Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor...  

Gasoline and Diesel Fuel Update (EIA)

Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Pipeline...

2

Natural Gas Compressor Stations on the Interstate Pipeline Network...  

U.S. Energy Information Administration (EIA) Indexed Site

consists of thinner-walled, smaller-diameter natural gas pipelines. The predominance of small-scale compressor stations is also reflected in the spread between the mean (average)...

3

Pipeline compressor station construction cost analysis  

Science Journals Connector (OSTI)

This study aims to provide a reference for pipeline compressor station construction costs by analysing individual compressor station cost components using historical compressor station cost data between 1992 and 2008. Distribution and share of these pipeline compressor station cost components are assessed based on compressor station capacity, year of completion, and locations. Average unit costs in material, labour, miscellaneous, land, and total costs are $866/hp, $466/hp, $367/hp, $13/hp, and $1,712/hp, respectively. Primary costs for compressor stations are material cost, approximately 50.6% of the total cost. This study conducts a learning curve analysis to investigate the learning rate of material and labour costs for different groups. Results show that learning rates and construction component costs vary by capacity and locations. This study also investigates the causes of pipeline compressor station construction cost differences. [Received: March 25, 2012; Accepted; 20 February 2013

Yipeng Zhao; Zhenhua Rui

2014-01-01T23:59:59.000Z

4

Recirculating rotary gas compressor  

DOE Patents [OSTI]

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

5

Recirculating rotary gas compressor  

DOE Patents [OSTI]

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

6

Request for Information on Efficiency Standards for Natural Gas Compressors  

Broader source: Energy.gov [DOE]

Ormat Technologies is headquartered in Reno Nevada and designs and manufactures waste heat recovery units that are commonly applied on natural gas pipeline compressor stations

7

Supersonic gas compressor  

DOE Patents [OSTI]

A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2007-11-13T23:59:59.000Z

8

Hydrogen pipeline compressors annual progress report.  

SciTech Connect (OSTI)

The objectives are: (1) develop advanced materials and coatings for hydrogen pipeline compressors; (2) achieve greater reliability, greater efficiency, and lower capital in vestment and maintenance costs in hydrogen pipeline compressors; and (3) research existing and novel hydrogen compression technologies that can improve reliability, eliminate contamination, and reduce cost. Compressors are critical components used in the production and delivery of hydrogen. Current reciprocating compressors used for pipeline delivery of hydrogen are costly, are subject to excessive wear, have poor reliability, and often require the use of lubricants that can contaminate the hydrogen (used in fuel cells). Duplicate compressors may be required to assure availability. The primary objective of this project is to identify, and develop as required, advanced materials and coatings that can achieve the friction, wear, and reliability requirements for dynamically loaded components (seal and bearings) in high-temperature, high-pressure hydrogen environments prototypical of pipeline and forecourt compressor systems. The DOE Strategic Directions for Hydrogen Delivery Workshop identified critical needs in the development of advanced hydrogen compressors - notably, the need to minimize moving parts and to address wear through new designs (centrifugal, linear, guided rotor, and electrochemical) and improved compressor materials. The DOE is supporting several compressor design studies on hydrogen pipeline compression specifically addressing oil-free designs that demonstrate compression in the 0-500 psig to 800-1200 psig range with significant improvements in efficiency, contamination, and reliability/durability. One of the designs by Mohawk Innovative Technologies Inc. (MiTi{reg_sign}) involves using oil-free foil bearings and seals in a centrifual compressor, and MiTi{reg_sign} identified the development of bearings, seals, and oil-free tribological coatings as crucial to the successful development of an advanced compressor. MiTi{reg_sign} and ANL have developed potential coatings for these rigorous applications; however, the performance of these coatings (as well as the nickel-alloy substrates) in high-temperature, high-speed hydrogen environments is unknown at this point.

Fenske, G. R.; Erck, R. A. (Energy Systems)

2011-07-15T23:59:59.000Z

9

Development of a Centrifugal Hydrogen Pipeline Gas Compressor - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Francis A. Di Bella, P.E. Concepts ETI, Inc., d.b.a. Concepts NREC 285 Billerica Road, Suite 102 Chelmsford, MA 01824-4174 Phone: (781) 937-4718 Email: fdibella@conceptsnrec.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18059 Subcontractors: Texas A&M University, College Station, TX HyGen Industries, Eureka, CA Project Start Date: June 1, 2008 Project End Date: May, 2013 Overall Project Objectives Develop and demonstrate an advanced centrifugal * compressor system for high-pressure hydrogen pipeline transport to support DOE's strategic hydrogen

10

Natural gas pipeline technology overview.  

SciTech Connect (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

11

Testing the technical state of gas-transferring unit compressor cases and their repair under the conditions of compressor stations  

Science Journals Connector (OSTI)

Problems related to the use of nondestructive testing methods during engineering diagnostics of the cast cases of compressors that are used in gas-transfer units that operate in gas-main pipelines are considered....

I. I. Kryukov; N. A. Kalinin; S. A. Leont’ev…

2011-02-01T23:59:59.000Z

12

Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System  

SciTech Connect (OSTI)

The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

2005-06-01T23:59:59.000Z

13

Pipeline gas pressure reduction with refrigeration generation  

SciTech Connect (OSTI)

The high pressure of pipeline gas is reduced to the low pressure of a distribution system with simultaneous generation of refrigeration by passing the gas through two successive centrifugal compressors driven by two turbo-expanders in which the compressed gas is expanded to successively lower pressures. Refrigeration is recovered from the gas as it leaves each turbo-expander. Methanol is injected into the pipeline gas before it is expanded to prevent ice formation. Aqueous methanol condensate separated from the expanded gas is distilled for the recovery and reuse of methanol.

Markbreiter, S. J.; Schorr, H. P.

1985-06-11T23:59:59.000Z

14

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

15

EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate pipeline system is defined as one that operates totally within a State, an intrastate pipeline company may have operations in more than one State. As long as these operations are separate, that is, they do not physically interconnect, they are considered intrastate, and are not jurisdictional to the Federal Energy Regulatory Commission (FERC). More than 90 intrastate natural gas pipelines operate in the lower-48 States.

16

Gas Pipelines (Texas)  

Broader source: Energy.gov [DOE]

This chapter applies to any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as any...

17

Gas Pipeline Securities (Indiana)  

Broader source: Energy.gov [DOE]

This statute establishes that entities engaged in the transmission of gas by pipelines are not required to obtain the consent of the Utility Regulatory Commission for issuance of stocks,...

18

Natural Gas Pipeline Safety (Kansas)  

Broader source: Energy.gov [DOE]

This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

19

EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Interstate Natural Gas...

20

Multiple volume compressor for hot gas engine  

DOE Patents [OSTI]

A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

22

Fact Sheet: Efficiency Standards for Natural Gas Compressors...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Standards for Natural Gas Compressors Fact Sheet: Efficiency Standards for Natural Gas Compressors The following fact sheet outlines one of the Department of Energy's...

23

Fact Sheet: Efficiency Standards for Natural Gas Compressors  

Broader source: Energy.gov (indexed) [DOE]

2 Fact Sheet: Efficiency Standards for Natural Gas Compressors Summary: DOE will take the first step toward establishing energy efficiency standards for new natural gas compressor...

24

Economics of Electric Compressors for Gas Transmission  

E-Print Network [OSTI]

) option. Outside of these regions, new electric drives as well as gas fueled reciprocating engines and turbines are being considered for replacement of older reciprocating gas engines and compressor units, based on improved operating efficiency. We review...

Schmeal, W. R.; Hibbs, J. J.

25

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelinesk > Development & Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years from the time it is first announced until the new pipe is placed in service. The project can take longer if it encounters major environmental obstacles or public opposition. A pipeline development or expansion project involves several steps: Determining demand/market interest

26

EIA - Natural Gas Pipeline System - Midwest Region  

Gasoline and Diesel Fuel Update (EIA)

Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Pipelines in the Midwest Region...

27

Gas Pipeline Safety (Indiana)  

Broader source: Energy.gov [DOE]

This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

28

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

29

Gas Utility Pipeline Tax (Texas)  

Broader source: Energy.gov [DOE]

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

30

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

31

Exergoeconomic Evaluation of Desalinated Water Production in Pipeline Gas Station  

Science Journals Connector (OSTI)

Abstract Pipelines transporting gas often are thousands of kilometers long, a number of compressor stations are needed, which consume a significant amount of energy. To improve the efficiency of the compressor stations, the high temperature exhaust gases from the gas turbines which drive the compressors are used for producing steam or other motive fluid in a heat recovery steam generator (HRSG). The steam or other vapor is then used to drive a turbine, which in turn drives other compressors or other applications. This paper is to discuss the techno-economic evaluation of different desalination process using the exhaust of 25 MW gas turbine in gas station. MED, MSF and RO desalination systems have been considered. Nadoshan pipeline gas stations with 25 MW gas turbine drivers in Iran were considered as a case study. In this regard, the simulation has been performed in Thermoflex Software. Moreover, the computer code has been developed for thermodynamic simulation and exergoeconomic analysis. Finally, different scenarios have been evaluated and comprised in view of economic, exergetic and exergoeconomic.

M.H. Khoshgoftar Manesh; S. Khamis Abadi; H. Ghalami; M. Amidpour

2012-01-01T23:59:59.000Z

32

About U.S. Natural Gas Pipelines  

Reports and Publications (EIA)

This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

2007-01-01T23:59:59.000Z

33

Natural Gas Pipeline Leaks Across Washington, DC  

Science Journals Connector (OSTI)

Pipeline safety in the United States has increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. ... Along with reducing greenhouse gas emissions, repairing production and pipeline leaks would improve consumer health and safety and save money. ... (37) Several barriers to pipeline repair and replacement exist, however, as cost recovery for pipeline repairs by distribution companies is often capped by Public Utility Commissions (PUCs). ...

Robert B. Jackson; Adrian Down; Nathan G. Phillips; Robert C. Ackley; Charles W. Cook; Desiree L. Plata; Kaiguang Zhao

2014-01-16T23:59:59.000Z

34

Pipelines and Underground Gas Storage (Iowa)  

Broader source: Energy.gov [DOE]

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

35

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

36

Real-time trend monitoring of gas compressor stations  

SciTech Connect (OSTI)

The authors' company has developed a machinery health monitoring system (MHealth) for short-term and long-term historical trending and analysis of data from its 40 gas compressor stations. The author discusses the benefits of real-time trending in troubleshooting operations, in preventative maintenance scheduling and cites specific applications in the startup operations of several new gas compressor/centrifugal compressor units.

Van Hardeveld, T. (Nova, an Alberta Corp., AB (Canada))

1991-02-01T23:59:59.000Z

37

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

38

EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Links Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co Interstate Northeast Alliance Pipeline Co Interstate Central, Midwest Anaconda Pipeline System Gathering Gulf of Mexico ANR Pipeline Co Interstate Midwest ANR Storage Co Interstate Midwest Arkansas Oklahoma Gas Co Intrastate Southwest Arkansas Western Pipeline Co Intrastate

39

INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL  

SciTech Connect (OSTI)

The objective of this Direct Surge Control project was to develop a new internal method to avoid surge of pipeline compressors. This method will safely expand the range and flexibility of compressor operations, while minimizing wasteful recycle flow at the lower end of the operating envelope. The approach is to sense the onset of surge with a probe that directly measures re-circulation at the impeller inlet. The signals from the probe are used by a controller to allow operation at low flow conditions without resorting to a predictive method requiring excessive margin to activate a recycle valve. The sensor developed and demonstrated during this project was a simple, rugged, and sensitive drag probe. Experiments conducted in a laboratory compressor clearly showed the effectiveness of the technique. Subsequent field demonstrations indicated that the increase in range without the need to recycle flow was on the order of 19% to 25%. The cost benefit of applying the direct surge control technology appears to be as much as $120 per hour per compressor for operation without the current level of recycle flow. This could amount to approximately $85 million per year for the U.S. Natural Gas Transmission industry, if direct surge control systems are applied to most pipeline centrifugal compressors.

Robert J. McKee; Shane P. Siebenaler; Danny M. Deffenbaugh

2005-02-25T23:59:59.000Z

40

EIA - Natural Gas Pipeline System - Central Region  

U.S. Energy Information Administration (EIA) Indexed Site

Central Region Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve interstate natural gas pipeline systems enter the region from the south and east while four enter from the north carrying Canadian supplies. The average utilization rates on those shipping Canadian natural gas tend to be higher than those carrying domestic supplies.

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

EIA - Natural Gas Pipeline System - Southwest Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southwest Region Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily exporters of the region's natural gas production to other parts of the country and Mexico, while an extensive Gulf of Mexico and intrastate natural gas pipeline network is the main conduit for deliveries within the region. More than 56,000 miles of natural gas pipeline on more than 66 intrastate natural gas pipeline systems (including offshore-to-onshore and offshore Gulf of Mexico pipelines) deliver natural gas to the region's local natural gas distribution companies and municipalities and to the many large industrial and electric power facilities located in the region.

42

EIA - Natural Gas Pipeline System - Southeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southeast Region Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee). Fifteen of the twenty-one interstate natural gas pipelines originate in the Southwest Region and receive most of their supplies from the Gulf of Mexico or from the States of Texas and/or Louisiana.

43

Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler This invention disclosure describes a system for gas compression to ultra-high pressures, which is required in many industrial and automotive processes. Gas compression, to pressures above about 100 psig, generally requires cooling to remove heat of compression and may require many stages of compression for efficient operation. Also most piston-type compressors require lubrication between the piston and cylinder, and lubricant may be entrained in the compressed gas, thereby requiring efficient oil removal means downstream of the compressor. This invention describes a system that addresses these requirements in a cost effective system suitable for residential and light industrial applications.

44

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Broader source: Energy.gov (indexed) [DOE]

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

45

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Regional Overviews and Links to Pipeline...

46

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

47

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Broader source: Energy.gov (indexed) [DOE]

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

48

Price of Massena, NY Natural Gas Pipeline Exports to Canada ...  

U.S. Energy Information Administration (EIA) Indexed Site

Massena, NY Natural Gas Pipeline Exports to Canada (Dollars per Thousand Cubic Feet) Price of Massena, NY Natural Gas Pipeline Exports to Canada (Dollars per Thousand Cubic Feet)...

49

An investigation of real gas effects in supercritical CO? compressors  

E-Print Network [OSTI]

This thesis presents a comprehensive assessment of real gas effects on the performance and matching of centrifugal compressors operating with CO2 at supercritical conditions. The analytical framework combines first principles ...

Baltadjiev, Nikola D. (Nikola Dimitrov)

2012-01-01T23:59:59.000Z

50

EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelines Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Import/Export Pipelines As of the close of 2008 the United States has 58 locations where natural gas can be exported or imported. 24 locations are for imports only 18 locations are for exports only 13 locations are for both imports and exports 8 locations are liquefied natural gas (LNG) import facilities Imported natural gas in 2007 represented almost 16 percent of the gas consumed in the United States annually, compared with 11 percent just 12 years ago. Forty-eight natural gas pipelines, representing approximately 28 billion cubic feet (Bcf) per day of capacity, import and export natural gas between the United States and Canada or Mexico.

51

EIA - Natural Gas Pipeline Network - Regulatory Authorities  

U.S. Energy Information Administration (EIA) Indexed Site

Regulatory Authorities Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it, interstate natural gas pipeline companies were required to restructure their operations by November 1993 and split-off any non-regulated merchant (sales) functions from their regulated transportation functions. This new requirement meant that interstate natural gas pipeline companies were allowed to only transport natural gas for their customers. The restructuring process and subsequent operations have been supervised closely by FERC and have led to extensive changes throughout the interstate natural gas transportation segment which have impacted other segments of the industry as well.

52

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

53

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network [OSTI]

South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

54

IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM  

SciTech Connect (OSTI)

This report documents a 3-year research program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase II were to evaluate the results for the 4-cylinder system prototype developed for Phase I, then optimize this system and prepare the technology for the field demonstration phase in Year 3. In all, there were twelve (12) tasks defined and executed to support objectives in a stepwise fashion. The optimized four-cylinder system data demonstrated significant progress compared to Phase I results, as well as traditional spark ignition systems. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system on an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Commercialization of the retrofit micropilot ignition technology is awaiting a ''market pull'', which is expected to materialize as the results of the field demonstration become known and accepted. The Implementation Team, comprised of Woodward Governor Company, Enginuity LLC, Hoerbiger Corporation of America, and DigiCon Inc., has direct experience with the technology development and implementation, and stands ready to promote and commercialize the retrofit micropilot ignition system.

Scott Chase; Daniel Olsen; Ted Bestor

2005-05-01T23:59:59.000Z

55

A moving horizon solution to the gas pipeline optimization problem  

E-Print Network [OSTI]

A moving horizon solution to the gas pipeline optimization problem EWO MEETING, Fall 2010 Ajit Gopalakrishnan Advisor: L. T. Biegler #12;Background: Gas pipeline optimization 2 Gas pipeline networks optimization Load forecast Weather, load history Controller #12;Pipeline modeling [Baumrucker & Biegler, 09

Grossmann, Ignacio E.

56

Gas Pipelines, County Roads (Indiana)  

Broader source: Energy.gov [DOE]

A contract with any Board of County Commissioners is required prior to the construction of a pipeline, conduit, or private drain across or along any county highway. The contract will include terms...

57

Interstate Natural Gas Pipelines (Iowa)  

Broader source: Energy.gov [DOE]

This statute confers upon the Iowa Utilities Board the authority to act as an agent of the federal government in determining pipeline company compliance with federal standards within the boundaries...

58

EIA - Natural Gas Pipeline Network - Underground Natural Gas...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LNG Peak Shaving and Import Facilities Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. LNG Peaking...

59

Optimization Online - Optimal structure of gas transmission trunklines  

E-Print Network [OSTI]

Jan 7, 2009 ... Suppose a gas pipeline is to be designed to transport a specified ... the number of compressor stations, the lengths of pipeline segments ...

J. Frédéric Bonnans

2009-01-07T23:59:59.000Z

60

IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM-PHASE I  

SciTech Connect (OSTI)

This report documents the first year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase I goals and objectives were met. We intend to proceed with the Phase II research plan, as set forth by the applicable Research Management Plan. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase I were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. Initial testing results showed: (1) Brake specific fuel consumption of natural gas was improved from standard spark ignition across the map, 1% at full load and 5% at 70% load. (2) 0% misfires for all points on micropilot ignition. Fuel savings were most likely due to this percent misfire improvement. (3) THC (Total Hydrocarbon) emissions were improved significantly at light load, 38% at 70% load. (4) VOC (Volatile Organic Compounds) emissions were improved above 80% load. (5) Coefficient of Variance for the IMEP (Indicated Mean Effective Pressure) was significantly less at lower loads, 76% less at 70%. These preliminary results will be substantiated and enhanced during Phase II of the Micropilot Ignition program.

Ted Bestor

2003-03-04T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

E-Print Network 3.0 - arctic gas pipeline Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pipeline Search Powered by Explorit Topic List Advanced Search Sample search results for: arctic gas pipeline...

62

Expansion of the U.S. Natural Gas Pipeline Network:  

Gasoline and Diesel Fuel Update (EIA)

Expansion of the U.S. Natural Gas Pipeline Network: Expansion of the U.S. Natural Gas Pipeline Network: Additions in 2008 and Projects through 2011 This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives. Questions or comments on this article should be directed to Damien Gaul at damien.gaul@eia.doe.gov or (202) 586-2073. Robust construction of natural gas infrastructure in 2008 resulted in the completion of 84 pipeline projects in the lower 48 States, adding close to 4,000 miles of natural gas pipeline. These completions of new natural gas pipelines and expansions of existing pipelines in the United States

63

Detroit, MI Natural Gas Pipeline Exports to Canada (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Detroit, MI Natural Gas Imports by Pipeline from...

64

Marysville, MI Natural Gas Pipeline Exports to Canada (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Price of Natural Gas Pipeline Exports by Point of Exit Marysville, MI Natural Gas Imports by Pipeline from...

65

St. Clair, MI Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry St. Clair, MI Natural Gas Imports by Pipeline from...

66

Detroit, MI Natural Gas Pipeline Exports to Canada (Dollars per...  

Gasoline and Diesel Fuel Update (EIA)

Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Price of Natural Gas Pipeline Exports by Point of Exit Detroit, MI Natural Gas Imports by Pipeline from...

67

Marysville, MI Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Marysville, MI Natural Gas Imports by Pipeline from...

68

St. Clair, MI Natural Gas Pipeline Imports From Canada (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Price of Natural Gas Pipeline Imports by Point of Entry St. Clair, MI Natural Gas Imports by Pipeline from...

69

Blending Hydrogen into Natural Gas Pipeline Networks: A Review...  

Energy Savers [EERE]

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11...

70

Calais, ME Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Calais, ME Natural Gas Imports by Pipeline from...

71

Massena, NY Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Massena, NY Natural Gas Imports by Pipeline from...

72

Corsby, ND Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Corsby, ND Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Corsby, ND Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

73

Noyes, MN Natural Gas Pipeline Imports From Canada (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Noyes, MN Natural Gas Imports by Pipeline from...

74

Champlain, NY Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Champlain, NY Natural Gas Imports by Pipeline from...

75

Waddington, NY Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Waddington, NY Natural Gas Imports by Pipeline from...

76

Eastport, ID Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Eastport, ID Natural Gas Imports by Pipeline from...

77

Statistical Modeling of Corrosion Failures in Natural Gas Transmission Pipelines  

E-Print Network [OSTI]

Natural gas pipelines are a critical component of the U.S. energy infrastructure. The safety of these pipelines plays a key role for the gas industry. Therefore, the understanding of failure characteristics and their consequences are very important...

Cobanoglu, Mustafa Murat

2014-03-28T23:59:59.000Z

78

Method for route selection of transcontinental natural gas pipelines  

E-Print Network [OSTI]

1 Method for route selection of transcontinental natural gas pipelines Fotios G. Thomaidis1@kepa.uoa.gr Abstract. The route of transcontinental natural gas pipelines is characterized by complexity, compared choices. Keywords: Optimum route method, natural gas, transcontinental pipelines, Caspian Region ­ E

Kouroupetroglou, Georgios

79

Gas supplies of interstate/natural gas pipeline companies 1989  

SciTech Connect (OSTI)

This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

Not Available

1990-12-18T23:59:59.000Z

80

Natural Gas Transmission Pipeline Siting Act (Florida) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas transmission pipelines. The Act intends to achieve a reasonable balance between the need for the natural

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Marysville, MI Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Marysville, MI Natural Gas Exports to...

82

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

83

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in local markets, it is the interstate pipeline system's long-distance, high-capacity trunklines that supply most of the major natural gas markets in the United States. Of the six geographic regions defined in this analysis, the Southwest Region contains the largest number of individual natural gas pipeline systems (more than 90) and the highest level of pipeline mileage (over 106,000).

84

Pipeline repair development in support of the Oman to India gas pipeline  

SciTech Connect (OSTI)

This paper provides a summary of development which has been conducted to date for the ultra deep, diverless pipeline repair system for the proposed Oman to India Gas Pipeline. The work has addressed critical development areas involving testing and/or prototype development of tools and procedures required to perform a diverless pipeline repair in water depths of up to 3,525 m.

Abadie, W.; Carlson, W.

1995-12-01T23:59:59.000Z

85

Natural Gas Weekly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Interstate Gas Company (CIG) declared force majeure as a result of an unforeseen mechanical outage at the Morton compressor station in Colorado on pipeline segment 118....

86

EIA - Natural Gas Pipeline Network - States Dependent on Interstate  

U.S. Energy Information Administration (EIA) Indexed Site

States Dependent on Interstate Pipelines States Dependent on Interstate Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates States in grey which are at least 85% dependent on the interstate pipeline network for their natural gas supply are: New England - Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Southeast - Florida, Georgia, North Carolina, South Carolina, Tennessee Northeast - Delaware, Maryland, New Jersey, New York, District of Columbia Midwest - Illinois, Indiana, Minnesota, Ohio, Wisconsin Central - Iowa, Missouri, Nebraska, South Dakota West - Arizona, California, Idaho, Nevada, Oregon, Washington Interstate Natural Gas Supply Dependency, 2007 Map: Interstate Natural Gas Supply Dependency

87

Miniature solid-state gas compressor  

DOE Patents [OSTI]

A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described.

Lawless, William N. (518 Illinois Ct., Westerville, OH 43081); Cross, Leslie E. (401 Glenn Rd., State College, PA 16801); Steyert, William A. (c/o Oakhurst Dr., R.D. 1, Box 99, Center Valley, PA 18034)

1985-01-01T23:59:59.000Z

88

Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,,  

E-Print Network [OSTI]

Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,, * Adrian Down, Nathan G increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic

Jackson, Robert B.

89

EIS-0467: Hanford Site Natural Gas Pipeline, Richland, WA  

Broader source: Energy.gov [DOE]

DOE announces its intent to prepare an EIS for the Acquisition of a Natural Gas Pipeline and Natural Gas Utility Service at the Hanford Site, Richland, Washington (Natural Gas Pipeline or NGP EIS), and initiate a 30-day public scoping period.

90

EIA - Analysis of Natural Gas Imports/Exports & Pipelines  

Gasoline and Diesel Fuel Update (EIA)

Imports/Exports & Pipelines Imports/Exports & Pipelines 2010 U.S Natural Gas Imports and Exports: 2009 This report provides an overview of U.S. international natural gas trade in 2009. Natural gas import and export data, including liquefied natural gas (LNG) data, are provided through the year 2009 in Tables SR1-SR9. Categories: Imports & Exports/Pipelines (Released, 9/28/2010, Html format) Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format)

91

,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Pipeline Imports From Canada (MMcf)",1,"Monthly","72014" ,"Release Date:","9302014" ,"Next...

92

Illinois Gas Pipeline Safety Act (Illinois) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Illinois Gas Pipeline Safety Act (Illinois) Illinois Gas Pipeline Safety Act (Illinois) Illinois Gas Pipeline Safety Act (Illinois) < Back Eligibility Commercial Utility Program Info State Illinois Program Type Safety and Operational Guidelines Provider Illinois Commerce Commission Standards established under this Act may apply to the design, installation, inspection, testing, construction, extension, operation, replacement, and maintenance of pipeline facilities. Whenever the Commission finds a particular facility to be hazardous to life or property, it may require the person operating such facility to take the steps necessary to remove the hazard. Each person who engages in the transportation of gas or who owns or operates pipeline facilities shall file with the Commission a plan for inspection and maintenance of each pipeline facility owned or operated by

93

Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan  

Broader source: Energy.gov (indexed) [DOE]

Moves Forward on Alaska Natural Gas Pipeline Loan Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm Addthis WASHINGTON, DC - The Department of Energy tomorrow, Friday, May 27, will publish a Notice of Inquiry in the Federal Register seeking public comment on an $18 billion loan guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's 35 trillion cubic feet of proven natural gas reserves, and would be a major step forward in meeting America's growing energy needs and reducing our dependence on foreign sources of energy. It would also fulfill the Bush Administration's policy to bring Alaska's natural gas reserves to market.

94

Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan  

Broader source: Energy.gov (indexed) [DOE]

Moves Forward on Alaska Natural Gas Pipeline Loan Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm Addthis WASHINGTON, DC - The Department of Energy tomorrow, Friday, May 27, will publish a Notice of Inquiry in the Federal Register seeking public comment on an $18 billion loan guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's 35 trillion cubic feet of proven natural gas reserves, and would be a major step forward in meeting America's growing energy needs and reducing our dependence on foreign sources of energy. It would also fulfill the Bush Administration's policy to bring Alaska's natural gas reserves to market.

95

EIA - Natural Gas Pipeline Network - Regional Definitions  

U.S. Energy Information Administration (EIA) Indexed Site

Definitions Map Definitions Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Definitions The regions defined in the above map are based upon the 10 Federal Regions of the U.S. Bureau of Labor Statistics. The State groupings are as follows: Northeast Region - Federal Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. Federal Region 2: New Jersey, and New York. Federal Region 3:Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia. Southeast Region - Federal Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee. Midwest Region - Federal Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, and

96

Energy saving at gas compressor stations through the use of parametric diagnostics.  

E-Print Network [OSTI]

?? Increasingly growing consumption of natural gas all around the world requires development of new transporting equipment and optimization of existing pipelines and gas pumping… (more)

Angalev, Mikhail

2012-01-01T23:59:59.000Z

97

Detroit, MI Natural Gas Pipeline Exports to Canada (Dollars per...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Price of Natural Gas Pipeline Exports by Point of Exit Detroit, MI Natural Gas Exports to...

98

Marysville, MI Natural Gas Pipeline Exports to Canada (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Price of Natural Gas Pipeline Exports by Point of Exit Marysville, MI Natural Gas Exports to...

99

Detroit, MI Natural Gas Pipeline Exports to Canada (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

individual company data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Detroit, MI Natural Gas Exports to...

100

St. Clair, MI Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry St. Clair, MI Natural Gas Exports to...

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

St. Clair, MI Natural Gas Pipeline Imports From Canada (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Price of Natural Gas Pipeline Imports by Point of Entry St. Clair, MI Natural Gas Exports to...

102

EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Transportation Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow patterns. 5 major routes extend from the producing areas of the Southwest 4 routes enter the United States from Canada 2 originate in the Rocky Mountain area. A summary of the major corridors and links to details about each corridor are provided below. Corridors from the Southwest Region

103

Failure Analysis of a Compressor Blade of Gas Turbine Engine  

Science Journals Connector (OSTI)

Abstract The stage II compressor stator blade of a developmental gas turbine engine was found damaged during dismantling of the engine after test run. A portion of the blade was found fractured from the hub region at leading edge. A crack was also observed extending from the fractured surface towards the centre of the airfoil region of the blade. Low magnification stereo-binocular observation revealed presence of beach marks on the fractured surface indicating the blade failure in progressive mode. This observation was further confirmed by scanning electron microscopy. The crack origin was at the blade hub-stem junction on the leading edge side. Presence of machining/filing marks appeared to be the reason for the fatigue crack initiation from this region. No metallurgical abnormalities were present at the crack origin. However, deep filing/machining lines were observed at the stem region of the blade attributing to the cause of failure.

Swati Biswas; M.D. Ganeshachar; Jivan Kumar; V.N. Satish Kumar

2014-01-01T23:59:59.000Z

104

Natural Gas Imports by Pipeline into the U.S. Form | Department...  

Broader source: Energy.gov (indexed) [DOE]

by Pipeline into the U.S. Form Natural Gas Imports by Pipeline into the U.S. Form Excel Version of Natural Gas Imports by Pipeline into the U.S. Form.xlsx PDF Version of Natural...

105

Gas Pipeline Safety (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Safety (West Virginia) Pipeline Safety (West Virginia) Gas Pipeline Safety (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Safety and Operational Guidelines Provider Public Service Commission of West Virginia The Gas Pipeline Safety Section of the Engineering Division is responsible for the application and enforcement of pipeline safety regulations under Chapter 24B of the West Virginia Code and 49 U.S.C. Chapter 601,

106

Colorado Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

107

New Hampshire Natural Gas Pipeline and Distribution Use Price...  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

108

Michigan Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

109

Utah Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,935...

110

Ohio Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 19,453...

111

Maine Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0...

112

Vermont Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

113

North Carolina Natural Gas Pipeline and Distribution Use Price...  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

114

Missouri Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Missouri Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

115

Maine Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

116

Mississippi Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

117

New Jersey Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) New Jersey Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

118

Virginia Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

119

California Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) California Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

120

Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Arizona Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

122

Louisiana Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

123

District of Columbia Natural Gas Pipeline and Distribution Use...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) District of Columbia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

124

Texas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

125

Maryland Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

126

District of Columbia Natural Gas Pipeline and Distribution Use...  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) District of Columbia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

127

Massachusetts Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Massachusetts Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

128

Washington Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

129

Alabama Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

130

Delaware Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13...

131

South Dakota Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

132

Illinois Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Illinois Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

133

Oregon Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

134

South Carolina Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) South Carolina Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

135

Tennessee Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

136

Idaho Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,186...

137

Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

138

North Dakota Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) North Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

139

Kansas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

140

Vermont Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9 8...

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Delaware Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

142

Nevada Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

143

Kansas Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

144

Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

145

Indiana Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

146

North Carolina Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) North Carolina Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

147

Connecticut Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

148

Montana Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

149

New Hampshire Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) New Hampshire Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

150

Alabama Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

151

Minnesota Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

152

Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

153

Pennsylvania Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

154

South Carolina Natural Gas Pipeline and Distribution Use Price...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Price (Dollars per Thousand Cubic Feet) South Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

155

West Virginia Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) West Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

156

California Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) California Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

157

Florida Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

158

Rhode Island Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

159

Iowa Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Iowa Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,309...

160

Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Georgia Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

162

Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

163

Nevada Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 656...

164

Florida Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

165

New York Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) New York Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

166

Massachusetts Natural Gas Pipeline and Distribution Use Price...  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

167

EIA - Natural Gas Pipeline Network - Transportation Process & Flow  

U.S. Energy Information Administration (EIA) Indexed Site

Process and Flow Process and Flow About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Transportation Process and Flow Overview | Gathering System | Processing Plant | Transmission Grid | Market Centers/Hubs | Underground Storage | Peak Shaving Overview Transporting natural gas from the wellhead to the final customer involves several physical transfers of custody and multiple processing steps. A natural gas pipeline system begins at the natural gas producing well or field. Once the gas leaves the producing well, a pipeline gathering system directs the flow either to a natural gas processing plant or directly to the mainline transmission grid, depending upon the initial quality of the wellhead product.

168

EIA - Natural Gas Pipeline Network - Network Configuration & System Design  

U.S. Energy Information Administration (EIA) Indexed Site

Network Configuration & System Design Network Configuration & System Design About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Network Configuration and System Design Overview | Transmission/Storage | Design Criteria | Importance of Storage| Overall Pipeline System Configuration Overview A principal requirement of the natural gas transmission system is that it be capable of meeting the peak demand of its shippers who have contracts for firm service. To meet this requirement, the facilities developed by the natural gas transmission industry are a combination of transmission pipelines to bring the gas to the market areas and of underground natural gas storage sites and liquefied natural gas (LNG) peaking facilities located in the market areas.

169

Rotor dynamic analysis of GCEP (Gas Centrifuge Enrichment Plant) Tails Withdrawal Test Facility AC-12 compressor  

SciTech Connect (OSTI)

The reliable operation of the centrifugal compressors utilized in the gaseous diffusion process is of great importance due to the critical function of these machines in product and tails withdrawal, cascade purge and evacuation processes, the purge cascade and product booster applications. The same compressors will be used in equally important applications within the Gas Centrifuge Enrichment Plant (GCEP). In response to concern over the excessive vibration exhibited by the AC-12 compressor in the No. 3 position of the GCEP Tails Withdrawal Test Facility, a rotor-bearing dynamic analysis was performed on the compressor. This analysis included the acquisition and reduction of compressor vibration data, characterization and modeling of the rotorbearing system, a computer dynamic study, and recommendations for machine modification. The compressor dynamic analysis was performed for rotor speeds of 9000 rpm and 7200 to 7800 rpm, which includes all possible opreating speeds of the compressor in the GCEP Test Facility. While the analysis was performed on this particular AC-12 compressor, the results should be pertinent to other AC-12 applications as well. Similar diagnostic and analytical techniques can be used to evaluate operation of other types of centrifugal compressors.

Spencer, J.W.

1982-01-22T23:59:59.000Z

170

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network [OSTI]

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

Alexander Bolonkin; Richard Cathcart

2007-01-05T23:59:59.000Z

171

Natural Gas Weekly Update, Printer-Friendly Version  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

diameter pipeline with the capacity to transport 477 million cubic feet (MMcf) of natural gas per day. Facilities would also include a compressor station, 2 meter stations, 19...

172

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

repairs are completed. During this period capacity will be zero. Cheyenne Plains Gas Pipeline Company announced that repairs have been completed on the compressor at the...

173

Scoping Study on the Safety Impact of Valve Spacing in Natural Gas Pipelines  

SciTech Connect (OSTI)

The U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration (PHMSA) is responsible for ensuring the safe, reliable, and environmentally sound operation of the nation's natural gas and hazardous liquid pipelines. Regulations adopted by PHMSA for gas pipelines are provided in 49 CFR 192, and spacing requirements for valves in gas transmission pipelines are presented in 49 CFR 192.179. The present report describes the findings of a scoping study conducted by Oak Ridge National Laboratory (ORNL) to assist PHMSA in assessing the safety impact of system valve spacing. Calculations of the pressures, temperatures, and flow velocities during a set of representative pipe depressurization transients were carried out using a one-dimensional numerical model with either ideal gas or real gas properties for the fluid. With both ideal gas and real gas properties, the high-consequence area radius for any resulting fire as defined by Stevens in GRI-00/0189 was evaluated as one measure of the pipeline safety. In the real gas case, a model for convective heat transfer from the pipe wall is included to assess the potential for shut-off valve failures due to excessively low temperatures resulting from depressurization cooling of the pipe. A discussion is also provided of some additional factors by which system valve spacing could affect overall pipeline safety. The following conclusions can be drawn from this work: (1) Using an adaptation of the Stephens hazard radius criteria, valve spacing has a negligible influence on natural gas pipeline safety for the pipeline diameter, pressure range, and valve spacings considered in this study. (2) Over the first 30 s of the transient, pipeline pressure has a far greater effect on the hazard radius calculated with the Stephens criteria than any variations in the transient flow decay profile and the average discharge rate. (3) Other factors besides the Stephens criteria, such as the longer burn time for an accidental fire, greater period of danger to emergency personnel, increased unavoidable loss of gas, and possible depressurization cooling of the shut-off valves may also be important when deciding whether a change in the required valve spacing would be beneficial from a safety standpoint. (4) The average normalized discharge rate of {lambda}{sub avg} = 0.33 assumed by Stephens in developing his safety criteria is an excellent conservative value for natural gas discharge at the pressures, valve spacings, and pipe diameter used in this study. This conclusion remains valid even when real rather than ideal gas properties are considered in the analysis. (5) Significant pipe wall cooling effects (T{sub w} < -50 F or 228 K) can extend for a mile or more upstream from the rupture point within 30 s of a break. These conditions are colder than the temperature range specifications for many valve lubricants. The length of the low-temperature zone due to this cooling effect is also essentially independent of the system shut-off valve spacing or the distance between the break and a compressor station. (6) Having more redundant shut-off valves available would reduce the probability that pipe cooling effects could interfere with isolating the broken area following a pipeline rupture accident.

Sulfredge, Charles David [ORNL

2007-07-01T23:59:59.000Z

174

Natural Gas Pipeline Research: Best Practices in Monitoring Technology  

E-Print Network [OSTI]

Natural Gas Pipeline Research: Best Practices in Monitoring Technology Energy Systems Research/index.html January 2012 The Issue California is the secondlargest natural gas consuming state in the United States, just behind Texas. About 85% of the natural gas consumed in California is delivered on interstate

175

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network [OSTI]

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for che...

Bolonkin, A; Bolonkin, Alexander; Cathcart, Richard

2007-01-01T23:59:59.000Z

176

A comprehensive analysis of natural gas distribution pipeline incidents  

Science Journals Connector (OSTI)

The objective of this paper is to provide a reference database for pipeline companies and/or regulators with an investigation of safety performance of US natural gas distribution pipelines. With a total of 3,679 natural gas distribution pipeline incidents between 1985 and 2010, nine safety indicators are statistically analysed in terms of the year, pipeline length, regions, pipeline diameter, pipeline wall thickness, material, age, incident area and incident cause to identify the relationship between safety indicators and various variables. Overall average frequencies of incidents, injuries and fatalities between 1985 and 2009 are 0.0846/1,000 mile-years, 0.0407/1,000 mile-years, and 0.0094/1,000 mile-years respectively. The analysis shows that the safety performance of US natural gas distribution pipeline is improving over time, and different variables have different impact on safety performances. However, the number of annual incidents does not show a significant decline due to increasing energy demand. [Received: March 21 2012; Accepted: July 15 2012

Zhenhua Rui; Xiaoqing Wang

2013-01-01T23:59:59.000Z

177

Review of Gas Transmission Pipeline Repair Methods  

Science Journals Connector (OSTI)

Repair methods are key operations for the integrity management of pipelines. The parameters guiding the repair decision are briefly reminded. A nonexhaustive external and internal repair techniques are described,...

Remi Batisse

2008-01-01T23:59:59.000Z

178

EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

179

NETL: News Release - National Labs to Strengthen Natural Gas Pipeline's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Labs to Strengthen Natural Gas Pipelines' Integrity, Reliability National Labs to Strengthen Natural Gas Pipelines' Integrity, Reliability DOE Receives 24 Proposals, Valued at Half Billion Dollars, For Technologies to Improve Power Plants, Cut Emissions MORGANTOWN, WV - To identify and develop advanced technology for the nation's natural gas pipelines, the Energy Department is calling upon the national labs to assist private industry in developing innovative technologies that establish a framework for future natural gas transmission and distribution systems. The laboratories will help 11 government-industry cost-shared projects, many of which center around detection devices designed to prevent pipeline damage, DOE selected earlier this year (see May 31, 2001, announcement). DOE estimates that natural gas consumption will increase by 60 percent by 2020, placing an unaccustomed demand on the U.S.'s aging natural gas infrastructure. The already-selected 11 projects address that need by demonstrating robotics and other sophisticated ways of bolstering strength, and, therefore, the integrity and reliability of the pipelines the crisscross the country.

180

Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Next Release Date: 11282014 Referring Pages: U.S. Natural Gas Imports by Country U.S. Price of Natural Gas Pipeline Imports by Point of Entry U.S. Natural Gas Imports by Pipeline...

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

U.S. Natural Gas Pipeline Imports From Canada (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Imports by Country U.S. Natural Gas Pipeline Imports by Point of Entry U.S. Natural Gas Imports by Pipeline...

182

Application Filing Requirements for Natural Gas Pipeline Construction  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin) Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Wisconsin Program Type Siting and Permitting Any utility proposing to construct a natural gas pipeline requiring a Certificate of Authority (CA) under Wis. Stat. §196.49 must prepare an

183

Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida) |  

Broader source: Energy.gov (indexed) [DOE]

Transmission Pipeline Intrastate Regulatory Act Transmission Pipeline Intrastate Regulatory Act (Florida) Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Program Info State Florida Program Type Safety and Operational Guidelines Provider Florida Public Service Commission The regulation of natural gas intrastate transportation and sale is deemed to be an exercise of the police power of the state for the protection of the public welfare. The Public Service Commission is empowered to fix and regulate rates and services of natural gas transmission companies, including, without limitation, rules and regulations for determining the

184

Variable gas spring for matching power output from FPSE to load of refrigerant compressor  

DOE Patents [OSTI]

The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand.

Chen, Gong (Athens, OH); Beale, William T. (Athens, OH)

1990-01-01T23:59:59.000Z

185

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

SciTech Connect (OSTI)

The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

Melaina, M. W.; Antonia, O.; Penev, M.

2013-03-01T23:59:59.000Z

186

Economic Nonlinear Model Predictive Control for the Optimization of Gas Pipeline Networks  

E-Print Network [OSTI]

Economic Nonlinear Model Predictive Control for the Optimization of Gas Pipeline Networks EWO University Oct 12, 2011 Ajit Gopalakrishnan (CMU) Economic NMPC for gas pipeline optimization Oct 12, 2011 1 Gopalakrishnan (CMU) Economic NMPC for gas pipeline optimization Oct 12, 2011 4 / 24 #12;Natural Gas Industry

Grossmann, Ignacio E.

187

EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

188

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

Broader source: Energy.gov [DOE]

This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

189

IP CN Crosby, ND Natural Gas Pipeline Imports From Canada (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

IP CN Crosby, ND Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) IP CN Crosby, ND Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic...

190

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

Fuel Cell Technologies Publication and Product Library (EERE)

This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipeline

191

NETL: News Release - Robot Successfully Inspects Live Natural Gas Pipeline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

22, 2004 22, 2004 Robot Successfully Inspects Live Natural Gas Pipeline in New York Field Test is a First for Natural Gas Industry BROCKPORT, NY - In a recent field demonstration filled with "firsts," a self-powered robot developed by the Northeast Gas Association, Carnegie Mellon University, and the Department of Energy's National Energy Technology Laboratory successfully inspected a mile of a live natural gas distribution main in Brockport, New York. Known as EXPLORER, the remote-controlled robot was launched and retrieved four times on October 8 with no interruption in customer service. The system successfully made its way through an 8-inch diameter pipeline owned and operated by Rochester Electric & Gas, and maneuvered several 70- to 90-degree bends.

192

U.S. Natural Gas Pipeline Imports (Million Cubic Feet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Million Cubic Feet) U.S. Natural Gas Pipeline Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 268,310 232,878 254,455 235,621 236,725...

193

U.S. Natural Gas Pipeline Exports (Million Cubic Feet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exports (Million Cubic Feet) U.S. Natural Gas Pipeline Exports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 6,424 6,846 10,601 8,211 6,284 5,741...

194

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the  

Broader source: Energy.gov (indexed) [DOE]

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 In 2005-06, the Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern United States to meet natural gas demand in the event of a pipeline disruption. The study modeled gas demand for select market areas in the Northeast under a range of different weather conditions. The study then determined how interstate pipeline flow patterns could change in the event of a pipeline disruption to one or more of the pipelines serving the region in order to meet the gas demand. The results

195

Pipeline Politics: Natural Gas in Eurasia  

E-Print Network [OSTI]

European Union energy policy to increase influence in energy markets, push for increased gas storage across Europe to provide temporary relief against gas disruptions, and explore increased US and European cooperation with Russia on energy market access....

Landrum, William W.; Llewellyn, Benjamin B.; Limesand, Craig M.; Miller, Dante J.; Morris, James P.; Nowell, Kathleen S.; Sherman, Charlotte L.

2010-01-01T23:59:59.000Z

196

Techno-Economic Evaluation of Using Different Air Inlet Cooling Systems in Gas Compressor Station  

Science Journals Connector (OSTI)

Abstract The purpose of this paper is to review the state of the art in applications for reducing the gas turbine intake air temperature and examine the merits from integration of the different air-cooling methods for 25 MW gas turbine based pipeline gas station . Four different intake air cooling methods have been applied in two pipeline gas stations. The calculations were performed on a yearly basis of operation. The case study is related to Dehshir and Kashan pipeline gas stations in Iran Gas Trunk line 8. The simulation has been performed in Thermoflex Software. Also, the Matlab code has been developed for thermodynamic simulation and exergoeconomic analysis of different scenarios. Finally, the thermodynamic, economics and exergoeconomic parameters for integration of the different cooling systems were calculated and compared.

V. Mazhari; S. Khamis Abadi; H. Ghalami; M.H. Khoshgoftar Manesh; M. Amidpour

2012-01-01T23:59:59.000Z

197

Gas Pipeline Safety Rules (Alabama) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Gas Pipeline Safety Rules (Alabama) Gas Pipeline Safety Rules (Alabama) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Alabama Program Type Safety and Operational Guidelines All public utilities and persons subject to this rule shall file with the commission an operating and maintenance plan as well as an emergency plan. All construction work involving the addition and/or the replacement of gas

198

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005  

Gasoline and Diesel Fuel Update (EIA)

percent increase in capacity additions (see percent increase in capacity additions (see Box, "Capacity Measures," p. 4). Indeed, less new natural gas pipeline mileage was added in 2005 than in any year during the past decade. 1 Energy Information Administration, Office of Oil and Gas, August 2006 1 In 2005, at least 31 natural gas pipeline projects of varying profiles 2 were completed in the lower 48 States and the Gulf of Mexico (Figure 3, Table 1). Of these, 15 were expansions (increases in capacity) on existing natural gas pipelines while the other 16 were 9 system extensions or laterals associated with existing natural gas pipelines, 5 new natural gas pipeline systems, and 2 oil pipeline conversions. Expenditures for natural gas pipeline development amounted to less than $1.3

199

Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.20 0.20 1970's 0.21 0.22 0.23 0.27 0.29 0.54 0.58 0.83 0.98 1.11 1980's 1.78 2.12 2.56 3.07 2.88 2.97 2.73 2.68 2.53 2.17 1990's 2.06 2.29 2.44 1.97 1.88 1.66 2.63 2.68 2.27 2.48 2000's 3.12 3.94 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use

200

Natural Gas Exports by Pipeline out of the U.S. Form | Department...  

Broader source: Energy.gov (indexed) [DOE]

Exports by Pipeline out of the U.S. Form Natural Gas Exports by Pipeline out of the U.S. Form Excel Version of Natural Gas Exports by Pipeline out of the U.S. Form.xlsx PDF Version...

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.17 1970's 0.18 0.19 0.21 0.22 0.27 0.49 0.72 1.00 1.31 1.53 1980's 2.17 2.58 2.78 2.78 2.81 2.62 2.71 2.57 2.24 1.75 1990's 1.75 1.79 1.89 1.86 1.78 1.45 1.97 2.44 1.98 1.66 2000's 3.89 3.86 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Colorado Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

202

Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.33 0.27 0.23 1970's 0.20 0.22 0.24 0.25 0.29 0.37 0.48 0.60 0.57 1.26 1980's 1.67 2.18 2.85 3.05 2.93 2.89 2.44 1.97 1.77 2.00 1990's 2.12 2.35 2.51 2.67 1.95 1.83 2.63 2.51 2.45 2.11 2000's 3.27 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Kentucky Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

203

Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.05 1970's 0.20 0.21 0.23 0.24 0.28 0.39 0.50 0.81 0.96 1.30 1980's 1.81 2.36 2.91 3.13 3.00 2.90 2.48 1.97 1.96 2.07 1990's 1.98 2.25 2.25 2.40 1.44 1.61 2.58 2.59 2.22 1.98 2000's 3.10 3.76 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Louisiana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

204

Montana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.12 0.11 0.11 1970's 0.11 0.12 0.17 0.21 0.23 0.42 0.46 0.73 0.83 1.16 1980's 1.29 1.90 2.87 3.00 3.04 2.51 2.28 1.86 1.65 1.57 1990's 1.75 1.76 1.63 2.15 1.53 1.16 1.44 1.77 1.72 2.12 2000's 2.96 2.48 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Montana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

205

Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.17 0.17 0.19 0.22 0.28 0.36 0.44 0.64 0.75 1.29 1980's 1.62 2.22 2.86 3.16 2.83 2.79 2.22 1.49 1.79 1.50 1990's 1.65 1.26 1.25 1.68 1.28 1.19 1.80 2.20 1.90 2.08 2000's 3.61 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Arizona Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

206

Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.18 0.18 0.18 1970's 0.19 0.22 0.24 0.26 0.30 0.43 0.52 0.71 0.86 1.12 1980's 1.78 2.12 2.63 2.94 2.97 2.78 2.46 2.64 2.07 2.30 1990's 2.17 2.06 1.78 1.64 1.61 1.45 2.41 2.42 1.58 1.38 2000's 2.41 4.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Arkansas Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

207

Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.19 0.19 1970's 0.19 0.22 0.24 0.25 0.27 0.38 0.50 0.69 0.84 1.25 1980's 2.41 2.74 3.08 3.28 3.29 3.17 3.19 2.37 2.27 2.72 1990's 2.15 1.94 1.94 2.08 2.01 1.81 2.48 2.98 2.41 2.30 2000's 3.30 4.75 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Maryland Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

208

Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.27 0.27 0.27 1970's 0.27 0.28 0.29 0.35 0.46 0.56 0.71 0.98 1.67 1.60 1980's 2.98 3.73 3.63 3.86 3.95 3.54 2.95 2.64 2.39 2.03 1990's 1.86 0.50 0.57 0.26 0.20 0.54 1.04 0.95 0.69 0.78 2000's 1.32 1.76 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Michigan Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

209

Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.32 0.28 0.35 0.47 0.61 0.82 1.77 1.98 2.53 1980's 4.41 4.75 4.90 4.19 3.90 3.13 2.35 2.00 1.90 2.09 1990's 2.16 2.32 2.16 1.71 1.86 1.77 1.77 1.80 1.84 1.98 2000's 2.74 2.91 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Oregon Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

210

Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.21 0.23 0.25 0.26 0.29 0.39 0.48 0.80 0.87 1.20 1980's 1.71 2.12 2.81 3.04 2.92 2.86 2.61 2.41 2.78 1.94 1990's 1.77 2.05 2.31 2.01 0.91 1.19 2.34 2.43 2.02 2.14 2000's 2.48 4.86 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Missouri Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

211

Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.16 0.16 1970's 0.17 0.17 0.18 0.24 0.24 0.51 0.65 0.69 1.36 1.59 1980's 2.05 2.51 2.91 3.05 2.99 2.76 2.56 2.36 2.06 1.88 1990's 1.95 1.85 2.48 1.92 1.52 1.31 1.54 1.84 1.86 1.87 2000's 3.21 3.04 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Wyoming Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

212

Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0.26 0.27 0.28 0.28 0.30 0.35 0.57 0.58 0.50 0.14 1980's 0.73 1.13 0.60 0.86 0.61 0.63 0.61 0.65 1.01 1.13 1990's 1.08 1.32 1.12 1.11 1.11 1.24 1.17 1.34 1.23 0.82 2000's 1.34 1.84 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Alaska Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

213

Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.20 0.22 0.23 0.25 0.28 0.32 0.36 0.67 0.90 1.35 1980's 2.10 2.78 3.11 3.22 3.26 3.23 3.32 2.50 2.41 2.69 1990's 2.19 2.08 2.08 2.24 2.14 1.93 2.62 3.09 2.48 2.18 2000's 3.30 4.57 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Georgia Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

214

Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.15 0.15 1970's 0.16 0.16 0.18 0.19 0.24 0.32 0.42 0.57 0.73 1.10 1980's 1.36 1.81 2.35 2.56 2.55 2.51 2.40 2.20 1.77 1.86 1990's 1.70 1.43 1.54 1.79 1.34 1.33 2.10 2.54 2.01 1.96 2000's 2.81 3.56 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Nebraska Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

215

Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.27 0.28 0.31 0.38 0.53 0.81 1.49 1.40 1980's 2.09 2.81 3.33 3.59 3.49 3.35 3.37 2.68 2.59 2.63 1990's 2.05 1.86 1.93 2.27 2.14 1.83 2.60 3.22 2.59 2.20 2000's 2.66 5.05 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Virginia Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

216

Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.21 0.21 1970's 0.21 0.23 0.25 0.27 0.28 0.38 0.45 0.81 0.86 1.21 1980's 1.73 2.18 2.91 3.21 3.02 3.11 2.78 2.52 2.69 2.17 1990's 2.17 2.46 2.51 1.38 1.03 1.05 2.47 2.58 2.27 2.16 2000's 3.69 4.18 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Indiana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

217

Gas Spring Losses in Linear Clearance Seal Compressors P.B. Bailey, M.W. Dadd, J.S. Reed*  

E-Print Network [OSTI]

1 Gas Spring Losses in Linear Clearance Seal Compressors P.B. Bailey, M.W. Dadd, J.S. Reed* , C. Stevenage, U.K. Thomas M. Davis Air Force Research Laboratory Kirtland AFB, New Mexico, U.S.A ABSTRACT investigations on conventional crank driven reciprocating compressors, where the use of normal sliding seals

218

EIA - Natural Gas Pipeline Network - Natural Gas Import/Export Locations  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelines > Import/Export Location List Pipelines > Import/Export Location List About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Currently, there are 58 locations at which natural gas can be exported or imported into the United States, including 9 LNG (liquefied natural gas) facilities in the continental United States and Alaska (There is a tenth U.S. LNG import facility located in Puerto Rico). At 28 of these locations natural gas or LNG currently can only be imported; while at 17 they may only be exported (1 LNG export facility is located in Alaska). At 13 of the 58 locations natural gas may, and sometimes does, flow in both directions, although at each of these sites the flow is primarily either import or export.

219

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

of the original facility is expected to be operational by April 1, 2010. Tennessee Gas Pipeline Company issued a notice of an emergency repair at its Compressor Station 827 near...

220

Systematic Engine Uprate Technology Development and Deployment for Pipeline Compressor Engines through Increased Torque  

SciTech Connect (OSTI)

Three methods were utilized to analyze key components of slow-speed, large-bore, natural gas integral engines. These three methods included the application of computational fluid dynamics (CFD), dynamic modal analysis using finite element analysis (FEA), and a stress analysis method also using FEA. The CFD analysis focuses primarily on the fuel mixing in the combustion chamber of a TLA engine. Results indicate a significant increase in the homogeneity of the air and fuel using high-pressure fuel injection (HPFI) instead of standard low-pressure mechanical gas admission valve (MGAV). A modal analysis of three engine crankshafts (TLA-6, HBA-6, and GMV-10) is developed and presented. Results indicate that each crankshaft has a natural frequency and corresponding speed that is well away from the typical engine operating speed. A frame stress analysis method is also developed and presented. Two different crankcases are examined. A TLA-6 crankcase is modeled and a stress analysis is performed. The method of dynamic load determination, model setup, and the results from the stress analysis are discussed. Preliminary results indicate a 10%-15% maximum increase in frame stress due to a 20% increase in HP. However, the high stress regions were localized. A new hydraulically actuated mechanical fuel valve is also developed and presented. This valve provides equivalent high-energy (supersonic) fuel injection comparable to a HPFI system, at 1/5th of the natural gas fuel pressure. This valve was developed in cooperation with the Dresser-Rand Corporation.

Dennis Schmitt; Daniel Olsen

2005-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gas Balancing Rules Must Take into account the Trade-off between Offering Pipeline Transport and Pipeline Flexibility in Liberalized Gas Markets  

E-Print Network [OSTI]

This paper analyses the value and cost of line-pack flexibility in liberalized gas markets through the examination of the techno-economic characteristics of gas transport pipelines and the trade-offs between the different ...

Keyaerts, Nico

222

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the  

Broader source: Energy.gov (indexed) [DOE]

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available November 27, 2013 - 3:13pm Addthis The Office of Electricity Delivery and Energy Reliability has released its "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" report. The report is now available for downloading. In 2005-06, the Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern United States to meet natural gas demand in the event of a pipeline disruption. The study modeled gas demand for

223

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thad M. Adams Thad M. Adams Materials Technology Section Savannah River National Laboratory DOE Hydrogen Pipeline R&D Project Review Meeting January 5-6, 2005 Evaluation of Natural Gas Pipeline Materials for Hydrogen Service Hydrogen Technology at the Savannah Hydrogen Technology at the Savannah River Site River Site * Tritium Production/Storage/Handling and Hydrogen Storage/Handling since 1955 - Designed, built and currently operate world's largest metal hydride based processing facility (RTF) - DOE lead site for tritium extraction/handling/separation/storage operations * Applied R&D provided by Savannah River National Laboratory - Largest hydrogen R&D staff in country * Recent Focus on Related National Energy Needs - Current major effort on hydrogen energy technology

224

Certain peculiarities of Zr?Cr?N coatings on steel blades of a gas-turbine engine compressor  

Science Journals Connector (OSTI)

The properties of compressor blades of a helicopter gas-turbine engine with an experimental ionplasma coating Zr? ... -resistant, and mitigate the dependence of their residual properties on the amplitude and the ...

V. A. Styazhkin; A. A. Kopylov; S. Ya. Paleeva; Yu. G. Veksler…

225

A Study of the Causes of the Service Fracture of Turbine Rotor Blade of Compressor Station Gas-Turbine Unit  

Science Journals Connector (OSTI)

On the basis of structural and fractographic the analysis of the fractured surface of working turbine blade of GTK-10-2 gas-turbine unit of compressor station it is established...

A. Ya. Krasovs’kyi; O. E. Gopkalo; I. O. Makovets’ka; O. O. Yanko

2013-07-01T23:59:59.000Z

226

Design, modelling and control of a gas turbine air compressor .  

E-Print Network [OSTI]

??The production of compressed air constitutes a considerable portion of industrial electrical consumption. An alternative to electrically driven air compression systems is a gas turbine… (more)

WIESE, ASHLEY PETER

2014-01-01T23:59:59.000Z

227

Odorization system upgrades gas utility`s pipelines  

SciTech Connect (OSTI)

Mountain Fuel Supply Co., a subsidiary of Questar Corp., salt Lake City, is a natural gas holding company with $1.6 billion in assets. From 1929 to 1984, Mountain Fuel Supply Co. owned and operated many natural gas wells, gathering systems, and transmission pipelines to serve its Utah and Wyoming customers. Gas is odorized at convenient points on the transmission lines and at each downstream location where unodorized gas entered the system. Since 40 to 60% of the gas delivered to the company`s customers passes through Coalville Station, it was vital that a reliable, state-of-the-art odorant station be constructed at this site. Construction began during the summer of 1994 and the system came on line Sept. 1, 1994. The station odorized 435 MMcfd with 330 lbs. of odorant during last winter`s peak day, a mild winter. Mountain Fuel is subject to Department of Transportation (DOT) codes which mandate that gas be readily detectable at one fifth the lower explosive limit (LEL), or about 1% gas in air. However, the company strives to maintain a readily detectable odor at 0.25% of gas in air as measured by odormeter tests throughout the distribution system. Experience has shown that maintaining an odorant injection rate of 0.75 lbs/MMcf provides adequate odor levels. A blend of odorant consisting of 50% tertiary butyl mercaptan (TBM) and 50% tetrahydrothiophene (THT) was used for many years by Questar Pipeline. Presently, it is used at all Mountain Fuel stations. This paper reviews the design and operation of this odorization station.

Niebergall, B. [Mountain Fuel Supply, Salt Lake City, UT (United States)

1995-07-01T23:59:59.000Z

228

Price of U.S. Natural Gas Pipeline Exports to Canada (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

12312014 Next Release Date: 1302015 Referring Pages: U.S. Natural Gas Exports by Country U.S. Price of Natural Gas Pipeline Exports by Point of Exit U.S. Natural Gas Exports to...

229

SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL  

E-Print Network [OSTI]

1 SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL Hébrard, J.1 linked with Hydrogen/Natural gas mixtures transport by pipeline, the National Institute of Industrial scenario, i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential

Boyer, Edmond

230

Microsoft Word - 2012-01-27 JAD Natural Gas Pipeline.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Selected to Study Environmental Impacts of Energy Department's Natural Gas Pipeline Project RICHLAND, Wash. - The U.S. Department of Energy (DOE) has selected JAD...

231

Effective hardware for connection and repair of polyethylene pipelines using ultrasonic modification and heat shrinkage. Part 1. Aspects of connection and restoration of polymeric pipelines for gas transport  

Science Journals Connector (OSTI)

Aspects of the connection and restoration of polymeric pipelines for gas transport with the use of ... obtained, which can be used for the repair and restoration of polymeric pipelines, and to reduce the level of...

A. E. Kolosov; O. S. Sakharov; V. I. Sivetskii…

2011-07-01T23:59:59.000Z

232

Local collapse of gas pipelines under sleeve repairs  

Science Journals Connector (OSTI)

Local collapse of the pipe wall under full encirclement sleeve reinforcements is associated with breaks and blow outs that cause large gas losses and abrupt depressurisation in gas pipelines. Although these defects do not represent an imminent risk of failure, they should be eliminated because they impede the normal passage of the “instrumented pig” for internal inspection. Four failed repairs were experimentally evaluated, and the effects of different geometric factors were numerically assessed via non-linear numerical modelling of fluid flow and pipe response. All possible causes of the appearance of these defects and measures to minimise their occurrence were evaluated. The position of the repaired portion with respect to the blow out, local geometry of the repair and previous defects, and the amount of gas caught in the interstice between the pipe and the reinforcement, have an important part in the event. The measures for the prevention of this problem involve the use of fillers and improved construction of repair sleeves.

J.L Otegui; S Urquiza; A Rivas; A Trunzo

2000-01-01T23:59:59.000Z

233

Washington Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Washington Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.24 0.28 0.33 0.44 0.65 0.78 1.67 1.92 2.38 1980's 3.92 4.34 4.72 3.98 3.72 3.12 2.52 2.11 1.99 2.06 1990's 2.04 1.98 1.89 1.37 1.84 1.78 1.77 1.89 1.76 2.03 2000's 3.07 2.82 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Washington Natural Gas Prices

234

Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.19 1970's 0.20 0.21 0.23 0.24 0.28 0.36 0.46 0.73 0.88 1.28 1980's 1.75 2.34 2.91 3.06 2.94 2.92 2.44 1.99 1.87 2.09 1990's 2.11 2.33 2.34 2.37 1.98 1.82 2.63 2.62 2.33 2.19 2000's 3.37 4.28 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Mississippi Natural Gas Prices

235

Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.22 0.22 1970's 0.25 0.25 0.26 0.28 0.33 0.55 0.60 1.24 1.28 2.20 1980's 1.26 4.27 4.43 4.14 3.99 3.45 2.68 2.19 1.81 1.77 1990's 1.89 0.56 0.61 0.47 0.47 0.37 0.68 0.63 0.54 0.82 2000's 1.50 1.40 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Minnesota Natural Gas Prices

236

Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.35 0.68 0.30 1970's 0.32 0.32 0.35 0.40 0.50 0.58 0.59 1.50 2.60 2.53 1980's 2.76 2.94 3.53 3.30 3.18 3.71 2.53 2.52 2.13 2.97 1990's 3.68 3.08 2.95 3.53 2.62 2.20 3.50 1.54 3.00 0.59 2000's 4.82 4.93 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Connecticut Natural Gas Prices

237

Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.24 0.24 1970's 0.25 0.29 0.31 0.32 0.40 0.54 0.60 0.92 0.94 1.42 1980's 1.89 2.34 3.02 3.20 3.09 3.06 2.63 2.38 2.36 2.35 1990's 2.57 2.41 2.41 2.83 2.47 2.00 2.71 2.72 2.08 1.97 2000's 3.59 4.76 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Pennsylvania Natural Gas Prices

238

Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.23 0.24 0.28 0.36 0.49 0.73 0.89 1.26 1980's 1.73 2.25 2.96 3.19 2.94 3.01 2.29 1.85 1.78 1.97 1990's 1.94 2.61 2.44 2.23 1.88 1.59 2.57 2.52 2.17 2.04 2000's 3.44 4.13 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Tennessee Natural Gas Prices

239

Artificial neural network models for predicting condition of offshore oil and gas pipelines  

Science Journals Connector (OSTI)

Abstract Pipelines daily transport and distribute huge amounts of oil and gas across the world. They are considered the safest method of transporting oil and gas because of their limited number of failures. However, pipelines are subject to deterioration and degradation. It is therefore important that pipelines be effectively monitored to optimize their operation and to reduce their failures to an acceptable safety limit. Numerous models have been developed recently to predict pipeline conditions. Nevertheless, most of these models have used corrosion features alone to assess the condition of pipelines. Hence, this paper presents the development of models that evaluate and predict the condition of offshore oil and gas pipelines based on several factors besides corrosion. The models were developed using artificial neural network (ANN) technique based on historical inspection data collected from three existing offshore oil and gas pipelines in Qatar. The models were able to successfully predict pipeline conditions with an average percent validity above 97% when applied to the validation data set. The models are expected to help pipeline operators to assess and predict the condition of existing oil and gas pipelines and hence prioritize the planning of their inspection and rehabilitation.

Mohammed S. El-Abbasy; Ahmed Senouci; Tarek Zayed; Farid Mirahadi; Laya Parvizsedghy

2014-01-01T23:59:59.000Z

240

EIS-0467: Hanford Site Natural Gas Pipeline, Richland, WA | Department of  

Broader source: Energy.gov (indexed) [DOE]

7: Hanford Site Natural Gas Pipeline, Richland, WA 7: Hanford Site Natural Gas Pipeline, Richland, WA EIS-0467: Hanford Site Natural Gas Pipeline, Richland, WA Summary This EIS will evaluate the environmental impacts of a proposal to enter into a contract with a licensed natural gas supplier in Washington State to construct, operate, and maintain a natural gas pipeline. The pipeline would deliver natural gas to support the Waste Treatment Plant and the 242-A Evaporator operations in the 200 East Area of the Hanford Site. Public Comment Opportunities None available at this time. For more information, contact: Mr. Douglas Chapin, NEPA Document Manager U.S. Department of Energy Richland Operations Office P.O. Box 550, MSIN A5-11 Richland, WA 99352 Documents Available for Download January 23, 2012 EIS-0467: Notice of Intent to Prepare an Environmental Impact Statement and

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EMAT based inspection of natural gas pipelines for SSC cracks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EMAT-Based Inspection of Natural Gas EMAT-Based Inspection of Natural Gas Pipelines for Stress Corrosion Cracks FY2004 Report Venugopal K. Varma, Raymond W. Tucker, Jr., and Austin P. Albright Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 1 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

242

,"U.S. Intrastate Natural Gas Pipeline Systems"  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Systems" Intrastate Natural Gas Pipeline Systems" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Intratstate Natural Gas Pipelines By Region",1,"Periodic",2007 ,"Release Date:","application/vnd.ms-excel" ,"Next Release Date:","application/vnd.ms-excel" ,"Source:","Energy Information Administration" ,"Excel File Name:","PipeIntra.xls" ,"Available from Web Page:","http://www.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/intrastate.html" ,"For Help, Contact:","infoctr@eia.doe.gov"

243

Pipeline Annual Data - 1997 Gas Distribution Annuals Data (Zip) | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Gas Distribution Annuals Data (Zip) 7 Gas Distribution Annuals Data (Zip) Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Pipeline Annual Data - 1997 Gas Distribution Annuals Data (Zip) Dataset Summary Description Pipeline operators (for gas distribution, gas transmission, and hazardous liquid pipelines) are required to submit an annual report to the Pipeline and Hazardous Materials Safety Administration's Office of Pipeline Safety. The report includes information about the operator, a description of their system (main, services), leaks eliminated/repaired during the year, excavation damage, excess flow valves, and other information. Beginning in 2010, the form also includes information regarding integrity management programs.

244

Price of U.S. Natural Gas Pipeline Exports to Canada (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Date: 12312014 Next Release Date: 1302015 Referring Pages: U.S. Natural Gas Exports by Country U.S. Price of Natural Gas Pipeline Exports by Point of Exit U.S. LNG Imports from...

245

Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Date: 10312014 Next Release Date: 11282014 Referring Pages: U.S. Natural Gas Imports by Country U.S. Price of Natural Gas Pipeline Imports by Point of Entry U.S. LNG Imports...

246

EIA - Natural Gas Pipeline Network - Regional/State Underground Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Regional/State Underground Natural Gas Storage Table Regional/State Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Underground Natural Gas Storage, Close of 2007 Depleted-Reservoir Storage Aquifer Storage Salt-Cavern Storage Total Region/ State # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) Central Region Colorado 8 42 1,088 0 0 0 0 0 0 8 42 1,088 Iowa 0 0 0 4 77 1,060 0 0 0 4 77 1,060

247

Blending Hydrogen into Natural Gas Pipeline Networks: A Review...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

applied repair procedures have been investigated to determine if they can be used for pipeline repair under hydrogen service. The focus was on the pipeline load and the effect...

248

2014-11-20 Issuance: Energy Conservation Program for Commercial and Industrial Natural Gas Compressors; NOPM  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for commercial and industrial natural gas compressors, as issued by the Deputy Assistant Secretary for Energy Efficiency and Renewable Energy on November 20, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

249

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2007  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Information Administration, Office of Oil and Gas, July 2008 1 U.S. natural gas pipeline construction activity accelerated in 2007 with capacity additions to the grid totaling nearly 14.9 billion cubic feet (Bcf) of daily deliverability (Figure 1). These additions were the largest of any year in the Energy Information Administration's (EIA) 10-year database of pipeline construction activity. The increased level of natural gas pipeline construction activity in 2007 conformed to a growth trend that began slowly in 2005 and intensified in 2006. In 2007, about 1,700 miles of pipeline were installed, which was greater than in any year since 2003 (Figure 2). The expansion cycle for natural gas pipeline construction is occurring at the same time as the development of the

250

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2007  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration, Office of Oil and Gas, July 2008 1 U.S. natural gas pipeline construction activity accelerated in 2007 with capacity additions to the grid totaling nearly 14.9 billion cubic feet (Bcf) of daily deliverability (Figure 1). These additions were the largest of any year in the Energy Information Administration's (EIA) 10-year database of pipeline construction activity. The increased level of natural gas pipeline construction activity in 2007 conformed to a growth trend that began slowly in 2005 and intensified in 2006. In 2007, about 1,700 miles of pipeline were installed, which was greater than in any year since 2003 (Figure 2). The expansion cycle for natural gas pipeline construction is occurring at the same time as the development of the

251

CFD modeling of a gas turbine combustor from compressor exit to turbine inlet  

SciTech Connect (OSTI)

Gas turbine combustor CFD modeling has become an important combustor design tool in the past few years, but CFD models are generally limited to the flow field inside the combustor liner at the diffuser/combustor annulus region. Although strongly coupled in reality, the two regions have rarely been coupled in CFD modeling. A CFD calculation for a full model combustor from compressor diffuser exit to turbine inlet is described. The coupled model accomplishes the following two main objectives: (1) implicit description of flow splits and flow conditions for openings into the combustor liner, and (2) prediction of liner wall temperatures. Conjugate heat transfer with nonluminous gas radiation (appropriate for lean, low emission combustors) is utilized to predict wall temperatures compared to the conventional approach of predicting only near wall gas temperatures. Remaining difficult issues such as generating the grid, modeling swirler vane passages, and modeling effusion cooling are also discussed.

Crocker, D.S.; Nickolaus, D.; Smith, C.E. [CFD Research Corp., Huntsville, AL (United States)

1999-01-01T23:59:59.000Z

252

Pipeline Annual Data - 1996 Gas Distribution Annuals Data (Zip) | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distribution Annuals Data (Zip) Distribution Annuals Data (Zip) Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Pipeline Annual Data - 1996 Gas Distribution Annuals Data (Zip) Dataset Summary Description Pipeline operators (for gas distribution, gas transmission, and hazardous liquid pipelines) are required to submit an annual report to the Pipeline and Hazardous Materials Safety Administration's Office of Pipeline Safety. The report includes information about the operator, a description of their system (main, services), leaks eliminated/repaired during the year, excavation damage, excess flow valves, and other information. Beginning in 2010, the form also includes information regarding integrity management programs.

253

Supersonic compressor  

DOE Patents [OSTI]

A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2008-02-26T23:59:59.000Z

254

Cogeneration of electricity and refrigeration by work-expanding pipeline gas  

SciTech Connect (OSTI)

The process for the cogeneration of electricity and commercially saleable refrigeration by expanding pressurized pipeline gas with the performance of work is described which comprises: injecting methanol into the pipeline gas; passing the pipeline gas containing the methanol through a turbo-expander coupled to an electrical generator to reduce the pressure of the pipeline gas at least 100 psi but not reducing the pressure enough to drop the temperature of the resulting cold expanded gas below about - 100/sup 0/F; separating aqueous methanol condensate from the cold expanded gas and introducing the condensate into a distillation column for separation into discard water and recycle methanol for injection into the pipeline gas; recovering the saleable refrigeration from the cold expanded gas; adding reboiler heat to the distillation column in an amount required to warm the expanded gas after the recovery of the saleable refrigeration therefrom to a predetermined temperature above 32/sup 0/F; and passing the expanded gas after the recovery of the saleable refrigeration therefrom in heat exchange with methanol vapor rising to the top of the distillation column to condense the methanol vapor so that liquid methanol is obtained partly for reflux in the distillation column and partly for the recycle methanol and simultaneously the expanded gas is warmed to the predetermined temperature above 32/sup 0/F.

Markbreiter, S.J.; Dessanti, D.J.

1987-12-08T23:59:59.000Z

255

,"Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet)",1,"Monthly","72014" ,"Release...

256

,"U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9262014 4:20:00 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N9102US3" "Date","U.S....

257

U.S. Natural Gas Pipeline & Distribution Use (Million Cubic Feet...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Distribution Use (Million Cubic Feet) U.S. Natural Gas Pipeline & Distribution Use (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 76,386 65,770...

258

,"U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9262014 4:19:59 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N9102US3" "Date","U.S....

259

A preliminary investigation of the effects of environmentally assisted cracking on natural gas transmission pipelines  

E-Print Network [OSTI]

Concepts for the development of a model to predict natural gas transmission pipeline lifetime in a corrosive environment are constructed. Primarily, the effects of environmentally assisted cracking (EAC) are explored. Tensile test specimens from a...

Curbo, Jason Wayne

2005-08-29T23:59:59.000Z

260

Composite wrap approved for U.S. gas-pipeline repairs  

SciTech Connect (OSTI)

The US agency that oversees pipeline safety has taken the unusual step of waiving certain natural-gas pipeline maintenance regulations and permitted a group of gas-pipeline operators to perform repairs with a patented composite wrap formerly used only on liquids lines. The waivers ar subject to conditions and to future performance evaluations. The wrap is made of polyester resin reinforced by glass filament. On installation, it is tightly wound and adhesively bonded to damaged pipe. The paper describes the 2 waivers, the development of this new technology, savings, and training required by the Dept. of Transportation.

True, W.R.

1995-10-09T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Resilience-Based design of Natural Gas Pipelines G. P. Cimellaro, O. Villa  

E-Print Network [OSTI]

Resilience-Based design of Natural Gas Pipelines G. P. Cimellaro, O. Villa Department of Structural systems. No models are available in literature to measure the performance of natural gas network of natural or manmade hazard which might lead to the disruption of the system. The gas distribution network

Bruneau, Michel

262

FRICTION FACTOR IN HIGH PRESSURE NATURAL GAS PIPELINES FROM ROUGHNESS MEASUREMENTS  

E-Print Network [OSTI]

FRICTION FACTOR IN HIGH PRESSURE NATURAL GAS PIPELINES FROM ROUGHNESS MEASUREMENTS DETERMINATION DU and Technology, Norway ABSTRACT Pressure drop experiments on natural gas flow at 80 to 120 bar pressure and high of natural gas at typical operating pressures (100-180 bar). At such Reynolds numbers the classical Colebrook

Gudmundsson, Jon Steinar

263

AbstractThe Kern River Gas Transmission pipeline was con-structed in 1991 to supply natural gas to be used in the thermally  

E-Print Network [OSTI]

94 Abstract­The Kern River Gas Transmission pipeline was con- structed in 1991 to supply natural plants were found in the 11 seeded plots. The Kern River Gas Transmission pipeline (KRGT) was constructed California. The pipeline route extended from a point near Opal, Wyoming, through Utah and Nevada to Daggett

264

Expansion and Change on the U.S. Natural Gas Pipeline Network 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 EIA Home > Natural Gas > Natural Gas Analysis Publications Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 Printer-Friendly Version Expansion and Change on the U.S. Natural Gas Pipeline Network - 2002 Text Box: This special report looks at the level of new capacity added to the national natural gas pipeline network in 2002 and the current capability of that network to transport supplies from production areas to U.S. markets. In addition, it examines the amount of additional capacity proposed for development during the next several years and to what degree various proposed projects will improve the deliverability of natural gas to key market areas. Questions or comments on the contents of this article should be directed to James Tobin at james.tobin@eia.doe.gov or (202) 586-4835. james.tobin@eia.doe.gov

265

4271 pipeline [n  

Science Journals Connector (OSTI)

envir. (Long-distance pipe for conveying natural gas, oil, potable water, etc.; specific terms gas pipeline, oil pipeline); s «pipeline» [m] (Conducto destinado al transporte de petróleo o gas a larg...

2010-01-01T23:59:59.000Z

266

Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina)  

Broader source: Energy.gov [DOE]

This legislation confers the rights and privileges of telegraph and telephone companies (S.C. Code 58-9) on pipeline and water companies, and contains several additional provisions pertaining to...

267

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science  

Broader source: Energy.gov [DOE]

Presentation by 04-Adams to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

268

EIA - Natural Gas Imports & Exports/Pipelines Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Imports & Exports / Pipelines Imports & Exports / Pipelines U.S. Imports by Country Prices and volumes (monthly, annual). U.S. Exports by Country Prices and volumes (monthly, annual). U.S. Imports & Exports by State Prices and volumes (annual). U.S. Imports by Point of Entry Prices and volumes (annual). U.S. Exports by Point of Exit Prices and volumes (annual). International & Interstate Movements of Natural Gas Includes International and Interstate receipts, deliveries and net reciepts by State (annual). Natural Gas Weekly Update Analysis of current price, supply, and storage data; and a weather snapshot. Natural Gas Monthly U.S. production, supply, consumption, disposition, storage, imports, exports, and prices. Natural Gas Basics Analysis of Natural Gas Imports/Exports & Pipelines

269

Pipeline Operations Program (Louisiana)  

Broader source: Energy.gov [DOE]

The Pipeline Operations Program regulates the construction, acquisition, abandonment and interconnection of natural gas pipelines, as well as, the transportation and use of natural gas supplies.

270

Electrochemical noise sensors for detection of localized and general corrosion of natural gas transmission pipelines  

SciTech Connect (OSTI)

The U.S. Department of Energy, National Energy Technology Laboratory funded a Natural Gas Infrastructure Reliability program directed at increasing and enhancing research and development activities in topics such as remote leak detection, pipe inspection, and repair technologies and materials. The Albany Research Center (ARC), U.S. Department of Energy was funded to study the use of electrochemical noise sensors for detection of localized and general corrosion of natural gas transmission pipelines. As part of this, ARC entered into a collaborative effort with the corrosion sensor industry to demonstrate the capabilities of commercially available remote corrosion sensors for use with the Nation's Gas Transmission Pipeline Infrastructure needs. The goal of the research was to develop an emerging corrosion sensor technology into a monitor for the type and degree of corrosion occurring at key locations in gas transmission pipelines.

Holcomb, Gordon R.; Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Russell, James H.; Ziomek-Moroz, Margaret

2002-09-01T23:59:59.000Z

271

Sulfide stress cracking of a pipeline weld in sour gas service  

SciTech Connect (OSTI)

A replacement girth weld in a wet, sour gas gathering pipeline failed within 72 hours of start of operation. This paper describes the investigation of this unusual failure, indicates probable causes, and outlines potential changes in repair/replacement practices for wet, sour gas lines.

Szklarz, K.E.

1999-07-01T23:59:59.000Z

272

Analysis of degrees of loading of dust catchers at compressor stations of trunk gas pipelines  

Science Journals Connector (OSTI)

Static and cyclic stresses in areas of welding of dust catcher pipes are analyzed. To determine stresses, strains in the apparatus body in natural conditions were measured and the most loaded areas of the stru...

O. A. Priimak; E. I. Mamaeva; I. M. Rafalovich…

2005-11-01T23:59:59.000Z

273

Detroit, MI Natural Gas Imports by Pipeline from Canada  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

27,220 43,980 44,275 43,690 50,347 50,439 1996-2013 Pipeline Prices 8.37 4.01 4.69 4.26 3.10 4.04...

274

Marysville, MI Natural Gas Imports by Pipeline from Canada  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

8,756 14,925 22,198 41,964 42,866 35,273 1996-2013 Pipeline Prices 7.48 4.85 4.87 4.48 3.18 3.98 1996...

275

,"Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_irp_ygrt-nmx_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_irp_ygrt-nmx_mmcfa.htm" ,"Source:","Energy Information Administration"

276

Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65  

SciTech Connect (OSTI)

The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

Hashemi, S. H. [Department of Mechanical Engineering, University of Birjand, POBOX 97175-376, Birjand (Iran, Islamic Republic of); Mohammadyani, D. [Materials and Energy Research Center (MERC) POBOX 14155-4777, Tehran (Iran, Islamic Republic of)

2011-01-17T23:59:59.000Z

277

Compressors Without Lubrication of Cylinders for Automobile Gas-Filling Stations  

Science Journals Connector (OSTI)

Technical data for nonlubricated compressors built on a new vertical base and characteristics of new self-lubricating antifriction materials (based on fiber-reinforced fluoroplastic and heat-resistant polyamid...

V. P. Zakharenko; I. I. Novikov

278

AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION  

SciTech Connect (OSTI)

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

Jerry Myers

2005-04-15T23:59:59.000Z

279

A version of this appeared in Economic & Political Weekly (1999) XXXIV(18) Natural Gas Imports by South Asia: Pipelines or Pipedreams?  

E-Print Network [OSTI]

A version of this appeared in Economic & Political Weekly (1999) XXXIV(18) Natural Gas Imports by South Asia: Pipelines or Pipedreams? TransAsia Pipeline System (TAPS): A Shared Natural Gas Pipeline situations where there are eager purchasers of natural gas (India and Pakistan), willing suppliers of natural

280

Minimum thickness for circumferential sleeve repair fillet welds in corroded gas pipelines  

Science Journals Connector (OSTI)

The minimum weldable pipe wall thickness for sleeve repair welds is numerically assessed in this work, as a function of pressure during the welding operations of a corroded gas pipeline, according to the approach by Battelle. The minimum weldable thickness is found to increase when the flow rate of the transported gas in the section being repaired increases. Integrity of the repairs is assessed, and alternative measures to momentarily increase the flow in the area of the repair are evaluated.

A.P Cisilino; M.D Chapetti; J.L Otegui

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Pipeline Safety (South Dakota)  

Broader source: Energy.gov [DOE]

The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

282

DC stray current mitigation for natural gas pipeline adjacent to aluminum manufacturing facility  

SciTech Connect (OSTI)

The production of aluminum can produce large dynamic stray currents in the earth surrounding the production plant. When coated pipelines that are not grounded pass through the dynamic stray current area, they can realize failures at accelerated rates, even with traditional cathodic protection systems in operation. This article tracks a coated 20-in. (51-cm) natural gas pipeline installed near an aluminum production facility and the stray current mitigation design installed to overcome the accelerated failure problem. Other types of stray current mitigation have been attempted in this same area without similar success.

Maxwell, J.L.

1999-11-01T23:59:59.000Z

283

Electrochemical Hydrogen Compressor  

SciTech Connect (OSTI)

The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to determine the loss of membrane active sites is recommended. We suspect that the corrosion includes more than simple galvanic mechanisms. The mechanisms involved in this phenomenon are poorly understood. Shunt currents at hydraulic cathode ports were problematic, but are not difficult to cure. In addition to corrosion there is evidence of high component resistivity. This may be due to the deposition of organic compounds, which may be produced electrochemically on the surface of the metal support screens that contact carbon gas diffusion layers (GDLs) or catalyst supports. An investigation of possible electro-organic sythesis mechanisms with emphasis on oxalates formation is warranted. The contaminated cell parts can be placed in an oxidizing atmosphere at high temperature and the weight loss can be observed. This would reveal the existence of organic compounds. Investigation into the effects of conductivity enhancers such as carbon microlayers on supporting carbon paper is also needed. Corrosion solutions should be investigated such as surface passivation of 316 SS parts using nitric acid. Ultra thin silane/siloxane polymer coatings should be tried. These may be especially useful in conjunction with metal felt replacement of carbon paper. A simple cure for the very high, localized corrosion of the anode might be to diffusion bond the metal electrode support screen to bipolar plate. This will insure uniform resistance perpendicular to the plane of the cell and eliminate some of the dependence of the resistance on high stack compression. Alternative materials should be explored. Alternatives to carbon in the cell may be helpful in any context. In particular, alternatives to carbon paper GDLs such as metal felts and alternatives to carbon supports for Pt such as TiC and TiB2 might also be worthwhile and would be helpful to fuel cells as well. Some alternative to the metals we used in the cell, Mo and 316 SS, are potentially useful. These include Al/Mg/Si alloys. Corrosion resistant materials such as Nb and Mo might prove useful as cladding materials that can be hot stamp

David P. Bloomfield; Brian S. MacKenzie

2006-05-01T23:59:59.000Z

284

U.S. Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) U.S. Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.21 1970's 0.21 0.22 0.23 0.25 0.30 0.40 0.51 0.77 0.90 1.32 1980's 1.85 2.39 2.97 3.15 3.04 2.92 2.52 2.17 2.10 2.01 1990's 1.95 1.87 2.07 1.97 1.70 1.49 2.27 2.29 2.01 1.88 2000's 2.97 3.55 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use U.S. Natural Gas Prices

285

Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.16 0.17 1970's 0.17 0.19 0.20 0.22 0.26 0.34 0.52 0.73 0.99 1.17 1980's 1.55 1.89 2.50 2.73 2.71 2.83 2.57 2.75 2.01 2.02 1990's 1.52 1.54 1.71 1.25 1.39 1.40 2.37 2.46 2.06 2.16 2000's 3.17 3.60 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Iowa Natural Gas Prices

286

Hydraulic accumulator-compressor for geopressured enhanced oil recovery  

DOE Patents [OSTI]

A hydraulic accumulator-compressor vessel using geothermal brine under pressure as a piston to compress waste (CO.sub.2 rich) gas is used in a system having a plurality of gas separators in tandem to recover pipeline quality gas from geothermal brine. A first high pressure separator feeds gas to a membrance separator which separates low pressure waste gas from high pressure quality gas. A second separator produces low pressure waste gas. Waste gas from both separators is combined and fed into the vessel through a port at the top as the vessel is drained for another compression cycle. High pressure brine is then admitted into the vessel through a port at the bottom of the vessel. Check valves control the flow of low pressure waste gas into the vessel and high pressure waste gas out of the vessel.

Goldsberry, Fred L. (Spring, TX)

1988-01-01T23:59:59.000Z

287

Development of fiberglass composite systems for natural gas pipeline service. Final report, January 1987-March 1994  

SciTech Connect (OSTI)

Fiberglass composites suitable for use in the repair and reinforcement of natural gas transmission line pipe were developed and evaluated. Three types of composite systems were studied: (1) a nonintrusive system for on-line field of corrosion and mechanical damage, (2) line pipe reinforced with filament wound composite, and (3) low-cost systems suitable for over-the-ditch rehabilitation of long pipeline sections. Effort during this program concentrated on the first two areas. A unique fiberglass/polyester device, called Clock Spring, was developed and successfully tested both as a means of terminating rapidly propagating cracks and for on-line repair of metal loss defects. Composite reinforced pipe was produced and hydrotested, and subsequently installed in an operating pipeline to evaluate its long-term behavior in pipeline service.

Fawley, N.C.

1994-03-01T23:59:59.000Z

288

Energy saving in the process of gas pipeline overhaul.  

E-Print Network [OSTI]

?? The problem of energy saving during overhaul of a linear part of gas trunkline is regarded in this paper. This issue has been analyzed… (more)

Mitrokhin, Alexey

2014-01-01T23:59:59.000Z

289

Full scale experimental analysis of stress states in sleeve repairs of gas pipelines  

Science Journals Connector (OSTI)

This study discusses the experimental determination of stress states in sleeve repairs of underground gas pipelines. Work was done to define the effects of the reduction of pressure during welding, the load and place of positioning clamps, the length of the repair sleeve, and the use of O'ring-based devices to prevent gas leakage. Tests were carried out in reinforcements, welded with internal pressure equal to 60, 80 and 100% of the service pressure. High stresses were generated in tests carried out with short sleeves and O'rings, and occurred once the sleeve was fully welded and the pipeline pressure re-established. Maximum stresses, up to 270 MPa, were generated after about 1 min following closing of venting valves, on tests with artificial gas leaks. From the results of these experimental studies, it is concluded that several operative aspects could be optimised, to minimise the stresses in the reinforcements and to reduce the risk of failures.

M.D Chapetti; J.L Otegui; C Manfredi; C.F Martins

2001-01-01T23:59:59.000Z

290

Phorgotten phenomena: Verifying electrical CP contacts on gas distribution pipelines  

SciTech Connect (OSTI)

Federal and state regulations mandate that gas companies must maintain cathodic protection (CP) throughout distribution systems to protect against corrosion. From time to time, underground contacts occur. Any contact of metal lines depletes CP potentials. Finding and clearing these contacts is time-consuming and costly. Some gas companies report that only one in 10 of these underground contacts are found. The paper describes a method that has maintained a 98% efficiency in clearing underground contacts for the past 10 years for Cascade Natural Gas.

Maxwell, J.L. [Cascade Natural Gas Corp., Seattle, WA (United States)

1999-04-01T23:59:59.000Z

291

New York Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.23 0.25 1970's 0.23 0.25 0.26 0.27 0.31 0.39 0.54 0.85 1.07 1.44 1980's 1.95 2.41 3.15 3.44 3.23 3.15 2.53 2.47 2.33 2.64 1990's 2.59 2.71 2.86 3.15 2.21 1.52 2.23 1.89 1.38 1.31 2000's 2.25 2.94 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use New York Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

292

Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.17 0.17 1970's 0.17 0.18 0.19 0.20 0.28 0.37 0.51 0.68 0.73 1.19 1980's 1.56 2.24 3.09 3.11 2.98 2.80 2.18 2.01 1.98 1.81 1990's 1.74 1.62 1.66 1.82 1.64 1.64 2.40 2.36 2.02 1.99 2000's 2.99 3.13 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Texas Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

293

Ohio Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.23 0.23 1970's 0.23 0.27 0.28 0.30 0.32 0.43 0.53 0.87 1.01 1.37 1980's 1.92 2.33 3.04 3.42 3.28 3.28 2.79 2.64 2.43 2.54 1990's 2.61 2.66 2.83 2.53 2.50 2.03 2.88 2.80 3.20 2.63 2000's 3.41 5.18 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Ohio Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

294

Idaho Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.21 0.22 1970's 0.22 0.24 0.28 0.34 0.44 0.60 0.72 1.65 1.95 2.45 1980's 3.93 3.95 4.19 3.69 3.55 3.15 2.67 2.08 2.00 2.05 1990's 2.06 1.99 1.89 1.76 1.86 1.78 1.79 1.83 1.67 2.04 2000's 3.52 3.49 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Idaho Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

295

Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.21 0.21 1970's 0.21 0.22 0.28 0.29 0.34 0.54 0.67 1.40 1.72 1.88 1980's 2.94 3.17 2.67 2.94 2.99 3.19 2.93 2.66 2.84 2.18 1990's 2.25 2.51 2.25 1.91 1.94 1.57 1.68 2.20 2.05 1.92 2000's 3.19 2.97 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Utah Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

296

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Blending Hydrogen into Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Technical Report NREL/TP-5600-51995 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Prepared under Task No. HT12.2010 Technical Report NREL/TP-5600-51995 March 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

297

U.S. Natural Gas Imports by Pipeline from Mexico  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

298

Geoseismic issues considered for design of the Samalayuca pipeline, El Paso County, Texas  

SciTech Connect (OSTI)

The Samalayuca, Pipeline is a proposed 20-inch-diameter natural gas pipeline extending approximately 21 miles from the Hueco Compressor Station on the El Paso Natural Gas main line to the International Boundary with Mexico near Clint, Texas, about 25 miles southeast of El Paso. The purpose of the project is to supply gas for power generation at a plant south of Cuidad Juarez, Chihuahua, Mexico. Geoseismic issues considered in the design of the Samalayuca Pipeline consisted of surface fault rupture, earthquake-induced landslides, and liquefaction-induced ground displacement.Faults represent two kinds of hazard to pipeline facilities: surface displacement and strong shaking. Earthquake-induced landslides and liquefaction require strong shaking to occur before these processes represent hazards to buried pipelines.

Keaton, J.R. [AGRA Earth and Environmental, Inc., Salt Lake City, UT (United States); Beckwith, G.H. [AGRA Earth and Environmental, Inc., Phoenix, AZ (United States); Medina, O. [El Paso Natural Gas Co., TX (United States)

1995-12-31T23:59:59.000Z

299

Influence of old rectangular repair patches on the burst pressure of a gas pipeline  

Science Journals Connector (OSTI)

Seven full scale hydrostatic burst tests were carried out on pipes extracted from an API 5LX52 gas pipeline that contained rectangular and elliptical fillet welded patches and other repairs of different geometries. All breaks took place after widespread yielding. This analysis shows that the patches that generate greater risks are those that: (1) were attached to the pipeline at very low pressure, (2) were placed to repair large defects, (3) are rectangular, long in the direction of the pipe, and narrow, (4) the quality of the weld is doubtful. Based on data reported by In Line Inspection (ILI), of the four conditions mentioned above, only the third can be assessed in order to quantify risks and to schedule replacements.

Pablo Gabriel Fazzini; José Luis Otegui

2006-01-01T23:59:59.000Z

300

Influence of multiple sleeve repairs on the structural integrity of gas pipelines  

Science Journals Connector (OSTI)

This paper addresses the structural integrity of gas pipelines with multiple full-encirclement weld repairs. The scope of the work is to identify and quantify the effects of the number and type of repairs, the distance between them, and the pressurization of the pipe to sleeve gap on the mechanical behaviour of the component. The study includes full-scale experimental testing and finite element modelling. Burst tests were carried out in tracts of pipelines removed from service, including various geometric configurations with and without circumferential girth welds. It is concluded that the reliability of the repairs is strongly influenced by the construction procedures and that interaction effects between successive repairs are not appreciable if the repairs are more than a half pipe diameter apart.

J.L Otegui; A Cisilino; A.E Rivas; M Chapetti; G Soula

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Program permits fast solution to pipeline loop requirements  

SciTech Connect (OSTI)

A program developed for the HP-41CV hand-held calculator can provide pipeline engineers with a quick and easy means for determining loop requirements on existing gas-transmission pipelines. Adding pipe in parallel to an existing pipeline, referred to as looping, is necessary to insure that with a given flow rate, the gas will arrive at a certain point on the pipeline with a pressure equal to or greater than the minimum required pressure. The automatic loop program calculates loop by first determining the total number of segments which require looping within the section of pipeline being evaluated. A section of pipe is usually the pipeline between compressor stations and is divided into segments by either receipt or delivery points along the pipeline. The number of segments which require looping is found by adding loop to individual segments until the final pressure (i.e., the pressure at the point of interest downstream on the pipeline) is equal to or greater than the specified design pressure.

Bierman, G.D.

1983-10-31T23:59:59.000Z

302

Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.73 0.33 0.39 1970's 0.33 0.38 0.38 0.42 0.41 0.55 0.75 1.67 2.08 2.06 1980's 2.92 4.74 4.53 4.74 4.05 4.53 3.55 2.87 2.20 4.19 1990's 3.74 3.41 2.94 3.31 2.69 2.21 3.35 3.15 3.00 2.53 2000's 4.67 5.20 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Rhode Island Natural Gas Prices

303

North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.27 0.17 0.17 1970's 0.20 0.20 0.25 0.29 0.31 0.51 0.57 0.75 0.95 1.55 1980's 1.81 2.34 4.11 3.80 3.42 2.77 2.56 2.40 2.49 2.03 1990's 1.61 1.35 1.28 1.84 1.34 1.01 1.70 2.07 1.77 2.12 2000's 3.62 2.14 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use North Dakota Natural Gas Prices

304

South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.22 0.20 1970's 0.20 0.20 0.30 0.33 0.31 0.50 0.55 0.63 0.78 1.20 1980's 1.71 2.20 2.91 3.31 3.32 3.46 2.69 2.17 2.05 1.91 1990's 2.13 1.42 1.22 1.80 1.36 1.03 1.75 2.13 1.68 2.12 2000's 3.76 3.28 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use South Dakota Natural Gas Prices

305

West Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) West Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.34 0.33 1970's 0.32 0.33 0.38 0.39 0.45 0.59 0.69 1.12 1.29 0.85 1980's 2.24 2.62 3.35 3.75 3.71 3.85 3.44 2.85 2.89 2.97 1990's 2.86 2.49 2.93 3.57 3.54 1.87 3.19 2.97 2.69 2.54 2000's 3.70 5.42 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use West Virginia Natural Gas Prices

306

New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.15 0.15 1970's 0.17 0.17 0.18 0.22 0.30 0.39 0.41 0.68 0.79 1.36 1980's 1.78 2.25 2.80 3.10 3.24 2.86 2.31 1.66 1.70 1.63 1990's 1.67 1.36 1.31 1.79 1.61 1.13 1.59 1.94 1.89 1.03 2000's 1.80 1.74 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use New Mexico Natural Gas Prices

307

New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.21 0.21 1970's 0.22 0.23 0.24 0.25 0.27 0.33 0.41 0.63 0.85 1.29 1980's 1.96 2.75 3.07 3.37 3.68 3.40 2.94 2.53 2.73 2.74 1990's 2.62 2.48 2.62 2.93 2.66 2.59 3.15 3.11 2.93 1.79 2000's 4.00 4.74 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use New Jersey Natural Gas Prices

308

Design and demonstration of an analysis Information system for magnetic flux leakage inspection of natural gas pipeline. Final letter report  

SciTech Connect (OSTI)

A staff exchange was conducted for the mutual benefit of the Department of Energy, the Gas Research Institute (GRI), Vetco Pipeline Services Inc. (VPSI), and the Pacific Northwest National Laboratory. This staff exchange provided direct exposure by a Laboratory staff member knowledgeable in inspection, integrity assessment, and robotic capabilities of the Laboratory to the needs of the natural gas pipeline industry. The project included an assignment to the GRI Pipeline Simulation Facility (PSF) during the period preceding the commissioning of the flow loop. GRI is interested in exploiting advanced technology at the National Laboratories. To provide a sense of the market impact, it is estimated that $3 billion was spent in 1993 for the repair, renovation, and replacement of distribution piping. GRI has goals of saving the distribution industry $500 million in Operations and Maintenance costs and having an additional $250M savings impact on transmission pipelines. The objectives of the project included: (1) For PNNL staff to present technology to GRI and PSF staff on non- destructive evaluation, robotics, ground penetrating radar, and risk based inspection guidelines for application to the operation and maintenance of natural gas pipelines. (2) For GRI and PSF staff to discuss with PNNL staff opportunities for improving the industrial competitiveness of operation and maintenance services. (3) To explore the basis for partnership with GRI and PSF staff on technology transfer topics. In this project, staff exchanges were conducted to GRI`s Pipeline Simulation Facility and to VPSI. PNNL . staff had access to the $10M GRI Pipeline Simulation Facility (PSF) at West Jefferson, Ohio. The facility has a 4,700-ft. long pipe loop, an NDE laboratory, and a data analysis laboratory. PNNL staff had access to the VPSI`s facility in Houston, TX. VPSI has developed some of the most sophisticated inspection tools currently used in the pipeline inspection industry.

Schuster, G.J.; Saffell, B.A.

1996-10-01T23:59:59.000Z

309

sea pipeline  

Science Journals Connector (OSTI)

sea pipeline, sealine, marine (pipe)line, undersea (pipe)line, submarine (pipe)line, subsea (pipe)line ? Untermeer(es)(rohr)leitung f

2014-08-01T23:59:59.000Z

310

Analysis of efficiency of control of operation conditions of air gas cooling devices at compressor stations  

Science Journals Connector (OSTI)

Based on calculations of energy consumption by air gas cooling devices, an analysis has been made of the efficiency of the methods of control of temperature conditions of the transported gas. Two types of air ...

A. V. Krupnikov; A. D. Vanyashov; I. A. Yanvarev

2010-05-01T23:59:59.000Z

311

The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline  

E-Print Network [OSTI]

;Pipeline Repair Protocol 1 Leak detection and compressor shut down 2 Damage location 3 Excavate pipe 4 hyperbaric repair welding 9 Repair coating 10 Recommission pipeline North Atlantic Pipeline Partners, L of Presentation #12;PIPELINE PIPELINE FAILURE, CRACK, BUCKLE ETC. REPAIR OF A DAMAGED SECTION OF PIPELINE AT 250 m

Bruneau, Steve

312

Evalutation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service  

Broader source: Energy.gov [DOE]

Objectives: To assist DOE-EE in evaluating the feasibility of using the existing natural gas transmission and distribution piping network for hydrogen/mixed gas delivery

313

Semi-active compressor valve  

DOE Patents [OSTI]

A method and system for fine-tuning the motion of suction or discharge valves associated with cylinders of a reciprocating gas compressor, such as the large compressors used for natural gas transmission. The valve's primary driving force is conventional, but the valve also uses an electromagnetic coil to sense position of the plate (or other plugging element) and to provide an opposing force prior to impact.

Brun, Klaus (Helotes, TX); Gernentz, Ryan S. (San Antonio, TX)

2010-07-27T23:59:59.000Z

314

Standing wave compressor  

DOE Patents [OSTI]

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

315

Natural Gas Weekly Update, Printer-Friendly Version  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

line by May 2003, will utilize six existing compressor stations and three new compressor stations. FERC expects that the new pipeline will allow local distribution companies to...

316

Pipeline Safety Rule (Tennessee)  

Broader source: Energy.gov [DOE]

The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

317

Demonstration of Natural Gas Engine Driven Air Compressor Technology at Department of Defense Industrial Facilities  

E-Print Network [OSTI]

are offset by differences in prevailing utility rates, efficiencies of partial load operation, reductions in peak demand, heat recovery, and avoiding the cost of back-up generators. Natural gas, a clean-burning fuel, is abundant and readily available...

Lin, M.; Aylor, S. W.; Van Ormer, H.

318

Wax formation assessment of condensate in South Pars gas processing plant sea pipeline (a case study)  

Science Journals Connector (OSTI)

The wax deposition from the gas condensate in South Pars gas processing plant causes a number of severe problems. These problems include: (1) deposits form on the reboiler tubes of stabilizer column and tend to reduce its duty (2) forcing periodic shut-down and removal of deposits (3) interrupting normal processing operations. An understanding of deposition, nature and propensity is necessary to mitigate the mentioned problems. In this work, the multi solid phase model is used to predict the wax precipitation from gas condensate fluid. For five different reservoir fluids, several methods were investigated to split the heavy hydrocarbon fraction into pseudo fractions. The results show that the Al-Meshari method is the most accurate one. Also, a set of consistent correlations were used to calculate the critical points, fusion properties and the acentric factor of the single carbon number groups in the extended composition. Finally the best methods for predicting the wax formation are selected and used to predict the wax formation in the sea line of South Pars gas processing plant. The modeling shows that wax precipitation starts at 293 K and 86 bar. At this pressure and temperature the pipeline is 94 km away from the wellhead.

M.R. Rahimpour; M. Davoudi; S.M. Jokar; I. Khoramdel; A. Shariati; M.R. Dehnavi

2013-01-01T23:59:59.000Z

319

Fatigue crack retardation by the application of repair coatings to gas pipelines under pressure  

Science Journals Connector (OSTI)

We describe additional capabilities of the repair insulation coatings applied to main pipelines (without taking them out of operation) in increasing the durability of these pipelines. As a specific feature of thi...

T. P. Venhrynyuk

2013-05-01T23:59:59.000Z

320

Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

Melaina, M. W.

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Pipeline bottoming cycle study. Final report  

SciTech Connect (OSTI)

The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle working fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.

Not Available

1980-06-01T23:59:59.000Z

322

Control of residual stresses in tests of technological processes of producing compressor blades for gas turbine engines  

Science Journals Connector (OSTI)

The article describes experience with inducing and controlling residual surface stresses in compressor blades made of titanium alloys. It was established that these stresses have a substantial effect on the fa...

V. A. Boguslaev

1991-03-01T23:59:59.000Z

323

Structure and Parameters Optimization of Organic Rankine Cycle System for Natural Gas Compressor Exhaust Gas Energy Recovery  

Science Journals Connector (OSTI)

In the paper, the structure and working principle of free piston based organic rankine cycle (ORC) exhaust gas energy recovery system...

Yongqiang Han; Zhongchang Liu; Yun Xu…

2013-01-01T23:59:59.000Z

324

Minimum separation distances for natural gas pipeline and boilers in the 300 area, Hanford Site  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is proposing actions to reduce energy expenditures and improve energy system reliability at the 300 Area of the Hanford Site. These actions include replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing a new natural gas distribution system to provide a fuel source for many of these units, and constructing a central control building to operate and maintain the system. The individual heating units will include steam boilers that are to be housed in individual annex buildings located at some distance away from nearby 300 Area nuclear facilities. This analysis develops the basis for siting the package boilers and natural gas distribution systems to be used to supply steam to 300 Area nuclear facilities. The effects of four potential fire and explosion scenarios involving the boiler and natural gas pipeline were quantified to determine minimum separation distances that would reduce the risks to nearby nuclear facilities. The resulting minimum separation distances are shown in Table ES.1.

Daling, P.M.; Graham, T.M.

1997-08-01T23:59:59.000Z

325

Centrifugal Compressors  

SciTech Connect (OSTI)

The article discusses small high speed centrifugal compressors. This topic was covered in a previous ASHRAE Journal column (2003). This article reviews another configuration which has become an established product. The operation, energy savings and market potential of this offering are addressed as well.

Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

2013-02-06T23:59:59.000Z

326

Consider multishaft compressors for hazardous applications  

SciTech Connect (OSTI)

API specifies two types of centrifugal compressors: single-shaft (inline) and integrally geared. The latter are mainly air compressors, and API 672, which specifies the design, manufacturing and testing of these compressors, recommends that they may be used for gas services other than air that are nonhazardous and non-toxic. These compressors offer high efficiency, high control range, lower mechanical losses, lower investment and extremely compact design. Advances in gear making technology and design make API 672 compressors highly competitive in certain applications. The single-shaft compressor is used for general refinery services, is governed by API 617, and applicable for air or gas. There is no restriction on the type of gas. Therefore, this compressor is universally applicable for any gas--hazardous or nonhazardous. A large variety of integrally-geared multishaft compressors are available with respect to the number of stages, type of gas, type of drive and pressure range. These compressors have enormous range in terms of volumetric flows, pressure ratios, allowable inlet and discharge pressures, and attainable drive speeds. API 672 compressors find large applications in process, plant and instrument air service, air separation plants, etc. Apart from air, the gases handled by API 672 compressors had been for other nonhazardous applications such as nitrogen, steam, etc. Contrary to API 672 stipulations, multishaft compressors have been used for along time in hazardous applications like refinery offgas, CH{sub 4}, oxygen, or mixtures of NH{sub 3} and CO{sub 2}, CO, HCN, etc., or even dry chlorine.

Roy, G.K. [Pt. Indo-Rama Synthetics, West Java (Indonesia)

1997-07-01T23:59:59.000Z

327

Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions  

Science Journals Connector (OSTI)

...Quantification of undersea gas leaks from carbon capture and storage facilities, from...importance of leak detection from carbon capture and storage facilities and the...pipelines or leaks from facilities for carbon capture and storage) have the advantage...

2012-01-01T23:59:59.000Z

328

Compression station key to Texas pipeline project  

SciTech Connect (OSTI)

This was probably the largest pipeline project in the US last year, and the largest in Texas in the last decade. The new compressor station is a key element in this project. TECO, its servicing dealer, and compression packager worked closely throughout the planning and installation stages of the project. To handle the amount of gas required, TECO selected the GEMINI F604-1 compressor, a four-throw, single-stage unit with a six-inch stroke manufactured by Weatherford Enterra Compression Co. (WECC) in Corpus Christi, TX. TECO also chose WECC to package the compressors. Responsibility for ongoing support of the units will be shared among TECO, the service dealer and the packager. TECO is sending people to be trained by WECC, and because the G3600 family of engines is still relatively new, both the Caterpillar dealer and WECC sent people for advanced training at Caterpillar facilities in Peoria, IL. As part of its service commitment to TECO, the servicing dealer drew up a detailed product support plan, encompassing these five concerns: Training, tooling; parts support; service support; and commissioning.

NONE

1996-10-01T23:59:59.000Z

329

Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K. Steiglitz; D. J. Kleitman  

E-Print Network [OSTI]

Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K@jstor.org. http://www.jstor.org Mon Oct 22 13:48:01 2007 #12;OPTIMAL DESIGN OF OFFSHORE NATURAL-GAS PIPELINEAnolog,tj, Cambridge, Massachusetts (Received January 28, 1969) The exploitation of offshore natural gas reserves

Steiglitz, Kenneth

330

Application of adhesive materials for the repair of acting gas pipelines  

Science Journals Connector (OSTI)

The materials and equipment developed to eliminate damage in the pipelines that transmit hydro-carbons are presented. The ... adhesive materials and processing methods used in the repairs are described.

V. S. Smirnov; N. N. Parakhina; A. F. Murokh…

2010-04-01T23:59:59.000Z

331

Application of mechanical and electrical equipment in a natural gas processing plant  

SciTech Connect (OSTI)

In 1984 the Northwest Pipeline Corporation purchased and installed equipment for their Ignacio, Colorado, gas processing plant to extract ethane and heavier hydrocarbons from the gas arriving at their pipeline system from various natural gas producing sources. In addition to the basic turbo-expander required to achieve the very low gas temperatures in the process, the equipment includes gas turbine driven compressors, heat recovery steam generators, and a steam turbine driven electric power generator. This paper reviews the process itself, the various mechanical and electrical equipment involved, and some of the control system utilized to tie it all together.

Lang, R.P.; Mc Cullough, B.B.

1987-01-01T23:59:59.000Z

332

Electrochemical Noise Sensors for Detection of Localized and General Corrosion of Natural Gas Transmission Pipelines. Final Report for the Period July 2001-October 2002  

SciTech Connect (OSTI)

The U.S. Department of Energy, National Energy Technology Laboratory funded a Natural Gas Infrastructure Reliability program directed at increasing and enhancing research and development activities in topics such as remote leak detection, pipe inspection, and repair technologies and materials. The Albany Research Center (ARC), U.S. Department of Energy was funded to study the use of electrochemical noise sensors for detection of localized and general corrosion of natural gas transmission pipelines. As part of this, ARC entered into a collaborative effort with the corrosion sensor industry to demonstrate the capabilities of commercially available remote corrosion sensors for use with the Nation's Gas Transmission Pipeline Infrastructure needs. The goal of the research was to develop an emerging corrosion sensor technology into a monitor for the type and degree of corrosion occurring at key locations in gas transmission pipelines.

Bullard, Sophie J.; Covino, Jr., Bernard S.; Russell, James H.; Holcomb, Gordon R.; Cramer, Stephen D.; Ziomek-Moroz, Margaret

2002-12-01T23:59:59.000Z

333

6 - Pipeline Drying  

Science Journals Connector (OSTI)

Publisher Summary This chapter reviews pipeline dewatering, cleaning, and drying. Dewatering can be a simple process or, if the procedure is not properly planned, a difficult one. Pipelines used to transport crude oil and/or refined products will probably only require removal of the test water before the line is placed in service. If the pipeline will be used to transport materials that must meet a specified dryness requirement, the pipeline will need to be dewatered, cleaned, and dried. Pipelines used to transport natural gas will need some drying, depending on the operating pressure and the location of the line, to prevent the formation of hydrates. Other pipelines may require drying to protect the pipe from internal corrosion caused by the formation of corrosive acids, such as carbonic acid in the case of carbon dioxide pipelines.

2014-01-01T23:59:59.000Z

334

,"South Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_ssc_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_ssc_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

335

,"North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snc_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snc_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

336

,"New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snh_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snh_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

337

,"North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snd_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snd_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

338

,"New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_sny_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_sny_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

339

,"West Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_swv_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_swv_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

340

,"New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snm_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snm_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snj_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snj_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

342

,"Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico (Dollars per Thousand Cubic Feet)" Mexico (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9102mx3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9102mx3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

343

,"South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_ssd_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_ssd_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

344

Separating equipment for protecting field booster compressor stations  

Science Journals Connector (OSTI)

Possible alternatives of locating a gas separating unit in layouts of plants for preparing gas for transporting and for field booster compressor stations (BCS) are examined. Designs of a gas cleaning unit of the ...

B. S. Palei; V. A. Tolstov; A. P. Romashov…

2013-09-01T23:59:59.000Z

345

High-resolution diffraction for residual stress determination in the NiCrMoV wheel of an axial compressor for a heavy-duty gas turbine  

Science Journals Connector (OSTI)

The wheel of an axial compressor for a heavy-duty gas turbine has been investigated for residual stresses (RS) evaluation of the teeth-section where SANS measurements have previously been performed. Such a component can contain internal RS, either due to the manufacturing process, or to the operating cycles fatigue. The constitutive material is a NiCrMoV steel to ASTM A 471 (type 2) norms (equivalent to B50A420B10); this material is usually adopted in the manufacturing of forged components for gas turbines. Internal radial and hoop RS have been determined, whose values are under the limit of 200 kPa. Hoop RS, in general, resulted in higher value than the radial ones. The present experiment represents a particularly important step in the RS determination for gas turbine components, since the measurements reveal that the fatigue of the wheel is also a lifetime limiting factor although, in the same technological field, the available data in the actual neutron techniques literature mainly concern turbine buckets.

M Rogante; G Török; G.F Ceschini; L Tognarelli; I Füzesy; L Rosta

2004-01-01T23:59:59.000Z

346

Historical pipeline construction cost analysis  

Science Journals Connector (OSTI)

This study aims to provide a reference for the pipeline construction cost, by analysing individual pipeline cost components with historical pipeline cost data. Cost data of 412 pipelines recorded between 1992 and 2008 in the Oil and Gas Journal are collected and adjusted to 2008 dollars with the chemical engineering plant cost index (CEPCI). The distribution and share of these 412 pipeline cost components are assessed based on pipeline diameter, pipeline length, pipeline capacity, the year of completion, locations of pipelines. The share of material and labour cost dominates the pipeline construction cost, which is about 71% of the total cost. In addition, the learning curve analysis is conducted to attain learning rate with respect to pipeline material and labour costs for different groups. Results show that learning rate and construction cost are varied by pipeline diameters, pipeline lengths, locations of pipelines and other factors. This study also investigates the causes of pipeline construction cost differences among different groups. [Received: October 13, 2010; Accepted: December 20, 2010

Zhenhua Rui; Paul A. Metz; Doug B. Reynolds; Gang Chen; Xiyu Zhou

2011-01-01T23:59:59.000Z

347

BP and Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BP and Hydrogen Pipelines BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P. Yoho, P.E. i l i * Green corporate philosophy and senior management commitment * Reduced greenhouse gas emissions nine years ahead of target * Alternatives to oil are a big part of BP' including natural gas, LNG, solar and hydrogen * Hydrogen Bus Project won Australia' prestigious environmental award * UK partnership opened the first hydrogen demonstration refueling station * Two hydrogen pipelines in Houston area BP Env ronmenta Comm tment s portfolio, s most BP' * li l " li i i * i l pl i i * Li l li l * " i i l i 2 i i ll i i l pl ifi i * 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand new 12 ne s act ve Connect Houston area chem ca ant w th a ref nery nes come off a p

348

water pipeline gallery  

Science Journals Connector (OSTI)

water pipeline gallery, water pipeline drift; water pipeline tunnel (US) ? Wasserleitungsrohrstollen m

2014-08-01T23:59:59.000Z

349

Oil cooled, hermetic refrigerant compressor  

DOE Patents [OSTI]

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

1985-01-01T23:59:59.000Z

350

Oil cooled, hermetic refrigerant compressor  

DOE Patents [OSTI]

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

English, W.A.; Young, R.R.

1985-05-14T23:59:59.000Z

351

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: two with composite liners and two without.

Robin Gordon; Bill Bruce; Nancy Porter; Mike Sullivan; Chris Neary

2003-05-01T23:59:59.000Z

352

Apparatus for the liquefaction of a gas and methods relating to same  

DOE Patents [OSTI]

Apparatuses and methods are provided for producing liquefied gas, such as liquefied natural gas. In one embodiment, a liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream may be sequentially pass through a compressor and an expander. The process stream may also pass through a compressor. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. A portion of the liquid gas may be used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line.

Turner, Terry D. (Idaho Falls, ID) [Idaho Falls, ID; Wilding, Bruce M. (Idaho Falls, ID) [Idaho Falls, ID; McKellar, Michael G. (Idaho Falls, ID) [Idaho Falls, ID

2009-12-29T23:59:59.000Z

353

VNG's Hampton Roads Pipeline Crossing  

Broader source: Energy.gov (indexed) [DOE]

VNG's Hampton Roads Pipeline Crossing VNG's Hampton Roads Pipeline Crossing FUPWG Conference Fall 2008 Williamsburg, Virginia Connection to DTI at Quantico Columbia Limitations South Hampton Roads served by a single pipeline Southside dependent on back up systems LNG Propane/air Two supply sources to VNG What if we connected pipelines? It would take Two Water Crossings Two Compressor Stations Construction in densely populated cities It could Deliver over 200,000 Dth of incremental supply Serve VNG, Columbia and Dominion customers ...we would get... Hampton Roads Crossing - HRX Hampton / Newport News Craney Island Norfolk 21 miles of 24" pipe 7 miles in Hampton/Newport News 4 miles in Norfolk 10 miles of water and island crossing 4 mile harbor crossing 4.5 miles on Craney

354

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline...

355

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

356

Chapter 9 - Pipeline Insulation  

Science Journals Connector (OSTI)

Oilfield pipelines are insulated mainly to conserve heat. The need to keep the product in the pipeline at a temperature higher than the ambient could exist for the following reasons: preventing the formation of gas hydrates, preventing the formation of wax or asphaltenes, enhancing the product flow properties, increasing the cooldown time after shutting down, and meeting other operational/process equipment requirements. On the other hand, in liquefied gas pipelines, such as LNG, insulation is required to maintain the cold temperature of the gas to keep it in a liquid state. This chapter describes the commonly used insulation materials, insulation finish on pipes, and general requirements for insulation of offshore and deepwater pipelines.

Boyun Guo; Shanhong Song; Ali Ghalambor; Tian Ran Lin

2014-01-01T23:59:59.000Z

357

Electric drive systems in compressor stations with stochastic perturbations  

Science Journals Connector (OSTI)

Electric-drive operation in compressor stations for gas-transport systems is considered. Principles of organization ... proposed, so as to ensure that the gas-pumping equipment and the systems for air cooling of ...

O. V. Kryukov

2013-03-01T23:59:59.000Z

358

STEADY STATE FLOW STUDIES OF SECTIONS IN NATURAL GAS PIPELINE NETWORKS.  

E-Print Network [OSTI]

??Efficient transportation of natural gas is vital to the success of the economy of the US and the world, because of the various uses of… (more)

Ken-Worgu, Kenneth

2008-01-01T23:59:59.000Z

359

Comparison of revegetation of a gas pipeline right-of-way in two forested wetland crossings involving conventional methods of pipeline installation and horizontal drilling, Nassau County, Florida  

SciTech Connect (OSTI)

One year after pipeline installation, vegetation in the right-of-way (ROW) was inventoried at two stream floodplain crossings in Nassau County, Florida. Both sites were forested wetlands composed of Acer rubrum, Fraxinus caroliniana, Liquidamber styraciflua, Nyssa ogecho, Quercus laurifolia, and Taxodium distichum, together with other wetland trees. Pipeline installation across the Brandy Branch floodplain was by conventional ditching and backfill methods. Installation across the Deep Creek floodplain was by horizontal drilling after clearcutting the ROW. The latter method left tree stumps, understory vegetation, and soil layers intact, except for disruptions caused by logging. According to the inventory, vegetation at the drilled site was more diverse (nearly twice as many species occurring in the ROW as at the trenched site) and more robust (no unvegetated exposed soil compared to 15% at the trenched site). Differences between the ROW vegetation at the two sites can be attributed to both site differences and installation technologies used.

Van Dyke, G.D. [Trinity Christian Coll., Palos Heights, IL (United States). Dept. of Biology; Shem, L.M.; Zimmerman, R.E. [Argonne National Lab., IL (United States)

1993-10-01T23:59:59.000Z

360

Pipeline Safety (Pennsylvania) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility Industrial Municipal/Public Utility Rural Electric Cooperative Program Info State Pennsylvania Program Type Safety and Operational Guidelines Provider Pennsylvania Public Utilities Commission The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities engaged in the transportation of natural gas and other gas by pipeline. The Commission is authorized to enforce federal safety standards as an agent for the U.S. Department of Transportation's Office of Pipeline Safety. The safety standards apply to the design, installation, operation,

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Variable trim compressor – a new approach to variable compressor geometry  

Science Journals Connector (OSTI)

ABSTRACT Variable compressor geometry can be employed irrespective of the combustion process selected. It provides the capability of improving response behavior, reducing fuel consumption or cutting exhaust emissions from exhaust-gas turbocharged engines. Previous concepts on variable compressor geometries have been based on using inlet guide vanes to impart a swirl motion to the air that is fed to the compressor with the ultimate aim of enhancing the angle at which the flow of air enters the blade channel. This paper shows an inlet guide configuration that is based on a different operating principle. The inlet guide assembly shown here is designed in a way that minimizes any pressure losses even at high flow rates. Numerical studies were carried out using CFD to test the system's sensitivity. Based on these studies, a rigid conical element was then produced and the potential for increasing efficiency (up to 7% points) and shifting the surge line (up to 33%) verified on a turbocharger test bench. Finally, a design configuration is presented for a variable system.

P. Grigoriadis; S. Müller; A. Benz; M. Sens

2012-01-01T23:59:59.000Z

362

Accuracy improved with analysis of pulsation effects at gas-pipeline metering facilities  

SciTech Connect (OSTI)

Results of recent research have provided means for diagnosing and controlling systems effects - pulsations and other adverse flow conditions at natural-gas metering sites. In recent years both in the U.S. and in the European Economic Community, several programs have been concerned with improving orifice coefficient data. Programs sponsored by the Gas Research Institute (GRI), the American Petroleum Institute (API), and the American Gas Association (AGA) at the National Bureau of Standards (NBS) facilities at Gaithersburg, MD., and Boulder, Colo., and at the Colorado Engineering Experiment Station are notable examples of this work. Parallel test work in the U.K. at British Gas and National Engineering Labs, at Gasunie in The Netherlands; and at Gaz de France have included round-robin comparison testing of a few standardized orifice sizes. In all cases, the primary objective has been substantially to extend the orifice data base, to reduce data scatter, and to define the seriousness of ''facility bias'' effects which appear to be inherent in the various individual test facilities.

Sparks, C.R.; McKee, R.J.

1986-12-08T23:59:59.000Z

363

Gas Turbine Plants  

Science Journals Connector (OSTI)

In a cycle process of a gas turbine, the compressor load, as well as ... from the expansion of the hot pressurized flue gas. Either turbine, compressor and driven assembly are joined by ... shaft is thus divided,...

1992-01-01T23:59:59.000Z

364

Pipelines (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pipelines (Minnesota) Pipelines (Minnesota) Pipelines (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates pipelines that are used to carry natural or synthetic gas at a pressure of more than 90 pounds per square inch, along with pipelines used to carry petroleum products and coal. Special rules apply to pipelines used to carry natural gas at a pressure of more than 125

365

Danfoss Commercial Compressors October 2013 | 2 Inverter compressors  

E-Print Network [OSTI]

#12;Danfoss Commercial Compressors October 2013 | 2 Inverter compressors Geothermal energy taps to improve heat pump efficiency : compressor technology focus Efficiency boost in Ground Source Heat Pump-sized or require additional electrical heaters #12;Danfoss Commercial Compressors October 2013 | 6 What difference

Oak Ridge National Laboratory

366

Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal  

SciTech Connect (OSTI)

This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

Eric P. Robertson

2007-09-01T23:59:59.000Z

367

CFD evaluation of pipeline gas stratification at low fluid flow due to temperature effects  

E-Print Network [OSTI]

variance in chord averaged velocities is apparent at these conditions. CFD analysis was performed. Low flow velocities of 0.1524 m/sec, 0.3048 m/sec and 0.6096 m/sec and temperature differences of 5.5 o K, 13.8 o K and 27.7 o K were considered. When... with gas velocity below 0.6096 m/sec. v DEDICATION To my family for their love and support. vi ACKNOWLEDGMENTS I would like to express my gratitude to Dr. Gerald Morrison for his valuable guidance and support. I...

Brar, Pardeep Singh

2005-02-17T23:59:59.000Z

368

Hydrogen Pipeline Discussion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

369

Pipeline transportation and underground storage are vital and...  

U.S. Energy Information Administration (EIA) Indexed Site

Administration, Office of Oil and Gas, September 2004 16 Figure 12. Typical Natural Gas Pipeline Construction Process Source: Courtesy of Gulfstream Natural Gas System LLC...

370

Analysis and optimization of gas pipeline networks and surface production facilities for the Waskom Field--Harrison County, Texas  

E-Print Network [OSTI]

capabilities than it requires. A simulation was performed where by the rental compressor in the Reuben Pierce lease was removed. The computer simulation showed that we can lower the last line pressure to 200 psig from 450 psig (which the operator...

Pang, Jason Ui-Yong

1995-01-01T23:59:59.000Z

371

Transition length in turbine/compressor blade flows  

Science Journals Connector (OSTI)

...with compressor/turbine blades. The computation...governs the spike development in central cycles...characteristic of gas turbine blades in the course...preliminary design strategy. The theoretical...pursue the nonlinear development of the emitted...

2006-01-01T23:59:59.000Z

372

High performance computing of compressor rotating stall and stall control  

Science Journals Connector (OSTI)

The performance of gas turbine engines is limited by compressor stall. Stall control technologies developed recently have demonstrated the effectiveness of steady tip injection to increase the stable operating range of high-speed axial and centrifugal ...

Jen-Ping Chen; Robert S. Webster; Michael D. Hathaway; Gregory P. Herrick; Gary J. Skoch

2009-01-01T23:59:59.000Z

373

Anaesthetic machine pipeline inlet pressure gauges do not always measure pipeline pressure  

Science Journals Connector (OSTI)

Some anaesthetic gas machines have pipeline inlet pressure gauges which indicate the higher of either pipeline pressure, or machine circuit pressure (the ... specific circumstances lead to a delayed appreciation ...

Douglas B. Craig; John Longmuir

1980-09-01T23:59:59.000Z

374

diamond pipeline  

Science Journals Connector (OSTI)

the various steps through, which a diamond passes from production to marketing not including the end consumer. Also called diamond chain , pipeline ...

2009-01-01T23:59:59.000Z

375

Intrastate Pipeline Safety (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the commissioner of public safety the

376

Span-Wise Mixing in a Multi-Stage Compressor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SPAN-WISE MIXING IN A MULTI-STAGE COMPRESSOR SPAN-WISE MIXING IN A MULTI-STAGE COMPRESSOR Penn State Bud Lakshminarayana (Cengiz Camci) #036 * Phenomena that have eluded gas turbine designers include the effects of rotor-stator interactions and the physics of mixing of velocity, pressure, temperature and velocity fields. * Compressor tests were conducted in a three stage compressor where deterministic unsteadiness and random fluctuations causing spanwise mixing are realistically replicated . This provided valuable information on rotor stator interaction effects and the nature of the unsteadiness. * Multi-stage compressor energy efficiency improvements are only possible by careful implementation of spanwise mixing models into modern CFD codes (Computational Fluid Dynamics) . *This investigation provided results that are extremely helpful in improving computer

377

Environmental Assessment for the Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico  

Broader source: Energy.gov (indexed) [DOE]

9 9 Environmental Assessment for the Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico July 24, 2002 Department of Energy National Nuclear Security Administration Office of Los Alamos Site Operations Proposed Pipeline Easement Environmental Assessment DOE OLASO July 24, 2002 iii CONTENTS ACRONYMS AND TERMS................................................................................................................vii EXECUTIVE SUMMARY...................................................................................................................ix 1.0 PURPOSE AND NEED................................................................................................................1

378

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Permeability and Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J.G. Blencoe*, S. Babu*, and P. S. Korinko** * Oak Ridge National Laboratory * Savannah River National Laboratory August 30, 2005 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Partners and Collaborators * Oak Ridge National Laboratory - Project lead * Savannah River National Laboratory - Low H 2 pressure permeation test * Edison Welding Institute - Pipeline materials * Lincoln Electric Company - Welding electrode and weld materials for pipelines * Trans Canada - Commercial welding of pipelines and industry expectations * DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use

379

Advanced stimulation technology deployment program, Williston Basin Interstate Pipeline Company, Eagle Gas Sands, Cedar Creek Anticline, Southeastern Montana. Topical report, August-December 1996  

SciTech Connect (OSTI)

In 1996, Williston Basin Interstate Pipeline Company (WBI) implemented an AST pilot program to improve production from wells completed in the Eagle formation along the Cedar Creek Anticline in southeastern Montana. Extensive pre- and post-fracture Absolute Open Flow Testing was used to evaluate the benefits of stimulation. Additional, gas production doubled when compared to direct offsets completed in previous years. This report summarizes the documentation of AST methodologies applied by WBI to an infill drilling program in the Eagle formation along the Cedar Creek Anticline.

Green, T.W.; Zander, D.M.; Bessler, M.R.

1997-02-01T23:59:59.000Z

380

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network [OSTI]

Natural Gas Pipelines Hydrogen embrittlement What is the relevance to hydrogen pipelines? ORNL researchHydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Savings for Centrifugal Compressors  

E-Print Network [OSTI]

Current design improvements of both the rotating and stationary aerodynamic components of centrifugal compressors can greatly increase the efficiency of vintage machines. A centrifugal compressor built in the 1970's or 1980's might have an external...

Fisher, D.

2011-01-01T23:59:59.000Z

382

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31...

383

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Pipping of GH2 Pipeline....

384

Compressor surge counter  

DOE Patents [OSTI]

A surge counter for a rotating compressor is provided which detects surging by monitoring the vibration signal from an accelerometer mounted on the shaft bearing of the compressor. The circuit detects a rapid increase in the amplitude envelope of the vibration signal, e.g., 4 dB or greater in less than one second, which is associated with a surge onset and increments a counter. The circuit is rendered non-responsive for a period of about 5 seconds following the detection which corresponds to the duration of the surge condition. This prevents multiple registration of counts during the surge period due to rapid swings in vibration amplitude during the period.

Castleberry, Kimberly N. (Harriman, TN)

1983-01-01T23:59:59.000Z

385

Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production  

E-Print Network [OSTI]

Hydrogen Refueling Stations SMR station Pipeline Station SMR Module Cost (HGM-1000) SMR Module Output 600 kg/day Compressor Base Cost (

Yang, Christopher; Ogden, Joan M

2005-01-01T23:59:59.000Z

386

PIPELINE INVENTORIES  

Science Journals Connector (OSTI)

Inventory that are in the transportation network, the distribution system, and intermediate stocking points are called . The higher the time for the materials to move through the pipeline the larger the pipel...

2000-01-01T23:59:59.000Z

387

Leakage Risk Assessment of CO2 Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois  

E-Print Network [OSTI]

S.M. , 2007, Natural Gas Pipeline Technology Overview.high-pressure natural- gas pipelines: J. Loss Prevention inrisk assessments of CO 2 pipelines, in Elsevier, ed. , 9th

Mazzoldi, A.

2014-01-01T23:59:59.000Z

388

Pipeline Setback Ordinance (Minnesota)  

Broader source: Energy.gov [DOE]

This statute establishes the Office of Pipeline Safety to regulate pipelines in Minnesota. Among other duties, the office is responsible for implementing a Model Pipeline Setback Ordinance.

389

Cathodic protection retrofit of an offshore pipeline  

SciTech Connect (OSTI)

Cathodic protection (CP) anodes and corrosion coating on two offshore pipelines were damaged during deep water installation. In-situ methods for deep-water inspection and repair of the pipelines` CP and coating systems were developed and used. High-pressure natural gas Pipeline. A design was 5.6 miles of 8.625 in. OD by 0.406 in. W.T. API SL, Grade X-42, seamless line pipe. Pipeline B design was 0.3 miles of similar specification pipe. Both pipelines were mill-coated with 14 mil of fusion-bonded epoxy (FBE) corrosion coating. Girth welds were field-coated with FBE.

Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

1997-09-01T23:59:59.000Z

390

Pipeline ADC Design Methodology  

E-Print Network [OSTI]

Scaling vs. R. Figure 4.8 Pipeline ADC Structures. Figure2.4 A Pipelined ADC. Figure 3.1 Pipeline ADC Transfer Curve.Modes (b) data latency in pipeline ADC Figure 3.3 Detailed

Zhao, Hui

2012-01-01T23:59:59.000Z

391

cautious pipeline trench blasting  

Science Journals Connector (OSTI)

cautious pipeline trench blasting, pipeline trench blasting (with)in built-up areas...n in bebauten Gebieten

2014-08-01T23:59:59.000Z

392

EIS-0501: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) is analyzing the potential environmental impacts of a proposal to construct and operate natural gas liquefaction and export facilities at the existing Golden Pass liquefied natural gas terminal in Jefferson County, Texas. The proposal includes three new compressor stations in Jefferson and Orange Counties, Texas, and Calcasieu Parish, Louisiana; a new 3-mile long pipeline in Calcasieu Parish; and modifications to 11 existing interconnections with other pipeline systems. In 2013, FERC announced its intent to prepare an EA and conducted public scoping. (See DOE/EA-1971.) In June 2014, FERC announced that, due to changes in the project location and scope, it would prepare an EIS. DOE, Office of Fossil Energy – a cooperating agency in preparing the EIS – has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest. Additional information is available at http://elibrary.ferc.gov/idmws/search/fercgensearch.asp, search for docket PF13-14.

393

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

Broader source: Energy.gov [DOE]

Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline

394

Light intensity compressor  

DOE Patents [OSTI]

In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

Rushford, Michael C. (Livermore, CA)

1990-01-01T23:59:59.000Z

395

Offshore gas conservation utilizing a turbo-expander based refrigeration extraction cycle  

SciTech Connect (OSTI)

Gas associated with the crude produced from Occidental's Piper Field is conserved by drying it and condensing out the heavier components. This renders the gas with water and hydrocarbon dew points acceptable for transfer to St. Fergus via Total's Frigg Field Pipeline. A process which includes a turbo expander/compressor is used to extract the condensate which is spiked into the crude pipeline for eventual recovery as liquid product and fuel gas at Flotta. The turbo expander can extract 30% more condensate than a simple Joule-Thompson expansion. Gas transferred to St. Fergus is 80% methane with a net calorific value of 1000 btu/scf and a water dew point of -20 F at 1700 psig.

Ross, I.; Robinson, T.

1981-01-01T23:59:59.000Z

396

Mapco's NGL Rocky Mountain pipeline  

SciTech Connect (OSTI)

The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

Isaacs, S.F.

1980-01-01T23:59:59.000Z

397

Robotic equipment for pipeline repair  

SciTech Connect (OSTI)

Hyperbaric welding provides the most reliable method for connection or repair of subsea oil and gas pipelines. Research on hyperbaric arc welding processes indicates that it should be possible to achieve stable welding conditions with Gas Tungsten Arc (GTA) to approximately 600m, and with Gas Metal Arc (GMA) and Plasma Arc to at least 1,000m. These depths are well beyond the limits of manned saturation diving. At the present time the limitation on the maximum depth to which these processes can be applied, in practice, is the requirement for completely diverless operation deeper than approximately 350m. Fully diverless hyperbaric welding is not presently available to the industry but several diverless pipeline repair systems which utilize mechanical connectors have been developed. This paper reviews the present status of mechanized hyperbaric welding systems currently being used in the North Sea and discusses some of the work being done to achieve fully diverless robotic pipeline repair with both welding and connectors.

Gibson, D.E.; Barratt, K.; Paterson, J. [National Hyperbaric Centre, Aberdeen (United Kingdom)

1995-12-31T23:59:59.000Z

398

Advanced Hybrid Water Heater using Electrochemical Compressor...  

Energy Savers [EERE]

Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

399

PIPELINES AS COMMUNICATION NETWORK LINKS  

SciTech Connect (OSTI)

This report presents the results of an investigation into two methods of using the natural gas pipeline as a communication medium. The work addressed the need to develop secure system monitoring and control techniques between the field and control centers and to robotic devices in the pipeline. In the first method, the pipeline was treated as a microwave waveguide. In the second method, the pipe was treated as a leaky feeder or a multi-ground neutral and the signal was directly injected onto the metal pipe. These methods were tested on existing pipeline loops at UMR and Batelle. The results reported in this report indicate the feasibility of both methods. In addition, a few suitable communication link protocols for this network were analyzed.

Kelvin T. Erickson; Ann Miller; E. Keith Stanek; C.H. Wu; Shari Dunn-Norman

2005-03-14T23:59:59.000Z

400

Update on pipeline repair methods  

SciTech Connect (OSTI)

A comprehensive review of pipeline repair methods has been recently completed under the sponsorship of the American Gas Association`s, Pipeline Research Committee. This paper is intended to summarize the important results of that review. First and foremost, two relatively new methods of repair are reviewed. One involves the use of a continuous-fiber fiberglass composite material which can be applied as an alternative to a steel sleeve for the reinforcement of nonleaking defects. The second is the use of deposited weld metal to replace metal lost to external corrosion. This latter technique is not new in principle, but recent research has shown how it can be done safely on a pressurized pipeline. The other significant outcome of the comprehensive review was a set of guidelines for using all types of repairs including full-encirclement sleeves and repair clamps. Pipeline operators can use these guidelines to enhance their current repair procedures, or to train new personnel in maintenance techniques.

Kiefner, J.F. [Kiefner and Associates, Inc., Worthington, OH (United States); Bruce, W.A. [Edison Welding Inst., Columbus, OH (United States); Stephens, D.R. [Battelle, Columbus, OH (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Effective hardware for connection and repair of polyethylene pipelines using ultrasound modification and heat shrinking. Part 5. Aspects of thermistor couplings and components used in gas-pipeline repair  

Science Journals Connector (OSTI)

Aspects of the use of effective hardware for thermistor couplings and components, which are used for thermistor welding in the repair of low- and medium-pressure polyethylene pipelines are investigated. Parameter...

A. E. Kolosov; O. S. Sakharov; V. I. Sivetskii…

2011-07-01T23:59:59.000Z

402

Pipeline corridors through wetlands  

SciTech Connect (OSTI)

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. (Argonne National Lab., IL (United States)); Isaacson, H.R. (Gas Research Institute (United States))

1992-01-01T23:59:59.000Z

403

Pipeline corridors through wetlands  

SciTech Connect (OSTI)

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Institute (United States)

1992-12-01T23:59:59.000Z

404

Natural Gas Weekly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

405

Development of a turbine-compressor for 10 kW class neon turbo-Brayton refrigerator  

Science Journals Connector (OSTI)

We are developing 10 kW class turbo-Brayton refrigerator whose working fluid is neon gas. Its high pressure value is 1 MPa and its low pressure value is 0.5 MPa. The refrigerator consists of two turbine-compressors and a heat exchanger. The turbine-compressor has a turbo-expander on one side of its shaft and a turbo-compressor on the other side of the shaft. Two turbo-compressors are connected in series and two turbo-expanders are set in parallel. So all amount of neon gas is compressed by two stages and each half a mount of neon gas is expanded by one stage. Two turbinecompressors are the same machines and development cost and time are minimized. In this stage we made one prototype turbine-compressor and installed it in a performance test facility. This paper shows details of the turbine-compressor and refrigerator cooling power simulation results.

2014-01-01T23:59:59.000Z

406

METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW  

SciTech Connect (OSTI)

Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

Bowman Jr, Robert C [ORNL] [ORNL; Yartys, Dr. Volodymyr A. [Institute for Energy Technology (IFE)] [Institute for Energy Technology (IFE); Lototskyy, Dr. Michael V [University of the Western Cape, South Africa] [University of the Western Cape, South Africa; Pollet, Dr. B.G. [University of the Western Cape, South Africa

2014-01-01T23:59:59.000Z

407

Natural Gas Weekly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

imbalances. Northern Natural Gas Company declared a force majeure after an unplanned repair issue at the Spearman Compressor Station in Ochiltree County, Texas, on Friday,...

408

HELIUM COMPRESSOR MONITORING SYSTEM Donna Kubik  

E-Print Network [OSTI]

for Phaseloss Detection Lambda +15V Power Supply Distribution Remote Control of 120VC to Compressor Monitoring compressor supply pressure · Display compressor return pressure · Display compressor motor temperature-defined limits · Check if temperature has exceeded user-defined limits · Detect and display minimum supply

409

Pipeline Safety (Maryland)  

Broader source: Energy.gov [DOE]

The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

410

Hydrogen Pipeline Working Group  

Broader source: Energy.gov [DOE]

The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations...

411

Lynn Dahlberg, Director of Marketing, Williams Northwest Pipeline...  

Energy Savers [EERE]

as the Midwest does, for example, since it can rely heavily on existing hydroelectric power. In California, there is far more interstate natural gas pipeline...

412

Dual capacity reciprocating compressor  

DOE Patents [OSTI]

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

413

Dual capacity reciprocating compressor  

DOE Patents [OSTI]

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

414

DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions  

Broader source: Energy.gov [DOE]

Following the White House and the Department of Energy Capstone Methane Stakeholder Roundtable on July 29th, DOE announced a series of actions, partnerships, and stakeholder commitments to help modernize the nation’s natural gas transmission and distribution systems and reduce methane emissions. Through common-sense standards, smart investments, and innovative research, DOE seeks to advance the state of the art in natural gas system performance. DOE’s effort is part of the larger Administration’s Climate Action Plan Interagency Strategy to Reduce Methane Emissions.

415

Pipeline refurbishing  

SciTech Connect (OSTI)

A novel process for simultaneously removing deteriorated coatings (such as coal tar and asphalt enamel or tape) and providing surface preparation suitable for recoating has been developed for pipelines up to 36 in. (914 mm) in diameter. This patented device provides a near-white metal surface finish. Line travel or bell-hole operations are possible at rates up to 10 times conventional blasting techniques. This article describes development of a tool and machine that will remove pipeline coatings, including coal tar enamel and adhesive-backed plaster tape systems. After coating removal, the pipe surface is suitable for recoating and can be cleaned to a near-white metal finsh (Sa 2 1/2 or NACE No. 2) if desired. This cleaning system is especially useful where the new coating is incompatible with the coating to be removed, the new coating requires a near-white or better surface preparation, or no existing method has been found to remove the failed coating. This cleaning system can remove all generic coating systems including coal tar enamel, asphalt, adhesive-backed tape, fusion-bonded epoxy, polyester, and extruded polyethylene.

McConkey, S.E.

1989-04-01T23:59:59.000Z

416

Pipeline transportation and underground storage are vital and complementary components of the U  

U.S. Energy Information Administration (EIA) Indexed Site

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005 Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005 This report examines the amount of new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2005 and the areas of the country where those additions were concentrated. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2006 and 2008 and the market factors supporting these initiatives. Questions or comments on the contents of this article should be directed to James Tobin at james.tobin@eia.doe.gov or (202) 586-4835. The addition to natural gas pipeline capacity in 2005 exceeded that of 2004 (Figure 1) although fewer miles of pipeline were installed (Figure 2). Miles of new natural gas pipeline (1,152) were 21 percent less than in 2004, even

417

Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035  

Science Journals Connector (OSTI)

...using two different turbine designs. J. Turbomach...eddy simulation for turbines: methodologies...eddy simulation of gas turbine compressors. Progr...T Poinsot. 2009 Development and assessment of a coupled strategy for conjugate heat...

2014-01-01T23:59:59.000Z

418

Determining the Lowest-Cost Hydrogen Delivery Mode  

E-Print Network [OSTI]

for compressed gas truck stations compared to pipelineLH 2 Trucks Gas Pipelines Refueling station a RefuelingPlant Compressed Gas Trucks Refueling station a (compressor,

Yang, Christopher; Ogden, Joan M

2008-01-01T23:59:59.000Z

419

Apparatus for the liquefaction of natural gas and methods relating to same  

DOE Patents [OSTI]

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.

Wilding, Bruce M. (Idaho Falls, ID) [Idaho Falls, ID; McKellar, Michael G. (Idaho Falls, ID) [Idaho Falls, ID; Turner, Terry D. (Ammon, ID) [Ammon, ID; Carney, Francis H. (Idaho Falls, ID) [Idaho Falls, ID

2009-09-29T23:59:59.000Z

420

Optimization Models for Optimal Investment, Drilling, and Water Management in Shale Gas Supply Chains  

Science Journals Connector (OSTI)

Abstract This paper provides an overview of recent optimization models for shale gas production. We first describe a new mixed-integer optimization model for the design of shale gas infrastructures. It is aimed at optimizing the number of wells to drill, size and location of new gas processing plants, section and length of pipelines for gathering raw gas, delivering dry gas and natural gas liquids, power of gas compressors, and planning of freshwater consumption for well drilling and fracturing. We also describe a detailed operational mixed-integer linear model to optimize life cycle water use for well pads. The objective of the model is to determine the fracturing schedule that minimizes costs for freshwater consumption, transportation, treatment, storage, and disposal.

Ignacio E. Grossmann; Diego C. Cafaro; Linlin Yang

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Suction muffler for refrigeration compressor  

DOE Patents [OSTI]

A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

Nelson, R.T.; Middleton, M.G.

1983-01-25T23:59:59.000Z

422

Downhole steam generator having a downhole oxidant compressor  

DOE Patents [OSTI]

Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

423

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.

Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

2005-07-20T23:59:59.000Z

424

Thailand's gas line underway: coating a major achievement  

SciTech Connect (OSTI)

Using primarily local personnel and materials, Bredero Price International's Thai pipe-coating plant has prepared some 374 miles of 34 and 28-in. pipe for service in the Gulf of Thailand gas-pipeline project. The enamel-coating shop cleaned, primed and coated all the pipe with coal-tar enamel, glass-fiber mat, felt, and a kraft-paper outer wrap; the cement-coating facility then added a concrete-weight coating to the portion of the pipe earmarked for offshore duty. Scheduled for a 1981 completion, the pipeline will initially carry 250 million CF/day to power-generating plants in Bangpakong and South Bangkok; the volume transported will eventually reach 500 million CF/day when addition offshore production is tied in to the line and an offshore compressor station added.

Hale, D.

1980-12-01T23:59:59.000Z

425

Compressor bleed cooling fluid feed system  

DOE Patents [OSTI]

A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

Donahoo, Eric E; Ross, Christopher W

2014-11-25T23:59:59.000Z

426

UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE  

SciTech Connect (OSTI)

This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.

Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

2011-10-01T23:59:59.000Z

427

Total Natural Gas Gross Withdrawals (Summary)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity...

428

Aspen Pipeline | Open Energy Information  

Open Energy Info (EERE)

Aspen Pipeline Jump to: navigation, search Name: Aspen Pipeline Place: Houston, Texas Zip: 77057 Product: US firm which acquires, builds and owns pipelines, gathering systems and...

429

Delivery of Hydrogen Produced from Natural Gas  

E-Print Network [OSTI]

for transportation and stationary power. DOE Milestone #12;Hydrogen Delivery Options · Gaseous hydrogen - Pipelines · Materials Development - Repair, smart pipe, liners · Operational Technologies - Compressors, modeling, corrosion Gaseous hydrogen pipeline delivery program would share similar technology R&D areas

430

Microsoft Word - Rockies Pipelines and Prices.doc  

Gasoline and Diesel Fuel Update (EIA)

07 07 1 September 2007 Short-Term Energy Outlook Supplement: Natural Gas in the Rocky Mountains: Developing Infrastructure 1 Highlights * Recent natural gas spot market volatility in the Rocky Mountain States of Colorado, Utah, and Wyoming has been the result of increased production while consumption and pipeline export capacity have remained limited. This Supplement analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these States. * Natural gas reserves in the Rocky Mountain States account for nearly 22 percent of the total natural gas reserves in the United States, and are

431

Water injected fuel cell system compressor  

DOE Patents [OSTI]

A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

Siepierski, James S. (Williamsville, NY); Moore, Barbara S. (Victor, NY); Hoch, Martin Monroe (Webster, NY)

2001-01-01T23:59:59.000Z

432

Origin of a magnetic easy axis in pipeline steel L. Clapham,a)  

E-Print Network [OSTI]

Origin of a magnetic easy axis in pipeline steel L. Clapham,a) C. Heald, T. Krause, and D. L December 1998; accepted for publication 27 April 1999 Oil and gas pipelines are generally magnetically overlooked, the magnetic properties of oil and gas pipelines are an important consideration since the most

Clapham, Lynann

433

Chapter 14 - Pipeline Flow Risk Assessment  

Science Journals Connector (OSTI)

Abstract Risk assessment is the process of assessing risks and factors influencing the level of safety of a project. It involves researching how hazardous events or states develop and interact to cause an accident. The risk assessment effort should be tailored to the level and source of technical risk involved with the project and the project stage being considered. The assessment of technical risk will take different forms in different stages of the project. Pipeline flow risk mainly includes fluid leakage and blockage happening in the pipelines. This chapter describes the application of Quantitative Risk Assessment (QRA) for the blockage in the oil and gas pipelines.

Yong Bai; Qiang Bai

2014-01-01T23:59:59.000Z

434

Regulation changes create opportunities for pipeline manufacturers  

SciTech Connect (OSTI)

The US Department of Transportation`s (DOT) Research and Special Programs Administration (RSPA) is proposing to change its safety standards for the repair of corroded or damaged steel pipe in gas and hazardous liquid pipelines. For pipeline operators, the expected revisions will allow new flexibility in approaches to pipeline repair. Less costly and less disruptive procedures will be acceptable. For manufacturers, the changes will open opportunities for development of corrosion repair technology. A highly competitive market in new repair technology can be expected to arise. Current regulations, new technologies, and proposed safety standards are described.

Santon, J.

1999-09-01T23:59:59.000Z

435

EIS-0152: Iroquois, Tenn. Phase I, Pipeline Line Project  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission prepared this statement to asses the environmental impacts of constructing and operating an interstate natural gas pipeline and associated infrastructure to transport gas from Canada and domestic sources to the New England Market, as proposed by the Iroquois Gas Transmission System and the Tennessee Gas Pipeline Company. The U.S. Department of Energy Office of Fossil Energy was a cooperating agency during statement development and adopted the statement on 9/1/1990.

436

Seadrift/UCAR pipelines achieve ISO registration  

SciTech Connect (OSTI)

Proper meter station design using gas orifice meters must include consideration of a number of factors to obtain the best accuracy available. This paper reports that Union Carbide's Seadrift/UCAR Pipelines has become the world's first cross-country pipelines to comply with the International Standards Organization's quality criteria for transportation and distribution of ethylene. Carbide's organization in North America and Europe, with 22 of the corporation's businesses having the internationally accepted quality system accredited by a third-party registrar.

Arrieta, J.R.; Byrom, J.A.; Gasko, H.M. (Carbide Corp., Danbury, CT (United States))

1992-10-01T23:59:59.000Z

437

NewPipeline-Robot-Power-Source.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Sources for Power Sources for Inspection Robots in Natural Gas Transmission Pipelines By Shreekant B. Malvadkar and Edward L. Parsons Office of Systems & Policy Support INTRODUCTION Strategic Center of Natural gas's (SCNG) Natural Gas Infrastructure Reliability Product Team has undertaken the development of a prototype robot that would inspect and possibly repair transmission pipelines. NETL has granted a contract for this purpose to New York Gas Group (NYGAS) and Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC). The purpose of this study is to analyze various onboard power supply options for such a commercially viable robot that can operate in a transmission pipeline for extended period. The primary power sources considered are wind turbines, rechargeable batteries,

438

Pipeline Construction Guidelines (Indiana)  

Broader source: Energy.gov [DOE]

The Division of Pipeline Safety of the Indiana Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has...

439

Keystone XL pipeline update  

Broader source: Energy.gov [DOE]

Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

440

Pipeline operation and safety  

SciTech Connect (OSTI)

Safety is central to the prosperity of the pipeline industry and the need to maintain high standards of the safety at all times is of paramount importance. Therefore, a primary concern of pipeline operator is adequate supervision and the control of the operation of pipelines. Clearly defined codes of practice, standards and maintenance schedules are necessary if protection is to be afforded to the pipeline system employees, the public at large, and the environment.

Tadors, M.K. [Petroleum Pipelines Co., Cairo (Egypt)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) Pipe diameter sizes range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.). The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.), with 95% using 558.8 mm (22 in.) pipe. An evaluation of potential repair methods clearly indicates that the project should continue to focus on the development of a repair process involving the use of GMAW welding and on the development of a repair process involving the use of fiber-reinforced composite liners.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

2004-04-12T23:59:59.000Z

442

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network [OSTI]

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

443

RETROSPECTIVE: Software Pipelining  

E-Print Network [OSTI]

- cialized hardware designed to support software pipelining. In the meantime, trace scheduling was touted compiler with software pipelining for the polycyclic architecture, which had a novel crossbar whose crossRETROSPECTIVE: Software Pipelining: An Effective Scheduling Technique for VLIW Machines Monica S

Pratt, Vaughan

444

Natural gas monthly, July 1996  

SciTech Connect (OSTI)

This document presents information pertaining to the natural gas industry. Data are included on production, consumption, distribution, and pipeline activities.

NONE

1996-07-01T23:59:59.000Z

445

Apparatus and methods for cooling and sealing rotary helical screw compressors  

DOE Patents [OSTI]

In a compression system which incorporates a rotary helical screw compressor, and for any type of gas or refrigerant, the working liquid oil is atomized through nozzles suspended in, and parallel to, the suction gas flow, or alternatively the nozzles are mounted on the suction piping. In either case, the aim is to create positively a homogeneous mixture of oil droplets to maximize the effectiveness of the working liquid oil in improving the isothermal and volumetric efficiencies. The oil stream to be atomized may first be degassed at compressor discharge pressure by heating within a pressure vessel and recovering the energy added by using the outgoing oil stream to heat the incoming oil stream. The stripped gas is typically returned to the compressor discharge flow. In the preferred case, the compressor rotors both contain a hollow cavity through which working liquid oil is injected into channels along the edges of the rotors, thereby forming a continuous and positive seal between the rotor edges and the compressor casing. In the alternative method, working liquid oil is injected either in the same direction as the rotor rotation or counter to rotor rotation through channels in the compressor casing which are tangential to the rotor edges and parallel to the rotor center lines or alternatively the channel paths coincide with the helical path of the rotor edges. 14 figs.

Fresco, A.N.

1997-08-05T23:59:59.000Z

446

Apparatus and methods for cooling and sealing rotary helical screw compressors  

DOE Patents [OSTI]

In a compression system which incorporates a rotary helical screw compressor, and for any type of gas or refrigerant, the working liquid oil is atomized through nozzles suspended in, and parallel to, the suction gas flow, or alternatively the nozzles are mounted on the suction piping. In either case, the aim is to create positively a homogeneous mixture of oil droplets to maximize the effectiveness of the working liquid oil in improving the isothermal and volumetric efficiencies. The oil stream to be atomized may first be degassed at compressor discharge pressure by heating within a pressure vessel and recovering the energy added by using the outgoing oil stream to heat the incoming oil stream. The stripped gas is typically returned to the compressor discharge flow. In the preferred case, the compressor rotors both contain a hollow cavity through which working liquid oil is injected into channels along the edges of the rotors, thereby forming a continuous and positive seal between the rotor edges and the compressor casing. In the alternative method, working liquid oil is injected either in the same direction as the rotor rotation or counter to rotor rotation through channels in the compressor casing which are tangential to the rotor edges and parallel to the rotor centerlines or alternatively the channel paths coincide with the helical path of the rotor edges.

Fresco, Anthony N. (P.O. Box 734, Upton, NY 11973)

1997-01-01T23:59:59.000Z

447

Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps  

SciTech Connect (OSTI)

In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

2014-01-01T23:59:59.000Z

448

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-12-31T23:59:59.000Z

449

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-08-17T23:59:59.000Z

450

Overview of interstate hydrogen pipeline systems.  

SciTech Connect (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

451

Experimental study on p–V indicator diagrams of twin-screw refrigeration compressor with economizer  

Science Journals Connector (OSTI)

This paper presents the experimental investigation on the effects of the superfeed pressure together with economizer type on the performance of the twin-screw refrigeration compressor by means of the indicator diagram. With a pressure sensor embedded into the groove at the root of the female rotor on the discharge side, the pressure within the working chamber of a semi-hermetic twin-screw compressor with an economizer is recorded and then transformed into the indicator diagram. The results thus obtained are utilized to investigate the thermodynamic process of the compressor. It is shown that the compressor with an economizer has higher pressure during almost the whole compression process than without an economizer, resulting in the increase in the indicated power. Under different superfeed pressures, the pressure within the compression experiences different changes. This results in an optimal superfeed pressure for maximized compressor efficiency, which can be identified from the calculated compressor efficiency based on the indicator diagrams. It is also found that the pressure has a rapid increase at the beginning of superfeed process, and then a slow rise even a slight drop at the end of superfeed process, which is caused by the dynamic effect during superfeed process. Furthermore, if the superfeed pressure keeps the same, the pressure during compression in the compressor with the heat exchanger economizer is slightly higher than with the flash tank economizer, due to the higher temperature of superfeed refrigerant gas in the former case.

Huagen Wu; Xueyuan Peng; Ziwen Xing; Pengcheng Shu

2004-01-01T23:59:59.000Z

452

Pipeline integrity programs help optimize resources  

SciTech Connect (OSTI)

Natural Gas Pipeline Co. of America has developed an integrity program. NGPL operates approximately 13,000 miles of large-diameter parallel gas pipelines, which extend from traditional supply areas to the Chicago area. Line Number 1, the 24-in. Amarillo-to-Chicago mainline, was built in 1931, and parts of it are still in operation today. More than 85% of the NGPL systems is more than 25 years old, and continues to provide very reliable service. The company operated for many years with specialized crews dedicated to pipeline systems, and a corrosion department. Under this organization, employees developed an intimate knowledge of the pipeline and related integrity issues. NGPL relied on this knowledge to develop its integrity program. The risk assessment program is a very valuable tool for identifying areas that may need remedial work. However, it is composed of many subjective evaluations and cannot predict failure nor ensure good performance. The program is an excellent data management tool that enables a pipeline operator to combine all available information needed to make integrity decisions. The integrity of a pipeline is continually changing, and any program should be updated on a regular basis.

Dusek, P.J. (Natural Gas Pipeline Co. of America, Lombard, IL (United States))

1994-03-01T23:59:59.000Z

453

Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems  

SciTech Connect (OSTI)

Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM, 87131 (United States)

2007-01-30T23:59:59.000Z

454

Analytic prognostic for petrochemical pipelines  

E-Print Network [OSTI]

Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

Abdo Abou Jaoude; Seifedine Kadry; Khaled El-Tawil; Hassan Noura; Mustapha Ouladsine

2012-12-25T23:59:59.000Z

455

Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston  

E-Print Network [OSTI]

Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston Nathan G. Phillips a of methane (CH4) in the United States. To assess pipeline emissions across a major city, we mapped CH4 leaks signatures w20& lighter (m ¼ �57.8&, �1.6& s.e., n ¼ 8). Repairing leaky natural gas distribution systems

Jackson, Robert B.

456

A pipeline scheduling model  

E-Print Network [OSTI]

A PIPELINE SCHEDULING MODEL A Thesis by THOMAS MELVIN BEATTY Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement for the degree of MASTER QF SCIENCE August 1975 Major Subject: Computing... Science R PIPELINE SCHEDULING MODEL A Thesis by THOMAS MELVIN BEATTY Approved as to style and content by: Chairman of ommittee Member (Head o f Department ) Member August 1975 ABSTRACT A PIPELINE SCHEDULING MODEL (August 1975) Thomas Melvin...

Beatty, Thomas Melvin

2012-06-07T23:59:59.000Z

457

Effect of Intake on Compressor Performance  

Broader source: Energy.gov [DOE]

This tip sheet briefly describes the effect of intake air on air compressor performance, offers guidance on selecting intake air filters, and outlines when to pursue filter replacement.

458

Numerical Investigation of Advanced Compressor Technologies ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

technologies to support clean diesel combustion, such as HCCILTC applications. deer08sun.pdf More Documents & Publications Numerical Investigation of Advanced Compressor...

459

The Motion Capture Pipeline.  

E-Print Network [OSTI]

?? Motion Capture is an essential part of a world full of digital effects in movies and games. Understanding the pipelines between software is a… (more)

Holmboe, Dennis

2008-01-01T23:59:59.000Z

460

Product Pipeline Reports Tutorial  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player...

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Distributed monitoring system for electric-motor-driven compressors  

SciTech Connect (OSTI)

Personnel in the Instrumentation and Controls Division at the Oak Ridge National Laboratory, in association with the United States Enrichment corporation (USEC), the Navy, and various Department of Energy sponsors, have been involved in the development and application of motor-current signature analysis (CSA) for several years. In that time CSA has proven to not only be useful for manually applied periodic monitoring of electrically driven equipment but it has also been demonstrated to be well suited for dedicated monitoring systems in industrial settings. Recent work has resulted in the development and installation of a system that can monitor up to 640 motor and compressor stages for various aerodynamic conditions in the gas compressors and electrical problems in the drive motors. This report describes a demonstration of that technology installed on 80 stages at each of the two USEC uranium enrichment plants.

Castleberry, K.N.

1996-01-01T23:59:59.000Z

462

Mathematical formulation and numerical modeling of wax deposition in pipelines from enthalpyporosity approach  

E-Print Network [OSTI]

Mathematical formulation and numerical modeling of wax deposition in pipelines from enthalpy and in the North Sea, the deposition of wax crystals in oil and gas pipelines becomes a major concern operational complexities. To pre- vent blockage of pipelines, wax deposits should be removed periodically

Firoozabadi, Abbas

463

TECHNIQUES FOR MINIMIZING AND MONITORING THE IMPACT OF PIPELINE CONSTRUCTION ON COASTAL STREAMS1  

E-Print Network [OSTI]

TECHNIQUES FOR MINIMIZING AND MONITORING THE IMPACT OF PIPELINE CONSTRUCTION ON COASTAL STREAMS1 resources dur- ing construction of an oil and gas pipeline that crossed coastal reaches of 23 perennial, and representatives of Santa Barbara County. The Point Arguello pipeline was recently constructed by Chevron U

Standiford, Richard B.

464

Pipeline Safety Our goal is to provide standard test methods and critical data to  

E-Print Network [OSTI]

Pipeline Safety METALS Our goal is to provide standard test methods and critical data to the pipeline industry to improve safety and reliability. Of particular interest is the testing of high-strength pipeline steels, which could enable higher volume gas transport and reduce energy costs. However

465

Pipeline Safety Our goal is to provide standard test methods and critical data to  

E-Print Network [OSTI]

Pipeline Safety METALS Our goal is to provide standard test methods and critical data to the pipeline industry to improve safety and reliability. Of particular interest is the testing of high strength pipeline steels, which could enable higher volume gas transport and reduce energy costs. However

466

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

467

Intelligent pig inspection, evaluation and remediation of uncoated seamless pipelines  

SciTech Connect (OSTI)

Many gas pipelines in operation in the US today were constructed prior to coating and cathodic protection (CP) current practices. A number of these vintage pipelines had no coating and had CP installed long after their construction thus allowing initial corrosion growths. With continual public and industrial growth and development on and around these pipelines, plus normal maintenance, there is a need to conduct periodic integrity assessments to insure public safety and maintain pipeline efficiency. One of the best tools currently available to measure or gauge pipeline integrity is the intelligent or smart pig. While there are various technologies offered by In-line inspection (ILI) vendors, magnetic flux leakage (MFL) is the one most commonly utilized for in-line inspections of natural gas pipelines. Over the years there has been much speculation over the ability of an MFL tool to clearly define corrosion magnitudes on uncoated pipelines because the MFL signals are distorted by the external corrosion crust or growth. In addition, many of the uncoated lines constructed utilized seamless pipe which compounds the problem with uneven wall thickness common with seamless pipe. Also, the irregular internal surfaces produce additional distortions or noise in the MFL signal. Analysis of the smart pig results are quite difficult when evaluating an uncoated seamless pipeline. However, with the latest advances in MFL smart pigs it is possible to accurately analyze corrosion on uncoated seamless steel pipelines. The ability to accurately identify corrosion on such structures provides the mechanism to evaluate the pipeline's integrity with analytical tools such as RSTRENG, (remaining strength). From that a successful remediation program can be developed which will save the pipeline operator millions of dollars when compared to the expensive alternative of replacing the pipeline.

Shamblin, T.R.

1999-07-01T23:59:59.000Z

468

6/10/12 UK team advances measurement of gas bubbles in pipelines. | Technology news | Process Engineer... 1/2processengineering.theengineer.co.uk/.../1012631.article  

E-Print Network [OSTI]

process in the manufacturing, power, oil & gas and petrochemical industries. For instance, the sharp

Sóbester, András

469

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Issues on Hydrogen Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special structures River Crossings (culvert): 6 (Rhein, Ruhr, Rhein-Herne-Kanal) River crossing (on bridge): 1 (Rhein-Herne-Kanal) Motorway Crossings: 26 Overground Pipelines: approx 21 km Pipeline Transmission of Hydrogen --- 5 Copyright: 5. Mining areas Pipeline Transmission of Hydrogen --- 6 Copyright: France & Netherlands

470

Ductile fracture and structural integrity of pipelines & risers  

E-Print Network [OSTI]

The Oil and Gas (O&G) industry has recently turned its interest towards deep and ultra-deep offshore installations in order to address the global increase of energy demand. Pipelines and risers are key components for the ...

Kofiani, Kirki N. (Kirki Nikolaos)

2013-01-01T23:59:59.000Z

471

Application of composite repair for pipeline anomalies  

SciTech Connect (OSTI)

The cost of maintaining the structural integrity of the 650,000 kilometer high-pressure gas gathering and transmission pipeline network is a significant part of the operating budget of the US pipeline industry. To help in controlling thee costs, the Gas Research institute (GRI) has supported research resulting in the development of Clock Spring{reg_sign}, a low-cost fiberglass composite alternative to conventional steel sleeves for transmission line pipe reinforcement and repair. Investigation and development of engineering guidelines have been completed. Field validation of laboratory research on application of Clock Spring as a repair for corrosion and mechanical damage defects is in progress. This paper presents an overview of composite repair technology for pipeline corrosion and mechanical damage defects. It summarizes the results and conclusions of modeling and experiments on reinforcement and repair of both corrosion and mechanical damage (i.e., dent and gouge) pipeline defects. These investigations provide quantitative results on the operating envelope of composite reinforcements and installation requirements that ensure sound and reliable repair of pipeline defects. The paper further summarizes the work to date on field installation in verification of composite repair performance.

Stephens, D.R. [Battelle, Columbus, OH (United States); Lindholm, U.S. [Southwest Research Inst., San Antonio, TX (United States); Hill, V.L. [Gas Research Inst., Chicago, IL (United States); Block, N. [Clock Spring Co., Houston, TX (United States)

1996-09-01T23:59:59.000Z

472

Diverless pipeline repair clamp: Phase 1  

SciTech Connect (OSTI)

Offshore oil and gas developments are underway for water depths beyond which divers can function. The economic lifelines of these projects are the pipelines which will transport the products to shore. In preparation for the day when one of these pipelines will require repair because of a leak, the Pipeline Research Committee of the American Gas Association is funding research directed at developing diverless pipeline repair capabilities. Several types of damage are possible, ranging from latent weld defects on one end of the spectrum to damage resulting in parting of the pipe at the other end. This study is specifically directed toward laying the groundwork for development of a diverless pipeline repair clamp for use in repair of leaks resulting from minor pipe defects. The incentive for a clamp type repair is costs. When compared to replacing a section of pipe, either by welding or by mechanical means, the clamp type repair requires much less disturbance of the pipe, less time, fewer operations and less equipment. This report summarizes (1) capabilities of remotely operated vehicles (ROV's) and associated systems, (2) highlights areas for further research and development, (3) describes the required capabilities of the diverless repairclamp, (4) investigates some alternatives to the diverless clamp, (5) overviews the state of the art in leak repair clamps, and (6) critiques several possible generic clamp concepts.

Miller, J.E.; Knott, B. (Stress Engineering Services, Inc., Houston, TX (United States))

1991-12-01T23:59:59.000Z

473

DE-FC26-01NT41322 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for a natural gas transmission system. This test bed will simulate compressor stations, pipelines that...

474

FEATURE ARTICLE Pipeline Corrosion  

E-Print Network [OSTI]

F FEATURE ARTICLE Pipeline Corrosion Issues Related to Carbon Capture, Transportation, and Storage Capture, Transportation, and Storage--Aspects of Corrosion and Materials. "Until these new technologies are developed and applied, corrosion engineers are focusing on how to best design pipelines for CO2 transport

Botte, Gerardine G.

475

Refrigeration system having standing wave compressor  

DOE Patents [OSTI]

A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

Lucas, Timothy S. (Glen Allen, VA)

1992-01-01T23:59:59.000Z

476

Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid  

SciTech Connect (OSTI)

The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

Mehta, R. N. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076, India and Government Engineering College Bharuch, Gujarat - 392002 (India); Bapat, S. L.; Atrey, M. D. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076 (India)

2014-01-29T23:59:59.000Z

477

Natural Gas Weekly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

force majeure declared December 17 at its Totem storage field, Colorado Interstate Gas Pipeline (CIG) reported that it anticipates repair work to be complete around February 12,...

478

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Columbia Gas Transmission, LLC on March 16 began planned maintenance on its pipeline in Green County, Pennsylvania. The maintenance will reduce capacity at an interconnect...

479

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network [OSTI]

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

480

Experimental analysis of pressure distribution in a twin screw compressor for multiphase duties  

SciTech Connect (OSTI)

This paper presents the results of an experimental investigation of pressure distribution inside working chamber of a twin screw compressor for multiphase duties. A mathematical model for describing the pressure distribution inside working chamber is proposed. By means of a small pressure transducer embedded into the groove at the root of the rotor, the pressure distributions of a multiphase compressor under various running conditions have been recorded successfully to verify the model. It is found that the pressure curve during the discharge process has a higher level under the conditions of the lower gas void fraction, higher discharge pressure, higher rotational speed and higher inlet pressure. The pressure distribution calculated by model in this paper shows good agreement with the data recorded by a small pressure sensor in a prototype multiphase compressor at the high gas void fractions under different operating conditions. (author)

Cao, Feng; Gao, Tieyu; Li, Songshan; Xing, Ziwen; Shu, Pengcheng [School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

2011-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas pipeline compressor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

780 IEEE Transactions on Power Apparatus and Systems, Vol. PAS-98, No. 3 May/June 1979 PREDICTION METHOD FOR BURIED PIPELINE VOLTAGES  

E-Print Network [OSTI]

METHOD FOR BURIED PIPELINE VOLTAGES DUE TO 60 Hz AC INDUCTIVE COUPLING PART I - ANALYSIS Allen Taflove 60616 Abstract - The voltages induced on gas transmis- sion pipelines by 60 Hz ac power transmission equivalent circuits for pipeline sections are developed which allow the decomposition of complex pipeline

Taflove, Allen

482

Composites Technology for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Investigate application of composite, fiber-reinforced polymer pipeline technology for hydrogen transmission and distribution

483

Structural Study on Moving Magnet Compressor for Stirling Engine  

Science Journals Connector (OSTI)

The article describes a structural study on moving magnet compressor for Stirling engine. The performance of Stirling engine is determined by the linear compressor. The article first establishes mathematics models for ordinary linear compressors and ... Keywords: Stirling engine, moving magnet linear compressor, CAE, magnet field analysis

Ding Guozhong; Zhang Xiaoqing; He Mingshun; Shu Shuiming

2010-06-01T23:59:59.000Z

484

Chapter 8 - Risk Analysis for Subsea Pipelines  

Science Journals Connector (OSTI)

Abstract The purpose of this chapter is to apply risk-based inspection planning methodologies to pipeline systems, by developing a set of methods and tools for the estimation of risks using structural reliability approach and incidental databases, and to illustrate our risk based inspection and management approach through three examples, including risk analysis for a subsea gas pipeline, dropped object risk analysis and how to use RBIM to reduce operation costs. After outlining the constituent steps of a complete risk analysis methodology, it gives detailed information about each step of the methodology such that a complete risk analysis can be achieved. To get the final acceptable design/procedure, these steps are needed, including acceptance criteria, identification of initiating events, crude consequence analysis, cause analysis, quantitative cause analysis, consequence analysis and risk estimation. This chapter also gave a detailed guidance on evaluation of failure frequency, consequence, risk and risk-based inspection and integrity management of pipeline systems.

Yong Bai; Qiang Bai

2014-01-01T23:59:59.000Z

485

Internally-cooled centrifugal compressor with cooling jacket formed in the diaphragm  

DOE Patents [OSTI]

An internally-cooled centrifugal compressor having a shaped casing and a diaphragm disposed within the shaped casing having a gas side and a coolant side so that heat from a gas flowing though the gas side is extracted via the coolant side. An impeller disposed within the diaphragm has a stage inlet on one side and a stage outlet for delivering a pressurized gas to a downstream connection. The coolant side of the diaphragm includes at least one passageway for directing a coolant in a substantially counter-flow direction from the flow of gas through the gas side.

Moore, James J.; Lerche, Andrew H.; Moreland, Brian S.

2014-08-26T23:59:59.000Z

486

Tefken builds Turkish pipeline project  

SciTech Connect (OSTI)

A turnkey contract was let in early 1983 for the construction of the Yumurtalik-Kirikkale crude oil pipeline system in Turkey. The design and construction of the 277 mile, 24 in dia pipeline will be completed toward the end of 1985. The pipeline will transport crude oil to the Central Anatolian Refinery. In the original design, the pipeline was planned for an ultimate capacity of 10 million tons/year with three pumping stations. Problems encountered in constructing the pipeline are discussed.

Not Available

1984-08-01T23:59:59.000Z

487

Pipelines in the constructed environment  

SciTech Connect (OSTI)

New pipeline construction, the maintenance of existing pipelines, and the rehabilitation or replacement of deteriorating pipelines often takes place with many challenges and constraints imposed by developmental regulations. The 1998 Pipeline Division Conference provided a forum for those involved in the field to share ideas and learn more about the issues faced today. These 92 peer-reviewed papers reflect the current methods and technology in the field of pipeline construction.

Castronovo, J.P.; Clark, J.A. [eds.

1998-07-01T23:59:59.000Z

488

Compressor ported shroud for foil bearing cooling  

SciTech Connect (OSTI)

A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

Elpern, David G. (Los Angeles, CA); McCabe, Niall (Torrance, CA); Gee, Mark (South Pasadena, CA)

2011-08-02T23:59:59.000Z

489

Fuel gas conditioning process  

DOE Patents [OSTI]

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

490

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

491

DOE Hydrogen Pipeline Working Group Workshop  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects ppt00 3 Hydrogen...

492

Probabilistic analysis of meanline compressor rotor performance  

E-Print Network [OSTI]

This thesis addresses variability in aerodynamic performance of a compressor rotor due to geometric variation. The performance of the rotor is computed using a meanline model that includes the effect of tip clearance ...

Fitzgerald, Nathan Andrew, 1980-

2004-01-01T23:59:59.000Z

493

Development and implementation of a pipeline integrity management program in Russia  

SciTech Connect (OSTI)

The operating integrity of several Russian gas pipelines is recognized to be at a near critical condition. A series of inter related questions are addressed to assess the continuing operating integrity (remaining useful life) of these pipelines based on both theoretical analyzes and inspection data. The program serves to plan and allocate resources for pipeline repair or replacement activities. The analyses considers construction methods, applied loads and pipeline materials in developing criteria for remaining life assessment. Several analytical methods are reviewed and used to evaluate the remaining operating life of two pipeline systems.

Kharionovski, V.V. [VNIIGAZ, Moscow (Russian Federation)

1995-12-31T23:59:59.000Z

494

Redesigned recycle valves abate compressor vibration  

SciTech Connect (OSTI)

New recycle valves installed in 1994 on the compressors in the East Brae field in the North Sea corrected the noise and vibration problem that damaged the original valves shortly after commissioning the platform. The original recycle valves, especially on the second-stage compressors, showed severe damage. The paper describes the Brae field, the recycle system, recycle valves, operations, the new valve design, noise and vibration, and valve actuators.

Laing, D.E. [Marathon Oil U.K. Ltd., Aberdeen (United Kingdom); Miller, H.L.; McCaskill, J.W. [Engineering Control Components Inc., Rancho Santa Margarita, CA (United States)

1995-06-05T23:59:59.000Z

495

Natural Gas Weekly Update, Printer-Friendly Version  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

supply to MRT's East Line or reduce applicable delivery volumes. Colorado Interstate Gas Company announced on December 6 that the Cheyenne Compressor Stations unit that had...

496

Development of a thermoacoustic natural gas liquefier.  

SciTech Connect (OSTI)

Praxair, in conjunction with the Los Alamos National Laboratory, is developing a new technology, thermoacoustic heat engines and refrigerators, for liquefaction of natural gas. This is the only technology capable of producing refrigeration power at cryogenic temperatures with no moving parts. A prototype, with a projected natural gas liquefaction capacity of 500 gallons/day, has been built and tested. The power source is a natural gas burner. Systems will be developed with liquefaction capacities up to 10,000 to 20,000 gallons per day. The technology, the development project, accomplishments and applications are discussed. In February 2001 Praxair, Inc. purchased the acoustic heat engine and refrigeration development program from Chart Industries. Chart (formerly Cryenco, which Chart purchased in 1997) and Los Alamos had been working on the technology development program since 1994. The purchase included assets and intellectual property rights for thermoacoustically driven orifice pulse tube refrigerators (TADOPTR), a new and revolutionary Thermoacoustic Stirling Heat Engine (TASHE) technology, aspects of Orifice Pulse Tube Refrigeration (OPTR) and linear motor compressors as OPTR drivers. Praxair, in cooperation with Los Alamos National Laboratory (LANL), the licensor of the TADOPTR and TASHE patents, is continuing the development of TASHE-OPTR natural gas powered, natural gas liquefiers. The liquefaction of natural gas, which occurs at -161 C (-259 F) at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 TADOPTR invention by Drs. Greg Swift (LANL) and Ray Radebaugh (NIST) demonstrated the first technology to produce cryogenic refrigeration with no moving parts. Thermoacoustic engines and refrigerators use acoustic phenomena to produce refrigeration from heat. The basic driver and refrigerator consist of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. The liquefier development program is divided into two components: Thermoacoustically driven refrigerators and linear motor driven refrigerators (LOPTRs). LOPTR technology will, for the foreseeable future, be limited to natural gas liquefaction capacities on the order of hundreds of gallons per day. TASHE-OPTR technology is expected to achieve liquefaction capacities of tens of thousands of gallons per day. This paper will focus on the TASHE-OPTR technology because its natural gas liquefaction capacity has greater market opportunity. LOPTR development will be mentioned briefly. The thermoacoustically driven refrigerator development program is now in the process of demonstrating the technology at a capacity of about 500 gallon/day (gpd) i.e., approximately 42,000 standard cubic feet/day, which requires about 7 kW of refrigeration power. This capacity is big enough to illuminate the issues of large-scale acoustic liquefaction at reasonable cost and to demonstrate the liquefaction of about 70% of an input gas stream, while burning about 30%. Subsequent to this demonstration a system with a capacity of approximately 10{sup 6} standard cubic feet/day (scfd) = 10,000 gpd with a projected liquefaction rate of about 85% of the input gas stream will be developed. When commercialized, the TASHE-OPTRs will be a totally new type of heat-driven cryogenic refrigerator, with projected low manufacturing cost, high reliability, long life, and low maintenance. A TASHE-OPTR will be able to liquefy a broad range of gases, one of the most important being natural gas (NG). Potential NG applications range from distributed liquefaction of pipeline gas as fuel for heavy-duty fleet and long haul vehicles to large-scale liquefaction at on-shore and offshore gas wellheads. An alternative to the thermoacoustic driver, but with many similar technical and market advantages, is the linear motor compressor. Linear motors convert electrical power directly into oscillating linear, or axial, motion. Attachment of a piston to the oscillator results in a direct drive compressor. Such a compressor

Wollan, J. J. (John J.); Swift, G. W. (Gregory W.); Backhaus, S. N. (Scott N.); Gardner, D. L. (David L.)

2002-01-01T23:59:59.000Z

497

Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-11-01T23:59:59.000Z

498

Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

499

Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

500

Innovative Techniques of Multiphase Flow in Pipeline System for Oil?Gas Gathering and Transportation with Energy?Saving and Emission?Reduction  

Science Journals Connector (OSTI)

Multiphase flow measurement desanding dehumidification and heat furnace are critical techniques for the oil and gas gathering and transportation which influnce intensively the energy?saving and emission?reduction in the petroleum industry. Some innovative techniques were developed for the first time by the present research team including an online recognation instrument of multiphase flow regime a water fraction instrument for multuphase flow a coiled tube desanding separator with low pressure loss and high efficiency a supersonic swirling natural gas dehumifier and a vacuum phase?change boiler. With an integration of the above techniques a new oil gas gathering and transpotation system was proposed which reduced the establishment of one metering station and several transfer stations compared with the tranditional system. The oil and gas mixture transpotation in single pipes was realized. The improved techniques were applied in the oilfields in China and promoted the productivity of the oilfields by low energy consumption low emissions high efficiency and great security.

Bofeng Bai; Liejin Guo; Shaojun Zhang; Ximin Zhang; Hanyang Gu

2010-01-01T23:59:59.000Z