Sample records for gas pipeline compressor

  1. Economics of Electric Compressors for Gas Transmission

    E-Print Network [OSTI]

    Schmeal, W. R.; Hibbs, J. J.

    Three new factors are coming together to motivate gas pipeline firms to consider electric motors for replacement of older reciprocating gas engines for compressor systems, and for new compressor installations. These factors are environmental...

  2. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25T23:59:59.000Z

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  3. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

    1992-01-01T23:59:59.000Z

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  4. Supersonic gas compressor

    DOE Patents [OSTI]

    Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

    2007-11-13T23:59:59.000Z

    A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

  5. Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year Jan FebYearCompressor

  6. Hydrogen pipeline compressors annual progress report.

    SciTech Connect (OSTI)

    Fenske, G. R.; Erck, R. A. (Energy Systems)

    2011-07-15T23:59:59.000Z

    The objectives are: (1) develop advanced materials and coatings for hydrogen pipeline compressors; (2) achieve greater reliability, greater efficiency, and lower capital in vestment and maintenance costs in hydrogen pipeline compressors; and (3) research existing and novel hydrogen compression technologies that can improve reliability, eliminate contamination, and reduce cost. Compressors are critical components used in the production and delivery of hydrogen. Current reciprocating compressors used for pipeline delivery of hydrogen are costly, are subject to excessive wear, have poor reliability, and often require the use of lubricants that can contaminate the hydrogen (used in fuel cells). Duplicate compressors may be required to assure availability. The primary objective of this project is to identify, and develop as required, advanced materials and coatings that can achieve the friction, wear, and reliability requirements for dynamically loaded components (seal and bearings) in high-temperature, high-pressure hydrogen environments prototypical of pipeline and forecourt compressor systems. The DOE Strategic Directions for Hydrogen Delivery Workshop identified critical needs in the development of advanced hydrogen compressors - notably, the need to minimize moving parts and to address wear through new designs (centrifugal, linear, guided rotor, and electrochemical) and improved compressor materials. The DOE is supporting several compressor design studies on hydrogen pipeline compression specifically addressing oil-free designs that demonstrate compression in the 0-500 psig to 800-1200 psig range with significant improvements in efficiency, contamination, and reliability/durability. One of the designs by Mohawk Innovative Technologies Inc. (MiTi{reg_sign}) involves using oil-free foil bearings and seals in a centrifual compressor, and MiTi{reg_sign} identified the development of bearings, seals, and oil-free tribological coatings as crucial to the successful development of an advanced compressor. MiTi{reg_sign} and ANL have developed potential coatings for these rigorous applications; however, the performance of these coatings (as well as the nickel-alloy substrates) in high-temperature, high-speed hydrogen environments is unknown at this point.

  7. High ratio recirculating gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1989-08-22T23:59:59.000Z

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  8. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01T23:59:59.000Z

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

  9. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect (OSTI)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01T23:59:59.000Z

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  10. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

  11. Gas Pipelines (Texas)

    Broader source: Energy.gov [DOE]

    This chapter applies to any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as any...

  12. Gas Pipeline Securities (Indiana)

    Broader source: Energy.gov [DOE]

    This statute establishes that entities engaged in the transmission of gas by pipelines are not required to obtain the consent of the Utility Regulatory Commission for issuance of stocks,...

  13. Natural Gas Pipeline Safety (Kansas)

    Broader source: Energy.gov [DOE]

    This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

  14. Natural Gas Pipeline Utilities (Maine)

    Broader source: Energy.gov [DOE]

    These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the...

  15. Multiple volume compressor for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E. (Clifton Park, NY)

    1986-01-01T23:59:59.000Z

    A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

  16. GAS PIPELINE PIGABILITY

    SciTech Connect (OSTI)

    Ted Clark; Bruce Nestleroth

    2004-04-01T23:59:59.000Z

    In-line inspection equipment is commonly used to examine a large portion of the long distance transmission pipeline system that transports natural gas from well gathering points to local distribution companies. A piece of equipment that is inserted into a pipeline and driven by product flow is called a ''pig''. Using this term as a base, a set of terms has evolved. Pigs that are equipped with sensors and data recording devices are called ''intelligent pigs''. Pipelines that cannot be inspected using intelligent pigs are deemed ''unpigable''. But many factors affect the passage of a pig through a pipeline, or the ''pigability''. The pigability pipeline extend well beyond the basic need for a long round hole with a means to enter and exit. An accurate assessment of pigability includes consideration of pipeline length, attributes, pressure, flow rate, deformation, cleanliness, and other factors as well as the availability of inspection technology. All factors must be considered when assessing the appropriateness of ILI to assess specific pipeline threats.

  17. Computational Optimization of Gas Compressor Stations: MINLP ...

    E-Print Network [OSTI]

    Daniel Rose

    2015-02-26T23:59:59.000Z

    Feb 26, 2015 ... Abstract: When considering cost-optimal operation of gas transport networks, compressor stations play the most important role. Proper ...

  18. Gas Pipeline Safety (West Virginia)

    Broader source: Energy.gov [DOE]

    The Gas Pipeline Safety Section of the Engineering Division is responsible for the application and enforcement of pipeline safety regulations under Chapter 24B of the West Virginia Code and 49 U.S...

  19. Gas Pipeline Safety (Indiana)

    Broader source: Energy.gov [DOE]

    This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

  20. Gas Utility Pipeline Tax (Texas)

    Broader source: Energy.gov [DOE]

    All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

  1. COMPUTATIONAL OPTIMIZATION OF GAS COMPRESSOR ...

    E-Print Network [OSTI]

    2015-02-26T23:59:59.000Z

    Feb 26, 2015 ... When considering cost-optimal operation of gas transport net- works ..... The four most frequently used drive types are gas turbines, gas driven.

  2. Network Connectivity and Price Convergency: Gas Pipeline Deregulation

    E-Print Network [OSTI]

    De Vany, Arthur; Walls, W. David

    1993-01-01T23:59:59.000Z

    Convergence: Gas Pipeline Deregulation Arthur De Vany W.Price Convergence: Gas Pipeline Deregulation Arthur De Vany

  3. About U.S. Natural Gas Pipelines

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

  4. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2YonthlyEnergyMap

  5. The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline

    E-Print Network [OSTI]

    Bruneau, Steve

    ;Pipeline Repair Protocol 1 Leak detection and compressor shut down 2 Damage location 3 Excavate pipe 4 Murdoch Gorm Dunkirk Existing Gas Pipeline Proposed Gas Pipeline Existing Oil Pipeline 20" 30" 36" (2) 40 Gas Pipeline Proposed Gas Pipeline Existing Oil Pipeline 20" 30" 36" (2) 40" 40" 28" 42" 36" 40" 30

  6. Natural Gas Transmission Pipeline Siting Act (Florida)

    Broader source: Energy.gov [DOE]

    This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas...

  7. Pipelines and Underground Gas Storage (Iowa)

    Broader source: Energy.gov [DOE]

    These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

  8. Evalutation of Natural Gas Pipeline Materials and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed...

  9. Virginia Natural Gas's Hampton Roads Pipeline Crossing

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—covers Virginia Natural Gas's (VNG's) pipeline project at Hampton Roads Crossing (HRX).

  10. INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL

    SciTech Connect (OSTI)

    Robert J. McKee; Shane P. Siebenaler; Danny M. Deffenbaugh

    2005-02-25T23:59:59.000Z

    The objective of this Direct Surge Control project was to develop a new internal method to avoid surge of pipeline compressors. This method will safely expand the range and flexibility of compressor operations, while minimizing wasteful recycle flow at the lower end of the operating envelope. The approach is to sense the onset of surge with a probe that directly measures re-circulation at the impeller inlet. The signals from the probe are used by a controller to allow operation at low flow conditions without resorting to a predictive method requiring excessive margin to activate a recycle valve. The sensor developed and demonstrated during this project was a simple, rugged, and sensitive drag probe. Experiments conducted in a laboratory compressor clearly showed the effectiveness of the technique. Subsequent field demonstrations indicated that the increase in range without the need to recycle flow was on the order of 19% to 25%. The cost benefit of applying the direct surge control technology appears to be as much as $120 per hour per compressor for operation without the current level of recycle flow. This could amount to approximately $85 million per year for the U.S. Natural Gas Transmission industry, if direct surge control systems are applied to most pipeline centrifugal compressors.

  11. alaska gas pipeline: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 4 A moving horizon solution to the gas pipeline...

  12. arctic gas pipeline: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 3 A moving horizon solution to the gas pipeline...

  13. arctic gas pipelines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 3 A moving horizon solution to the gas pipeline...

  14. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Environmental Management (EM)

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

  15. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

  16. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    U.S. Energy Information Administration (EIA) Indexed Site

    Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Regional Overviews and Links to Pipeline...

  17. PID control of gas pipelines

    SciTech Connect (OSTI)

    Coltharp, B.; Bergmann, J. [Baker CAC, Kingwood, TX (United States)

    1996-09-01T23:59:59.000Z

    The use of low cost digital controllers for pipeline control is increasing as the reliability and cost improves. In pipeline applications, the proportional, integral, and derivative (PID) controller algorithm is often used. However, the unique problems associated with pipeline operation have caused manufacturers to modify the basic control algorithms. Features such as set point ramping, built in pressure control, freeze on input error, and high and low output limits help assure safe and predictable pipeline operation.

  18. An investigation of real gas effects in supercritical CO? compressors

    E-Print Network [OSTI]

    Baltadjiev, Nikola D. (Nikola Dimitrov)

    2012-01-01T23:59:59.000Z

    This thesis presents a comprehensive assessment of real gas effects on the performance and matching of centrifugal compressors operating with CO2 at supercritical conditions. The analytical framework combines first principles ...

  19. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...

    U.S. Energy Information Administration (EIA) Indexed Site

    Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural...

  20. Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs

    E-Print Network [OSTI]

    Parker, Nathan

    2004-01-01T23:59:59.000Z

    Warren R. “U.S. interstate pipelines begin 1993 on upbeat. ”66. ? True, Warren R. “Current pipeline costs. ” Oil & GasWarren R. “U.S. interstate pipelines ran more efficiently in

  1. Pipeline Politics: Natural Gas in Eurasia 

    E-Print Network [OSTI]

    Landrum, William W.; Llewellyn, Benjamin B.; Limesand, Craig M.; Miller, Dante J.; Morris, James P.; Nowell, Kathleen S.; Sherman, Charlotte L.

    2010-01-01T23:59:59.000Z

    important to US efforts to reduce its reliance on Middle Eastern energy resources. Presently, pipelines in Eurasia stretch across thousands of miles throughout unstable political regions. Disruptions in gas and oil supplies negatively affect the economies...

  2. Energy Department Moves Forward on Alaska Natural Gas Pipeline...

    Broader source: Energy.gov (indexed) [DOE]

    guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's...

  3. Interstate Natural Gas Pipelines (Iowa)

    Broader source: Energy.gov [DOE]

    This statute confers upon the Iowa Utilities Board the authority to act as an agent of the federal government in determining pipeline company compliance with federal standards within the boundaries...

  4. Gas Pipelines, County Roads (Indiana)

    Broader source: Energy.gov [DOE]

    A contract with any Board of County Commissioners is required prior to the construction of a pipeline, conduit, or private drain across or along any county highway. The contract will include terms...

  5. Altamont gas pipeline project delayed 1 year

    SciTech Connect (OSTI)

    Not Available

    1992-08-03T23:59:59.000Z

    Altamont Gas Transmission Co. will delay laying a 30 in., 620 mile pipeline to deliver Canadian gas to California until markets become more responsive. This paper reports that the decision will delay until November 1994 completion of the proposed 719 MMcfd, $612 million line. The original schedule called for construction to begin in spring 1993 with an in-service date of late 1993. Altamont pipeline is to transport gas from the US-Canadian border at Port of Wild Horse, Mont., to Opal, Wyo., where it will interconnect with the Kern River Transmission Co. pipeline to California. Altamont has obtained all regulatory approvals for its project. Altamont the project sponsors Tenneco Gas, Amoco Corp., and Entech Inc. support the decision to delay the start of construction.

  6. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...

    Gasoline and Diesel Fuel Update (EIA)

    Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground Natural Gas Storage...

  7. Market Opportunities for Electric Drive Compressors for Gas Transmission, Storage, and Processing

    E-Print Network [OSTI]

    Parent, L. V.; Ralph, H. D.; Schmeal, W. R.

    for replacement of older gas engines and for new compressor installations. In ozone nonattainment regions, bringing gas compressor stations into compliance with NOx emission regulations is a must. Outside those regions, new electric drives are being considered...

  8. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM-PHASE I

    SciTech Connect (OSTI)

    Ted Bestor

    2003-03-04T23:59:59.000Z

    This report documents the first year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase I goals and objectives were met. We intend to proceed with the Phase II research plan, as set forth by the applicable Research Management Plan. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase I were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. Initial testing results showed: (1) Brake specific fuel consumption of natural gas was improved from standard spark ignition across the map, 1% at full load and 5% at 70% load. (2) 0% misfires for all points on micropilot ignition. Fuel savings were most likely due to this percent misfire improvement. (3) THC (Total Hydrocarbon) emissions were improved significantly at light load, 38% at 70% load. (4) VOC (Volatile Organic Compounds) emissions were improved above 80% load. (5) Coefficient of Variance for the IMEP (Indicated Mean Effective Pressure) was significantly less at lower loads, 76% less at 70%. These preliminary results will be substantiated and enhanced during Phase II of the Micropilot Ignition program.

  9. ,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2015 1:45:50 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports From Canada (MMcf)" "Sourcekey","N9102CN2" "Date","U.S. Natural Gas Pipeline Imports From Canada...

  10. Statistical Modeling of Corrosion Failures in Natural Gas Transmission Pipelines 

    E-Print Network [OSTI]

    Cobanoglu, Mustafa Murat

    2014-03-28T23:59:59.000Z

    Natural gas pipelines are a critical component of the U.S. energy infrastructure. The safety of these pipelines plays a key role for the gas industry. Therefore, the understanding of failure characteristics and their consequences are very important...

  11. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11...

  12. A Cheap Levitating Gas/Load Pipeline

    E-Print Network [OSTI]

    Alexander Bolonkin

    2008-12-02T23:59:59.000Z

    Design of new cheap aerial pipelines, a large flexible tube deployed at high altitude, for delivery of natural (fuel) gas, water and other payload over a long distance is delineated. The main component of the natural gas is methane which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg (1 pound). The lightweight film flexible pipeline can be located in air at high altitude and, as such, does not damage the environment. Using the lift force of this pipeline and wing devices payloads of oil, water, or other fluids, or even solids such as coal, cargo, passengers can be delivered cheaply at long distance. This aerial pipeline dramatically decreases the cost and the time of construction relative to conventional pipelines of steel which saves energy and greatly lowers the capital cost of construction. The article contains a computed project for delivery 24 billion cubic meters of gas and tens of million tons of oil, water or other payload per year.

  13. Pipeline Access and Market Integration in the Natural Gas Industry: Evidence from Cointegration Tests

    E-Print Network [OSTI]

    De Vany, Arthur; Walls, W. David

    1993-01-01T23:59:59.000Z

    System for Natural Gas Pipelines." Study prepared underin the Natural Gas Pipeline Industry. Ph.D. dissertation,the remaining barfers to pipeline integration. REFERENCES

  14. Gas compressor with side branch absorber for pulsation control

    DOE Patents [OSTI]

    Harris, Ralph E. (San Antonio, TX); Scrivner, Christine M. (San Antonio, TX); Broerman, III, Eugene L. (San Antonio, TX)

    2011-05-24T23:59:59.000Z

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  15. Method for route selection of transcontinental natural gas pipelines

    E-Print Network [OSTI]

    Kouroupetroglou, Georgios

    1 Method for route selection of transcontinental natural gas pipelines Fotios G. Thomaidis1@kepa.uoa.gr Abstract. The route of transcontinental natural gas pipelines is characterized by complexity, compared choices. Keywords: Optimum route method, natural gas, transcontinental pipelines, Caspian Region ­ E

  16. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect (OSTI)

    Not Available

    1990-12-18T23:59:59.000Z

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  17. Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Natural Gas Pipeline Network DOE'S HYDROGEN ENERGY STORAGE FOR GRID AND TRANSPORTATION SERVICES WORKSHOP Sacramento, CA May 14, 2014 Brian Weeks Gas Technology Institute 2 2...

  18. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...

    Gasoline and Diesel Fuel Update (EIA)

    Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production Reservoir Underground...

  19. Kern River natural gas pipeline commissioned

    SciTech Connect (OSTI)

    Not Available

    1992-03-16T23:59:59.000Z

    Kern River Gas Transmission Co., the biggest gas pipeline built in the U.S. in the last decade, has been commissioned. The system was dedicated Mar. 6 at a meter station in an oil field near Bakersfield, Calif. The $984 million, 904 mile pipeline is a 50-50 venture of Tenneco Inc. and Williams Cos. Planning for the project began about 7 years ago. Current operating capacity of the line is 700 MMcfd. Plans call for boosting capacity by 452 MMcfd with added compression. Most of the gas will go to thermal enhanced oil recovery projects in heavy oil fields in California. This paper reports that other customers include utilities, independent electrical power producers, and cogeneration projects.

  20. Compressor and Hot Section Fouling in Gas Turbines- Causes and Effects

    E-Print Network [OSTI]

    Meher-Homji, C. B.

    COMPRESSOR AND BOT SECTION FOOLING IN GAS TURBINES - CAUSES AND EPFECTS CYRUS B. MEHER-HOMJI Manager, Advanced Technology Boyce Engineering International, Inc. Houston, Texas ABSTRACT The fouling of axial flow compressors and turbines is a... deposits on the blading resulting in severe performance decrements. This is a common operating problem experienced by almost all operators of gas turbines. The effect of compressor fouling is a drop in airflow and a drop in compressor isentropic...

  1. Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,,

    E-Print Network [OSTI]

    Jackson, Robert B.

    Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,, * Adrian Down, Nathan G increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic

  2. ,"International Falls, MN Natural Gas Pipeline Imports From Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    International Falls, MN Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

  3. ,"Highgate Springs, VT Natural Gas Pipeline Imports From Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    Highgate Springs, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","L...

  4. ,"Corsby, ND Natural Gas Pipeline Imports From Canada (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Corsby, ND Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  5. ,"Sault St Marie, MI Natural Gas Pipeline Exports to Canada ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sault St Marie, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

  6. ,"Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  7. ,"North Troy, VT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Troy, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  8. ,"Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  9. ,"Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  10. ,"Portal, ND Natural Gas Pipeline Imports From Canada (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Portal, ND Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  11. ,"New York Natural Gas Pipeline and Distribution Use Price (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic...

  12. Miniature solid-state gas compressor

    DOE Patents [OSTI]

    Lawless, W.N.; Cross, L.E.; Steyert, W.A.

    1985-05-07T23:59:59.000Z

    A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described. 9 figs.

  13. Miniature solid-state gas compressor

    DOE Patents [OSTI]

    Lawless, William N. (518 Illinois Ct., Westerville, OH 43081); Cross, Leslie E. (401 Glenn Rd., State College, PA 16801); Steyert, William A. (c/o Oakhurst Dr., R.D. 1, Box 99, Center Valley, PA 18034)

    1985-01-01T23:59:59.000Z

    A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described.

  14. EIA - Natural Gas Pipeline System - Southwest Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest Region About U.S. Natural Gas Pipelines

  15. Analysis and optimization of gas pipeline networks and surface production facilities for the Waskom Field--Harrison County, Texas

    E-Print Network [OSTI]

    Pang, Jason Ui-Yong

    1995-01-01T23:59:59.000Z

    in these simulation Surface facilities for the Waskom field include pipelines of varying, sizes, separators, compressors, valves, and production manifolds. After creating and verifying the field model, we determined that the field possesses greater compressor...

  16. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline Utilization & Capacity About

  17. Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin)

    Broader source: Energy.gov [DOE]

    Any utility proposing to construct a natural gas pipeline requiring a Certificate of Authority (CA) under Wis. Stat. §196.49 must prepare an application for Commission review.  These regulations ...

  18. "Assessment of the Adequacy of Natural Gas Pipeline Capacity...

    Broader source: Energy.gov (indexed) [DOE]

    its "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" report. The report is now available for downloading. In 2005-06, the Office of...

  19. Illinois Gas Pipeline Safety Act (Illinois)

    Broader source: Energy.gov [DOE]

    Standards established under this Act may apply to the design, installation, inspection, testing, construction, extension, operation, replacement, and maintenance of pipeline facilities. Whenever...

  20. The liquefied natural gas pipeline: a system study 

    E-Print Network [OSTI]

    Hazel, Thomas Ray

    1972-01-01T23:59:59.000Z

    THE LIQUEFIED NATURAL GAS PIPELINE: A SYSTEM STUDY A Thesis by THOMAS RAY HAZEL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1972 Major Subject...: Mechanical Engineering THE LIQUEFIED NATURAL GAS PIPELINE: A SYSTEM STUDY A Thesis by THOMAS RAY HAZEL Approved as to style and content by: Chairman o 'Committee) (Head of Department) (Member) (Member) (Member) (Member) (Member) May 1972 ABSTRACT...

  1. The liquefied natural gas pipeline: a system study

    E-Print Network [OSTI]

    Hazel, Thomas Ray

    1972-01-01T23:59:59.000Z

    THE LIQUEFIED NATURAL GAS PIPELINE: A SYSTEM STUDY A Thesis by THOMAS RAY HAZEL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1972 Major Subject...: Mechanical Engineering THE LIQUEFIED NATURAL GAS PIPELINE: A SYSTEM STUDY A Thesis by THOMAS RAY HAZEL Approved as to style and content by: Chairman o 'Committee) (Head of Department) (Member) (Member) (Member) (Member) (Member) May 1972 ABSTRACT...

  2. A Low-Cost Natural Gas/Freshwater Aerial Pipeline

    E-Print Network [OSTI]

    Alexander Bolonkin; Richard Cathcart

    2007-01-05T23:59:59.000Z

    Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

  3. Scoping Study on the Safety Impact of Valve Spacing in Natural Gas Pipelines

    SciTech Connect (OSTI)

    Sulfredge, Charles David [ORNL

    2007-07-01T23:59:59.000Z

    The U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration (PHMSA) is responsible for ensuring the safe, reliable, and environmentally sound operation of the nation's natural gas and hazardous liquid pipelines. Regulations adopted by PHMSA for gas pipelines are provided in 49 CFR 192, and spacing requirements for valves in gas transmission pipelines are presented in 49 CFR 192.179. The present report describes the findings of a scoping study conducted by Oak Ridge National Laboratory (ORNL) to assist PHMSA in assessing the safety impact of system valve spacing. Calculations of the pressures, temperatures, and flow velocities during a set of representative pipe depressurization transients were carried out using a one-dimensional numerical model with either ideal gas or real gas properties for the fluid. With both ideal gas and real gas properties, the high-consequence area radius for any resulting fire as defined by Stevens in GRI-00/0189 was evaluated as one measure of the pipeline safety. In the real gas case, a model for convective heat transfer from the pipe wall is included to assess the potential for shut-off valve failures due to excessively low temperatures resulting from depressurization cooling of the pipe. A discussion is also provided of some additional factors by which system valve spacing could affect overall pipeline safety. The following conclusions can be drawn from this work: (1) Using an adaptation of the Stephens hazard radius criteria, valve spacing has a negligible influence on natural gas pipeline safety for the pipeline diameter, pressure range, and valve spacings considered in this study. (2) Over the first 30 s of the transient, pipeline pressure has a far greater effect on the hazard radius calculated with the Stephens criteria than any variations in the transient flow decay profile and the average discharge rate. (3) Other factors besides the Stephens criteria, such as the longer burn time for an accidental fire, greater period of danger to emergency personnel, increased unavoidable loss of gas, and possible depressurization cooling of the shut-off valves may also be important when deciding whether a change in the required valve spacing would be beneficial from a safety standpoint. (4) The average normalized discharge rate of {lambda}{sub avg} = 0.33 assumed by Stephens in developing his safety criteria is an excellent conservative value for natural gas discharge at the pressures, valve spacings, and pipe diameter used in this study. This conclusion remains valid even when real rather than ideal gas properties are considered in the analysis. (5) Significant pipe wall cooling effects (T{sub w} < -50 F or 228 K) can extend for a mile or more upstream from the rupture point within 30 s of a break. These conditions are colder than the temperature range specifications for many valve lubricants. The length of the low-temperature zone due to this cooling effect is also essentially independent of the system shut-off valve spacing or the distance between the break and a compressor station. (6) Having more redundant shut-off valves available would reduce the probability that pipe cooling effects could interfere with isolating the broken area following a pipeline rupture accident.

  4. National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company's Compressor Station #7, North Dakota

    SciTech Connect (OSTI)

    Sweetzer, Richard [Exergy Partners Corp.; Leslie, Neil [Gas Technology Institute

    2008-02-01T23:59:59.000Z

    A field research test and verification project was conducted at the recovered energy generation plant at Northern Border Pipeline Company Compressor Station #7 (CS#7) near St. Anthony. Recovered energy generation plant equipment was supplied and installed by ORMAT Technologies, Inc. Basin Electric is purchasing the electricity under a purchase power agreement with an ORMAT subsidiary, which owns and operates the plant.

  5. Alaskan Natural Gas Pipeline Developments (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

  6. Natural Gas Pipeline Research: Best Practices in Monitoring Technology

    E-Print Network [OSTI]

    Natural Gas Pipeline Research: Best Practices in Monitoring Technology Energy Systems Research/index.html January 2012 The Issue California is the secondlargest natural gas consuming state in the United States, just behind Texas. About 85% of the natural gas consumed in California is delivered on interstate

  7. EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

  8. Deliverability on the interstate natural gas pipeline system

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  9. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2003-04-08T23:59:59.000Z

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  10. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2002-01-01T23:59:59.000Z

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  11. Gas Spring Losses in Linear Clearance Seal Compressors P.B. Bailey, M.W. Dadd, J.S. Reed*

    E-Print Network [OSTI]

    1 Gas Spring Losses in Linear Clearance Seal Compressors P.B. Bailey, M.W. Dadd, J.S. Reed* , C investigations on conventional crank driven reciprocating compressors, where the use of normal sliding seals would minimise seal losses. The widespread use of linear clearance seals in linear compressor has raised

  12. U. S. gas pipelines move to comply with Order 636

    SciTech Connect (OSTI)

    Not Available

    1992-06-15T23:59:59.000Z

    This paper reports that more US interstate gas pipelines have unveiled plans to comply with the Federal Energy Regulatory Commission's Order 636 megarestructuring rule. In the latest developments: Texas Eastern Transmission Corp. (Tetco) filed the first Order 636 compliance proposal with FERC outlining new transportation rates, operational issues, and services the company plans to offer. Tenneco Gas will eliminate a layer of managers and split marketing and transportation functions into four divisions to deal with Order 646. ANR Pipeline Co. made organizational changes expected to help it participate faster and more effectively under Order 636. The company in mid-May made gas sales a stand alone activity, reorganized system sales by region, and consolidated transportation and storage functions. FERC's long awaited megarestructuring rule, issued early in April, aims to assure the open access, interstate pipelines provide equal services for all gas supplies. Companies are to submit transition plans to FERC by Nov. 2.

  13. Fact Sheet: Efficiency Standards for Natural Gas Compressors...

    Broader source: Energy.gov (indexed) [DOE]

    exist in the market today with varying efficiency levels; this is true for the compressors themselves and for the engines or turbines that drive them. DOE plans to examine...

  14. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    SciTech Connect (OSTI)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01T23:59:59.000Z

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  15. EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

  16. Variable gas spring for matching power output from FPSE to load of refrigerant compressor

    DOE Patents [OSTI]

    Chen, G.; Beale, W.T.

    1990-04-03T23:59:59.000Z

    The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand. 6 figs.

  17. Variable gas spring for matching power output from FPSE to load of refrigerant compressor

    DOE Patents [OSTI]

    Chen, Gong (Athens, OH); Beale, William T. (Athens, OH)

    1990-01-01T23:59:59.000Z

    The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand.

  18. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    Fuel Cell Technologies Publication and Product Library (EERE)

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipeline

  19. The evaluation and restoration of a deteriorated buried gas pipeline

    SciTech Connect (OSTI)

    Dovico, R.; Montero, E.

    1996-12-31T23:59:59.000Z

    Historically, the Argentine gas transmission and distribution industry was owned and operated by the State. In 1992, by government decree, this entire industry was transferred to private owners and operators, and divided into two Gas Transmission Companies (TGN and TGS) and eight Gas Distribution Companies. The pipelines and related facilities had been left in an operating condition, however major capital investments were required to assure that the integrity, reliability and operability of the facilities were intact. These capital expenditures were mandatory in many areas as part of the privatization. Maintenance and rehabilitation tasks were developed for the entire transmission system, with the intent to reduce the number of unscheduled outages, optimize system maintenance costs, increase operation safety, and upgrade the pipeline to ensure compliance with the international code. Transportadora de Gas del Norte (TGN), operated by Nova Gas International of Calgary, Canada, consists of two major pipeline transmission systems. The North Line, which transports gas from Northern Argentina and Bolivia to markets south to Buenos Aires is a 24 inch, 3,000 Km system constructed in 1960. It was constructed using a field applied asphalt coating system. The Center West Line, which transports gas from central Argentina (Neuquen) to markets in the western part of the country and also the Buenos Aires area, is a 30 inch, 1,400 Km system constructed in 1981. It was constructed using a field applied polyethylene tape coating system.

  20. Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs

    E-Print Network [OSTI]

    Parker, Nathan

    2004-01-01T23:59:59.000Z

    future estimates of hydrogen pipelines. Construction Cost (does this mean for hydrogen pipelines? The objective of thisinto the cost of hydrogen pipelines. To this end I will

  1. Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test

    SciTech Connect (OSTI)

    Schweitzer, J. K.; Smith, J. D.

    1981-03-01T23:59:59.000Z

    The results of a component technology demonstration program to fabricate, assemble and test an advanced axial/centrifugal compressor are presented. This work was conducted to demonstrate the utilization of advanced aircraft gas turbine cooling and high pressure compressor technology to improve the performance and reliability of future industrial gas turbines. Specific objectives of the compressor component testing were to demonstrate 18:1 pressure ratio on a single spool at 90% polytropic efficiency with 80% fewer airfoils as compared to current industrial gas turbine compressors. The compressor design configuration utilizes low aspect ratio/highly-loaded axial compressor blading combined with a centrifugal backend stage to achieve the 18:1 design pressure ratio in only 7 stages and 281 axial compressor airfoils. Initial testing of the compressor test rig was conducted with a vaneless centrifugal stage diffuser to allow documentation of the axial compressor performance. Peak design speed axial compressor performance demonstrated was 91.8% polytropic efficiency at 6.5:1 pressure ratio. Subsequent documentation of the combined axial/centrifugal performance with a centrifugal stage pipe diffuser resulted in the demonstration of 91.5% polytropic efficiency and 14% stall margin at the 18:1 overall compressor design pressure ratio. The demonstrated performance not only exceeded the contract performance goals, but also represents the highest known demonstrated compressor performance in this pressure ratio and flow class. The performance demonstrated is particularly significant in that it was accomplished at airfoil loading levels approximately 15% higher than that of current production engine compressor designs. The test results provide conclusive verification of the advanced low aspect ratio axial compressor and centrifugal stage technologies utilized.

  2. EIA - Natural Gas Pipeline Network - Regional Definitions

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline Utilization &

  3. EIA - Natural Gas Pipeline Network - Regulatory Authorities

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline Utilization &Overview

  4. Stability analysis and testing of a train of centrifugal compressors for high pressure gas injection

    SciTech Connect (OSTI)

    Memmott, E.A. [Dresser-Rand Co., Olean, NY (United States)

    1999-07-01T23:59:59.000Z

    This paper describes the rotor dynamic stability analysis and the PTC-10 Class 1 test of a three body centrifugal compressor train for high pressure natural gas injection services. This train had a full load full pressure string test on hydrocarbon gases to a final discharge pressure of 500 BAR (7250 PSIA). Each compressor is of the back to back configuration, and is equipped with tilting pad seals, damper bearings, and a honeycomb labyrinth at the division wall with shunt holes. The driver is a gas turbine.

  5. Systems analysis of hydrogen supplementation in natural gas pipelines

    SciTech Connect (OSTI)

    Hermelee, A.; Beller, M.; D'Acierno, J.

    1981-11-01T23:59:59.000Z

    The potential for hydrogen supplementation in natural gas pipelines is analyzed for a specific site from both mid-term (1985) and long-term perspectives. The concept of supplementing natural gas with the addition of hydrogen in the existing gas pipeline system serves to provide a transport and storage medium for hydrogen while eliminating the high investment costs associated with constructing separate hydrogen pipelines. This paper examines incentives and barriers to the implementation of this concept. The analysis is performed with the assumption that current developmental programs will achieve a process for cost-effectively separating pure hydrogen from natural gas/hydrogen mixtures to produce a separable and versatile chemical and fuel commodity. The energy systems formulation used to evaluate the role of hydrogen in the energy infrastructure is the Reference Energy System (RES). The RES is a network diagram that provides an analytic framework for incorporating all resources, technologies, and uses of energy in a uniform manner. A major aspect of the study is to perform a market analysis of traditional uses of resources in the various consuming sectors and the potential for hydrogen substitution in these sectors. The market analysis will focus on areas of industry where hydrogen is used as a feedstock rather than for its fuel-use opportunities to replace oil and natural gas. The sectors of industry where hydrogen is currently used and where its use can be expanded or substituted for other resources include petroleum refining, chemicals, iron and steel, and other minor uses.

  6. Pipeline Politics: Natural Gas in Eurasia

    E-Print Network [OSTI]

    Landrum, William W.; Llewellyn, Benjamin B.; Limesand, Craig M.; Miller, Dante J.; Morris, James P.; Nowell, Kathleen S.; Sherman, Charlotte L.

    2010-01-01T23:59:59.000Z

    Eurasia is a major source of oil and natural gas, and events in the region have a great potential to destabilize global security patterns. Supplies of natural gas and oil from Eurasia are vital for the functioning of European economies, and also...

  7. Compressor and Hot Section Fouling in Gas Turbines- Causes and Effects 

    E-Print Network [OSTI]

    Meher-Homji, C. B.

    1987-01-01T23:59:59.000Z

    The fouling of axial flow compressors and turbines is a serious operating problem in gas turbine engines. These prime movers are being increasingly used in cogeneration applications and with the large air mass flow rate (e.g. 633 Lbs/Sec for a 80...

  8. Gas Balancing Rules Must Take into account the Trade-off between Offering Pipeline Transport and Pipeline Flexibility in Liberalized Gas Markets

    E-Print Network [OSTI]

    Keyaerts, Nico

    This paper analyses the value and cost of line-pack flexibility in liberalized gas markets through the examination of the techno-economic characteristics of gas transport pipelines and the trade-offs between the different ...

  9. EIA - Natural Gas Pipeline System - Western Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest Region About U.S. Natural Gas

  10. Systematic Engine Uprate Technology Development and Deployment for Pipeline Compressor Engines through Increased Torque

    SciTech Connect (OSTI)

    Dennis Schmitt; Daniel Olsen

    2005-09-30T23:59:59.000Z

    Three methods were utilized to analyze key components of slow-speed, large-bore, natural gas integral engines. These three methods included the application of computational fluid dynamics (CFD), dynamic modal analysis using finite element analysis (FEA), and a stress analysis method also using FEA. The CFD analysis focuses primarily on the fuel mixing in the combustion chamber of a TLA engine. Results indicate a significant increase in the homogeneity of the air and fuel using high-pressure fuel injection (HPFI) instead of standard low-pressure mechanical gas admission valve (MGAV). A modal analysis of three engine crankshafts (TLA-6, HBA-6, and GMV-10) is developed and presented. Results indicate that each crankshaft has a natural frequency and corresponding speed that is well away from the typical engine operating speed. A frame stress analysis method is also developed and presented. Two different crankcases are examined. A TLA-6 crankcase is modeled and a stress analysis is performed. The method of dynamic load determination, model setup, and the results from the stress analysis are discussed. Preliminary results indicate a 10%-15% maximum increase in frame stress due to a 20% increase in HP. However, the high stress regions were localized. A new hydraulically actuated mechanical fuel valve is also developed and presented. This valve provides equivalent high-energy (supersonic) fuel injection comparable to a HPFI system, at 1/5th of the natural gas fuel pressure. This valve was developed in cooperation with the Dresser-Rand Corporation.

  11. Use of intelligent pigs to detect stress corrosion cracking in gas pipelines

    SciTech Connect (OSTI)

    Culbertson, D.L. [Tenneco Energy, Houston, TX (United States)

    1996-08-01T23:59:59.000Z

    To ensure the integrity and serviceability of gas pipelines, operators periodically utilize intelligent pigging. This inspection technique has proven to be a cost effective approach for determining the condition of operating pipelines. Recent advancements in intelligent pigging technology are now aiding the pipeline industry in the detection of stress corrosion cracking.

  12. SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL

    E-Print Network [OSTI]

    Boyer, Edmond

    1 SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL Hébrard, J.1 linked with Hydrogen/Natural gas mixtures transport by pipeline, the National Institute of Industrial scenario, i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential

  13. Optimization for Design and Operation of Natural Gas Transmission Networks

    E-Print Network [OSTI]

    Dilaveroglu, Sebnem 1986-

    2012-08-22T23:59:59.000Z

    and compressor stations. On an existing network, the model also optimizes the total flow through pipelines that satisfy demand to determine the best purchase amount of gas. A mixed integer nonlinear programming model for steady-state natural gas transmission...

  14. ,"Port of Del Bonita, MT Natural Gas Pipeline Imports From Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    Del Bonita, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  15. INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL

    SciTech Connect (OSTI)

    Robert J. McKee

    2003-05-01T23:59:59.000Z

    This preliminary phase 1 report summarizes the background and the work on the ''Increased Flexibility of Turbo-Compressors in Natural Gas Transmission through Direct Surge Control'' project to date. The importance of centrifugal compressors for natural gas transmission is discussed, and the causes of surge and the consequences of current surge control approaches are explained. Previous technology development, including findings from early GMRC research, previous surge detection work, and selected publications, are presented. The project is divided into three Phases to accomplish the project objectives of verifying near surge sensing, developing a prototype surge control system (sensor and controller), and testing/demonstrating the benefits of direct surge control. Specification for the direct surge control sensor and controller developed with guidance from the industry Oversight Committee is presented in detail. Results of CFD modeling conducted to aid in interpreting the laboratory test results are shown and explained. An analysis of the system dynamics identified the data sampling and handling requirements for direct surge control. A detailed design process for surge detection probes has been developed and explained in this report and has been used to prepare drag probes for the laboratory compressor test and the first field test. The surge detection probes prepared for testing have been bench tested and flow tested to determine and calibrate their sensitivity to flow forces as shown in data presented in this report. The surge detection drag probes have been shown to perform as expected and as required to detect approaching surge. Laboratory test results of surge detection in the SwRI centrifugal compressor demonstrated functionality of the surge detection probes and a change in the impeller inlet flow pattern prior to surge. Although the recirculation cannot be detected because of the specific geometry of this compressor, there are changes that indicate the approach of surge that can be detected. Preparations for a field test had been completed at one point in the project. However, a failure of the surge probe wiring just inside the compressor case has caused a delay in the field testing. Repairs for the wiring in the compressor have been scheduled and the field test will take place shortly after the repairs.

  16. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline UtilizationProcess andStorage

  17. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline UtilizationProcess

  18. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline UtilizationProcessFacilities

  19. Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAINCommercialPipeline and

  20. EIA - Natural Gas Pipeline Network - U.S. Natural Gas Pipeline Network Map

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline UtilizationProcess and

  1. Pipeline safety. Information on gas distribution system operators reporting unaccounted for gas

    SciTech Connect (OSTI)

    Not Available

    1986-02-01T23:59:59.000Z

    According to Department of Transportation records, 92 of the 1491 gas distribution system operators reported high levels of unaccounted for gas (unaccounted for gas is the difference between the amount of gas purchased and sold) for 1984, the latest year for which data were available. Of the 92 gas system operators, 64 were municipals (gas systems owned by a governmental entity, such as a city or county) and 28 were nonmunicipals. Based on the data we reviewed, these 92 gas systems did not report any accidents during calendar year 1984. Part I provides more details on the unaccounted for gas of municipal gas systems. Federal and industry officials consider that unaccounted for gas in excess of 15% of gas purchases high and worthy of investigation. High levels of unaccounted for gas can occur for a number of reasons, including errors in metering and billing, not accounting for gas used by city or company facilities, and leaking gas pipelines. While it may, a leak does not always indicate a safety problem. For example, a slow leak in an open area may not be a safety hazard. The Secretary has the authority to regulate any liquid deemed hazardous when transported by pipeline, and therefore could regulate hazardous liquids not currently regulated including methanol and carbon dioxide. However, the Department of Transportation has no plans to regulate any additional liquids. Part II provides more details. 4 figs., 2 tabs.

  2. Statistical Modeling of Corrosion Failures in Natural Gas Transmission Pipelines

    E-Print Network [OSTI]

    Cobanoglu, Mustafa Murat

    2014-03-28T23:59:59.000Z

    and deterioration processes in pipeline networks. Therefore, pipeline operators need to rethink their corrosion prevention strategies. These results of corrosion failures are forcing the companies to develop accurate maintenance models based on failure frequency...

  3. Study on Off-Design Steady State Performances of Helium Gas Turbo-compressor for HTGR-GT

    SciTech Connect (OSTI)

    Qisen Ren; Xiaoyong Yang; Zhiyong Huang; Jie Wang [Tsinghua University, Beijing, 100084 (China)

    2006-07-01T23:59:59.000Z

    The high temperature gas-cooled reactor (HTGR) coupled with direct gas turbine cycle is a promising concept in the future of nuclear power development. Both helium gas turbine and compressor are key components in the cycle. Under normal conditions, the mode of power adjustment is to control total helium mass in the primary loop using gas storage vessels. Meanwhile, thermal power of reactor core is regulated. This article analyzes off-design performances of helium gas turbine and compressors for high temperature gas-cooled reactor with gas turbine cycle (HTGR-GT) at steady state level of electric power adjustment. Moreover, performances of the cycle were simply discussed. Results show that the expansion ratio of turbine decreases as electric power reduces but the compression ratios of compressors increase, efficiencies of both turbine and compressors decrease to some extent. Thermal power does not vary consistently with electric power, the difference between these two powers increases as electric power reduces. As a result of much thermal energy dissipated in the temperature modulator set at core inlet, thermal efficiency of the cycle has a widely reduction under partial load conditions. (authors)

  4. Field tests of probes for detecting internal corrosion of natural gas transmission pipelines

    SciTech Connect (OSTI)

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, Michael S. (Intercorr International Inc.); Kane, Russell D. (Intercorr International Inc.); Meidinger, Brian (RMOTC-DOE)

    2005-01-01T23:59:59.000Z

    A field study was conducted to evaluate the use of electrochemical corrosion rate (ECR) probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. Results and interpretation will be reported from four different field tests. Flange and flush-mount probes were used in four different environments at a gas-gathering site and one environment but two different orientations at a natural gas plant. These sites were selected to represent normal and upset conditions in a gas transmission pipeline. The environments consisted of 2 different levels of humidified natural gas/organic/water mixtures removed from natural gas, and the environments at the 6 and 12 o'clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

  5. The Cost of Improving Gas Supply Security in the Baltic States

    E-Print Network [OSTI]

    Noel, Pierre; Findlater, Sachi; Chyong, Chi Kong

    2012-01-23T23:59:59.000Z

    to replace a failed compressor station on a transmission pipeline; 12 most disruptions caused by pipeline failures could be repaired in a week or less. A failure of the Latvian underground storage could potentially disrupt supply to Estonia and Latvia... it is important to note that both types of disruptions have the same practical consequences. For example in the Baltic States, an accidental pipeline explosion or compressor failure would interrupt gas supply to district heating plants, just as a voluntary...

  6. A preliminary investigation of the effects of environmentally assisted cracking on natural gas transmission pipelines 

    E-Print Network [OSTI]

    Curbo, Jason Wayne

    2005-08-29T23:59:59.000Z

    Concepts for the development of a model to predict natural gas transmission pipeline lifetime in a corrosive environment are constructed. Primarily, the effects of environmentally assisted cracking (EAC) are explored. Tensile test specimens from a...

  7. Supersonic compressor

    DOE Patents [OSTI]

    Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

    2008-02-26T23:59:59.000Z

    A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.

  8. Resilience-Based design of Natural Gas Pipelines G. P. Cimellaro, O. Villa

    E-Print Network [OSTI]

    Bruneau, Michel

    Resilience-Based design of Natural Gas Pipelines G. P. Cimellaro, O. Villa Department of Structural systems. No models are available in literature to measure the performance of natural gas network of natural or manmade hazard which might lead to the disruption of the system. The gas distribution network

  9. FRICTION FACTOR IN HIGH PRESSURE NATURAL GAS PIPELINES FROM ROUGHNESS MEASUREMENTS

    E-Print Network [OSTI]

    Gudmundsson, Jon Steinar

    FRICTION FACTOR IN HIGH PRESSURE NATURAL GAS PIPELINES FROM ROUGHNESS MEASUREMENTS DETERMINATION DU and Technology, Norway ABSTRACT Pressure drop experiments on natural gas flow at 80 to 120 bar pressure and high of natural gas at typical operating pressures (100-180 bar). At such Reynolds numbers the classical Colebrook

  10. Integrated natural-gas-engine cooling jacket vapor-compressor program. Annual progress report (phase 2), January-December 1987

    SciTech Connect (OSTI)

    DiBella, F.A.; Becker, F.

    1988-01-01T23:59:59.000Z

    A unique, alternative cogeneration system was designed that will provide an industrial or commercial energy user with high-pressure steam and electricity directly from a packaged cogeneration system. The Integrated Gas Engine Vapor Compression System concept includes an engine-generator set and a steam screw compressor that are mechanically integrated with the engine. The gas-fueled engine is ebulliently cooled, thus allowing its water jacket heat to be recovered in the form of low-pressure steam. This steam is then compressed by the steam compressor to a higher pressure, and when combined with the high-pressure steam generated in the engine's exhaust gas boiler it provides the end user with a more useable thermal energy source. Phase 1B of this project was completed in 1986 and consisted primarily of the procurement of equipment and the final design and assembly of a prototype integrated gas-engine vapor-compression system.

  11. Intrastate Pipeline Safety (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the...

  12. Pipeline Operations Program (Louisiana)

    Broader source: Energy.gov [DOE]

    The Pipeline Operations Program regulates the construction, acquisition, abandonment and interconnection of natural gas pipelines, as well as, the transportation and use of natural gas supplies.

  13. Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation confers the rights and privileges of telegraph and telephone companies (S.C. Code 58-9) on pipeline and water companies, and contains several additional provisions pertaining to...

  14. When Barriers to Markets Fail: Pipeline Deregulation, Spot Markets, and the Topology of the Natural Gas Market

    E-Print Network [OSTI]

    De Vany, Arthur; Walls, W. David

    1992-01-01T23:59:59.000Z

    Experimental Research on Deregulation, natural Gas Pipelineto MarketsFail: Pipeline Deregulation,Spot Markets,and theto Markets Fall: Deregulation, Spot Markets, And the

  15. Pipelines (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates pipelines that are used to carry natural or synthetic gas at a pressure of more than 90 pounds per square inch, along with pipelines used to carry petroleum products and coal...

  16. Freight pipelines

    SciTech Connect (OSTI)

    Liu, H. (University of Missouri, Columbia, MO (US)); Round, G.F. (McMaster University (CA))

    1989-01-01T23:59:59.000Z

    This book presents papers on slurry pipelines, pneumatic pipelines, capsule pipelines, pipeline education, and pipeline research.

  17. Field evaluation of the British Gas elastic-wave vehicle for detecting stress corrosion cracking in natural gas transmission pipelines. Final report, June 1995

    SciTech Connect (OSTI)

    Culbertson, D.L.; Whitney, C.E.

    1995-07-01T23:59:59.000Z

    The objective of this project was to provide the gas pipeline industry with a more comprehensive understanding of the capabilities of the elastic-wave, in-line inspection system developed by British Gas (BG) for detecting stress corrosion cracking (SCC) in natural gas transmission pipelines.

  18. Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65

    SciTech Connect (OSTI)

    Hashemi, S. H. [Department of Mechanical Engineering, University of Birjand, POBOX 97175-376, Birjand (Iran, Islamic Republic of); Mohammadyani, D. [Materials and Energy Research Center (MERC) POBOX 14155-4777, Tehran (Iran, Islamic Republic of)

    2011-01-17T23:59:59.000Z

    The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

  19. Economic principles and applications to natural gas pipelines and other industries

    SciTech Connect (OSTI)

    Kolbe, L.; Tye, W.; Myers, S.C.

    1993-12-31T23:59:59.000Z

    This book combines and expands several of the authors` papers on regulatory risk and a report on risk in the interstate natural gas pipeline industry which the authors prepared for the Interstate Natural Gas Association of America. The first four chapters present the authors` theory of risk in regulated industries. The remaining five chapters provide a detailed analysis of risk under historic and pending regulation of the interstate natural gas pipeline industry. An appendix provides an excellent, detailed and highly annotated regulatory history of interstate natural gas pipeline regulation from roughly the Natural Gas Policy Act of 1978 to 1990. In some 350 pages this book appears to make two primary points. First, rate base regulation is a camel, where the definition of a camel is a horse designed by a committee, or in the case of utility regulation, a horse designed by congress, state legislatures, and the courts. The second point is that realized rates of return in regulated utilities are subject to a reverse Lake Wobegone effect. In the regulatory world of the authors, all utility returns are below average. This book contains some interesting new ideas and some excellent insights into some old issues in rate base regulation. It is worth the somewhat tedious read just for the wealth of institutional information on the pipeline industry and its regulation.

  20. Aerodynamically induced radial forces in a centrifugal gas compressor: Part 2 -- Computational investigation

    SciTech Connect (OSTI)

    Flathers, M.B.; Bache, G.E.

    1999-10-01T23:59:59.000Z

    Radial loads and direction of a centrifugal gas compressor containing a high specific speed mixed flow impeller and a single tongue volute were determined both experimentally and computationally at both design and off-design conditions. The experimental methodology was developed in conjunction with a traditional ASME PTC-10 closed-loop test to determine radial load and direction. The experimental study is detailed in Part 1 of this paper (Moore and Flathers, 1998). The computational method employs a commercially available, fully three-dimensional viscous code to analyze the impeller and the volute interaction. An uncoupled scheme was initially used where the impeller and volute were analyzed as separate models using a common vaneless diffuser geometry. The two calculations were then repeated until the boundary conditions at a chosen location in the common vaneless diffuser were nearly the same. Subsequently, a coupled scheme was used where the entire stage geometry was analyzed in one calculation, thus eliminating the need for manual iteration of the two independent calculations. In addition to radial load and direction information, this computational procedure also provided aerodynamic stage performance. The effect of impeller front face and rear face cavities was also quantified. The paper will discuss computational procedures, including grid generation and boundary conditions, as well as comparisons of the various computational schemes to experiment. The results of this study will show the limitations and benefits of Computational Fluid Dynamics (CFD) for determination of radial load, direction, and aerodynamic stage performance.

  1. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2005-04-15T23:59:59.000Z

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  2. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc....

  3. A version of this appeared in Economic & Political Weekly (1999) XXXIV(18) Natural Gas Imports by South Asia: Pipelines or Pipedreams?

    E-Print Network [OSTI]

    1999-01-01T23:59:59.000Z

    A version of this appeared in Economic & Political Weekly (1999) XXXIV(18) Natural Gas Imports by South Asia: Pipelines or Pipedreams? TransAsia Pipeline System (TAPS): A Shared Natural Gas Pipeline situations where there are eager purchasers of natural gas (India and Pakistan), willing suppliers of natural

  4. Demonstration of Natural Gas Engine Driven Air Compressor Technology at Department of Defense Industrial Facilities

    E-Print Network [OSTI]

    Lin, M.; Aylor, S. W.; Van Ormer, H.

    Recent downsizing and consolidation of Department of Defense (DOD) facilities provides an opportunity to upgrade remaining facilities with more efficient and less polluting equipment. Use of air compressors by the DOD is widespread and the variety...

  5. Pipeline Safety (South Dakota)

    Broader source: Energy.gov [DOE]

    The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

  6. Natural disasters and the gas pipeline system. Topical report, August 1994-June 1995

    SciTech Connect (OSTI)

    Atallah, S.; Saxena, S.; Martin, S.B.; Willowby, A.B.; Alger, R.

    1996-11-15T23:59:59.000Z

    Episodic descriptions are provided of the effect of the Loma Prieta earthquake (1989) on the gas pipeline systems of Pacific Gas & Electric Company and the City of Palo Alto and of the Northridge earthquake (1994) on Southern California Gas` pipeline system. The emergency response plans and activities of South Carolina Electric & Gas Company during hurricane Hugo (1989) and of City Gas Company of Florida and other small gas companies during hurricane Andrew (1992) are also reviewed. Descriptions of the great Flood of 1993 and its effects on the operations of Iowa-Illinois Gas & Electric Company and Laclede Gas Company and of the San Jacinto River Floods on the transmission lines of Valero Gas Co. are also provided. Local and federal regulatory requirements, and the current practices by the gas industry for dealing with natural disasters, such as through preventive measures (e.g., strapping of water heaters, excess flow valves), and the tracking of weather-related events are described. The important role that preplanning and coordination with the local emergency response bodies and other gas utilities plays during a natural disaster is examined.

  7. A perspective on pipeline pricing under the Natural Gas Act

    SciTech Connect (OSTI)

    Threadgill, E.E.

    1995-12-31T23:59:59.000Z

    Pricing different services to a single class of customers, and pricing different services to the same or different classes of customers, are complex matters which, in many instances, are case specific. Cost responsibilities, market demands, and national policies should be taken into account in pricing pipeline services. But one fact is eminently clear, and that is that radically different {open_quotes}FERC incremental{close_quotes} rates for the same service to the same class of customers, depending upon the date upon which the customers signed contracts for an expansion of service, are unduly discriminatory and illegal under the NGA.

  8. EIA - Natural Gas Pipeline Network - Region To Region System Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline Utilization & Capacity

  9. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline Utilization &Overview and

  10. EIA - Natural Gas Pipeline Network - States Dependent on Interstate

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline Utilization

  11. EIA - Natural Gas Pipeline Network - Transportation Process & Flow

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline UtilizationProcess and Flow

  12. Otay Mesa, CA Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) 0 86 537 1998-2014 Pipeline0 0

  13. EIS-0467: Hanford Site Natural Gas Pipeline, Richland, WA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    evaluate the environmental impacts of a proposal to enter into a contract with a licensed natural gas supplier in Washington State to construct, operate, and maintain a natural gas...

  14. Hydraulic accumulator-compressor for geopressured enhanced oil recovery

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1988-01-01T23:59:59.000Z

    A hydraulic accumulator-compressor vessel using geothermal brine under pressure as a piston to compress waste (CO.sub.2 rich) gas is used in a system having a plurality of gas separators in tandem to recover pipeline quality gas from geothermal brine. A first high pressure separator feeds gas to a membrance separator which separates low pressure waste gas from high pressure quality gas. A second separator produces low pressure waste gas. Waste gas from both separators is combined and fed into the vessel through a port at the top as the vessel is drained for another compression cycle. High pressure brine is then admitted into the vessel through a port at the bottom of the vessel. Check valves control the flow of low pressure waste gas into the vessel and high pressure waste gas out of the vessel.

  15. Integrated natural-gas-engine cooling-jacket vapor-compressor program. Final report, February 1985-August 1990

    SciTech Connect (OSTI)

    DiBella, F.A.

    1990-08-01T23:59:59.000Z

    A unique, alternative cogeneration system has been designed that will provide an industrial or commercial energy user with high-pressure steam and electricity directly from a packaged cogeneration system. The Integrated Gas Engine Vapor Compression System concept includes an engine-generator set and a twin screw compressor that are mechanically integrated with the engine. The gas-fueled engine is ebulliently cooled, thus allowing its water jacket heat to be recovered in the form of low-pressure steam. The steam is then compressed by the steam compressor to a higher pressure, and when combined with the high-pressure steam generated in the engine's exhaust gas boiler, it provides the end user with a more usable thermal energy source. Phase 1B of the project was completed in 1986 and consisted primarily of the procurement of equipment and the final design and assembly of a prototype integrated gas engine vapor compression system. The project continued with Phase 2, which comprised the actual laboratory testing of the prototype system, as well as the study of several pertinent subtasks that were identified to GRI as supportive of the primary project objective. Phase 2 also included the selection of a field site, site engineering, and the final installation, start-up, and acceptance testing of the system.

  16. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30T23:59:59.000Z

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  17. Electrochemical Hydrogen Compressor

    SciTech Connect (OSTI)

    David P. Bloomfield; Brian S. MacKenzie

    2006-05-01T23:59:59.000Z

    The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to determine the loss of membrane active sites is recommended. We suspect that the corrosion includes more than simple galvanic mechanisms. The mechanisms involved in this phenomenon are poorly understood. Shunt currents at hydraulic cathode ports were problematic, but are not difficult to cure. In addition to corrosion there is evidence of high component resistivity. This may be due to the deposition of organic compounds, which may be produced electrochemically on the surface of the metal support screens that contact carbon gas diffusion layers (GDLs) or catalyst supports. An investigation of possible electro-organic sythesis mechanisms with emphasis on oxalates formation is warranted. The contaminated cell parts can be placed in an oxidizing atmosphere at high temperature and the weight loss can be observed. This would reveal the existence of organic compounds. Investigation into the effects of conductivity enhancers such as carbon microlayers on supporting carbon paper is also needed. Corrosion solutions should be investigated such as surface passivation of 316 SS parts using nitric acid. Ultra thin silane/siloxane polymer coatings should be tried. These may be especially useful in conjunction with metal felt replacement of carbon paper. A simple cure for the very high, localized corrosion of the anode might be to diffusion bond the metal electrode support screen to bipolar plate. This will insure uniform resistance perpendicular to the plane of the cell and eliminate some of the dependence of the resistance on high stack compression. Alternative materials should be explored. Alternatives to carbon in the cell may be helpful in any context. In particular, alternatives to carbon paper GDLs such as metal felts and alternatives to carbon supports for Pt such as TiC and TiB2 might also be worthwhile and would be helpful to fuel cells as well. Some alternative to the metals we used in the cell, Mo and 316 SS, are potentially useful. These include Al/Mg/Si alloys. Corrosion resistant materials such as Nb and Mo might prove useful as cladding materials that can be hot stamp

  18. Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida)

    Broader source: Energy.gov [DOE]

    The regulation of natural gas intrastate transportation and sale is deemed to be an exercise of the police power of the state for the protection of the public welfare. The Public Service Commission...

  19. An archaeological survey of the Proposed Natural Gas Pipeline Location Tie-in in Orange County, Texas

    E-Print Network [OSTI]

    Moore, William

    2015-06-16T23:59:59.000Z

    An archaeological investigation of approximately 1000 feet of a proposed 22,000 foot natural gas pipeline in southeastern Orange County, Texas was performed by Brazos Valley Research Associates of Bryan, Texas in August 2001. No archaeological sites...

  20. Pipe line activity expected to maintain current levels throughout 1990s. [Global construction trends in natural gas and oil pipelines

    SciTech Connect (OSTI)

    Ives, G. Jr.

    1993-11-01T23:59:59.000Z

    This article consists of several smaller papers which discuss the construction projections for new oil and gas pipelines on a global basis, excluding the US and Canada. The paper provides numerous tables showing the projected types and mileages for proposed pipelines and the types of products to be shipped in each pipeline. The article features activities of individual countries and regions which have any significant oil or gas production. The individual papers are broken into continental regions including Europe, the North Sea, Africa, the Middle East, Indonesia, the Far East, Australia, Central America, and South America.

  1. Algorithms for Noisy Problems in Gas Transmission Pipeline Optimization \\Lambda

    E-Print Network [OSTI]

    linear interpolations of these data rather than the raw simulations, both to protect proprietary data trillion standard cubic feet of natural gas per year, representing roughly a third of worldwide consumption in such regions as Louisiana, the Texas Gulf Coast, and \\Lambda This research was supported by National Science

  2. Algorithms for Noisy Problems in Gas Transmission Pipeline Optimization

    E-Print Network [OSTI]

    linear interpolations of these data rather than the raw simulations, both to protect proprietary data trillion standard cubic feet of natural gas per year, representing roughly a third of worldwide consumption in such regions as Louisiana, the Texas Gulf Coast, and This research was supported by National Science Foundation

  3. Detecting internal corrosion of natural gas transmission pipelines: field tests of probes and systems for real-time corrosion measurement

    SciTech Connect (OSTI)

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Kane, R.D. (InterCorr International); Meidinger, B. (Rocky Mountain Oilfield Testing Center)

    2005-01-01T23:59:59.000Z

    A field study was conducted to evaluate the use of automated, multi-technique electrochemical corrosion-rate monitoring devices and probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. It involved measurement of real-time corrosion signals from operating pipelines. Results and interpretation were reported from four different field test locations. Standard flush-mount and custom flange probes were used in four different environments at a gas-gathering site and one environment but two different probe orientations at a natural gas site. These sites were selected to represent normal and upset conditions common in gas transmission pipelines. The environments consisted of two different levels of humidified natural gas, liquid hydrocarbon, and water from natural gas. Probe locations included the 6 and 12 o?clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. The probe data was monitored using completely remote solar powered systems that provided real-time data transmission via wireless back to a pipeline control station. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

  4. Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May Jun JulIndustrial

  5. Florida Natural Gas Pipeline and Distribution Use Price (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May Jun

  6. Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan FebCubic(Million CubicINVESTMENT245

  7. Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPriceIndustrial Consumers (Number of

  8. Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPriceIndustrial Consumers (Number

  9. Havre, MT Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAIN EIA PRODUCTS

  10. Hidalgo, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2 Week 30 0

  11. Highgate Springs, VT Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2 Monthly

  12. Highgate Springs, VT Natural Gas Pipeline Imports From Canada (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1

  13. Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-MonthExportsLease (Million

  14. Program permits fast solution to pipeline loop requirements

    SciTech Connect (OSTI)

    Bierman, G.D.

    1983-10-31T23:59:59.000Z

    A program developed for the HP-41CV hand-held calculator can provide pipeline engineers with a quick and easy means for determining loop requirements on existing gas-transmission pipelines. Adding pipe in parallel to an existing pipeline, referred to as looping, is necessary to insure that with a given flow rate, the gas will arrive at a certain point on the pipeline with a pressure equal to or greater than the minimum required pressure. The automatic loop program calculates loop by first determining the total number of segments which require looping within the section of pipeline being evaluated. A section of pipe is usually the pipeline between compressor stations and is divided into segments by either receipt or delivery points along the pipeline. The number of segments which require looping is found by adding loop to individual segments until the final pressure (i.e., the pressure at the point of interest downstream on the pipeline) is equal to or greater than the specified design pressure.

  15. Pittsburg, NH Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity on the U.S. Natural Gas PipelineDecade

  16. Natural Gas Exports by Pipeline out of the U.S. Form | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancyNationalNatural Gas Exports by Pipeline out

  17. Natural Gas Imports by Pipeline into the U.S. Form | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancyNationalNatural GasImports by Pipeline into

  18. Integrated natural-gas-engine cooling-jacket vapor-compressor program. Annual progress report (Phase 1B) January-December 1986

    SciTech Connect (OSTI)

    DiBella, F.A.; Becker, F.; Balsavich, J.

    1987-01-01T23:59:59.000Z

    A unique, alternative cogeneration system was designed that will provide an industrial or commercial energy user with high-pressure steam and electricity directly from a packaged cogeneration system. The Integrated Gas Engine Vapor Compression System concept includes an engine-generator set and a steam screw compressor mechanically integrated with the engine. The gas-fueled engine is ebulliently cooled, thus allowing its water jacket heat to be recovered in the form of low-pressure steam. The steam is then compressed by the steam compressor to a higher pressure, and when combined with the high-pressure steam generated in the engine's exhaust gas boiler it provides the end user with a more-usable thermal-energy source.

  19. Use of geographic information systems for applications on gas pipeline rights-of-way

    SciTech Connect (OSTI)

    Sydelko, P.J.; Wilkey, P.L.

    1992-01-01T23:59:59.000Z

    Geographic information system (GIS) applications for the siting and monitoring of gas pipeline rights-of-way (ROWS) were developed for areas near Rio Vista, California. The data layers developed for this project represent geographic features, such as landcover, elevation, aspect, slope, soils, hydrography, transportation, endangered species, wetlands, and public line surveys. A GIS was used to develop and store spatial data from several sources; to manipulate spatial data to evaluate environmental and engineering issues associated with the siting, permitting, construction, maintenance, and monitoring of gas pipeline ROWS; and to graphically display analysis results. Examples of these applications include (1) determination of environmentally sensitive areas, such as endangered species habitat, wetlands, and areas of highly erosive soils; (2) evaluation of engineering constraints, including shallow depth to bedrock, major hydrographic features, and shallow water table; (3) classification of satellite imagery for landuse/landcover that will affect ROWS; and (4) identification of alternative ROW corridors that avoid environmentally sensitive areas or areas with severe engineering constraints.

  20. Use of geographic information systems for applications on gas pipeline rights-of-way

    SciTech Connect (OSTI)

    Sydelko, P.J.

    1993-10-01T23:59:59.000Z

    Geographic information system (GIS) applications for the siting and monitoring of gas pipeline rights-of-way (ROWS) were developed for areas near Rio Vista, California. The data layers developed for this project represent geographic features, such as landcover, elevation, aspect, slope, soils, hydrography, transportation, endangered species, wetlands, and public line surveys. A GIS was used to develop and store spatial data from several sources; to manipulate spatial data to evaluate environmental and engineering issues associated with the siting, permitting, construction, maintenance, and monitoring of gas pipeline ROWS; and to graphically display analysis results. Examples of these applications include (1) determination of environmentally sensitive areas, such as endangered species habitat, wetlands, and areas of highly erosive soils; (2) evaluation of engineering constraints, including shallow depth to bedrock, major hydrographic features, and shallow water table; (3) classification of satellite imagery for land use/landcover that will affect ROWS; and (4) identification of alternative ROW corridors that avoid environmentally sensitive areas or areas with severe engineering constraints.

  1. Use of geographic information systems for applications on gas pipeline rights-of-way

    SciTech Connect (OSTI)

    Sydelko, P.J.; Wilkey, P.L.

    1992-12-01T23:59:59.000Z

    Geographic information system (GIS) applications for the siting and monitoring of gas pipeline rights-of-way (ROWS) were developed for areas near Rio Vista, California. The data layers developed for this project represent geographic features, such as landcover, elevation, aspect, slope, soils, hydrography, transportation, endangered species, wetlands, and public line surveys. A GIS was used to develop and store spatial data from several sources; to manipulate spatial data to evaluate environmental and engineering issues associated with the siting, permitting, construction, maintenance, and monitoring of gas pipeline ROWS; and to graphically display analysis results. Examples of these applications include (1) determination of environmentally sensitive areas, such as endangered species habitat, wetlands, and areas of highly erosive soils; (2) evaluation of engineering constraints, including shallow depth to bedrock, major hydrographic features, and shallow water table; (3) classification of satellite imagery for landuse/landcover that will affect ROWS; and (4) identification of alternative ROW corridors that avoid environmentally sensitive areas or areas with severe engineering constraints.

  2. Pipeline Safety Rule (Tennessee)

    Broader source: Energy.gov [DOE]

    The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

  3. EIA - Natural Gas Pipeline Network - Natural Gas Import/Export Locations

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2YonthlyEnergyMap Export Pipelines

  4. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2003-05-13T23:59:59.000Z

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

  5. Semi-active compressor valve

    DOE Patents [OSTI]

    Brun, Klaus (Helotes, TX); Gernentz, Ryan S. (San Antonio, TX)

    2010-07-27T23:59:59.000Z

    A method and system for fine-tuning the motion of suction or discharge valves associated with cylinders of a reciprocating gas compressor, such as the large compressors used for natural gas transmission. The valve's primary driving force is conventional, but the valve also uses an electromagnetic coil to sense position of the plate (or other plugging element) and to provide an opposing force prior to impact.

  6. Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)

    SciTech Connect (OSTI)

    Melaina, M. W.

    2013-05-01T23:59:59.000Z

    This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

  7. Standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

    1991-01-01T23:59:59.000Z

    A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

  8. Pipeline bottoming cycle study. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle working fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.

  9. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report for September 1980-November 1980

    SciTech Connect (OSTI)

    Eby, R.J.

    1980-12-01T23:59:59.000Z

    Work was performed in the following tasks in Phase I of the Pipeline Gas Demonstration Plant Program: Site Evaluation and Selection; Demonstration Plant Environmental Analysis; Feedstock Plans, Licenses, Permits and Easements; Demonstration Plant Definitive Design; Construction Planning; Economic Reassessment; Technical Support; Long Lead Procurement List; and Project Management. The Preliminary Construction Schedule was delivered to the Government on October 3, 1980, constituting an early delivery of the construction schedule called for in the scope of work for Task VI. The major work activity continues to be the effort in Task VI, Demonstration Plant Definitive Design, with two 30% Design Review meetings being held with the Government. Work in Task VII, Construction Planning, was initiated. Work has progressed satisfactorily in the other tasks in support of the Demonstration Plant Program. A Cost Change Proposal was submitted because of an increase in the scope of work and an extension of the schedule for Phase I to 47 months.

  10. Minimum separation distances for natural gas pipeline and boilers in the 300 area, Hanford Site

    SciTech Connect (OSTI)

    Daling, P.M.; Graham, T.M.

    1997-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is proposing actions to reduce energy expenditures and improve energy system reliability at the 300 Area of the Hanford Site. These actions include replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing a new natural gas distribution system to provide a fuel source for many of these units, and constructing a central control building to operate and maintain the system. The individual heating units will include steam boilers that are to be housed in individual annex buildings located at some distance away from nearby 300 Area nuclear facilities. This analysis develops the basis for siting the package boilers and natural gas distribution systems to be used to supply steam to 300 Area nuclear facilities. The effects of four potential fire and explosion scenarios involving the boiler and natural gas pipeline were quantified to determine minimum separation distances that would reduce the risks to nearby nuclear facilities. The resulting minimum separation distances are shown in Table ES.1.

  11. U. S. gas-pipeline construction will help producers and consumers

    SciTech Connect (OSTI)

    Johnson, E. Jr. (Booz Allen and Hamilton Inc., Dallas, TX (US)); Viscio, A.J. (Booz Allen and Hamilton Inc., San Francisco, CA (US))

    1991-11-04T23:59:59.000Z

    Changes currently under way in the U.S. gas-transmission grid will, on balance, benefit both producers and consumer. Wellhead prices will rise and burner-tip prices will fall. Those are the major results of a study by Booz Allen and Hamilton Inc. of how and to what magnitude producer and city gate prices will be affected by changes in the transmission grid. This paper follows an earlier study of the competitive effect of pipeline capacity on the transmission business. Some producers and some consumers, however, will be better off than others, the recent study indicates. Increasing the capacity to move gas between producing basins and markets will allow gas to find higher valued uses, a more optimal market solution. Producer prices will rise in basins gaining greater access to premium markets and will be lower elsewhere, relative to what they would be without the additional transmission. Similarly, consumers will see lower prices in markets on the downstream end of new capacity and higher prices elsewhere.

  12. Integrated natural-gas-engine cooling-jacket vapor-compressor program. Annual report (Phase 1A), February 1985-October 1985

    SciTech Connect (OSTI)

    DiBella, F.A.; Balsavich, J.; Becker, F.

    1985-12-01T23:59:59.000Z

    The project objective is to design and test a prototype Integrated Gas Engine Vapor Compression System; a system that is thought to be an attractive and economically viable alternative to currently available cogeneration systems. A unique, alternative cogeneration system has been designed that will provide an industrial or commercial energy user with high-pressure steam and electricity directly from a packaged cogeneration system. The Integrated Gas Engine Vapor Compression System concept includes an engine-generator set and a steam screw compressor that is mechanically integrated with the engine.

  13. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2003-11-12T23:59:59.000Z

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  14. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-10-27T23:59:59.000Z

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first summarizes key results from survey site tests performed on an HBA-6 installed at Duke Energy's Bedford compressor station, and on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. The report then presents results of design analysis performed on the Bedford HBA-6 to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  15. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-28T23:59:59.000Z

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey test performed on an HBA-6 engine/compressor installed at Duke Energy's Bedford Compressor Station. This is one of several tests planned, which will emphasize identification and reduction of compressor losses. Additionally, this report presents a methodology for distinguishing losses in compressor attributable to valves, irreversibility in the compression process, and the attached piping (installation losses); it illustrates the methodology with data from the survey test. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  16. Method and apparatus for starting supersonic compressors

    DOE Patents [OSTI]

    Lawlor, Shawn P

    2013-08-06T23:59:59.000Z

    A supersonic gas compressor with bleed gas collectors, and a method of starting the compressor. The compressor includes aerodynamic duct(s) situated for rotary movement in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. A convergent inlet is provided adjacent to a bleed gas collector, and during startup of the compressor, bypass gas is removed from the convergent inlet via the bleed gas collector, to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypass gas from the convergent inlet via the bypass gas collectors is effectively eliminated.

  17. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report, December 1980-February 1981

    SciTech Connect (OSTI)

    Eby, R.J.

    1981-03-01T23:59:59.000Z

    Work was performed in the following areas of the Pipeline Gas Demonstration Plant Program: site evaluation and selection; demonstration plant environmental analysis; feedstock plans, licenses, permits and easements; demonstration plant definitive design; construction planning; economic reassessment; technical support; long lead procurement list; and project management. Major work activity continued to be the effort on Demonstration Plant Definitive Design. A Construction Readiness Audit was held on January 14 to 16, 1981 by a Government/Procon team to review the project and assess the readiness of the project to proceed into the construction phase. Documents for the 60% Design Review were prepared for ICGG review and submitted to the Contracting Officer's authorized representative prior to transmittal to the Corps of Engineers for review. The Corps of Engineers conducted a design audit. The primary objective of the audit was to prepare an independent estimate of the work remaining to complete Phase I of the project. Work continued on the production of a single bid package for the Demonstration Plant, suitable for release to a single constructor, and organized so it can be easily broken down into subpackages by construction specialty. A formal audit of the ICGG R/QA Plan and implementation thereof was performed February 11-12, 1981 by the Corps of Engineers. The Contract Deliverable Final Feedstock-Product-Waste Disposal Plan was delivered to the Government on February 25, 1981.

  18. Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K. Steiglitz; D. J. Kleitman

    E-Print Network [OSTI]

    Steiglitz, Kenneth

    Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K@jstor.org. http://www.jstor.org Mon Oct 22 13:48:01 2007 #12;OPTIMAL DESIGN OF OFFSHORE NATURAL-GAS PIPELINEAnolog,tj, Cambridge, Massachusetts (Received January 28, 1969) The exploitation of offshore natural gas reserves

  19. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-08-01T23:59:59.000Z

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infracture''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and tested on four different integral engine/compressors in natural gas transmission service.

  20. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-03-01T23:59:59.000Z

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and qualitatively demonstrated in tests on three different integral engine/compressors in natural gas transmission service.

  1. Compression station key to Texas pipeline project

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This was probably the largest pipeline project in the US last year, and the largest in Texas in the last decade. The new compressor station is a key element in this project. TECO, its servicing dealer, and compression packager worked closely throughout the planning and installation stages of the project. To handle the amount of gas required, TECO selected the GEMINI F604-1 compressor, a four-throw, single-stage unit with a six-inch stroke manufactured by Weatherford Enterra Compression Co. (WECC) in Corpus Christi, TX. TECO also chose WECC to package the compressors. Responsibility for ongoing support of the units will be shared among TECO, the service dealer and the packager. TECO is sending people to be trained by WECC, and because the G3600 family of engines is still relatively new, both the Caterpillar dealer and WECC sent people for advanced training at Caterpillar facilities in Peoria, IL. As part of its service commitment to TECO, the servicing dealer drew up a detailed product support plan, encompassing these five concerns: Training, tooling; parts support; service support; and commissioning.

  2. A Transonic Axial Compressor Facility for Fundamental Research

    E-Print Network [OSTI]

    Morris, Scott C.

    A Transonic Axial Compressor Facility for Fundamental Research and Flow Control Development Joshua, IN, 46556, USA A single-stage transonic axial compressor facility has been constructed in the the current generation of aero-gas turbine engines. The compressor stage and facility were designed

  3. EIS-0501: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is analyzing the potential environmental impacts of a proposal to construct and operate natural gas liquefaction and export facilities at the existing Golden Pass liquefied natural gas terminal in Jefferson County, Texas. The proposal includes three new compressor stations in Jefferson and Orange Counties, Texas, and Calcasieu Parish, Louisiana; a new 3-mile long pipeline in Calcasieu Parish; and modifications to 11 existing interconnections with other pipeline systems. In 2013, FERC announced its intent to prepare an EA and conducted public scoping. (See DOE/EA-1971.) In June 2014, FERC announced that, due to changes in the project location and scope, it would prepare an EIS. DOE, Office of Fossil Energy – a cooperating agency in preparing the EIS – has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  4. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect (OSTI)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01T23:59:59.000Z

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  5. Free piston inertia compressor

    SciTech Connect (OSTI)

    Bilodeau, D.; Brady, J.; Dutram, L.J.; Marusak, T.; Richards, W.D.

    1981-12-29T23:59:59.000Z

    A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to excape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.

  6. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-07-27T23:59:59.000Z

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  7. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2006-01-24T23:59:59.000Z

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report presents results of design analysis performed on the TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  8. Method and apparatus for starting supersonic compressors

    DOE Patents [OSTI]

    Lawlor, Shawn P. (Bellevue, WA)

    2012-04-10T23:59:59.000Z

    A supersonic gas compressor. The compressor includes aerodynamic duct(s) situated on a rotor journaled in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. The convergent inlet is adjacent to a bleed air collector, and during acceleration of the rotor, bypass gas is removed from the convergent inlet via a collector to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypass gas from the convergent inlet via the bypass gas collectors is eliminated.

  9. Danfoss Commercial Compressors October 2013 | 2 Inverter compressors

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Danfoss Commercial Compressors October 2013 | 2 Inverter compressors Geothermal energy taps ideas. Our sustainable solutions. #12;Danfoss Commercial Compressors October 2013 | 3 Content Ways to improve heat pump efficiency : compressor technology focus Efficiency boost in Ground Source Heat Pump

  10. Apparatus for the liquefaction of a gas and methods relating to same

    DOE Patents [OSTI]

    Turner, Terry D. (Idaho Falls, ID) [Idaho Falls, ID; Wilding, Bruce M. (Idaho Falls, ID) [Idaho Falls, ID; McKellar, Michael G. (Idaho Falls, ID) [Idaho Falls, ID

    2009-12-29T23:59:59.000Z

    Apparatuses and methods are provided for producing liquefied gas, such as liquefied natural gas. In one embodiment, a liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream may be sequentially pass through a compressor and an expander. The process stream may also pass through a compressor. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. A portion of the liquid gas may be used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line.

  11. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-07-01T23:59:59.000Z

    This quarterly report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report documents the second series of tests performed on a turbocharged HBA-6T engine/compressor. It also presents baseline testing for air balance investigations and initial simulation modeling of the air manifold for a Cooper GMVH6.

  12. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-10-01T23:59:59.000Z

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report documents the second series of tests performed on a GMW10 engine/compressor after modifications to add high pressure Fuel and a Turbocharger. It also presents baseline testing for air balance investigations and initial simulation modeling of the air manifold for a Cooper GMVH6.

  13. Economic Nonlinear Model Predictive Control for the Optimization of Gas Pipeline Networks

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    / 24 #12;Natural Gas Industry Motivation Natural Gas Industry Globally increasing demand & production of natural gas. Demand distribution (as of 2008) 21 % residential, 13 % Commercial, 34 % Industrial, 29 - Regulated, Deregulated markets Applying Economic Model Predictive Control to gas transportation. 1Zheng et

  14. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Nancy Porter; Mike Sullivan; Chris Neary

    2003-05-01T23:59:59.000Z

    The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: two with composite liners and two without.

  15. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  16. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty(MillionGlossaryOfPipelineHealthYear Jan Feb Mar

  17. Optimal Control of Transient Flow in Natural Gas Networks

    E-Print Network [OSTI]

    Zlotnik, Anatoly; Backhaus, Scott

    2015-01-01T23:59:59.000Z

    We outline a new control system model for the distributed dynamics of compressible gas flow through large-scale pipeline networks with time-varying injections, withdrawals, and control actions of compressors and regulators. The gas dynamics PDE equations over the pipelines, together with boundary conditions at junctions, are reduced using lumped elements to a sparse nonlinear ODE system expressed in vector-matrix form using graph theoretic notation. This system, which we call the reduced network flow (RNF) model, is a consistent discretization of the PDE equations for gas flow. The RNF forms the dynamic constraints for optimal control problems for pipeline systems with known time-varying withdrawals and injections and gas pressure limits throughout the network. The objectives include economic transient compression (ETC) and minimum load shedding (MLS), which involve minimizing compression costs or, if that is infeasible, minimizing the unfulfilled deliveries, respectively. These continuous functional optimiza...

  18. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

    1985-01-01T23:59:59.000Z

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  19. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, W.A.; Young, R.R.

    1985-05-14T23:59:59.000Z

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  20. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2003-10-01T23:59:59.000Z

    This report documents work performed in the fourth quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: second field test; test data analysis for the first field test; operational optimization plans.

  1. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalle; Ralph E. Harris; Gary D. Bourn

    2003-07-01T23:59:59.000Z

    This report documents work performed in the third quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: first field test; test data analysis.

  2. Design and operation of a counter-rotating aspirated compressor blowdown test facility

    E-Print Network [OSTI]

    Parker, David V. (David Vickery)

    2005-01-01T23:59:59.000Z

    A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous blowdown turbine and blowdown compressor experiments. ...

  3. Energy conversion using thermal transpiration : optimization of a Knudsen compressor

    E-Print Network [OSTI]

    Klein, Toby A. (Toby Anna)

    2012-01-01T23:59:59.000Z

    Knudsen compressors are devices without any moving parts that use the nanoscale phenomenon of thermal transpiration to pump or compress a gas. Thermal transpiration takes place when a gas is in contact with a solid boundary ...

  4. Natural gas pipelines after field price decontrol : a study of risk, return and regulation

    E-Print Network [OSTI]

    Carpenter, Paul R.

    1984-01-01T23:59:59.000Z

    This is a study of a regulated industry undergoing rapid change. For the first time in its history, following the partial decontrol of field prices in 1978, natural gas is being priced at a level which places it in direct ...

  5. A New Approach for Determining Optimal Air Compressor Location in A Manufacturing Facility to Increase Energy Efficiency 

    E-Print Network [OSTI]

    Zahlan, J.; Avci, M.; Asfour, S.

    2014-01-01T23:59:59.000Z

    determines the ideal air compressor horsepower required to meet the facility air demand at the required pressure. Air pressure drops are incorporated using a compressed air pipeline pressure drop table, while air leaks are calculated throughout the system...

  6. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01T23:59:59.000Z

    Hydrogen (Natural Gas, pipeline) Hydrogen (Natural Gas,liquid H2 truck) Hydrogen (Coal, pipeline) Electricity (production? Hydrogen Production Mix Natural Gas, pipeline,

  7. Design of a Free Piston Pneumatic Compressor as a Mobile Robot Power Supply

    E-Print Network [OSTI]

    Barth, Eric J.

    Design of a Free Piston Pneumatic Compressor as a Mobile Robot Power Supply Jose A. Riofrio.j.barth@vanderbilt.edu Abstract ­ The design of a free piston compressor (FPC) intended as a pneumatic power supply is achieved by matching the dynamic load of the compressor to the ideal adiabatic expansion of the hot gas

  8. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-09-01T23:59:59.000Z

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  9. Pittsburg, NH Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity on the U.S. Natural Gas

  10. Port of Del Bonita, MT Natural Gas Pipeline Imports From Canada (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity on the U.S. Natural GasSugars,

  11. Port of Morgan, MT Natural Gas Pipeline Exports to Canada (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity on the U.S. Natural GasSugars,Feet)

  12. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan FebCubic(Million

  13. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan FebCubic(MillionThousand Cubic

  14. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan FebCubic(MillionThousand

  15. Grand Island, NY Natural Gas Pipeline Exports (Price) to Canada (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper Thousand Cubic81,898 63,548

  16. Grand Island, NY Natural Gas Pipeline Exports (Price) to Canada (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper Thousand Cubic81,898 63,548per

  17. Grand Island, NY Natural Gas Pipeline Exports to Canada (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper Thousand Cubic81,898

  18. Grand Island, NY Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper Thousand Cubic81,898Thousand Cubic

  19. Grand Island, NY Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper Thousand Cubic81,898Thousand

  20. Grand Island, NY Natural Gas Pipeline Imports From Canada (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper Thousand

  1. Havre, MT Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAIN EIA PRODUCTSCubic

  2. Havre, MT Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAIN EIA PRODUCTSCubicCubic

  3. Havre, MT Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAIN EIA

  4. Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAIN EIACubic Feet)

  5. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2 Week 30

  6. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2 Week

  7. Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2 WeekYear

  8. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2

  9. Highgate Springs, VT Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week

  10. Highgate Springs, VT Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 WeekThousand

  11. IP CN Crosby, ND Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1ThisThousand

  12. IP CN Crosby, ND Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week

  13. Idaho Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-MonthExportsLease

  14. New Mexico Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural Gas Number ofIndustrial

  15. New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural Gas Number

  16. An Archaeological Survey of the Proposed Donner Brown A-83 #1 Gas Pipeline in Western Newton County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-24T23:59:59.000Z

    An archaeological investigation of an 8260 foot pipeline (5.6 acres) in western Newton County, Texas was performed by Brazos Valley Research Associates of Bryan, Texas in July 2001. No archaeological sites were found to exist within the project...

  17. An Archaeological Survey of the Proposed ARCO Blackstone Mineral A-977 #1 Gas Pipeline in Jasper County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-24T23:59:59.000Z

    An archaeological investigation of an 1884 foot pipeline (1.3 acres) in western Jasper County, Texas was performed by Brazos Valley Research Associates (BVRA) of Bryan, Texas in July 2001. No archaeological sites were found to exist within...

  18. Active compressor engine silencer reduces exhaust noise

    SciTech Connect (OSTI)

    Denenberg, J.N.; Miller, S.K. (Noise Cancellation Technologies, Inc., Stamford, CT (United States)); Jay, M.A. (Walker Noise Cancellation Technologies, Grass Lake, MI (United States))

    1994-01-01T23:59:59.000Z

    An active industrial silencer on a compressor engine at a Tenneco Gas station has reduced low-frequency rumbling' noise by 8 dB during trials while lowering backpressure about 90$. This 8 dB reduction of the piston firing frequency corresponds to a more than 80% decrease in emitted acoustic power. The silencing unit, installed on one of six engines at the station near Eden, N.Y., continues in operation. Based on the results, the manufacturer is identifying additional compressor sites for further tests. This paper reviews this project.

  19. Common Pipeline Carriers (North Dakota)

    Broader source: Energy.gov [DOE]

    Any entity that owns, operates, or manages a pipeline for the purpose of transporting crude petroleum, gas, coal, or carbon dioxide within or through the state of North Dakota, or is engaged in the...

  20. Refrigerator with a clearance seal compressor

    SciTech Connect (OSTI)

    Holland, N. J.

    1985-09-10T23:59:59.000Z

    In a Stirling refrigeration system in which a displacer is driven in a reciprocating motion within a cold finger by a pressure differential between helium gas in the cold finger and helium gas in a gas spring volume, the reciprocating piston compressor for the working volume has a clearance seal between the working volume and a control volume. The only lubricant in that seal is the helium gas. The mean pressure of the working volume relative to the control volume can be controlled by varying the length of the clearance seal throughout the stroke of the piston. Preferably, the seal is between alumina ceramic sleeves. The clearance seal compressor may also be used in a Gifford-McMahon cycle.

  1. Leakage Risk Assessment of CO2 Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    E-Print Network [OSTI]

    Mazzoldi, A.

    2014-01-01T23:59:59.000Z

    S.M. , 2007, Natural Gas Pipeline Technology Overview.high-pressure natural- gas pipelines: J. Loss Prevention inrisk assessments of CO 2 pipelines, in Elsevier, ed. , 9th

  2. The Importance of the Oil & Gas Industry to Northern Colorado and

    E-Print Network [OSTI]

    of Crude Oil 0% Pipeline Transportation of Natural Gas 3% Pipeline Transportation of Refined Petroleum,681 Natural Gas Distribution Natural Gas Liquid Extraction Pipeline Transportation of Crude Oil Pipeline Transportation of Refined... Pipeline Transportation of Natural Gas Petroleum Refineries Oil and Gas Pipeline

  3. A Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Induced Pseudoscalar Coupling gP

    E-Print Network [OSTI]

    Banks, Thomas Ira

    2007-01-01T23:59:59.000Z

    the hydrogen gas of Z > 1 impurities COMET COMpressor forhydrogen gas using a model 75-32 Whatman Figure 5.11: CHUPS schematic diagram, including the compressors,

  4. HELIUM COMPRESSOR MONITORING SYSTEM Donna Kubik

    E-Print Network [OSTI]

    HELIUM COMPRESSOR MONITORING SYSTEM Donna Kubik Arecibo Observatory #12;1 CONTENTS 1. Design goals 3 1.1 Features of the compressor monitoring system 4 2. EDAS: The basis of data acquisition 5 2 Compressor #1 Connectors Compressor #2 Connectors Compressor #3 Connectors Compressor #4 Connectors

  5. Energy Savings for Centrifugal Compressors

    E-Print Network [OSTI]

    Fisher, D.

    2011-01-01T23:59:59.000Z

    Current design improvements of both the rotating and stationary aerodynamic components of centrifugal compressors can greatly increase the efficiency of vintage machines. A centrifugal compressor built in the 1970's or 1980's might have an external...

  6. Cathodic protection retrofit of an offshore pipeline

    SciTech Connect (OSTI)

    Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

    1997-09-01T23:59:59.000Z

    Cathodic protection (CP) anodes and corrosion coating on two offshore pipelines were damaged during deep water installation. In-situ methods for deep-water inspection and repair of the pipelines` CP and coating systems were developed and used. High-pressure natural gas Pipeline. A design was 5.6 miles of 8.625 in. OD by 0.406 in. W.T. API SL, Grade X-42, seamless line pipe. Pipeline B design was 0.3 miles of similar specification pipe. Both pipelines were mill-coated with 14 mil of fusion-bonded epoxy (FBE) corrosion coating. Girth welds were field-coated with FBE.

  7. Tracer-dilution method indicates flowrate through compressor

    SciTech Connect (OSTI)

    Lagus, P.L.; Flanagan, B.S. (Lagus Applied Technology Inc., San Diego, CA (US)); Peterson, M.E. (Tennessee Gas Pipeline Co., Middleton, TN (US)); Clowney, S.L. (Tenneco Gas, Houston, TX (US))

    1991-02-25T23:59:59.000Z

    A technique for measuring compressor flowrate through an operating natural-gas centrifugal compressor has been tested and found to have a precisions approaching {plus minus}1.5%. The technique employs constant-flow tracer dilution. Testing demonstrated that use of a critical-flow nozzle to inject a constant, known flow of tracer into a flowing natural-gas stream is feasible. Effects of potential pulsation on a tracer flow measurement appear to be eliminated by this technique. With experimental and operational streamlining, the constant-flow tracer dilution technique is capable of being used to measure the flowrate through operating centrifugal compressors with sufficient precisions and accuracy to allow compressor operating characteristics to be determined. This technique is especially useful in situations in which an orifice-flow measurement cannot be performed because of physical space limits or economic considerations.

  8. Pipeline Setback Ordinance (Minnesota)

    Broader source: Energy.gov [DOE]

    This statute establishes the Office of Pipeline Safety to regulate pipelines in Minnesota. Among other duties, the office is responsible for implementing a Model Pipeline Setback Ordinance.

  9. Compressor surge counter

    DOE Patents [OSTI]

    Castleberry, Kimberly N. (Harriman, TN)

    1983-01-01T23:59:59.000Z

    A surge counter for a rotating compressor is provided which detects surging by monitoring the vibration signal from an accelerometer mounted on the shaft bearing of the compressor. The circuit detects a rapid increase in the amplitude envelope of the vibration signal, e.g., 4 dB or greater in less than one second, which is associated with a surge onset and increments a counter. The circuit is rendered non-responsive for a period of about 5 seconds following the detection which corresponds to the duration of the surge condition. This prevents multiple registration of counts during the surge period due to rapid swings in vibration amplitude during the period.

  10. When Barriers to Markets Fail: Pipeline Deregulation, Spot Markets, and the Topology of the Natural Gas Market

    E-Print Network [OSTI]

    De Vany, Arthur; Walls, W. David

    1992-01-01T23:59:59.000Z

    Growth in Unbundled Natural Gas Transportation Services:Mergers and their Potential Impact on Natural Gas Markets."Natural Gas Monthly, DOE/EIA-0525. \\Vashington, D.C. : U.S.

  11. Pipeline ADC Design Methodology

    E-Print Network [OSTI]

    Zhao, Hui

    2012-01-01T23:59:59.000Z

    Scaling vs. R. Figure 4.8 Pipeline ADC Structures. Figure2.4 A Pipelined ADC. Figure 3.1 Pipeline ADC Transfer Curve.Modes (b) data latency in pipeline ADC Figure 3.3 Detailed

  12. Apparatus for the liquefaction of natural gas and methods relating to same

    DOE Patents [OSTI]

    Turner, Terry D. (Ammon, ID); Wilding, Bruce M. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID)

    2009-09-22T23:59:59.000Z

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates a vapor from the liquid natural gas. A portion of the liquid gas is used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line or recirculation within the system for further processing.

  13. New regulatory environment changing pipeline operations

    SciTech Connect (OSTI)

    Fields, J.H. (Northwest Pipeline Corp., Salt Lake City, UT (United States))

    1994-04-01T23:59:59.000Z

    This paper reviews the effects of deregulation of the natural gas and pipeline industry as a result of the Federal Energy Regulatory Commission's Orders 436, 500, and 636. It describes the changes as they affected Northwest Pipeline's structure and marketing strategies as the company had to move from a gas merchandiser to a gas transporter. It describes the capacity release options of the pipeline which allow the customers to buy, release, and renegotiate prices whenever they need to because of an increase or decrease in demand using current market prices. The paper discusses the natural gas distribution system which has evolved as a result of these regulations.

  14. Josh Nordquist Director Ormat Technologies, Inc. DOE's ...

    Office of Environmental Management (EM)

    These compressor stations mainly use natural gas from the pipeline as fuel for the compressors, which are mostly gas turbines or gas engines. The waste heat from these...

  15. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris

    2003-01-01T23:59:59.000Z

    This report documents work performed in the first quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: preparation and submission of the Research Management Plan; preparation and submission of the Technology Status Assessment; attendance at the Project Kick-Off meeting at DOE-NETL; formation of the Industry Advisory Committee (IAC) for the project; preparation of the Test Plan; acquisition and assembly of the data acquisition system (DAS).

  16. PIPELINES AS COMMUNICATION NETWORK LINKS

    SciTech Connect (OSTI)

    Kelvin T. Erickson; Ann Miller; E. Keith Stanek; C.H. Wu; Shari Dunn-Norman

    2005-03-14T23:59:59.000Z

    This report presents the results of an investigation into two methods of using the natural gas pipeline as a communication medium. The work addressed the need to develop secure system monitoring and control techniques between the field and control centers and to robotic devices in the pipeline. In the first method, the pipeline was treated as a microwave waveguide. In the second method, the pipe was treated as a leaky feeder or a multi-ground neutral and the signal was directly injected onto the metal pipe. These methods were tested on existing pipeline loops at UMR and Batelle. The results reported in this report indicate the feasibility of both methods. In addition, a few suitable communication link protocols for this network were analyzed.

  17. Light intensity compressor

    DOE Patents [OSTI]

    Rushford, Michael C. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  18. Power Characteristics of Industrial Air Compressors

    E-Print Network [OSTI]

    Schmidt, C.; Kissock, K.

    The power draw characteristics of air compressors are primarily determined by the type of compressor control and the relationship between the compressor's output capacity and the compressed air demand in the plant. In this paper, we review the most...

  19. Instrumented Pipeline Initiative

    SciTech Connect (OSTI)

    Thomas Piro; Michael Ream

    2010-07-31T23:59:59.000Z

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  20. Advanced Hybrid Water Heater using Electrochemical Compressor...

    Energy Savers [EERE]

    Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

  1. Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston

    E-Print Network [OSTI]

    Jackson, Robert B.

    transmission and distribution pipelines for natural gas in the U. S. cause an average of 17 fatalities, 68 signatures w20& lighter (m ¼ À57.8&, Æ1.6& s.e., n ¼ 8). Repairing leaky natural gas distribution systems injuries, and $133 M in property damage each year (PHMSA, 2012). A natural gas pipeline explosion in San

  2. Apparatus for the liquefaction of natural gas and methods relating to same

    DOE Patents [OSTI]

    Wilding, Bruce M. (Idaho Falls, ID) [Idaho Falls, ID; McKellar, Michael G. (Idaho Falls, ID) [Idaho Falls, ID; Turner, Terry D. (Ammon, ID) [Ammon, ID; Carney, Francis H. (Idaho Falls, ID) [Idaho Falls, ID

    2009-09-29T23:59:59.000Z

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.

  3. Natural Pipeline of America Check Presentation 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    An archaeological investigation of approximately 1000 feet of a proposed 22,000 foot natural gas pipeline in southeastern Orange County, Texas was performed by Brazos Valley Research Associates of Bryan, Texas in August 2001. No archaeological sites...

  4. METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW

    SciTech Connect (OSTI)

    Bowman Jr, Robert C [ORNL] [ORNL; Yartys, Dr. Volodymyr A. [Institute for Energy Technology (IFE)] [Institute for Energy Technology (IFE); Lototskyy, Dr. Michael V [University of the Western Cape, South Africa] [University of the Western Cape, South Africa; Pollet, Dr. B.G. [University of the Western Cape, South Africa

    2014-01-01T23:59:59.000Z

    Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

  5. A dual Newton strategy for the efficient solution of sparse quadratic ...

    E-Print Network [OSTI]

    2013-07-24T23:59:59.000Z

    compressors are widely used in gas extraction plants or gas pipelines to extract and ... the opening of the recycle valve as well as the torque of the compressor's ...

  6. Pipeline Safety (Maryland)

    Broader source: Energy.gov [DOE]

    The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

  7. HERA-B GAS HUT: Mixing stations OTR: 4,2 x 1,2 m

    E-Print Network [OSTI]

    gas bottles Detector.xls(Gas hut) Page 1 J. Spengler 20.08.1997 #12;The compressors will be installed purifiers 2 compressors 1 compressors 1 spare 1 gas separator 1 7 spare 0,5 5 Muon tube MFC's + steering,5 compressors 1 purifiers 0 spare 1 compressors 0,5 5 spare 0,5 1,5 1,5 Muon pixel: MFC's + steering units 0

  8. Conserve Energy by Optimizing Air Compressor System

    E-Print Network [OSTI]

    Williams, V. A.

    is the compressed air plant(s), cating air compressors with one 60-hp and one 30-hp which many times include compressors, ancillary screw compressor; (2) the repiping of the existing equipment, and/or an operating sequence that is screw compressors cooling water...

  9. Flow and Plate Motion in Compressor Valves

    E-Print Network [OSTI]

    Twente, Universiteit

    Flow and Plate Motion in Compressor Valves #12;Flow and Plate Motion in Compressor Valves R.A. Habing Cover Image: 4-stage reciprocating compressor system, Courtesy of Ariel Corporation Thesis.A. Habing, Enschede, The Netherlands #12;FLOW AND PLATE MOTION IN COMPRESSOR VALVES PROEFSCHRIFT ter

  10. UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE

    SciTech Connect (OSTI)

    Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

    2011-10-01T23:59:59.000Z

    This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.

  11. Effects of rotor tip clearance on an embedded compressor stage performance

    E-Print Network [OSTI]

    Sakulkaew, Sitanun

    2012-01-01T23:59:59.000Z

    Compressor efficiency variation with rotor tip gap is assessed using numerical simulations on an embedded stage representative of that in a large industrial gas turbine with Reynolds number being approximately 2 x 106 to ...

  12. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    SciTech Connect (OSTI)

    none,

    1981-05-01T23:59:59.000Z

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  13. ,"Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate ProvedGas,Canada (Dollars per Thousand

  14. ,"Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate ProvedGas,Canada (Dollars per

  15. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30T23:59:59.000Z

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  16. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W. (Wilkinsburg, PA)

    1984-01-01T23:59:59.000Z

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  17. Linear Gain for the Microbunching Instability in an RF Compressor

    E-Print Network [OSTI]

    Venturini, M.

    2010-01-01T23:59:59.000Z

    Instability in an RF Compressor M. Venturini Lawrencefor investigating this instability in rf compressors. We useapplied to magnetic compressors [2, 3] and derive some

  18. Multi-Stage Bunch Compressors for the International Linear Collider

    E-Print Network [OSTI]

    Tenenbaum, Peter G.; Raubenheimer, Tor O.; Wolski, Andrzej

    2005-01-01T23:59:59.000Z

    150 µm RMS. The multi-stage compressors are somewhat longerthan the single-stage compressor and require additional RFof the NLC Bunch Compressor,” (1999). [4] C. Adolphsen,

  19. Downhole steam generator having a downhole oxidant compressor

    DOE Patents [OSTI]

    Fox, Ronald L. (Albuquerque, NM)

    1983-01-01T23:59:59.000Z

    Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

  20. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

    2005-07-20T23:59:59.000Z

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.

  1. Suction muffler for refrigeration compressor

    DOE Patents [OSTI]

    Nelson, R.T.; Middleton, M.G.

    1983-01-25T23:59:59.000Z

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

  2. Suction muffler for refrigeration compressor

    DOE Patents [OSTI]

    Nelson, Richard T. (Worthington, OH); Middleton, Marc G. (West Jefferson, OH)

    1983-01-01T23:59:59.000Z

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell.

  3. Survey and assessment of the effects of nonconventional gases on gas distribution equipment

    SciTech Connect (OSTI)

    Jasionowski, W.J.; Scott, M.I.; Gracey, W.C.

    1982-10-01T23:59:59.000Z

    A literature search and a survey of the gas industry were conducted to assess potential problems in the distribution of nonconventional gases. Available literature did not uncover data that would describe potential problems or substantiate the presence of harmful trace elements in final gas compositions produced from various SNG processes. Information from the survey indicates that some companies have encountered problems with nonconventional gases and extraneous additives such as landfill gas, refinery off-gases, oil gas, carbureted water gas, coke-oven gas, propane-air, and compressor lubricant oils. These nonconventional gases and compressor oils may 1) cause pipeline corrosion, 2) degrade some elastomeric materials and greases and affect the integrity of seals, gaskets, O-rings, and meter and regulator diaphragms, and 3) cause operational and safety problems. The survey indicated that 62% of the responding companies plan to use supplemental gas, with most planning on more than one type. Distribution companies intend to significantly increase their use of polyethylene piping from 11.6% in 1980 to 22.4% in 2000 for gas mains and from 33.4% to 50.3% in 2000 for gas service lines.

  4. Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing

    E-Print Network [OSTI]

    Davis, Lucas; Muehlegger, Erich

    2009-01-01T23:59:59.000Z

    gas distribution including installing and maintaining pipelines,pipeline From a research perspective, a signi?cant advantage of natural gas distribution

  5. From {open_quotes}command and control{close_quotes} to risk management: The evolution of the federal natural gas pipeline safety program

    SciTech Connect (OSTI)

    Biancardi, P.; Bogardus, L.M.

    1995-12-31T23:59:59.000Z

    The pipeline industry essentially accepted the passage of the NGPSA in 1968 because it would provide one set of uniform regulations under the shield of federal preemption, thus relieving industry from the impossible burden of complying with inconsistent state and local requirements. The program developed, however, in response to the public`s misperception of infrequent but highly publicized accidents, rather than as a result of rational evaluation of actual pipeline safety risks. Like other federal agencies, the DOT has begun to reassess this method of regulation and today has a new vision of pipeline safety regulation. The DOT has embarked on a regulatory experiment which requires government-industry partnerships, greater public participation, and risk-based regulations. Whether or not this experiment succeeds, the DOT deserves credit for seeking new and innovative approaches to regulating the pipeline industry.

  6. Natural gas monthly, July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This document presents information pertaining to the natural gas industry. Data are included on production, consumption, distribution, and pipeline activities.

  7. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01T23:59:59.000Z

    natural gas reformation with pipeline distribution (64%),gas reformation (71%), centralized biomass gasification with pipeline distribution (pipeline distribution (65%), and onsite electrolysis (67%); and electricity generation from: biomass (40%), coal (45%) and natural gas

  8. Compressor bleed cooling fluid feed system

    DOE Patents [OSTI]

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25T23:59:59.000Z

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  9. EIS-0152: Iroquois, Tenn. Phase I, Pipeline Line Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to asses the environmental impacts of constructing and operating an interstate natural gas pipeline and associated infrastructure to transport gas from Canada and domestic sources to the New England Market, as proposed by the Iroquois Gas Transmission System and the Tennessee Gas Pipeline Company. The U.S. Department of Energy Office of Fossil Energy was a cooperating agency during statement development and adopted the statement on 9/1/1990.

  10. EIS-0152: Iroquois/Tennessee Phase I Pipeline Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to asses the environmental impacts of constructing and operating an interstate natural gas pipeline and associated infrastructure to transport gas from Canada and domestic sources to the New England Market, as proposed by the Iroquois Gas Transmission System and the Tennessee Gas Pipeline Company. The U.S. Department of Energy Office of Fossil Energy was a cooperating agency during statement development and adopted the statement on 9/1/1990.

  11. Unwinding the Spin on Variable Speed Drive Air Compressors

    E-Print Network [OSTI]

    Beals, C. E.

    2006-01-01T23:59:59.000Z

    Unwinding the Spin on Variable Speed Drive Air Compressors By Chris E. Beals, President, Air System Management, Inc Over the past several years, the variable speed drive (VSD) compressor has become a frequent choice for new compressor... purchases. The VSD compressor’s popularity is partly due to rising energy prices and its efficiency as a trim compressor. Unfortunately, much of the VSD compressor’s popularity is a result of spin applied by the marketers. For example, sales...

  12. Regulation changes create opportunities for pipeline manufacturers

    SciTech Connect (OSTI)

    Santon, J.

    1999-09-01T23:59:59.000Z

    The US Department of Transportation`s (DOT) Research and Special Programs Administration (RSPA) is proposing to change its safety standards for the repair of corroded or damaged steel pipe in gas and hazardous liquid pipelines. For pipeline operators, the expected revisions will allow new flexibility in approaches to pipeline repair. Less costly and less disruptive procedures will be acceptable. For manufacturers, the changes will open opportunities for development of corrosion repair technology. A highly competitive market in new repair technology can be expected to arise. Current regulations, new technologies, and proposed safety standards are described.

  13. IEMDC -IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    SciTech Connect (OSTI)

    Michael J. Crowley; Prem N. Bansal; John E. Tessaro

    2004-01-01T23:59:59.000Z

    Dresser-Rand completed the preliminary aerodynamic flowpath of the volute and inlet design for the compressor section. This has resulted in considerable progress being made on the development of the compressor section and ultimately towards the successful integration of the IEMDC System design. Significant effort was put forth in the design of aerodynamic components which resulted in a design that meets the limits of aerodynamically induced radial forces previously established. Substantial effort has begun on the mechanical design of the compressor pressure containing case and other internal components. These efforts show progression towards the successful integration of a centrifugal compressor and variable speed electric motor ventilated by the process gas. All efforts continue to confirm the feasibility of the IEMDC system design. During the third quarter reporting period, the focus was to further refine the motor design and to ensure that the IEMDC rotor system supported on magnetic bearing is in compliance with the critical speed and vibration requirements of the API standards 617 and 541. Consequently specification to design magnetic bearings was developed and an RFQ to three magnetic bearing suppliers was issued. Considerable work was also performed to complete preliminary reports on some of the deliverable tasks under phase 1.0. These include specification for the VFD, RFQ for the magnetic bearings, and preliminary write-up for motor instrumentation and control schematic. In order to estimate motor efficiency at various operating points, plots of calculated motor losses, and motor cooling gas flow rates were also prepared. Preliminary evaluations of motor support concepts were performed via FEA to determine modal frequencies. Presentation was made at DOE Morgantown on August 12, 2003 to provide project status update. Preparations for the IEMDC motor-compressor presentation, at the GMRC conference in Salt Lake City to be held on October 5, 2003, were also started. Detailed calculations of cooling gas flow requirements for the motor and magnetic bearings, per several new operating points designated by DR, confirmed that the required gas flow was within the compressor design guidelines. Previous thrust load calculations had confirmed that the magnetic thrust bearing design load capacity of 6,000 lb. was sufficient to handle the net thrust load produced by the motor and compressor pressure loading. Thus the design data that has been generated, for the variable speed 10 MW 12,000 rpm motor, during the last three quarters, continue to confirm the feasibility of an efficient and robust motor design.

  14. Components in the Pipeline

    SciTech Connect (OSTI)

    Gorton, Ian; Wynne, Adam S.; Liu, Yan (Jenny); Yin, Jian

    2011-02-24T23:59:59.000Z

    Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

  15. The State of the Industrial Compressor Market

    E-Print Network [OSTI]

    Perry, W.

    The industrial compressor industry in the United States has been operating in a textbook example of a mature market. No truly new compressor technology has been introduced in the past thirty years and there is none on the horizon. Competitive...

  16. The State of the Industrial Compressor Market 

    E-Print Network [OSTI]

    Perry, W.

    1998-01-01T23:59:59.000Z

    Pneumatic, Worthington and Kellogg, to name a few) are gone. With Ingersoll-Rand's recent departure, Gardner Denver is the only U.S. company that manufactures an industrial, double-acting, reciprocating compressor. The dynamic compressor manufacturers face a...

  17. Water injected fuel cell system compressor

    DOE Patents [OSTI]

    Siepierski, James S. (Williamsville, NY); Moore, Barbara S. (Victor, NY); Hoch, Martin Monroe (Webster, NY)

    2001-01-01T23:59:59.000Z

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  18. Pipeline Construction Guidelines (Indiana)

    Broader source: Energy.gov [DOE]

    The Division of Pipeline Safety of the Indiana Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has...

  19. The Compressor: Concurrent, Incremental, and Parallel Compaction

    E-Print Network [OSTI]

    Petrank, Erez

    The Compressor: Concurrent, Incremental, and Parallel Compaction Haim Kermany Erez Petrank Dept non-intrusive compactor is still missing. In this paper we present the Compressor, a novel compaction, thereby allowing acceptable runs on large heaps. Furthermore, the Compressor is the first compactor

  20. Compressor performance, absolutely! M. R. Titchener

    E-Print Network [OSTI]

    Titchener, Mark R.

    Compressor performance, absolutely! M. R. Titchener Dept of CS, U. of Auck., N.Z. (Email: mark the absolute performance of existing string compressors may be measured. Kolmogorov (1958) recognised://tcode.auckland.ac.nz/~corpus has been used to evaluate the `absolute' performance of a series of popular compressors. The results

  1. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

    2004-04-12T23:59:59.000Z

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) Pipe diameter sizes range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.). The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.), with 95% using 558.8 mm (22 in.) pipe. An evaluation of potential repair methods clearly indicates that the project should continue to focus on the development of a repair process involving the use of GMAW welding and on the development of a repair process involving the use of fiber-reinforced composite liners.

  2. Will heat from the pipeline affect groundwater and surface water? Response by Professor James Goeke The temperature of a pipeline buried 4 feet would

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    of the pipeline as a way to check for leaks? Do you have any specific concerns regarding oil or natural gas1 Water Will heat from the pipeline affect groundwater and surface water? Response by Professor James Goeke ­ The temperature of a pipeline buried 4 feet would probably affect surface water

  3. EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322Development & Expansion

  4. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322Development & ExpansionInterstate

  5. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage by

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322Development &Region/State Mileage

  6. EIA - Natural Gas Pipeline Network - Generalized Natural Gas Pipeline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOrigin State Glossary HomeCapacity Design

  7. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2YonthlyEnergyMapExpansion

  8. Keystone XL pipeline update

    Broader source: Energy.gov [DOE]

    Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

  9. Hot gas path analysis and data evaluation of the performance parameters of a gas turbine

    E-Print Network [OSTI]

    Hanawa, David Allen

    1974-01-01T23:59:59.000Z

    VITA 83 LIST OF FIGURES F g. 1. 1 Centrifugal Compressor Performance Nap 1. 2 Compressor and Turbine Shaft Assembly ? ag'e 1. 3 Axial Compressor Performance Nap 2. 1 Variation of Compressor Pressure Ratio Over the Load Range 2. 2 Variation... of Compressor Pressure Ratio With the Flow Rate 13 2. 3 T-s Diagram of Brayton Cycle 2. 4 Sketch of Open Cycle Gas Turbine 1 7 2. 5 Specific Heat versus Temperature 18 2. 6 Optimum Cycle Efficiency by Pressure Ratios . . . . 20 3. 1 Different Compressor...

  10. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2008-02-29T23:59:59.000Z

    There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

  11. Overview of interstate hydrogen pipeline systems.

    SciTech Connect (OSTI)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01T23:59:59.000Z

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

  12. Apparatus and methods for cooling and sealing rotary helical screw compressors

    DOE Patents [OSTI]

    Fresco, Anthony N. (P.O. Box 734, Upton, NY 11973)

    1997-01-01T23:59:59.000Z

    In a compression system which incorporates a rotary helical screw compressor, and for any type of gas or refrigerant, the working liquid oil is atomized through nozzles suspended in, and parallel to, the suction gas flow, or alternatively the nozzles are mounted on the suction piping. In either case, the aim is to create positively a homogeneous mixture of oil droplets to maximize the effectiveness of the working liquid oil in improving the isothermal and volumetric efficiencies. The oil stream to be atomized may first be degassed at compressor discharge pressure by heating within a pressure vessel and recovering the energy added by using the outgoing oil stream to heat the incoming oil stream. The stripped gas is typically returned to the compressor discharge flow. In the preferred case, the compressor rotors both contain a hollow cavity through which working liquid oil is injected into channels along the edges of the rotors, thereby forming a continuous and positive seal between the rotor edges and the compressor casing. In the alternative method, working liquid oil is injected either in the same direction as the rotor rotation or counter to rotor rotation through channels in the compressor casing which are tangential to the rotor edges and parallel to the rotor centerlines or alternatively the channel paths coincide with the helical path of the rotor edges.

  13. Apparatus and methods for cooling and sealing rotary helical screw compressors

    DOE Patents [OSTI]

    Fresco, A.N.

    1997-08-05T23:59:59.000Z

    In a compression system which incorporates a rotary helical screw compressor, and for any type of gas or refrigerant, the working liquid oil is atomized through nozzles suspended in, and parallel to, the suction gas flow, or alternatively the nozzles are mounted on the suction piping. In either case, the aim is to create positively a homogeneous mixture of oil droplets to maximize the effectiveness of the working liquid oil in improving the isothermal and volumetric efficiencies. The oil stream to be atomized may first be degassed at compressor discharge pressure by heating within a pressure vessel and recovering the energy added by using the outgoing oil stream to heat the incoming oil stream. The stripped gas is typically returned to the compressor discharge flow. In the preferred case, the compressor rotors both contain a hollow cavity through which working liquid oil is injected into channels along the edges of the rotors, thereby forming a continuous and positive seal between the rotor edges and the compressor casing. In the alternative method, working liquid oil is injected either in the same direction as the rotor rotation or counter to rotor rotation through channels in the compressor casing which are tangential to the rotor edges and parallel to the rotor center lines or alternatively the channel paths coincide with the helical path of the rotor edges. 14 figs.

  14. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-12-31T23:59:59.000Z

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

  15. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-08-17T23:59:59.000Z

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

  16. Gas Pipeline Safety Rules (Alabama)

    Broader source: Energy.gov [DOE]

    All public utilities and persons subject to this rule shall file with the commission an operating and maintenance plan as well as an emergency plan. All construction work involving the addition and...

  17. Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps

    SciTech Connect (OSTI)

    Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

  18. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    SciTech Connect (OSTI)

    Agnew, Kieran [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)] [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)

    2013-07-01T23:59:59.000Z

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method of breaching the pipe while maintaining containment to remove residual liquids, - Crimp and shear - remote crimping, cutting and handling of pipe using the excavator - Pipe jacking - a way of removing pipes avoiding excavations and causing minimal disturbance and disruption. The details of the decommissioning trial design, the techniques employed, their application and effectiveness are discussed and evaluated here in. (authors)

  19. Parametric testing and evaluation of a free-piston Stirling engine/linear compressor system

    SciTech Connect (OSTI)

    Chiu, W.; Antoniak, Z.; Hogan, J.

    1983-08-01T23:59:59.000Z

    A 3 Kw free-piston Stirling engine (FPSE) driving a linear Rankine cycle vapor compressor has been under development by the Department of Energy, the Gas Research Institute and General Electric Company as a heat activated heat pump (HAHP) for residential applications since 1976. This paper presents data obtained from recent testing on the FPSE/linear compressor unit. System performance and engine/compressor matching and control tests and analyses are presented and discussed. Engine component performance and loss test data are also presented. A description of the low-cost real-time digital data acquisition system is included. Engine/compressor test results show maximum engine power levels over 3 Kw, close to the design goal of 3.2 Kw. However, maximum efficiency is approximately 25 percent, 5 points below the design goal. The test results are used to construct maps of engine performance and compressor performance. These maps support the engine/compressor matching techniques. Confirmation of the control system features needed to provide matched engine/compressor operation is presented. Loss measurements under engine oscillating flow conditions show that quasi-steady models of oscillating flow substantially underestimate losses, and that various Stirling engine models predict significantly different component losses. Both performance and component loss test results are combined with simulation trends to identify design improvements to the current hardware and the projected performance increases.

  20. Gas only nozzle

    DOE Patents [OSTI]

    Bechtel, William Theodore (15 Olde Coach Rd., Scotia, NY 12302); Fitts, David Orus (286 Sweetman Rd., Ballston Spa, NY 12020); DeLeonardo, Guy Wayne (60 St. Stephens La., Glenville, NY 12302)

    2002-01-01T23:59:59.000Z

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  1. How Safe Are Pipelines? Diana Furchtgott-Roth

    E-Print Network [OSTI]

    Calgary, University of

    18% 11% 14% 26% Natural Gas Distribution 25% 78% 76% 15% Hazardous Liquid 55% 11% 9% 53% #12;NumberHow Safe Are Pipelines? Diana Furchtgott-Roth Director, Economics21, Manhattan Institute Moving-Miles Transported: Petroleum Pipeline and Class I Rail Source: "Final Supplemental Environmental Impact Statement

  2. Statistical Methods for Estimating the Minimum Thickness Along a Pipeline

    E-Print Network [OSTI]

    along the pipeline can be used to estimate corrosion levels. The traditional parametric model method for this problem is to estimate parameters of a specified corrosion distribution and then to use these parameters companies use pipelines to transfer oil, gas and other materials from one place to another. Manufactures

  3. State Natural Gas Regulation Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act gives the Nebraska Public Service Commission authority to regulate natural gas utilities and pipelines within the state, except as provided for in the Nebraska Natural Gas Pipeline Safety...

  4. Analytic prognostic for petrochemical pipelines

    E-Print Network [OSTI]

    Jaoude, Abdo Abou; El-Tawil, Khaled; Noura, Hassan; Ouladsine, Mustapha

    2012-01-01T23:59:59.000Z

    Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

  5. Analytic prognostic for petrochemical pipelines

    E-Print Network [OSTI]

    Abdo Abou Jaoude; Seifedine Kadry; Khaled El-Tawil; Hassan Noura; Mustapha Ouladsine

    2012-12-25T23:59:59.000Z

    Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

  6. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-01T23:59:59.000Z

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents tests performed on a KVG103 engine/compressor installed at Duke's Thomaston Compressor Station. This is the first series of tests performed on a four-stroke engine under this program. Additionally, this report presents results, which complete a comparison of performance before and after modification to install High Pressure Fuel Injection and a Turbocharger on a GMW10 at Williams Station 60. Quarterly Reports 7 and 8 already presented detailed data from tests before and after this modification, but the final quantitative comparison required some further analysis, which is presented in Section 5 of this report. The report further presents results of detailed geometrical measurements and flow bench testing performed on the cylinders and manifolds of the Laboratory Cooper GMVH6 engine being employed for two-stroke engine air balance investigations. These measurements are required to enhance the detailed accuracy in modeling the dynamic interaction of air manifold, exhaust manifold, and in-cylinder fuel-air balance.

  7. REAL-TIME ACTIVE PIPELINE INTEGRITY DETECTION (RAPID) SYSTEM FOR CORROSION DETECTION AND QUANTIFICATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    alone there are over 2 million miles of natural gas transmission and distribution pipeline providing 24REAL-TIME ACTIVE PIPELINE INTEGRITY DETECTION (RAPID) SYSTEM FOR CORROSION DETECTION detection Acellent has developed a Real-time Active Pipeline Integrity Detection (RAPID) system. The RAPID

  8. Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems

    SciTech Connect (OSTI)

    Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM, 87131 (United States)

    2007-01-30T23:59:59.000Z

    Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

  9. XMill: an Efficient Compressor for XML Data Hartmut Liefke \\Lambda

    E-Print Network [OSTI]

    Suciu, Dan

    XMill: an Efficient Compressor for XML Data Hartmut Liefke \\Lambda Univ. of Pennsylvania liefke at roughly the same speed. The compressor, called XMill, incorporates and combines existing compressors of datatype specific compressors for simple data types, and, possibly, user defined compressors

  10. Energy Savings for Centrifugal Compressors 

    E-Print Network [OSTI]

    Fisher, D.

    2011-01-01T23:59:59.000Z

    impeller blades. These blades were most likely riveted to the impeller hub and cover. The interstage, impeller eye and balance piston labyrinth seals were probably a high clearance aluminum design. The compressor may have had a straight radial inlet..., but the blades were welded to the hub and cover. Then, in the 1970?s as manufacturing techniques improved, some impellers were made from two parts. Today, most impellers have the blades integrally machined on a three- or five-axis milling machine...

  11. Ductile fracture and structural integrity of pipelines & risers

    E-Print Network [OSTI]

    Kofiani, Kirki N. (Kirki Nikolaos)

    2013-01-01T23:59:59.000Z

    The Oil and Gas (O&G) industry has recently turned its interest towards deep and ultra-deep offshore installations in order to address the global increase of energy demand. Pipelines and risers are key components for the ...

  12. IEMDC IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    SciTech Connect (OSTI)

    Michael J. Crowley; Prem N. Bansal

    2004-10-01T23:59:59.000Z

    This report contains the final project summary and deliverables required by the award for the development of an In-line Electric Motor Driven Compressor (IEMDC). Extensive work was undertaken during the course of the project to develop the motor and the compressor section of the IEMDC unit. Multiple design iterations were performed to design an electric motor for operation in a natural gas environment and to successfully integrate the motor with a compressor. During the project execution, many challenges were successfully overcome in order to achieve the project goals and to maintain the system design integrity. Some of the challenges included limiting the magnitude of the compressor aerodynamic loading for appropriate sizing of the magnetic bearings, achieving a compact motor rotor size to meet the rotor dynamic requirements of API standards, devising a motor cooling scheme using high pressure natural gas, minimizing the impact of cooling on system efficiency, and balancing the system thrust loads for the magnetic thrust bearing. Design methods that were used on the project included validated state-of-the-art techniques such as finite element analysis and computational fluid dynamics along with the combined expertise of both Curtiss-Wright Electro-Mechanical Corporation and Dresser-Rand Company. One of the most significant areas of work undertaken on the project was the development of the unit configuration for the system. Determining the configuration of the unit was a significant step in achieving integration of the electric motor into a totally enclosed compression system. Product review of the IEMDC unit configuration was performed during the course of the development process; this led to an alternate design configuration. The alternate configuration is a modular design with the electric motor and compressor section each being primarily contained in its own pressure containing case. This new concept resolved the previous conflict between the aerodynamic flow passage requirements and electric motor requirements for support and utilities by bounding the flowpath within the compressor section. However most importantly, the benefits delivered by the new design remained the same as those proposed by the goals of the project. In addition, this alternate configuration resulted in the achievement of a few additional advantages over the original concept such as easier maintenance, operation, and installation. Interaction and feedback solicited from target clients regarding the unit configuration supports the fact that the design addresses industry issues regarding accessibility, maintainability, preferred operating practice, and increased reliability.

  13. Pipeline Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities...

  14. 6/10/12 UK team advances measurement of gas bubbles in pipelines. | Technology news | Process Engineer... 1/2processengineering.theengineer.co.uk/.../1012631.article

    E-Print Network [OSTI]

    Sóbester, András

    process in the manufacturing, power, oil & gas and petrochemical industries. For instance, the sharp

  15. Abschlubericht Mixed Signal Baugruppen 2006/7 Gitarrenverstrker WILDCAT Dynamic Compressor Der WILDCAT Dynamic Compressor

    E-Print Network [OSTI]

    Wichmann, Felix

    Abschlußbericht Mixed Signal Baugruppen 2006/7 Gitarrenverstärker WILDCAT Dynamic Compressor Seite 7-1 Der WILDCAT Dynamic Compressor Von René Fischer, Stefan Straube und Henry Westphal #12;Abschlußbericht Mixed Signal Baugruppen 2006/7 Gitarrenverstärker WILDCAT Dynamic Compressor Seite 7-2 Die Idee

  16. Metering Air Compressor Systems for Efficiency: A Progress Report

    E-Print Network [OSTI]

    Joseph, B.

    2005-01-01T23:59:59.000Z

    Air compressors have energy efficiency quantified as SCFM/BHP. However, this efficiency fluctuates over a broad range based on the loading of the compressor. When multiple compressors operate with varying loads, as in a central plant, the overall...

  17. Running fermi with one-stage compressor: advantages, layout, performance

    E-Print Network [OSTI]

    Cornacchia, M.; Craievich, P.; Di Mitri, S.; Penco, G.; Venturini, M.; Zholents, A.

    2008-01-01T23:59:59.000Z

    Running FERMI with one-stage compressor: advantages, layout,a lattice with one-stage compressor, it was thought at thetime that the two bunch compressors configuration was still

  18. Digital Dynamic Range Compressor Design--A Tutorial and Analysis

    E-Print Network [OSTI]

    Reiss, Josh

    PAPERS Digital Dynamic Range Compressor Design-- A Tutorial and Analysis DIMITRIOS GIANNOULIS formal knowledge and analysis of compressor design techniques. In this tutorial we describe several different approaches to digital dynamic range compressor design. Digital implementations of several classic

  19. air compressor cylinders: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotary Compressor CiteSeer Summary: Compressor is the single largest consumer of primary energy (usually electricity) in an industrial refrigeration system and often become a...

  20. axial flow compressors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compressor performance Peraire, Jaime 126 FEASIBILITY OF SOLAR-FIRED, COMPRESSOR-ASSISTED Energy Storage, Conversion and Utilization Websites Summary: FEASIBILITY OF...

  1. axial flow compressor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compressor performance Peraire, Jaime 126 FEASIBILITY OF SOLAR-FIRED, COMPRESSOR-ASSISTED Energy Storage, Conversion and Utilization Websites Summary: FEASIBILITY OF...

  2. FEATURE ARTICLE Pipeline Corrosion

    E-Print Network [OSTI]

    Botte, Gerardine G.

    F FEATURE ARTICLE Pipeline Corrosion Issues Related to Carbon Capture, Transportation, and Storage Capture, Transportation, and Storage--Aspects of Corrosion and Materials. "Until these new technologies are developed and applied, corrosion engineers are focusing on how to best design pipelines for CO2 transport

  3. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  4. BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    efforts were undertaken · Conversion took place during a period of less regulation on pipeline activityBP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines

  5. Sequential Constant Size Compressors for Reinforcement Learning

    E-Print Network [OSTI]

    Schmidhuber, Juergen

    Sequential Constant Size Compressors for Reinforcement Learning Linus Gissl´en, Matt Luciw, Vincent with this problem: standard RL techniques using as input the hidden layer output of a Sequential Constant-Size Compressor (SCSC). The SCSC takes the form of a sequential Recurrent Auto-Associative Mem- ory, trained

  6. Refrigeration system having standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S. (Glen Allen, VA)

    1992-01-01T23:59:59.000Z

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  7. Code for Hydrogen Hydrogen Pipeline

    E-Print Network [OSTI]

    #12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

  8. Composites Technology for Hydrogen Pipelines

    E-Print Network [OSTI]

    Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff;Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate of pipeline per day. · $190k/mile capital cost for distribution pipelines · Hydrogen delivery cost below $1

  9. The Effect of Compressor-Administered Defibrillation on Peri-shock Pauses in a Simulated Cardiac Arrest Scenario

    E-Print Network [OSTI]

    Glick, Joshua; Lehman, Erik; Terndrup, Thomas

    2014-01-01T23:59:59.000Z

    Medicine Glick et al Compressor-Administered Defibrillationesearch The Effect of Compressor-administered Defibrillationor experimental (compressor- administered defibrillation)

  10. Internally-cooled centrifugal compressor with cooling jacket formed in the diaphragm

    DOE Patents [OSTI]

    Moore, James J.; Lerche, Andrew H.; Moreland, Brian S.

    2014-08-26T23:59:59.000Z

    An internally-cooled centrifugal compressor having a shaped casing and a diaphragm disposed within the shaped casing having a gas side and a coolant side so that heat from a gas flowing though the gas side is extracted via the coolant side. An impeller disposed within the diaphragm has a stage inlet on one side and a stage outlet for delivering a pressurized gas to a downstream connection. The coolant side of the diaphragm includes at least one passageway for directing a coolant in a substantially counter-flow direction from the flow of gas through the gas side.

  11. Development of a thermoacoustic natural gas liquefier.

    SciTech Connect (OSTI)

    Wollan, J. J. (John J.); Swift, G. W. (Gregory W.); Backhaus, S. N. (Scott N.); Gardner, D. L. (David L.)

    2002-01-01T23:59:59.000Z

    Praxair, in conjunction with the Los Alamos National Laboratory, is developing a new technology, thermoacoustic heat engines and refrigerators, for liquefaction of natural gas. This is the only technology capable of producing refrigeration power at cryogenic temperatures with no moving parts. A prototype, with a projected natural gas liquefaction capacity of 500 gallons/day, has been built and tested. The power source is a natural gas burner. Systems will be developed with liquefaction capacities up to 10,000 to 20,000 gallons per day. The technology, the development project, accomplishments and applications are discussed. In February 2001 Praxair, Inc. purchased the acoustic heat engine and refrigeration development program from Chart Industries. Chart (formerly Cryenco, which Chart purchased in 1997) and Los Alamos had been working on the technology development program since 1994. The purchase included assets and intellectual property rights for thermoacoustically driven orifice pulse tube refrigerators (TADOPTR), a new and revolutionary Thermoacoustic Stirling Heat Engine (TASHE) technology, aspects of Orifice Pulse Tube Refrigeration (OPTR) and linear motor compressors as OPTR drivers. Praxair, in cooperation with Los Alamos National Laboratory (LANL), the licensor of the TADOPTR and TASHE patents, is continuing the development of TASHE-OPTR natural gas powered, natural gas liquefiers. The liquefaction of natural gas, which occurs at -161 C (-259 F) at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 TADOPTR invention by Drs. Greg Swift (LANL) and Ray Radebaugh (NIST) demonstrated the first technology to produce cryogenic refrigeration with no moving parts. Thermoacoustic engines and refrigerators use acoustic phenomena to produce refrigeration from heat. The basic driver and refrigerator consist of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. The liquefier development program is divided into two components: Thermoacoustically driven refrigerators and linear motor driven refrigerators (LOPTRs). LOPTR technology will, for the foreseeable future, be limited to natural gas liquefaction capacities on the order of hundreds of gallons per day. TASHE-OPTR technology is expected to achieve liquefaction capacities of tens of thousands of gallons per day. This paper will focus on the TASHE-OPTR technology because its natural gas liquefaction capacity has greater market opportunity. LOPTR development will be mentioned briefly. The thermoacoustically driven refrigerator development program is now in the process of demonstrating the technology at a capacity of about 500 gallon/day (gpd) i.e., approximately 42,000 standard cubic feet/day, which requires about 7 kW of refrigeration power. This capacity is big enough to illuminate the issues of large-scale acoustic liquefaction at reasonable cost and to demonstrate the liquefaction of about 70% of an input gas stream, while burning about 30%. Subsequent to this demonstration a system with a capacity of approximately 10{sup 6} standard cubic feet/day (scfd) = 10,000 gpd with a projected liquefaction rate of about 85% of the input gas stream will be developed. When commercialized, the TASHE-OPTRs will be a totally new type of heat-driven cryogenic refrigerator, with projected low manufacturing cost, high reliability, long life, and low maintenance. A TASHE-OPTR will be able to liquefy a broad range of gases, one of the most important being natural gas (NG). Potential NG applications range from distributed liquefaction of pipeline gas as fuel for heavy-duty fleet and long haul vehicles to large-scale liquefaction at on-shore and offshore gas wellheads. An alternative to the thermoacoustic driver, but with many similar technical and market advantages, is the linear motor compressor. Linear motors convert electrical power directly into oscillating linear, or axial, motion. Attachment of a piston to the oscillator results in a direct drive compressor. Such a compressor

  12. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    the liquefier or gas pipeline, significant leaks can occur,major section). leaks of gas from pipelines (in section ongas-engine pipeline compressors 268 Trains 268 Ships 268 Leaks

  13. Gas only nozzle fuel tip

    DOE Patents [OSTI]

    Bechtel, William Theodore (Scotia, NY); Fitts, David Orus (Ballston Spa, NY); DeLeonardo, Guy Wayne (Glenville, NY)

    2002-01-01T23:59:59.000Z

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  14. DIAGNOSING VULNERABILITY, EMERGENT PHENOMENA, and VOLATILITY in MANMADE NETWORKS

    E-Print Network [OSTI]

    Arrowsmith, David

    , transmission lines, power plants Gas: compressor stations , pipelines, gas facilities, storage facilities, LNG Power Plants (coal, nuclear, ...) Electricity Consumption LNG terminal LNG storage and extraction GAS

  15. Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)

  16. Leaving the Premedical Pipeline at Cal

    E-Print Network [OSTI]

    Kwan, Elizabeth

    2001-01-01T23:59:59.000Z

    Why students drop out of the pipeline to health professionsLeaving the Premedical Pipeline at Cal By Elizabeth Kwanattrition from the premedical pipeline is appropriate. Not

  17. Capturing Latino Students in the Academic Pipeline

    E-Print Network [OSTI]

    Gándara, Patricia; Larson, Katherine; Mehan, Hugh; Rumberger, Russell

    1998-01-01T23:59:59.000Z

    The Latino Educational Pipeline Why Latino Students are atSTUDENTS IN THE ACADEMIC PIPELINE CAPTURING LATINO STUDENTSIN THE ACADEMIC PIPELINE Patricia Gcindara, Editor Katherine

  18. Pipeline Carriers (Montana)

    Broader source: Energy.gov [DOE]

    Pipeline carriers transporting crude petroleum, coal, the products of crude petroleum or coal, or carbon dioxide produced in the combustion or gasification of fossil fuels are required to abide by...

  19. Rnnotator Assembly Pipeline

    SciTech Connect (OSTI)

    Martin, Jeff [DOE Joint Genome Institute

    2010-06-03T23:59:59.000Z

    Jeff Martin of the DOE Joint Genome Institute discusses a de novo transcriptome assembly pipeline from short RNA-Seq reads on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  20. Application of microturbines to control emissions from associated gas

    DOE Patents [OSTI]

    Schmidt, Darren D.

    2013-04-16T23:59:59.000Z

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  1. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-04-20T23:59:59.000Z

    There is growing interest regarding the potential size of a future U.S. dedicated carbon dioxide (CO2) pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale within the United States. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies (so called WRE450 and WRE550 stabilization scenarios) and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The analysis reveals that between 11,000 and 23,000 additional miles of dedicated CO2 pipeline might be needed in the U.S. before 2050 across these two cases. While that is a significant increase over the 3,900 miles that comprise the existing national CO2 pipeline infrastructure, it is critically important to realize that the demand for additional CO2 pipeline capacity will unfold relatively slowly and in a geographically dispersed manner as new dedicated CCS-enabled power plants and industrial facilities are brought online. During the period 2010-2030, the growth in the CO2 pipeline system is on the order of a few hundred to less than a thousand miles per year. In comparison during the period 1950-2000, the U.S. natural gas pipeline distribution system grew at rates that far exceed these projections in growth in a future dedicated CO2 pipeline system. This analysis indicates that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a major obstacle for the commercial deployment of CCS technologies in the U.S. Nevertheless, there will undoubtedly be some associated regulatory and siting issues to work through but these issues should not be unmanageable based on the size of infrastructure requirements alone.

  2. Compressor ported shroud for foil bearing cooling

    DOE Patents [OSTI]

    Elpern, David G. (Los Angeles, CA); McCabe, Niall (Torrance, CA); Gee, Mark (South Pasadena, CA)

    2011-08-02T23:59:59.000Z

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  3. High efficiency, low frequency linear compressor proposed for Gifford-McMahon and pulse tube cryocoolers

    SciTech Connect (OSTI)

    Höhne, Jens [Pressure Wave Systems GmbH, Häberlstr. 8, 80337 Munich (Germany)

    2014-01-29T23:59:59.000Z

    In order to reduce the amount of greenhouse gas emissions, which are most likely the cause of substantial global warming, a reduction of overall energy consumption is crucial. Low frequency Gifford-McMahon and pulse tube cryocoolers are usually powered by a scroll compressor together with a rotary valve. It has been theoretically shown that the efficiency losses within the rotary valve can be close to 50%{sup 1}. In order to eliminate these losses we propose to use a low frequency linear compressor, which directly generates the pressure wave without using a rotary valve. First results of this development will be presented.

  4. Natural gas monthly, August 1997

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    This report presents information on natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported.

  5. Leakage Risk Assessment of CO2 Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    E-Print Network [OSTI]

    Mazzoldi, A.

    2014-01-01T23:59:59.000Z

    leak from an above-ground pipeline, the jet flow of CO 2 impinges on the ground without reconverting to gas.

  6. Africa; Expanding market creates more gas lines

    SciTech Connect (OSTI)

    Quarles, W.R.; Thiede, K.; Parent, L.

    1990-11-01T23:59:59.000Z

    The authors report on pipeline development activities in Africa. They discuss how a growing European market for gas has increased potential pipeline construction in Africa, especially for Algeria, Egypt, and Libya.

  7. TGS pipeline primed for Argentine growth, CEO says

    SciTech Connect (OSTI)

    Share, J.

    1997-03-01T23:59:59.000Z

    Nowhere in Latin America has the privatization process been more aggressively pursued than in Argentina where President Carlos Menem has successfully turned over the bulk of state companies to the private sector. In the energy sector, that meant the divestiture in 1992 of Gas del Estado, the state-owned integrated gas transportation and distribution company. It was split in two transportation companies: Transportadora de Gas del Sur (TGS) and Transportadora de Gas del Norte (TGN), and eight distribution companies. TGS is the largest transporter of natural gas in Argentina, delivering more than 60 percent of that nation`s total gas consumption with a capacity of 1.9 Bcf/d. This is the second in a series of Pipeline and Gas Journal special reports that discuss the evolving strategies of the natural gas industry as it continues to restructure amid deregulation. The article focuses on TGS, the Argentine pipeline system in which Enron Corp. is a key participant.

  8. 6/10/12 The use of acoustic inversion to estimate the bubble size distribution in pipelines 1/2www.sciencedaily.com/releases/2012/05/120515104537.htm

    E-Print Network [OSTI]

    Sóbester, András

    6/10/12 The use of acoustic inversion to estimate the bubble size distribution in pipelines 1/2www gas bubbles in pipelines. The ability to measure gas bubbles in pipelines is vital technique for estimating the gas bubble size distribution (BSD) is to send sound waves through the bubble

  9. Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities

    E-Print Network [OSTI]

    Hata, S.; Horiba, J.; Sicker, M.

    2011-01-01T23:59:59.000Z

    of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance...

  10. A methodology for centrifugal compressor stability prediction

    E-Print Network [OSTI]

    Benneke, Björn

    2009-01-01T23:59:59.000Z

    The stable operation of centrifugal compressors is limited by well-known phenomena, rotating stall and surge. Although the manifestation of the full scale instabilities is similar to the ones observed in axial machines, ...

  11. Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities 

    E-Print Network [OSTI]

    Hata, S.; Horiba, J.; Sicker, M.

    2011-01-01T23:59:59.000Z

    of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance...

  12. Improved return passages for multistage centrifugal compressors

    E-Print Network [OSTI]

    Glass, Benjamin W., S.M. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    This thesis presents a design concept for return passages in multistage centrifugal compressors. Flow in a baseline return passage is analyzed to identify loss sources that have substantial potential for reduction. For the ...

  13. Probabilistic aerothermal design of compressor airfoils

    E-Print Network [OSTI]

    Garzón, Víctor E., 1972-

    2003-01-01T23:59:59.000Z

    Despite the generally accepted notion that geometric variability is undesirable in turbomachinery airfoils, little is known in detail about its impact on aerothermal compressor performance. In this work, statistical and ...

  14. Flare Gas Recovery in Shell Canada Refineries

    E-Print Network [OSTI]

    Allen, G. D.; Wey, R. E.; Chan, H. H.

    1983-01-01T23:59:59.000Z

    the flow properties for compressor selection? What controls should be incorporated? How much operator and maintenance effort will be required for safe, efficient operation? What kind of process and hardware problems should be watched for? When...? This paper will touch on all these issues. SYSTEM CONFIGURATION A schematic of a typical refinery flare gas recovery facility is shown in Figure I. The facilities include the following pieces of equipment: - compressor suction drum - compressor set...

  15. Pipeline Safety Program Oak Ridge National Laboratory

    E-Print Network [OSTI]

    programs prepared by pipeline operators in accordance with Federal pipeline safety regulations, grounding, and interference, · environmentally sensitive areas, · federal pipeline safety regulationsPipeline Safety Program Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U

  16. Exhaust gas recirculation system for an internal combustion engine

    DOE Patents [OSTI]

    Wu, Ko-Jen

    2013-05-21T23:59:59.000Z

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  17. Programmable Graphics Pipelines Anjul Patney

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Programmable Graphics Pipelines By Anjul Patney B.Tech. (Indian Institute of Technology Delhi) 2007 as Abstractions for Computer Graphics 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Modern Graphics Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2

  18. CASE CRITICAL Keystone XL Pipeline

    E-Print Network [OSTI]

    Hall, Sharon J.

    CASE CRITICAL Keystone XL Pipeline: A Line in the Sand? Case Critical is presented by ASU's Global Professor, ASU's School of Geographical Sciences and Urban Planning The Keystone XL Pipeline, a large

  19. 6/10/12 Technique Devised to Measure Pipeline Gas Bubbles | Science Business 1/2sciencebusiness.technewslit.com/?p=9481

    E-Print Network [OSTI]

    Sóbester, András

    of the blow out preventer was a key factor in the extensive damage caused by the BP/Deepwater Horizon oil spill in the Gulf of Mexico in 2010. Current methods for estimating bubble size distribution involve for Oil and Gas Eight Teams Funded for Research on Gulf Oil Spill Impact * * * NEW PRODUCTS ENGINEERING

  20. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis

    SciTech Connect (OSTI)

    Mattiozzi, Pierpaolo [Snamprogetti-Saipem, Via Toniolo, 1, 61032 Fano (Italy); Strom, Alexander [Institute of Geospheres Dynamics, Leninskiy Avenue, 38, Building 1, 119334, Moscow (Russian Federation)

    2008-07-08T23:59:59.000Z

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

  1. EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2YonthlyEnergy MarketsInterstate

  2. Development of an Electrochemical Separator and Compressor

    SciTech Connect (OSTI)

    Trent Molter

    2011-04-28T23:59:59.000Z

    Global conversion to sustainable energy is likely to result in a hydrogen-based economy that supports U.S. energy security objectives while simultaneously avoiding harmful carbon emissions. A key hurdle to successful implementation of a hydrogen economy is the low-cost generation, storage, and distribution of hydrogen. One of the most difficult requirements of this transformation is achieving economical, high density hydrogen storage in passenger vehicles. Transportation applications may require compression and storage of high purity hydrogen up to 12,000 psi. Hydrogen production choices range from centralized low-pressure generation of relatively impure gas in large quantities from steam-methane reformer plants to distributed generation of hydrogen under moderate pressure using water electrolysis. The Electrochemical Hydrogen Separator + Compressor (EHS+C) technology separates hydrogen from impurities and then compresses it to high pressure without any moving parts. The Phase I effort resulted in the construction and demonstration of a laboratory-scale hardware that can separate and compress hydrogen from reformate streams. The completion of Phase I has demonstrated at the laboratory scale the efficient separation and compression of hydrogen in a cost effective manner. This was achieved by optimizing the design of the Electrochemical Hydrogen Compression (EHC) cell hardware and verified by parametric testing in single cell hardware. A broad range of commercial applications exist for reclamation of hydrogen. One use this technology would be in combination with commercial fuel cells resulting in a source of clean power, heat, and compressed hydrogen. Other applications include the reclamation of hydrogen from power plants and other industrial equipment where it is used for cooling, recovery of process hydrogen from heat treating processes, and semiconductor fabrication lines. Hydrogen can also be recovered from reformate streams and cryogenic boil-offs using this technology.

  3. Natural Gas Infrastructure Implications of Increased Demand from...

    Broader source: Energy.gov (indexed) [DOE]

    the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased...

  4. DOE Launches Natural Gas Infrastructure R&D Program Enhancing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions DOE Launches Natural Gas...

  5. Bibliography on northern pipelines in the former Soviet Union. Special report

    SciTech Connect (OSTI)

    Smallidge, E.R.

    1997-08-01T23:59:59.000Z

    In 1993 a pilot project between the Defense Technical Information Center and the U.S. Army Cold Regions Research and Engineering Laboratory resulted in a proposal to conduct a state-of-the-art review of technology and techniques for building, operating, and maintaining arctic natural gas and liquid petroleum pipelines in the former Soviet Union. The objectives of the pipeline review were to (1) Review the design, construction, operation, and maintenance procedures of oil and gas pipelines in the permafrost areas of eastern and western Siberia. (2) Assemble data on the evolution of Siberian pipelines, reflecting changes in size, modes of construction, and age. (3) Assemble data on maintenance procedures and practices, including inspection techniques with respect to corrosion, pipe wrinkling, and metal fatigue. (4) Assemble data on pipeline failures and attempt to predict life expectancy of different pipelines under the harsh arctic environment. (5) Evaluate the environmental impact of different pipeline construction techniques and relate it to ruptures and breaks. In conjunction with the study objectives, a literature search was conducted on northern pipelines in the former Soviet Union. References were compiled on dates of construction, location, route conditions, design, construction, maintenance, environmental impact, accidents, production management, and other pertinent facts. In the resulting bibliography, references are separated into three categories: Oil and Gas Pipelines, Construction, and Accidents. There is some repetition of references between the categories because some are relevant to more than one of the subject categories.

  6. Mobile sensor network to monitor wastewater collection pipelines

    E-Print Network [OSTI]

    Lim, Jungsoo

    2012-01-01T23:59:59.000Z

    Advanced pipeline monitoringDesign of mobile pipeline floating sensor “SewerSnortIllustration of mobile pipeline floating sensor monitoring

  7. Data-stationary pipelined machine

    SciTech Connect (OSTI)

    Abdou, I.E.

    1984-01-01T23:59:59.000Z

    The paper presents the data-stationary control concept of pipelined machines, with emphasis on its application in image processing systems. A parallel array of pipelined machines for image processing is considered, and data-stationary control is compared with time-stationary control. A system is proposed that is a parallel array of pipelined machines. Each pipeline is a multifunctional, statically configured, data-stationary device. The pipelines do not accommodate branching instructions or interrupts, and the design focus on vector processing only. The system can be used in other applications such as signal processing and arithmetic number crunching. 5 references.

  8. Assessment of HTGR Helium Compressor Analysis Tool Based on Newton-Raphson Numerical Application to Through-flow Analysis

    SciTech Connect (OSTI)

    Ji Hwan Kim; Hyeun Min Kim; Hee Cheon NO [Korea Advanced Institute of Science and Technology, 335 Gwahangno - 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2006-07-01T23:59:59.000Z

    This study describes the development of a computer program for analyzing the off-design performance of axial flow helium compressors, which is one of the major concerns for the power conversion system of a high temperature gas-cooled reactor (HTGR). The compressor performance has been predicted by the aerodynamic analysis of meridional flow with allowances for losses. The governing equations have been derived from Euler turbomachine equation and the streamline curvature method, and then they have been merged into linearized equations based on the Newton-Raphson numerical method. The effect of viscosity is considered by empirical correlations to introduce entropy rises caused by primary loss sources. Use of the method has been illustrated by applying it to a 20-stage helium compressor of the GTHTR300 plant. As a result, the flow throughout the stages of the compressor has been predicted and the compressor characteristics have been also investigated according to the design specification. The program results show much better stability and good convergence with respect to other through-flow methods, and good agreement with the compressor performance map provided by JAEA. (authors)

  9. Enhancing protection for unusually sensitive ecological areas from pipeline releases

    E-Print Network [OSTI]

    Sames, Christina; Fink, Dennis

    2001-01-01T23:59:59.000Z

    ECOLOGICAL AREAS FROM PIPELINE RELEASES Christina Sames;Administration, Office of Pipeline Safety, DPS-10/ 400 7thof a hazardous liquid pipeline accident. Pipeline operators

  10. Considerations in Dealing with the Risk of a Compressor Failure

    E-Print Network [OSTI]

    Beals, C. E.

    2007-01-01T23:59:59.000Z

    Many plants do not have sufficient backup compressor capacity and risk having production outages due to compressor failures. Today, system designs are available that can eliminate this risk; however, there is a cost associated with doing so...

  11. Impact of geometric variability on compressor repeating-stage performance

    E-Print Network [OSTI]

    Vincent, Antoine, 1979-

    2003-01-01T23:59:59.000Z

    The impact of geometric variability on compressor performance is investigated using a compressor repeating-stage model based on well-known correlations for profile losses, endwall blockage, deviation, and the onset of ...

  12. Development of a body force model for centrifugal compressors

    E-Print Network [OSTI]

    Kottapalli, Anjaney Pramod

    2013-01-01T23:59:59.000Z

    This project is focused on modeling the internal ow in centrifugal compressors for the purpose of assessing the onset of rotating stall and surge. The current methods to determine centrifugal compressor stability limits ...

  13. Aerodynamic performance measurements in a counter-rotating aspirated compressor

    E-Print Network [OSTI]

    Onnée, Jean-François

    2005-01-01T23:59:59.000Z

    This thesis is an experimental investigation of the aerodynamic performances of a counter-rotating aspirated compressor. This compressor is implemented in a blow-down facility, which gives rigorous simulation of the ...

  14. The SINFONI pipeline

    E-Print Network [OSTI]

    Andrea Modigliani; Wolfgang Hummel; Roberto Abuter; Paola Amico; Pascal Ballester; Richard Davies; Christophe Dumas; Mattew Horrobin; Mark Neeser; Markus Kissler-Patig; Michele Peron; Juha Rehunanen; Juergen Schreiber; Thomas Szeifert

    2007-02-05T23:59:59.000Z

    The SINFONI data reduction pipeline, as part of the ESO-VLT Data Flow System, provides recipes for Paranal Science Operations, and for Data Flow Operations at Garching headquarters. At Paranal, it is used for the quick-look data evaluation. For Data Flow Operations, it fulfills several functions: creating master calibrations; monitoring instrument health and data quality; and reducing science data for delivery to service mode users. The pipeline is available to the science community for reprocessing data with personalised reduction strategies and parameters. The pipeline recipes can be executed either with EsoRex at the command line level or through the Gasgano graphical user interface. The recipes are implemented with the ESO Common Pipeline Library (CPL). SINFONI is the Spectrograph for INtegral Field Observations in the Near Infrared (1.1-2.45 um) at the ESO-VLT. SINFONI was developed and build by ESO and MPE in collaboration with NOVA. It consists of the SPIFFI integral field spectrograph and an adaptive optics module which allows diffraction limited and seeing limited observations. The image slicer of SPIFFI chops the SINFONI field of view on the sky in 32 slices which are re-arranged to a pseudo slit. The latter is dispersed by one of the four possible gratings (J, H, K, H+K). The detector thus sees a spatial dimension (along the pseudo-slit) and a spectral dimension. We describe in this paper the main data reduction procedures of the SINFONI pipeline, which is based on SPRED - the SPIFFI data reduction software developed by MPE, and the most recent developments after more than a year of SINFONI operations.

  15. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOE Patents [OSTI]

    Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Rateman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klinger, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

    2005-11-08T23:59:59.000Z

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

  16. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOE Patents [OSTI]

    Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

    2003-06-24T23:59:59.000Z

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

  17. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOE Patents [OSTI]

    Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

    2005-05-03T23:59:59.000Z

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

  18. Apparatus for the liquefaction of natural gas and methods relating to same

    DOE Patents [OSTI]

    Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

    2007-05-22T23:59:59.000Z

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

  19. Control apparatus for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E. (Clifton Park, NY)

    1986-01-01T23:59:59.000Z

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  20. Leakage Evaluated and Controlled from Industrial Process Pipeline by Optimum Gasket Assembly Stress

    E-Print Network [OSTI]

    Chen, Shu-Ching

    will ultimately result in a complete proposal to prevent any hazardous gas leaks in the process industries0 Leakage Evaluated and Controlled from Industrial Process Pipeline by Optimum Gasket Assembly and vehicles), but they have ignore the leakage between pipelines in process industries. When hazardous

  1. CONTROL OF THE THREE STATE MOORE-GREITZER COMPRESSOR MODEL

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    CONTROL OF THE THREE STATE MOORE-GREITZER COMPRESSOR MODEL USING A CLOSE-COUPLED VALVE Jan Tommy system. A Moore- Greitzer model is presented for the compressor and the valve. The valve modi es. Introduction If the ow through a compressor is throttled to the surge- line, the ow becomes unstable

  2. Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants Paul BYRNE prototype working with a scroll compressor was built and tested. A near-industrial prototype is today being regarding hydrocarbons as refrigerants, this article reviews scroll compressor modelling studies

  3. Drive torque actuation in active surge control of centrifugal compressors

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    Drive torque actuation in active surge control of centrifugal compressors Jan Tommy Gravdahl , Olav to active surge control is presented for a centrifugal compressor driven by an electrical motor. The main is considered to be the control input. The proposed method is simulated on a compressor model using

  4. A Simple and Fast DNA Compressor Giovanni Manzini

    E-Print Network [OSTI]

    Manzini, Giovanni

    A Simple and Fast DNA Compressor Giovanni Manzini Marcella Rastero February 17, 2004 Abstract. For this reason most DNA compressors work by searching and encoding approximate repeats. We depart from to the best DNA compressors. Another important feature of our algorithm is its small space occupancy which

  5. Active surge control of centrifugal compressors using drive torque

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    Active surge control of centrifugal compressors using drive torque Jan Tommy Gravdahl , Olav control is presented. A centrifugal compressor driven by an electrical motor is studied, and the drive of the drive as control ensures exponential convergence. The proposed method is simulated on a compressor model

  6. Bunch Compressor for small Emittances and high Peak Currents

    E-Print Network [OSTI]

    Bunch Compressor for small Emittances and high Peak Currents the VUV Free­Electron Laser Frank Stulle University Hamburg #12; #12; Bunch Compressor for small Emittances and high Peak Currents the VUV longitudinally in two magnetic chicanes. first chicane modified version bunch compressor (BC2) which TTF1

  7. Probabilistic Aerothermal Design of Compressor Airfoils Victor E. Garzon

    E-Print Network [OSTI]

    Peraire, Jaime

    Probabilistic Aerothermal Design of Compressor Airfoils by Victor E. Garzon B.S., University Aerothermal Design of Compressor Airfoils by Victor E. Garzon Submitted to the Department of Aeronautics- machinery airfoils, little is known in detail about its impact on aerothermal compressor performance

  8. Most BurrowsWheeler Based Compressors are Not Optimal

    E-Print Network [OSTI]

    Kaplan, Haim

    Most Burrows­Wheeler Based Compressors are Not Optimal Haim Kaplan and Elad Verbin School.26, and 1.29, for each of the three compressors respectively. Our technique is robust, and can be used to prove similar claims for most BWT­based compressors (with a few notable exceptions). This stands

  9. Modeling and Control of Surge and Rotating Stall in Compressors

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    Modeling and Control of Surge and Rotating Stall in Compressors Dr.ing. thesis Jan Tommy Gravdahl of rotating stall and surge in compressors. A close coupled valve is included in the Moore­constant compressor speed is derived by extending the Moore­Greitzer model. Rotating stall and surge is studied

  10. Firewall Compressor: An Algorithm for Minimizing Firewall Policies

    E-Print Network [OSTI]

    Firewall Compressor: An Algorithm for Minimizing Firewall Policies Alex X. Liu Eric Torng Chad and throughput. In this paper, we propose Firewall Compressor, a framework that can significantly reduce-dimensional firewalls. Last, we conducted extensive experiments to evaluate Firewall Compressor. In terms

  11. Coherence Progress: A Measure of Interestingness Based on Fixed Compressors

    E-Print Network [OSTI]

    Schmidhuber, Juergen

    Coherence Progress: A Measure of Interestingness Based on Fixed Compressors Tom Schaul, Leo Pape in observations to store them in a compact form, called a compressor. The search for interesting patterns can and the ability of the compressor to learn from observations. Coherence progress considers the increase

  12. Applications of a Turbomachinery Design Tool for Compressors and Turbines

    E-Print Network [OSTI]

    Cincinnati, University of

    Applications of a Turbomachinery Design Tool for Compressors and Turbines Mark G. Turner University-AXI, is briefly described and demonstrated for applications of a two stage compressor and a three stage turbine web sites. The design system can be used to design multistage compressors and turbines from a small

  13. Energy Efficient Implementation of Parallel CMOS Multipliers with Improved Compressors

    E-Print Network [OSTI]

    California at Davis, University of

    Energy Efficient Implementation of Parallel CMOS Multipliers with Improved Compressors Dursun Baran targets. In addition, novel 3:2 and 4:2 compressors are pre- sented to save energy at the same target delay. The proposed compressors provide up to 20% energy reduction depending on the target delay at 65nm

  14. FEASIBILITY OF SOLAR-FIRED, COMPRESSOR-ASSISTED

    E-Print Network [OSTI]

    FEASIBILITY OF SOLAR-FIRED, COMPRESSOR-ASSISTED ABSORPTION CHILLERS Prepared For: California Energy REPORT (FAR) FEASIBILITY OF SOLAR FIRED, COMPRESSOR ASSISTED ABSORPTION CHILLERS EISG AWARDEE Bergquam 1 Feasibility Of Solar Fired, Compressor Assisted Absorption Chillers EISG Grant # 99-15 Awardee

  15. Introducing Back-up to Active Compressor Surge Control System

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    Introducing Back-up to Active Compressor Surge Control System Nur Uddin Jan Tommy Gravdahl for introducing a back-up system to an active compressor surge control system is presented in this paper. Active surge control is a promising method for extending the compressor map towards and into the unstable area

  16. Modeling and Control of Surge and Rotating Stall in Compressors

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    Modeling and Control of Surge and Rotating Stall in Compressors Dr.ing. thesis Jan Tommy Gravdahl of rotating stall and surge in compressors. A close coupled valve is included in the Moore-constant compressor speed is derived by extending the Moore-Greitzer model. Rotating stall and surge is studied

  17. 6/10/12 The use of acoustic inversion to estimate the bubble size distribution in pipelines 1/4energy-daily.com/.../The_use_of_acoustic_inversion_to_estimate_the_bubble_size_distribution_in_...

    E-Print Network [OSTI]

    Sóbester, András

    6/10/12 The use of acoustic inversion to estimate the bubble size distribution in pipelines 1 address ... yes . . . The use of acoustic inversion to estimate the bubble size distribution in pipelines devised a new method to more accurately measure gas bubbles in pipelines. The ability to measure gas

  18. Natural gas monthly, December 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This report presents information of interest to organizations associated with the natural gas industry. Data are presented on natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  19. The Gas/Electric Partnership 

    E-Print Network [OSTI]

    Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

    1997-01-01T23:59:59.000Z

    as this occurs. Through an Electric Power Research Institute initiative, an inter-industry organization, the Gas/Electric Partnership, has formed between the electric utilities and gas pipelines. The initial focus of this partnership is to explore issues...

  20. DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    Laporte, TX to near Lake Charles, LA. This system has approximately 228 miles of DOT regulated H2 pipeline of DOT regulated H2 pipeline. Portions of this system operating since early 1983. Pipeline sizeDOE Hydrogen Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia #12;Hydrogen Pipeline

  1. Natural Gas Pipe Line Companies (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations list standards and considerations for the design, construction, compression, metering, operation, and maintenance of natural gas pipelines, along with procedures for records,...

  2. Optimization Problems in Natural Gas Transportation Systems

    E-Print Network [OSTI]

    Roger Z. Ríos-Mercado

    2015-03-02T23:59:59.000Z

    Mar 2, 2015 ... Abstract: This paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline ...

  3. Master Control of Multiple Air Compressors

    E-Print Network [OSTI]

    Petzold, M. A.

    1983-01-01T23:59:59.000Z

    of air compressors in the most efficient manner for any air demand. This system can be further enhanced by the addition of a remote set point signal based on air-flow. This signal is calibrated to reduce the set-point during periods of low demand when...

  4. Cycling Losses During Screw Air Compressor Operation

    E-Print Network [OSTI]

    Maxwell, J. B.; Wheeler, G.; Bushnell, D.

    , the study revealed compressors with cycling controls require as much as 10-25 % more power than is normally assumed when cycle times decrease below 2 minutes. This short cycle time is common in industrial environments. The study also found that combined...

  5. Nondestructive inspection of the condition of oil pipeline cleaning units

    SciTech Connect (OSTI)

    Berdonosov, V.A.; Boiko, D.A.; Lapshin, B.M.; Chakhlov, V.L.

    1989-02-01T23:59:59.000Z

    One of the reasons for shutdowns of main oil pipelines is stoppage of the cleaning unit in cleaning of the inner surface of paraffin deposits caused by damage to the cleaning unit. The authors propose a method of searching for and determining the condition of the cleaning unit not requiring dismantling of the pipeline according to which the initial search for the cleaning unit is done with acoustic instruments (the increased acoustic noise at the point of stoppage of its is recorded) and subsequent inspection by a radiographic method. An experimental model of an instrument was developed making it possible to determine the location of a cleaning unit in an oil pipeline in stoppage of it from the acoustic noise. The instrument consists of two blocks, the remote sensor and the indicator block, which are connected to each other with a cable up to 10 m long. The design makes it possible to place the sensor at any accessible point of a linear part of the pipeline (in a pit, on a valve, etc.) while the indicator block may remain on the surface of the ground. The results obtained make it possible to adopt the optimum solutions on elimination of their malfunctioning and to prevent emergency situations without dismantling of the pipeline. With the equipment developed it is possible to inspect oil and gas pipelines with different reasons for a reduction in their throughput.

  6. New developments in pipeline charging preheated coal at Inland Steel

    SciTech Connect (OSTI)

    Sorensen, S.M. Jr.; Arsenault, A.A.; Rupp, P.A.

    1982-01-01T23:59:59.000Z

    The first commercial installation of a new pipeline oven charging system for preheated coal, designed by Dynamic Air, Inc., was made at Inland Steel's C Battery in October 1979. With the Dynamic Air charging sytem, production losses due to pipeline delays have been virtually eliminated, pipeline maintenance requirements have been reduced by 90%, conveying steam requirements have been significantly reduced, and oven charge weights have been increased by 500 kg (1000 lb). A test program was subsequently conducted during November and December 1980, to evaluate the use of nitrogen as a conveying medium for pipeline oven charging with the Dynamic Air system. The test results clearly demonstrated that the same weight of preheated coal could be charged into an oven by using either steam or nitrogen as the conveying medium. Moreover, it was found that pipeline oven charging with the Dynamic Air system is a function of the mass flow rate of the conveying medium. With nitrogen charging, an average 9% increase in oven charge rates was obtained at comparable conveying gas mass flow rates and charging bin pressures. In addition, average oven pressure during charging was reduced by approximately 40% and solids carryover was reduced by 100 kg (220 lb) per oven charge with nitrogen charging. It was found that solids carryover during pipeline oven charging is a function of the average pressure generated in the oven during charging, but it was also found that a large oven pressure surge at the end of the charge can produce excessive carryover to completely mask the effect.

  7. Natural gas monthly

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This document highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Data presented include volume and price, production, consumption, underground storage, and interstate pipeline activities.

  8. Hydrodynamic forces on piggyback pipelines

    SciTech Connect (OSTI)

    Jakobsen, M.L.; Sayer, P. [Univ. of Strathclyde, Glasgow (United Kingdom)

    1995-12-31T23:59:59.000Z

    An increasing number of new offshore pipelines have been designed as bundles, mainly because of overall cost reductions. One popular way of combining two pipelines with different diameters is the piggyback configuration, with the smaller pipeline strapped on top of the main pipeline. The external hydrodynamic forces on this combination are at present very roughly estimated; pipeline engineers need more data to support their designs. This paper presents experimental results for the in-line hydrodynamic loading on three different piggyback set-ups. The models comprised a 0.4 m main pipeline, and three piggyback pipelines with diameters of 0.038 m, 0.059 m and 0.099 m. Each small pipeline was separately mounted to the main pipeline, with a gap equal to its own diameter. These model sizes lie approximately between half- and full-scale. Experiments were undertaken for K{sub C} between 5 and 42, and R{sub e} in the range 0.0 * 10{sup 4} to 8.5 * 10{sup 5}. The results based on Morison`s equation indicate that a simple addition of the separate forces acting on each cylinder underestimates the actual force by up to 35% at low K{sub C} (< {approximately} 10) and by as much as 100% in the drag-dominated regime (K{sub C} > {approximately} 20).

  9. RNA-Seq Pipeline in Galaxy

    E-Print Network [OSTI]

    Meng, Xiandong

    2014-01-01T23:59:59.000Z

    Assembly in Galaxy RNA-Seq q Pipeline p • QC : To find outRNA-Seq Pipeline in Galaxy Xiandong Meng 1 , Jeffrey Martinof California RNA--Seq Pipeline in Galaxy RNA Xiandong Meng

  10. Leaking Pipelines: Doctoral Student Family Formation

    E-Print Network [OSTI]

    Serrano, Christyna M.

    2008-01-01T23:59:59.000Z

    Sari M. “Why the Academic Pipeline Leaks: Fewer Men thanone reason the academic pipeline leaks. 31 Blair-Loy, Mary.to leak out of the “academic pipeline. ” The term “academic

  11. An experimental investigation of sediment drag forces on offshore pipelines in large scale drag tank

    E-Print Network [OSTI]

    Yin, Stanley Fuming

    1984-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE August 1984 Major Subject: Civil Engineering AN EXPERIMENTAL INVESTIGATION OF SEDIMENT DRAG FORCES ON OFFSHORE PIPELINES IN A LARGE SCALE DRAG TANK A Thesis by STANLEY FUMING YIN Approved as to style and content by... An ever increasing demand for petroleum products and energy has led to accelerated exploration and development of oil and gas deposits. Pipelines serve as an effective, efficient and reliable means of trans- porting the oil and gas from offshore...

  12. Detection of the internal corrosion in pipeline

    E-Print Network [OSTI]

    2006-10-17T23:59:59.000Z

    Detection of the internal corrosion in pipeline. Hyeonbae Kang. In this talk I will explain our new methods to detect internal corrosions in pipelines.

  13. Machinist Pipeline/Apprentice Program Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Machinist PipelineApprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled...

  14. Numerical simulations of output pulse extraction from a high-power microwave compressor with a plasma switch

    SciTech Connect (OSTI)

    Shlapakovski, Anatoli; Beilin, Leonid; Bliokh, Yuri; Donskoy, Moshe; Krasik, Yakov E. [Physics Department, Technion, Haifa 32000 (Israel); Hadas, Yoav [Department of Applied Physics, Rafael, PO Box 2250, Haifa 31021 (Israel); Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-05-07T23:59:59.000Z

    Numerical simulations of the process of electromagnetic energy release from a high-power microwave pulse compressor comprising a gas-filled cavity and interference switch were carried out. A microwave plasma discharge in a rectangular waveguide H-plane tee was modeled with the use of the fully electromagnetic particle-in-cell code MAGIC. The gas ionization, plasma evolution, and interaction with RF fields accumulated within the compressor were simulated using different approaches provided by the MAGIC code: particle-in-cell approach accounting for electron-neutral collisions, gas conductivity model based on the concept of mobility, and hybrid modeling. The dependences of the microwave output pulse peak power and waveform on parameters that can be controlled in experiments, such as an external ionization rate, RF field amplitude, and background gas pressure, were investigated.

  15. Two results on compressor surge control with disturbance rejection Jan Tommy Gravdahl and Olav Egeland

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    Two results on compressor surge control with disturbance rejection Jan Tommy Gravdahl and Olav on nonlinear compressor control where feedback is used to stabilize the compressor to the left of the surge oscillation of the ow through the compressor, and is characterized by a limit oscillation in the compressor

  16. PERFORMANCE ANALYSIS OF A WINDOWED HIGH TEMPERATURE GAS RECEIVER USING A SUSPENSION OF ULTRAFINE CARBON PARTICLES AS THE SOLAR ABSORBER

    E-Print Network [OSTI]

    Fisk, William J.

    2012-01-01T23:59:59.000Z

    with a regenerated gas turbine sys- tem providing severaltemperature for powering a gas turbine or to supply indus-from the compressor of a gas turbine and passes on to the

  17. PERFORMANCE ANALYSIS OF A WINDOWED HIGH TEMPERATURE GAS RECEIVER USING A SUSPENSION OF ULTRAFINE CARBON PARTICLES AS THE SOLAR ABSORBER

    E-Print Network [OSTI]

    Fisk, William J.

    2012-01-01T23:59:59.000Z

    from the compressor of a gas turbine and passes on to thewith a regenerated gas turbine sys- tem providing severaltemperature for powering a gas turbine or to supply indus-

  18. ar-rich source gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: > Natural Gas Utilities Options Analysis for the Hydrogen Economy Hydrogen Pipeline R&D Project and Collaborators > Team - Gas Technology Institute -...

  19. Combined cold compressor/ejector helium refrigerator

    DOE Patents [OSTI]

    Brown, D.P.

    1984-06-05T23:59:59.000Z

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  20. Combined cold compressor/ejector helium refrigerator

    DOE Patents [OSTI]

    Brown, Donald P. (Southold, NY)

    1985-01-01T23:59:59.000Z

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  1. Analysis and developpment of a Turbivo compressor for MRV applications

    E-Print Network [OSTI]

    Ksayer, Elias Boulawz

    2010-01-01T23:59:59.000Z

    The mechanical vapor recompression is an efficient process to decrease energy consumption of drying processes. In order to use the mechanical vapor recompression (MVR) in residential clothe dryers, the volumetric Turbivo technology is used to design a dry water vapor compressor. The Turbivo volumetric machine is composed mainly of a rotor with one blade, a stator, and a mobile oscillating thrust. The advantages of Turbivo(R) technology are the absence of contact between rotor and stator as well as the oil-free operation. A model of the Turbivo compressor, including kinematic, dynamic, and thermodynamic analysis is presented. The compressor internal tightness is ensured by a surface treatment of the compressor components. Using the model, a water vapor Turbivo compressor of 12m3/h and compression ratio of 5 has been sized and realized. The compressor prototype will be tested on a dedicated test bench to characterize its volumetric and isentropic efficiencies.

  2. Analysis and developpment of a Turbivo compressor for MRV applications

    E-Print Network [OSTI]

    Elias Boulawz Ksayer; Denis Clodic

    2010-08-12T23:59:59.000Z

    The mechanical vapor recompression is an efficient process to decrease energy consumption of drying processes. In order to use the mechanical vapor recompression (MVR) in residential clothe dryers, the volumetric Turbivo technology is used to design a dry water vapor compressor. The Turbivo volumetric machine is composed mainly of a rotor with one blade, a stator, and a mobile oscillating thrust. The advantages of Turbivo(R) technology are the absence of contact between rotor and stator as well as the oil-free operation. A model of the Turbivo compressor, including kinematic, dynamic, and thermodynamic analysis is presented. The compressor internal tightness is ensured by a surface treatment of the compressor components. Using the model, a water vapor Turbivo compressor of 12m3/h and compression ratio of 5 has been sized and realized. The compressor prototype will be tested on a dedicated test bench to characterize its volumetric and isentropic efficiencies.

  3. EIA - Natural Gas Pipeline System - Central Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322DevelopmentConfiguration Salt

  4. EIA - Natural Gas Pipeline System - Midwest Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322DevelopmentConfigurationMidwest Region

  5. EIA - Natural Gas Pipeline System - Northeast Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322DevelopmentConfigurationMidwest

  6. EIA - Natural Gas Pipeline System - Southeast Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877

  7. Natural Gas Pipeline & Distribution Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996)2009 2010

  8. Natural Gas Pipeline & Distribution Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996)2009 201070,174 674,124 687,784

  9. Development of Inexpensive Turbo Compressor/Expanders for Industrial Use

    E-Print Network [OSTI]

    Jacox, J. W.

    DEVELOPMENT OF INEXPENSIVE TURBO COMPRESSOR/EXPANDERS FOR INDUSTRIAL USE JOHN W. Senior Project Manager NUCON International, Columbus, ABSTRACT Use of Turbo Compressor/Expanders (TCEs) as industrial reversed Brayton Cycle Heat Pumps... offers many technical and energy saving advantages. until recently, such devices have been far too expensive in both capital cost and inefficiency mainly because the compressor and expander stages were built for forward Brayton Cycle operation...

  10. Study of casing treatment effects in axial flow compressors

    E-Print Network [OSTI]

    Schiller, Robert Neil

    1973-01-01T23:59:59.000Z

    to in- creased tip leakage between shroud and blade tip. Figure (I) shows a typical performance curve for an axial flow compressor. Note that as pressure ratio increases, the operating 'range between surge and stall is decreased, there by reducing... the surge to stall margin of the axial flow compressor. REFERENCES I 1 ~ 4 Koch, C. C. , "Experimental Evaluation of Outer Case Blowing or Bleeding of Single Stage Axial Flow Compressor". , Part IV. Rep. R 69AEG256, General Electric Co. , (NASA CR...

  11. Natural gas monthly

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  12. Numerical simulation of the impeller tip clearance effect on centrifugal compressor performance

    E-Print Network [OSTI]

    Hoenninger, Corbett Reed

    2001-01-01T23:59:59.000Z

    This thesis presents the numerical simulation of flow in centrifugal compressors. A three-dimensional Navier-Stokes solver was employed to simulate flow through two centrifugal compressors. The first compressor simulated was the NASA low speed...

  13. Department of Mechanical and Nuclear Engineering Fall 2010 Advanced Cooled Compressor Diaphragms

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical and Nuclear Engineering Fall 2010 Advanced Cooled Compressor compressor that is cooled by circulating water through its diaphragm (isothermal compression instead of each ANSYS run included deflection and principle stresses Material for advanced compressor

  14. A Model of Compressor Blade Row Interaction with Shock Induced Vortex Shedding

    E-Print Network [OSTI]

    Cincinnati, University of

    A Model of Compressor Blade Row Interaction with Shock Induced Vortex Shedding Mark G. Turner = circulation = trailing edge thickness = shock angle = density I. Introduction ransonic compressor stages AIAA. Research Scientist, Compressor Aerodynamic Research Laboratory, Associate Fellow AIAA

  15. Dynamics of Longitudinal Phase-Space Modulations in an rf Compressor for Electron Beams

    E-Print Network [OSTI]

    Venturini, M.

    2010-01-01T23:59:59.000Z

    gain along the rf compressor for perturbation wavelengths (drift followed by a 3 m rf compressor. The beam injected atat the exit of the compressor over a range of perturbation

  16. Reliable Gas Turbine Output: Attaining Temperature Independent Performance

    E-Print Network [OSTI]

    Neeley, J. E.; Patton, S.; Holder, F.

    % of the electric system, could create reliability and operational problems. This paper explores the potential for maintaining constant, reliable outputs from gas turbines by cooling ambient air temperatures before the air is used in the compressor section... strides have been made in the development of both aircraft, aircraft-derivative, and industrial gas turbines. The Basic Cycle The basic gas turbine engine consists of a compressor, a combustor, and a turbine in series. The intake air is compressed...

  17. adiabatic toroidal compressors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    troubles. Zhaohui Wei; Mingsheng Ying 2007-01-19 12 Performance investigation of a turbocharger compressor. Open Access Theses and Dissertations Summary: ??ENGLISH ABSTRACT:...

  18. Compressor and Chicane Radiation Studies at the ATF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Light sources and advanced accelerators short beams - Velocity bunching, chicane compressors - Diagnosis of compressed beams (sub-mm) on a real-time basis * Study radiative...

  19. Compressor and Chicane Radiation Studies at the ATF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (space charge -> coherent radiation) - May greatly impact performance of future compressors and FELs (e.g. microbunching instability) - Use CER as non-destructive bunch length...

  20. Critical speed measurements in the Tevatron cold compressors

    SciTech Connect (OSTI)

    DeGraff, B.; Bossert, R.; Martinez, A.; Soyars, W.M.; /Fermilab

    2006-01-01T23:59:59.000Z

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high energy operations. Nominal operating range for these compressors is 43,000 to 85,000 rpm. Past foil bearing failures prompted investigation to determine if critical speeds for operating compressors fall within operating range. Data acquisition hardware and software settings will be discussed for measuring liftoff, first critical and second critical speeds. Several tests provided comparisons between an optical displacement probe and accelerometer measurements. Vibration data and analysis of the 20 Tevatron ring cold compressors will be presented.

  1. Running fermi with one-stage compressor: advantages, layout, performance

    E-Print Network [OSTI]

    Cornacchia, M.; Craievich, P.; Di Mitri, S.; Penco, G.; Venturini, M.; Zholents, A.

    2008-01-01T23:59:59.000Z

    Running FERMI with one-stage compressor: advantages, layout,re-examines the option of running the FERMI FEL driver with

  2. Gas turbine diagnostic system

    E-Print Network [OSTI]

    Talgat, Shuvatov

    2011-01-01T23:59:59.000Z

    In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

  3. Delivery of Hydrogen Produced from Natural Gas

    E-Print Network [OSTI]

    for transportation and stationary power. DOE Milestone #12;Hydrogen Delivery Options · Gaseous hydrogen - Pipelines, corrosion Gaseous hydrogen pipeline delivery program would share similar technology R&D areasDelivery of Hydrogen Produced from Natural Gas Christopher Freitas Office of Natural Gas

  4. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipping of GH2 Pipeline. Background: FG 64 built in 50ies, KP added in 70ies, active mining area over total length hpwgwquestissuescampbell.pdf More Documents & Publications...

  5. The LOFAR Transients Pipeline

    E-Print Network [OSTI]

    Swinbank, John D; Molenaar, Gijs J; Rol, Evert; Rowlinson, Antonia; Scheers, Bart; Spreeuw, Hanno; Bell, Martin E; Broderick, Jess W; Carbone, Dario; van der Horst, Alexander J; Law, Casey J; Wise, Michael; Breton, Rene P; Cendes, Yvette; Corbel, Stéphane; Eislöffel, Jochen; Falcke, Heino; Fender, Rob; Greißmeier, Jean-Mathias; Hessels, Jason W T; Stappers, Benjamin W; Stewart, Adam J; Wijers, Ralph A M J; Wijnands, Rudy; Zarka, Philippe

    2015-01-01T23:59:59.000Z

    Current and future astronomical survey facilities provide a remarkably rich opportunity for transient astronomy, combining unprecedented fields of view with high sensitivity and the ability to access previously unexplored wavelength regimes. This is particularly true of LOFAR, a recently-commissioned, low-frequency radio interferometer, based in the Netherlands and with stations across Europe. The identification of and response to transients is one of LOFAR's key science goals. However, the large data volumes which LOFAR produces, combined with the scientific requirement for rapid response, make automation essential. To support this, we have developed the LOFAR Transients Pipeline, or TraP. The TraP ingests multi-frequency image data from LOFAR or other instruments and searches it for transients and variables, providing automatic alerts of significant detections and populating a lightcurve database for further analysis by astronomers. Here, we discuss the scientific goals of the TraP and how it has been desig...

  6. Method of cooling gas only nozzle fuel tip

    DOE Patents [OSTI]

    Bechtel, William Theodore (Scotia, NY); Fitts, David Orus (Ballston Spa, NY); DeLeonardo, Guy Wayne (Glenville, NY)

    2002-01-01T23:59:59.000Z

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  7. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

  8. Latinas Straddling the Prison Pipeline through Gender (Non) Conformity

    E-Print Network [OSTI]

    Caraves, Jacqueline

    2014-01-01T23:59:59.000Z

    the School-to-Prison Pipeline/Building Abolition Futures.rights/school-prison-pipeline Retrieved: September 12, 2014Chicano Educational Pipeline. New York: Routledge ------(

  9. The pipeline and future of drug development in schizophrenia

    E-Print Network [OSTI]

    Gray, J A; Roth, B L

    2007-01-01T23:59:59.000Z

    The Pipeline and Future of Drug Development in SchizophreniaThe Drug Discovery Pipeline in Schizophrenia Keywords:discuss the current pipeline of drugs for schizophrenia,

  10. Decoupled Sampling for Graphics Pipelines

    E-Print Network [OSTI]

    Ragan-Kelley, Jonathan Millar

    We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at ...

  11. Pipeline Processing of VLBI Data

    E-Print Network [OSTI]

    C. Reynolds; Z. Paragi; M. Garrett

    2002-05-08T23:59:59.000Z

    As part of an on-going effort to simplify the data analysis path for VLBI experiments, a pipeline procedure has been developed at JIVE to carry out much of the data reduction required for EVN experiments in an automated fashion. This pipeline procedure runs entirely within AIPS, the standard data reduction package used in astronomical VLBI, and is used to provide preliminary calibration of EVN experiments correlated at the EVN MkIV data processor. As well as simplifying the analysis for EVN users, the pipeline reduces the delay in providing information on the data quality to participating telescopes, hence improving the overall performance of the array. A description of this pipeline is presented here.

  12. Pipelines programming paradigms: Prefab plumbing

    SciTech Connect (OSTI)

    Boeheim, C.

    1991-08-01T23:59:59.000Z

    Mastery of CMS Pipelines is a process of learning increasingly sophisticated tools and techniques that can be applied to your problem. This paper presents a compilation of techniques that can be used as a reference for solving similar problems

  13. Competition in a Network of Markets: The Natural Gas Industry

    E-Print Network [OSTI]

    Walls, W. David

    1992-01-01T23:59:59.000Z

    Growth in Unbundled Natural Gas Transportation Services:Purchasesby Interstate Natural Gas Pipelines Companies,1987.U.S. GPO, 1988. . Natural Gas Monthly. WashingtonD.C. : U.S.

  14. AIAA 20033698 Aircraft Gas Turbine Engine

    E-Print Network [OSTI]

    Stanford University

    AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J. Alonso, and M. Fatica, Reston, VA 20191­4344 #12;AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J of the flowpath through complete aircraft gas turbines including the compressor, combustor, turbine, and secondary

  15. Pipeline corridors through wetlands -- Impacts on plant communities: Norris Brook Crossing Peabody, Massachusetts

    SciTech Connect (OSTI)

    Shem, L.M.; Van Dyke, G.D.; Zimmerman, R.E. [Argonne National Lab., IL (United States)

    1994-12-01T23:59:59.000Z

    The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of a survey conducted August 17--19, 1992, at the Norris Brook crossing in the town of Peabody, Essex County, Massachusetts. The pipeline at this site was installed during September and October 1990. A backhoe was used to install the pipeline. The pipe was assembled on the adjacent upland and slid into the trench, after which the backhoe was used again to fill the trench and cover the pipeline. Within two years after pipeline construction, a dense vegetative community, composed predominantly of native perennial species, had become established on the ROW. Compared with adjacent natural areas undisturbed by pipeline installation, there was an increase in purple loosestrife and cattail within the ROW, while large woody species were excluded from the ROW. As a result of the ROW`s presence, habitat diversity, edge-type habitat, and species diversity increased within the site. Crooked-stem aster, Aster prenanthoides (a species on the Massasschusetts list of plants of special concern), occurred in low numbers in the adjacent natural areas and had reinvaded the ROW in low numbers.

  16. 6/10/12 The use of acoustic inversion to estimate the bubble size distribution in pipelines | Science 5 Senses 1/4...globalproductivityforum.info/.../the-use-of-acoustic-inversion-to-estimate-the-bubble-size-distribu...

    E-Print Network [OSTI]

    Sóbester, András

    6/10/12 The use of acoustic inversion to estimate the bubble size distribution in pipelines method to more accurately measure gas bubbles in pipelines. The ability to measure gas bubbles in 2010. Currently, the most popular technique for estimating the gas bubble size distribution (BSD

  17. Modeling twin-screw multiphase pump performance during periods of high gas volume fraction

    E-Print Network [OSTI]

    Singh, Aditya

    2003-01-01T23:59:59.000Z

    pumping adds energy to an unprocessed effluent stream acting as a combined pump and compressor, permitting the recovery of oil and gas on an economical basis. In practice, multiphase production is characterized by wide fluctuations in the gas and liquid...

  18. Small core axial compressors for high efficiency jet aircraft

    E-Print Network [OSTI]

    DiOrio, Austin Graf

    2012-01-01T23:59:59.000Z

    This thesis quantifies mechanisms that limit efficiency in small core axial compressors, defined here as compressor exit corrected flow between 1.5 and 3.0 lbm/s. The first part of the thesis describes why a small engine ...

  19. High Prices Show Stresses in New England Natural Gas Delivery...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Since 2012, limited supply from the Canaport and Everett liquefied natural gas (LNG) terminals coupled with congestion on the Tennessee and Algonquin pipelines have led to...

  20. Natural gas monthly, April 1997

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.