication, and timing (performance modeling).

Harcourt, Ed

2008-01-01T23:59:59.000Z

293

Pipelines to Power Lines: Gas Transportation for Electricity Generation  

Science Conference Proceedings (OSTI)

Gas-fired power generation represents a major growth market for the natural gas industry; but the large, high pressure, highly variable loads required for individual power generators can be difficult to serve. This report, cosponsored by the Gas Research Institute and EPRI, is a design stage assessment of the engineering and costs of the pipelines needed to handle these types of loads.

1995-03-10T23:59:59.000Z

294

Scoping Study on the Safety Impact of Valve Spacing in Natural Gas Pipelines  

Science Conference Proceedings (OSTI)

The U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration (PHMSA) is responsible for ensuring the safe, reliable, and environmentally sound operation of the nation's natural gas and hazardous liquid pipelines. Regulations adopted by PHMSA for gas pipelines are provided in 49 CFR 192, and spacing requirements for valves in gas transmission pipelines are presented in 49 CFR 192.179. The present report describes the findings of a scoping study conducted by Oak Ridge National Laboratory (ORNL) to assist PHMSA in assessing the safety impact of system valve spacing. Calculations of the pressures, temperatures, and flow velocities during a set of representative pipe depressurization transients were carried out using a one-dimensional numerical model with either ideal gas or real gas properties for the fluid. With both ideal gas and real gas properties, the high-consequence area radius for any resulting fire as defined by Stevens in GRI-00/0189 was evaluated as one measure of the pipeline safety. In the real gas case, a model for convective heat transfer from the pipe wall is included to assess the potential for shut-off valve failures due to excessively low temperatures resulting from depressurization cooling of the pipe. A discussion is also provided of some additional factors by which system valve spacing could affect overall pipeline safety. The following conclusions can be drawn from this work: (1) Using an adaptation of the Stephens hazard radius criteria, valve spacing has a negligible influence on natural gas pipeline safety for the pipeline diameter, pressure range, and valve spacings considered in this study. (2) Over the first 30 s of the transient, pipeline pressure has a far greater effect on the hazard radius calculated with the Stephens criteria than any variations in the transient flow decay profile and the average discharge rate. (3) Other factors besides the Stephens criteria, such as the longer burn time for an accidental fire, greater period of danger to emergency personnel, increased unavoidable loss of gas, and possible depressurization cooling of the shut-off valves may also be important when deciding whether a change in the required valve spacing would be beneficial from a safety standpoint. (4) The average normalized discharge rate of {lambda}{sub avg} = 0.33 assumed by Stephens in developing his safety criteria is an excellent conservative value for natural gas discharge at the pressures, valve spacings, and pipe diameter used in this study. This conclusion remains valid even when real rather than ideal gas properties are considered in the analysis. (5) Significant pipe wall cooling effects (T{sub w} pipeline rupture accident.

Sulfredge, Charles David [ORNL

2007-07-01T23:59:59.000Z

295

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network (OSTI)

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for che...

Bolonkin, A; Bolonkin, Alexander; Cathcart, Richard

2007-01-01T23:59:59.000Z

296

Alaskan Natural Gas Pipeline Developments (released in AEO2007)  

Reports and Publications (EIA)

The AEO2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on EIAs current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and LNG imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

Information Center

2007-02-22T23:59:59.000Z

297

Pipeline issues shape southern FSU oil, gas development  

SciTech Connect

To future production from southern republics of the former Soviet Union (FSU), construction and revitalization of pipelines are as important as the supply of capital. Export capacity will limit production and slow development activity in the region until new pipelines are in place. Plenty of pipeline proposals have come forward. The problem is politics, which for every proposal so far complicates routing or financing or both. Russia has made clear its intention to use pipeline route decisions to retain influence in the region. As a source of external pressure, it is not alone. Iran and Turkey also have made strong bids for the southern FSU`s oil and gas transport business. Diplomacy thus will say as much as commerce does about how transportation issues are settled and how quickly the southern republics move toward their potentials to produce oil and gas. The paper discusses possible routes and the problems with them, the most likely proposal, and future oil flows.

NONE

1995-05-22T23:59:59.000Z

298

Pipelining with common operands for power-efficient linear systems  

Science Conference Proceedings (OSTI)

We propose a systematic pipelining method for a linear system to minimize power and maximize throughput, given a constraint on the number of pipeline stages and a set of resource constraints. Unlike most existing pipelining approaches, our method takes ... Keywords: common operand, linear system, operand sharing, pipelining, power

Daehong Kim; Dongwan Shin; Kiyoung Choi

2005-09-01T23:59:59.000Z

299

Failure analysis expert system for onshore pipelines. Part-II: End-User interface and algorithm  

Science Conference Proceedings (OSTI)

In order to develop a Failure Analysis Expert System (FAES), with application for onshore pipeline transporting oil and gas products, the work was split in two parts. Previously failure database and knowledge acquisition method were described in the ... Keywords: Artificial neural network, Expert system, Failure analysis, Knowledge acquisition, Onshore pipelines

V. Castellanos; A. Albiter; P. Hernández; G. Barrera

2011-09-01T23:59:59.000Z

300

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

SciTech Connect

The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

Melaina, M. W.; Antonia, O.; Penev, M.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

AN ANALYSIS OF THE MOTION OF PIGS THROUGH NATURAL GAS PIPELINES.  

E-Print Network (OSTI)

??The dynamics of propelling a pig through a natural gas pipeline, using the gas being transported, are analyzed. The gas flow is assumed to be… (more)

Sullivan, Jean

2011-01-01T23:59:59.000Z

302

McAllen, TX Natural Gas Pipeline Imports From Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico...

303

U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand Cubic Feet) U.S. Natural Gas Pipeline Imports Price (Dollars...

304

Natural Gas Exports by Pipeline out of the U.S. Form | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Natural Gas Exports by Pipeline out of the U.S. Form Natural Gas Exports by Pipeline out of the U.S. Form Excel...

305

U.S. Natural Gas Pipeline & Distribution Use (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline & Distribution Use (Million Cubic Feet) U.S. Natural Gas Pipeline & Distribution Use (Million Cubic...

306

U.S. Natural Gas Pipeline Exports to Mexico (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) U.S. Natural Gas Pipeline Exports to Mexico (Million Cubic...

307

McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) McAllen, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) McAllen, TX Natural Gas Pipeline Exports to Mexico...

308

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

Fuel Cell Technologies Publication and Product Library (EERE)

This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipeline

309

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

cost dependent on pipeline length and diameter against thedescribe with only the pipeline length and diameter. Labordescribed by the pipeline diameter and length alone. In some

Parker, Nathan

2004-01-01T23:59:59.000Z

310

EIA - Natural Gas Pipeline Network - Natural Gas Market Centers...  

Gasoline and Diesel Fuel Update (EIA)

Corridors, 2009 DCP DCP Midstream Partners LP; EPGT Enterprise Products Texas Pipeline Company. Note: The relative widths of the various transportation corridors are based...

311

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 In 2005-06, the Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern United States to meet natural gas demand in the event of a pipeline disruption. The study modeled gas demand for select market areas in the Northeast under a range of different weather conditions. The study then determined how interstate pipeline flow patterns could change in the event of a pipeline disruption to one or more of the pipelines serving the region in order to meet the gas demand. The results

312

Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65  

Science Conference Proceedings (OSTI)

The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

Hashemi, S. H. [Department of Mechanical Engineering, University of Birjand, POBOX 97175-376, Birjand (Iran, Islamic Republic of); Mohammadyani, D. [Materials and Energy Research Center (MERC) POBOX 14155-4777, Tehran (Iran, Islamic Republic of)

2011-01-17T23:59:59.000Z

313

Natural Gas Compressor Stations on the Interstate Pipeline Network:Developments Since 1996  

Reports and Publications (EIA)

This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 States. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas.

Information Center

2007-11-07T23:59:59.000Z

314

Optimal operation of pipeline systems using genetic algorithm  

Science Conference Proceedings (OSTI)

A Genetic Algorithm (GA) is used in this paper for the optimal operation, result in better solution than the existing one, of the pipeline systems under transient conditions caused by valve closure. Simulation of pipeline system is carried out here by ... Keywords: genetic algorithm, implicit method of characteristic, pipeline system, transient flow, water hammer

M. H. Afshar; M. Rohani

2009-05-01T23:59:59.000Z

315

Markets indicate possible natural gas pipeline constraints ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

316

Simulation of Transients in Natural Gas Pipelines: Using Hybrid TVD/LW/MOC Schemes  

Science Conference Proceedings (OSTI)

the mathematical model describing transients in natural gas pipelines constitutes a non-homogeneous system of non-linear hyperbolic conservation laws. The energy equation is coupled to simulate the transient of temperature and acoustic wave speed in ... Keywords: transient flow, hyperbolic conservation, hybrid scheme, wave propagation, test

Xueyuan Long; Jiang Fu

2010-12-01T23:59:59.000Z

317

AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION  

SciTech Connect

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

Jerry Myers

2005-04-15T23:59:59.000Z

318

Pipeline Safety Program he Oak Ridge National  

E-Print Network (OSTI)

miles of natural gas and hazardous liquid pipelines. To assist PHMSA accomplish this mission, ORNL Analysis Transportation Decision Support Systems Transportation Network Routing Models Natural gas pipeline operators in accordance with the following Federal pipeline safety regulations 49 CFR 192 - Gas Pipelines

319

DOE data on natural gas pipeline expansion  

U.S. Energy Information Administration (EIA)

Major Changes in Natural Gas Transportation Capacity, 1998 – 2008 The following presentation was prepared to illustrate graphically the areas of major growth on the ...

320

Price of Natural Gas Imports by Pipeline  

U.S. Energy Information Administration (EIA)

... electric power price data are for regulated electric ... Gas volumes delivered for vehicle fuel are included in the State monthly totals from January 2011 ...

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Power Line Fault Current Coupling to Nearby Natural Gas Pipelines, Volume 3: Analysis of Pipeline Coating Impedance  

Science Conference Proceedings (OSTI)

As regulatory agencies encourage construction of transmission lines and gas pipelines along shared utility corridors, the likelihood of voltage and current coupling increases. Development of equations that determine the electrical characteristics of pipeline coatings will help utility engineers to accurately predict induced voltages and currents.

1988-08-01T23:59:59.000Z

322

Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.20 0.20 1970's 0.21 0.22 0.23 0.27 0.29 0.54 0.58 0.83 0.98 1.11 1980's 1.78 2.12 2.56 3.07 2.88 2.97 2.73 2.68 2.53 2.17 1990's 2.06 2.29 2.44 1.97 1.88 1.66 2.63 2.68 2.27 2.48 2000's 3.12 3.94 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use

323

Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.27 0.27 0.27 1970's 0.27 0.28 0.29 0.35 0.46 0.56 0.71 0.98 1.67 1.60 1980's 2.98 3.73 3.63 3.86 3.95 3.54 2.95 2.64 2.39 2.03 1990's 1.86 0.50 0.57 0.26 0.20 0.54 1.04 0.95 0.69 0.78 2000's 1.32 1.76 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Michigan Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

324

Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.32 0.28 0.35 0.47 0.61 0.82 1.77 1.98 2.53 1980's 4.41 4.75 4.90 4.19 3.90 3.13 2.35 2.00 1.90 2.09 1990's 2.16 2.32 2.16 1.71 1.86 1.77 1.77 1.80 1.84 1.98 2000's 2.74 2.91 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Oregon Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

325

Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.21 0.23 0.25 0.26 0.29 0.39 0.48 0.80 0.87 1.20 1980's 1.71 2.12 2.81 3.04 2.92 2.86 2.61 2.41 2.78 1.94 1990's 1.77 2.05 2.31 2.01 0.91 1.19 2.34 2.43 2.02 2.14 2000's 2.48 4.86 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Missouri Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

326

Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.16 0.16 1970's 0.17 0.17 0.18 0.24 0.24 0.51 0.65 0.69 1.36 1.59 1980's 2.05 2.51 2.91 3.05 2.99 2.76 2.56 2.36 2.06 1.88 1990's 1.95 1.85 2.48 1.92 1.52 1.31 1.54 1.84 1.86 1.87 2000's 3.21 3.04 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Wyoming Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

327

Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0.26 0.27 0.28 0.28 0.30 0.35 0.57 0.58 0.50 0.14 1980's 0.73 1.13 0.60 0.86 0.61 0.63 0.61 0.65 1.01 1.13 1990's 1.08 1.32 1.12 1.11 1.11 1.24 1.17 1.34 1.23 0.82 2000's 1.34 1.84 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Alaska Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

328

Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.20 0.22 0.23 0.25 0.28 0.32 0.36 0.67 0.90 1.35 1980's 2.10 2.78 3.11 3.22 3.26 3.23 3.32 2.50 2.41 2.69 1990's 2.19 2.08 2.08 2.24 2.14 1.93 2.62 3.09 2.48 2.18 2000's 3.30 4.57 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Georgia Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

329

Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.15 0.15 1970's 0.16 0.16 0.18 0.19 0.24 0.32 0.42 0.57 0.73 1.10 1980's 1.36 1.81 2.35 2.56 2.55 2.51 2.40 2.20 1.77 1.86 1990's 1.70 1.43 1.54 1.79 1.34 1.33 2.10 2.54 2.01 1.96 2000's 2.81 3.56 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Nebraska Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

330

Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.27 0.28 0.31 0.38 0.53 0.81 1.49 1.40 1980's 2.09 2.81 3.33 3.59 3.49 3.35 3.37 2.68 2.59 2.63 1990's 2.05 1.86 1.93 2.27 2.14 1.83 2.60 3.22 2.59 2.20 2000's 2.66 5.05 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Virginia Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

331

Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.21 0.21 1970's 0.21 0.23 0.25 0.27 0.28 0.38 0.45 0.81 0.86 1.21 1980's 1.73 2.18 2.91 3.21 3.02 3.11 2.78 2.52 2.69 2.17 1990's 2.17 2.46 2.51 1.38 1.03 1.05 2.47 2.58 2.27 2.16 2000's 3.69 4.18 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Indiana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

332

Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.17 1970's 0.18 0.19 0.21 0.22 0.27 0.49 0.72 1.00 1.31 1.53 1980's 2.17 2.58 2.78 2.78 2.81 2.62 2.71 2.57 2.24 1.75 1990's 1.75 1.79 1.89 1.86 1.78 1.45 1.97 2.44 1.98 1.66 2000's 3.89 3.86 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Colorado Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

333

Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.33 0.27 0.23 1970's 0.20 0.22 0.24 0.25 0.29 0.37 0.48 0.60 0.57 1.26 1980's 1.67 2.18 2.85 3.05 2.93 2.89 2.44 1.97 1.77 2.00 1990's 2.12 2.35 2.51 2.67 1.95 1.83 2.63 2.51 2.45 2.11 2000's 3.27 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Kentucky Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

334

Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.05 1970's 0.20 0.21 0.23 0.24 0.28 0.39 0.50 0.81 0.96 1.30 1980's 1.81 2.36 2.91 3.13 3.00 2.90 2.48 1.97 1.96 2.07 1990's 1.98 2.25 2.25 2.40 1.44 1.61 2.58 2.59 2.22 1.98 2000's 3.10 3.76 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Louisiana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

335

Montana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.12 0.11 0.11 1970's 0.11 0.12 0.17 0.21 0.23 0.42 0.46 0.73 0.83 1.16 1980's 1.29 1.90 2.87 3.00 3.04 2.51 2.28 1.86 1.65 1.57 1990's 1.75 1.76 1.63 2.15 1.53 1.16 1.44 1.77 1.72 2.12 2000's 2.96 2.48 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Montana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

336

Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.17 0.17 0.19 0.22 0.28 0.36 0.44 0.64 0.75 1.29 1980's 1.62 2.22 2.86 3.16 2.83 2.79 2.22 1.49 1.79 1.50 1990's 1.65 1.26 1.25 1.68 1.28 1.19 1.80 2.20 1.90 2.08 2000's 3.61 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Arizona Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

337

Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.18 0.18 0.18 1970's 0.19 0.22 0.24 0.26 0.30 0.43 0.52 0.71 0.86 1.12 1980's 1.78 2.12 2.63 2.94 2.97 2.78 2.46 2.64 2.07 2.30 1990's 2.17 2.06 1.78 1.64 1.61 1.45 2.41 2.42 1.58 1.38 2000's 2.41 4.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Arkansas Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

338

Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.19 0.19 1970's 0.19 0.22 0.24 0.25 0.27 0.38 0.50 0.69 0.84 1.25 1980's 2.41 2.74 3.08 3.28 3.29 3.17 3.19 2.37 2.27 2.72 1990's 2.15 1.94 1.94 2.08 2.01 1.81 2.48 2.98 2.41 2.30 2000's 3.30 4.75 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Maryland Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

339

The Effect of the Environment on the Corrosion Products and Corrosion Rates on Gas Transmission Pipelines.  

E-Print Network (OSTI)

??This thesis reports a series of investigations examining external corrosion processes along gas transmission pipelines. TransCanada PipeLines Ltd. (TCPL) has developed six proposed corrosion scenarios… (more)

Sherar, Brent

2011-01-01T23:59:59.000Z

340

Mutual Design Considerations for Overhead AC Transmission Lines and Gas Transmission Pipelines, Volume 1: Engineering Analysis  

Science Conference Proceedings (OSTI)

This reference book presents data on an investigation into the mutual effects of electric power transmission lines and natural gas transmission pipelines sharing rights-of-way. Information is useful to both power and pipeline industry users.

1978-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fact book: synthetic pipeline gas from coal. 1982 update  

SciTech Connect

This book illustrates the major advantages of synthetic pipeline gas from coal. Progress on many of the coal gasification projects envisioned over the past decade has been thwarted by regulatory, permitting, and financing delays. The rationale for developing a synthetic pipeline gas industry remains as strong as ever from the nation's viewpoint, and the pioneer US commercial scale high-Btu coal gasification plant is now under construction-the Great Plains coal gasification plant in North Dakota. Also, the US Synthetic Fuels Corporation is now operational and can move forward to provide the guarantees which are necessary to overcome the financial barriers to a commercial synfuels capability in the United States. Compared to other principal means of utilizing America's vast coal reserves, coal gasification uses coal and land more efficiently, uses less water, emits less air pollutants, requires less capital and results in a lower cost of energy to consumers. (DP)

Not Available

1982-01-01T23:59:59.000Z

342

Sensor and transmitter system for communication in pipelines  

DOE Patents (OSTI)

A system for sensing and communicating in a pipeline that contains a fluid. An acoustic signal containing information about a property of the fluid is produced in the pipeline. The signal is transmitted through the pipeline. The signal is received with the information and used by a control.

Cooper, John F.; Burnham, Alan K.

2013-01-29T23:59:59.000Z

343

EIA - Natural Gas Pipeline Network - Natural Gas Import/Export Locations  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelines > Import/Export Location List Pipelines > Import/Export Location List About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Currently, there are 58 locations at which natural gas can be exported or imported into the United States, including 9 LNG (liquefied natural gas) facilities in the continental United States and Alaska (There is a tenth U.S. LNG import facility located in Puerto Rico). At 28 of these locations natural gas or LNG currently can only be imported; while at 17 they may only be exported (1 LNG export facility is located in Alaska). At 13 of the 58 locations natural gas may, and sometimes does, flow in both directions, although at each of these sites the flow is primarily either import or export.

344

Gas Balancing Rules Must Take into account the Trade-off between Offering Pipeline Transport and Pipeline Flexibility in Liberalized Gas Markets  

E-Print Network (OSTI)

This paper analyses the value and cost of line-pack flexibility in liberalized gas markets through the examination of the techno-economic characteristics of gas transport pipelines and the trade-offs between the different ...

Keyaerts, Nico

345

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available November 27, 2013 - 3:13pm Addthis The Office of Electricity Delivery and Energy Reliability has released its "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" report. The report is now available for downloading. In 2005-06, the Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern United States to meet natural gas demand in the event of a pipeline disruption. The study modeled gas demand for

346

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Thad M. Adams Thad M. Adams Materials Technology Section Savannah River National Laboratory DOE Hydrogen Pipeline R&D Project Review Meeting January 5-6, 2005 Evaluation of Natural Gas Pipeline Materials for Hydrogen Service Hydrogen Technology at the Savannah Hydrogen Technology at the Savannah River Site River Site * Tritium Production/Storage/Handling and Hydrogen Storage/Handling since 1955 - Designed, built and currently operate world's largest metal hydride based processing facility (RTF) - DOE lead site for tritium extraction/handling/separation/storage operations * Applied R&D provided by Savannah River National Laboratory - Largest hydrogen R&D staff in country * Recent Focus on Related National Energy Needs - Current major effort on hydrogen energy technology

347

U.S. Natural Gas Pipeline Imports From Mexico (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

data. Release Date: 12122013 Next Release Date: 172014 Referring Pages: U.S. Natural Gas Imports by Country U.S. Natural Gas Pipeline Imports by Point of Entry U.S. Natural Gas...

348

Decision of optimal scheduling scheme for gas field pipeline network based on hybrid genetic algorithm  

Science Conference Proceedings (OSTI)

A mathematical model of optimal scheduling scheme for natural gas pipeline network is established, which takes minimal annual operating cost of compressor stations as objective function after comprehensively considering the resources of gas field, operating ... Keywords: differential evolution algorithm, genetic algorithm, natural gas pipeline network, optimization, scheduling scheme

Wu Liu; Min Li; Yi Liu; Yuan Xu; Xinglan Yang

2009-06-01T23:59:59.000Z

349

New Northeast natural gas pipeline capacity comes on-line - Today ...  

U.S. Energy Information Administration (EIA)

Solar › Energy in Brief ... Ohio to York County, Pennsylvania. 300 Line Expansion Project, operated by Tennessee Gas Pipeline Company, began service on Nov 1, 2011.

350

,"U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

351

Major Changes in Natural Gas Pipeline Transportation Capacity, 1998-2008  

Reports and Publications (EIA)

This presentation graphically illustrates the areas of major growth on the national natural gas pipeline transmission network between 1998 and the end of 2008.

Information Center

2008-11-18T23:59:59.000Z

352

Developing a PC-Based GIS for the North American Natural Gas Pipeline Network  

Reports and Publications (EIA)

Natural Gas Pipeline Network (September 22-25, 1997)Conference of European StatisticiansBrighton, United KingdomAUTHOR: James Tobin

Information Center

1997-09-01T23:59:59.000Z

353

,"McAllen, TX Natural Gas Pipeline Imports From Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","McAllen, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

354

Over half of U.S. natural gas pipeline projects in 2012 were ...  

U.S. Energy Information Administration (EIA)

U.S. natural gas pipeline capacity investment slowed in 2012 after several years of robust growth. Limited capacity additions were concentrated in the ...

355

Design of a model pipeline for testing of piezoelectric micro power generator for the Trans-Alaska Pipeline System  

E-Print Network (OSTI)

In order to provide a reliable corrosion detection system for the Trans-Alaska Pipeline System (TAPS), a distributed wireless self-powered sensor array is needed to monitor the entire length of the pipeline at all times. ...

Lah, Mike M. (Mike Myoung)

2007-01-01T23:59:59.000Z

356

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

Gasoline and Diesel Fuel Update (EIA)

based on data through 20072008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the...

357

In Natural Gas Pipelines, NIST Goes with the Flow  

Science Conference Proceedings (OSTI)

... flows from producers to consumers through a complex pipeline network totaling ... pressures an order of magnitude smaller than pipelines used in ...

2013-05-01T23:59:59.000Z

358

Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.19 1970's 0.20 0.21 0.23 0.24 0.28 0.36 0.46 0.73 0.88 1.28 1980's 1.75 2.34 2.91 3.06 2.94 2.92 2.44 1.99 1.87 2.09 1990's 2.11 2.33 2.34 2.37 1.98 1.82 2.63 2.62 2.33 2.19 2000's 3.37 4.28 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Mississippi Natural Gas Prices

359

Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.22 0.22 1970's 0.25 0.25 0.26 0.28 0.33 0.55 0.60 1.24 1.28 2.20 1980's 1.26 4.27 4.43 4.14 3.99 3.45 2.68 2.19 1.81 1.77 1990's 1.89 0.56 0.61 0.47 0.47 0.37 0.68 0.63 0.54 0.82 2000's 1.50 1.40 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Minnesota Natural Gas Prices

360

Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.35 0.68 0.30 1970's 0.32 0.32 0.35 0.40 0.50 0.58 0.59 1.50 2.60 2.53 1980's 2.76 2.94 3.53 3.30 3.18 3.71 2.53 2.52 2.13 2.97 1990's 3.68 3.08 2.95 3.53 2.62 2.20 3.50 1.54 3.00 0.59 2000's 4.82 4.93 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Connecticut Natural Gas Prices

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.24 0.24 1970's 0.25 0.29 0.31 0.32 0.40 0.54 0.60 0.92 0.94 1.42 1980's 1.89 2.34 3.02 3.20 3.09 3.06 2.63 2.38 2.36 2.35 1990's 2.57 2.41 2.41 2.83 2.47 2.00 2.71 2.72 2.08 1.97 2000's 3.59 4.76 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Pennsylvania Natural Gas Prices

362

Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.23 0.24 0.28 0.36 0.49 0.73 0.89 1.26 1980's 1.73 2.25 2.96 3.19 2.94 3.01 2.29 1.85 1.78 1.97 1990's 1.94 2.61 2.44 2.23 1.88 1.59 2.57 2.52 2.17 2.04 2000's 3.44 4.13 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Tennessee Natural Gas Prices

363

Washington Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Washington Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.24 0.28 0.33 0.44 0.65 0.78 1.67 1.92 2.38 1980's 3.92 4.34 4.72 3.98 3.72 3.12 2.52 2.11 1.99 2.06 1990's 2.04 1.98 1.89 1.37 1.84 1.78 1.77 1.89 1.76 2.03 2000's 3.07 2.82 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Washington Natural Gas Prices

364

The challenge of new pipeline systems in Russia and the republics  

Science Conference Proceedings (OSTI)

This paper reports that there will be considerable development of the oil and gas industry in the former USSR in the near future. Concurrent with this development will be the need to repair, upgrade and extend existing pipeline systems to carry more products from an increasingly wider production base. Considerable activity in pipeline construction is envisaged in the near future in Russia and its neighboring states. Western participation will continue to grow and the CIS will become a key market for pipeline service companies and construction contractors in the closing years of the 20th century.

Davies, P. (JP Kenny Group of Companies, London (GB)); Chernyaev, V.D. (Transneft, Moscow (SU))

1992-03-01T23:59:59.000Z

365

EIS-0467: Hanford Site Natural Gas Pipeline, Richland, WA | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Hanford Site Natural Gas Pipeline, Richland, WA 7: Hanford Site Natural Gas Pipeline, Richland, WA EIS-0467: Hanford Site Natural Gas Pipeline, Richland, WA Summary This EIS will evaluate the environmental impacts of a proposal to enter into a contract with a licensed natural gas supplier in Washington State to construct, operate, and maintain a natural gas pipeline. The pipeline would deliver natural gas to support the Waste Treatment Plant and the 242-A Evaporator operations in the 200 East Area of the Hanford Site. Public Comment Opportunities None available at this time. For more information, contact: Mr. Douglas Chapin, NEPA Document Manager U.S. Department of Energy Richland Operations Office P.O. Box 550, MSIN A5-11 Richland, WA 99352 Documents Available for Download January 23, 2012 EIS-0467: Notice of Intent to Prepare an Environmental Impact Statement and

366

DEVELOPMENT OF DEPOSIT DETECTION SYSTEM IN PIPELINES OF THE STEELWORKS USING CS-137 GAMMA-RAY  

SciTech Connect

The deposit is built up in the pipeline of the steelworks by the chemical reaction among COG (coke oven gas), BFG (blast furnace gas), moisture, and steel in the high temperature environment and obstructs the smooth gas flow. In this study a gamma-ray system is developed to detect the deposit accumulated in pipelines and calculate the accumulation rate with respect to the cross section area of pipes. Cs-137 is used as the gamma-ray source and the system is designed to apply to pipes of various diameters. This system also includes the DB for storage and display of the measurement results so that it can be used for the efficient management of the pipelines.

Song, Won-Joon; Lee, Seung-Hee; Jeong, Hee-Dong [Research Institute of Industrial Science and Technology, 32 Hyoja-Dong, Nam-Ku, Pohang, 790-330 (Korea, Republic of)

2008-02-28T23:59:59.000Z

367

EMAT based inspection of natural gas pipelines for SSC cracks  

NLE Websites -- All DOE Office Websites (Extended Search)

EMAT-Based Inspection of Natural Gas EMAT-Based Inspection of Natural Gas Pipelines for Stress Corrosion Cracks FY2004 Report Venugopal K. Varma, Raymond W. Tucker, Jr., and Austin P. Albright Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 1 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

368

Technical-Economic Calculation of Gas Pipeline Network Based on Value Engineering  

Science Conference Proceedings (OSTI)

By technical-economic calculation of the gas pipeline network, the economic diameter can be determined and the project investment can be saved. According to the principle of value engineering, a mathematical model is constructed for technical-economic ... Keywords: value engineering, gas pipeline network, function analysis, technical-economic calculation

Liu Jiayou; Zhao Yanxin

2009-12-01T23:59:59.000Z

369

Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 12122013 Next Release Date: 172014 Referring Pages: U.S. Natural Gas Imports by Country U.S. Price of Natural Gas Pipeline Imports by Point of Entry U.S....

370

Network Connectivity and Price Convergency: Gas Pipeline Deregulation  

E-Print Network (OSTI)

1 and length 2 between the vertices of the pipeline networkor.i length two’paths. By 1988, most of the pipelines werepipelines, the number of vertices connected by at l~ast one path of length

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

371

Pipeline and Distribution Use of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports...

372

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2007  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration, Office of Oil and Gas, July 2008 1 U.S. natural gas pipeline construction activity accelerated in 2007 with capacity additions to the grid totaling nearly 14.9 billion cubic feet (Bcf) of daily deliverability (Figure 1). These additions were the largest of any year in the Energy Information Administration's (EIA) 10-year database of pipeline construction activity. The increased level of natural gas pipeline construction activity in 2007 conformed to a growth trend that began slowly in 2005 and intensified in 2006. In 2007, about 1,700 miles of pipeline were installed, which was greater than in any year since 2003 (Figure 2). The expansion cycle for natural gas pipeline construction is occurring at the same time as the development of the

373

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2007  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Information Administration, Office of Oil and Gas, July 2008 1 U.S. natural gas pipeline construction activity accelerated in 2007 with capacity additions to the grid totaling nearly 14.9 billion cubic feet (Bcf) of daily deliverability (Figure 1). These additions were the largest of any year in the Energy Information Administration's (EIA) 10-year database of pipeline construction activity. The increased level of natural gas pipeline construction activity in 2007 conformed to a growth trend that began slowly in 2005 and intensified in 2006. In 2007, about 1,700 miles of pipeline were installed, which was greater than in any year since 2003 (Figure 2). The expansion cycle for natural gas pipeline construction is occurring at the same time as the development of the

374

EIA - Natural Gas Pipeline Network - Regional/State Underground Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Regional/State Underground Natural Gas Storage Table Regional/State Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Underground Natural Gas Storage, Close of 2007 Depleted-Reservoir Storage Aquifer Storage Salt-Cavern Storage Total Region/ State # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) Central Region Colorado 8 42 1,088 0 0 0 0 0 0 8 42 1,088 Iowa 0 0 0 4 77 1,060 0 0 0 4 77 1,060

375

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies and Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy â–  Hydrogen, Fuel Cells, and Infrastructure Technologies Program Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation Standards Relevant Design and Operating Standards ANSI/ASME B31.8 49 CFR 192 CGA H 2 Pipeline Standard (in development) Pipeline Transmission of Hydrogen --- 3 Copyright: Future H 2 Infrastructure Wind Powered Electrolytic Separation Local Reformers Users Stationary Power Sources Vehicle Fueling Stations Distance from Source to User (Miles) <500 0-5 <2,000 <50 Off-peak Hydroelectric Powered Electrolytic Separation Large Reformers (scale economies) Pipeline Transmission of Hydrogen

376

Look at Western Natural Gas Infrastructure During the Recent El Paso Pipeline Disruption, A  

Reports and Publications (EIA)

This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

Information Center

2000-11-01T23:59:59.000Z

377

A Macroscopic Behavior Model for Self-Timed Pipeline Systems  

Science Conference Proceedings (OSTI)

This paper presents a novel macroscopic behavior modelfor self-timed pipeline (STP). STP is a promising architecturefor system-on-chip (SoC) design, because STP easesthe timing problems and abnegates the control dependenciesamong building components ...

Shuji Sannomiya; Yoichi Omori; Makoto Iwata

2003-06-01T23:59:59.000Z

378

Field tests of probes for detecting internal corrosion of natural gas transmission pipelines  

Science Conference Proceedings (OSTI)

A field study was conducted to evaluate the use of electrochemical corrosion rate (ECR) probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. Results and interpretation will be reported from four different field tests. Flange and flush-mount probes were used in four different environments at a gas-gathering site and one environment but two different orientations at a natural gas plant. These sites were selected to represent normal and upset conditions in a gas transmission pipeline. The environments consisted of 2 different levels of humidified natural gas/organic/water mixtures removed from natural gas, and the environments at the 6 and 12 o'clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, Michael S. (Intercorr International Inc.); Kane, Russell D. (Intercorr International Inc.); Meidinger, Brian (RMOTC-DOE)

2005-01-01T23:59:59.000Z

379

Natural Gas Imports by Pipeline into the U.S. Form | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

into the U.S. Form More Documents & Publications Natural Gas Exports by Pipeline out of the U.S. Form LNG Imports by Truck into the U.S. Form Complete Set of all Reporting Forms...

380

McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Dollars per Thousand Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

,"Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 5:21:39 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet)"...

382

Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

Million Cubic Feet) Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

383

Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Dollars per Thousand Cubic Feet) Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

384

A probe for in situ, remote, detection of defects in buried plastic natural gas pipelines  

Science Conference Proceedings (OSTI)

Several techniques are available to determine the integrity of in situ metal pipeline but very little is available in the literature to determine the integrity of plastic pipelines. Since the decade of the 1970s much of the newly installed gas distribution and transmission lines in the United States are fabricated from polyethylene or other plastic. A probe has been developed to determine the in situ integrity of plastic natural gas pipelines that can be installed on a traversing mechanism (pig) to detect abnormalities in the walls of the plastic natural gas pipeline from the interior. This probe has its own internal power source and can be deployed into existing natural gas supply lines. Utilizing the capacitance parameter, the probe inspects the pipe for flaws and records the data internally which can be retrieved later for analysis.

Mathur, M.P.; Spenik, J.L.; Condon, C.M.; Monazam, E.R.; Fincham, W.L.

2007-12-18T23:59:59.000Z

385

Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico  

U.S. Energy Information Administration (EIA)

Pipeline Volumes: 19: 18: 20: 20: 14: 28: 2011-2013: Pipeline Prices: 2.42: 2.34: 2.53: 2.53: 3.21: 3.21: 2011-2013-= No Data Reported; --= Not Applicable; NA = Not ...

386

Expansion and Change on the U.S. Natural Gas Pipeline Network 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 EIA Home > Natural Gas > Natural Gas Analysis Publications Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 Printer-Friendly Version Expansion and Change on the U.S. Natural Gas Pipeline Network - 2002 Text Box: This special report looks at the level of new capacity added to the national natural gas pipeline network in 2002 and the current capability of that network to transport supplies from production areas to U.S. markets. In addition, it examines the amount of additional capacity proposed for development during the next several years and to what degree various proposed projects will improve the deliverability of natural gas to key market areas. Questions or comments on the contents of this article should be directed to James Tobin at james.tobin@eia.doe.gov or (202) 586-4835. james.tobin@eia.doe.gov

387

Pipeline Operations Program (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Pipeline Operations Program regulates the construction, acquisition, abandonment and interconnection of natural gas pipelines, as well as, the transportation and use of natural gas supplies.

388

Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation confers the rights and privileges of telegraph and telephone companies (S.C. Code 58-9) on pipeline and water companies, and contains several additional provisions pertaining to...

389

EIA - Natural Gas Imports & Exports/Pipelines Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Imports & Exports / Pipelines Imports & Exports / Pipelines U.S. Imports by Country Prices and volumes (monthly, annual). U.S. Exports by Country Prices and volumes (monthly, annual). U.S. Imports & Exports by State Prices and volumes (annual). U.S. Imports by Point of Entry Prices and volumes (annual). U.S. Exports by Point of Exit Prices and volumes (annual). International & Interstate Movements of Natural Gas Includes International and Interstate receipts, deliveries and net reciepts by State (annual). Natural Gas Weekly Update Analysis of current price, supply, and storage data; and a weather snapshot. Natural Gas Monthly U.S. production, supply, consumption, disposition, storage, imports, exports, and prices. Natural Gas Basics Analysis of Natural Gas Imports/Exports & Pipelines

390

Delgado-Frias, “A Mesochronous Pipelining Scheme for High-Performance Digital Systems  

E-Print Network (OSTI)

Abstract—A novel mesochronous pipelining scheme is described in this paper. In this scheme, data and clock travel together. At any given time a pipeline stage could be operating on more than one data wave. The clock period in the proposed pipeline scheme is determined by the pipeline stage with largest difference between its minimum and maximum delays. This is a significant performance gain compared to conventional pipeline scheme where clock period is determined by the stage with the largest delay. A detailed analysis of the clock period constraints is provided to show the performance gains and of mesochronous pipelining over other pipelining schemes. Also, the number of pipeline stages and pipeline registers is small. The clock distribution scheme is simple in the mesochronous pipeline architecture. An 8 8-bit carry-save adder multiplier has been implemented in mesochronous pipeline architecture using modest TSMC 180-nm (drawn length 200 nm) CMOS technology. The multiplier architecture and simulation results are described in detail in this paper. The pipelined multiplier is able to operate on a clock period of 350 ps (2.86 GHz). This is a of 1.7 times over conventional pipeline scheme, with fewer pipeline stages and pipeline registers. Index Terms—High performance, mesochronous pipeline, multiplier, pipelined system, register delays. I.

Suryanarayana B. Tatapudi; Student Member; José G. Delgado-frias; Senior Member

2006-01-01T23:59:59.000Z

391

Impact of Natural Gas Infrastructure on Electric Power Systems  

E-Print Network (OSTI)

--Combined-cycle unit, electricity market, natural gas infrastructure, pipeline contingency, pumped-storage hydro, renew gas utilities typically rely on the natural gas storage to augment supplies flowing through) in the natural gas system, deliver natural gas from city gate stations, underground storage facilities, and other

Fu, Yong

392

The Economics of the Nord Stream Pipeline System  

E-Print Network (OSTI)

The Economics of the Nord Stream Pipeline System Chi Kong Chyong, Pierre Noël and David M. Reiner September 2010 CWPE 1051 & EPRG 1026 www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract... The Economics of the Nord Stream Pipeline System EPRG Working Paper 1026 Cambridge Working Paper in Economics 1051 Chi Kong Chyong, Pierre No?l and David M. Reiner We calculate the total cost of building Nord Stream and compare its levelised unit...

Chyong, Chi Kong; Noël, Pierre; Reiner, David M.

393

Improving Security of Oil Pipeline SCADA Systems Using Service-Oriented Architectures  

Science Conference Proceedings (OSTI)

Oil pipeline Supervisory Control and Data Acquisition (SCADA) systems monitor and help control pipes transporting both crude and refined petroleum products. Typical SCADA system architectures focus on centralized data collection and control --- however, ... Keywords: SCADA, architecture, petroleum, pipeline, security, services

Nary Subramanian

2008-11-01T23:59:59.000Z

394

Upgrading drained coal mine methane to pipeline quality: a report on the commercial status of system suppliers  

Science Conference Proceedings (OSTI)

In today's scenario of growing energy demand worldwide and rising natural gas prices, any methane emitted into the atmosphere is an untapped resource of energy and potentially a lost opportunity for additional revenue. In 2005, 9.7% of the total US anthropogenic emissions of methane were attributed to coal production. In recent years, many gassy coal mines have seized the opportunity to recover coal mine methane (CMM) and supply it to natural gas pipeline systems. With natural gas prices in the US exceeding $7.00 per million Btu, CMM pipeline sales brought in an annual revenue topping $97 million in 2005. However, significant opportunity still exists for tapping into this resource as 22% of the drained CMM remains unutilized as of 2005, primarily because its quality does not meet the requirements of natural gas pipeline systems. Recent advances in technologies now offer off-the-shelf options in the US that can upgrade the drained CMM to pipeline quality. These gas upgrading technologies are not only opening up the market to lower-quality methane resources but also providing significant means for reducing emissions, since methane is over 20 times a more potent greenhouse gas than carbon dioxide. This report reviews current gas upgrading technologies available in the market for removal of typical CMM contaminants, provides examples of their successful commercial implementation and compiles a list of vendors specific to nitrogen rejection systems, since nitrogen exposes the biggest challenge to upgrading CMM. 2 figs., 3 tabs., 9 apps.

Carothers, F.P.; Schultz, M.L.

2008-01-15T23:59:59.000Z

395

Localized Pipeline Encroachment Detector System Using Sensor Network  

E-Print Network (OSTI)

Detection of encroachment on pipeline right-of-way is important for pipeline safety. An effective system can provide on-time warning while reducing the probability of false alarms. There are a number of industry and academic developments to tackle this problem. This thesis is the first to study the use of a wireless sensor network for pipeline right-of-way encroachment detection. In the proposed method, each sensor node in the network is responsible for detecting and transmitting vibration signals caused by encroachment activities to a base station (computer center). The base station monitors and analyzes the signals. If an encroachment activity is detected, the base station will send a warning signal. We describe such a platform with hardware configuration and software controls, and the results demonstrate that the platform is able to report our preliminary experiments in detecting digging activities by a tiller in the natural and automotive noise.

Ou, Xiaoxi 1986-

2011-08-01T23:59:59.000Z

396

,"Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_irp_ygrt-nmx_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_irp_ygrt-nmx_mmcfa.htm" ,"Source:","Energy Information Administration"

397

New pipeline project could lower natural gas transportation costs ...  

U.S. Energy Information Administration (EIA)

The spread between the price of natural gas at a supply ... Bottlenecks exist moving Marcellus natural gas out of Pennsylvania and delivering natural gas into ...

398

Expansion of the U.S. Natural Gas Pipeline Network  

U.S. Energy Information Administration (EIA)

unconventional resources. Furthermore, infrastructure additions related to imports of natural gas, including ... Office of Oil and Gas, September 2009 11

399

Development of software using fuzzy logic to predict erosive wear in slurry pipeline system  

Science Conference Proceedings (OSTI)

The phenomenon of wear is a major challenge in transportation through slurry pipeline system. A predictive software tool has been devised using Fuzzy Logic for predicting the erosive wear rate in slurry pipeline system. It is based on published experimental ... Keywords: Java, erosive wear, fuzzy logic, slurry pipeline system, software

Rajat Gupta; Bikramjit Chowdhury; Ambarish Kapil Barpujari; Jnandeep Borbarua

2008-05-01T23:59:59.000Z

400

Study on New Methods of Improving the Accuracy of Leak Detection and Location of Natural Gas Pipeline  

Science Conference Proceedings (OSTI)

As negative pressure wave is applied to leak detection and location of natural gas pipeline, the key is how to realize accurate measurement of propagation velocity of pressure wave and time difference. However, there exists problem of lower accuracy ... Keywords: natural gas pipeline, leak detection and location, negative pressure wave, wavelet transform, singularity detection

Shuqing Zhang; Tianye Gao; Hong Xu; Guangpu Hao; Zhongdong Wang

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Development and Evaluation of an Automated Annotation Pipeline and cDNA Annotation System  

E-Print Network (OSTI)

Development and Evaluation of an Automated Annotation Pipeline and cDNA Annotation System Takeya, including an automated annotation pipeline that provides high-quality preliminary annotation for each

Gough, Julian

402

Pipeline Safety (South Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

403

Pipeline and Distribution Use of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

404

EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc....

405

Pipeline constraints raise average spot natural gas prices in the ...  

U.S. Energy Information Administration (EIA)

The chart shows that spot natural gas prices for Henry Hub, Chicago, ... and gas from Pennsylvania storage fields on to Atlantic coast markets. ...

406

Pipeline and Distribution Use of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

407

Interferometeric Fibre Optic Signal Processing Based on Wavelet Transform for Subsea Gas Pipeline Leakage Inspection  

Science Conference Proceedings (OSTI)

A fiber-optic interferometric method for subsea gas pipeline leakage detection simulation test was conducted in underwater waveguide lab. The leakage signal with simultaneous phase variation is interferometrically measured based on Sagnac interferometer ... Keywords: Subsea pipe, Fiber optic, Interferometeric phase, Null frequency, Wavelet transform

Qiang Wang; Xiaowei Wang

2010-03-01T23:59:59.000Z

408

Electrochemical corrosion rate sensors for detecting internal corrosion of natural gas transmission pipelines  

Science Conference Proceedings (OSTI)

This paper is a report on the evaluation of the use of electrochemical corrosion rate probes to detect internal corrosion in natural gas transmission pipeline environments. Flange and flush-mount probes were used in four different environments at three different sites that were selected to represent normal and upset conditions in a gas transmission pipeline. The environments consisted of humidified natural gas, organic/water mixtures removed from natural gas, and the environments at the 6 and 12 o'clock positions of a natural gas pipeline carrying multiphase gas/liquid flow. This paper will summarize and extend results presented previously and add additional data. A re-analysis of previously-reported data will be presented along with the results of physical examinations on the probes. New data on the measurement of corrosion in multiphase gas/liquid environments and for coupons used to determine corrosion rate and to detect the presence of microbiologically-influenced corrosion (MIC) will also be presented.

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Kane, R.D. (Intercorr International Inc.); Eden, D.C. (Intercorr International Inc.)

2005-01-01T23:59:59.000Z

409

Intrastate Pipeline Safety (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the commissioner of public safety the

410

Pipelines (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipelines (Minnesota) Pipelines (Minnesota) Pipelines (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates pipelines that are used to carry natural or synthetic gas at a pressure of more than 90 pounds per square inch, along with pipelines used to carry petroleum products and coal. Special rules apply to pipelines used to carry natural gas at a pressure of more than 125

411

Network Connectivity and Price Convergency: Gas Pipeline Deregulation  

E-Print Network (OSTI)

Oklahoma E1 Paso Transwestern NGPL Tennessee TrunklinePanhandle ANK NGPLNorthern NGPL Tennessee ANR Columbia Tennessee TexasGas

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

412

Natural Gas Pipeline & Distribution Use - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Gas volumes ...

413

U.S. Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) U.S. Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.21 1970's 0.21 0.22 0.23 0.25 0.30 0.40 0.51 0.77 0.90 1.32 1980's 1.85 2.39 2.97 3.15 3.04 2.92 2.52 2.17 2.10 2.01 1990's 1.95 1.87 2.07 1.97 1.70 1.49 2.27 2.29 2.01 1.88 2000's 2.97 3.55 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use U.S. Natural Gas Prices

414

Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.16 0.17 1970's 0.17 0.19 0.20 0.22 0.26 0.34 0.52 0.73 0.99 1.17 1980's 1.55 1.89 2.50 2.73 2.71 2.83 2.57 2.75 2.01 2.02 1990's 1.52 1.54 1.71 1.25 1.39 1.40 2.37 2.46 2.06 2.16 2000's 3.17 3.60 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Iowa Natural Gas Prices

415

A Computational Approach to the Real Option Management of Network Contracts for Natural Gas Pipeline Transport Capacity  

Science Conference Proceedings (OSTI)

Commodity merchants use real option models to manage their operations. A central element of such a model is its underlying operating policy. We focus on network contracts for the transport capacity of natural gas pipelines, specific energy conversion ... Keywords: Monte Carlo simulation, capacity valuation, commodity and energy conversion assets, energy-related operations, heuristics, math programming, natural gas pipelines, operations management practice, operations management/finance interface, petroleum/natural gas industries, real options, sensitivities, spread options

Nicola Secomandi; Mulan X. Wang

2012-07-01T23:59:59.000Z

416

Corrosion and hydrate formation in natural gas pipelines.  

E-Print Network (OSTI)

??Gas industry annually invests millions of dollars on corrosion inhibitors in order to minimize corrosion implications on flow assurance; however, attention has never been focused… (more)

Obanijesu, Emmanuel Ogo-Oluwa

2012-01-01T23:59:59.000Z

417

Key New England natural gas pipeline reflects seasonal flow ...  

U.S. Energy Information Administration (EIA)

Liquefied natural gas (LNG) deliveries into New England have been declining in recent years, as low domestic prices provide an unattractive market to LNG shippers.

418

Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Imports by Point of Entry (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet)

419

Warroad, MN Natural Gas Imports by Pipeline from Canada  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Exports by Point of Exit (Volumes in Million Cubic Ft., Prices in Dollars per Thousand Cubic Ft.)

420

Marysville, MI Natural Gas Imports by Pipeline from Canada  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Imports by Point of Entry (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet)

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Key New England natural gas pipeline reflects seasonal flow ...  

U.S. Energy Information Administration (EIA)

Northeast natural gas prices frequently increase in winter, as high demand and supply constraints separate local prices from the U.S. Gulf region ...

422

Noyes, MN Natural Gas Imports by Pipeline from Canada  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Imports by Point of Entry (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet)

423

Trans-Caspian gas pipeline feasibility study. Volume 1  

Science Conference Proceedings (OSTI)

This study, conducted by Enron Engineering and Construction Company, was funded by the US Trade and Development Agency. The study provides detailed information concerning natural gas demand in Turkey and Southern Europe. The purpose of the study is to estimate the rate at which new gas can be absorbed in the Turkish market and be re-exported to the markets in Europe, as well as to forecast Turkish natural gas demand for the period up to 2020. The study also evaluates gas demand and pricing for the market in the 2002--2005 time frame. This is Volume 1 of a 3-volume report, and is divided into the following sections: (1) Task A: Gas Sales; (2) Task B: Initial Economic Screening; (3) Task D: Project Cost Analysis.

NONE

1999-03-01T23:59:59.000Z

424

Cooperative Pipelined Regeneration in Distributed Storage Systems  

E-Print Network (OSTI)

The Apprentice Challenge J. STROTHER MOORE and GEORGE PORTER University of Texas at Austin We and distributed compu- tation, mutual exclusion, operational semantics, theorem proving 1. THE APPRENTICE SYSTEM in the Apprentice class builds an instance of a Container object and then begins creating and starting new threads

Li, Baochun

425

Order 636 has worrisome leftovers for small LDCs. [Natural gas pipeline transportation regulations  

Science Conference Proceedings (OSTI)

This paper is an interview with a representative of a local natural gas distribution company, giving his opinion of the economic effects of the Federal Energy Regulatory Commission's (FERC) Order 636. This regulation provides that all natural gas, pipelines, and local gas distribution companies (LDC's) contract and manage their own supply and demand sales and purchases. The goal of the legislation was to provide a stable natural gas market which would allow for long term contract sales of natural gas. This paper discusses the economic and business impacts this regulation will have on LDC's which use to spot market purchase the majority of their gas from lowest price suppliers. The end result of this regulation would reduce the available of easily accessible spot market gas and require LCD's to begin negotiating their own contracts.

Not Available

1993-10-01T23:59:59.000Z

426

Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.17 0.17 1970's 0.17 0.18 0.19 0.20 0.28 0.37 0.51 0.68 0.73 1.19 1980's 1.56 2.24 3.09 3.11 2.98 2.80 2.18 2.01 1.98 1.81 1990's 1.74 1.62 1.66 1.82 1.64 1.64 2.40 2.36 2.02 1.99 2000's 2.99 3.13 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Texas Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

427

Ohio Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.23 0.23 1970's 0.23 0.27 0.28 0.30 0.32 0.43 0.53 0.87 1.01 1.37 1980's 1.92 2.33 3.04 3.42 3.28 3.28 2.79 2.64 2.43 2.54 1990's 2.61 2.66 2.83 2.53 2.50 2.03 2.88 2.80 3.20 2.63 2000's 3.41 5.18 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Ohio Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

428

Idaho Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.21 0.22 1970's 0.22 0.24 0.28 0.34 0.44 0.60 0.72 1.65 1.95 2.45 1980's 3.93 3.95 4.19 3.69 3.55 3.15 2.67 2.08 2.00 2.05 1990's 2.06 1.99 1.89 1.76 1.86 1.78 1.79 1.83 1.67 2.04 2000's 3.52 3.49 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Idaho Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

429

Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.21 0.21 1970's 0.21 0.22 0.28 0.29 0.34 0.54 0.67 1.40 1.72 1.88 1980's 2.94 3.17 2.67 2.94 2.99 3.19 2.93 2.66 2.84 2.18 1990's 2.25 2.51 2.25 1.91 1.94 1.57 1.68 2.20 2.05 1.92 2000's 3.19 2.97 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Utah Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

430

New York Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.23 0.25 1970's 0.23 0.25 0.26 0.27 0.31 0.39 0.54 0.85 1.07 1.44 1980's 1.95 2.41 3.15 3.44 3.23 3.15 2.53 2.47 2.33 2.64 1990's 2.59 2.71 2.86 3.15 2.21 1.52 2.23 1.89 1.38 1.31 2000's 2.25 2.94 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use New York Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

431

Pipeline gas trade between Asian Russia, Northeast Asia gets fresh look  

Science Conference Proceedings (OSTI)

Pipeline trade in natural gas between Asian Russia and Northeast Asia is receiving serious attention from the governments and companies central to the projects that might evolve. Such trade has become possible during the past 5 years because of improvements in relations between China and Russia. Prospects for a long-distance pipeline are enhanced by the possibility of extending deliveries of Russian gas to Korea and Japan to supplement imports by those countries of liquefied natural gas. Korea and Japan have expressed interest in participating in a Russia-China pipeline. But their approaches differ greatly and would require careful coordination. Furthermore, participation by western companies would be essential. A 2 year study by the Royal Institute of International Affairs examined Japanese and Korean views about energy needs and possible sources of supply. The study included a survey of 32 energy organizations in those countries. This article reviews the gas potential of Asian Russia, describes events that have brought attention to those resources as a possible source of supply to Northeast Asia, and summarizes findings of the survey.

Paik, K.W. [Royal Inst. of International Affairs, London (United Kingdom); Choi, J.Y. [University College, London (United Kingdom)

1997-08-18T23:59:59.000Z

432

Price for Natural Gas Pipeline and Distribution Use  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet) ... Pennsylvania: 3.59: 4.76: NA-----1967-2005: Rhode Island: 4.67: 5.20: NA-----1967-2005: South Carolina: 2.54 ...

433

RESIDENTIAL ON SITE SOLAR HEATING SYSTEMS: A PROJECT EVALUATION USING THE CAPITAL ASSET PRICING MODEL  

E-Print Network (OSTI)

natural gas system requires the construction of pipeline networks; electrical heating systems require power generation

Schutz, Stephen Richard

2011-01-01T23:59:59.000Z

434

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Blending Hydrogen into Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Technical Report NREL/TP-5600-51995 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Prepared under Task No. HT12.2010 Technical Report NREL/TP-5600-51995 March 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

435

Hydrogen Pipeline Discussion  

NLE Websites -- All DOE Office Websites (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

436

A Dredging Knowledge-Base Expert System for Pipeline Dredges with Comparison to Field Data  

E-Print Network (OSTI)

A Pipeline Analytical Program and Dredging Knowledge{Base Expert{System (DKBES) determines a pipeline dredge's production and resulting cost and schedule. Pipeline dredge engineering presents a complex and dynamic process necessary to maintain navigable waterways. Dredge engineers use pipeline engineering and slurry transport principles to determine the production rate of a pipeline dredge system. Engineers then use cost engineering factors to determine the expense of the dredge project. Previous work in engineering incorporated an object{oriented expert{system to determine cost and scheduling of mid{rise building construction where data objects represent the fundamental elements of the construction process within the program execution. A previously developed dredge cost estimating spreadsheet program which uses hydraulic engineering and slurry transport principles determines the performance metrics of a dredge pump and pipeline system. This study focuses on combining hydraulic analysis with the functionality of an expert{system to determine the performance metrics of a dredge pump and pipeline system and its resulting schedule. Field data from the U.S. Army Corps of Engineers pipeline dredge, Goetz, and several contract daily dredge reports show how accurately the DKBES can predict pipeline dredge production. Real{time dredge instrumentation data from the Goetz compares the accuracy of the Pipeline Analytical Program to actual dredge operation. Comparison of the Pipeline Analytical Program to pipeline daily dredge reports shows how accurately the Pipeline Analytical Program can predict a dredge project's schedule over several months. Both of these comparisons determine the accuracy and validity of the Pipeline Analytical Program and DKBES as they calculate the performance metrics of the pipeline dredge project. The results of the study determined that the Pipeline Analytical Program compared closely to the Goetz eld data where only pump and pipeline hydraulics a ected the dredge production. Results from the dredge projects determined the Pipeline Analytical Program underestimated actual long{term dredge production. Study results identi ed key similarities and di erences between the DKBES and spreadsheet program in terms of cost and scheduling. The study then draws conclusions based on these ndings and o ers recommendations for further use.

Wilson, Derek Alan

2010-12-01T23:59:59.000Z

437

New perspectives on the damage estimation for buried pipeline systems due to seismic wave propagation  

Science Conference Proceedings (OSTI)

Over the past three decades, seismic fragility fonnulations for buried pipeline systems have been developed following two tendencies: the use of earthquake damage scenarios from several pipeline systems to create general pipeline fragility functions; and, the use of damage scenarios from one pipeline system to create specific-system fragility functions. In this paper, the advantages and disadvantages of both tendencies are analyzed and discussed; in addition, a summary of what can be considered the new challenges for developing better pipeline seismic fragility formulations is discussed. The most important conclusion of this paper states that more efforts are needed to improve the estimation of transient ground strain -the main cause of pipeline damage due to seismic wave propagation; with relevant advances in that research field, new and better fragility formulations could be developed.

Pineda Porras, Omar Andrey [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

438

Ruby Pipeline ramps up rapidly to supply natural gas to ...  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ. Today in Energy. ... PG&E's overall natural gas needs have changed little since late July when Ruby began flowing ...

439

Condition monitoring of offshore pipelines using vibration based methods.  

E-Print Network (OSTI)

??[Truncated abstract] Subsea pipelines are essential structural systems to transport natural oil or gas from offshore oil wells to an onshore location. Damage along a… (more)

Peng, Xue-Lin

2012-01-01T23:59:59.000Z

440

U.S. Natural Gas Imports by Pipeline from Mexico  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas Compressor Stations on the Interstate Pipeline ...  

U.S. Energy Information Administration (EIA)

facilities, emergency shutdown systems, and an on-site computerized flow control and dispatch system that maintains the operational integrity of the ...

442

Emissions data for stationary reciprocating engines and gas turbines in use by the gas pipeline transmission industry  

SciTech Connect

A.G.A. Project PR-15-613, conducted under the sponsorship of the Pipeline Committee (PRC), involved two phases. This final report for the overall project combines both of the separate phase reports into a single document. The project was entitled ''Compilation of Emissions Data for Stationary Reciprocating Engines and Gas Turbines in Use by the Gas Pipeline Transmission Industry (Update).'' The purpose of this project was to update the 1980 edition of the Compilation of Emissions Data. Phase I involved collection of emissions data from companies in the natural gas industry and from gas engine manufacturers and recommending engine and gas turbine models for testing under Phase II. Phase I was completed in March 1987 and the findings and recommendations were included in an interim report. Phase II involved emissions testing of a number of reciprocating engines and gas turbines. Phase II was completed in April 1988 and the findings are included in this project final report. 9 refs., 5 tabs.

Fanick, E.R.; Dietzmann, H.E.; Urban, C.M.

1988-04-01T23:59:59.000Z

443

Ozark 260-mile gas line system completed  

Science Conference Proceedings (OSTI)

Gathering gas in the Arkoma basin of Oklahoma and Arkansas for transport to market, the 260-mile Ozark gas line system runs from southwest of McAlester, Okla., to Natural Gas Pipeline Co. of America's station at Searcy, Ark. The recently completed mainline has an initial capacity of 170 million CF/day with a maximum operating pressure of 1200 psig and a delivery pressure of 700 psig at the NGPL station. The 20-in. pipeline is API 5LX-Grade X60, 0.281-in. wall thickness for Class 1 areas, 0.344 for Class 2 areas, 0.406 for Class 3 areas, and API 5LX-Grade X52, 0.500-in. wall thickness for river crossings.

Dixon, R.R.

1982-05-01T23:59:59.000Z

444

Pipeline transportation and underground storage are vital and complementary components of the U  

U.S. Energy Information Administration (EIA) Indexed Site

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005 Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005 This report examines the amount of new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2005 and the areas of the country where those additions were concentrated. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2006 and 2008 and the market factors supporting these initiatives. Questions or comments on the contents of this article should be directed to James Tobin at james.tobin@eia.doe.gov or (202) 586-4835. The addition to natural gas pipeline capacity in 2005 exceeded that of 2004 (Figure 1) although fewer miles of pipeline were installed (Figure 2). Miles of new natural gas pipeline (1,152) were 21 percent less than in 2004, even

445

A preliminary investigation of the effects of environmentally assisted cracking on natural gas transmission pipelines  

E-Print Network (OSTI)

Concepts for the development of a model to predict natural gas transmission pipeline lifetime in a corrosive environment are constructed. Primarily, the effects of environmentally assisted cracking (EAC) are explored. Tensile test specimens from a sample of API 5L X-52 pipeline were tested in a simulated groundwater solution and subsequently analyzed. The results suggested that the simulated environment ultimately reduced the ductility of the test specimens; however, no evidence of ??classical?? stress corrosion crack morphology was discovered. However, corrosion pits up to 0.75 mm (0.03 in) were revealed during metallographic analysis. A Marin factor analogy and an energy method concept are suggested and explored. Ultimately, the test data set was too small for the results to be of any directly applicable significance.

Curbo, Jason Wayne

2005-05-01T23:59:59.000Z

446

5. Natural Gas Pipeline Network: Changing and Growing  

U.S. Energy Information Administration (EIA)

come from the electric generation sector, which will tend to level out overall system load during the ... Summary Profile of Completed and Proposed ...

447

SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS  

DOE Green Energy (OSTI)

Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

2003-11-21T23:59:59.000Z

448

Pipeline under construction Sea Proposed/planned pipeline Possible ...  

U.S. Energy Information Administration (EIA)

Arab Gas Pipeline Maghreb-Europe GME Shah-Deniz Statfjord Ormen Lange TrollTTrollroll ... Greece-Italy Interconnector Turkey-Greece Interconnector South Caucasus Pipeline

449

Blending Hydrogen into Natural Gas Pipeline Networks: A Review...  

NLE Websites -- All DOE Office Websites (Extended Search)

be introduced into the network. This would be an issue in cases where the hydrogen production system does not produce pure hydrogen. In most research programs, the focus of...

450

The geological disasters defense expert system of the massive pipeline network SCADA system based on FNN  

Science Conference Proceedings (OSTI)

The SCADA system plays an important role in monitoring the long distance operation of mass pipeline network, which may experience huge damage due to landslides geological hazards. It is critical to detect the deformation and displacement of rock to forecast ... Keywords: FNN, SCADA system, TDR, expert system, geologic hazard

Xiedong Cao; Cundang Wei; Jie Li; Li Yang; Dan Zhang; Gang Tang

2012-04-01T23:59:59.000Z

451

South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.22 0.20 1970's 0.20 0.20 0.30 0.33 0.31 0.50 0.55 0.63 0.78 1.20 1980's 1.71 2.20 2.91 3.31 3.32 3.46 2.69 2.17 2.05 1.91 1990's 2.13 1.42 1.22 1.80 1.36 1.03 1.75 2.13 1.68 2.12 2000's 3.76 3.28 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use South Dakota Natural Gas Prices

452

West Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) West Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.34 0.33 1970's 0.32 0.33 0.38 0.39 0.45 0.59 0.69 1.12 1.29 0.85 1980's 2.24 2.62 3.35 3.75 3.71 3.85 3.44 2.85 2.89 2.97 1990's 2.86 2.49 2.93 3.57 3.54 1.87 3.19 2.97 2.69 2.54 2000's 3.70 5.42 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use West Virginia Natural Gas Prices

453

New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.15 0.15 1970's 0.17 0.17 0.18 0.22 0.30 0.39 0.41 0.68 0.79 1.36 1980's 1.78 2.25 2.80 3.10 3.24 2.86 2.31 1.66 1.70 1.63 1990's 1.67 1.36 1.31 1.79 1.61 1.13 1.59 1.94 1.89 1.03 2000's 1.80 1.74 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use New Mexico Natural Gas Prices

454

New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.21 0.21 1970's 0.22 0.23 0.24 0.25 0.27 0.33 0.41 0.63 0.85 1.29 1980's 1.96 2.75 3.07 3.37 3.68 3.40 2.94 2.53 2.73 2.74 1990's 2.62 2.48 2.62 2.93 2.66 2.59 3.15 3.11 2.93 1.79 2000's 4.00 4.74 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use New Jersey Natural Gas Prices

455

Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.73 0.33 0.39 1970's 0.33 0.38 0.38 0.42 0.41 0.55 0.75 1.67 2.08 2.06 1980's 2.92 4.74 4.53 4.74 4.05 4.53 3.55 2.87 2.20 4.19 1990's 3.74 3.41 2.94 3.31 2.69 2.21 3.35 3.15 3.00 2.53 2000's 4.67 5.20 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Rhode Island Natural Gas Prices

456

North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.27 0.17 0.17 1970's 0.20 0.20 0.25 0.29 0.31 0.51 0.57 0.75 0.95 1.55 1980's 1.81 2.34 4.11 3.80 3.42 2.77 2.56 2.40 2.49 2.03 1990's 1.61 1.35 1.28 1.84 1.34 1.01 1.70 2.07 1.77 2.12 2000's 3.62 2.14 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use North Dakota Natural Gas Prices

457

Energy Information Administration - Natural Gas Glossary  

U.S. Energy Information Administration (EIA)

Energy Information Administration Deliverability on the Interstate Natural Gas Pipeline System 143 Glossary Abandonment: Regulatory permission to ...

458

Compilation of emissions data for stationary reciprocating gas engines and gas turbines in use by the natural gas pipeline transmission industry  

SciTech Connect

This publication compiles the available exhaust emission data for stationary reciprocating engines and gas turbines used by the natural gas pipeline transmission industry into a single, easy-to-use source. Data in the original issue and the revisions were obtained from projects sponsored by the A.G.A. PRC and from inhouse projects within a number of the A.G.A. member companies. Additional data included in this reissue were obtained from additional emissions measurement projects sponsored by the A.G.A. PRC, and from A.G.A. member companies and natural gas engine manufacturers.

Urban, C.M.

1988-05-01T23:59:59.000Z

459

AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION  

Science Conference Proceedings (OSTI)

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

Jerry Myers

2003-05-13T23:59:59.000Z

460

Seismic fragility formulations for segmented buried pipeline systems including the impact of differential ground subsidence  

Science Conference Proceedings (OSTI)

Though Differential Ground Subsidence (DGS) impacts the seismic response of segmented buried pipelines augmenting their vulnerability, fragility formulations to estimate repair rates under such condition are not available in the literature. Physical models to estimate pipeline seismic damage considering other cases of permanent ground subsidence (e.g. faulting, tectonic uplift, liquefaction, and landslides) have been extensively reported, not being the case of DGS. The refinement of the study of two important phenomena in Mexico City - the 1985 Michoacan earthquake scenario and the sinking of the city due to ground subsidence - has contributed to the analysis of the interrelation of pipeline damage, ground motion intensity, and DGS; from the analysis of the 48-inch pipeline network of the Mexico City's Water System, fragility formulations for segmented buried pipeline systems for two DGS levels are proposed. The novel parameter PGV{sup 2}/PGA, being PGV peak ground velocity and PGA peak ground acceleration, has been used as seismic parameter in these formulations, since it has shown better correlation to pipeline damage than PGV alone according to previous studies. By comparing the proposed fragilities, it is concluded that a change in the DGS level (from Low-Medium to High) could increase the pipeline repair rates (number of repairs per kilometer) by factors ranging from 1.3 to 2.0; being the higher the seismic intensity the lower the factor.

Pineda Porras, Omar Andrey [Los Alamos National Laboratory; Ordaz, Mario [UNAM, MEXICO CITY

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

Melaina, M. W.

2013-05-01T23:59:59.000Z

462

About U.S. Natural Gas Pipelines – Transporting Natural Gas U.S ...  

U.S. Energy Information Administration (EIA)

proposed development of several more over the next several years. ... Liquefied natural gas ... region through import terminals located in

463

S. 1583: This Act may be cited as the Pipeline Safety Improvement Act of 1991, introduced in the United States Senate, One Hundred Second Congress, First Session, September 16, 1991  

SciTech Connect

This bill would amend the Natural Gas Pipeline Act of 1968 and the Hazardous Liquid Pipeline Safety Act of 1979 to authorize appropriations and to improve pipeline safety. The bill describes the following: authorization of appropriations; definitions; environmental protection; identification of certain pipelines; rapid shutdown of pipeline facilities; excess flow valves; replacement of cast iron pipelines; safety of pipe not owned by pipeline operators; one-call notification systems; underwater abandoned pipeline facilities; study of underwater abandoned pipeline facilities; and exemption from hours of service requirements.

1991-01-01T23:59:59.000Z

464

Fine grain pipeline systems for real-time motion and stereo-vision computation  

Science Conference Proceedings (OSTI)

Image processing systems require high computational load that motivates the design of specific hardware architectures in order to arrive at real-time platforms. We adopt innovative design techniques based on the intensive utilisation of the inherent ... Keywords: FPGAs, algorithm parallelisation, cognitive vision models, customised architectures, data flow architectures, field programmable gate arrays, fine-grain pipelining, high performance architectures, image processing, on-chip integration, optical flow, pipelined techniques, real-time motion, reconfigurable hardware, stereo vision, superscalar units

Javier Diaz; Eduardo Ros; Alberto Prieto; Francisco J. Pelayo

2007-04-01T23:59:59.000Z

465

The National Energy Modeling System: An Overview 2000 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market-clearing prices for natural gas supplies and for end-use consumption, given the information passed from other NEMS modules. A transmission and distribution network (Figure 15), composed of nodes and arcs, is used to simulate the interregional flow and pricing of gas in the contiguous United States and Canada in both the peak (December through March) and offpeak (April through November) period. This network is a simplified representation of the physical natural gas pipeline system and establishes the possible interregional flows and associated prices as gas moves from supply sources to end users. natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market-clearing prices for natural gas supplies and for end-use consumption, given the information passed from other NEMS modules. A transmission and distribution network (Figure 15), composed of nodes and arcs, is used to simulate the interregional flow and pricing of gas in the contiguous United States and Canada in both the peak (December through March) and offpeak (April through November) period. This network is a simplified representation of the physical natural gas pipeline system and establishes the possible interregional flows and associated prices as gas moves from supply sources to end users. Figure 15. Natural Gas Transmission and Distribution Module Network

466

Liquefaction and Pipeline Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

factors add 20 percent to liquefaction plant total installed cost 6 Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for current urban and...

467

S. 1429: A Bill to amend the Natural Gas Pipeline Safety Act of 1968, as amended, and the Hazardous Liquid Pipeline Safety Act of 1979, as amended, to authorize appropriations for fiscal years 1992 and 1993, and for other purposes, introduced in the Senate of the United States, One Hundred Second Congress, First Session, June 28, 1991  

SciTech Connect

This bill would further amend the Natural Gas Pipeline Safety Act of 1968 and the Hazardous Liquid Pipeline Safety Act of 1979 to authorize appropriations for fiscal years 1992 and 1993. The bill authorizes $5,562,000 as appropriations for the Natural Gas Pipeline Safety Act and $1,391,000 as appropriations for the Hazardous Liquid Pipeline Safety Act for fiscal year ending September 30, 1992 and such sums as may be necessary for the fiscal year ending September 30, 1993.

1991-01-01T23:59:59.000Z

468

H.R. 432: A Bill to amend chapter 601 of title 49, United States Code, to improve natural gas and hazardous liquid pipeline safety, in response to the natural gas pipeline accident in Edison, New Jersey, and for other purposes. Introduced in the House of Representatives, One Hundred Fourth Congress, First session  

SciTech Connect

This document contains H.R. 432, A Bill to amend chapter 601 of title 49, United States Code, to improve natural gas and hazardous liquid pipeline safety, in response to the natural gas pipeline accident in Edison, New Jersey, and for other purposes. This Bill was introduced in the House of Representatives, 104th Congress, First Session, January 5, 1995.

NONE

1995-12-31T23:59:59.000Z

469

Determining the Remaining Strength of Pitting Corrosion in Corroded Pipelines with API579 Criterion  

Science Conference Proceedings (OSTI)

Because the long-distance oil and gas pipelines have buried underground in a long term, there is corrosion on the inside and outside surfaces of pipeline, which can cause serious hole leaking accident, and bring the huge economic losses. In order to ... Keywords: API579 criterion, remaining strength, pipeline corrosion, pitting corrosion, evaluation system

Song-wei Gao; Bo Gao; Li-jian Yang

2011-10-01T23:59:59.000Z

470

AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION  

SciTech Connect

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

Jerry Myers

2003-11-12T23:59:59.000Z

471

PIPELINES AS COMMUNICATION NETWORK LINKS  

SciTech Connect

This report presents the results of an investigation into two methods of using the natural gas pipeline as a communication medium. The work addressed the need to develop secure system monitoring and control techniques between the field and control centers and to robotic devices in the pipeline. In the first method, the pipeline was treated as a microwave waveguide. In the second method, the pipe was treated as a leaky feeder or a multi-ground neutral and the signal was directly injected onto the metal pipe. These methods were tested on existing pipeline loops at UMR and Batelle. The results reported in this report indicate the feasibility of both methods. In addition, a few suitable communication link protocols for this network were analyzed.

Kelvin T. Erickson; Ann Miller; E. Keith Stanek; C.H. Wu; Shari Dunn-Norman

2005-03-14T23:59:59.000Z

472

PGPG: An Automatic Generator of Pipeline Design for Programmable GRAPE Systems  

E-Print Network (OSTI)

We have developed PGPG (Pipeline Generator for Programmable GRAPE), a software which generates the low-level design of the pipeline processor and communication software for FPGA-based computing engines (FBCEs). An FBCE typically consists of one or multiple FPGA (Field-Programmable Gate Array) chips and local memory. Here, the term "Field-Programmable" means that one can rewrite the logic implemented to the chip after the hardware is completed, and therefore a single FBCE can be used for calculation of various functions, for example pipeline processors for gravity, SPH interaction, or image processing. The main problem with FBCEs is that the user need to develop the detailed hardware design for the processor to be implemented to FPGA chips. In addition, she or he has to write the control logic for the processor, communication and data conversion library on the host processor, and application program which uses the developed processor. These require detailed knowledge of hardware design, a hardware description language such as VHDL, the operating system and the application, and amount of human work is huge. A relatively simple design would require 1 person-year or more. The PGPG software generates all necessary design descriptions, except for the application software itself, from a high-level design description of the pipeline processor in the PGPG language. The PGPG language is a simple language, specialized to the description of pipeline processors. Thus, the design of pipeline processor in PGPG language is much easier than the traditional design. For real applications such as the pipeline for gravitational interaction, the pipeline processor generated by PGPG achieved the performance similar to that of hand-written code. In this paper we present a detailed description of PGPG version 1.0.

Tsuyoshi Hamada; Toshiyuki Fukushige; Junichiro Makino

2007-03-08T23:59:59.000Z

473

Enhanced Renewable Methane Production System  

treatment that enhances the heating value of biogas, delivering a gas that is close to pipeline quality. This system offers

474

Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks  

SciTech Connect

There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2008-02-29T23:59:59.000Z

475

A hybrid meta-heuristic approach for natural gas pipeline network optimization  

Science Conference Proceedings (OSTI)

In this paper we propose a hybrid heuristic solution procedure for fuel cost minimization on gas transmission systems with a cyclic network topology, that is, networks with at least one cycle containing two or more compressor station arcs. Our heuristic ... Keywords: dynamic programming, natural gas, non-convex problem, steady state, tabu search, transmission networks

Conrado Borraz-Sánchez; Roger Z. Ríos-Mercado

2005-08-01T23:59:59.000Z

476

Components in the Pipeline  

Science Conference Proceedings (OSTI)

Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

Gorton, Ian; Wynne, Adam S.; Liu, Yan (Jenny); Yin, Jian

2011-02-24T23:59:59.000Z

477

Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

In many of the operating flue gas desulfurization (FGD) systems throughout the world, materials corrosion leads to considerable costs and downtime. Utilities are often required to maintain, repair, replace, and/or upgrade existing materials to combat corrosion issues. This document provides the results of a recent EPRI survey that examined the various types of corrosion and materials damage in FGD systems.

2005-12-23T23:59:59.000Z

478

Efforts to Harmonize Gas Pipeline Operations with the Demands of the Electricity Sector  

Science Conference Proceedings (OSTI)

A possible future course of action is for pipelines to continue their efforts to provide new services with FERC approval. Over time, pipelines could satisfy power generators by giving them the flexibility and services they desire and for which they are willing to pay. Another possibility is that FERC will enact new rules governing regional electricity markets that would function similarly to nationwide business practices. (author)

Costello, Ken

2006-12-15T23:59:59.000Z

479

Flight Testing of an Advanced Airborne Natural Gas Leak Detection System  

SciTech Connect

ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

2005-10-01T23:59:59.000Z

480

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network (OSTI)

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

MFL tool hardware for pipeline inspection  

SciTech Connect

The intelligent pig based on the magnetic flux leakage (MFL) is frequently used for inline inspection of gas and liquid transportation pipelines. The tool is capable of reliably detecting and characterizing several commonly occurring pipeline defects including metal loss due to corrosion and gouges, dents, and buckles, which tend to threaten the structural integrity of the pipeline. The defect detection and characterization capabilities of the tool are directly dependent upon the type of critical hardware components and systems selected for the tool assembly. This article discusses the key components of an advanced or high resolution MFL tool.

Tandon, K.K. [Engineers India Ltd., Haryana (India). Research and Development Complex

1997-02-01T23:59:59.000Z

482

Integrated system for coal-methanol liquefaction and slurry pipeline transportation. Final report. [In slurry transport  

DOE Green Energy (OSTI)

The engineering economics of an integrated coal-to-methanol conversion system and coal-in-methanol transportation system are examined, under the circumstances of the western coalfields, i.e., long distances from major markets and scarcity of water in the vicinity of the mines. The transportation economics are attractive, indicating tariffs of approximately 40 cents per million Btu per thousand miles for the coal-methanol pipeline vs 60 cents via coal-water pipelines and upwards of a dollar via rail. Energy consumption is also less in the coal-methanol pipeline than in the coal-water pipeline, and about equal to rail. It is also concluded that, by a proper marriage of the synthetic fuel (methanolization) plant to the slurrification plant, most, and in some cases all, of the water required by the synthetic fuel process can be supplied by the natural moisture of the coal itself. Thus, the only technology which presently exists and by which synthetic fuel from western coal can displace petroleum in the automotive fuel market is the integrated methanol conversion and tranportation system. The key element is the ability of the methanol slurry pipeline to accept and to deliver dry (1 to 5% moisture) coal, allowing the natural coal moisture to be used as synthesis feedstock in satisfaction of the large water requirement of any synthetic fuel plant. By virtue of these unique properties, this integrated system is seen as the only means in the foreseeable future whereby western coal can be converted to synthetic fuel and moved to distant markets.

Banks, W.F.; Davidson, J.K.; Horton, J.H.; Summers, C.W.

1980-03-31T23:59:59.000Z

483

Power Line-Induced AC Potential on Natural Gas Pipelines for Complex Rights-of-Way Configurations, Volume 1: Engineering Analysis  

Science Conference Proceedings (OSTI)

This report addresses complex common corridor coupling problems for overhead electric power transmission lines and buried natural gas pipelines. Volume 1 describes the development of analytic methods for solving such problems and presents field data used in verification efforts. Volume 2 is a handbook for graphic analysis designed for use by field personnel or others without access to a computer. Volume 3 is a user's guide for the PIPELINE computer code.

1983-05-01T23:59:59.000Z

484

Instrumented Pipeline Initiative  

Science Conference Proceedings (OSTI)

This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

Thomas Piro; Michael Ream

2010-07-31T23:59:59.000Z

485

NewPipeline-Robot-Power-Source.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Sources for Power Sources for Inspection Robots in Natural Gas Transmission Pipelines By Shreekant B. Malvadkar and Edward L. Parsons Office of Systems & Policy Support INTRODUCTION Strategic Center of Natural gas's (SCNG) Natural Gas Infrastructure Reliability Product Team has undertaken the development of a prototype robot that would inspect and possibly repair transmission pipelines. NETL has granted a contract for this purpose to New York Gas Group (NYGAS) and Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC). The purpose of this study is to analyze various onboard power supply options for such a commercially viable robot that can operate in a transmission pipeline for extended period. The primary power sources considered are wind turbines, rechargeable batteries,

486

,"West Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_swv_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_swv_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

487

,"New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snm_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snm_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

488

,"New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snj_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snj_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

489

,"Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico (Dollars per Thousand Cubic Feet)" Mexico (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9102mx3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9102mx3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

490

,"South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_ssd_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_ssd_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

491

,"South Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_ssc_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_ssc_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

492

,"North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snc_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snc_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

493

,"New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snh_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snh_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

494

,"North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snd_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snd_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

495

,"New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_sny_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_sny_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

496

IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM  

Science Conference Proceedings (OSTI)

This report documents a 3-year research program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase II were to evaluate the results for the 4-cylinder system prototype developed for Phase I, then optimize this system and prepare the technology for the field demonstration phase in Year 3. In all, there were twelve (12) tasks defined and executed to support objectives in a stepwise fashion. The optimized four-cylinder system data demonstrated significant progress compared to Phase I results, as well as traditional spark ignition systems. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system on an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Commercialization of the retrofit micropilot ignition technology is awaiting a ''market pull'', which is expected to materialize as the results of the field demonstration become known and accepted. The Implementation Team, comprised of Woodward Governor Company, Enginuity LLC, Hoerbiger Corporation of America, and DigiCon Inc., has direct experience with the technology development and implementation, and stands ready to promote and commercialize the retrofit micropilot ignition system.

Scott Chase; Daniel Olsen; Ted Bestor

2005-05-01T23:59:59.000Z

497

Gas turbine premixing systems  

SciTech Connect

Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

2013-12-31T23:59:59.000Z

498

Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1  

SciTech Connect

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

NONE

1995-02-17T23:59:59.000Z

499

Demonstration plant engineering and design. Phase I. The pipeline gas demonstration plant. Volume 9. Plant Section 800: product gas compression and drying  

SciTech Connect

Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase scheduled to be completed in June 1981. One of the major efforts of Phase I is the completion of the process design and the project engineering design of the Demonstration Plant. This design effort has been completed. A report of the design effort is being issued in 24 volumes. This is Volume 9 which reports the design of Plant Section 800 - Product Gas Compression and Drying. Plant Section 800 compresses, cools, and drys the SNG product to conditions and specifications required for pipeline use. A conventional triethylene glycol (TEG) gas drying unit is employed to reduce the moisture content of the SNG to less than 7 pounds per million standard cubic feet. The product SNG has a minimum pressure of 800 psig and a maximum temperature of 100/sup 0/F. This section also includes the product gas analysis, metering, and totalizing instruments. It is designed to remove 3144 pounds of water from 19 million SCFC of SNG product. Volume 9 contains the following design information: process operation; design basis; heat and material balance; stream compositions; utility, chemical and catalyst summary; major equipment and machinery list; major equipment and machinery requisitions; instrument list; instrument requisitions; line lists; process flow diagram; engineering flow diagrams; and section plot plan.

Not Available

1981-01-01T23:59:59.000Z

500

A Novel MagPipe Pipeline transportation system using linear motor drives  

Science Conference Proceedings (OSTI)

A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.

Fang, J.R.; Montgomery, D.B.; Roderick, L. [Magplane Technology Inc., Littleton, MA (United States)

2009-11-15T23:59:59.000Z