National Library of Energy BETA

Sample records for gas ocean including

  1. Method and apparatus for recovering a gas from a gas hydrate located on the ocean floor

    DOE Patents [OSTI]

    Wyatt, Douglas E. (Aiken, SC)

    2001-01-01

    A method and apparatus for recovering a gas from a gas hydrate on the ocean floor includes a flexible cover, a plurality of steerable base members secured to the cover, and a steerable mining module. A suitable source for inflating the cover over the gas hydrate deposit is provided. The mining module, positioned on the gas hydrate deposit, is preferably connected to the cover by a control cable. A gas retrieval conduit or hose extends upwardly from the cover to be connected to a support ship on the ocean surface.

  2. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  3. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  4. Natural Gas Delivered to Consumers in North Carolina (Including...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in North Carolina (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West Virginia (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in West Virginia (Million Cubic Feet) Year Jan Feb Mar Apr...

  6. Energy Department Expands Gas Gouging Reporting System to Include...

    Office of Environmental Management (EM)

    Washington, DC - Energy Secretary Samuel W. Bodman announced today that the Department of Energy has expanded its gas gouging reporting system to include a toll-free telephone ...

  7. DOE Considers Natural Gas Utility Service Options: Proposal Includes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30-mile Natural Gas Pipeline from Pasco to Hanford | Department of Energy Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford DOE Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford January 23, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is considering

  8. Natural Gas Delivered to Consumers in Texas (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Texas (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in Texas (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  9. Natural Gas Delivered to Consumers in New Mexico (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexico (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in New Mexico (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexico (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in New Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  11. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes

    SciTech Connect (OSTI)

    Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.

    2011-06-01

    Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope (150 m - 400 m) west of Svalbard suggests that this process may already have begun, but the source of the methane has not yet been determined. This study performs 2-D simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed gas release. The results show that shallow, low-saturation hydrate deposits, if subjected to recently observed or future predicted temperature changes at the seafloor, can release quantities of methane at the magnitudes similar to what has been observed, and that the releases will be localized near the landward limit of the GHSZ. Both gradual and rapid warming is simulated, along with a parametric sensitivity analysis, and localized gas release is observed for most of the cases. These results resemble the recently published observations and strongly suggest that hydrate dissociation and methane release as a result of climate change may be a real phenomenon, that it could occur on decadal timescales, and that it already may be occurring.

  12. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    Gasoline and Diesel Fuel Update (EIA)

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  13. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  14. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  15. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  16. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    SciTech Connect (OSTI)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  17. Energy Department Expands Gas Gouging Reporting System to Include 1-800

    Energy Savers [EERE]

    Number: 1-800-244-3301 | Department of Energy Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 Energy Department Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 September 6, 2005 - 9:50am Addthis Washington, DC - Energy Secretary Samuel W. Bodman announced today that the Department of Energy has expanded its gas gouging reporting system to include a toll-free telephone hotline. The hotline is available to American consumers starting

  18. EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

  19. Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 250 citations and includes a subject term index and title list.)

  20. Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 250 citations and includes a subject term index and title list.)

  1. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  2. Measurements of gas sorption from seawater and the influence of gas release on open-cycle ocean thermal energy conversion (OC-OTEC) system performance

    SciTech Connect (OSTI)

    Penney, T.R.; Althof, J.A.

    1985-06-01

    The technical community has questioned the validity and cost-effectiveness of open-cycle ocean thermal energy conversion (OC-OTEC) systems because of the unknown effect of noncondensable gas on heat exchanger performance and the power needed to run vacuum equipment to remove this gas. To date, studies of seawater gas desorption have not been prototypical for system level analysis. This study gives preliminary gas desorption data on a vertical spout, direct contact evaporator and multiple condenser geometries. Results indicate that dissolved gas can be substantially removed before the seawater enters the heat exchange process, reducing the uncertainty and effect of inert gas on heat exchanger performance.

  3. Federal Perspective on Opportunities for Hydrogen and Natural Gas for Transportation„Including a Natural Gas Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Perspective on Opportunities for Hydrogen and Natural Gas for Transportation Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles - Workshop American Gas Association, Washington, D.C. Fred Joseck Fuel Cell Technologies Office Office of Sustainable Transportation U.S. Department of Energy September 9, 2014 2 | Fuel Cell Technologies Office eere.energy.gov The Potential for Natural Gas in Transportation With ample NG resources available , four potential pathways to

  4. Casting Apparatus Including A Gas Driven Molten Metal Injector And Method

    DOE Patents [OSTI]

    Meyer, Thomas N. (Murrysville, PA)

    2004-06-01

    The casting apparatus (50) includes a holding vessel (10) for containing a supply of molten metal (12) and a casting mold (52) located above the holding vessel (10) and having a casting cavity (54). A molten metal injector (14) extends into the holding vessel (10) and is at least partially immersed in the molten metal (12) in the holding vessel (10). The molten metal injector (14) is in fluid communication with the casting cavity (54). The molten metal injector (14) has an injector body (16) defining an inlet opening (24) for receiving molten metal into the injector body (16). A gas pressurization source (38) is in fluid communication with the injector body (16) for cyclically pressurizing the injector body (16) and inducing molten metal to flow from the injector body (16) to the casting cavity (54). An inlet valve (42) is located in the inlet opening (24) in the injector body (16) for filling molten metal into the injector body (16). The inlet valve (42) is configured to prevent outflow of molten metal from the injector body (16) during pressurization and permit inflow of molten metal into the injector body (16) after pressurization. The inlet valve (42) has an inlet valve actuator (44) located above the surface of the supply of molten metal (12) and is operatively connected to the inlet valve (42) for operating the inlet valve (42) between open and closed positions.

  5. Ocean-current measurements at the Farallon Islands Low-Level Radioactive Waste Disposal Site, 1977-1978. Includes appendix. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-06-01

    The report discusses the results of ocean bottom current measurements obtain from the Farallon Islands Low-Level Waste Disposal Site off the California coast, near San Francisco. The report includes a discussion of the velocity of the currents over the time period and area measured relative to large-scale currents off the California coast, and the possibility for shoreward transport of LLW Materials from the Farallon Islands Site.

  6. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 2 of 2

    SciTech Connect (OSTI)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate saturations. Large volumes (of order one pore volume) of gaseous and aqueous phases must be transported into the gas hydrate stability zone. The driver for this transport is the pressure sink induced by a reduction in occupied pore volume that accompanies the formation of hydrate from gas and water. Pore-scale imbibition models and bed-scale multiphase flow models indicate that the rate-limiting step in converting gas to hydrate is the supply of water to the hydrate stability zone. Moreover, the water supply rate is controlled by capillarity-driven flux for conditions typical of the Alaska North Slope. A meter-scale laboratory experiment confirms that significant volumes of fluid phases move into the hydrate stability zone and that capillarity is essential for the water flux. The model shows that without capillarity-driven flux, large saturations of hydrate cannot form. The observations of thick zones of large saturation at Mallik and Mt Elbert thus suggest that the primary control on these systems is the rate of transport of gaseous and aqueous phases, driven by the pressure sink at the base of the gas hydrate stability zone. A key finding of our project is the elucidation of ?capillary fracturing? as a dominant gas transport mechanism in low-permeability media. We initially investigate this phenomenon by means of grain-scale simulations in which we extended a discrete element mechanics code (PFC, by Itasca) to incorporate the dynamics of first singlephase and then multiphase flow. A reductionist model on a square lattice allows us to determine some of the fundamental dependencies of the mode of gas invasion (capillary fingering, viscous fingering, and fracturing) on the parameters of the system. We then show that the morphology of the gas-invaded region exerts a fundamental control on the fabric of methane hydrate formation, and on the overpressures caused by methane hydrate dissociation. We demonstrate the existence of the different invasion regimes by means of controlled laboratory experiments in a radial cell. We collapse the behavior in the form of a phase dia

  7. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 1 of 2

    SciTech Connect (OSTI)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate saturations. Large volumes (of order one pore volume) of gaseous and aqueous phases must be transported into the gas hydrate stability zone. The driver for this transport is the pressure sink induced by a reduction in occupied pore volume that accompanies the formation of hydrate from gas and water. Pore-scale imbibition models and bed-scale multiphase flow models indicate that the rate-limiting step in converting gas to hydrate is the supply of water to the hydrate stability zone. Moreover, the water supply rate is controlled by capillarity-driven flux for conditions typical of the Alaska North Slope. A meter-scale laboratory experiment confirms that significant volumes of fluid phases move into the hydrate stability zone and that capillarity is essential for the water flux. The model shows that without capillarity-driven flux, large saturations of hydrate cannot form. The observations of thick zones of large saturation at Mallik and Mt Elbert thus suggest that the primary control on these systems is the rate of transport of gaseous and aqueous phases, driven by the pressure sink at the base of the gas hydrate stability zone. A key finding of our project is the elucidation of ?capillary fracturing? as a dominant gas transport mechanism in low-permeability media. We initially investigate this phenomenon by means of grain-scale simulations in which we extended a discrete element mechanics code (PFC, by Itasca) to incorporate the dynamics of first single-phase and then multiphase flow. A reductionist model on a square lattice allows us to determine some of the fundamental dependencies of the mode of gas invasion (capillary fingering, viscous fingering, and fracturing) on the parameters of the system. We then show that the morphology of the gas-invaded region exerts a fundamental control on the fabric of methane hydrate formation, and on the overpressures caused by methane hydrate dissociation. We demonstrate the existence of the different invasion regimes by means of controlled laboratory experiments in a radial cell. We collapse the behavior in the form of a phase di

  8. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  9. Casting Apparatus Including A Gas Driven Molten Metal Injector And Method

    DOE Patents [OSTI]

    Trudel, David R. (Westlake, OH); Meyer, Thomas N. (Murrysville, PA); Kinosz, Michael J. (Apollo, PA); Arnaud, Guy (Morin Heights, CA); Bigler, Nicolas (Riviere-Beaudette, CA)

    2003-06-17

    The filtering molten metal injector system includes a holder furnace, a casting mold supported above the holder furnace, and at least one molten metal injector supported from a bottom side of the casting mold. The holder furnace contains a supply of molten metal. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The molten metal injector projects into the holder furnace. The molten metal injector includes a cylinder defining a piston cavity housing a reciprocating piston for pumping the molten metal upward from the holder furnace to the mold cavity. The cylinder and piston are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder or the piston includes a molten metal intake for receiving the molten metal into the piston cavity when the holder furnace contains molten metal. A conduit connects the piston cavity to the mold cavity. A molten metal filter is located in the conduit for filtering the molten metal passing through the conduit during the reciprocating movement of the piston. The molten metal intake may be a valve connected to the cylinder, a gap formed between the piston and an open end of the cylinder, an aperture defined in the sidewall of the cylinder, or a ball check valve incorporated into the piston. A second molten metal filter preferably covers the molten metal intake to the injector.

  10. Study concerning the utilization of the ocean spreading center environment for the conversion of biomass to a liquid fuel. (Includes Appendix A: hydrothermal petroleum genesis). [Supercritical water

    SciTech Connect (OSTI)

    Steverson, M.; Stormberg, G.

    1985-01-01

    This document contains a report on the feasibility of utilizing energy obtained from ocean spreading centers as process heat for the conversion of municipal solid wastes to liquid fuels. The appendix contains a paper describing hydrothermal petroleum genesis. Both have been indexed separately for inclusion in the Energy Data Base. (DMC)

  11. Ocean thermal energy conversion gas desorption studies. Volume 1. Design of experiments. [Open-cycle power systems

    SciTech Connect (OSTI)

    Golshani, A.; Chen, F.C.

    1980-10-01

    Seawater deaeration is a process affecting almost all proposed Ocean Thermal Energy Conversion (OTEC) open-cycle power systems. If the noncondensable dissolved air is not removed from a power system, it will accumulate in thecondenser, reduce the effectiveness of condensation, and result in deterioration of system performance. A gas desorption study is being conducted at Oak Ridge National Laboratory (ORNL) with the goal of mitigating these effects; this study is designed to investigate the vacuum deaeration process for low-temperature OTEC conditions where conventional steam stripping deaeration may not be applicable. The first in a series describing the ORNL studies, this report (1) considers the design of experiments and discusses theories of gas desorption, (2) reviews previous relevant studies, (3) describes the design of a gas desorption test loop, and (4) presents the test plan for achieving program objectives. Results of the first series of verification tests and the uncertainties encountered are also discussed. A packed column was employed in these verification tests and test data generally behaved as in previous similar studies. Results expressed as the height of transfer unit (HTU) can be correlated with the liquid flow rate by HTU = 4.93L/sup 0/ /sup 25/. End effects were appreciable for the vacuum deaeration system, and a correlation of them to applied vacuum pressure was derived.

  12. Federal Perspective on Opportunities for Hydrogen and Natural Gas for Transportation„Including a Hydrogen Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Mark S. Smith Vehicle Technologies Office/ Clean Cities Team September 9, 2014 2 * Nearly 600,000 AFVs on the road in the US * Over 14,500 alternative fueling and charging stations * Long term goal of 2.5B gal/year by 2020 Alternative Fuel use during Clean Cities 20+ year history Nearly 6.5 Billion Gallons of Petroleum Reduction since 1993 3 Natural Gas dominates current alt-fuel

  13. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  14. ARM - Oceans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListOceans Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oceans Water vapor in the air eventually condenses and falls as rain, snow, sleet, or hail. Water that falls on land collects in rivers which carry it back to the ocean. The return of water to the ocean may be slowed when water

  15. MHK technology developments include current

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology developments include current energy conversion (CEC) devices, for example, hydrokinetic turbines that extract power from water currents (riverine, tidal, and ocean) and wave energy conversion (WEC) devices that extract power from wave motion. Sandia's MHK research leverages decades of experience in engineering, design, and analysis of wind power technologies, and its vast research complex, including high- performance computing (HPC), advanced materials and coatings, nondestructive

  16. OCEANS'13 MTS/IEEE SAN DIEGO, SEPTEMBER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... They benefit from converting energy into usable power from highly dense energy resources, includ- ing: river, tidal and ocean currents, and ocean waves. In this paper, a simple ...

  17. List of Ocean Thermal Incentives | Open Energy Information

    Open Energy Info (EERE)

    Cells Fuel Cells using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydrogen Landfill Gas Methanol Ocean Thermal Photovoltaics Renewable Fuels Small Hydroelectric...

  18. Oceans '86 conference record

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    These five volumes represent the proceedings of the Oceans '86 Conference Washington, DC, 23-25 September 1986. Volume 1 includes papers on Underwater Photography and Sensing; Marine Recreation; Diving; CTACTS (Charleston Tactical Aircrew Combat Training System); Offshore and Coastal Structures; Underwater Welding, Burning and Cutting; Advances in Ocean Mapping; Ocean Energy; Biofouling and Corrosion; Moorings, Cables and Connections; Marine Minerals; Remote Sensing and Satellites; and Acoustics Analysis. Volume 2 covers Data Base Management; Modeling and Simulation; Ocean Current Simulation; Instrumentation; Artificial Reefs and Fisheries; US Status and Trends; Education and Technology Transfer; Economic Potential and Coastal Zone Management; and Water Quality. Volume 3 includes papers on National and Regional Monitoring Strategies; New Techniques and Strategies for Monitoring; Indicator Parameters/Organisms; Historical Data; Crystal Cube for Coastal and Estuarine Degradation; and the Monitoring Gap. Volume 4 covers the Organotin Symposium - Chemistry; Toxicity Studies; and Environmental Monitoring and Modeling. Volume 5 includes papers on Advances in Oceanography; Applied Oceanography; Unmanned Vehicles and ROV's; Manned Vehicles; and Oceanographic Ships.

  19. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    SciTech Connect (OSTI)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi Sea, in spite of the fact that these areas do not have highest potential for future hydrocarbon reserves. Opportunities for improving the mapping and assessment of Arctic hydrocarbon resources include: 1) Refining hydrocarbon potential on a basin-by-basin basis, 2) Developing more realistic and detailed distribution of gas hydrate, and 3) Assessing the likely future scenarios for development of infrastructure and their interaction with hydrocarbon potential. It would also be useful to develop a more sophisticated approach to merging conventional and gas hydrate resource potential that considers the technical uncertainty associated with exploitation of gas hydrate resources. Taken together, additional work in these areas could significantly improve our understanding of the exploitation of Arctic hydrocarbons as ice-free areas increase in the future.

  20. ocean energy technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers ocean energy technologies HomeTag:ocean ...

  1. Power generation method including membrane separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  2. A predictive ocean oil spill model

    SciTech Connect (OSTI)

    Sanderson, J.; Barnette, D.; Papodopoulos, P.; Schaudt, K.; Szabo, D.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Initially, the project focused on creating an ocean oil spill model and working with the major oil companies to compare their data with the Los Alamos global ocean model. As a result of this initial effort, Los Alamos worked closely with the Eddy Joint Industry Project (EJIP), a consortium oil and gas producing companies in the US. The central theme of the project was to use output produced from LANL`s global ocean model to look in detail at ocean currents in selected geographic areas of the world of interest to consortium members. Once ocean currents are well understood this information could be used to create oil spill models, improve offshore exploration and drilling equipment, and aid in the design of semi-permanent offshore production platforms.

  3. Intentionally Including - Engaging Minorities in Physics Careers |

    Office of Environmental Management (EM)

    Department of Energy Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers April 24, 2013 - 4:37pm Addthis Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the American Institute of

  4. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  5. Ocean energy resources: the impact of OTEC

    SciTech Connect (OSTI)

    Ditmars, J.D.

    1980-01-01

    The status of OTEC technological development is summarized with emphasis on the potential impacts of OTEC power production on the ocean environment, including implications for impacts to climate. (MHR)

  6. Current practices and new technology in ocean engineering

    SciTech Connect (OSTI)

    McGuinness, T.; Shih, H.H.

    1986-01-01

    This book presents the papers given at a conference on wave power and marine engineering. Topics considered at the conference included remote sensing, ocean current measurement, air and spaceborne instrumentation, marine dynamics, real-time measurements, telemetry systems, seafloor measurement, computer-based data acquisition, materials and devices for underwater work systems, ocean system design analysis and reliability, ocean structure fatigue life prediction, underwater life support systems, sensor design, ocean thermal energy conversion, and wave energy converters.

  7. Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming

    SciTech Connect (OSTI)

    Luo, Yiyong; Lu, Jian; Liu, Fukai; Liu, Wei

    2015-10-10

    The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although the weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.

  8. Oceanic Trace Gases Numeric Data Packages from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following numeric data packages under the broad heading of Oceanic Trace Gases: Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 ( 01/11/05 - 022405) • Determination of Carbon Dioxide, Hydrographic, and Chemical Parameters during the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 050396 - 070496) • Inorganic Carbon, Nutrient, and Oxygen Data from the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16N_2003a (060403 – 081103) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 010494 - 032194) • Global Ocean Data Analysis Project GLODAP: Results and Data • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (1102 – 120596) and A24, A20, and A22 (053097 – 090397) • Carbon Dioxide, Hydrographic and Chemical Data Obtained During the Nine R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; 120 194 – 012296) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, 032994 - 051294) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruise 138-3, -4, and -5 in the South Pacific Ocean (WOCE Sections P6E, P6C, and P6W, 050292 - 073092) • Global Distribution of Total Inorganic Carbon and Total Alkalinity below the deepest winter mixed layer depths • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V John V. Vickers Cruise in the Pacific Ocean (WOCE Section P13, NOAA CGC92 Cruise, 080492 – 102192) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Hesperides Cruise in the Atlantic Ocean (WOCE Section A5, 071492 - 081592) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean (WOCE Section P10, 100593 – 111093) • The International Intercomparison Exercise of Underway fCO2 Systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean • Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, Dec. 1992-Jan, 1993) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the South Pacific Ocean (WOCE Sections P16A/P17A, P17E/P19S, and P19C, R/V Knorr , Oct. 1992-April 1993) • Surface Water and Atmospheric Underway Carbon Data Obtained During the World Ocean Circulation Experiment Indian Ocean Survey Cruises (R/V Knorr, Dec. 1994 – Jan, 1996) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Akademik Ioffe Cruise in the South Pacific Ocean (WOCE Section S4P, Feb.-April 1992) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-1 in the Equatorial Pacific Ocean (WOCE section P17C) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-3 in the Equatorial Pacific Ocean (WOCE section P16C) • Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During R/V Meteor Cruise 18/1 in the North Atlantic Ocean (WOCE Section A1E) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the Central South Pacific Ocean (WOCE Sections P17S and P16S) during the TUNES-2 Expedition of the R/V Thomas Washington, July-August, 1991 • Total Carbon Dioxide, Hydrographic, and Nitrate Measurements in the Southwest Pacific during Austral Autumn, 1990: Results from NOAA/PMEL CGC-90 Cruise • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 15/3 in the South Atlantic Ocean (WOCE Section A9, February March 1991) • Carbon Dioxide Concentrations in Surface Water and the Atmosphere During 1986-1989 NOAA/PMEL Cruises in the Pacific and Indian Oceans • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 11/5 in the South Atlantic and Northern Weddell Sea Areas (WOCE sections A-12 and A-21) • Surface Water and Atmospheric Carbon Dioxide and Nitrous Oxide Observations by Shipboard Automated Gas Chromatography: Results from Expeditions Between 1977 and 1990 • Indian Ocean Radiocarbon: Data from the INDIGO 1, 2, and 3 Cruises • Carbonate Chemistry of the North Pacific Ocean • Carbonate Chemistry of the Weddell Sea • GEOSECS Atlantic, Pacific, Indian, and Mediterranean Radiocarbon Data •\tTransient Tracers in the Oceans (TTO) - Hydrographic Data and Carbon Dioxide Systems with Revised Carbon Chemistry Data.

  9. ARM - Oceanic Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oceanic Properties Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oceanic Properties There are some other aspects that need to be examined regarding the imbalances in the current carbon cycle. First let's look at the effects of the ocean gaining 2 gigatonnes (1 gigatonne = 1x1012 kilograms)

  10. Ocean Energy Technology Overview

    SciTech Connect (OSTI)

    none,

    2009-08-05

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  11. Publication in Ocean Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Current EC Partnerships How to Partner Small Business Vouchers Pilot at Sandia National Laboratories Social Twitter Google + Vimeo GovDelivery SlideShare Publication in Ocean ...

  12. Mass Save (Gas)- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Mass Save, through Gas Networks, organizes residential conservation services for programs administered by Massachusetts gas companies. These gas providers include Columbia Gas of Massachusetts,...

  13. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas...

  14. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  15. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    SciTech Connect (OSTI)

    Eden, H.F.; Mooers, C.N.K.

    1990-06-01

    The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological, chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions.

  16. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  17. Ocean floor mounting of wave energy converters

    DOE Patents [OSTI]

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  18. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  19. Ocean energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71% of the earth's surface, they collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy's (DOE) Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy cost-effectively and in a way that does not harm the environment. The program seeks to develop ocean energy technology to a point where industry can accurately assess whether the technology is a viable energy conversion alternative, or supplement, to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the OET Program is concentrating on research that advances the OTEC technology. The program also continues to monitor and study developments in wave energy, ocean current, and salinity gradient concepts; but it is not actively developing these technologies now. 13 figs.

  20. Role of the oceans in the atmospheric cycle of carbonyl sulfide. Doctoral thesis

    SciTech Connect (OSTI)

    Johnson, J.E.

    1985-01-01

    Carbonyl sulfide (OCS) is both the dominant sulfur gas in the remote troposphere and, along with volcanoes, a major source of sulfur for the stratospheric sulfate layer. Prior to this work the ocean was regarded as a major sink for atmospheric OCS. The purpose of this study has been to assess the magnitude of the global air-sea flux of OCS. The author designed an analytical system which was centered around a Varian-3700 gas chromatograph with a flame-photometric detector. To increase the sensitivity of the detector, the hydrogen gas for the flame was doped with sulfur hexafloride. Air samples were concentrated in a liquid nitrogen cooled freeze-out loop, then injected into the gas chromatograph. Water samples purged with sulfur-free zero-air which was analyzed similarly. The author also built a permeation tube system for chemical standardization. This equipment was taken on two oceanographic cruises on the Pacific Ocean on board the NOAA ship DISCOVERER, one in the spring of 1983 and a second in the spring of 1984. Both of these cruises included measurements of air and sea-water concentrations of OCS.

  1. Role of the oceans in the atmospheric cycle of carbonyl sulfide

    SciTech Connect (OSTI)

    Johnson, J.E.

    1985-01-01

    Carbonyl sulfide (OCS) is both the dominant sulfur gas in the remote troposphere and, along with volcanoes, a major source of sulfur for the stratospheric sulfate layer. Prior to this work the ocean was regarded as a major sink for atmospheric OCS. The purpose of this study has been to assess the magnitude of the global air-sea flux of OCS. The author designed an analytical system which was centered around a Varian-3700 gas chromatograph with a flame-photometric detector. To increase the sensitivity of the detector, the hydrogen gas for the flame was doped with sulfur hexafluoride. Air samples were concentrated in a liquid nitrogen cooled freeze-out loop, then injected into the gas chromatograph. Water samples purged with sulfur-free zero-air which was analyzed similarly. He also built a permeation tube system for chemical standardization. This equipment was taken on two oceanographic cruises on the Pacific Ocean, one in the spring of 1983 and a second in the spring of 1983. Both of these cruises included measurements of air and seawater concentrations of OCS from the equator to the Aleutian Islands. The Henry's law constant of solubility for OCS was measured in the laboratory for filtered and boiled seawater at three temperatures.

  2. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  3. Flexible ocean upwelling pipe

    DOE Patents [OSTI]

    Person, Abraham (Los Alamitos, CA)

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  4. Simple ocean carbon cycle models

    SciTech Connect (OSTI)

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... natural gas that could be produced with current technology, regardless of oil and natural ... a northeast- southwest trending trough related to the Atlantic Ocean continental breakup. ...

  6. Systematic expansion of porous crystals to include large molecules | Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Systematic expansion of porous crystals to include large molecules

  7. Ocean energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71{percent} of the earth's surface, this stored energy is realized as waves, currents, and thermal salinity gradients. The purpose of the federal Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy in a cost-effective and environmentally acceptable manner. The OET Program seeks to develop ocean energy technology to a point where the commercial sector can assess whether applications of the technology are viable energy conversion alternatives or supplements to systems. Past studies conducted by the US Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to United States energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. Current program emphasis has shifted to open-cycle OTEC power system research because the closed-cycle OTEC system is at a more advanced stage of development and has already attracted industrial interest. During FY 1989, the OET Program focused primarily on the technical uncertainties associated with near-shore open-cycle OTEC systems ranging in size from 2 to 15 MW{sub e}. Activities were performed under three major program elements: thermodynamic research and analysis, experimental verification and testing, and materials and structures research. These efforts addressed a variety of technical problems whose resolution is crucial to demonstrating the viability of open-cycle OTEC technology. This publications is one of a series of documents on the Renewable Energy programs sponsored by the US Department of Energy. An overview of all the programs is available, entitled Programs in Renewable Energy.

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,961 1,672 2,338 1970's 3,220 3,604 3,678 3,323 3,441 3,894 3,814 3,846 4,467 5,023 1980's 864...

  9. Natural Gas Delivered to Consumers in Maine (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,290 5,716 6,572 2000's 43,971 94,569 100,659 69,973 85,478 61,088 63,541 62,430 69,202 69,497...

  10. Natural Gas Delivered to Consumers in Alaska (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 12,927 11,677 12,492 10,557 9,618 8,588 9,860 10,185 9,784 11,290 11,926 13,523 2002 12,414 11,258 11,090 10,310 10,076 11,260 10,510 9,907 9,717 10,827 10,291 11,621 2003 9,731 8,407 9,561 9,112 8,639 8,518 8,461 8,717 8,895 10,027 9,481 10,141 2004 12,414 10,221 10,996 9,967 9,462 9,831 9,829 8,537 9,512 9,377 9,374 11,436 2005 11,592 10,185 10,627 9,847 9,809 9,712 10,596 10,360 10,325 10,740 11,792 11,516 2006

  11. Natural Gas Delivered to Consumers in Arizona (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 19,804 23,088 21,742 19,153 21,113 17,703 18,312 16,919 14,352 14,127 12,164 19,204 2002 19,840 19,954 18,340 14,544 14,463 17,262 23,546 22,088 20,988 19,112 17,712 21,662 2003 20,639 18,895 21,753 16,848 14,559 16,858 28,981 30,940 25,278 24,409 16,317 18,043 2004 25,379 30,143 26,925 23,982 26,878 29,819 35,860 33,244 27,591 23,349 23,090 26,140 2005 24,400 22,209 17,591 20,779 22,660 23,609 35,036 34,587

  12. Natural Gas Delivered to Consumers in Arkansas (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,139 20,654 21,940 16,528 13,819 12,558 14,779 16,061 15,014 18,239 19,675 22,233 2002 24,431 24,940 22,284 19,166 15,635 16,964 18,741 17,700 16,789 16,932 17,770 21,567 2003 27,116 27,256 22,904 18,625 17,603 17,849 18,208 18,467 15,282 16,402 16,960 20,603 2004 24,746 25,909 21,663 16,382 15,991 14,085 14,456 14,551 11,956 14,094 13,138 18,337 2005 22,386 19,719 19,170 15,597 14,643 15,315 16,703 17,392

  13. Natural Gas Delivered to Consumers in California (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 256,236 225,525 210,711 198,804 182,600 174,840 186,844 204,883 185,162 184,119 174,839 213,717 2002 223,346 185,421 206,416 162,875 156,501 163,505 194,816 189,345 177,933 177,028 170,370 208,568 2003 206,909 199,691 190,785 169,036 156,895 155,289 190,664 186,767 182,143 179,341 181,360 216,415 2004 225,305 217,935 193,344 178,944 167,463 166,916 190,886 192,642 188,814 186,336 205,784 235,615 2005 228,279

  14. Natural Gas Delivered to Consumers in Delaware (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 5,014 4,742 5,389 3,439 2,924 3,276 3,324 4,609 4,923 5,078 3,908 3,419 2002 5,258 4,880 4,847 3,830 2,810 2,738 6,396 3,816 4,170 3,843 3,936 5,597 2003 6,397 5,499 5,102 3,399 2,081 2,433 3,570 3,550 2,728 2,949 3,547 4,833 2004 6,827 5,602 4,600 3,387 3,731 2,595 2,620 2,437 2,880 2,484 4,033 6,759 2005 6,870 5,543 5,427 2,696 2,517 2,866 3,287 3,735 2,652 2,870 3,515 4,876 2006 5,025 4,699 4,451 2,549 2,659

  15. Natural Gas Delivered to Consumers in Florida (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 34,086 30,338 35,463 39,708 42,466 46,947 53,430 53,352 55,306 52,955 42,205 47,598 2002 50,177 41,302 50,453 55,845 56,767 62,343 67,197 70,144 65,136 64,259 47,600 45,144 2003 53,384 43,538 54,761 51,487 62,575 58,312 64,041 61,764 62,150 59,558 56,488 50,525 2004 50,877 49,866 51,687 53,442 62,663 69,628 72,443 70,540 70,259 66,961 50,122 53,169 2005 59,417 49,956 60,238 55,269 64,436 69,719 90,376 84,114

  16. Natural Gas Delivered to Consumers in Georgia (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 49,414 34,292 35,867 25,368 20,633 20,544 24,229 26,863 21,857 25,679 23,983 34,450 2002 44,041 37,992 33,260 23,775 22,612 24,924 30,113 29,701 24,899 23,785 32,829 47,106 2003 56,470 43,704 31,355 30,232 21,920 20,512 23,789 26,828 21,628 22,981 26,920 45,508 2004 52,486 48,806 31,529 28,718 26,610 24,562 26,132 26,093 22,927 22,025 29,012 49,125 2005 47,756 39,503 39,085 25,191 23,198 26,957 31,619 33,089

  17. Natural Gas Delivered to Consumers in Hawaii (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 253 237 247 243 237 244 242 227 226 220 217 225 2002 236 226 225 234 226 224 239 222 224 215 227 236 2003 251 236 234 229 226 218 224 218 223 218 216 239 2004 243 230 239 240 221 235 229 222 226 221 230 236 2005 242 225 240 240 245 238 224 225 226 218 229 240 2006 241 226 242 237 239 235 229 222 233 223 223 231 2007 259 226 229 232 234 244 241 218 223 244 256 244 2008 245 237 235 238 225 233 238 211 211 206 204

  18. Natural Gas Delivered to Consumers in Idaho (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,061 8,656 6,890 5,799 4,539 3,728 4,106 4,145 4,609 5,611 7,528 8,984 2002 8,747 8,547 7,861 5,699 4,667 3,654 3,038 2,812 3,303 4,162 5,950 7,000 2003 7,519 7,632 7,150 5,498 4,487 3,443 4,268 3,399 3,902 3,977 6,312 7,657 2004 10,168 9,168 7,032 4,556 4,391 3,602 3,672 3,601 3,844 4,668 6,536 8,238 2005 9,355 8,465 6,757 6,168 3,946 3,381 3,511 3,614 3,733 4,635 6,142 9,403 2006 8,375 8,140 7,439 5,455 3,877

  19. Natural Gas Delivered to Consumers in Indiana (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 77,275 61,840 57,608 37,045 27,762 26,685 25,473 29,184 25,697 34,650 39,146 51,997 2002 65,893 58,962 58,569 44,882 32,659 27,696 30,899 30,668 28,357 37,204 49,556 68,056 2003 80,534 70,155 52,368 35,903 31,266 25,652 24,580 26,666 27,072 34,914 46,556 64,253 2004 80,680 70,341 53,056 37,842 30,840 25,006 25,592 27,498 26,658 33,102 43,630 65,054 2005 72,775 58,428 61,390 39,473 30,697 28,897 28,628 29,602

  20. Natural Gas Delivered to Consumers in Kansas (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 35,585 27,368 26,284 16,906 10,552 11,171 18,862 17,962 13,422 11,375 14,263 20,610 2002 28,513 25,068 25,566 17,348 13,424 13,947 18,253 20,062 15,937 13,007 21,946 26,371 2003 31,180 29,594 25,952 16,337 13,386 11,371 15,614 15,421 13,725 13,096 15,980 25,771 2004 30,087 29,036 21,955 15,496 13,148 12,282 11,912 13,013 13,177 13,809 15,207 23,992 2005 29,876 25,291 20,604 15,459 12,953 11,687 13,164 13,264

  1. Natural Gas Delivered to Consumers in Kentucky (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 31,659 23,182 21,670 14,953 9,527 8,890 9,668 9,881 10,024 12,591 16,271 23,216 2002 26,131 24,533 23,241 14,879 12,317 11,623 13,804 10,869 11,129 14,628 21,069 27,646 2003 34,776 29,032 20,580 14,017 10,797 9,334 9,467 10,296 10,390 13,196 16,933 27,218 2004 32,640 27,566 21,630 15,771 12,331 11,249 10,810 11,428 10,883 13,355 17,689 27,203 2005 29,373 24,036 24,578 15,557 13,614 13,693 12,658 14,134 12,122

  2. Natural Gas Delivered to Consumers in Louisiana (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 90,750 82,773 86,038 87,577 81,223 77,877 93,937 105,743 93,365 92,353 85,277 92,797 2002 102,807 96,945 102,315 94,281 91,511 97,058 107,870 109,348 97,986 94,054 96,857 102,289 2003 106,504 91,821 89,554 89,376 88,426 78,863 91,469 95,243 85,824 84,198 83,677 94,139 2004 101,114 98,005 96,851 86,763 89,143 89,075 96,344 98,583 93,156 94,397 89,577 99,046 2005 102,652 87,403 100,620 97,398 104,027 102,860 104,234

  3. Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6,537 6,903 6,950 5,791 7,780 6,957 8,161 9,020 8,835 8,864 9,644 9,127 2002 9,857 10,737 9,131 9,186 10,030 9,602 7,965 10,909 8,186 10,974 12,161 11,924 2003 8,047 5,034 5,581 5,924 4,577 4,916 6,000 5,629 5,606 6,652 5,970 6,036 2004 7,095 8,049 7,635 7,137 6,496 6,314 6,648 7,333 6,100 7,027 7,786 7,858 2005 5,882 5,823 5,955 5,764 4,162 5,163 5,883 6,097 4,936 4,955 4,236 2,234 2006 3,888 4,850 5,239 4,090

  4. Natural Gas Delivered to Consumers in Maryland (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 28,398 21,618 21,408 13,900 9,252 8,342 9,046 11,007 9,109 12,662 13,558 17,125 2002 24,221 22,802 20,670 12,534 8,846 8,846 10,514 12,842 10,157 12,911 20,408 28,827 2003 31,739 28,530 21,240 15,685 9,809 8,723 8,128 7,986 7,131 11,863 16,167 27,049 2004 33,576 27,062 20,558 14,623 9,867 8,560 7,704 8,271 7,535 11,725 16,222 26,279 2005 29,469 25,497 24,272 13,414 10,273 10,104 9,641 11,634 8,302 12,060 16,807

  5. Natural Gas Delivered to Consumers in Michigan (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 133,140 112,047 111,301 76,191 48,707 41,686 43,845 44,577 40,142 59,283 71,352 92,053 2002 119,902 108,891 104,208 87,138 63,810 52,457 51,899 47,094 40,938 53,419 82,015 114,268 2003 140,545 133,702 114,085 80,651 53,258 37,279 35,261 42,115 32,744 49,901 69,659 99,067 2004 137,906 127,671 102,442 76,978 54,610 41,310 38,001 37,565 37,285 48,239 71,870 107,025 2005 133,079 112,812 108,608 72,884 50,886 47,768

  6. Natural Gas Delivered to Consumers in Minnesota (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 49,278 47,192 40,209 25,541 15,943 13,524 13,674 14,855 14,705 22,582 25,778 38,517 2002 45,190 38,565 44,505 28,680 21,749 14,684 15,388 15,077 14,862 27,484 37,214 45,054 2003 53,794 50,612 39,189 26,415 18,135 12,708 14,981 15,594 14,570 22,649 35,945 46,332 2004 58,327 45,894 36,866 24,741 17,416 14,831 14,126 13,324 14,266 21,849 31,497 46,174 2005 56,027 41,821 38,832 22,877 17,882 17,797 17,093 17,307

  7. Natural Gas Delivered to Consumers in Mississippi (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,479 16,635 19,646 21,739 20,948 20,348 30,696 31,715 28,537 28,525 24,653 28,356 2002 29,331 28,518 28,650 25,702 23,117 27,335 33,509 29,104 24,492 19,663 18,433 24,444 2003 29,743 24,826 20,395 19,195 18,492 16,946 17,613 19,394 16,780 14,228 16,133 21,577 2004 23,187 23,828 21,311 19,087 24,565 21,821 24,034 23,064 18,228 18,641 15,628 21,305 2005 23,881 20,984 23,827 18,047 21,247 24,690 29,577 32,966

  8. Natural Gas Delivered to Consumers in Missouri (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 51,986 40,694 34,239 22,717 13,209 12,679 16,175 16,218 12,056 13,682 18,230 29,876 2002 39,936 35,157 34,198 24,362 15,624 13,116 15,351 13,593 11,804 14,038 22,945 32,834 2003 42,257 42,379 33,569 21,083 13,307 10,498 12,889 15,215 9,788 10,817 17,229 30,354 2004 41,477 43,268 30,344 20,642 15,737 12,404 12,556 11,676 12,399 11,977 16,704 31,367 2005 42,227 35,965 31,014 19,890 15,686 13,519 13,855 14,649 12,548

  9. Natural Gas Delivered to Consumers in Montana (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,993 8,301 5,782 5,036 3,055 2,439 2,359 2,152 2,135 3,446 5,081 6,696 2002 7,738 6,859 7,247 5,853 4,084 2,965 2,265 2,298 2,711 4,300 5,929 6,147 2003 7,471 6,977 6,706 4,682 3,515 2,729 2,042 2,006 2,468 3,629 6,282 7,503 2004 8,787 6,926 5,508 3,906 3,279 2,725 2,154 2,098 2,533 3,912 5,268 6,895 2005 8,717 6,227 5,828 4,563 3,517 2,678 2,135 2,426 2,551 4,121 4,933 7,501 2006 7,064 7,060 7,344 4,972 3,562

  10. Natural Gas Delivered to Consumers in Nebraska (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17,481 15,747 13,983 11,129 7,094 5,429 8,556 6,368 5,506 5,854 10,730 11,012 2002 16,123 14,049 12,938 10,424 6,676 4,984 8,748 7,414 6,786 6,218 9,753 13,269 2003 15,675 15,319 13,354 8,644 6,232 4,472 7,653 7,469 5,904 6,758 8,775 13,011 2004 16,104 16,445 12,058 7,983 6,255 5,830 6,952 6,641 4,338 5,935 8,995 13,129 2005 17,242 14,641 11,440 8,360 6,579 5,853 7,874 8,028 6,345 6,081 8,200 13,733 2006 15,551

  11. Natural Gas Delivered to Consumers in Nevada (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 19,952 19,433 17,795 12,312 12,723 11,650 12,329 14,023 12,067 12,854 12,525 17,842 2002 18,621 16,951 15,943 11,123 11,789 13,044 14,033 14,618 13,988 13,798 14,840 16,521 2003 17,053 15,548 15,238 12,410 12,410 13,355 17,113 17,666 15,088 14,301 14,598 18,798 2004 19,886 20,030 14,760 11,514 13,220 16,819 20,333 19,864 17,480 16,556 18,897 22,720 2005 23,220 21,494 17,907 16,239 13,790 15,823 20,156 20,490

  12. Natural Gas Delivered to Consumers in New Hampshire (Including Vehicle

    Gasoline and Diesel Fuel Update (EIA)

    Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,171 3,309 2,951 2,280 1,441 1,134 1,003 888 1,182 1,589 1,904 2,520 2002 2,917 3,188 2,833 2,179 1,815 1,423 1,657 1,055 1,381 1,038 1,847 3,507 2003 6,844 6,457 5,490 3,772 3,085 2,034 3,900 5,640 4,166 4,643 3,574 4,515 2004 5,204 7,595 6,870 6,131 2,712 4,473 4,167 4,306 4,766 3,194 5,704 6,026 2005 6,958 7,545 6,875 5,691 6,049 5,824 5,780 6,010 4,491 4,069 5,173 5,988 2006 7,782 6,823 7,852 4,511

  13. Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 136,340 110,078 102,451 66,525 41,541 34,864 34,025 32,667 33,129 48,517 59,935 87,118 2002 106,011 98,576 94,429 70,082 51,854 40,885 40,538 38,774 34,999 51,972 76,275 108,800 2003 140,436 123,688 99,629 65,861 43,326 32,959 33,810 37,562 32,918 52,253 65,617 103,846 2004 137,568 117,976 93,845 67,347 46,827 33,561 34,567 34,689 34,129 47,268 64,279 99,290 2005 122,404 107,459 105,183 63,669 47,239 37,221 35,833

  14. Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 45,337 36,026 35,468 29,023 26,153 28,194 41,056 38,697 30,910 29,194 26,719 33,193 2002 42,957 42,546 40,981 36,989 28,784 31,741 39,440 43,092 34,007 26,058 27,197 34,574 2003 44,633 43,363 39,395 32,941 30,147 32,417 46,076 47,914 30,139 28,937 26,588 39,627 2004 44,286 47,720 40,198 35,528 36,608 33,843 39,855 38,791 36,056 30,069 25,036 35,444 2005 42,941 41,516 38,987 36,599 35,972 45,327 48,696 49,698

  15. Natural Gas Delivered to Consumers in Oregon (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 21,689 25,019 21,080 18,224 15,822 14,891 14,036 15,541 15,102 16,822 18,239 22,097 2002 25,687 22,100 21,179 14,501 12,612 11,363 9,336 12,198 12,978 14,195 16,780 20,005 2003 23,496 19,260 18,102 13,784 12,066 11,146 16,560 16,275 17,015 16,463 19,222 21,940 2004 26,773 24,112 19,699 16,486 14,346 12,752 16,235 16,733 16,179 17,146 21,137 23,569 2005 25,874 23,392 21,951 20,274 11,452 11,481 14,502 16,348 15,706

  16. Natural Gas Delivered to Consumers in Pennsylvania (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 96,012 79,547 77,363 52,992 33,092 26,098 25,208 27,662 29,499 38,457 46,614 63,083 2002 80,458 74,651 70,773 53,368 38,209 33,401 32,700 34,743 30,425 40,462 58,542 83,877 2003 101,975 96,176 79,246 53,759 36,015 29,095 30,298 32,640 26,799 39,895 47,467 78,054 2004 100,298 95,715 73,189 54,937 42,873 33,367 36,047 33,735 32,060 34,578 50,908 74,224 2005 90,958 84,388 85,058 50,137 38,196 34,547 36,133 37,648

  17. Natural Gas Delivered to Consumers in South Carolina (Including Vehicle

    Gasoline and Diesel Fuel Update (EIA)

    Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17,028 13,472 12,569 10,957 8,683 9,367 10,138 11,625 9,077 11,870 11,334 12,725 2002 20,494 17,611 16,270 14,448 14,921 14,889 16,325 15,616 11,675 10,993 12,221 16,164 2003 18,666 17,514 12,917 11,948 9,803 8,615 10,304 12,231 8,766 8,909 9,675 14,460 2004 19,029 19,575 14,664 11,619 12,602 10,686 12,311 13,363 11,234 9,815 10,497 15,861 2005 19,494 16,945 17,212 12,523 11,619 12,506 16,813 18,833 10,439

  18. Natural Gas Delivered to Consumers in Tennessee (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 43,045 30,197 26,202 21,053 13,399 12,059 12,967 13,230 11,569 16,135 19,011 23,239 2002 37,019 31,272 27,242 19,932 14,058 12,918 12,293 12,439 11,103 13,432 20,337 31,833 2003 37,778 37,692 27,915 18,989 14,580 13,392 11,615 12,627 12,016 13,775 16,202 27,807 2004 34,375 33,788 24,928 18,001 14,262 11,211 10,988 11,553 11,041 11,874 13,718 24,756 2005 30,997 29,214 25,561 19,122 13,849 11,579 11,055 13,522

  19. Natural Gas Delivered to Consumers in Utah (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 20,043 17,426 13,012 11,173 7,791 7,056 6,214 6,023 6,572 9,189 11,646 18,505 2002 19,727 17,659 15,165 8,453 7,113 5,260 5,915 6,481 7,591 11,589 13,814 16,447 2003 16,474 16,494 12,825 10,664 6,942 5,612 6,174 6,166 6,229 7,898 13,299 16,533 2004 21,414 17,627 10,247 9,033 6,775 5,344 6,398 5,617 6,456 8,714 13,097 17,058 2005 18,357 16,430 13,763 12,951 9,253 7,461 7,380 6,187 6,053 6,449 9,027 16,786 2006

  20. Natural Gas Delivered to Consumers in Vermont (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,164 1,003 1,084 834 544 381 304 307 361 438 658 827 2002 1,127 1,149 960 808 575 428 330 336 348 485 803 1,003 2003 1,153 1,191 1,062 906 539 367 293 312 325 502 708 1,029 2004 1,154 1,381 1,072 829 517 421 331 342 365 479 769 1,011 2005 1,211 1,280 1,199 776 558 404 310 298 295 418 666 943 2006 1,112 1,063 1,190 745 501 415 318 318 347 481 658 893 2007 1,104 1,375 1,250 915 536 382 340 331 342 423 696 1,158

  1. Natural Gas Delivered to Consumers in Virginia (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 34,325 27,001 23,081 15,728 11,714 10,937 14,866 15,873 15,145 14,257 21,748 23,733 2002 30,728 25,956 22,525 16,988 14,493 13,877 18,202 18,373 14,992 16,512 22,349 32,089 2003 39,589 32,153 25,608 18,114 15,312 12,832 14,519 15,084 11,238 15,259 21,050 32,921 2004 40,135 33,982 24,192 18,779 18,241 16,500 15,667 17,654 16,341 13,924 21,649 31,243 2005 37,448 31,508 31,147 18,853 12,905 18,009 23,552 25,949

  2. Natural Gas Delivered to Consumers in Washington (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 31,231 31,904 29,422 27,137 23,855 18,345 18,349 16,283 15,107 23,527 30,172 37,445 2002 29,531 27,361 27,117 20,531 15,439 11,596 10,256 11,367 12,459 15,045 20,551 25,818 2003 27,912 26,079 26,003 19,269 14,939 11,471 15,334 15,006 15,698 18,116 25,119 27,774 2004 33,107 29,246 23,696 18,926 15,242 11,848 16,510 17,954 16,165 18,170 24,172 28,231 2005 32,764 27,001 24,695 21,951 14,060 13,150 16,232 18,247

  3. Natural Gas Delivered to Consumers in West Virginia (Including Vehicle

    Gasoline and Diesel Fuel Update (EIA)

    Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 14,634 12,224 11,221 9,393 5,380 4,688 5,050 5,820 5,703 7,694 9,286 10,802 2002 12,686 11,546 11,965 8,927 7,125 5,425 5,123 5,557 4,801 6,781 10,011 12,951 2003 15,151 14,627 10,226 7,588 5,910 5,006 4,985 5,571 5,552 7,192 8,076 12,413 2004 14,651 15,031 11,525 9,338 5,321 4,737 4,621 4,572 4,754 5,775 6,898 10,999 2005 13,027 12,645 12,670 7,853 5,985 4,008 3,754 4,142 3,627 4,345 6,919 11,453 2006

  4. Natural Gas Delivered to Consumers in Wisconsin (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 52,126 51,020 52,466 24,969 17,238 15,421 16,478 16,540 16,716 25,355 26,981 41,400 2002 49,850 43,815 48,646 31,946 24,278 16,100 16,531 15,795 16,659 28,429 39,330 49,912 2003 62,523 55,695 44,756 32,270 20,752 15,502 15,630 18,099 16,485 24,636 36,907 47,677 2004 65,038 48,498 41,599 27,544 21,106 15,420 15,949 14,951 16,063 23,268 33,602 56,693 2005 59,667 45,463 47,647 29,885 23,265 22,788 21,959 22,549

  5. Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,475 6,484 5,643 5,505 4,182 3,864 3,515 3,541 3,688 4,790 5,518 6,170 2002 6,844 5,846 6,319 5,737 5,034 4,070 4,980 4,124 4,599 6,126 7,421 8,523 2003 7,672 7,313 7,026 5,737 4,976 4,408 4,112 4,164 4,356 5,062 5,554 7,236 2004 7,555 7,180 6,077 5,400 4,775 4,216 4,064 4,187 4,024 5,032 6,153 6,963 2005 7,585 6,443 6,231 5,612 5,092 4,247 4,081 3,903 4,080 4,829 5,360 7,262 2006 7,304 6,824 6,957 5,389 4,762

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Alabama (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,434 3,514 3,395 2,369 1,720 1,215 1,673 1,117 1,189 1,382 1,955 3,507 1990 4,550 3,040 2,645 2,167 1,626 984 1,157 1,164 1,195 1,353 1,921 2,487 1991 3,334 3,576 2,761 1,886 1,332 1,149 1,128 1,052 1,093 1,311 2,120 2,968 1992 3,739 3,833 2,671 2,287 1,513 1,225 1,108 1,078 1,136 1,320 1,983 3,338 1993 3,532 3,599 3,655 2,569 1,551 1,179 1,084 1,070 1,111 1,259 2,073 3,041 1994 4,325

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Alaska (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,500 2,691 2,258 1,949 1,569 1,287 1,042 1,091 1,202 1,577 2,144 2,429 1990 2,447 2,584 2,429 1,809 1,456 1,134 1,061 1,077 1,148 1,554 2,106 2,818 1991 2,579 2,388 2,149 1,896 1,576 1,171 1,069 1,073 1,198 1,561 1,930 2,308 1992 2,414 2,372 2,319 1,935 1,597 1,206 1,084 1,013 1,252 1,790 1,928 2,390 1993 2,487 2,471 2,051 1,863 1,441 1,055 917 957 1,112 1,563 1,785 2,301 1994 2,367 2,156

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Arizona (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,945 3,572 2,845 2,275 1,994 1,951 1,805 1,579 1,597 1,634 2,296 3,108 1990 3,706 3,577 3,165 2,338 2,174 1,854 1,686 1,580 1,610 1,555 2,018 3,139 1991 3,716 3,091 2,935 2,785 2,039 1,637 1,669 1,722 1,375 1,609 1,941 3,077 1992 3,647 3,011 2,898 2,352 1,620 1,754 1,690 1,505 1,601 1,580 1,858 3,573 1993 3,422 2,954 3,056 2,408 1,851 2,035 1,654 1,601 1,521 1,551 2,100 3,416 1994 3,689

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Arkansas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,919 4,336 3,961 2,180 1,261 1,357 1,019 1,007 1,096 1,245 1,948 3,942 1990 4,957 3,368 2,807 2,223 1,398 1,065 1,030 1,043 1,081 1,260 1,948 2,949 1991 5,034 4,043 2,848 1,778 1,211 1,027 998 1,023 1,045 1,184 2,497 3,297 1992 4,159 3,861 2,708 2,114 1,358 1,108 1,062 1,022 1,029 1,219 2,078 3,596 1993 4,757 4,174 3,999 2,923 1,540 1,078 1,013 1,047 1,126 1,389 2,480 3,473 1994 5,101

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in California (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 28,465 29,564 21,880 18,656 19,249 21,469 15,319 17,351 19,452 19,856 21,665 26,192 1990 30,798 34,767 27,425 23,423 18,540 17,392 21,030 17,705 23,233 17,384 22,637 30,759 1991 31,793 23,911 26,128 28,375 21,468 20,003 22,080 16,547 23,307 26,510 20,109 27,379 1992 38,234 23,834 24,413 18,379 27,118 22,150 21,150 21,633 19,247 19,112 20,999 28,738 1993 27,151 31,334 21,654 18,276

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Colorado (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,522 10,845 9,208 6,135 4,160 3,082 2,328 2,119 2,303 3,232 5,441 8,102 1990 10,718 9,546 8,633 6,902 5,116 3,122 2,167 2,127 2,069 2,918 5,301 7,682 1991 12,120 9,991 7,910 6,328 4,849 2,826 2,180 2,040 2,087 3,017 6,096 9,494 1992 10,794 9,450 7,609 5,965 3,631 3,055 2,430 2,183 2,312 3,078 5,594 10,319 1993 11,775 10,132 9,435 6,499 4,292 3,119 2,445 2,357 3,012 3,108 6,080 9,396

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Connecticut (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,909 3,749 3,937 2,897 2,106 1,625 1,528 1,579 1,551 1,685 2,324 3,891 1990 4,318 3,869 3,369 3,009 1,743 1,483 1,358 1,315 1,352 1,603 2,456 3,534 1991 4,341 3,973 3,566 2,352 1,462 1,030 995 1,020 884 1,423 2,396 3,396 1992 4,417 4,374 3,940 2,941 1,779 1,149 1,046 1,061 1,075 1,562 2,623 3,871 1993 4,666 4,995 4,461 3,038 1,583 1,161 1,122 1,070 1,121 1,789 2,896 3,525 1994 5,882

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Delaware (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 632 605 624 398 249 166 128 133 144 182 294 630 1990 784 530 530 419 239 174 139 138 136 163 309 480 1991 677 653 579 414 237 161 146 142 145 203 354 541 1992 744 755 686 537 308 198 166 152 162 240 395 622 1993 739 818 858 574 284 140 165 155 155 229 412 666 1994 945 1,076 856 510 259 209 157 156 172 221 345 554 1995 829 935 854 527 341 223 182 168 205 209 417 851 1996 1,099 1,181 885

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Florida (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,493 3,435 3,545 3,083 2,670 2,570 2,525 2,369 2,484 2,444 2,868 3,620 1990 4,101 3,305 3,246 3,026 2,860 2,673 2,584 2,497 2,483 2,521 3,285 3,725 1991 3,875 3,770 3,782 3,363 2,978 2,674 2,845 2,708 2,998 2,798 3,519 3,954 1992 4,408 4,364 3,856 3,741 3,382 3,085 2,976 2,881 2,849 2,954 3,317 3,914 1993 3,951 4,078 4,088 3,871 3,362 3,085 2,919 2,830 2,887 2,983 3,336 3,760 1994 4,619

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Georgia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,127 7,499 5,163 3,921 2,982 2,340 2,411 2,360 2,589 3,475 4,834 8,389 1990 8,162 5,935 5,172 3,960 2,844 2,498 2,359 2,535 2,416 3,098 4,228 6,280 1991 7,680 6,782 5,905 3,348 2,820 2,387 2,381 2,482 2,346 3,082 5,153 6,670 1992 8,066 6,952 5,778 4,381 3,103 2,596 2,536 2,503 2,462 3,201 4,640 7,642 1993 7,627 7,915 7,796 4,837 3,069 2,544 2,570 2,481 2,440 3,312 5,214 7,719 1994 9,543

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Hawaii (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 187 178 174 175 181 175 182 173 175 179 172 177 1990 190 188 188 180 181 188 195 180 180 183 184 185 1991 192 177 169 187 173 173 187 172 179 177 178 185 1992 190 180 174 183 177 184 174 173 178 168 178 184 1993 185 190 179 177 168 183 174 170 168 173 183 172 1994 195 176 190 185 181 184 177 178 184 177 189 185 1995 200 180 185 183 185 188 186 178 179 179 178 177 1996 200 192 184 190 172

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Idaho (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,567 1,575 1,160 692 409 355 301 249 321 435 785 1,176 1990 1,313 1,283 1,000 610 479 389 293 280 292 459 822 1,315 1991 1,848 1,291 956 822 623 405 316 304 329 424 942 1,321 1992 1,543 1,167 834 643 447 343 345 330 369 465 889 1,557 1993 1,806 1,673 1,294 828 566 387 383 360 381 507 947 1,543 1994 1,510 1,457 1,121 771 480 377 374 306 357 571 1,098 1,667 1995 1,754 1,319 1,154 951 708 487

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Illinois (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 27,838 29,591 25,963 15,899 9,308 5,975 5,445 4,862 6,177 11,093 20,173 33,847 1990 30,713 25,802 22,068 17,635 10,676 6,785 7,008 7,341 7,970 15,118 19,910 29,245 1991 35,376 26,327 22,768 13,059 8,214 5,162 6,031 5,693 7,979 11,574 23,098 28,563 1992 30,506 26,501 23,400 17,598 8,872 4,907 5,811 6,025 6,618 12,394 22,757 31,575 1993 33,166 29,686 27,677 17,598 7,744 5,101 5,879 5,644

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Indiana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 11,170 11,376 9,613 5,768 3,297 1,904 1,579 1,659 2,217 3,850 7,577 13,614 1990 11,991 9,374 7,958 6,087 3,191 1,963 1,658 1,860 1,991 4,087 6,640 10,462 1991 13,081 10,656 8,567 4,535 2,546 1,648 1,613 1,710 2,358 3,614 7,821 10,233 1992 12,060 10,265 8,437 6,172 3,400 2,004 1,811 1,955 2,131 4,253 8,135 12,097 1993 12,941 12,125 10,972 6,557 2,866 2,100 1,819 1,838 2,442 4,559 8,381

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Iowa (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,372 7,466 6,928 4,133 2,216 1,380 1,190 1,234 1,247 179 3,738 7,110 1990 8,087 6,374 5,719 4,261 2,409 1,602 1,226 1,204 1,302 2,087 3,726 5,955 1991 9,237 6,828 5,412 3,305 1,993 1,308 1,090 1,198 1,308 2,482 5,287 7,167 1992 7,145 6,709 4,949 3,883 1,877 1,427 1,100 1,257 1,433 2,645 5,843 7,827 1993 8,688 7,779 6,773 4,316 2,029 1,481 1,214 1,214 1,637 2,869 5,694 6,642 1994 9,353 8,260

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Kansas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,155 7,697 6,870 5,433 3,660 2,547 3,366 4,812 3,081 2,785 4,386 6,763 1990 8,061 6,230 5,114 4,800 3,112 2,848 4,906 4,462 3,836 2,893 3,877 5,907 1991 10,250 7,397 5,694 4,278 3,082 2,657 4,321 3,994 2,629 2,656 6,075 5,538 1992 6,844 5,862 4,372 4,571 3,736 2,814 3,609 3,462 3,132 3,162 4,867 7,543 1993 8,768 7,385 7,019 4,938 2,840 2,559 3,348 3,324 2,395 2,469 4,413 6,565 1994 8,139

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Kentucky (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5,139 5,507 4,546 2,840 1,766 1,167 1,099 991 1,147 954 3,327 6,648 1990 5,355 4,280 3,496 2,702 1,576 1,129 1,037 1,077 1,025 2,050 3,194 4,884 1991 6,313 5,098 3,647 1,925 1,198 1,029 941 991 1,338 1,862 4,197 5,161 1992 6,191 4,758 3,874 2,612 1,600 1,132 1,066 1,158 1,209 2,237 4,064 5,519 1993 5,878 5,863 5,207 2,934 1,330 1,449 1,029 1,060 1,220 2,417 3,997 5,433 1994 8,181 6,018

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Louisiana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,399 3,365 3,462 2,362 1,790 1,479 1,399 1,340 1,433 1,568 2,035 3,524 1990 4,528 2,757 2,490 2,135 1,628 1,499 1,361 1,238 1,275 1,487 2,082 2,491 1991 3,639 3,555 2,713 1,974 1,539 1,418 1,504 1,253 1,229 1,440 2,347 2,842 1992 4,060 4,003 2,743 2,367 1,769 1,564 1,556 1,431 1,508 1,577 2,295 3,574 1993 3,260 3,207 3,075 2,376 1,742 1,454 1,267 1,277 1,290 1,346 2,091 2,771 1994 3,925

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Maine (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 229 226 221 160 106 63 51 50 60 96 128 269 1990 268 227 211 175 108 70 52 47 62 83 157 219 1991 282 265 236 180 101 73 65 65 59 103 152 278 1992 322 318 315 229 157 80 79 52 67 116 188 285 1993 356 364 291 192 107 80 71 67 77 166 224 316 1994 458 364 302 181 128 79 63 71 84 135 207 309 1995 350 373 288 211 128 77 70 71 86 129 254 389 1996 413 386 356 208 132 82 74 75 78 172 280 310 1997 433

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Maryland (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,976 3,700 4,247 2,586 1,701 1,154 968 941 978 1,220 1,801 3,647 1990 4,168 3,115 3,057 2,477 1,557 1,131 1,049 961 1,016 1,095 1,686 2,738 1991 5,709 5,334 4,545 3,320 2,108 1,602 1,545 1,465 1,486 2,289 3,582 5,132 1992 6,323 6,382 5,073 3,807 2,391 1,784 1,553 1,586 1,615 2,491 3,895 5,565 1993 6,273 6,568 6,232 3,772 2,110 1,861 1,507 1,567 1,700 2,231 3,898 5,915 1994 8,122 6,354

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Massachusetts (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,394 6,984 7,234 5,392 3,703 2,150 1,726 1,894 1,799 2,720 3,647 6,864 1990 8,247 6,548 6,367 5,235 3,381 2,491 2,009 2,040 1,906 2,416 4,275 5,704 1991 7,617 7,579 6,948 5,504 3,772 2,466 2,435 2,188 1,939 2,666 4,048 6,027 1992 8,184 8,736 8,217 7,049 4,450 2,768 3,072 2,884 2,753 3,776 5,530 6,933 1993 8,556 9,118 9,026 6,491 4,195 3,184 2,692 2,802 2,766 3,878 5,622 7,098 1994

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Michigan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 26,553 25,448 24,717 16,375 10,150 5,954 4,570 4,467 5,047 8,855 15,776 28,269 1990 26,939 22,780 20,870 15,431 9,230 5,638 4,610 4,865 5,117 8,592 14,122 21,237 1991 29,054 24,902 21,321 14,617 9,583 5,601 4,916 4,508 5,510 9,450 12,966 23,131 1992 26,677 24,979 22,443 17,769 10,406 5,883 4,981 4,964 5,431 9,760 16,298 24,211 1993 28,122 27,427 25,623 18,238 9,009 5,968 5,035 4,140 5,767

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Minnesota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 13,112 13,607 11,411 6,916 3,980 2,416 2,112 2,011 2,475 4,718 8,764 13,661 1990 12,696 11,412 9,846 6,734 4,032 2,369 2,100 2,060 2,342 4,865 7,491 12,066 1991 15,649 11,426 10,026 6,092 4,220 2,541 2,315 2,304 2,930 5,399 10,392 12,580 1992 13,000 11,075 10,134 7,517 3,602 2,467 2,244 2,296 2,631 5,092 9,526 12,795 1993 14,685 12,874 11,396 7,267 3,588 2,549 2,190 2,207 2,952 5,614

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Mississippi (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,372 2,502 2,411 1,407 947 739 718 701 754 939 1,350 2,727 1990 3,199 2,007 1,675 1,541 1,070 884 819 818 841 1,137 1,508 2,050 1991 2,704 2,572 1,977 1,291 901 875 806 834 865 989 1,721 2,208 1992 2,817 2,595 1,758 1,473 994 888 885 867 847 942 1,489 2,387 1993 2,663 2,583 2,559 1,756 1,108 925 904 864 843 985 1,710 2,298 1994 3,417 2,993 2,136 1,456 1,012 942 992 973 1,000 1,050

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Missouri (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,118 10,280 9,192 5,246 2,799 2,359 1,829 1,780 2,021 2,798 4,716 9,903 1990 11,634 7,979 6,849 5,622 3,309 2,310 2,034 1,971 2,083 2,863 4,811 7,921 1991 12,748 9,932 7,479 4,261 2,760 2,181 1,853 1,896 2,056 2,689 6,471 8,864 1992 10,201 9,060 6,835 5,601 3,144 2,547 1,849 1,993 2,024 2,728 5,335 9,646 1993 12,062 10,467 10,336 6,750 3,580 2,266 2,066 1,959 2,222 2,864 5,974 9,124

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Montana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,029 1,923 1,841 1,208 687 478 330 381 442 806 1,235 1,781 1990 1,912 1,705 1,402 998 766 487 323 348 347 782 1,206 1,889 1991 2,425 1,435 1,450 1,053 843 431 357 341 438 724 1,559 1,790 1992 1,726 1,464 1,099 930 568 377 365 331 523 810 1,271 2,095 1993 2,465 1,705 1,741 1,137 682 434 437 416 535 819 1,508 1,999 1994 1,844 1,936 1,465 1,100 699 452 362 348 423 860 1,447 2,043 1995 2,085

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Nebraska (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,202 4,825 4,252 2,505 1,648 1,757 3,381 4,240 1,634 2,109 2,602 4,196 1990 4,765 4,019 3,355 2,799 1,480 1,325 4,837 2,596 2,333 2,334 2,552 4,094 1991 5,452 4,111 3,382 2,193 1,771 1,779 5,675 4,406 1,961 2,056 3,468 4,037 1992 4,332 3,760 2,970 2,411 1,781 1,330 2,366 2,393 1,710 2,508 3,988 4,941 1993 5,784 3,806 4,611 3,119 1,629 1,388 1,324 1,828 1,333 2,164 3,495 4,263 1994 5,469

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Nevada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,156 2,125 1,533 1,100 1,004 890 790 805 811 954 1,257 1,690 1990 1,959 1,963 1,740 1,185 1,006 970 879 782 701 1,157 1,026 1,705 1991 2,447 1,839 1,739 1,593 1,333 1,121 947 1,005 761 1,104 1,095 1,976 1992 2,327 1,873 1,725 1,335 1,012 945 1,015 824 872 982 1,022 2,170 1993 2,271 2,110 2,016 1,314 1,341 1,052 919 939 909 1,047 1,421 2,211 1994 2,334 2,277 1,995 1,456 1,300 1,136 995 909

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in New Hampshire (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 842 753 771 551 339 188 154 140 176 248 393 817 1990 899 803 618 518 307 221 153 153 170 265 380 585 1991 795 798 672 484 291 186 155 156 173 256 420 643 1992 911 931 762 629 376 208 179 169 174 295 515 715 1993 993 973 911 611 294 204 177 171 186 332 522 770 1994 1,261 1,097 863 581 347 229 173 166 206 305 442 743 1995 978 999 864 632 369 227 188 166 197 285 620 989 1996 1,163 1,129

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in New Jersey (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 16,826 15,506 15,624 10,928 7,587 5,087 4,881 4,520 4,638 6,297 9,150 16,342 1990 17,876 14,489 14,442 11,796 7,342 5,460 4,941 4,929 5,323 5,758 9,225 14,011 1991 17,874 16,614 14,732 11,900 6,767 5,198 5,844 3,856 5,261 7,210 9,914 16,069 1992 17,638 18,398 16,759 14,066 8,392 5,294 5,240 4,981 5,462 7,164 11,027 16,470 1993 17,585 19,550 18,731 13,012 7,025 5,134 5,844 3,819 5,149

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in North Carolina (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,784 4,016 4,367 3,046 2,022 1,568 1,475 1,454 1,534 1,843 2,639 4,396 1990 5,379 3,690 3,400 2,747 1,820 1,445 1,394 1,480 1,596 1,795 2,715 3,817 1991 4,947 4,647 3,990 2,629 1,928 1,677 1,613 1,679 1,789 2,052 3,200 4,162 1992 5,169 5,066 3,983 3,296 2,205 1,733 1,591 1,607 1,679 2,138 3,010 4,941 1993 5,866 5,566 5,426 3,602 1,988 1,532 1,437 1,539 1,674 2,067 3,379 3,292 1994

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in North Dakota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,789 1,669 1,514 1,027 508 335 269 238 340 464 951 1,506 1990 1,666 1,457 1,243 1,048 616 383 315 298 370 561 916 1,363 1991 1,917 1,394 1,253 847 629 320 302 314 348 633 1,241 1,535 1992 1,489 1,380 1,082 937 529 298 279 262 363 576 1,015 1,549 1993 1,911 1,477 1,339 925 477 347 317 294 381 629 1,068 1,478 1994 2,016 1,812 1,339 932 526 302 284 288 315 530 1,241 1,198 1995 1,807

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Ohio (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 23,636 24,435 21,187 13,360 8,237 3,927 3,565 3,735 4,397 8,946 15,949 30,143 1990 25,317 19,642 20,361 13,373 7,446 4,838 3,975 4,165 4,240 7,272 13,757 19,190 1991 26,286 24,481 20,157 11,779 6,341 3,971 3,703 3,933 4,196 8,065 15,488 21,940 1992 26,321 24,820 20,215 15,893 7,455 5,016 4,291 4,260 4,418 9,092 15,094 23,770 1993 25,230 26,706 25,531 15,019 6,359 5,221 3,939 3,860 4,492 9,636

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Oklahoma (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,069 7,033 6,197 2,868 1,601 1,279 1,180 1,097 1,241 1,528 2,542 5,873 1990 7,587 5,618 4,176 3,424 2,281 1,519 1,312 1,355 1,235 1,613 2,520 4,567 1991 8,702 6,014 4,265 2,489 1,702 1,330 1,290 1,279 1,299 1,590 3,974 5,653 1992 6,180 5,310 3,653 2,956 1,785 1,540 1,407 1,292 1,240 1,449 2,608 5,771 1993 7,076 6,147 5,910 3,743 2,057 1,439 1,324 1,432 1,345 1,544 3,424 5,327 1994 6,644

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Oregon (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,884 3,283 2,761 1,724 1,140 989 823 804 882 972 1,624 2,363 1990 2,984 3,031 2,562 1,550 1,268 1,157 821 769 823 1,050 1,697 2,737 1991 4,074 2,764 2,407 2,048 1,610 1,274 902 812 855 927 1,898 2,758 1992 3,231 2,465 1,925 1,542 1,171 884 784 782 863 1,105 1,652 3,166 1993 4,148 3,370 2,880 1,927 1,448 1,010 915 840 934 1,099 1,918 3,557 1994 3,388 3,166 2,480 1,836 1,234 1,078 865 801

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Pennsylvania (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 19,310 18,682 16,972 11,988 8,259 4,646 4,270 4,158 4,375 7,181 11,582 20,997 1990 20,743 16,421 15,166 12,483 6,828 5,134 4,387 4,567 5,054 6,676 11,644 16,571 1991 21,026 18,276 16,026 10,882 5,835 4,162 3,760 3,859 4,580 7,438 12,251 17,451 1992 21,204 19,482 17,679 12,210 6,793 4,520 4,046 4,132 4,579 8,439 12,784 18,385 1993 19,394 21,239 19,875 11,914 5,793 4,510 3,547 3,718

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Rhode Island (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,032 979 1,003 855 565 457 471 518 560 657 654 1,014 1990 1,195 903 893 857 577 244 413 365 508 587 763 774 1991 1,089 979 864 605 667 414 538 540 555 628 496 895 1992 1,076 1,128 1,103 1,047 676 498 448 479 411 609 654 951 1993 1,140 1,359 1,325 907 429 330 273 364 243 503 1,008 1,324 1994 1,919 1,974 1,626 1,092 653 542 343 599 384 569 1,010 1,338 1995 1,077 1,679 1,883 1,353 901

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in South Carolina (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,176 1,936 2,098 1,489 1,094 891 908 808 866 970 1,324 1,964 1990 2,455 1,649 1,576 1,262 1,040 846 836 830 872 965 1,315 1,749 1991 2,199 2,076 1,746 1,143 908 818 810 859 875 952 1,492 1,917 1992 2,276 2,158 1,745 1,436 1,068 944 820 882 875 1,006 1,345 2,089 1993 2,268 2,155 2,200 1,507 1,007 877 832 840 846 947 1,463 2,070 1994 2,845 2,472 1,910 1,174 1,027 1,342 913 949 947

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in South Dakota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,339 1,454 1,253 776 413 276 203 197 255 434 851 1,374 1990 1,398 1,234 1,064 769 537 306 230 223 239 459 825 1,269 1991 1,723 1,243 1,076 713 543 303 263 251 309 588 1,176 1,286 1992 1,314 1,174 1,007 828 460 303 291 284 324 558 1,104 1,476 1993 1,847 1,496 1,344 995 531 342 315 291 392 632 1,083 1,429 1994 1,738 1,695 1,285 846 524 347 239 322 329 531 946 1,472 1995 1,619 1,491

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Tennessee (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,960 6,840 6,382 4,054 2,529 1,916 1,802 1,659 1,843 2,355 3,769 7,404 1990 8,672 5,800 4,578 3,811 2,474 1,988 1,652 1,791 1,597 2,276 3,426 5,490 1991 7,499 7,400 5,761 3,131 2,231 1,829 1,640 1,708 1,837 2,454 4,304 6,158 1992 7,343 6,834 5,069 4,205 2,436 2,016 1,838 1,681 1,933 2,368 3,963 6,846 1993 7,296 7,526 7,354 4,605 2,613 1,992 1,884 1,811 1,992 2,565 4,648 6,470 1994 9,690

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Texas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 21,163 22,930 20,215 15,779 11,310 10,731 12,786 11,350 9,367 10,345 12,823 23,871 1990 21,376 16,323 17,118 14,054 12,299 14,204 14,184 11,592 9,448 9,571 12,192 19,981 1991 26,377 18,723 16,796 15,181 11,439 10,763 12,769 11,125 8,843 11,156 17,192 20,608 1992 22,907 19,049 15,866 14,174 12,557 10,879 13,768 12,966 11,356 11,672 17,386 22,093 1993 21,489 18,444 16,162 14,455 12,175 12,943

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Utah (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,283 3,376 2,280 1,227 653 472 357 346 390 522 1,313 2,304 1990 2,864 2,779 2,272 1,203 860 581 373 364 374 629 1,382 2,540 1991 4,055 3,108 2,282 1,771 1,316 668 405 375 407 551 1,634 2,704 1992 3,330 2,952 1,866 1,155 642 457 410 372 405 545 1,329 3,120 1993 3,922 3,682 2,988 1,839 1,248 707 597 594 606 946 2,023 3,436 1994 3,929 3,846 2,665 2,037 962 814 820 787 882 1,883 3,542 4,335 1995

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Vermont (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 315 300 283 199 105 66 57 57 73 130 189 307 1990 338 288 269 196 116 68 46 62 84 127 195 261 1991 335 311 259 187 105 61 55 58 82 133 188 284 1992 366 354 320 231 118 75 79 75 77 144 211 269 1993 347 368 350 199 124 80 62 67 83 143 235 324 1994 476 455 341 269 150 90 65 69 88 144 187 334 1995 388 406 352 277 140 89 70 72 95 130 242 410 1996 458 445 381 279 153 97 67 69 90 162 276 348 1997

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Virginia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,164 6,056 5,721 4,051 2,446 2,129 1,866 1,485 1,985 2,192 3,612 6,474 1990 6,162 5,181 5,100 4,541 2,412 1,831 1,802 1,772 1,671 2,233 3,251 5,081 1991 6,667 5,956 5,270 3,581 2,481 2,159 1,867 2,057 1,860 2,625 3,855 5,701 1992 7,072 6,690 5,985 4,523 3,289 2,271 2,085 2,055 1,903 3,275 4,714 6,895 1993 7,432 7,800 7,347 4,850 2,842 2,177 1,987 2,033 2,106 3,073 4,355 6,877 1994 8,677

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Washington (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5,343 5,561 5,424 3,672 2,194 1,851 1,671 1,548 1,357 2,083 3,366 4,433 1990 5,136 5,666 4,496 3,289 2,728 1,951 1,639 1,476 1,575 2,249 3,444 5,071 1991 6,279 5,277 4,597 4,047 3,025 2,400 1,831 1,635 1,689 2,099 3,802 5,057 1992 5,564 4,840 3,855 3,179 2,343 1,830 1,575 1,514 1,734 2,240 3,418 5,709 1993 7,058 5,670 5,157 3,785 2,774 1,905 1,801 1,750 1,829 2,236 3,639 6,016 1994

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Wisconsin (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,596 10,988 10,169 6,662 3,882 2,012 1,562 1,499 1,718 3,437 6,386 11,183 1990 11,878 9,411 8,746 5,436 3,701 2,130 1,686 1,617 1,786 3,865 6,030 10,074 1991 13,062 10,137 8,785 5,471 3,084 1,643 1,853 1,415 2,229 4,335 8,565 10,938 1992 11,235 10,037 9,113 6,870 3,632 1,986 1,759 1,615 1,954 4,108 7,918 11,087 1993 12,658 11,647 10,442 7,011 3,438 2,418 1,843 1,719 2,326 4,637 7,976

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Wyoming (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,357 1,414 1,111 852 521 368 285 233 268 396 724 1,022 1990 1,305 1,199 1,085 822 628 410 247 234 241 378 759 1,132 1991 1,639 1,249 996 830 680 362 272 248 269 449 873 1,233 1992 1,404 1,078 821 668 438 309 264 269 287 439 760 1,271 1993 1,631 1,376 1,262 882 639 400 362 389 378 667 874 1,407 1994 1,351 1,412 1,065 869 544 369 291 270 308 550 915 1,287 1995 1,671 1,247 1,217 987 873 594

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in the District of Columbia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,133 2,021 2,066 1,635 999 803 692 763 712 775 1,090 2,052 1990 1,986 1,857 1,789 1,384 951 699 514 572 721 574 836 1,589 1991 2,204 2,308 2,131 1,381 1,063 784 705 794 689 658 1,071 1,764 1992 2,300 2,256 2,132 1,774 1,056 764 718 673 653 753 1,103 1,921 1993 2,352 2,438 2,166 1,550 1,150 731 664 703 684 841 1,040 1,909 1994 2,303 1,865 1,483 1,588 979 815 753 692 740

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in the U.S. (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1930's 80,707 86,491 87,367 85,577 91,261 100,187 111,623 117,390 114,296 118,334 1940's 134,644 144,844 183,603 204,793 220,747 230,099 241,802 285,213 323,054 347,818 1950's 387,838 464,309 515,669 530,650 584,957 629,219 716,871 775,916 871,774 975,107 1960's 1,020,222 1,076,849 1,206,668 1,267,783 1,374,717 1,443,648 1,622,740 1,958,970 2,075,736 2,253,206 1970's

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,715 1,610 1,607 1,548 1,328 1,858 1,883 2,019 2,049 2,129 1990's 2,223 2,148 2,144 2,123 2,200...

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in the U.S. (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 392,315 394,281 310,799 231,943 174,258 135,165 107,728 105,681 103,831 126,540 216,762 297,734 1974 406,440 335,562 301,588 243,041 165,233 128,032 109,694 107,828 106,510 143,295 199,514 308,879 1975 346,998 345,520 312,362 289,341 164,629 119,960 107,077 104,332 106,655 133,055 179,518 298,845 1976 405,483 364,339 285,912 221,383 169,209 129,058 112,070 113,174 113,284 145,824 252,710

  17. Natural Gas Delivered to Consumers in Illinois (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 151,699 132,638 117,186 62,934 46,113 39,615 44,463 46,777 41,870 67,167 74,519 115,418 2002 131,434 119,430 122,242...

  18. Natural Gas Delivered to Consumers in Kansas (Including Vehicle...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 252,275 259,783 240,248 2000's 253,037 224,367 239,449 227,436 213,122 206,537 217,981 246,094...

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 37,141 46,232 54,062 1970's 52,632 56,246 61,286 52,674 53,461 51,705 57,310 51,815 64,532...

  20. Natural Gas Delivered to Consumers in Tennessee (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 259,790 262,598 263,607 2000's 256,821 242,184 243,955 244,484 220,602 221,088 212,864 211,020 219,535 204,990...

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Gasoline and Diesel Fuel Update (EIA)

    Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,715 1,610 1,607 1,548 1,328 1,858 1,883 2,019 2,049 2,129 1990's 2,223 2,148 2,144 2,123 2,200 2,199...

  2. Natural Gas Delivered to Consumers in Alabama (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 293,981 299,146 299,872 2000's 315,202 299,631 343,913 316,665 350,734 323,143 358,141 385,209 369,750 418,677 2010's 496,051 558,116 622,359 573,981 599,473 640,707

  3. Natural Gas Delivered to Consumers in Alaska (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 149,171 147,435 150,062 2000's 150,745 132,441 129,292 109,707 120,974 127,140 113,933 99,281 87,677 81,335 2010's 80,794 88,178 87,404 75,926 70,960 70,027

  4. Natural Gas Delivered to Consumers in Arizona (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 116,058 138,724 146,471 2000's 184,542 218,613 230,493 254,720 333,746 304,004 337,429 372,536 376,961 348,877 2010's 315,448 275,627 319,685 319,450 294,459 336,19

  5. Natural Gas Delivered to Consumers in Arkansas (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 241,664 247,908 241,648 2000's 240,672 217,765 233,046 237,428 205,480 202,946 221,378 214,298 221,983 230,488 2010's 256,102 266,194 278,304 263,281 249,549 270,209

  6. Natural Gas Delivered to Consumers in California (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,049,536 2,228,414 2,264,158 2000's 2,434,770 2,400,993 2,218,923 2,218,715 2,353,823 2,196,741 2,248,988 2,327,205 2,330,514 2,256,380 2010's 2,196,086 2,096,279 2,337,017 2,352,421 2,265,431 2,257,216

  7. Natural Gas Delivered to Consumers in Colorado (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 272,530 289,945 288,147 2000's 321,784 412,773 404,873 377,794 378,894 405,509 383,452 435,360 426,034 420,500 2010's 396,083 345,663 327,108 361,779 367,021 NA

  8. Natural Gas Delivered to Consumers in Delaware (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46,499 40,794 55,968 2000's 48,325 50,090 52,167 46,143 48,019 46,863 43,172 48,139 48,144 50,126 2010's 54,685 79,251 100,630 95,008 99,736 99,543

  9. Natural Gas Delivered to Consumers in Florida (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 514,038 497,685 550,157 2000's 532,297 534,331 676,854 679,179 722,326 767,566 877,977 905,828 932,172 1,044,872 2010's 1,131,142 1,199,247 1,306,024 1,207,573 1,221,666 NA

  10. Natural Gas Delivered to Consumers in Georgia (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 363,402 360,973 328,730 2000's 408,209 343,698 375,567 372,492 388,751 406,852 414,377 435,919 419,057 456,082 2010's 521,557 512,466 605,262 617,310 645,253 683,796

  11. Natural Gas Delivered to Consumers in Hawaii (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,894 2,654 3,115 2000's 2,841 2,818 2,734 2,732 2,772 2,793 2,782 2,848 2,700 2,605 2010's 2,625 2,616 2,687 2,853 2,927 2,929

  12. Natural Gas Delivered to Consumers in Idaho (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 63,483 63,781 66,160 2000's 66,758 73,723 65,510 65,329 69,572 69,202 69,202 74,395 81,646 78,166 2010's 75,647 77,343 83,274 98,843 87,647 NA

  13. Natural Gas Delivered to Consumers in Illinois (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,062,536 944,170 992,865 2000's 1,017,283 940,691 1,036,615 987,964 941,964 958,727 883,080 954,100 987,137 931,329 2010's 942,205 960,018 910,611 1,024,851 1,062,377 NA

  14. Natural Gas Delivered to Consumers in Indiana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 545,839 514,407 549,639 2000's 564,919 494,706 533,754 520,352 519,785 524,415 489,881 528,655 544,202 500,135 2010's 564,904 619,977 642,209 664,817 703,637 712,946

  15. Natural Gas Delivered to Consumers in Iowa (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 243,181 223,287 222,943 2000's 224,299 215,348 215,482 220,263 216,625 229,717 225,929 280,954 311,672 301,340 2010's 300,033 296,098 285,038 314,742 317,784 NA

  16. Natural Gas Delivered to Consumers in Kentucky (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 202,620 187,054 199,511 2000's 208,848 191,608 211,950 206,134 212,666 222,249 200,361 214,546 207,837 189,023 2010's 211,993 204,380 210,584 216,451 241,151 249,968

  17. Natural Gas Delivered to Consumers in Louisiana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,361,995 1,313,827 1,267,668 2000's 1,286,353 1,069,808 1,193,418 1,079,213 1,132,186 1,121,178 1,074,563 1,124,310 1,089,351 1,044,149 2010's 1,207,599 1,244,752 1,336,521 1,267,795 1,325,708 1,361,733

  18. Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,290 5,716 6,572 2000's 43,971 94,569 100,659 69,973 85,478 61,088 63,541 62,430 69,202 69,497 2010's 75,821 69,291 67,504 63,247 59,362

  19. Natural Gas Delivered to Consumers in Maryland (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 208,890 185,583 193,142 2000's 208,894 175,611 193,766 194,280 192,242 200,336 179,949 198,715 193,613 193,988 2010's 205,688 187,921 201,550 193,232 201,199 205,407

  20. Natural Gas Delivered to Consumers in Massachusetts (Including Vehicle

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 400,273 356,942 342,136 2000's 340,923 345,916 388,972 402,003 370,777 376,257 369,166 406,968 405,562 394,759 2010's 428,471 444,537 412,637 418,241 412,268 434,781

  1. Natural Gas Delivered to Consumers in Michigan (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 958,506 846,478 919,922 2000's 926,633 874,578 926,299 888,584 881,257 875,492 767,509 762,502 748,655 703,346 2010's 713,533 745,769 761,544 787,603 824,527 NA

  2. Natural Gas Delivered to Consumers in Minnesota (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 334,583 310,419 322,572 2000's 340,988 321,867 348,523 351,009 339,407 345,573 332,257 368,428 407,767 381,577 2010's 407,503 405,547 409,421 456,247 460,653

  3. Natural Gas Delivered to Consumers in Mississippi (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 206,845 201,303 271,218 2000's 266,008 298,296 312,317 235,345 254,727 274,431 278,563 328,487 316,214 325,132 2010's 399,073 401,561 440,741 393,161 390,396 NA

  4. Natural Gas Delivered to Consumers in Missouri (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 275,838 253,157 259,054 2000's 277,206 281,875 273,073 259,526 260,708 265,485 250,290 269,825 288,847 260,976 2010's 274,361 265,534 250,902 271,341 290,421 271,116

  5. Natural Gas Delivered to Consumers in Montana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 54,138 54,093 55,129 2000's 57,725 54,529 58,451 56,074 54,066 55,200 60,602 60,869 64,240 66,613 2010's 60,517 68,113 61,963 68,410 71,435 NA

  6. Natural Gas Delivered to Consumers in Nebraska (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 128,092 127,840 118,536 2000's 123,791 118,933 117,427 113,320 110,725 114,402 125,202 145,253 160,685 156,161 2010's 161,284 162,219 150,961 166,233 165,620 149,107

  7. Natural Gas Delivered to Consumers in Nevada (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 131,463 147,747 153,880 2000's 188,288 175,966 175,739 184,152 212,723 224,919 246,865 251,425 261,579 272,543 2010's 256,256 245,807 267,242 268,008 247,182 NA

  8. Natural Gas Delivered to Consumers in New Hampshire (Including Vehicle

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,824 19,105 20,311 2000's 24,918 23,374 24,841 54,122 61,150 70,463 62,530 62,115 71,170 59,937 2010's 60,131 69,776 72,004 53,961 56,936

  9. Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 877,039 792,617 823,448 2000's 871,444 787,719 813,735 832,563 812,084 811,759 729,264 791,733 780,187 723,471 2010's 767,704 808,509 832,437 901,087 982,855 949,86

  10. Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 459,508 490,070 456,573 2000's 450,596 400,740 429,152 443,139 444,514 487,723 528,236 563,474 590,997 566,176 2010's 582,389 559,215 587,287 539,056 508,363 544,200

  11. Natural Gas Delivered to Consumers in Oregon (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 172,588 216,058 224,767 2000's 213,063 218,632 193,006 205,415 225,263 225,277 214,346 242,371 261,105 240,765 2010's 232,900 194,336 211,232 236,276 216,365 233,52

  12. Natural Gas Delivered to Consumers in Pennsylvania (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 664,782 609,779 648,194 2000's 659,042 596,041 632,035 651,938 662,513 656,097 625,944 711,945 705,284 755,938 2010's 811,209 866,775 918,490 959,041 1,042,647 1,078,193

  13. Natural Gas Delivered to Consumers in South Carolina (Including Vehicle

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 150,978 156,295 159,338 2000's 156,975 138,866 181,648 143,833 161,283 169,605 172,514 173,092 167,473 188,081 2010's 216,783 226,089 241,434 229,768 229,454

  14. Natural Gas Delivered to Consumers in Texas (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,732,807 3,809,430 3,658,039 2000's 4,073,007 3,917,933 3,966,512 3,747,467 3,595,474 3,154,632 3,068,002 3,133,456 3,128,339 2,947,542 2010's 3,185,011 3,305,730 3,377,217 3,350,645 3,415,789 3,589,91

  15. Natural Gas Delivered to Consumers in Utah (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 137,700 139,522 133,518 2000's 137,213 135,123 135,699 125,899 128,441 130,286 152,283 183,237 192,281 182,187 2010's 185,228 184,581 178,941 199,684 198,278 187,45

  16. Natural Gas Delivered to Consumers in Vermont (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8,052 7,726 8,025 2000's 10,411 7,906 8,353 8,386 8,672 8,358 8,041 8,851 8,609 8,621 2010's 8,428 8,558 8,077 9,512 10,554 NA

  17. Natural Gas Delivered to Consumers in Virginia (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 240,244 252,233 267,269 2000's 258,975 228,670 247,351 254,008 268,674 292,043 264,954 309,866 286,497 304,266 2010's 359,208 352,281 392,255 401,623 404,939 NA

  18. Natural Gas Delivered to Consumers in Washington (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 247,530 281,143 279,656 2000's 280,617 303,060 227,360 243,072 253,663 256,580 256,842 265,211 291,535 302,930 2010's 278,139 257,945 255,356 308,148 298,088

  19. Natural Gas Delivered to Consumers in West Virginia (Including Vehicle

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 119,976 105,099 104,219 2000's 106,057 102,110 103,119 102,567 98,525 90,436 85,507 88,317 84,485 75,475 2010's 79,432 77,189 74,459 80,393 86,978

  20. Natural Gas Delivered to Consumers in Wisconsin (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 396,107 363,738 376,409 2000's 389,543 356,915 381,498 391,185 380,014 406,550 369,353 395,519 406,723 385,418 2010's 369,924 391,128 400,876 439,741 458,999 454,450

  1. Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 70,792 77,652 60,593 2000's 63,384 60,385 69,633 67,627 65,639 64,753 65,487 67,693 66,472 61,774 2010's 67,736 70,862 73,690 74,597 73,096 72,765

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 30,401 34,749 37,275 1970's 36,254 36,657 37,389 33,126 35,349 33,439 34,450 34,303 29,649 36,717 1980's 28,525 26,860 25,876 26,665 27,567 25,836 25,128 22,384 25,562 26,469 1990's 24,287 23,711 25,232 25,723 25,526 26,228 29,000 32,360 25,705 27,581 2000's 25,580 26,391 25,011 25,356 26,456 25,046 24,396 23,420 25,217 24,293 2010's 27,071 25,144 21,551 25,324

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alaska (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,722 4,713 11,018 1970's 12,519 14,256 16,011 12,277 13,106 14,415 14,191 14,564 15,208 15,862 1980's 16,513 16,149 24,232 24,693 24,654 20,344 20,874 20,224 20,842 21,738 1990's 21,622 20,897 21,299 20,003 20,698 24,979 27,315 26,908 27,079 27,667 2000's 26,485 15,849 15,691 17,270 18,373 16,903 18,544 18,756 17,025 16,620 2010's 15,920 19,399 19,898 18,694

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arizona (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 23,335 23,389 24,501 1970's 22,705 25,604 26,905 31,812 32,742 32,638 36,763 34,076 29,581 26,971 1980's 27,487 26,742 26,085 24,612 25,309 25,360 24,081 27,669 28,299 28,600 1990's 28,401 27,597 27,089 27,568 29,187 28,210 28,987 30,132 31,788 31,301 2000's 32,138 31,121 31,705 32,292 33,159 31,888 32,792 32,694 32,516 32,196 2010's 31,945 32,633 31,530 32,890

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arkansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 35,295 37,886 39,962 1970's 39,169 30,832 32,457 33,789 31,040 33,291 34,011 33,913 34,612 33,442 1980's 30,690 28,282 29,438 27,739 28,995 26,731 24,949 24,603 27,457 27,271 1990's 25,129 25,986 25,314 28,998 27,407 27,409 31,006 29,441 28,062 27,898 2000's 33,180 32,031 32,928 31,746 29,821 31,521 31,286 32,187 36,924 36,373 2010's 40,232 39,986 41,435 47,636

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 184,630 189,903 206,861 1970's 209,945 239,685 231,536 232,774 228,988 240,239 219,840 227,543 221,441 258,490 1980's 258,151 236,910 236,202 215,918 191,838 205,044 182,794 212,904 248,397 259,118 1990's 285,090 287,608 285,008 250,283 261,989 278,761 235,068 253,923 282,153 244,701 2000's 246,439 245,795 238,308 232,912 231,597 233,082 244,432 251,024 251,045

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Colorado (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 39,942 47,287 52,256 1970's 59,081 62,805 63,154 69,844 68,322 76,288 75,959 72,597 71,422 74,831 1980's 66,952 58,913 66,991 64,615 71,890 68,975 61,620 64,355 68,515 67,477 1990's 66,290 68,938 66,420 71,647 65,870 66,639 68,914 69,074 63,132 59,346 2000's 60,874 65,011 66,939 62,616 61,956 62,099 59,851 63,231 65,806 62,441 2010's 57,658 55,843 51,795 58,787

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Delaware (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,968 2,084 2,526 1970's 2,804 3,010 3,205 3,093 3,169 2,964 3,078 2,815 3,005 2,842 1980's 3,246 3,783 3,577 3,428 3,827 3,412 3,514 3,741 4,041 4,184 1990's 4,042 4,253 4,965 5,195 5,459 5,743 6,694 6,608 5,590 6,119 2000's 5,125 5,680 7,477 8,437 8,465 8,383 8,134 8,628 8,868 11,684 2010's 12,193 10,478 10,034 11,170 11,882 11,189

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Florida (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 22,501 21,890 24,721 1970's 26,914 25,478 23,243 24,315 22,527 31,745 39,681 41,236 35,386 36,638 1980's 30,182 33,702 29,788 29,228 30,481 30,674 35,829 37,492 37,834 35,105 1990's 36,306 39,264 41,727 41,151 39,935 40,383 41,810 36,700 37,659 36,269 2000's 47,904 49,286 55,803 54,283 56,321 57,690 50,625 51,097 50,901 50,371 2010's 54,065 53,532 54,659 59,971

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Georgia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 30,202 36,034 39,020 1970's 38,726 41,881 44,992 47,253 44,317 49,438 46,351 55,268 60,266 62,437 1980's 58,763 57,139 54,718 56,280 55,909 51,519 50,405 54,592 55,963 53,089 1990's 49,486 51,036 53,861 57,525 54,051 56,536 61,377 57,220 55,419 43,581 2000's 58,793 50,645 48,631 50,273 55,047 52,902 48,137 48,591 51,518 53,627 2010's 60,153 56,602 51,918 57,195

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Idaho (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 4,972 6,374 6,613 1970's 5,851 8,232 10,712 9,387 8,040 12,177 8,742 8,405 5,503 6,923 1980's 5,756 5,422 5,729 5,758 8,493 8,999 8,543 7,618 8,252 9,024 1990's 8,535 9,582 8,932 10,675 10,088 10,360 11,506 11,433 11,676 12,618 2000's 13,414 13,623 13,592 12,019 12,995 13,231 13,573 14,274 16,333 15,740 2010's 15,033 16,855 15,838 18,485 16,963 16,171

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Illinois (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 175,281 174,565 189,006 1970's 193,434 210,424 224,488 218,530 216,114 215,718 246,659 243,686 251,895 237,199 1980's 228,178 223,427 218,751 204,834 232,170 213,528 204,979 191,047 215,257 196,171 1990's 200,267 193,844 196,964 203,157 197,558 203,802 218,054 202,850 174,687 188,520 2000's 201,768 189,160 204,570 211,710 204,039 201,882 196,361 203,368 222,382

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Indiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 58,273 60,661 72,414 1970's 77,550 77,984 85,302 76,835 75,887 70,501 67,481 63,224 70,083 74,231 1980's 70,048 71,178 71,900 65,409 71,819 69,641 64,821 64,903 71,709 73,625 1990's 67,223 68,383 72,720 78,047 75,819 82,726 87,456 81,753 73,117 73,643 2000's 90,378 78,479 82,427 87,225 84,883 76,217 71,081 75,562 84,858 78,764 2010's 75,883 75,995 66,663 82,596

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Iowa (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 45,118 48,034 52,700 1970's 57,266 59,138 61,623 63,350 64,052 66,915 64,734 60,519 49,200 58,308 1980's 50,588 46,804 51,536 46,854 48,104 47,643 43,709 38,057 44,955 46,142 1990's 43,953 46,615 46,095 50,337 47,922 50,325 54,571 50,191 43,027 44,895 2000's 45,609 45,892 46,423 48,081 46,068 45,152 43,424 46,367 56,099 56,698 2010's 51,674 51,875 43,767 56,592

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kentucky (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 32,313 36,089 41,934 1970's 42,461 42,352 42,843 45,797 42,320 38,497 57,203 50,170 46,647 40,509 1980's 39,359 36,379 35,260 34,111 36,138 33,758 32,666 33,298 35,718 36,148 1990's 31,806 33,700 35,419 37,817 36,744 38,610 40,972 38,627 32,464 35,798 2000's 38,669 35,255 35,942 38,212 36,989 36,894 32,590 34,386 37,167 35,438 2010's 36,818 34,592 30,771 37,422

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 51,062 56,937 54,010 1970's 70,321 67,515 66,331 59,518 58,097 50,662 43,567 44,563 65,300 115,743 1980's 39,996 39,507 33,729 34,906 33,088 30,228 27,985 27,845 27,475 27,156 1990's 24,937 25,452 28,445 25,157 24,184 23,833 25,746 25,613 24,042 24,559 2000's 25,687 24,604 25,540 25,161 24,700 25,085 22,240 23,863 22,869 23,672 2010's 27,009 25,925 26,294 28,875

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maine (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,961 1,672 2,338 1970's 3,220 3,604 3,678 3,323 3,441 3,894 3,814 3,846 4,467 5,023 1980's 864 1,043 1,192 1,124 1,124 1,139 1,214 1,250 1,461 1,660 1990's 1,678 1,860 2,209 2,311 2,381 2,426 2,566 2,713 2,456 2,547 2000's 2,770 2,642 5,167 4,781 4,811 4,792 4,701 5,749 5,878 5,541 2010's 5,830 6,593 7,313 8,146 9,030 9,795

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maryland (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 28,154 30,419 34,674 1970's 37,529 40,988 43,950 42,953 43,080 37,466 42,422 40,532 39,821 47,326 1980's 28,576 32,055 30,871 30,758 25,299 24,134 23,816 25,544 25,879 26,920 1990's 24,051 38,117 42,464 43,635 44,136 46,874 45,842 49,802 57,370 58,103 2000's 55,669 59,802 63,999 70,557 70,195 69,718 62,868 70,852 70,411 69,119 2010's 67,555 67,505 64,146 71,145

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Massachusetts (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 24,737 25,396 29,821 1970's 35,356 36,994 36,778 39,288 37,384 37,812 37,763 40,598 45,657 46,701 1980's 53,462 50,131 61,286 39,640 41,271 41,382 43,661 46,522 48,915 51,508 1990's 50,618 53,188 64,352 65,429 84,534 82,270 96,187 105,813 90,092 65,136 2000's 63,793 61,677 64,763 62,590 56,879 56,665 52,283 61,504 72,303 71,546 2010's 72,053 81,068 73,040

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Michigan (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 107,796 117,124 130,062 1970's 132,708 146,217 159,970 180,274 189,192 181,949 178,220 131,266 142,935 182,316 1980's 190,268 174,722 170,269 159,916 160,952 157,758 135,592 185,956 167,900 176,182 1990's 159,429 165,558 173,802 180,230 183,068 194,078 201,390 192,258 163,368 179,351 2000's 186,800 173,734 176,010 186,129 175,190 174,625 153,896 163,740 172,108

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Minnesota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 63,740 65,536 70,232 1970's 76,585 76,441 79,987 80,219 90,412 89,651 76,981 67,839 81,121 60,509 1980's 63,780 66,755 74,309 70,713 75,175 77,020 74,478 65,923 79,989 85,183 1990's 78,015 85,875 82,381 86,629 83,933 90,658 98,537 92,232 82,345 88,061 2000's 95,358 93,844 104,387 101,446 96,541 95,916 87,170 91,275 99,526 96,218 2010's 89,963 94,360 83,174

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 16,547 18,297 17,667 1970's 23,846 25,853 24,604 23,701 25,504 23,922 20,214 19,304 21,312 27,224 1980's 20,886 19,267 17,213 17,158 17,860 16,591 16,891 17,922 18,108 17,568 1990's 17,548 17,743 17,942 19,199 19,232 19,904 22,225 22,070 21,358 20,208 2000's 21,673 21,585 21,221 22,933 22,130 20,882 19,425 20,774 20,181 19,095 2010's 21,179 20,247 17,834

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Missouri (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 82,524 79,821 79,019 1970's 87,644 89,534 97,506 91,038 90,291 90,719 98,435 93,323 98,680 94,629 1980's 76,054 68,455 69,913 66,106 67,218 60,345 61,890 58,205 63,839 63,039 1990's 59,387 63,191 60,963 69,670 66,196 65,086 72,802 69,829 61,995 63,100 2000's 62,673 64,924 61,897 61,516 61,755 60,369 56,722 59,224 64,993 61,433 2010's 61,194 62,304 54,736 64,522

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Montana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,516 13,651 16,593 1970's 18,564 18,109 19,151 19,143 16,602 18,654 17,831 16,706 17,766 17,396 1980's 14,265 13,725 15,987 13,534 14,256 14,820 12,536 10,989 12,041 13,141 1990's 12,164 12,846 11,557 13,880 12,981 13,489 14,823 13,911 12,952 12,088 2000's 13,533 13,245 14,704 15,119 13,407 13,136 13,181 13,223 14,340 23,575 2010's 20,459 22,336 19,205 20,971

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nebraska (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 41,443 41,765 46,041 1970's 46,824 47,261 45,518 38,690 42,298 43,117 48,713 46,989 40,736 43,507 1980's 43,356 40,612 43,022 39,055 41,900 39,404 36,357 34,205 39,388 37,351 1990's 36,489 40,291 34,490 34,745 38,946 40,044 40,833 33,853 28,911 27,586 2000's 28,907 27,792 28,185 28,368 29,858 27,401 28,087 30,067 34,813 31,790 2010's 31,993 32,115 26,503 32,214

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nevada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,164 6,997 8,204 1970's 9,633 11,014 12,755 13,144 14,078 14,965 18,389 17,436 19,940 19,638 1980's 10,207 8,294 8,449 11,758 12,012 12,232 11,451 13,747 14,879 15,116 1990's 15,073 16,960 16,101 17,549 18,694 18,703 20,421 21,958 23,314 22,710 2000's 25,586 22,912 22,685 24,099 26,862 26,552 28,046 28,224 28,920 29,531 2010's 29,475 30,763 28,991 31,211 29,105

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Hampshire (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,116 4,376 4,414 4,437 4,100 4,955 4,438 4,601 5,034 5,371 1990's 5,073 5,028 5,862 6,142 6,412 6,514 7,099 7,489 6,808 7,214 2000's 8,323 7,349 8,768 9,673 8,943 9,844 8,494 9,360 10,043 9,935 2010's 8,406 8,890 8,130 9,204 9,412 9,32

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Jersey (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 28,656 32,546 34,510 1970's 55,953 60,230 62,917 61,846 58,210 53,346 90,463 53,896 48,005 52,314 1980's 60,481 74,627 78,750 79,624 83,906 83,467 85,775 94,459 101,325 117,385 1990's 115,591 121,240 130,891 128,942 132,008 138,965 150,432 168,760 146,653 163,759 2000's 158,543 131,417 146,176 159,647 168,768 169,857 152,501 168,778 168,574 180,404 2010's

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 27,447 30,713 28,680 1970's 33,035 33,760 32,354 25,569 25,221 22,800 33,708 25,476 25,706 26,371 1980's 24,505 20,446 21,715 22,413 22,947 16,733 20,642 19,939 31,032 28,459 1990's 23,694 24,993 27,884 27,898 24,964 23,934 26,466 27,403 27,206 27,103 2000's 27,009 27,133 25,476 23,745 25,458 24,186 23,404 24,876 25,183 24,701 2010's 25,155 25,035 24,898 26,790

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,059 7,072 7,444 1970's 8,315 9,059 9,874 9,875 11,528 12,425 12,202 11,234 11,845 12,044 1980's 11,026 9,419 11,361 9,828 9,961 10,118 9,084 7,908 9,827 10,609 1990's 10,236 10,732 9,759 10,642 10,783 11,644 12,150 10,870 10,082 10,023 2000's 11,060 10,456 11,675 10,952 10,473 9,903 9,355 10,296 11,101 10,987 2010's 10,302 10,973 10,364 13,236 13,999 12,334

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Ohio (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 153,376 165,414 175,372 1970's 183,412 189,791 208,068 196,663 192,497 169,357 179,392 149,011 172,429 158,117 1980's 166,210 161,110 157,664 143,568 155,350 143,311 139,119 146,983 158,790 161,516 1990's 143,503 150,339 160,645 164,044 166,798 175,160 189,966 183,838 156,630 167,573 2000's 177,917 172,555 163,274 179,611 170,240 166,693 146,930 160,580 167,070

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oregon (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,961 7,874 9,965 1970's 11,360 13,563 14,530 13,722 13,401 15,896 13,995 10,861 12,124 13,820 1980's 15,171 14,922 16,330 15,143 17,012 19,043 16,843 16,718 18,406 20,249 1990's 20,449 22,328 19,570 24,047 22,960 22,419 25,597 25,465 25,986 28,510 2000's 28,589 27,884 27,714 26,110 26,214 27,631 27,844 29,007 30,444 29,744 2010's 27,246 30,359 28,805 30,566 28,377

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Pennsylvania (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 82,702 87,620 95,720 1970's 99,339 110,014 122,518 116,265 102,495 98,991 124,517 111,885 110,620 111,498 1980's 118,462 128,561 125,557 115,222 126,211 115,329 114,442 114,800 127,382 132,421 1990's 125,673 125,546 134,254 131,776 138,473 143,735 154,642 144,084 130,996 143,256 2000's 145,319 136,468 136,202 149,458 142,608 144,971 130,328 145,852 144,603

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Rhode Island (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,142 3,416 3,850 1970's 5,064 4,530 4,734 4,648 4,397 4,233 2,895 3,019 4,783 6,169 1980's 6,751 6,867 7,156 6,976 7,466 7,590 6,718 9,395 8,352 8,767 1990's 8,071 8,269 9,080 9,205 12,049 12,064 12,298 12,303 11,477 11,804 2000's 12,974 12,808 11,468 11,391 11,289 11,043 9,950 11,247 10,843 10,725 2010's 10,458 10,843 10,090 11,633 13,178 11,734

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Carolina (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,840 10,544 12,938 1970's 13,850 14,371 14,137 16,053 14,820 17,202 35,062 32,117 24,681 17,943 1980's 22,885 19,436 15,560 16,548 16,635 15,270 15,894 17,195 17,472 16,525 1990's 15,394 15,796 16,644 17,014 17,870 18,868 20,328 19,560 19,828 20,566 2000's 22,105 20,743 21,029 22,365 22,255 22,048 20,691 20,927 22,283 21,953 2010's 24,119 22,113 21,416

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,444 10,723 11,201 1970's 11,361 10,592 11,204 10,568 11,671 11,488 15,344 14,786 13,547 9,951 1980's 8,507 8,188 9,384 8,651 9,128 9,987 9,166 8,199 8,396 8,826 1990's 8,555 9,473 9,122 10,696 10,274 10,685 11,598 10,422 9,264 9,564 2000's 10,119 9,711 10,258 10,375 9,958 9,819 9,525 10,337 11,362 11,563 2010's 11,025 11,101 9,330 12,151 12,310 10,497

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Tennessee (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,380 38,325 41,069 1970's 42,720 44,062 45,704 45,974 44,651 42,488 38,244 35,127 30,917 42,714 1980's 44,048 42,686 38,697 42,903 46,544 43,399 42,589 44,144 45,852 47,513 1990's 43,552 45,953 46,532 50,754 50,760 51,235 58,497 55,117 52,394 52,572 2000's 53,365 53,010 53,710 56,576 54,201 54,264 51,537 51,056 54,094 51,879 2010's 56,194 52,156 44,928 53,888

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 139,727 139,442 140,854 1970's 146,090 142,423 141,128 155,070 134,418 116,749 135,452 158,683 168,946 233,758 1980's 168,513 157,199 189,447 157,481 165,700 151,774 146,972 156,509 175,368 182,670 1990's 172,333 180,973 184,673 175,988 180,232 209,584 178,549 216,333 169,610 171,714 2000's 190,453 171,847 226,274 218,565 192,901 159,972 147,366 161,255 167,129

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,905 8,114 9,443 1970's 10,180 8,504 7,933 8,997 5,806 6,055 14,681 9,661 8,430 6 1980's 330 343 21,831 7,986 8,569 8,505 4,636 14,811 17,911 16,522 1990's 16,220 19,276 16,584 22,588 26,501 26,825 29,543 31,129 30,955 30,361 2000's 31,282 30,917 33,501 30,994 31,156 34,447 34,051 34,447 37,612 37,024 2010's 38,461 40,444 35,363 41,398 38,156 35,552

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Vermont (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 828 831 853 856 1,467 1,575 1,688 1,833 1,941 2,081 1990's 2,049 2,058 2,319 2,382 2,669 2,672 2,825 3,051 2,979 2,309 2000's 2,595 2,473 2,470 2,757 2,724 2,610 2,374 2,631 2,495 2,483 2010's 2,384 2,479 2,314 4,748 4,830 NA

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 22,756 24,594 27,155 1970's 30,090 34,672 34,176 37,632 35,281 32,358 34,887 34,685 43,064 33,946 1980's 38,467 35,255 38,157 38,457 34,825 33,975 35,453 39,401 42,013 44,181 1990's 41,038 44,077 50,757 52,880 52,944 56,948 59,262 61,895 58,283 61,516 2000's 66,098 59,809 62,699 64,004 64,518 65,838 62,352 66,444 67,006 67,709 2010's 68,911 64,282 60,217 68,126

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Washington (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,133 16,244 17,166 1970's 18,490 20,612 23,254 32,333 33,221 31,988 31,652 29,946 25,330 33,369 1980's 30,754 28,629 30,559 28,728 32,371 35,459 32,022 32,366 36,674 38,502 1990's 38,671 41,738 37,800 43,620 42,982 42,568 48,139 46,686 45,561 50,735 2000's 50,462 57,160 46,455 47,845 48,455 49,745 51,292 53,689 56,205 55,697 2010's 51,335 56,487 53,420 55,805

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 18,511 20,402 21,534 1970's 21,678 23,106 26,654 25,854 24,586 24,776 20,462 19,556 22,501 22,337 1980's 21,980 22,191 20,548 18,771 18,780 17,224 15,995 16,792 22,416 23,258 1990's 21,391 21,043 24,419 24,381 24,979 25,872 28,025 25,913 24,986 27,301 2000's 26,167 27,737 24,729 26,681 25,177 25,084 23,477 22,633 25,299 23,761 2010's 24,907 24,094 22,634

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wisconsin (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 33,610 36,067 52,315 1970's 54,555 47,662 43,753 55,012 65,705 67,485 57,702 61,280 77,890 80,756 1980's 77,107 68,075 69,694 68,020 70,230 72,803 55,275 57,750 66,939 70,090 1990's 66,339 71,516 71,314 77,079 78,609 84,888 93,816 88,729 81,316 81,689 2000's 81,139 76,095 85,811 87,131 82,187 86,086 86,342 89,016 97,137 91,459 2010's 82,204 87,040 76,949 99,434

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,865 11,637 14,069 1970's 14,026 14,072 17,287 13,206 13,241 10,253 9,152 8,767 8,100 8,211 1980's 4,980 4,511 10,098 9,182 9,431 9,139 8,045 8,443 8,700 8,551 1990's 8,440 9,101 8,009 10,268 9,231 9,833 9,721 10,754 10,414 9,838 2000's 9,752 9,535 10,414 9,986 9,916 9,184 9,500 9,442 10,180 10,372 2010's 11,153 11,680 10,482 12,013 12,188 12,498

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in the District of Columbia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,752 14,993 15,881 15,945 11,680 11,921 11,934 13,999 15,012 15,741 1990's 13,473 15,550 16,103 16,229 14,742 17,035 16,347 18,012 16,862 17,837 2000's 17,728 16,546 18,332 17,098 17,384 17,683 17,107 19,297 18,411 18,705 2010's 18,547 16,892 15,363 17,234 17,498 15,793

  7. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    77.5 67.3 65.2 65.8 65.8 65.3 1987-2015 Alabama 79.3 78.9 76.2 76.6 78.4 77.6 1990-2015 Alaska 87.7 88.6 94.9 94.5 94.5 98.2 1990-2015 Arizona 88.7 87.8 86.6 85.5 84.4 83.8 1990-2015 Arkansas 55.6 51.5 40.2 43.7 45.5 42.5 1990-2015 California 54.1 54.3 50.0 49.9 48.4 50.0 1990-2015 Colorado 94.6 93.8 92.2 94.7 94.5 NA 1990-2015 Connecticut 65.4 65.4 65.1 57.9 67.2 NA 1990-2015 Delaware 49.8 53.4 43.7 45.0 46.2 45.7 1990-2015 District of Columbia 100.0 16.9 17.9 19.1 19.9 21.4 1990-2015 Florida

  8. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    97.4 96.3 95.8 95.7 95.5 95.7 1989-2015 Alabama 100.0 100.0 100.0 100.0 100.0 99.0 1989-2015 Alaska 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Arizona 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Arkansas 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 California 98.5 98.3 97.5 96.1 94.8 94.9 1989-2015 Colorado 100.0 100.0 100.0 100.0 100.0 NA 1989-2015 Connecticut 97.3 96.8 96.7 95.3 95.9 NA 1989-2015 Delaware 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 District of Columbia 75.5 75.0 73.9

  9. Natural Gas Delivered to Consumers in Connecticut (Including...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 142,216 130,664 149,294 2000's 156,692 143,330 175,072 150,692 159,259 164,740 169,504 175,820...

  10. Natural Gas Delivered to Consumers in Connecticut (Including...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 18,442 15,861 16,485 10,646 7,197 7,730 7,420 9,010 11,276 11,370 12,345 15,400 2002 19,009 18,410 17,585 13,782 12,805...

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,109 11,224 12,435 1970's 14,500 16,073 17,005 15,420 16,247 15,928 16,694 16,813 16,940 16,830...

  12. Gas turbine engine exhaust diffuser including circumferential vane

    DOE Patents [OSTI]

    Orosa, John A.; Matys, Pawel

    2015-05-19

    A flow passage defined between an inner and an outer boundary for guiding a fluid flow in an axial direction. A flow control vane is supported at a radial location between the inner and outer boundaries. A fluid discharge opening is provided for discharging a flow of the compressed fluid from a trailing edge of the vane, and a fluid control surface is provided adjacent to the fluid discharge opening and extends in the axial direction at the trailing edge of the vane. The fluid control surface has a curved trailing edge forming a Coanda surface. The fluid discharge opening is selectively provided with a compressed fluid to produce a Coanda effect along the control surface. The Coanda effect has a component in the radial direction effecting a turning of the fluid flow in the flow path radially inward or outward toward one of the inner and outer boundaries.

  13. Natural Gas Delivered to Consumers in North Carolina (Including...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 208,369 207,427 210,606 2000's 226,543 200,542 229,338 212,534 219,814 225,423 218,379 232,374...

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,100 20,624 24,524 1970's 21,532 26,331 24,200 23,044 21,002 21,615 20,042 18,303 20,366...

  15. Natural Gas Delivered to Consumers in New York (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,315,909 1,224,520 1,265,646 2000's 1,236,734 1,166,162 1,190,745 1,093,319 1,090,023 1,069,062...

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 122,050 122,885 128,282 1970's 139,498 145,458 147,326 142,736 136,332 128,273 143,530 130,898...

  17. Natural Gas Delivered to Consumers in Alabama (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 36,984 28,384 27,217 23,714 21,027 21,010 22,537 23,488 21,619 24,186 23,647 25,742 2002 36,559 33,467 32,355 26,061 23,580 27,901...

  18. Natural Gas Delivered to Consumers in Massachusetts (Including...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Apr May Jun Jul Aug Sep Oct Nov Dec 2001 45,181 40,868 39,690 30,815 23,495 19,798 19,305 23,154 22,753 24,627 24,646 31,456 2002 44,559 40,420 40,295 29,989 27,757 25,316 23,254...

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    24,630 25,344 18,494 12,079 8,747 8,382 8,305 8,812 11,741 16,631 27,650 1990 24,659 23,697 22,939 17,706 11,586 10,272 9,602 9,683 10,261 12,661 17,210 24,715 1991 28,442...

  20. Natural Gas Delivered to Consumers in Colorado (Including Vehicle...

    Gasoline and Diesel Fuel Update (EIA)

    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 57,089 50,447 49,042 41,157 30,506 23,904 22,403 22,033 19,905 22,672 30,231 42,797 2002 47,541 44,713 45,909 30,319 24,230...

  1. Natural Gas Delivered to Consumers in Iowa (Including Vehicle...

    Gasoline and Diesel Fuel Update (EIA)

    14,476 16,865 23,400 2002 28,527 25,072 25,693 18,706 13,413 10,076 9,731 9,815 10,403 14,561 22,219 27,225 2003 31,445 32,450 25,482 16,870 12,421 10,288 9,892 10,030 10,550...

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year-6 Year-7 Year-8 Year-9 1960's 38,459 42,751 41,151 1970's 43,921 41,978 43,852 40,403 41,074 41,806 44,862 48,253 45,729 52,036 1980's 47,135 40,833 45,664 44,177 44,423...

  3. Ocean Power (4 Activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Areas of the country that have an available coastline but are limited in other renewable resources can use the oceans to produce energy. We are familiar with the large hydroelectric dams that dot our nation, creating large reservoirs and flooding millions of acres of land. By turning to the restless seas we can find a source of energy that is not affected by clouds and the scarcity of wind. By using ocean power we can increase our need for power without having to deplete our existing non-renewable resources.

  4. National Oceanic and Atmospheric Administration (NOAA) | Open...

    Open Energy Info (EERE)

    National Oceanic and Atmospheric Administration (NOAA) Jump to: navigation, search Logo: National Oceanic and Atmospheric Administration (NOAA) Name: National Oceanic and...

  5. Ocean current resource assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean current resource assessment Ocean current resource assessment Ocean current resource assessment Office presentation icon 45oceanresourcegtrchaas.ppt More Documents & ...

  6. Gas sensor incorporating a porous framework

    DOE Patents [OSTI]

    Yaghi, Omar M.; Czaja, Alexander U.; Wang, Bo; Furukawa, Hiroyasu; Galatsis, Kosmas; Wang, Kang L.

    2013-07-09

    The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

  7. Gas sensor incorporating a porous framework

    DOE Patents [OSTI]

    Yaghi, Omar M; Czaja, Alexander U; Wang, Bo; Galatsis, Kosmas; Wang, Kang L; Furukawa, Hiroyasu

    2014-05-27

    The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

  8. Electric power monthly, September 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  9. LLNL Ocean General Circulation Model

    Energy Science and Technology Software Center (OSTI)

    2005-12-29

    The LLNL OGCM is a numerical ocean modeling tool for use in studying ocean circulation over a wide range of space and time scales, with primary applications to climate change and carbon cycle science.

  10. Ocean Navitas | Open Energy Information

    Open Energy Info (EERE)

    Condry. Website: www.oceannavitas.com References: Ocean Navitas&127;UNIQ75db538f85b32404-ref-000014E2-QINU&127; This article is a stub. You can help OpenEI by expanding it. Ocean...

  11. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 2: Overview and invited papers

    SciTech Connect (OSTI)

    Not Available

    1990-05-15

    This document is a compilation of summaries of papers presented at the Coastal Ocean Prediction Systems workshop. Topics include; marine forecasting, regulatory agencies and regulations, research and application models, research and operational observing, oceanic and atmospheric data assimilation, and coastal physical processes.

  12. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  13. Ninth Annual Ocean Renewable Energy Conference

    Broader source: Energy.gov [DOE]

    The future of clean, renewable ocean wave energy will be discussed in depth at the 2014 Ocean Renewable Energy Conference.

  14. Turbines in the ocean

    SciTech Connect (OSTI)

    Smith, F.G.W.; Charlier, R.H.

    1981-09-01

    It is noted that the relatively high-speed ocean currents flowing northward along the east coast of the U.S. may be able to supply a significant proportion of the future electric power requirements of urban areas. The Gulf Stream core lies only about 20 miles east of Miami here its near-surface water reaches velocities of 4.3 miles per hour. Attention is called to the estimate that the energy available in the current of the Gulf Stream adjacent to Florida is approximately equivalent to that generated by 25 1,000-megawatt power plants. It is also contended that this power could be produced at competitive prices during the 1980s using large turbines moored below the ocean surface near the center of the Stream. Assuming an average ocean-current speed between 4 and 5 knots at the current core, the power density of a hydroturbine could reach 410 watts per square foot, about 100 times that of a wind-driven device of similar scale operating in an airflow of approximately 11 knots.

  15. MHK technologies include current energy conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e.g., hydrokinetic turbines that extract power from water currents (riverine, tidal, and ocean) and wave energy conversion (WEC) devices that extract power from wave motion. ...

  16. Natural gas annual 1995

    SciTech Connect (OSTI)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  17. Basin scale assessment of gas hydrate dissociation in response to climate change

    SciTech Connect (OSTI)

    Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.; Cameron-Smith, P.

    2011-07-01

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating climate. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. Field investigations have discovered substantial methane gas plumes exiting the seafloor along the Arctic Ocean margin, and the plumes appear at depths corresponding to the upper limit of a receding gas hydrate stability zone. It has been suggested that these plumes may be the first visible signs of the dissociation of shallow hydrate deposits due to ongoing climate change in the arctic. We simulate the release of methane from oceanic deposits, including the effects of fully-coupled heat transfer, fluid flow, hydrate dissociation, and other thermodynamic processes, for systems representative of segments of the Arctic Ocean margins. The modeling encompasses a range of shallow hydrate deposits from the landward limit of the hydrate stability zone down to water depths beyond the expected range of century-scale temperature changes. We impose temperature changes corresponding to predicted rates of climate change-related ocean warming and examine the possibility of hydrate dissociation and the release of methane. The assessment is performed at local-, regional-, and basin-scales. The simulation results are consistent with the hypothesis that dissociating shallow hydrates alone can result in significant methane fluxes at the seafloor. However, the methane release is likely to be confined to a narrow region of high dissociation susceptibility, defined by depth and temperature, and that any release will be continuous and controlled, rather than explosive. This modeling also establishes the first realistic bounds for methane release along the arctic continental shelf for potential hydrate dissociation scenarios, and ongoing work may help confirm whether climate change is already impacting the stability of the vast oceanic hydrate reservoir.

  18. COLLOQUIUM: Ocean Acoustic Ecology: Great Whales, Ocean Scales...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The dramatic increase in ocean acoustic sensor data offers huge opportunities for ... Keeping pace with big data for current access and analyses needs at appropriate scales ...

  19. ARM - Lesson Plans: Ocean Currents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ocean Currents Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Ocean Currents Objective The objective of this activity is to demonstrate the effect of cooling and heating on currents in the ocean. Materials Each student or group of students will need the following: Large beaker

  20. International Conference on Ocean Energy

    Broader source: Energy.gov [DOE]

    Join the Energy Department in Edinburgh, Scotland from February 23–25th for the International Conference on Ocean Energy (ICOE) conference.

  1. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  2. Natural Gas Regulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Regulation Natural Gas Regulation Natural Gas Regulation The Natural Gas Act of 1938, as amended, requires any person who wishes to import and/or export natural gas, (including liquefied natural gas, compressed natural gas, compressed gas liquids, etc.) from or to a foreign country must first obtain an authorization from the Department of Energy. The authorizations are granted by the Office of Regulation and International Engagement, Division of Natural Gas Regulation. DOE grants two

  3. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    requested by Secretary of Energy Spencer Abraham in an effort to enhance natural gas market information and efficiency. Survey respondents would include all operators of...

  4. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    data to EIA. The number of companies reporting increased by 3 from 2008, to include Alon USA, Chalmette Refining LLC, and Western Refining, Inc. Natural Gas Transportation Update...

  5. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  6. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  7. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  8. Natural gas monthly, July 1996

    SciTech Connect (OSTI)

    1996-07-01

    This document presents information pertaining to the natural gas industry. Data are included on production, consumption, distribution, and pipeline activities.

  9. Metagenome of a Versatile Chemolithoautotroph from Expanding Oceanic Dead Zones

    SciTech Connect (OSTI)

    Walsh, David A.; Zaikova, Elena; Howes, Charles L.; Song, Young; Wright, Jody; Tringe, Susannah G.; Tortell, Philippe D.; Hallam, Steven J.

    2009-07-15

    Oxygen minimum zones (OMZs), also known as oceanic"dead zones", are widespread oceanographic features currently expanding due to global warming and coastal eutrophication. Although inhospitable to metazoan life, OMZs support a thriving but cryptic microbiota whose combined metabolic activity is intimately connected to nutrient and trace gas cycling within the global ocean. Here we report time-resolved metagenomic analyses of a ubiquitous and abundant but uncultivated OMZ microbe (SUP05) closely related to chemoautotrophic gill symbionts of deep-sea clams and mussels. The SUP05 metagenome harbors a versatile repertoire of genes mediating autotrophic carbon assimilation, sulfur-oxidation and nitrate respiration responsive to a wide range of water column redox states. Thus, SUP05 plays integral roles in shaping nutrient and energy flow within oxygen-deficient oceanic waters via carbon sequestration, sulfide detoxification and biological nitrogen loss with important implications for marine productivity and atmospheric greenhouse control.

  10. Hawaii Oceanic Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    Oceanic Technology Inc Jump to: navigation, search Name: Hawaii Oceanic Technology Inc Region: United States Sector: Marine and Hydrokinetic Website: www.hioceanictech.com This...

  11. Green Ocean Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Energy Jump to: navigation, search Name: Green Ocean Wave Energy Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  12. Ocean Motion International LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: Saulsbury, Tennessee Zip: 38067 Sector: Ocean Product: Marine energy technology firm developing ocean wave powered generators. Coordinates: 35.052242,...

  13. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Broader source: Energy.gov (indexed) [DOE]

    Report about the Ocean Thermal Extractable Energy Visualization project, which focuses on assessing the Maximum Practicably Extractable Energy from the world's ocean thermal ...

  14. Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ocean Energy Ltd Jump to: navigation, search Name: Ocean Energy Ltd Address: 3 Casement Square Place: Cobh Region: Ireland Sector: Marine and Hydrokinetic Phone Number:...

  15. Scott Wilson Oceans | Open Energy Information

    Open Energy Info (EERE)

    Wilson Oceans Jump to: navigation, search Name: Scott Wilson Oceans Place: Chesterfield, United Kingdom Zip: S30 1JF Sector: Wind energy Product: Specialist in the engineering of...

  16. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  17. The Ocean Sampling Day Consortium

    SciTech Connect (OSTI)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z.; Sonnenschein, Eva C.; Cariou, Thierry; O’Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R.; Kremp, Anke; DeLorenzo, Marie E.; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P.; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A.; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M.; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion M. F.; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C.; Kandil, Mahrous M.; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; ten Hoopen, Petra; Cochrane, Guy; L’Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M.; Martin, Patrick; Jensen, Rachelle M.; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A. Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J.; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N.; Gasol, Josep M.; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S.; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M.; Collins, R. Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J.; Amaral-Zettler, Linda A.; Gilbert, Jack A.; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

  18. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOE Patents [OSTI]

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  19. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, C.M.

    1996-12-10

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  20. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, Conrad M. (Antioch, CA)

    1996-01-01

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

  1. Videos of Experiments from ORNL Gas Hydrate Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gas hydrate research performed by the Environmental Sciences Division utilizes the ORNL Seafloor Process Simulator, the Parr Vessel, the Sapphire Cell, a fiber optic distributed sensing system, and Raman spectroscopy. The group studies carbon sequestration in the ocean, desalination, gas hydrates in the solar system, and nucleation and dissociation kinetics. The videos available at the gas hydrates website are very short clips from experiments.

  2. Shale Gas 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Oil & Gas » Shale Gas » Shale Gas 101 Shale Gas 101 Shale Gas 101 This webpage has been developed to answer the many questions that people have about shale gas and hydraulic fracturing (or fracking). The information provided below explains the basics, including what shale gas is, where it's found, why it's important, how it's produced, and challenges associated with production. Natural gas production from "shale" formations (fine-grained sedimentary

  3. Cryogenic treatment of gas

    DOE Patents [OSTI]

    Bravo, Jose Luis (Houston, TX); Harvey, III, Albert Destrehan (Kingwood, TX); Vinegar, Harold J. (Bellaire, TX)

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  4. Ocean Thermal | Open Energy Information

    Open Energy Info (EERE)

    the ability to produce 10000 TWh per year, which is greater than other types of ocean energy such as tides, marine currents and salinity gradient. OTEC functions best when...

  5. Ocean Renewable Energy Conference X

    Broader source: Energy.gov [DOE]

    The 10th annual Ocean Renewable Energy Conference provides attendees a forum to share new ideas and concepts, opportunity to learn from leading-edge practitioners and policy-makers, information...

  6. MPAS-Ocean Development Update

    SciTech Connect (OSTI)

    Jacobsen, Douglas W.; Ringler, Todd D.; Petersen, Mark R.; Jones, Philip W.; Maltrud, Mathew E.

    2012-06-13

    The Model for Prediction Across Scales (MPAS) is a modeling framework developed jointly between NCAR and LANL, built to allow core developers to: rapidly develop new dynamical cores, and leverage improvements made to shared codes. MPAS-Ocean (MPAS-O) is a functioning ocean model capable of high resolution, or highly vairable resolution simulations. The first MPAS-O publication is expected by the end of the year.

  7. Ocean thermal energy conversion: a review

    SciTech Connect (OSTI)

    Yuen, P.C.

    1981-10-01

    The OTEC principle is discussed along with general system and cycle types, specific OTEC designs, OTEC applications, and the ocean thermal resource. The historic development of OTEC is briefly reviewed, and the status of French, Japanese, EUROCEAN, and US programs is assessed. US efforts are detailed and DOE's strategy outlined with OTEC-1 and Mini-OTEC information. Power system components of the more technically advanced closed-cycle OTEC concept are discussed. These include: heat exchangers, corrosion and biofouling countermeasures, working fluids, ammonia power systems, and on-platform seawater systems. Several open-cycle features are also discussed. A critical review is presented of the ocean engineering aspects of OTEC power systems. Major subsystems such as platform, cold water pipe, mooring system, dynamic positioning system, power transmission cable system are assessed for their relationships with the ocean environment and with each other. Nine available studies of OTEC costs are reviewed. Tentative comparisons are made between OTEC and traditional fuel costs, and OTEC products and markets are considered. Possible environmental and social effects of OTEC development are discussed. International, national, and local laws regulating OTEC plants and OTEC energy products are reviewed. Tax incentives, attitudes of the utilities, and additional legislative needs are considered. (LEW)

  8. Natural gas annual 1997

    SciTech Connect (OSTI)

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  9. Gas mass transfer for stratified flows

    SciTech Connect (OSTI)

    Duffey, R.B.; Hughes, E.D.

    1995-06-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi})Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature.

  10. Gas mass transfer for stratified flows

    SciTech Connect (OSTI)

    Duffey, R.B.; Hughes, E.D.

    1995-07-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrum integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi}) Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geophysical and chemical engineering literature.

  11. US crude oil, natural gas, and natural gas liquids reserves

    SciTech Connect (OSTI)

    Not Available

    1990-10-05

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

  12. EDDY RESOLVING NUTRIENT ECODYNAMICS IN THE GLOBAL PARALLEL OCEAN PROGRAM AND CONNECTIONS WITH TRACE GASES IN THE SULFUR, HALOGEN AND NMHC CYCLES

    SciTech Connect (OSTI)

    S. CHU; S. ELLIOTT

    2000-08-01

    Ecodynamics and the sea-air transfer of climate relevant trace gases are intimately coupled in the oceanic mixed layer. Ventilation of species such as dimethyl sulfide and methyl bromide constitutes a key linkage within the earth system. We are creating a research tool for the study of marine trace gas distributions by implementing coupled ecology-gas chemistry in the high resolution Parallel Ocean Program (POP). The fundamental circulation model is eddy resolving, with cell sizes averaging 0.15 degree (lat/long). Here we describe ecochemistry integration. Density dependent mortality and iron geochemistry have enhanced agreement with chlorophyll measurements. Indications are that dimethyl sulfide production rates must be adjusted for latitude dependence to match recent compilations. This may reflect the need for phytoplankton to conserve nitrogen by favoring sulfurous osmolytes. Global simulations are also available for carbonyl sulfide, the methyl halides and for nonmethane hydrocarbons. We discuss future applications including interaction with atmospheric chemistry models, high resolution biogeochemical snapshots and the study of open ocean fertilization.

  13. Natural gas dehydration process and apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G.; Ng, Alvin; Mairal, Anurag P.

    2004-09-14

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  14. Oil and Gas Gateway | Open Energy Information

    Open Energy Info (EERE)

    States, oil and gas boards and commissions are the place for finding data related to oil and gas activities. These activities include well records, permitting, and production...

  15. Initial Value Predictability of Intrinsic Oceanic Modes and Implications for Decadal Prediction over North America

    SciTech Connect (OSTI)

    Branstator, Grant

    2014-12-09

    The overall aim of our project was to quantify and characterize predictability of the climate as it pertains to decadal time scale predictions. By predictability we mean the degree to which a climate forecast can be distinguished from the climate that exists at initial forecast time, taking into consideration the growth of uncertainty that occurs as a result of the climate system being chaotic. In our project we were especially interested in predictability that arises from initializing forecasts from some specific state though we also contrast this predictability with predictability arising from forecasting the reaction of the system to external forcing – for example changes in greenhouse gas concentration. Also, we put special emphasis on the predictability of prominent intrinsic patterns of the system because they often dominate system behavior. Highlights from this work include: • Development of novel methods for estimating the predictability of climate forecast models. • Quantification of the initial value predictability limits of ocean heat content and the overturning circulation in the Atlantic as they are represented in various state of the artclimate models. These limits varied substantially from model to model but on average were about a decade with North Atlantic heat content tending to be more predictable than North Pacific heat content. • Comparison of predictability resulting from knowledge of the current state of the climate system with predictability resulting from estimates of how the climate system will react to changes in greenhouse gas concentrations. It turned out that knowledge of the initial state produces a larger impact on forecasts for the first 5 to 10 years of projections. • Estimation of tbe predictability of dominant patterns of ocean variability including well-known patterns of variability in the North Pacific and North Atlantic. For the most part these patterns were predictable for 5 to 10 years. • Determination of especially predictable patterns in the North Atlantic. The most predictable of these retain predictability substantially longer than generic patterns, with some being predictable for two decades.

  16. Application of microturbines to control emissions from associated gas

    DOE Patents [OSTI]

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  17. Gas separation membrane module assembly

    DOE Patents [OSTI]

    Wynn, Nicholas P (Palo Alto, CA); Fulton, Donald A. (Fairfield, CA)

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  18. Cryostat including heater to heat a target

    DOE Patents [OSTI]

    Pehl, R.H.; Madden, N.W.; Malone, D.F.

    1990-09-11

    A cryostat is provided which comprises a vacuum vessel; a target disposed within the vacuum vessel; a heat sink disposed within the vacuum vessel for absorbing heat from the detector; a cooling mechanism for cooling the heat sink; a cryoabsorption mechanism for cryoabsorbing residual gas within the vacuum vessel; and a heater for maintaining the target above a temperature at which the residual gas is cryoabsorbed in the course of cryoabsorption of the residual gas by the cryoabsorption mechanism. 2 figs.

  19. Dense gas-compatible enzymes

    DOE Patents [OSTI]

    Kao, Fu-jung; Laintz, Kenneth E.; Sawan, Samuel P.; Sivils, L. Dale; Spall, W. Dale

    1998-07-21

    An enzymatic reaction system including a modified enzyme, and a dense gas system; modified enzymes; and methods of reacting modified enzymes in a dense gas system or liquid carbon dioxide.

  20. Gas cleaning system and method

    DOE Patents [OSTI]

    Newby, Richard Allen

    2006-06-06

    A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

  1. The Ocean Sampling Day Consortium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; et al

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less

  2. Ocean current wave interaction study

    SciTech Connect (OSTI)

    Hayes, J.G.

    1980-09-20

    A numerical model has been developed to incorporate refraction of ocean surface gravity waves by major ocean currents. The model is initialized with directional wave spectra and verified with aircraft synthetic aperture radar X band spectra, laser profilometer spectra, and pitch and roll buoy data. Data collected during the Marineland test experiment are used as surface truth observations for the wave-current study. Evidence of Gulf Stream refraction and trapping of surface waves as well as caustics in the current is shown and modeled assuming a nonuniform Gulf Stream distribution. Frequency and directional resolution of the wave spectral distribution and the current refraction patterns illustrates the need for further study of ocean current-wave interaction in wave refraction studies.

  3. Ocean Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind

  4. Gas venting system

    DOE Patents [OSTI]

    Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

    2010-06-29

    A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

  5. Ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Lockerby, R.W.

    1981-01-01

    Ocean thermal energy conversion (OTEC) is reviewed briefly. The two types of OTEC system (open and closed) are described and limitations are pointed out. A bibliography of 148 references on OTEC is given for the time period 1975 to 1980. Entries are arranged alphabetically according to the author's name. (MJJ)

  6. Indian National Institute of Ocean Technology | Open Energy Informatio...

    Open Energy Info (EERE)

    of Ocean Technology Jump to: navigation, search Name: Indian National Institute of Ocean Technology Place: Chennai, Tamil Nadu, India Sector: Ocean Product: Research institute...

  7. MHK Technologies/Ocean Treader floating | Open Energy Information

    Open Energy Info (EERE)

    homepage Ocean Treader floating.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK ProjectsDevelopment of Ocean...

  8. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    including key gas-consuming areas in the Northeast. The Henry Hub spot price reversed ground after price declines last week, gaining 16 cents per MMBtu to an average of 4.35...

  9. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inc. and the U.S. subsidiary of Nexen of 8.3 million, the highest bid during the sale. Top bidders included several independent oil and gas companies such as Kerr-McGee...

  10. Natural gas monthly

    SciTech Connect (OSTI)

    1996-05-01

    This document highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Data presented include volume and price, production, consumption, underground storage, and interstate pipeline activities.

  11. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  12. GLobal Ocean Data Analysis Project (GLODAP): Data and Analyses

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sabine, C. L.; Key, R. M.; Feely, R. A.; Bullister, J. L.; Millero, F. J.; Wanninkhof, R.; Peng, T. H.; Kozyr, A.

    GLODAP information available through CDIAC includes gridded and bottle data, a live server, an interactive atlas that provides access to data plots, and other tools for viewing and interacting with the data. [from http://cdiac.esd.ornl.gov/oceans/glodap/Glopintrod.htm](Specialized Interface)

  13. Natural Gas Modernization Clearinghouse | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modernization Clearinghouse Natural Gas Modernization Clearinghouse Overview This Natural Gas Modernization Clearinghouse provides information about the implications of natural gas infrastructure modernization, including strategies and technologies that increase public safety, improve efficiency and environmental performance and enhance natural gas deliverability. Specific topic areas include information on measuring and reducing methane emissions, technology research and development, job

  14. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Animal, Vegetable or Mineral? Iron is a limiting nutrient in many parts of the oceans, nowhere more so than in the Southern Ocean's photic zone, which receives enough sunlight for...

  15. Ocean Flow Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Ocean Flow Energy Place: United Kingdom Zip: NE29 6NL Product: Tidal energy device developer. References: Ocean Flow Energy1 This article...

  16. Open Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Edit with form History Open Ocean Energy Ltd Jump to: navigation, search Name: Open Ocean Energy Ltd Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  17. Reducing gas generators and methods for generating a reducing gas

    DOE Patents [OSTI]

    Scotto, Mark Vincent; Perna, Mark Anthony

    2015-11-03

    One embodiment of the present invention is a unique reducing gas generator. Another embodiment is a unique method for generating a reducing gas. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for generating reducing gas. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  18. Some ocean engineering considerations in the design of OTEC plants

    SciTech Connect (OSTI)

    McGuiness, T.

    1982-08-01

    An alternate energy resource using the temperature differences between warm surface waters and cool bottom waters of the world's oceans, Ocean Thermal Energy Conversion (OTEC) utilizes the solar energy potential of nearequatorial water masses and can be applied to generate electrical energy as a baseload augmentation of landside power plants or to process energy-intensive products at sea. Designs of OTEC plants include concepts of floating barge or shipshape structures with large (up to 100-foot diameter, 3,000 feet in length) pipes used to intake cool bottom waters and platforms located in 300-foot water depths similar to oil drilling rigs, also with a pipe to ingest cool waters, but in this case the pipe is laid on continental shelf areas in 25/sup 0/-30/sup 0/ slopes attaining a length of several miles. The ocean engineering design considerations, problem areas, and proposed solutions to data regarding various OTEC plant concepts are the topic of this presentation.

  19. An update on modeling land-ice/ocean interactions in CESM

    SciTech Connect (OSTI)

    Asay-davis, Xylar

    2011-01-24

    This talk is an update on ongoing land-ice/ocean coupling work within the Community Earth System Model (CESM). The coupling method is designed to allow simulation of a fully dynamic ice/ocean interface, while requiring minimal modification to the existing ocean model (the Parallel Ocean Program, POP). The method makes use of an immersed boundary method (IBM) to represent the geometry of the ice-ocean interface without requiring that the computational grid be modified in time. We show many of the remaining development challenges that need to be addressed in order to perform global, century long climate runs with fully coupled ocean and ice sheet models. These challenges include moving to a new grid where the computational pole is no longer at the true south pole and several changes to the coupler (the software tool used to communicate between model components) to allow the boundary between land and ocean to vary in time. We discuss benefits for ice/ocean coupling that would be gained from longer-term ocean model development to allow for natural salt fluxes (which conserve both water and salt mass, rather than water volume).

  20. Polyport atmospheric gas sampler

    DOE Patents [OSTI]

    Guggenheim, S. Frederic (Teaneck, NJ)

    1995-01-01

    An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

  1. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  2. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  3. Global warming and changes in ocean circulation

    SciTech Connect (OSTI)

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  4. THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998

    SciTech Connect (OSTI)

    1999-03-01

    This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C{sub 2} to C{sub 5+}) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline.

  5. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  6. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. Colorado Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  9. Missouri Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  10. Michigan Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  12. Tennessee Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  13. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  14. Mississippi Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  15. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  16. Illinois Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  17. Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  18. Maryland Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  19. Louisiana Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  20. Gas-controlled dynamic vacuum insulation with gas gate

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

  1. Gas-controlled dynamic vacuum insulation with gas gate

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  2. Critical Infrastructure for Ocean Research and Societal Needs in 2030

    SciTech Connect (OSTI)

    National Research Council

    2011-04-22

    The United States has jurisdiction over 3.4 million square miles of ocean—an expanse greater than the land area of all fifty states combined. This vast marine area offers researchers opportunities to investigate the ocean’s role in an integrated Earth system, but also presents challenges to society, including damaging tsunamis and hurricanes, industrial accidents, and outbreaks of waterborne diseases. The 2010 Gulf of Mexico Deepwater Horizon oil spill and 2011 Japanese earthquake and tsunami are vivid reminders that a broad range of infrastructure is needed to advance our still-incomplete understanding of the ocean. The National Research Council (NRC)’s Ocean Studies Board was asked by the National Science and Technology Council’s Subcommittee on Ocean Science and Technology, comprised of 25 U.S. government agencies, to examine infrastructure needs for ocean research in the year 2030. This request reflects concern, among a myriad of marine issues, over the present state of aging and obsolete infrastructure, insufficient capacity, growing technological gaps, and declining national leadership in marine technological development; issues brought to the nation’s attention in 2004 by the U.S. Commission on Ocean Policy. A 15-member committee of experts identified four themes that encompass 32 future ocean research questions–enabling stewardship of the environment, protecting life and property, promoting economic vitality, and increasing fundamental scientific understanding. Many of the questions in the report (e.g., sea level rise, sustainable fisheries, the global water cycle) reflect challenging, multidisciplinary science questions that are clearly relevant today, and are likely to take decades of effort to solve. As such, U.S. ocean research will require a growing suite of ocean infrastructure for a range of activities, such as high quality, sustained time series observations or autonomous monitoring at a broad range of spatial and temporal scales. Consequently, a coordinated national plan for making future strategic investments becomes an imperative to address societal needs. Such a plan should be based upon known priorities and should be reviewed every 5-10 years to optimize the federal investment. The committee examined the past 20 years of technological advances and ocean infrastructure investments (such as the rise in use of self-propelled, uncrewed, underwater autonomous vehicles), assessed infrastructure that would be required to address future ocean research questions, and characterized ocean infrastructure trends for 2030. One conclusion was that ships will continue to be essential, especially because they provide a platform for enabling other infrastructure – autonomous and remotely operated vehicles; samplers and sensors; moorings and cabled systems; and perhaps most importantly, the human assets of scientists, technical staff, and students. A comprehensive, long-term research fleet plan should be implemented in order to retain access to the sea. The current report also calls for continuing U.S. capability to access fully and partially ice-covered seas; supporting innovation, particularly the development of biogeochemical sensors; enhancing computing and modeling capacity and capability; establishing broadly accessible data management facilities; and increasing interdisciplinary education and promoting a technically-skilled workforce. The committee also provided a framework for prioritizing future investment in ocean infrastructure. They recommend that development, maintenance, or replacement of ocean research infrastructure assets should be prioritized in terms of societal benefit, with particular consideration given to usefulness for addressing important science questions; affordability, efficiency, and longevity; and ability to contribute to other missions or applications. These criteria are the foundation for prioritizing ocean research infrastructure investments by estimating the economic costs and benefits of each potential infrastructure investment, and funding those investments that collectively produce the largest expected net benefit over time. While this type of process is clearly subject to budget constraints, it could quantify the often informal evaluation of linkages between infrastructure, ocean research, the value of information produced, societal objectives, and economic benefits. Addressing the numerous complex science questions facing the entire ocean research enterprise in 2030–from government to academia, industry to nonprofits, local to global scale–represents a major challenge, requiring collaboration across the breadth of the ocean sciences community and nearly seamless coordination between ocean-related federal agencies.

  3. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, E.R.; Alger, T.W.

    1995-03-07

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  4. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect (OSTI)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  5. Oil and Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business Development Executive John Russell Business Development Executive Richard P. Feynman Center for Innovation (505) 665-3941 Email thumbnail of Business Development Executive Don Hickmott Business Development Executive Richard P. Feynman Center for Innovation (505) 667-8753 Email Los Alamos' efforts in fossil energy R&D

  6. Gas-Saving Tips

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gas-Saving Tips Some consumers believe fuel economy ratings are a fixed number, like engine size or cargo volume. However, a vehicle's fuel economy can vary significantly due to several factors, including how the vehicle is driven, the vehicle's mechanical condition, and the environment in which it is driven. Fortunately, you may be able to improve your vehicle's gas mileage through proper maintenance and driving habits. Studies suggest the average driver can improve his/her fuel economy by

  7. Natural Gas Exports from Iran

    Reports and Publications (EIA)

    2012-01-01

    This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

  8. Natural Gas Exports from Iran

    Reports and Publications (EIA)

    2012-01-01

    This assessment of the natural gas sector in Iran, with a focus on Irans natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

  9. Topic A Note: Includes STEPS Subtopic

    Energy Savers [EERE]

    Topic A Note: Includes STEPS Subtopic 33 Total Projects Developing and Enhancing Workforce Training Programs

  10. Direct fired absorption machine flue gas recuperator

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1985-01-01

    A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

  11. National Oceanic and Atmospheric Administration, Honolulu, Hawaii |

    Office of Environmental Management (EM)

    Department of Energy Oceanic and Atmospheric Administration, Honolulu, Hawaii National Oceanic and Atmospheric Administration, Honolulu, Hawaii Photo of a Staff Residence at the Pacific Tsunami Warning Center in Hawaii The staff residences at the Pacific Tsunami Warning Center in Hawaii now have solar water heating systems funded by the Federal Energy Management Program (FEMP). The Center is part of the Department of Commerce's National Oceanic and Atmospheric Administration (DOC-NOAA). New

  12. Arkansas Natural Gas Company Hosts Tour With U.S. Deputy Secretary...

    Energy Savers [EERE]

    range of natural gas development - from drilling to producing to transporting - and the ... natural gas operations included a drilling site, producing natural gas wells, a ...

  13. Fundamentals of gas measurement II

    SciTech Connect (OSTI)

    Smith, J.P.

    1995-12-01

    A knowledge of the Fundamentals of Gas Measurement is essential for all technicians and engineers that are called upon to perform gas volume calculations. These same people must have at least a working knowledge of the fundamentals to perform their everyday jobs including equipment calibrations, specific gravity tests, collecting gas samples, etc. To understand the fundamentals, one must be familiar with the definitions of the terms that are used in day-to- day gas measurement operations. They also must know how to convert some values from one quantity as measured to another quantity that is called for in the gas purchase or sales contracts or transportation agreements.

  14. Makai Ocean Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Southern CA Area Sector: Marine and Hydrokinetic, Ocean, Renewable Energy Product: OTEC Number of Employees: 28 Year Founded: 1973 Phone Number: 808.259.8871 Website:...

  15. Ocean Viral Metagenomics (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Rohwer, Forest

    2011-04-26

    Forest Rohwer from San Diego State University talks about "Ocean Viral Metagenomics" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  16. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    so than in the Southern Ocean's photic zone, which receives enough sunlight for photosynthesis to occur, but whose biological diversity is limited due to a lack of bioavailable...

  17. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll...

  18. Ocean Electric Power | Open Energy Information

    Open Energy Info (EERE)

    Ocean Electric Power Place: United Kingdom Sector: Renewable Energy Product: UK-based offshore project developer. The firm is actively engaged in the development of offshore...

  19. Analyzing ocean mixing reveals insight on climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Nancy Ambrosiano Communications Office (505) 667-0471 Email "Not only does each particle tell us about the ocean currents, but groups of particles ...

  20. Hawaii Ocean Science and Technology Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers Hawaii Ocean Science and Technology Park ...

  1. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At bottom left, the kinds of iron species found in two transects of the Southern Ocean are ... (ACC stands for Antarctic Circumpolar Current.) The map shows chlorophyll ...

  2. Ocean Renewable Power Company | Open Energy Information

    Open Energy Info (EERE)

    LLC was founded in 2004 for the purpose of generating reliable, competitive, emission-free electricity from the energy resources of the oceans. Coordinates: 45.511795,...

  3. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  4. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  5. Deployment, release and recovery of ocean riser pipes

    DOE Patents [OSTI]

    Person, Abraham; Wetmore, Sherman B.; McNary, James F.

    1980-11-18

    An ocean thermal energy conversion facility includes a long pipe assembly which is supported at its upper end by the hull of the floating facility. Cold water flows to the facility from deep in the ocean. The pipe assembly comprises an elongate pipe construction and a weight connected to the lower end of the construction by a line of selected length. A floatation collar is connected to the construction at its upper end to cause the construction to have positive buoyancy and a center of buoyancy closer to the upper end of the construction than its center of mass. The weight renders the entire pipe assembly negatively buoyant. In the event that support of the pipe assembly should be lost, as by release of the assembly from the facility hull in an emergency, the assembly sinks to the ocean floor where it is moored by the weight. The pipe construction floats submerged above the ocean floor in a substantially vertical attitude which facilitates recovery of the assembly.

  6. Method and apparatus for efficient injection of CO2 in oceans

    DOE Patents [OSTI]

    West, Olivia R.; Tsouris, Constantinos; Liang, Liyuan

    2003-07-29

    A liquid CO.sub.2 injection system produces a negatively buoyant consolidated stream of liquid CO.sub.2, CO.sub.2 hydrate, and water that sinks upon release at ocean depths in the range of 700-1500 m. In this approach, seawater at a predetermined ocean depth is mixed with the liquid CO.sub.2 stream before release into the ocean. Because mixing is conducted at depths where pressures and temperatures are suitable for CO.sub.2 hydrate formation, the consolidated stream issuing from the injector is negatively buoyant, and comprises mixed CO.sub.2 -hydrate/CO.sub.2 -liquid/water phases. The "sinking" characteristic of the produced stream will prolong the metastability of CO.sub.2 ocean sequestration by reducing the CO.sub.2 dissolution rate into water. Furthermore, the deeper the CO.sub.2 hydrate stream sinks after injection, the more stable it becomes internally, the deeper it is dissolved, and the more dispersed is the resulting CO.sub.2 plume. These factors increase efficiency, increase the residence time of CO2 in the ocean, and decrease the cost of CO.sub.2 sequestration while reducing deleterious impacts of free CO.sub.2 gas in ocean water.

  7. Safety issues relating to the liquefied petroleum gas, compressed natural gas and liquefied natural gas

    SciTech Connect (OSTI)

    Petru, T.D.

    1995-12-31

    The Railroad Commission of Texas, LP-Gas Division, is statutorily responsible for the safety aspects of liquefied petroleum gas (LPG) most commonly known as LP-gas or propane, compressed natural gas (CNG) and liquefied natural gas (LNG). This presentation will address the safety issues relating to their use as alternative fuels. The paper discusses the safety of pressure vessels used for storage of the fuels at refueling facilities and the containers mounted in vehicles. Other topics include the lack of odorants in LNG, the use of protective clothing when handling cryogenic fluids, and where to obtain a copy of the safety regulations for handling these three fuels.

  8. Prospects for Simulating Macromolecular Surfactant Chemistry at the Ocean-Atmosphere Boundary

    SciTech Connect (OSTI)

    Elliott, S.; Burrows, Susannah M.; Deal, C.; Liu, Xiaohong; Long, M.; Ogunro, O.; Russell, Lynn M.; Wingenter, O.

    2014-05-01

    Biogenic lipids and polymers are surveyed for their ability to adsorb at the water-air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea-air interface into aerosol-cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties in the surfactant logic distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification.

  9. Gas flow meter and method for measuring gas flow rate

    DOE Patents [OSTI]

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  10. Category:Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    search This category includes companies and information related to oil (petroleum) or natural gas. Pages in category "Oil and Gas" The following 110 pages are in this category,...

  11. Silicon carbide fibers and articles including same

    DOE Patents [OSTI]

    Garnier, John E; Griffith, George W

    2015-01-27

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  12. Ocean Thermal Extractable Energy Visualization: Final Technical Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal Extractable Energy Visualization project, which focuses on assessing the Maximum Practicably Extractable Energy from the world's ocean thermal resources. PDF icon Ocean Thermal Extractable Energy Visualization More Documents & Publications OTEC resource assessment NELHA Creates the 'Green Energy

  13. File:BOEMRE oil.gas.plant.platform.sta.brbra.map.4.2010.pdf ...

    Open Energy Info (EERE)

    oil.gas.plant.platform.sta.brbra.map.4.2010.pdf Jump to: navigation, search File File history File usage Federal Leases in Pacific Ocean, near Santa Barbara Channel Size of this...

  14. Unconventional gas hydrate seals may trap gas off southeast US. [North Carolina, South Carolina

    SciTech Connect (OSTI)

    Dillion, W.P.; Grow, J.A.; Paull, C.K.

    1980-01-07

    Seismic profiles have indicated to the US Geological Survey that an unconventional seal, created by gas hydrates that form in near-bottom sediments, may provide gas traps in continental slopes and rises offshore North and South Carolina. The most frequently cited evidence for the presence of gas hydrate in ocean sediments is the observation of a seismic reflection event that occurs about 1/2 s below and parallel with the seafloor. If gas-hydrate traps do exist, they will occur at very shallow sub-bottom depths of about 1600 ft (500m). Exploration of such traps will probably take place in the federally controlled Blake Ridge area off the coast of South Carolina where seismic data suggest a high incidence of gas hydrates. However, drilling through the gas-hydrate-cemented layer may require new engineering techniques for sealing the casing.

  15. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  16. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  17. INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION

    Office of Scientific and Technical Information (OSTI)

    interval technical basis document Chiaro, P.J. Jr. 44 INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION DETECTORS; RADIATION MONITORS; DOSEMETERS;...

  18. A coke oven model including thermal decomposition kinetics of tar

    SciTech Connect (OSTI)

    Munekane, Fuminori; Yamaguchi, Yukio; Tanioka, Seiichi

    1997-12-31

    A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.

  19. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  20. Gas sampling system for a mass spectrometer

    DOE Patents [OSTI]

    2003-12-30

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  1. Gas turbine sealing apparatus

    DOE Patents [OSTI]

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  2. Extruded plastic scintillator including inorganic powders

    DOE Patents [OSTI]

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  3. Catalyst regeneration process including metal contaminants removal

    DOE Patents [OSTI]

    Ganguli, Partha S. (Lawrenceville, NJ)

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  4. Process for selected gas oxide removal by radiofrequency catalysts

    DOE Patents [OSTI]

    Cha, Chang Y. (3807 Reynolds St., Laramie, WY 82070)

    1993-01-01

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  5. Ocean Energy Projects Developing On and Off America's Shores | Department

    Energy Savers [EERE]

    of Energy Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East

  6. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect (OSTI)

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  7. Self-cleaning inlet screen to an ocean riser pipe

    SciTech Connect (OSTI)

    Wetmore, S.B.; Person, A.

    1980-06-17

    A long, vertically disposed ocean water upwelling pipe, such as a cold water riser in an ocean thermal energy conversion facility, is fitted at its lower inlet end with a self-cleaning inlet screen. The screen includes a right conical frustum of loose metal netting connected at its larger upper end to the lower end of the pipe. A heavy, negatively buoyant closure is connected across the lower end of the frustum. A weight is suspended below the closure on a line which passes loosely through the closure into the interior of the screen. The line tends to stay stationary as the lower end of the pipe moves, as in response to ocean current vortex shedding and other causes, thus causing the closure to rattle on the line and to shake the netting. The included half-angle of the frustum is approximately 20 so that, on shaking of the netting, marine life accumulated on the netting becomes loose and falls free of the netting. 6 claims.

  8. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  9. Interpretation of Synthetic Aperture Radar measurements of ocean currents

    SciTech Connect (OSTI)

    Rufenach, C.L.; Shuchman, R.A.; Lyzenga, D.R.

    1983-02-28

    Synthetic Aperture Radar (SAR) experiments hae been performed over the last few years to measure ocean currents inferred from shifts in the Doppler spectral peak. Interpretations of aircraft SAR measurements, when compared with limited surface values, tend to underestimate the currents by about 25%. A theory is developed that modifies the classical Doppler expression showing that the radar measurements are dependent on the radar processor (system) bandwidth and the received signal bandwidth. Measured bandwidths give a correction that increases the inferred current values by about 25%, bringing the measurements into good agreement. This new correction lends credence to the theory and increases the potential for application of SAR systems to future ocean current measurements. SAR measurements should include the determination of processor and signal bandwidths such that this correction can be applied.

  10. Ocean energy systems. Quarterly report, October-December 1982

    SciTech Connect (OSTI)

    Not Available

    1982-12-01

    Research progress is reported on developing Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual design activity of the two industry teams that are designing offshore OTEC pilot plants that could deliver power to Oahu, Hawaii. In addition, a program is underway in which tests of a different kind of ocean-energy device, a turbine that is air-driven as a result of wave action in a chamber, are being planned. This Quarterly Report summarizes the work on the various tasks as of 31 December 1982.

  11. Ocean energy systems. Quarterly report, January-March 1983

    SciTech Connect (OSTI)

    Not Available

    1983-03-30

    Progress is reported on the development of Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual and preliminary design activity of industry teams that are designing a shelf-mounted offshore OTEC pilot plant that could deliver power to Oahu, Hawaii. In addition, a program is underway to evaluate and test the Pneumatic Wave-Energy Conversion System (PWECS), an ocean-energy device consisting of a turbine that is air-driven as a result of wave action in a chamber. This Quarterly Report summarizes the work on the various tasks as of 31 March 1983.

  12. Assessment of Energy Production Potential from Ocean Currents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United...

  13. Memorandum of Understanding On Weather-Dependent and Oceanic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources...

  14. NREL-Ocean Energy Thermal Conversion | Open Energy Information

    Open Energy Info (EERE)

    Energy Laboratory Sector: Energy Topics: Resource assessment Website: www.nrel.govotec NREL-Ocean Energy Thermal Conversion Screenshot References: OTEC1 Logo: NREL-Ocean...

  15. MHK Technologies/THOR Ocean Current Turbine | Open Energy Information

    Open Energy Info (EERE)

    THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary...

  16. Ocean Renewable Energy Coalition OREC | Open Energy Information

    Open Energy Info (EERE)

    Energy Coalition OREC Jump to: navigation, search Name: Ocean Renewable Energy Coalition (OREC) Place: Potomac, Maryland Zip: 20859 Sector: Ocean Product: US trade association...

  17. Ocean County, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Jersey Manahawkin, New Jersey Mantoloking, New Jersey Mystic Island, New Jersey New Egypt, New Jersey North Beach Haven, New Jersey Ocean Acres, New Jersey Ocean Gate, New...

  18. Assessment of Energy Production Potential from Ocean Currents...

    Broader source: Energy.gov (indexed) [DOE]

    of ocean currents in the United States and the database created with that data. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline...

  19. Mapping and Assessment of the United States Ocean Wave Energy...

    Broader source: Energy.gov (indexed) [DOE]

    analysis and results of a rigorous assessment of the United States ocean wave energy resource. Mapping and Assessment of the United States Ocean Wave Energy Resource More Documents...

  20. Assessment of Energy Production Potential from Ocean Currents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Production Potential from Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline ...

  1. Assessment of Energy Production Potential from Ocean Currents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Report summarizing the results of ...

  2. Session Papers North Slope of Alaska and Adjacent Arctic Ocean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Major pumps for the global ocean currents are located at high latitudes (thermohaline circulation). Results from coupled ocean-atmosphere general circulation models (GCM) suggest ...

  3. Adaptive Particle Filtering for Mode Tracking: A Shallow Ocean...

    Office of Scientific and Technical Information (OSTI)

    Adaptive Particle Filtering for Mode Tracking: A Shallow Ocean Application Citation Details In-Document Search Title: Adaptive Particle Filtering for Mode Tracking: A Shallow Ocean ...

  4. Ocean Wave Energy Company OWECO | Open Energy Information

    Open Energy Info (EERE)

    Energy Company OWECO Jump to: navigation, search Name: Ocean Wave Energy Company (OWECO) Place: Bristol, Rhode Island Sector: Ocean Product: Wave energy device developer. The...

  5. MHK Technologies/Ocean Wave Air Piston | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator...

  6. MHK Technologies/Ocean Energy Rig | Open Energy Information

    Open Energy Info (EERE)

    the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The Ocean...

  7. Practical Ocean Energy Management Systems Inc POEMS | Open Energy...

    Open Energy Info (EERE)

    Ocean Energy Management Systems Inc POEMS Jump to: navigation, search Name: Practical Ocean Energy Management Systems Inc (POEMS) Place: San Diego, California Zip: 92138 Sector:...

  8. Voith Hydro Ocean Current Technologies | Open Energy Information

    Open Energy Info (EERE)

    Ocean Current Technologies Jump to: navigation, search Name: Voith Hydro Ocean Current Technologies Place: Germany Sector: Hydro Product: Germany-based JV between Voith Hydro and...

  9. Stackable multi-port gas nozzles

    DOE Patents [OSTI]

    Poppe, Steve; Rozenzon, Yan; Ding, Peijun

    2015-03-03

    One embodiment provides a reactor for material deposition. The reactor includes a chamber and at least one gas nozzle. The chamber includes a pair of susceptors, each having a front side and a back side. The front side mounts a number of substrates. The susceptors are positioned vertically so that the front sides of the susceptors face each other, and the vertical edges of the susceptors are in contact with each other, thereby forming a substantially enclosed narrow channel between the substrates mounted on different susceptors. The gas nozzle includes a gas-inlet component situated in the center and a detachable gas-outlet component stacked around the gas-inlet component. The gas-inlet component includes at least one opening coupled to the chamber, and is configured to inject precursor gases into the chamber. The detachable gas-outlet component includes at least one opening coupled to the chamber, and is configured to output exhaust gases from the chamber.

  10. Natural gas monthly, July 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  11. Communications circuit including a linear quadratic estimator

    DOE Patents [OSTI]

    Ferguson, Dennis D.

    2015-07-07

    A circuit includes a linear quadratic estimator (LQE) configured to receive a plurality of measurements a signal. The LQE is configured to weight the measurements based on their respective uncertainties to produce weighted averages. The circuit further includes a controller coupled to the LQE and configured to selectively adjust at least one data link parameter associated with a communication channel in response to receiving the weighted averages.

  12. Reconstructing Past Ocean Salinity ((delta)18Owater)

    SciTech Connect (OSTI)

    Guilderson, T P; Pak, D K

    2005-11-23

    Temperature and salinity are two of the key properties of ocean water masses. The distribution of these two independent but related characteristics reflects the interplay of incoming solar radiation (insolation) and the uneven distribution of heat loss and gain by the ocean, with that of precipitation, evaporation, and the freezing and melting of ice. Temperature and salinity to a large extent, determine the density of a parcel of water. Small differences in temperature and salinity can increase or decrease the density of a water parcel, which can lead to convection. Once removed from the surface of the ocean where 'local' changes in temperature and salinity can occur, the water parcel retains its distinct relationship between (potential) temperature and salinity. We can take advantage of this 'conservative' behavior where changes only occur as a result of mixing processes, to track the movement of water in the deep ocean (Figure 1). The distribution of density in the ocean is directly related to horizontal pressure gradients and thus (geostrophic) ocean currents. During the Quaternary when we have had systematic growth and decay of large land based ice sheets, salinity has had to change. A quick scaling argument following that of Broecker and Peng [1982] is: the modern ocean has a mean salinity of 34.7 psu and is on average 3500m deep. During glacial maxima sea level was on the order of {approx}120m lower than present. Simply scaling the loss of freshwater (3-4%) requires an average increase in salinity a similar percentage or to {approx}35.9psu. Because much of the deep ocean is of similar temperature, small changes in salinity have a large impact on density, yielding a potentially different distribution of water masses and control of the density driven (thermohaline) ocean circulation. It is partly for this reason that reconstructions of past salinity are of interest to paleoceanographers.

  13. The oceanic cycle and global atmospheric budget of carbonyl sulfide

    SciTech Connect (OSTI)

    Weiss, P.S.

    1994-12-31

    A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

  14. Gas turbine premixing systems

    DOE Patents [OSTI]

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  15. Ocean Thermal Energy Conversion: An overview

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  16. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Iron Availability in the Southern Ocean Print Friday, 21 June 2013 10:08 The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is

  17. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  18. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, Richard D. (Los Alamos, NM); Bounds, John A. (Los Alamos, NM); Rawool-Sullivan, Mohini W. (Los Alamos, NM)

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  19. An assessment of research and development leadership in ocean energy technologies

    SciTech Connect (OSTI)

    Bruch, V.L.

    1994-04-01

    Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing.

  20. Technical and economical aspects of large-scale CO{sub 2} storage in deep oceans

    SciTech Connect (OSTI)

    Sarv, H.; John, J.

    2000-07-01

    The authors examined the technical and economical feasibility of two options for large-scale transportation and ocean sequestration of captured CO{sub 2} at depths of 3000 meters or greater. In one case, CO{sub 2} was pumped from a land-based collection center through six parallel-laid subsea pipelines. Another case considered oceanic tanker transport of liquid carbon dioxide to an offshore floating platform or a barge for vertical injection through a large-diameter pipe to the ocean floor. Based on the preliminary technical and economic analyses, tanker transportation and offshore injection through a large-diameter, 3,000-meter vertical pipeline from a floating structure appears to be the best method for delivering liquid CO{sub 2} to deep ocean floor depressions for distances greater than 400 km. Other benefits of offshore injection are high payload capability and ease of relocation. For shorter distances (less than 400 km), CO{sub 2} delivery by subsea pipelines is more cost-effective. Estimated costs for 500-km transport and storage at a depth of 3000 meters by subsea pipelines or tankers were under 2 dollars per ton of stored CO{sub 2}. Their analyses also indicates that large-scale sequestration of captured CO{sub 2} in oceans is technologically feasible and has many commonalities with other strategies for deepsea natural gas and oil exploration installations.

  1. Scramjet including integrated inlet and combustor

    SciTech Connect (OSTI)

    Kutschenreuter, P.H. Jr.; Blanton, J.C.

    1992-02-04

    This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

  2. Upper ocean model of dissolved atmospheric gases. Final report for the period 1 August 1991--31 May 1995

    SciTech Connect (OSTI)

    Schudlich, R.; Emerson, S.

    1996-05-01

    This report summarizes results from three years of funding for a modelling study of processes controlling the distribution of metabolic chemical tracers in surface waters. We determined concentrations of the gases O{sub 2}, Ar, N{sub 2}, and the stable isotope ratio ({sup 18}O/{sup 16}O) of molecular oxygen in surface waters at Station ALOHA in conjunction with the Global Ocean Flux Study (GOFS) Hawaiian Ocean Time-series project during the years 1989- 90 and 1992-93. Under this contract we have incorporated chemical tracers into an existing ocean mixed-layer model to simulate the physical processes controlling the distribution and seasonal cycle of dissolved gases in the upper ocean. The broad background of concurrent chemical, physical, and biological measurements at Station ALOHA provides enough redundancy of ``ground truth`` to assess the model`s accuracy. Biological oxygen production estimated from modelled chemical tracers agrees with estimates based on measurement of carbon fluxes into the deep ocean and nitrate fluxes into the upper ocean during 1989-90 and 1992-93, verifying for the first time the utility of chemical tracers for determining biological fluxes in the ocean. Our results suggest that in the euphotic zone (the upper 100 m of the ocean), the net biological O{sub 2} production is 1.0-2. 0 moles m{sup -2}yr{sup - 1}. Inert gas (Ar, N{sub 2}) supersaturation levels show that air and bubble injection are important modes of air-sea gas transfer in the Station ALOHA region.

  3. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  4. Gas bubble disease: introduction

    SciTech Connect (OSTI)

    Fickeisen, D.H.; Schneider, M.J.; Wedemeyer, G.A.

    1980-11-01

    In 1970, gas bubble disease was identified as a serious problem affecting salmonids in the Columbia and Snake river systems. The source of supersaturation was entrainment of air into water spilling over hydroelectric dams. Regional research projects focusing on tolerance bioassays were immediately implemented. Since then, the scope of gas bubble disease research has broadened to include problems in other aquatic systems, with other species. Emphasis has shifted from defining tolerance limits in bioassay systems to exploring behavioral and physiological aspects. Various methods of degasifying supersaturated water have been developed.

  5. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  6. Citizens Gas- Residential Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Rebate applications, including a copy of all equipment invoices, must be postmarked within 60 days of equipment purchase. Equipment must have been purchased in 2015. Citizens Gas reserves the...

  7. Ocean Energy Institute | Open Energy Information

    Open Energy Info (EERE)

    think tank established to accelerate offshore wind technology development that hopes to build a 5GW wind project off the coast of Maine. References: Ocean Energy Institute1 This...

  8. Green Ocean Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Green Ocean Energy Place: Aberdeen, Scotland, United Kingdom Zip: AB10 1UP Product: Aberdeen, UK-based private developer of wave device....

  9. ocean energy | OpenEI Community

    Open Energy Info (EERE)

    ocean energy Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine...

  10. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    productivity in the ocean-in this case, the growth of phytoplankton, the primary plant food source for bigger marine life-and the larger marine life it supports. At bottom left,...

  11. Climate, Ocean and Sea Ice Modeling (COSIM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sea Level Rise: The rate of sea level rise is one of the largest unknowns in current climate models and requires our advanced ocean and ice sheet models for accurate future ...

  12. Climate, Ocean and Sea Ice Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The rate of sea level rise is one of the largest unknowns in current climate models and requires our advanced ocean and ice sheet models for accurate future projections. * Rapid ...

  13. MHK Technologies/Ocean | Open Energy Information

    Open Energy Info (EERE)

    the MHK database homepage Ocean.jpg Technology Profile Primary Organization Hydro Green Energy LLC Project(s) where this technology is utilized *MHK ProjectsAlaska 35 *MHK...

  14. Compressed gas fuel storage system

    DOE Patents [OSTI]

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  15. Rapid gas hydrate formation process

    DOE Patents [OSTI]

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  16. Method of Liquifying a gas

    DOE Patents [OSTI]

    Zollinger, William T.; Bingham, Dennis N.; McKellar, Michael G.; Wilding, Bruce M.; Klingler, Kerry M.

    2006-02-14

    A method of liquefying a gas is disclosed and which includes the steps of pressurizing a liquid; mixing a reactant composition with the pressurized liquid to generate a high pressure gas; supplying the high pressure gas to an expansion engine which produces a gas having a reduced pressure and temperature, and which further generates a power and/or work output; coupling the expansion engine in fluid flowing relation relative to a refrigeration assembly, and wherein the gas having the reduced temperature is provided to the refrigeration assembly; and energizing and/or actuating the refrigeration assembly, at least in part, by supplying the power and/or work output generated by the expansion engine to the refrigeration assembly, the refrigeration assembly further reducing the temperature of the gas to liquefy same.

  17. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  18. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  19. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  20. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  1. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  2. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  3. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  4. Ocean Energy Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Basics Ocean Energy Resource Basics August 16, 2013 - 4:34pm Addthis Although the potential for ocean energy technologies is believed to be very large, no comprehensive studies have been conducted to date to determine an accurate resource assessment for the United States. To address this problem, the U.S. Department of Energy announced in 2008 that it would fund several resource-assessment projects for advanced water power. Addthis Related Articles Glossary of Energy-Related

  5. Gas cooled traction drive inverter

    DOE Patents [OSTI]

    Chinthavali, Madhu Sudhan

    2013-10-08

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  6. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  7. Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction

    DOE Patents [OSTI]

    Rosocha, Louis A.

    2006-06-20

    A device for processing gases includes a cylindrical housing in which an electrically grounded, metal injection/extraction gas supply tube is disposed. A dielectric tube surrounds the injection/extraction gas supply tube to establish a gas modification passage therearound. Additionally, a metal high voltage electrode circumscribes the dielectric tube. The high voltage electrode is energizable to create nonthermal electrical microdischarges between the high voltage electrode and the injection/extraction gas supply tube across the dielectric tube within the gas modification passage. An injection/extraction gas and a process gas flow through the nonthermal electrical microdischarges within the gas modification passage and a modified process gas results. Using the device contaminants that are entrained in the process gas can be destroyed to yield a cleaner, modified process gas.

  8. The Gas Flow from the Gas Attenuator to the Beam Line

    SciTech Connect (OSTI)

    Ryutov, D.D.

    2010-12-03

    The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

  9. CARINA (Carbon dioxide in the Atlantic Ocean) Data from CDIAC

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The idea for CARINA developed at a workshop (CO2 in the northern North Atlantic) that was held at the HANSE-Wissenschaftskolleg (HANSE Institute for Advanced Study) in Delmenhorst, Germany from June 9 to 11, 1999. While the main scientific focus is the North Atlantic, some data from the South Atlantic have been included in the project, along with data from the Arctic Ocean. Data sets go back to 1972, and more than 100 are currently available. The data are also being used in conjunction with other projects and research groups, such as the Atlantic Ocean Carbon Synthesis Group. See the inventory of data at http://store.pangaea.de/Projects/CARBOOCEAN/carina/data_inventory.htm See a detailed table of information on the cruises at http://cdiac.ornl.gov/oceans/CARINA/Carina_table.html and also provides access to data files. The CARBOOCEAN data portal provides a specialized interface for CARINA data, a reference list for historic carbon data, and password protected access to the "Data Underway Warehouse.".

  10. Subterranean barriers including at least one weld

    DOE Patents [OSTI]

    Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.

    2007-01-09

    A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.

  11. Photoactive devices including porphyrinoids with coordinating additives

    DOE Patents [OSTI]

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  12. GAS COOLED NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Rodwell, W.

    1958-06-10

    A gas-cooled nuclear reactor consisting of a graphite reacting core and reflector structure supported in a containing vessel is described. A gas sealing means is included for sealing between the walls of the graphite structure and containing vessel to prevent the gas coolant by-passing the reacting core. The reacting core is a multi-sided right prismatic structure having a pair of parallel slots around its periphery. The containing vessel is cylindrical and has a rib on its internal surface which supports two continuous ring shaped flexible web members with their radially innermost ends in sealing engagement within the radially outermost portion of the slots. The core structure is supported on ball bearings. This design permits thermal expansion of the core stracture and vessel while maintainirg a peripheral seal between the tvo elements.

  13. Nuclear reactor shield including magnesium oxide

    DOE Patents [OSTI]

    Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  14. Rotor assembly including superconducting magnetic coil

    DOE Patents [OSTI]

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  15. Combustion-gas recirculation system

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lacon, IL)

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  16. Underground natural gas storage reservoir management

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  17. Avista Utilities (Gas)- Prescriptive Commercial Incentive Program

    Broader source: Energy.gov [DOE]

    Avista Utilities offers Natural Gas saving incentives to commercial customers on rate schedule 420 and 424. This program provides rebates for a variety of equipment and appliances including...

  18. Questar Gas- Residential Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Questar Gas provides rebates for energy efficient appliances and heating equipment, and certain weatherization measures through the ThermWise program. This equipment includes clothes washers,...

  19. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  20. Natural Gas Delivered to Consumers in New Jersey (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 79,986 68,763 70,125 50,543 32,523 31,342 30,182 34,881 28,906 36,822 42,533 54,282 2002 72,928 65,857 60,240 47,158 36,702 34,685 39,001 38,755 34,515 35,116 53,058 78,844 2003 86,899 82,946 70,961 52,763 38,335 30,506 34,444 34,047 29,057 34,046 45,854 71,131 2004 87,227 84,410 64,483 52,496 39,871 33,708 33,345 34,799 31,379 32,916 52,729 71,562 2005 82,164 79,445 75,959 48,550 33,360 32,116 36,629 37,974

  1. Natural Gas Delivered to Consumers in New York (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 135,000 121,033 117,080 87,191 75,087 78,246 82,949 95,148 84,785 85,317 85,604 117,809 2002 130,795 125,601 121,522 96,684 77,319 74,903 86,308 87,878 74,748 77,281 106,098 130,678 2003 145,176 150,464 132,321 96,357 69,848 57,468 66,369 71,177 61,893 63,566 74,370 103,175 2004 143,310 146,400 118,918 96,553 76,708 61,518 59,080 60,352 63,530 61,753 84,337 116,290 2005 131,102 130,863 130,581 94,151 72,115 68,850

  2. Natural Gas Delivered to Consumers in North Dakota (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 4,834 5,238 3,535 3,807 2,613 2,533 1,360 2,387 1,944 3,013 3,065 4,459 2002 5,661 4,458 5,166 3,571 2,897 2,629 1,967 1,963 1,988 3,550 3,908 4,743 2003 5,308 4,986 4,115 2,464 2,072 1,511 1,109 963 1,664 2,336 3,871 6,879 2004 5,976 4,565 4,243 2,998 2,087 1,270 1,207 1,858 2,219 2,970 3,638 4,990 2005 5,232 4,001 3,696 1,946 1,836 1,412 1,270 1,148 1,611 2,646 3,372 4,268 2006 3,774 4,128 3,685 2,658 2,395

  3. Natural Gas Delivered to Consumers in Rhode Island (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,425 8,875 9,886 7,566 7,317 6,419 6,971 7,536 7,493 7,652 6,918 9,231 2002 10,511 8,745 7,848 6,823 6,244 5,757 5,873 5,748 5,630 5,720 8,981 9,553 2003 9,510 10,141 9,429 5,721 4,332 4,902 5,830 5,423 4,891 4,709 6,468 6,670 2004 9,122 9,552 6,607 6,373 5,874 5,299 4,296 4,885 3,594 3,675 6,015 6,955 2005 8,403 8,917 7,847 7,729 6,062 6,293 5,990 6,010 4,836 5,169 5,246 7,434 2006 8,207 6,737 7,405 5,579 5,935

  4. Natural Gas Delivered to Consumers in South Dakota (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 4,302 4,607 4,228 2,845 1,940 1,381 1,492 1,496 1,058 1,661 2,126 3,617 2002 4,603 4,036 4,766 3,060 2,078 1,454 1,619 1,300 1,471 2,623 3,873 4,121 2003 5,421 5,156 4,455 2,953 1,928 1,710 1,882 1,675 1,591 2,054 3,715 4,455 2004 5,515 4,940 3,584 2,439 1,808 1,650 1,686 1,576 1,638 1,998 3,307 4,743 2005 5,319 4,504 3,722 3,219 2,207 2,079 1,880 1,845 1,562 1,943 3,073 4,906 2006 4,013 4,348 3,843 2,535 1,775

  5. Natural Gas Delivered to Consumers in the District of Columbia (Including

    Gasoline and Diesel Fuel Update (EIA)

    Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 5,440 4,546 4,141 3,185 1,654 1,252 1,226 905 1,087 1,231 2,088 2,737 2002 4,830 4,239 3,718 2,066 1,544 1,155 1,149 1,164 1,202 2,189 3,889 5,436 2003 5,818 4,995 3,621 2,478 1,550 1,112 1,094 1,240 844 1,963 2,691 4,848 2004 6,285 4,650 3,323 2,349 1,239 1,067 985 1,168 1,066 1,895 2,937 4,696 2005 5,419 4,311 4,308 1,880 1,539 1,133 1,217 1,100 1,124 1,628 2,941 4,935 2006 4,198 4,285 3,486 1,795

  6. Natural Gas Delivered to Consumers in New Jersey (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 713,603 676,918 711,514 2000's 602,377 561,182 597,158 611,357 619,339 601,154 546,250 617,451 613,019 619,112 2010's 649,099 655,088 647,457 676,688 757,130 NA

  7. Natural Gas Delivered to Consumers in New Mexico (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 130,234 133,745 131,611 2000's 139,812 144,176 119,828 117,794 112,886 123,731 127,858 137,670 146,860 143,089 2010's 148,181 153,464 151,602 156,581 152,942 NA

  8. Natural Gas Delivered to Consumers in North Dakota (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 42,862 40,819 38,206 2000's 36,499 38,854 42,569 37,361 38,112 32,441 33,305 39,114 43,858 38,187 2010's 44,603 50,214 46,639 53,469 54,307 55,321

  9. Natural Gas Delivered to Consumers in Rhode Island (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 116,871 130,415 117,758 2000's 88,124 95,326 87,472 78,074 72,301 80,070 76,401 87,150 88,391 91,843 2010's 92,642 99,452 94,452 84,450 85,849 90,20

  10. Natural Gas Delivered to Consumers in South Dakota (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 32,294 29,390 28,910 2000's 30,667 30,766 35,018 37,011 34,900 36,259 34,809 47,675 60,026 62,376 2010's 66,195 66,320 62,969 74,182 73,917 73,755

  11. Natural Gas Delivered to Consumers in the District of Columbia (Including

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 33,860 30,153 32,037 2000's 33,225 29,567 32,656 32,345 31,762 31,598 28,585 32,728 31,678 33,000 2010's 33,038 31,159 27,493 31,309 32,751 29,15

  12. Unconventional gas outlook: resources, economics, and technologies

    SciTech Connect (OSTI)

    Drazga, B.

    2006-08-15

    The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

  13. Passive gas separator and accumulator device

    DOE Patents [OSTI]

    Choe, H.; Fallas, T.T.

    1994-08-02

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

  14. On-line gas chromatographic analysis of airborne particles

    DOE Patents [OSTI]

    Hering, Susanne V. (Berkeley, CA); Goldstein, Allen H. (Orinda, CA)

    2012-01-03

    A method and apparatus for the in-situ, chemical analysis of an aerosol. The method may include the steps of: collecting an aerosol; thermally desorbing the aerosol into a carrier gas to provide desorbed aerosol material; transporting the desorbed aerosol material onto the head of a gas chromatography column; analyzing the aerosol material using a gas chromatograph, and quantizing the aerosol material as it evolves from the gas chromatography column. The apparatus includes a collection and thermal desorption cell, a gas chromatograph including a gas chromatography column, heated transport lines coupling the cell and the column; and a quantization detector for aerosol material evolving from the gas chromatography column.

  15. Treatment of gas from an in situ conversion process

    DOE Patents [OSTI]

    Diaz, Zaida (Katy, TX); Del Paggio, Alan Anthony (Spring, TX); Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX)

    2011-12-06

    A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

  16. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  17. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard (Dunkirk, MD); Veligdan, James T. (Manorville, NY)

    2007-11-20

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  18. Thermovoltaic semiconductor device including a plasma filter

    DOE Patents [OSTI]

    Baldasaro, Paul F. (Clifton Park, NY)

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  19. Drapery assembly including insulated drapery liner

    DOE Patents [OSTI]

    Cukierski, Gwendolyn (Ithaca, NY)

    1983-01-01

    A drapery assembly is disclosed for covering a framed wall opening, the assembly including drapery panels hung on a horizontal traverse rod, the rod having a pair of master slides and means for displacing the master slides between open and closed positions. A pair of insulating liner panels are positioned behind the drapery, the remote side edges of the liner panels being connected with the side portions of the opening frame, and the adjacent side edges of the liner panels being connected with a pair of vertically arranged center support members adapted for sliding movement longitudinally of a horizontal track member secured to the upper horizontal portion of the opening frame. Pivotally arranged brackets connect the center support members with the master slides of the traverse rod whereby movement of the master slides to effect opening and closing of the drapery panels effects simultaneous opening and closing of the liner panels.

  20. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1988-02-01

    In this lecture an overview of the heat and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems, are briefly discussed.