Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Full-energy-chain greenhouse-gas emissions: a comparison between nuclear power, hydropower, solar power and wind power  

Science Journals Connector (OSTI)

Fair comparison of the climate impacts from different energy sources can be made only by accounting for the emissions of all relevant greenhouse gases (GHGs) from the full energy chain (FENCH) of the energy sources. FENCH-GHG emission factors of most of the non-fossil fuel energies are lower than those of the fossil fuels that are in the range of 500-1200 g CO2/kW h(e). The improvement rates concerning their CO2-to-energy ratios of OECD countries and some developing countries are discussed, showing the low performance of the latter from 1965-1996. Detailed FENCH-GHG systems analyses are given for nuclear power, hydropower, and wind and solar power. The FENCH-GHG emission factor of nuclear power is 8.9 g CO2-equiv./kW h(e) and applies to light-water nuclear power plants. The main contributions are from milling, conversion of lower-grade ore, enrichment, construction and operation of the power plant, and reprocessing (if relevant). For hydropower an emission factor is reported of 16 g CO2-equiv./kW h(e) for the best investigated flat-area cold climate power plants. The main, biogenic, emission source is the water reservoir. The information on high-altitude alpine reservoir-type and run-of- river hydropower generation is limited. These plants could probably have emission factors in the low range of 5-10 g CO2-equiv./kW h(e). The FENCH CO2-equivalent emission factors of wind power systems are in the order of 15 g CO2-equiv./kW h(e). The main source is associated with the materials for the turbine and for its foundation. Solar PV and solar thermal power are in an intermediate range their current values are 100-200 and 50-80g CO2-equiv./kW h(e), respectively. GHG emissions are mainly from silicon, which dominates the PV market.

Joop F. van de Vate

2002-01-01T23:59:59.000Z

2

wind energy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

wind energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

3

Magnetized Gas Clouds can Survive Acceleration by a Hot Wind  

E-Print Network [OSTI]

We present three-dimensional magnetohydrodynamic simulations of magnetized gas clouds accelerated by hot winds. We initialize gas clouds with tangled internal magnetic fields and show that this field suppresses the disruption of the cloud: rather than mixing into the hot wind as found in hydrodynamic simulations, cloud fragments end up co-moving and in pressure equilibrium with their surroundings. We also show that a magnetic field in the hot wind enhances the drag force on the cloud by a factor ~(1+v_A^2/v_wind^2)$, where v_A is the Alfven speed in the wind and v_wind measures the relative speed between the cloud and the wind. We apply this result to gas clouds in several astrophysical contexts, including galaxy clusters, galactic winds, the Galactic center, and the outskirts of the Galactic halo. Our results can explain the prevalence of cool gas in galactic winds and galactic halos and how such cool gas survives in spite of its interaction with hot wind/halo gas. We also predict that drag forces can lead t...

McCourt, Michael; Madigan, Ann-Marie; Quataert, Eliot

2014-01-01T23:59:59.000Z

4

Gas-cooled nuclear reactor  

DOE Patents [OSTI]

A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

1985-01-01T23:59:59.000Z

5

Greenhouse Gas Emissions from the Nuclear Fuel Cycle  

SciTech Connect (OSTI)

Since greenhouse gases are a global concern, rather than a local concern as are some kinds of effluents, one must compare the entire lifecycle of nuclear power to alternative technologies for generating electricity. A recent critical analysis by Sovacool (2008) gives a clearer picture. "It should be noted that nuclear power is not directly emitting greenhouse gas emissions, but rather that lifecycle emissions occur through plant construction, operation, uranium mining and milling, and plant decommissioning." "[N]uclear energy is in no way 'carbon free' or 'emissions free,' even though it is much better (from purely a carbon-equivalent emissions standpoint) than coal, oil, and natural gas electricity generators, but worse than renewable and small scale distributed generators" (Sovacool 2008). According to Sovacool, at an estimated 66 g CO2 equivalent per kilowatt-hour (gCO2e/kWh), nuclear power emits 15 times less CO2 per unit electricity generated than unscrubbed coal generation (at 1050 gCO2e/kWh), but 7 times more than the best renewable, wind (at 9 gCO2e/kWh). The U.S. Nuclear Regulatory Commission (2009) has long recognized CO2 emissions in its regulations concerning the environmental impact of the nuclear fuel cycle. In Table S-3 of 10 CFR 51.51(b), NRC lists a 1000-MW(electric) nuclear plant as releasing as much CO2 as a 45-MW(e) coal plant. A large share of the carbon emissions from the nuclear fuel cycle is due to the energy consumption to enrich uranium by the gaseous diffusion process. A switch to either gas centrifugation or laser isotope separation would dramatically reduce the carbon emissions from the nuclear fuel cycle.

Strom, Daniel J.

2010-03-01T23:59:59.000Z

6

Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector  

SciTech Connect (OSTI)

Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

2014-09-01T23:59:59.000Z

7

Greenhouse gas emissions from electricity generated by offshore wind farms  

Science Journals Connector (OSTI)

Abstract For wind power generation offshore sites offer significantly better wind conditions compared to onshore. At the same time, the demand for raw materials and therefore the related environmental impacts increase due to technically more demanding wind energy converters and additional components (e.g. substructure) for the balance of plant. Additionally, due to environmental concerns offshore wind farms will be sited farshore (i.e. in deep water) in the future having a significant impact on the operation and maintenance efforts (O&M). Against this background the goal of this analysis is an assessment of the specific GHG (greenhouse gas) emissions as a function of the site conditions, the wind mill technology and the O&M necessities. Therefore, a representative offshore wind farm is defined and subjected to a detailed LCA (life cycle assessment). Based on parameter variations and modifications within the technical and logistical system, promising configurations regarding GHG emissions are determined for different site conditions. Results show, that all parameters related to the energy yield have a distinctive impact on the specific GHG emissions, whereas the distance to shore and the water depth affect the results marginally. By utilizing the given improvement potentials GHG emissions of electricity from offshore wind farms are comparable to those achieved onshore.

Britta Reimers; Burcu Özdirik; Martin Kaltschmitt

2014-01-01T23:59:59.000Z

8

Neural net controlled tag gas sampling system for nuclear reactors  

DOE Patents [OSTI]

A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

Gross, Kenneth C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Fall, ID); Lambert, John D. B. (Wheaton, IL); Herzog, James P. (Downers Grove, IL)

1997-01-01T23:59:59.000Z

9

SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND CHARACTERISTICS AT NUCLEAR FACILITY SITES  

Broader source: Energy.gov [DOE]

Summary of Revised Tornado, Hurricane and Extreme Straight Wind Characteristics at Nuclear Facility Sites BY: John D. Stevenson Consulting Engineer

10

NNSA implements nondestructive gas sampling technique for nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

implements ... NNSA implements nondestructive gas sampling technique for nuclear weapon components Posted: June 12, 2012 - 1:34pm The National Nuclear Security Administration...

11

Nuclear response beyond the Fermi gas model  

E-Print Network [OSTI]

The Fermi gas model, while providing a reasonable qualitative description of the continuum nuclear response, does not include the effects of dynamical nucleon-nucleon correlations in the initial and final states, that have long been recognized to play a critical role in specific kinematical regions. We review a many-body approach in which these effects are consistently taken into account and discuss the results of a calculation of the quasielastic neutrino-oxygen cross section as an illustrative example.

Omar Benhar

2003-07-14T23:59:59.000Z

12

Behavior of a Nuclear Power Plant Ventilation Stack for Wind Loads  

Science Journals Connector (OSTI)

This paper describes behavior of self supporting tall reinforced concrete (RC) ventilation stack of a nuclear power plant (NPP) for wind loads. Since the static and equivalent dynamic wind loads are inter-dependa...

V. Venkatachalapathy

2012-05-01T23:59:59.000Z

13

Climate Change, Nuclear Power and Nuclear  

E-Print Network [OSTI]

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters Rob Goldston MIT IAP biomass wind hydro coal CCS coal nat gas CCS nat gas nuclear Gen IV nuclear Gen III nuclear Gen II 5-1 Electricity Generation: CCS and Nuclear Power Technology Options Available Global Electricity Generation WRE

14

Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project Phase II - Automated Bike Turret Mount Overview SYNERGE LLC is a consulting company working

Demirel, Melik C.

15

Electricity production levelized costs for nuclear, gas and coal  

Office of Scientific and Technical Information (OSTI)

Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramn Ramrez, Armando Gmez, Javier Ortiz, Luis C....

16

First wind turbine blade delivered to Pantex | National Nuclear...  

National Nuclear Security Administration (NNSA)

wind turbine blade delivered to Pantex Work crews began to erect the first of five wind turbines that will make up the Pantex Renewable Energy Project (PREP). The first wind...

17

The gas centrifuge and nuclear weapons proliferation  

SciTech Connect (OSTI)

Uranium enrichment by centrifugation is the basis for the quick and efficient production of nuclear fuel-or nuclear weapons.

Wood, Houston G. [Mechanical and Aerospace Engineering Department, University of Virginia, Charlottesville, Virginia (United States); Glaser, Alexander [Woodrow Wilson School of Public and International Affairs, Program on Science, Technology and Environmental Policy, Princeton University, Princeton, New Jersey (United States); Kemp, R. Scott [Nuclear Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

2014-05-09T23:59:59.000Z

18

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN  

E-Print Network [OSTI]

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity

Cañizares, Claudio A.

19

Wind turbines application for energy savings in Gas transportation system.  

E-Print Network [OSTI]

?? The Thesis shows the perspectives of involving renewable energy resources into the energy balance of Russia, namely the use of wind energy for the… (more)

Mingaleeva, Renata

2014-01-01T23:59:59.000Z

20

Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices  

E-Print Network [OSTI]

wear and tear on gas-fired power plants from the increasedon natural gas and wholesale power prices has also made itcheap natural gas and wind power in the years ahead (Lee et

Bolinger, Mark

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices  

E-Print Network [OSTI]

terms. Unlike gas-fired generation, wind power can offerpower generation in 2005 to 42.2% in 2011, while natural gas-firedgases and other pollutants. The corresponding expansion of gas-fired generation in the power

Bolinger, Mark

2014-01-01T23:59:59.000Z

22

Numerical simulations of wind–equatorial gas interaction in Carinae  

Science Journals Connector (OSTI)

......the exact mass-loss history and mass-loss rate...the primary wind with the...give the velocity maps at hundreds...the primary wind. Figure...column) maps for the one-cloud...comparing the velocity maps of our...knowledge of the mass distribution......

Danny Tsebrenko; Muhammad Akashi; Noam Soker

2013-01-01T23:59:59.000Z

23

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect (OSTI)

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

24

Department of Mechanical and Nuclear Engineering Fall 2010 Wind Tunnel Automated Bicycle Adjustment System  

E-Print Network [OSTI]

PENN STATE Department of Mechanical and Nuclear Engineering Fall 2010 Wind Tunnel Automated Bicycle with the development of Aerofit's prototype portable wind tunnel used in the aerodynamic testing of bicycles was to automate this adjustment of the bicycle seat and aerobars in order to decrease the time for fitting each

Demirel, Melik C.

25

Gas Exchange and Bubble-Induced Supersaturation in a Wind-Wave Tank  

Science Journals Connector (OSTI)

Gas exchange and bubble-induced supersaturation were measured in a wind-wave tank using total gas saturation meters. The water in the tank was subjected to bubbling using a large number of frits at a depth of 0.6 m.

Peter Bowyer; David Woolf

2004-12-01T23:59:59.000Z

26

ENVIRONMENTAL EFFECTS IN GALAXIES: MOLECULAR GAS AND NUCLEAR ACTIVITY  

E-Print Network [OSTI]

ENVIRONMENTAL EFFECTS IN GALAXIES: MOLECULAR GAS AND NUCLEAR ACTIVITY DUILIA DE MELLO and TOMMY;ENVIRONMENTAL EFFECTS IN GALAXIES 69 a. log(MH2 /LB) versus Morphology b. Kolmogorov-Smirnov Statistic Figure 2 in dense envir- onments and in the field and to study whether there is any correlation between nuclear

Maia, Marcio Antonio Geimba

27

The Role of Galactic Winds on Molecular Gas Emission from Galaxy Mergers  

E-Print Network [OSTI]

We assess the impact of starburst and AGN feedback-driven winds on the CO emission from galaxy mergers, and, in particular, search for signatures of these winds in the simulated CO morphologies and emission line profiles. We do so by combining a 3D non-LTE molecular line radiative transfer code with smoothed particle hydrodynamics (SPH) simulations of galaxy mergers that include prescriptions for star formation, black hole growth, a multiphase interstellar medium (ISM), and the winds associated with star formation and black hole growth. Our main results are: (1) Galactic winds can drive outflows of masses ~10^8-10^9 Msun which may be imaged via CO emission line mapping. (2) AGN feedback-driven winds are able to drive imageable CO outflows for longer periods of time than starburst-driven winds owing to the greater amount of energy imparted to the ISM by AGN feedback compared to star formation. (3) Galactic winds can control the spatial extent of the CO emission in post-merger galaxies, and may serve as a physical motivation for the sub-kiloparsec scale CO emission radii observed in local advanced mergers. (4) Secondary emission peaks at velocities greater than the circular velocity are seen in the CO emission lines in all models. In models with winds, these high velocity peaks are seen to preferentially correspond to outflowing gas entrained in winds, which is not the case in the model without winds. The high velocity peaks seen in models without winds are typically confined to velocity offsets (from the systemic) velocity, whereas the models with AGN feedback-driven winds can drive high velocity peaks to ~2.5 times the circular velocity.

Desika Narayanan; T. J. Cox; Brandon Kelly; Romeel Dave; Lars Hernquist; Tiziana Di Matteo; Philip Hopkins; Craig Kulesa; Brant Robertson; Christopher K. Walker

2007-10-01T23:59:59.000Z

28

JEDI II: Jobs and Economic Development Impacts from Coal, Naural Gas and Wind Power (Poster)  

Wind Powering America (EERE)

JEDI II: JOBS AND ECONOMIC DEVELOPMENT IMPACTS JEDI II: JOBS AND ECONOMIC DEVELOPMENT IMPACTS FROM COAL, NATURAL GAS, AND WIND POWER Marshall Goldberg MRG & Associates Nevada City, California Suzanne Tegen National Renewable Energy Laboratory Golden, Colorado The information contained in this poster is subject to a government license. * WINDPOWER 2006 * Pittsburgh, PA * June 4-7, 2006 * NREL/PO-500-39908 Michael Milligan, Consultant National Renewable Energy Laboratory Golden, Colorado How does JEDI II work? The user enters data specific to the new coal, gas, or wind plant: * Year of installation * Size of the project * Location * Cost ($/kW) * Any other site-specific information

29

Nuclear symmetry energy effects on liquid-gas phase transition in hot asymmetric nuclear matter  

E-Print Network [OSTI]

The liquid-gas phase transition in hot asymmetric nuclear matter is investigated within relativistic mean-field model using the density dependence of nuclear symmetry energy constrained from the measured neutron skin thickness of finite nuclei. We find symmetry energy has a significant influence on several features of liquid-gas phase transition. The boundary and area of the liquid-gas coexistence region, the maximal isospin asymmetry and the critical values of pressure and isospin asymmetry all of which systematically increase with increasing softness in the density dependence of symmetry energy. The critical temperature below which the liquid-gas mixed phase exists is found higher for a softer symmetry energy.

Bharat K. Sharma; Subrata Pal

2010-01-14T23:59:59.000Z

30

Formation of long and winding nuclear F-actin bundles by nuclear c-Abl tyrosine kinase  

SciTech Connect (OSTI)

The non-receptor-type tyrosine kinase c-Abl is involved in actin dynamics in the cytoplasm. Having three nuclear localization signals (NLSs) and one nuclear export signal, c-Abl shuttles between the nucleus and the cytoplasm. Although monomeric actin and filamentous actin (F-actin) are present in the nucleus, little is known about the relationship between c-Abl and nuclear actin dynamics. Here, we show that nuclear-localized c-Abl induces nuclear F-actin formation. Adriamycin-induced DNA damage together with leptomycin B treatment accumulates c-Abl into the nucleus and increases the levels of nuclear F-actin. Treatment of c-Abl-knockdown cells with Adriamycin and leptomycin B barely increases the nuclear F-actin levels. Expression of nuclear-targeted c-Abl (NLS-c-Abl) increases the levels of nuclear F-actin even without Adriamycin, and the increased levels of nuclear F-actin are not inhibited by inactivation of Abl kinase activity. Intriguingly, expression of NLS-c-Abl induces the formation of long and winding bundles of F-actin within the nucleus in a c-Abl kinase activity-dependent manner. Furthermore, NLS-c-Abl?C, which lacks the actin-binding domain but has the full tyrosine kinase activity, is incapable of forming nuclear F-actin and in particular long and winding nuclear F-actin bundles. These results suggest that nuclear c-Abl plays critical roles in actin dynamics within the nucleus. - Highlights: • We show the involvement of c-Abl tyrosine kinase in nuclear actin dynamics. • Nuclear F-actin is formed by nuclear-localized c-Abl and its kinase-dead version. • The c-Abl actin-binding domain is prerequisite for nuclear F-actin formation. • Formation of long nuclear F-actin bundles requires nuclear c-Abl kinase activity. • We discuss a role for nuclear F-actin bundle formation in chromatin regulation.

Aoyama, Kazumasa; Yuki, Ryuzaburo; Horiike, Yasuyoshi; Kubota, Sho; Yamaguchi, Noritaka; Morii, Mariko; Ishibashi, Kenichi; Nakayama, Yuji [Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Kuga, Takahisa; Hashimoto, Yuuki; Tomonaga, Takeshi [Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085 (Japan); Yamaguchi, Naoto, E-mail: nyama@faculty.chiba-u.jp [Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan)

2013-12-10T23:59:59.000Z

31

Variance Analysis of Wind and Natural Gas Generation under Different Market Structures: Some Observations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Variance Analysis of Wind and Variance Analysis of Wind and Natural Gas Generation under Different Market Structures: Some Observations Brian Bush, Thomas Jenkin, David Lipowicz, and Douglas J. Arent National Renewable Energy Laboratory Roger Cooke Resources for the Future Technical Report NREL/TP-6A20-52790 January 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Variance Analysis of Wind and Natural Gas Generation under Different Market Structures: Some Observations Brian Bush, Thomas Jenkin, David Lipowicz,

32

Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors  

DOE Patents [OSTI]

Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

2013-09-03T23:59:59.000Z

33

Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors  

DOE Patents [OSTI]

Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pacoima, CA); Benander, Robert E. (Pacoima, CA)

2011-03-01T23:59:59.000Z

34

Exhaust gas treatment in testing nuclear rocket engines  

Science Journals Connector (OSTI)

With the exception of the last test series of the Rover program Nuclear Furnace 1 test?reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery a series of heat exchangers to gradually cool the exhaust gas stream to 100 K and an activated charcoal bed for adsorption of inert gases. A hydrogen?gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

Herbert R. Zweig; Stanley Fischler; William R. Wagner

1993-01-01T23:59:59.000Z

35

Exhaust gas treatment in testing nuclear rocket engines  

SciTech Connect (OSTI)

With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

Zweig, H.R.; Fischler, S.; Wagner, W.R. (Rocketdyne Division, Rockwell International Corporation, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States))

1993-01-15T23:59:59.000Z

36

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas  

E-Print Network [OSTI]

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse reliance on fossil fuels. Plug-In Hybrid Electric Vehicles (PHEVs) and wind power represent two practical Electric Vehicles for Greenhouse Gas Mitigation in Canada by Brett Kerrigan B.Eng., Carleton University

Victoria, University of

37

Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

Dolan, S. L.; Heath, G. A.

2012-04-01T23:59:59.000Z

38

Effects of a Supermassive Black Hole Binary on a Nuclear Gas Disk  

E-Print Network [OSTI]

We study influence of a galactic central supermassive black hole (SMBH) binary on gas dynamics and star formation activity in a nuclear gas disk by making three-dimensional Tree+SPH simulations. Due to orbital motions of SMBHs, there are various resonances between gas motion and the SMBH binary motion. We have shown that these resonances create some characteristic structures of gas in the nuclear gas disk, for examples, gas elongated or filament structures, formation of gaseous spiral arms, and small gas disks around SMBHs. In these gaseous dense regions, active star formations are induced. As the result, many star burst regions are formed in the nuclear region.

Hidenori Matsui; Asao Habe; Takayuki R. Saitoh

2006-06-07T23:59:59.000Z

39

The Origin and Kinematics of Cold Gas in Galactic Winds: Insight from Numerical Simulations  

E-Print Network [OSTI]

We study the origin of Na I absorbing gas in ultraluminous infrared galaxies motivated by the recent observations by Martin of extremely superthermal linewidths in this cool gas. We model the effects of repeated supernova explosions driving supershells in the central regions of molecular disks with M_d=10^10 M_\\sun, using cylindrically symmetric gas dynamical simulations run with ZEUS-3D. The shocked swept-up shells quickly cool and fragment by Rayleigh-Taylor instability as they accelerate out of the dense, stratified disks. The numerical resolution of the cooling and compression at the shock fronts determines the peak shell density, and so the speed of Rayleigh-Taylor fragmentation. We identify cooled shells and shell fragments as Na I absorbing gas and study its kinematics. We find that simulations with a numerical resolution of \\le 0.2 pc produce multiple Rayleigh-Taylor fragmented shells in a given line of sight. We suggest that the observed wide Na I absorption lines, = 320 \\pm 120 km s^-1 are produced by these multiple fragmented shells traveling at different velocities. We also suggest that some shell fragments can be accelerated above the observed average terminal velocity of 750 km s^-1 by the same energy-driven wind with an instantaneous starburst of \\sim 10^9 M_\\sun. The bulk of mass is traveling with the observed average shell velocity 330 \\pm 100 km s^-1. Our results show that an energy-driven bubble causing Rayleigh-Taylor instabilities can explain the kinematics of cool gas seen in the Na I observations without invoking additional physics relying primarily on momentum conservation, such as entrainment of gas by Kelvin-Helmholtz instabilities, ram pressure driving of cold clouds by a hot wind, or radiation pressure acting on dust. (abridged)

Akimi Fujita; Crystal L. Martin; Mordecai-Mark Mac Low; Kimberly C. B. New; Robert Weaver

2008-03-19T23:59:59.000Z

40

On the application of MHD-gas acceleration wind tunnels to investigate hypersonic gas flows over bodies  

SciTech Connect (OSTI)

The paper contains the results of applying a hypervelocity MHD-gas acceleration wind tunnel to investigations of flows over bodies. Consideration is given to the conditions of re producing gas dynamic and thermochemical flow parameters as applied to different types of tests: pressure and heat flux distributions, determination of shock wave positions and shapes. The measured heat fluxes towards the leading edge of swept wings are presented for sweep angles ranging from 0{degrees} to 60{degrees} at a flow velocity of U{approximately}6000 m/s. An appreciable influence of the surface nonequilibrium and catalyticity on their values is indicated. Possible investigations of flows over bodies at ultra high heat fluxes, q {approximately} 10 kW/m{sup 2} are discussed. The results of applying the facility to the verification of calculation codes and thermodynamic gas models are analyzed for flows over a hemisphere, a cone and a wedge. The calculated and measured surface pressure distributions are in good agreement for a hemisphere and satisfactory for a cone and a wedge. The shock wave positions and shapes are compared. It is shown that respective gas glow is impossible to use for this purpose.

Alfyorov, V.I.; Yegorov, I.V.; Shcherbakov, G.I. [Central Aerodrodynamic Institute (TsAGI), Zhukovsky (Russian Federation)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydrogen storage for mixed wind–nuclear power plants in the context of a Hydrogen Economy  

Science Journals Connector (OSTI)

A novel methodology for the economic evaluation of hydrogen production and storage for a mixed wind–nuclear power plant considering some new aspects such as residual heat and oxygen utilization is applied in this work. This analysis is completed in the context of a Hydrogen Economy and competitive electricity markets. The simulation of the operation of a combined nuclear–wind–hydrogen system is discussed first, where the selling and buying of electricity, the selling of excess hydrogen and oxygen, and the selling of heat are optimized to maximize profit to the energy producer. The simulation is performed in two phases: in a pre-dispatch phase, the system model is optimized to obtain optimal hydrogen charge levels for the given operational horizons. In the second phase, a real-time dispatch is carried out on an hourly basis to optimize the operation of the system as to maximize profits, following the hydrogen storage levels of the pre-dispatch phase. Based on the operation planning and dispatch results, an economic evaluation is performed to determine the feasibility of the proposed scheme for investment purposes; this evaluation is based on calculations of modified internal rates of return and net present values for a realistic scenario. The results of the present studies demonstrate the feasibility of a hydrogen storage and production system with oxygen and heat utilization for existent nuclear and wind power generation facilities.

Gregor Taljan; Michael Fowler; Claudio Cañizares; Gregor Verbi?

2008-01-01T23:59:59.000Z

42

Impact of U.S. Nuclear Generation on Greenhouse Gas Emissions  

Gasoline and Diesel Fuel Update (EIA)

Impact of U.S. Nuclear Generation Impact of U.S. Nuclear Generation on Greenhouse Gas Emissions Ronald E. Hagen, John R. Moens, and Zdenek D. Nikodem Energy Information Administration U.S. Department of Energy International Atomic Energy Agency Vienna, Austria November 6-9, 2001 iii Energy Information Administration/ Impact of U.S. Nuclear Generation on Greenhouse Gas Emissions Contents Page I. The Electric Power Industry and the Greenhouse Gas Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II. The Current Role of the U.S. Nuclear Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 III. The Future Role of the U.S. Nuclear Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 IV. Factors That Affect Nuclear Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V. Conclusion

43

Investigation of physico-chemical processes in hypervelocity MHD-gas acceleration wind tunnels  

SciTech Connect (OSTI)

The calculation results for nonequilibrium physicochemical processes in the circuit of the hypersonic MHD-gas acceleration wind tunnel are presented. The flow in the primary nozzle is shown to be in thermodynamic equilibrium at To=3400 K, Po=(2{approximately}3)x10{sup 5} Pa, M=2 used in the plenum chamber. Variations in the static pressure due to oxidation reaction of Na, K are pointed out. The channels of energy transfer from the electric field to different degrees of freedom of an accelerated gas with Na, K seeds are considered. The calculation procedure for gas dynamic and kinetic processes in the MHD-channel using measured parameters is suggested. The calculated results are compared with the data obtained in a thermodynamic gas equilibrium assumption. The flow in the secondary nozzle is calculated under the same assumptions and the gas parameters at its exit are evaluated. Particular attention is given to the influence of seeds on flows over bodies. It is shown that the seeds exert a very small influence on the flow behind a normal shock wave. The seeds behind an oblique shock wave accelerate deactivation of vibrations of N{sub 2}, but this effect is insignificant.

Alfyorov, V.I.; Dmitriev, L.M.; Yegorov, B.V.; Markachev, Yu.E. [Central Aerohydrodynamic Institute (TsAGI), Zhukovsky (Russian Federation)

1995-12-31T23:59:59.000Z

44

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network [OSTI]

renewables, including large hydropower, by 2020. In 2009,coal mining and hydropower), iron and steel, machinery, andoil, and natural gas. Hydropower, nuclear, and wind energy

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

45

Generation risk assessment in volatile conditions with wind, hydro, and natural gas units  

Science Journals Connector (OSTI)

This paper studies a generating company (GENCO)’s midterm (a few months to a year) scheduling payoffs and risks in volatile operating conditions. The proposed algorithm considers the integration of intermittent wind units into a GENCO’s generation assets and coordinates the GENCO’s hourly wind generation schedule with that of natural gas (NG) units (with volatile gas prices) and hydro units (with water inflow forecast) for maximizing the GENCO’s payoff. The proposed midterm GENCO model applies market price forecasts to the risk-constrained stochastic price-based unit commitment (PBUC) for calculating the GENCO’s risk in energy and ancillary services markets. The proposed PBUC minimizes the cost of (a) NG contracts, storage, startup and shutdown, (b) startup and shutdown of cascaded hydro units, and (c) penalty for defaulting on the scheduled power delivery. Simulation results show that the diversification of generating assets including bilateral contracts (BCs) could enhance the GENCO’s midterm planning by increasing the expected payoff and decreasing the financial risk.

Cem Sahin; Mohammad Shahidehpour; Ismet Erkmen

2012-01-01T23:59:59.000Z

46

Explosive nucleosynthesis: nuclear physics impact using neutrino-driven wind simulations  

E-Print Network [OSTI]

We present nucleosynthesis studies based on hydrodynamical simulations of core-collapse supernovae and their subsequent neutrino-driven winds. Although the conditions found in these simulations are not suitable for the rapid neutron capture (r-process) to produce elements heavier than A$\\sim$130, this can be solved by artificially increasing the wind entropy. In this way one can mimic the general behavior of an ejecta where the r-process occurs. We study the impact of the long-time dynamical evolution and of the nuclear physics input on the final abundances and show that different nuclear mass models lead to significant variations in the abundances. These differences can be linked to the behavior of nuclear masses far from stability. In addition, we have analyzed in detail the effect of neutron capture and beta-delayed neutron emission when matter decays back to stability. In all our studied cases, freeze out effects are larger than previously estimated and produce substantial changes in the post freeze out abundances.

A. Arcones; G. Martinez-Pinedo

2010-12-14T23:59:59.000Z

47

Competitiveness of Wind Power with the Conventional Thermal Power Plants Using Oil and Natural Gas as Fuel in Pakistan  

Science Journals Connector (OSTI)

Abstract The fossil fuels mainly imported oil and natural gas are major sources of electricity generation in Pakistan. The combustion of fossil fuels in thermal power plants has greater environmental impacts like air pollution and global warming. Additionally, the import of oil is a heavy burden on the poor economy of the country. Pakistan is a country with huge renewable sources; wind energy being the major one. This paper elucidate the cost-competitiveness of wind power with the conventional thermal power plants. In this regard, Levelized estimated cost of a 15MW wind power plant is compared with three types of conventional thermal power plants, namely (i) Oil-fired thermal power plant (ii) Natural gas-fire combine cycle power plant (iii) Diesel oil- fired gas turbine cycle 100MW each. The results show that the cost of wind energy is lowest with Rs. 3/kWh. It is concluded that the wind power is cost-competitive to the conventional thermal power plants in Pakistan. The cost estimation for wind energy is lowest of all others with Rs. 3/kWh.

A. Mengal; M.A. Uqaili; K. Harijan; Abdul Ghafoor Memon

2014-01-01T23:59:59.000Z

48

Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

Melaina, M. W.

2013-05-01T23:59:59.000Z

49

The effect of partonic wind on charm quark correlations in high-energy nuclear collisions  

E-Print Network [OSTI]

In high-energy collisions, massive heavy quarks are produced back-to-back initially and they are sensitive to early dynamical conditions. The strong collective partonic wind from the fast expanding quark-gluon plasma created in high-energy nuclear collisions modifies the correlation pattern significantly. As a result, the angular correlation function for D$\\bar{\\rm D}$ pairs is suppressed at the angle $\\Delta\\phi=\\pi$. While the hot and dense medium in collisions at RHIC ($\\sqrt{s_{NN}}=200$ GeV) can only smear the initial back-to-back D$\\bar {\\rm D}$ correlation, a clear and strong near side D$\\bar{\\rm D}$ correlation is expected at LHC ($\\sqrt{s_{NN}}=5500$ GeV).

X. Zhu; N. Xu; P. Zhuang

2007-09-03T23:59:59.000Z

50

SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND CHARACTERISTICS AT NUCLEAR FACILITY SITES  

Broader source: Energy.gov (indexed) [DOE]

Y Y : J O H N D . S T E V E N S O N C O N S U L T I N G E N G I N E E R 6 6 1 1 R O C K S I D E R D . I N D E P E N D E N C E , O H I O 4 4 1 3 1 T E L . 2 1 6 - 4 4 7 - 9 4 4 0 E M A I L : J S T E V E N S O N 4 @ E A R T H L I N K . N E T SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND CHARACTERISTICS AT NUCLEAR FACILITY SITES Categorization of Natural Hazard Phenomenon and Operational Load Combinations Prior to the 1988 Uniform Building Code, UBC (1) natural hazard phenomenon (earthquake, wind, flooding and precipitation) and operational load combinations were divided into two categories: NORMAL- Loads such as dead, live and design basis pressure. Expected frequency: 1.0 per yr with a limiting acceptance criteria Allowable stress design criteria: equal to one-half to two-thirds of specified minimum yield stress. SEVERE - Natural hazard and operational transient loads.

51

A gas-rich nuclear bar fuelling a powerful central starburst in NGC 2782  

E-Print Network [OSTI]

We present evidence that the peculiar interacting starburst galaxy NGC 2782 (Arp 215) harbors a gas-rich nuclear stellar bar feeding an M82-class powerful central starburst, from a study based on OVRO CO (J=1->0) data, WIYN BVR & Halpha observations, along with available NIR images, a 5 GHz RC map and HST images. NGC 2782 harbors a clumpy, bar-like CO feature of radius ~ 7.5'' (1.3 kpc) which leads a nuclear stellar bar of similar size. The nuclear CO bar is massive: it contains ~2.5x10**9 M_sun of molecular gas, which makes up ~ 8 % of the dynamical'mass present within a 1.3 kpc radius. Within the CO bar, emission peaks in two extended clumpy lobes which lie on opposite sides of the nucleus, separated by ~ 6'' (1 kpc). Between the CO lobes, in the inner 200 pc radius, resides a powerful central starburst which is forming stars at a rate of 3 to 6 M_sun yr-1. While circular motions dominate the CO velocity field, the CO lobes show weak bar-like streaming motions on the leading side of the nuclear stellar bar, suggestive of gas inflow. We estimate semi-analytically the gravitational torque from the nuclear stellar bar on the gas, and suggest large gas inflow rates from the CO lobes into the central starburst. These observations, which are amongst the first ones showing a nuclear stellar bar fuelling molecular gas into an intense central starburst, are consistent with simulations and theory which suggest that nuclear bars provide an efficient way of transporting gas closer to the galactic center to fuel central activity. Furthermore, several massive clumps are present at low radii, and dynamical friction might produce further gas inflow. We suggest that the nuclear molecular gas bas and central activity will be very short-lived, likely disappearing within 5x10**8 years.

Shardha Jogee; Jeffrey D. P. Kenney; Beverly J. Smith

1999-07-07T23:59:59.000Z

52

Liquefied Noble Gas (LNG) detectors for detection of nuclear materials  

Science Journals Connector (OSTI)

Liquefied-noble-gas (LNG) detectors offer, in principle, very good energy resolution for both neutrons and gamma rays, fast response time (hence high-count-rate capabilities), excellent discrimination between neutrons and gamma rays, and scalability to large volumes. They do, however, need cryogenics. LNG detectors in sizes of interest for fissionable material detection in cargo are reaching a certain level of maturity because of the ongoing extensive R&}D effort in high-energy physics regarding their use in the search for dark matter and neutrinoless double beta decay. The unique properties of LNG detectors, especially those using Liquid Argon (LAr) and Liquid Xenon (LXe), call for a study to determine their suitability for Non-Intrusive Inspection (NII) for Special Nuclear Materials (SNM) and possibly for other threats in cargo. Rapiscan Systems Laboratory, Yale University Physics Department, and Adelphi Technology are collaborating in the investigation of the suitability of LAr as a scintillation material for large size inspection systems for air and maritime containers and trucks. This program studies their suitability for NII, determines their potential uses, determines what improvements in performance they offer and recommends changes to their design to further enhance their suitability. An existing 3.1 liter LAr detector (microCLEAN) at Yale University, developed for R&}D on the detection of weakly interacting massive particles (WIMPs) was employed for testing. A larger version of this detector (15 liters), more suitable for the detection of higher energy gamma rays and neutrons is being built for experimental evaluation. Results of measurements and simulations of gamma ray and neutron detection in microCLEAN and a larger detector (326 liter CL38) are presented.

J A Nikkel; T Gozani; C Brown; J Kwong; D N McKinsey; Y Shin; S Kane; C Gary; M Firestone

2012-01-01T23:59:59.000Z

53

Surfactant based imbibition and induced solution gas drive process: investigation by nuclear magnetic resonance  

E-Print Network [OSTI]

SURFACTANT BASED IMBIBITION AND INDUCED SOLUTION GAS DRIVE PROCESS: INVESTIGATION BY NUCLEAR MAGNETIC RESONANCE A Thesis by JAMES CALVIN COX Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment.... of the requirements for the degree of MASTER OF SCIENCE August 1993 Major Subject: Chemical Engineering SURFACTANT BASED IMBIBITION AND INDUCED SOLUTION GAS DRIVE PROCESS: INVESTIGATION BY NUCLEAR MAGNETIC RESONANCE A Thesis by JAMES CALVIN COX Approved...

Cox, James Calvin

2012-06-07T23:59:59.000Z

54

Modelling of an integrated gas and electricity network with significant wind capacity.  

E-Print Network [OSTI]

??The large scale integration of wind generation capacity into an electricity network poses technical as well as economic challenges. In this research, three major challenges… (more)

Qadrdan, Meysam

2012-01-01T23:59:59.000Z

55

Wind Opportunities for Idaho State Lands  

Wind Powering America (EERE)

and Local Initiatives Group and Local Initiatives Group National Renewable Energy Laboratory Terri Walters Carol Tombari 303-275-3005 303-275-3821 terri_walters@nrel.gov carol_tombari@nrel.gov Wind Opportunities For Idaho State Lands March 3, 2004 Wind Overview Wind Overview * Technology * Resources * Markets and Drivers * Economic Development Opportunities * Wind Powering America U.S. Electricity Fuel Mix U.S. Electricity Fuel Mix Coal 51.8% Nuclear 19.8% Hydro 7.2% Petroleum 2.9% Gas 16.1% Other/Renewables 2.2% Sizes and Applications Sizes and Applications Small (≤10 kW) * Homes * Farms * Remote Applications (e.g. water pumping, telecom sites, icemaking) Intermediate (10-100 kW) * Village Power * Hybrid Systems * Distributed Power Large (660 kW - 2+MW) * Central Station Wind Farms * Distributed Power Growth of Wind Energy Capacity Growth of Wind Energy Capacity

56

Samson Sherman President Obama's Energy Plan & Natural Gas  

E-Print Network [OSTI]

Samson Sherman President Obama's Energy Plan & Natural Gas The Plan On March 30, President Obama" but includes wind, solar, nuclear, natural gas, and coal plants that can capture and store CO2 emissions period. Natural Gas Natural gas is considered the cleanest of all fossil fuels. Mostly comprised

Toohey, Darin W.

57

The Role of Nuclear Power in Reducing Greenhouse Gas Emissions  

Science Journals Connector (OSTI)

Given these concerns, what is driving the recent renewed interest in the construction and operation of new nuclear reactors? The current generation of reactors has demonstrated a very high capacity factor,...15.....

Anthony Baratta

2011-01-01T23:59:59.000Z

58

Electricity production levelized costs for nuclear, gas and coal  

Office of Scientific and Technical Information (OSTI)

was no competitive in Mexico, at present this situation is changing, due to different factors. One of them is the high price of fossile fuel in Mexico mainly natural gas. Other...

59

Non-congruence of liquid-gas phase transition of asymmetric nuclear matter  

E-Print Network [OSTI]

We first explore the liquid-gas mixed phase in a bulk calculation, where two phases coexist without the geometrical structures. In the case of symmetric nuclear matter, the system behaves congruently, and the Maxwell construction becomes relevant. For asymmetric nuclear matter, on the other hand, the phase equilibrium is no more attained by the Maxwell construction since the liquid and gas phases are non-congruent; the particle fractions become completely different with each other. One of the origins of such non-congruence is attributed to the large symmetry energy. Subsequently we explore the charge-neutral nuclear matter with electrons by fully applying the Gibbs conditions to figure out the geometrical (pasta) structures in the liquid-gas mixed phase. We emphasize the effects of the surface tension and the Coulomb interaction on the pasta structures. We also discuss the thermal effects on the pasta structures.

Maruyama, Toshiki

2012-01-01T23:59:59.000Z

60

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network [OSTI]

Technology. Stoffel, F.C. (Xcel Energy). 2001. In the Matternatural gas utilities, Xcel Energy noted that the cost of

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Caloric Curves for small systems in the Nuclear Lattice Gas Model  

E-Print Network [OSTI]

For pedagogical reasons we compute the caloric curve for 11 particles in a $3^3$ lattice. Monte-Carlo simulation can be avoided and exact results are obtained. There is no back-bending in the caloric curve and negative specific heat does not appear. We point out that the introduction of kinetic energy in the nuclear Lattice Gas Model modifies the results of the standard Lattice Gas Model in a profound way.

C. B. Das; S. Das Gupta

2000-09-27T23:59:59.000Z

62

Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to tritium migration.

C. Cooper; M. Ye; J. Chapman

2008-04-01T23:59:59.000Z

63

Greenhouse Gas Emissions from Operating Reserves Used to Backup Large-Scale Wind Power  

Science Journals Connector (OSTI)

Power systems already carry significant reserves to compensate for errors in electricity load forecasts or unexpected power plant outages. ... It first specifies the probability distributions for forecast errors at hypothetical wind farm sites, and the correlation between those sites, based on statistical data from 10 existing wind farms. ... This work has also assumed that ample transmission capacity is available to move reserves throughout the region; in reality there may be trade-offs between the cost of transmission upgrades, vs losses on long-distance lines, vs reductions in reserve requirements. ...

Matthias Fripp

2011-07-28T23:59:59.000Z

64

Calculation of the electron distribution function of a rare gas nuclear induced plasma  

E-Print Network [OSTI]

1101 Calculation of the electron distribution function of a rare gas nuclear induced plasma A. M of the energy spectrum of the seed electrons. As an example, this calculation is applied to the case of neon ionisantes rapides est calculable, dans sa partie à basse et moyenne énergie, sans la connaissance précise

Paris-Sud XI, Université de

65

Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices  

E-Print Network [OSTI]

of Energy from U.S. Wind Power Projects. Berkeley, Calif. :J. and K. Porter. 2011. Wind Power and Electricity Markets.different purchasers of wind power in the U.S. , long- term

Bolinger, Mark

2014-01-01T23:59:59.000Z

66

Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices  

E-Print Network [OSTI]

other words, adding wind power to a portfolio of generatingexcellent wind resource areas are already selling power towhich wind power projects in the U.S. sell their power to

Bolinger, Mark

2014-01-01T23:59:59.000Z

67

A modeling and control approach to advanced nuclear power plants with gas turbines  

Science Journals Connector (OSTI)

Abstract Advanced nuclear power plants are currently being proposed with a number of various designs. However, there is a lack of modeling and control strategies to deal with load following operations. This research investigates a possible modeling approach and load following control strategy for gas turbine nuclear power plants in order to provide an assessment way to the concept designs. A load frequency control strategy and average temperature control mechanism are studied to get load following nuclear power plants. The suitability of the control strategies and concept designs are assessed through linear stability analysis methods. Numerical results are presented on an advanced molten salt reactor concept as an example nuclear power plant system to demonstrate the validity and effectiveness of the proposed modeling and load following control strategies.

Günyaz Ablay

2013-01-01T23:59:59.000Z

68

Nuclear Spin Relaxation and Double Resonance in HD Gas  

Science Journals Connector (OSTI)

Nuclear magnetic double-resonance experiments were performed on a gaseous sample containing a mixture of HD and CO2 at high pressure by observing the spin-spin multiplet in the proton-resonance spectrum and irradiating either the deuteron transitions or some of the proton transitions. The spectra show features arising from spin relaxation in HD. These features are analyzed by using the density-matrix theory of double resonance, assuming "strong"- and "weak"-collision models for the system. The equation of motion of the spin density matrix is exactly of the same form for both collision models, the only distinction coming from the dependence of the correlation times on the transformation properties of the lattice operators and on the quantum numbers characterizing the lattice states. The results of the analysis of HD double-resonance spectra indicate that the collisions in this case are "strong." The cross products between lattice terms which transform identically but belong to two different relaxation mechanisms make significant contributions to some of the correlation functions involved and thereby affect the final results.

B. D. Nageswara Rao and L. R. Anders

1965-10-04T23:59:59.000Z

69

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Journals Connector (OSTI)

Recently world has been confused by issues of energy resourcing including fossil fuel use global warming and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end?users particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN?IV reactors nuclear projects (HTGRs HTR VHTR) is also can produce hydrogen from the process. In the present study hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

2010-01-01T23:59:59.000Z

70

Of teapot dome, Wind river and Fort chaffee: Federal oil and gas resources  

SciTech Connect (OSTI)

The move from a location system to a leasing system for the development of federally owned oil and gas was a controversial and hard fought step. Like most programs for commercial use of public lands, the oil and gas leasing system has been the target of criticism for fraud. A review of the decisions of the US DOI disclose that DOI`s role has evolved from one largely developed to resolving disputes between competing applicants for a lease to one more concerned with the requirements of the National Environmental Policy Act. This article presents a review of decisions.

Lindley, L.

1995-12-31T23:59:59.000Z

71

Influence of wind power on hourly electricity prices and GHG (greenhouse gas) emissions: Evidence that congestion matters from Ontario zonal data  

Science Journals Connector (OSTI)

Abstract With the growing share of wind production, understanding its impacts on electricity price and greenhouse gas (GHG) emissions becomes increasingly relevant, especially to design better wind-supporting policies. Internal grid congestion is usually not taken into account when assessing the price impact of fluctuating wind output. Using 2006–2011 hourly data from Ontario (Canada), we establish that the impact of wind output, both on price level and marginal GHG emissions, greatly differs depending on the congestion level. Indeed, from an average of 3.3% price reduction when wind production doubles, the reduction jumps to 5.5% during uncongested hours, but is only 0.8% when congestion prevails. Similarly, avoided GHG emissions due to wind are estimated to 331.93 kilograms per megawatt-hour (kg/MWh) using all data, while for uncongested and congested hours, estimates are respectively 283.49 and 393.68 kg/MWh. These empirical estimates, being based on 2006–2011 Ontario data, cannot be generalized to other contexts. The main contribution of this paper is to underscore the importance of congestion in assessing the price and GHG impacts of wind. We also contribute by developing an approach to create clusters of data according to the congestion status and location. Finally, we compare different approaches to estimate avoided GHG emissions.

Mourad Ben Amor; Etienne Billette de Villemeur; Marie Pellat; Pierre-Olivier Pineau

2014-01-01T23:59:59.000Z

72

Study of direct-drive, deuteriumtritium gas-filled plastic capsule implosions using nuclear diagnostics at OMEGA  

E-Print Network [OSTI]

Study of direct-drive, deuterium­tritium gas-filled plastic capsule implosions using nuclear-filled plastic capsules are studied using nuclear diagnostics at the OMEGA laser facility T. R. Boehly et al. Specifically, with a two-dimensional 2D single-color-cycle, 1-THz-bandwidth smoothing by spectral dispersion

73

A Carbon Dioxide Gas Turbine Direct Cycle with Partial Condensation for Nuclear Reactors  

SciTech Connect (OSTI)

A carbon dioxide gas turbine power generation system with a partial condensation cycle has been proposed for thermal and fast nuclear reactors, in which compression is done partly in the liquid phase and partly in the gas phase. This cycle achieves higher cycle efficiency than a He direct cycle mainly due to reduced compressor work of the liquid phase and of the carbon dioxide real gas effect, especially in the vicinity of the critical point. If this cycle is applied to a thermal reactor, efficiency of this cycle is about 55% at a reactor outlet temperature of 900 deg. C and pressure of 12.5 MPa, which is higher by about 10% than a typical helium direct gas turbine cycle plant (PBMR) at 900 deg. C and 8.4 MPa; this cycle also provides comparable cycle efficiency at the moderate core outlet temperature of 600 deg. C with that of the helium cycle at 900 deg. C. If this cycle is applied to a fast reactor, it is anticipated to be an alternative to liquid metal cooled fast reactors that can provide slightly higher cycle efficiency at the same core outlet temperature; it would eliminate safety problems, simplify the heat transport system and simplify plant maintenance. A passive decay heat removal system is realized by connecting a liquid carbon dioxide storage tank with the reactor vessel and by supplying carbon dioxide gasified from the tank to the core in case of depressurization event. (authors)

Yasuyoshi Kato; Takeshi Nitawaki; Yoshio Yoshizawa [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550 (Japan)

2002-07-01T23:59:59.000Z

74

User-Friendly Tool to Calculate Economic Impacts from Coal, Natural Gas, and Wind: The Expanded Jobs and Economic Development Impact Model (JEDI II); Preprint  

SciTech Connect (OSTI)

In this paper we examine the impacts of building new coal, gas, or wind plants in three states: Colorado, Michigan, and Virginia. Our findings indicate that local/state economic impacts are directly related to the availability and utilization of local industries and services to build and operate the power plant. For gas and coal plants, the economic benefit depends significantly on whether the fuel is obtained from within the state, out of state, or some combination. We also find that the taxes generated by power plants can have a significant impact on local economies via increased expenditures on public goods.

Tegen, S.; Goldberg, M.; Milligan, M.

2006-06-01T23:59:59.000Z

75

Diablo Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Diablo Winds Wind Farm Diablo Winds Wind Farm Facility Diablo Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices  

E-Print Network [OSTI]

leaking of methane from shale gas development: response to2012. “The Influence of Shale Gas on U.S. Energy andthe United States’ vast shale gas reserves in recent years

Bolinger, Mark

2014-01-01T23:59:59.000Z

77

Saturation wind power potential and its implications for wind energy  

Science Journals Connector (OSTI)

...and natural gas produce electricity...As such, wind turbines reduce direct...power, part I: Technologies, energy resources...arrays of wind turbines . J Wind Eng Ind...Yamada T (1982) Development of a turbulence...biofuel soot and gases, and methane...a single wind turbine intersects...

Mark Z. Jacobson; Cristina L. Archer

2012-01-01T23:59:59.000Z

78

Investigation of efficiency of gas separation on nuclear track membranes with ultra-small pores  

Science Journals Connector (OSTI)

The efficiency of the separation of some inert gases (helium, nitrogen, argon, krypton, xenon) and hydrogen on nuclear track membranes of polyethylene terephthalate (PET) with pores of size 2-10 nm have been investigated. The membranes were prepared either by the freeze-drying method or by partial contraction of the porous structure. Membranes with pores over 6 nm in diameter are found to have an ideal gas separation coefficient, close to the theoretical (Knudsen) one, under normal conditions. A gradual decrease in the size of the pores leads to an increase in the reduced ideal separation coefficient of the hydrogen-helium pair for membranes obtained by the freeze-drying method, and in that of the helium-argon and helium-nitrogen pairs for membranes obtained by partial “healing” of pores. For other gas pairs a decrease in the separation coefficients was observed. A theoretical model is proposed that allows description of the observed regularities on the basis of the surface diffusion of components, taking into account the structural peculiarities of the membranes and the isothermal entrainment effects between free and adsorbed gas molecules.

V.V. Ovchinnikov; V.D. Seleznev; V.V. Surguchev; V.I. Tokmantsev

1991-01-01T23:59:59.000Z

79

October 11, 2011 Wind Generation  

E-Print Network [OSTI]

years. #12;Reading on ESRP 285 Website #12;The Competition: Gas-Fired Generation from a Combined CycleESRP 285 October 11, 2011 Wind Generation · Videos · Power Point Lecture #12;Wind Videos Wind (CC) Power Plant #12;Wind Investors Face These Costs #12;Fixed Costs #12;Variable Costs #12;Bottom

Ford, Andrew

80

Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

Warner, E. S.; Heath, G. A.

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels  

SciTech Connect (OSTI)

Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. many mechamistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, reearch, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

2014-04-07T23:59:59.000Z

82

Modeling of UF{sub 6} enrichment with gas centrifuges for nuclear safeguards activities  

SciTech Connect (OSTI)

The physical modeling of uranium isotopes ({sup 235}U, {sup 238}U) separation process by centrifugation of is a key aspect for predicting the nuclear fuel enrichment plant performances under surveillance by the Nuclear Safeguards Authorities. In this paper are illustrated some aspects of the modeling of fast centrifuges for UF{sub 6} gas enrichment and of a typical cascade enrichment plant with the Theoretical Centrifuge and Cascade Simulator (TCCS). The background theory for reproducing the flow field characteristics of a centrifuge is derived from the work of Cohen where the separation parameters are calculated using the solution of a differential enrichment equation. In our case we chose to solve the hydrodynamic equations for the motion of a compressible fluid in a centrifugal field using the Berman - Olander vertical velocity radial distribution and the solution was obtained using the Matlab software tool. The importance of a correct estimation of the centrifuge separation parameters at different flow regimes, lies in the possibility to estimate in a reliable way the U enrichment plant performances, once the separation external parameters are set (feed flow rate and feed, product and tails assays). Using the separation parameters of a single centrifuge allow to determine the performances of an entire cascade and, for this purpose; the software Simulink was used. The outputs of the calculation are the concentrations (assays) and the flow rates of the enriched (product) and depleted (tails) gas mixture. These models represent a valid additional tool, in order to verify the compliance of the U enrichment plant operator declarations with the 'on site' inspectors' measurements.

Mercurio, G.; Peerani, P.; Richir, P.; Janssens, W.; Eklund, G. [European Commission, Joint Research Centre, Institute for Transuranium Elements Via Fermi, 2749-TP181,20127 Ispra (Italy)

2012-09-26T23:59:59.000Z

83

Understanding the Nuclear Gas Dispersion in Early-Type Galaxies in the Context of Black Hole Demographics  

E-Print Network [OSTI]

(abridged) We analyze and model HST /STIS observations of a sample of 27 galaxies; 16 Fanaroff & Riley Type I radio galaxies and 11 (more) normal early-type galaxies. We focus here on what can be learned from the nuclear velocity dispersion (line width) of the gas as a complement to the many studies dealing with gas rotation velocities. We find that the dispersion in a STIS aperture of ~0.1''-0.2'' generally exceeds the large-scale stellar velocity dispersion of the galaxy. This is qualitatively consistent with the presence of central BHs, but raises the question whether the excess gas dispersion is of gravitational or non-gravitational origin and whether the implied BH masses are consistent with our current understanding of BH demography(as predicted by the M-sigma relation between BH mass and stellar velocity dispersion). To address this we construct dynamical models for the gas, both thin disk models and models with more general axis ratios and velocity anisotropies. For the normal galaxies the nuclear gas dispersions are adequately reproduced assuming disks around BHs with masses that follow the M-sigma relation. In contrast, the gas dispersions observed for the radio galaxies generally exceed those predicted by any of the models. We attribute this to the presence of non-gravitational motions in the gas that are similar to or larger than the gravitational motions. The non- gravitational motions are presumably driven by the active galactic nucleus (AGN), but we do not find a relation between the radiative output of the AGN and the non-gravitational dispersion. It is not possible to uniquely determine the BH mass for each galaxy from its nuclear gas dispersion. However, for the sample as a whole the observed dispersions do not provide evidence for significant deviations from the M-sigma relation.

Gijs Verdoes Kleijn; Roeland van der Marel; Jacob Noel-Storr

2006-01-02T23:59:59.000Z

84

Application of evolved gas analysis to cold-cap reactions of melter feeds for nuclear waste vitrification  

SciTech Connect (OSTI)

In the vitrification of nuclear wastes, the melter feed (a mixture of nuclear waste and glass-forming and modifying additives) experiences multiple gas-evolving reactions in an electrical glass-melting furnace. We employed the thermogravimetry-gas chromatography-mass spectrometry (TGA-GC-MS) combination to perform evolved gas analysis (EGA). Apart from identifying the gases evolved, we performed quantitative analysis relating the weighed sum of intensities of individual gases linearly proportional with the differential themogravimetry. The proportionality coefficients were obtained by three methods based on the stoichiometry, least squares, and calibration. The linearity was shown to be a good first-order approximation, in spite of the complicated overlapping reactions.

Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.; Rodriguez, Carmen P.; Schweiger, Michael J.

2014-04-30T23:59:59.000Z

85

Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations  

E-Print Network [OSTI]

August 2006. [1] The SOLAS Air-Sea Gas Exchange (SAGE) Experiment was conducted in the western Pacific of air-sea gas exchange. Globally, the dominant control of air-sea gas exchange is turbulent energy as the primary source of energy for the atmospheric and oceanic molecular boundary layers have been derived from

Ho, David

86

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

IGCC PC advanced coal-wind hybrid combined cycle power plantnatural gas combined cycle gas turbine power plant carboncrude gasification combined cycle power plant with carbon

Phadke, Amol

2008-01-01T23:59:59.000Z

87

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric-and Nuclear Power: A Life-cycle  

E-Print Network [OSTI]

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric- and Nuclear, photovoltaic, nuclear, life cycle 1 #12;Introduction The production of energy by burning fossil fuels generates, it is envisioned that expanding generation technologies based on nuclear power and renewable energy sources would

88

Estimated airborne release of plutonium from the Exxon Nuclear Mixed Oxide Fuel Plant at Richland, Washington as a result of postulated damage from severe wind and earthquake hazard  

SciTech Connect (OSTI)

The potential airborne releases of plutonium from postulated damage sustained by the Exxon Nuclear Company's Mixed Oxide Fabrication Plant at Richland, Washington, as a result of various levels of wind and earthquake hazard, are estimated. The releases are based on damage scenarios that range up to 250 mph for wind hazard and in excess of 1.0 g ground acceleration for seismic hazard, which were developed by other specialists. The approaches and factors used to estimate the releases (inventories of dispersible materials at risk, damage levels and ratios, fractional airborne releases of dispersible materials under stress, atmosphere exchange rates, and source term ranges) are discussed. Release estimates range from less than 10/sup -7/ g to greater than 14 g of plutonium over a four-day period.

Mishima, J.; Schwendiman, L.C.; Ayer, J.E.; Owzarski, E.L.

1980-02-01T23:59:59.000Z

89

On prediction of wind-borne plumes with simple models of turbulent transport  

E-Print Network [OSTI]

of x, and the vertical wind speed of gas above ground wass x 10 Vertical gas velocity, horizontal wind speed = 1 m/ss x 10 Vertical gas velocity, horizontal wind speed = 5 m/s

Schwarz, Katherine; Patzek, Tad; Silin, Dmitriy

2008-01-01T23:59:59.000Z

90

Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices  

E-Print Network [OSTI]

Gas Exports on Domestic Energy Markets. Produced by the EIAexports on domestic energy markets (EIA 2012c). These twentyeditions). Short-Term Energy Outlook, Market Prices and

Bolinger, Mark

2014-01-01T23:59:59.000Z

91

THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code  

SciTech Connect (OSTI)

The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

Vondy, D.R.

1984-07-01T23:59:59.000Z

92

Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities  

SciTech Connect (OSTI)

A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

MM Hall

2006-01-31T23:59:59.000Z

93

Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, January 1, 1980-March 31, 1980  

SciTech Connect (OSTI)

Results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Included are the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described, including screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, and 950/sup 0/C.

Not Available

1980-06-25T23:59:59.000Z

94

Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1979-September 30, 1979  

SciTech Connect (OSTI)

The results of work performed from July 1, 1979 through September 30, 1979 on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

Not Available

1980-03-07T23:59:59.000Z

95

"1. Millstone","Nuclear","Dominion Nuclear Conn Inc",2103 "2. Middletown","Gas","Middletown Power LLC",770  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" Connecticut" "1. Millstone","Nuclear","Dominion Nuclear Conn Inc",2103 "2. Middletown","Gas","Middletown Power LLC",770 "3. Lake Road Generating Plant","Gas","Lake Road Generating Co LP",745 "4. Bridgeport Harbor","Coal","PSEG Power Connecticut LLC",532 "5. Milford Power Project","Gas","Milford Power Co LLC",507 "6. Montville Station","Petroleum","NRG Montville Operations Inc",496 "7. Bridgeport Energy Project","Gas","Bridgeport Energy LLC",454 "8. New Haven Harbor","Petroleum","PSEG Power Connecticut LLC",448

96

Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices  

E-Print Network [OSTI]

Macroeconomic Impacts of LNG Exports from the United States.of liquefied natural gas (“LNG”). At the same time, with thewill be a net exporter of LNG by 2016, and a net exporter of

Bolinger, Mark

2014-01-01T23:59:59.000Z

97

The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation  

E-Print Network [OSTI]

The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in,e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAMR CFD tool for 0D to 3D simulations. Results for a 0D case show the impact of a He dispersed phase of na...

Fradera, Jorge

2013-01-01T23:59:59.000Z

98

Low Energy Nuclear Recoil Response in Xenon Gas for Low Mass Dark Matter WIMP Search  

E-Print Network [OSTI]

in xenon to improve noble element detector sensitivities and develop a fundamental understanding of nuclear stopping power theories originally studied by Lindhard et al. in the 1960's. We present the nuclear recoil results from measurements using a nearly...

Sofka, Clement James

2014-04-16T23:59:59.000Z

99

Wind derivatives: hedging wind risk:.  

E-Print Network [OSTI]

??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind… (more)

Hoyer, S.A.

2013-01-01T23:59:59.000Z

100

Characteristics of the nuclear magnetic resonance logging response in fracture oil and gas reservoirs  

Science Journals Connector (OSTI)

Fracture oil and gas reservoirs exist in large numbers. The accurate logging evaluation of fracture reservoirs has puzzled petroleum geologists for a long time. Nuclear magnetic resonance (NMR) logging is an effective new technology for borehole measurement and formation evaluation. It has been widely applied in non-fracture reservoirs, and good results have been obtained. But its application in fracture reservoirs has rarely been reported in the literature. This paper studies systematically the impact of fracture parameters (width, number, angle, etc), the instrument parameter (antenna length) and the borehole condition (type of drilling fluid) on NMR logging by establishing the equation of the NMR logging response in fracture reservoirs. First, the relationship between the transverse relaxation time of fluid-saturated fracture and fracture aperture in the condition of different transverse surface relaxation rates was analyzed; then, the impact of the fracture aperture, dip angle, length of two kinds of antennas and mud type was calculated through forward modeling and inversion. The results show that the existence of fractures affects the NMR logging; the characteristics of the NMR logging response become more obvious with increasing fracture aperture and number of fractures. It is also found that T2 distribution from the fracture reservoir will be affected by echo spacing, type of drilling fluids and length of antennas. A long echo spacing is more sensitive to the type of drilling fluid. A short antenna is more effective for identifying fractures. In addition, the impact of fracture dip angle on NMR logging is affected by the antenna length.

Lizhi Xiao; Kui Li

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power  

Science Journals Connector (OSTI)

In the aftermath of the March 2011 accident at Japan’s Fukushima Daiichi nuclear power plant, the future contribution of nuclear power to the global energy supply has become somewhat uncertain. ... It seems that, except possibly for Japan, the top five CO2-emitting countries are not planning a phase-down of pre-Fukushima plans for future nuclear power. ... In Japan, the future of nuclear power now seems unclear; in the fiscal year following the Fukushima accident, nuclear power generation in Japan decreased by 63%, while fossil fuel power generation increased by 26% (ref 15), thereby almost certainly increasing Japan’s CO2 emissions. ...

Pushker A. Kharecha; James E. Hansen

2013-03-15T23:59:59.000Z

102

Statkraft is Europe's largest generator of renewable energy and is the leading power company in Norway. The company owns, produces and develops hydropower, wind power, gas-fired power and  

E-Print Network [OSTI]

in Norway. The company owns, produces and develops hydropower, wind power, gas-fired power and districtStatkraft is Europe's largest generator of renewable energy and is the leading power company countries. For our office in Düsseldorf we are currently looking to hire a System Manager Renewable Energy

Morik, Katharina

103

Venture Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind I Wind Farm Wind I Wind Farm Jump to: navigation, search Name Venture Wind I Wind Farm Facility Venture Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Improving the Technical, Environmental, and Social Performance of Wind Energy Systems Using Biomass-Based Energy Storage  

SciTech Connect (OSTI)

A completely renewable baseload electricity generation system is proposed by combining wind energy, compressed air energy storage, and biomass gasification. This system can eliminate problems associated with wind intermittency and provide a source of electrical energy functionally equivalent to a large fossil or nuclear power plant. Compressed air energy storage (CAES) can be economically deployed in the Midwestern US, an area with significant low-cost wind resources. CAES systems require a combustible fuel, typically natural gas, which results in fuel price risk and greenhouse gas emissions. Replacing natural gas with synfuel derived from biomass gasification eliminates the use of fossil fuels, virtually eliminating net CO{sub 2} emissions from the system. In addition, by deriving energy completely from farm sources, this type of system may reduce some opposition to long distance transmission lines in rural areas, which may be an obstacle to large-scale wind deployment.

Denholm, P.

2006-01-01T23:59:59.000Z

105

Modelling and Numerical Simulation of Gas Migration in a Nuclear Waste Repository  

E-Print Network [OSTI]

We present a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological radioactive waste repository. This model includes capillary effects and the gas diffusivity. The choice of the main variables in this model, Total or Dissolved Hydrogen Mass Concentration and Liquid Pressure, leads to a unique and consistent formulation of the gas phase appearance and disappearance. After introducing this model, we show computational evidences of its adequacy to simulate gas phase appearance and disappearance in different situations typical of underground radioactive waste repository.

Bourgeat, Alain; Smai, Farid

2010-01-01T23:59:59.000Z

106

Imaging spectrophotometry of ionized gas in NGC 1068. III - Anisotropic excitation of the large-scale disk by scattering of nuclear continuum  

SciTech Connect (OSTI)

Photoionization of the solar abundance diffuse ionized media (DIM) in NGC 1068 by anisotropic nuclear emission is studied. It is shown that the emission characteristics can be understood in the light of the developing picture of the galaxy in which its intrinsic type 1 Seyfert nucleus, concealed by an obscuring medium, is visible only through scattered, polarized light. The gas excitation is anisotropic, the high-excitation gas along the jet axis being photoionized by direct nuclear continuum, while the lower excitation gas away from the axis sees only indirect nuclear emission scattered into it. A model of low optical depth, near-nuclear Thomson scattering is considered in detail, and it is shown that, even with moderate dust extinction, this mechanism is sufficient to energize the DIM. 56 refs.

Sokolowski, J.; Bland-hawthorn, J.; Cecil, G. (Rice University, Houston, TX (USA) North Carolina, University, Chapel Hill (USA))

1991-07-01T23:59:59.000Z

107

DEVELOPMENT OF A HYDROGEN MORDENITE SORBENT FOR THE CAPTURE OF KRYPTON FROM USED NUCLEAR FUEL REPROCESSING OFF-GAS STREAMS  

SciTech Connect (OSTI)

A novel new sorbent for the separation of krypton from off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A hydrogen mordenite powder was successfully incorporated into a macroporous polymer binder and formed into spherical beads. The engineered form sorbent retained the characteristic surface area and microporosity indicative of mordenite powder. The sorbent was evaluated for krypton adsorption capacities utilizing thermal swing operations achieving capacities of 100 mmol of krypton per kilogram of sorbent at a temperature of 191 K. A krypton adsorption isotherm was also obtained at 191 K with varying krypton feed gas concentrations. Adsorption/desorption cycling effects were also evaluated with results indicating that the sorbent experienced no decrease in krypton capacity throughout testing.

Mitchell Greenhalgh; Troy G. Garn; Jack D. Law

2014-04-01T23:59:59.000Z

108

WIND ENERGY Wind Energ. (2014)  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

109

E-Print Network 3.0 - advanced gas-cooled nuclear Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy 9 UNM engineering s p r i N g 2 0 0 6 Summary: Re); the gas cooled Submersion-Subcritical Safe Space reactor (S4) designed to operate with multiple Closed... for reducing...

110

Evaluation of high-level nuclear waste tanks having a potential flammable gas hazard  

SciTech Connect (OSTI)

In 1990 the U.S. Department of Energy declared an unreviewed safety question as a result of the behavior of tank 241-SY-101. This tank exhibited episodic releases of flammable gases that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years a considerable amount of knowledge has been gained about the chemical and physical processes that govern the behavior of tank 241-SY-101 and the other tanks associated with a potential flammable gas hazard. This paper presents an overview of the current understanding of gas generation, retention, and release and covers the results of direct sampling of the tanks to determine the gas composition and the amount of stored gas.

Johnson, G.D.; Barton, W.B.; Hill, R.C.; et al, Fluor Daniel Hanford

1997-02-14T23:59:59.000Z

111

wind energy  

National Nuclear Security Administration (NNSA)

5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

112

New England Wind Forum: Wind Power Policy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Renewable Energy Portfolio Standards State Renewable Energy Funds Federal Tax Incentives and Grants Net Metering and Interconnection Standards Pollutant Emission Reduction Policies Awareness Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Policy in New England Why Incentives and Policy? Federal and state policies play an important role in encouraging wind energy development by leveling the playing field compared to other energy sources. Many of the substantial benefits of wind power as a domestic, zero-emission part of the energy portfolio - sustainability, displacement of pollutant emissions from other power sources, fuel diversity, price stabilization, keeping a substantial portion of energy expenditures in the local economy - are shared by society as a whole and cannot be readily captured by wind generators directly in the price they charge for their output. In addition, while wind power receives some policy support, the level of federal incentives for wind represents less than 1% of the subsidies and tax breaks given to the fossil fuels and nuclear industries (source: "Wind Power An Increasingly Competitive Source of New Generation." Wind Energy Weekly #1130.).

113

Estimated airborne release of plutonium from the 102 Building at the General Electric Vallecitos Nuclear Center, Vallecitos, California, as a result of damage from severe wind and earthquake hazard  

SciTech Connect (OSTI)

This report estimates the potential airborne releases of plutonium as a consequence of various severities of earthquake and wind hazard postulated for the 102 Building at the General Electric Vallecitos Nuclear Center in California. The releases are based on damage scenarios developed by other specialists. The hazard severities presented range up to a nominal velocity of 230 mph for wind hazard and are in excess of 0.8 g linear acceleration for earthquakes. The consequences of thrust faulting are considered. The approaches and factors used to estimate the releases are discussed. Release estimates range from 0.003 to 3 g Pu.

Mishima, J.; Ayer, J.E.; Hays, I.D.

1980-12-01T23:59:59.000Z

114

Preliminary research of health and environmental impacts and greenhouse gas emission from coal-fired power and nuclear power chains in China  

Science Journals Connector (OSTI)

The present paper treats health, environmental impacts and greenhouse gas emission resulting from both the coal-fired power chain and nuclear power chain in China. The nuclear power chain resulted in adverse health impacts 3-4 orders of magnitude lower than those from the coal-fired power chain, also radiological emissions were 1-2 orders of magnitude lower. Estimated greenhouse gas emission factors amount to 40 fold. The coal-fired power chain is considered to be one of the major sources of environmental pollution in China and rapid expansion of nuclear power in the country promises to be one of the primary ways of mitigating environmental pollution and reducing greenhouse gas emission. At the same time, of course, it is also necessary to increase the energy conversion efficiency of coal as a fuel and to minimise pollutant discharge.

Pan Ziqiang; Chen Zhuzhou; Zhu Zhiming; Xiu Binglin; Ma Zhonghai; Hao Jianzhong; He Huimin

1999-01-01T23:59:59.000Z

115

Wind Working Group Toolkit | Open Energy Information  

Open Energy Info (EERE)

abundant wind resources for electric power generation will help the United States reduce air pollution and greenhouse gas emissions, diversify the country's energy supply, provide...

116

Particle number fluctuations in nuclear collisions within excluded volume hadron gas model  

E-Print Network [OSTI]

The multiplicity fluctuations are studied in the van der Waals excluded volume hadron-resonance gas model. The calculations are done in the grand canonical ensemble within the Boltzmann statistics approximation. The scaled variances for positive, negative and all charged hadrons are calculated along the chemical freeze-out line of nucleus-nucleus collisions at different collision energies. The multiplicity fluctuations are found to be suppressed in the van der Waals gas. The numerical calculations are presented for two values of hard-core hadron radius, $r=0.3$ fm and 0.5 fm, as well as for the upper limit of the excluded volume suppression effects.

M. I. Gorenstein; M. Hauer; D. O. Nikolajenko

2007-02-26T23:59:59.000Z

117

Uncertainty in Prediction of Radionuclide Gas Migration from Underground Nuclear Explosions  

Science Journals Connector (OSTI)

...maximum efficiency when the period of oscillation and the timescale for diffusion between...R. Waichler. 2004. Evaluation of xenon gas detection as a means for identifying...United States unsaturated zone Xe-133 xenon GeoRef, Copyright 2014, American Geosciences...

Amy B. Jordan; Philip H. Stauffer; George A. Zyvoloski; Mark A. Person; Jonathan K. MacCarthy; Dale N. Anderson

118

Venture Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Venture Wind II Wind Farm Venture Wind II Wind Farm Facility Venture Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer Seawest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Wind Energy  

Broader source: Energy.gov (indexed) [DOE]

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

120

PJM Interconnection Interview on Wind  

Wind Powering America (EERE)

Vol. 9, No. 5 - December 5, 2007 Vol. 9, No. 5 - December 5, 2007 PJM on wind Wind power is growing rapidly in the United States and in Pennsylvania where 8 wind farms that total 259 megawatts now operate. Those wind farms already generate enough power for about 80,000 homes. Another 4,714 megawatts are in various stages of development within Pennsylvania, which would create enough power for an additional 1.4 mil- lion homes. Just in the Keystone state, wind power is creating thousands of jobs. Across the nation, wind power provides hundreds of millions of dollars of tax payments and rental fees to land- owners, and displaces more and more electricity that would otherwise be made by burning coal, oil, or natural gas. Wind farms create zero air pollution; require no destructive

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Approach to IAEA verification of the nuclear-material balance at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP)  

SciTech Connect (OSTI)

This paper describes a potential approach by which the International Atomic Energy Agency (IAEA) might verify the nuclear-material balance at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP), should that plant be placed under IAEA safeguards. The strategy makes use of the attributes and variables measurement verification approach, whereby the IAEA would perform independent measurements on a randomly selected subset of the items comprising the U-235 flows and inventories at the plant. In addition, the MUF-D statistic is used as the test statistics for the detection of diversion. The paper includes descriptions of the potential verification activities, as well as calculations of (a) attributes and variables sample sizes for the various strata, (b) standard deviations of the relevant test statistics, and (c) the sensitivity for detection of diversion which the IAEA might achieve by this verification strategy at GCEP.

Gordon, D.M.; Sanborn, J.B.; Younkin, J.M.; DeVito, V.J.

1982-01-01T23:59:59.000Z

122

Matter & Energy Wind Energy  

E-Print Network [OSTI]

See Also: Matter & Energy Wind Energy Energy Technology Physics Nuclear Energy Petroleum 27, 2012) -- Energy flowing from large-scale to small-scale places may be prevented from flowing, indicating that there are energy flows from large to small scale in confined space. Indeed, under a specific

Shepelyansky, Dima

123

Secretary Moniz on Natural Gas and Renewables | Department of...  

Broader source: Energy.gov (indexed) [DOE]

on Natural Gas and Renewables Secretary Moniz on Natural Gas and Renewables Addthis Speakers Dr. Ernest Moniz Duration 4:04 Topic Natural Gas Renewables Geothermal Solar Wind...

124

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

. Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis...

125

Wind Mills  

Science Journals Connector (OSTI)

Over 5,000 years ago, the ancient Egyptians used wind to sail ships on the Nile River. While the proliferation of water mills was in full swing, windmills appeared to harness more inanimate energy by employing wind

J. S. Rao

2011-01-01T23:59:59.000Z

126

Wind Farm  

Office of Energy Efficiency and Renewable Energy (EERE)

The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

127

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe...

128

Wind Power  

Science Journals Connector (OSTI)

For off-shore wind energy, it is not economically profitable to locate wind turbines in waters with depths larger than about 40 m. For this reason, some floating turbine prototypes are being tested, which can be ...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

129

Wind energy  

Science Journals Connector (OSTI)

...is approximately 4.5-6.01 for onshore wind farms. The price for offshore wind farms is estimated to be 50% higher. For comparison...visually intrusive. The visual impact of offshore wind farms quickly diminishes with distance and 10km...

2007-01-01T23:59:59.000Z

130

‘Chinook winds.’  

Science Journals Connector (OSTI)

...of south-easterly winds, which blow over the...Ocean, from which the winds come, can at this season...freezing-point. The wind well known in the Alps as the foehn is another example of...result is complicated by local details; regions of...

George M. Dawson

1886-01-08T23:59:59.000Z

131

A transient flow model of compressible gas mixtures in a nuclear fuel processing plant  

SciTech Connect (OSTI)

A model was developed to predict mixture concentration profiles in a subatmospheric mixture of hydrogen, nitrogen, and oxygen during valve-switching between a process line and an atmospheric vent line. The switching event allows air in-leakage to the system during the period in which the routing valves are open. Hydrogen and oxygen concentrations must be predicted to assess the potential for developing combustible mixtures in the system. The model consists of a one-dimensional finite-difference representation of the transient momentum and mass conservation equations, associated constitutive relationships and an equation-of-state for compressible gas. The resulting equation set was solved with Advanced Continuous Simulation Language (ACSL).

Farman, R.F.; Brown, R.A.

1989-02-16T23:59:59.000Z

132

Modelling Dynamic Constraints in Electricity Markets and the Costs of Uncertain Wind Output  

E-Print Network [OSTI]

shifts between periods. Finally, higher variable costs, incurred if power stations are operated below their optimal rating, are allocated to the locally lowest de- mand. For inflexible power stations like nuclear, combined cycle gas turbines or coal... the start of the station has to be decided several hours before delivering output. At the earlier time there is still uncertainty about the future demand, possible failures of power stations and predictions for wind-output. We represent the uncertainty...

Musgens, Felix; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

133

Colorado Public Utility Commission's Xcel Wind Decision  

SciTech Connect (OSTI)

In early 2001 the Colorado Public Utility Commission ordered Xcel Energy to undertake good faith negotiations for a wind plant as part of the utility's integrated resource plan. This paper summarizes the key points of the PUC decision, which addressed the wind plant's projected impact on generation cost and ancillary services. The PUC concluded that the wind plant would cost less than new gas-fired generation under reasonable gas cost projections.

Lehr, R. L. (NRUC/NWCC); Nielsen, J. (Land and Water Fund of the Rockies); Andrews, S.; Milligan, M. (National Renewable Energy Laboratory)

2001-09-20T23:59:59.000Z

134

Manzana Winds | Open Energy Information  

Open Energy Info (EERE)

Manzana Winds Manzana Winds Jump to: navigation, search Name Manzana Winds Facility Manzana Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser San Diego Gas and Electric / City of Santa Clara Silicon Valley Power Location Mojave CA Coordinates 34.932662°, -118.46105° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.932662,"lon":-118.46105,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Wind Blog  

Broader source: Energy.gov (indexed) [DOE]

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

136

Molecular gas and nuclear activity in early-type galaxies: any link with radio-loudness?  

E-Print Network [OSTI]

Aims. We want to study the amount of molecular gas in a sample of nearby early-type galaxies (ETGs) which host low-luminosity Active Galactic Nuclei (AGN). We look for possible differences between the radio-loud (RL) and radio-quiet (RQ) AGN. Methods. We observed the CO(1-0) and CO(2-1) spectral lines with the IRAM 30m and NRO 45m telescopes for eight galaxies. They belong to a large sample of 37 local ETGs which host both RQ and RL AGN. We gather data from the literature for the entire sample. Results. We report the new detection of CO(1-0) emission in four galaxies (UGC0968, UGC5617, UGC6946, and UGC8355) and CO(2-1) emission in two of them (UGC0968 and UGC5617). The CO(2-1)/CO(1-0) ratio in these sources is $\\sim0.7\\pm0.2$. Considering both the new observations and the literature, the detection rate of CO in our sample is 55 $\\pm$ 9%, with no statistically significant difference between the hosts of RL and RQ AGNs. For all the detected galaxies we converted the CO luminosities into the molecular masses, $M...

Baldi, Ranieri D; Capetti, Alessandro; Giovannini, Gabriele; Casasola, Viviana; Perez-Torres, Miguel A; Kuno, Nario

2014-01-01T23:59:59.000Z

137

Photon stimulated desorption of and nuclear resonant scattering by noble gas atoms at solid surfaces  

E-Print Network [OSTI]

When a noble gas atom approaches a solid surface, it is adsorbed via the Van der Waals force, which is called physisorption. In this thesis, several experimental results concerning physisorbed atoms at surfaces are presented. First, photon stimulated desorption of Xe atoms from a Au substrate using nano-second laser is presented. With the time-of-flight measurements, the translational temperature and the desorption yield of desorbing Xe as a function of laser fluence are obtained. It is discovered that there are non-thermal and thermal desorption pathways. It is discussed that the former path involves a transient formation of the negative ion of Xe. The desorption flux dependence of the thermal pathway is also investigated. We found that at a large desorption fluxes the desorption flow is thermalized due to the post-desorption collisions. The resultant velocity and the temperature of the flow is found to be in good agreement with the theoretical predictions based on the Knudsen layer formation. Lastly, nuclea...

Ikeda, Akihiko

2015-01-01T23:59:59.000Z

138

Gas Natural Corporacion Eolica SL | Open Energy Information  

Open Energy Info (EERE)

SL Jump to: navigation, search Name: Gas Natural Corporacion Eolica SL Place: Barcelona, Spain Zip: 8002 Sector: Wind energy Product: Barcelona headquartered wind development wing...

139

Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, April 1, 1980-June 30, 1980  

SciTech Connect (OSTI)

Objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described; this includes: screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850 and 950/sup 0/C. The initiation of air creep-rupture testing in the intensive screening test program is discussed. In addition, the status of the data management system is described.

Not Available

1980-11-14T23:59:59.000Z

140

Test Plan to Demonstrate Removal of Iodine and Tritium from Simulated Nuclear Fuel Recycle Plant Off-gas Streams using Adsorption Processes  

SciTech Connect (OSTI)

This letter documents the completion of the FCR&D Level 4 milestone for the Sigma Team – Off-Gas - ORNL work package (FT-14OR031202), “Co-absorption studies - Design system complete/test plan complete” (M4FT-14OR0312022), due November 15, 2013. The objective of this test plan is to describe research that will determine the effectiveness of silver mordenite and molecular sieve beds to remove iodine and water (tritium) from off-gas streams arising from used nuclear fuel recycling processes, and to demonstrate that the iodine and water can be recovered separately from one another.

Bruffey, Stephanie H. [ORNL] [ORNL; Spencer, Barry B. [ORNL] [ORNL; Jubin, Robert Thomas [ORNL] [ORNL

2013-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Rosiere Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Rosiere Wind Farm Rosiere Wind Farm Jump to: navigation, search Name Rosiere Wind Farm Facility Rosiere Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Madison Gas & Electric Developer Madison Gas & Electric Energy Purchaser Madison Gas & Electric Location Kewaunee County WI Coordinates 44.669395°, -87.627218° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.669395,"lon":-87.627218,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Wind Power Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email List Self Supplied Balancing Reserves Dynamic...

143

"1. Victor J Daniel Jr","Gas","Mississippi Power Co",1992 "2. Grand Gulf","Nuclear","System Energy Resources, Inc",1251  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi" Mississippi" "1. Victor J Daniel Jr","Gas","Mississippi Power Co",1992 "2. Grand Gulf","Nuclear","System Energy Resources, Inc",1251 "3. Baxter Wilson","Gas","Entergy Mississippi Inc",1176 "4. Jack Watson","Coal","Mississippi Power Co",998 "5. Magnolia Power Plant","Gas","Magnolia Energy LP",863 "6. Batesville Generation Facility","Gas","LSP Energy Ltd Partnership",858 "7. Reliant Energy Choctaw County","Gas","RRI Energy Wholesale Generation LLC",848 "8. TVA Southaven Combined Cycle","Gas","Tennessee Valley Authority",774

144

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

145

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

146

B61-12 Life Extension Program Undergoes First Full-Scale Wind...  

National Nuclear Security Administration (NNSA)

Undergoes First Full-Scale Wind Tunnel Test | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

147

New Target Methodology: Polymer-Assisted Deposition and Its Applications on Gas-Phase Nuclear Chemistry with Rutherfordium  

E-Print Network [OSTI]

Argonne Tandem Linac Accelerator System (ATLAS) require higher energy and higher intensity beams, as outlined in the Nuclear

Garcia, Mitch Andre

2009-01-01T23:59:59.000Z

148

Pacific Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer EnXco Energy Purchaser San Diego Gas & Electric Location Rosamond CA Coordinates 34.94448806°, -118.3886719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.94448806,"lon":-118.3886719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Wyoming Wind Power Project (generation/wind)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

150

On the Clouds of Bubbles Formed by Breaking Wind-Waves in Deep Water, and their Role in Air -- Sea Gas Transfer  

Science Journals Connector (OSTI)

...than in the fresh-water loch, even at smaller...presence of oxygen (or gases other than nitrogen) in the gas composing the bubbles...of turbulence in the water also appears unlikely...and the effects of solubility of the gas within the...

1982-01-01T23:59:59.000Z

151

Offshore Wind Power USA  

Broader source: Energy.gov [DOE]

The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

152

offshore wind farm  

Science Journals Connector (OSTI)

offshore wind farm, wind farm [‘Wind park’ which one may find on the ... engineers and should not be used. A wind farm consists of a network of wind turbines] ? Windkraftanlage f, Windpark m; Offshore

2014-08-01T23:59:59.000Z

153

Wind Energy Leasing Handbook  

E-Print Network [OSTI]

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

154

Design Wind Speed  

Science Journals Connector (OSTI)

Wind is characterized by various different parameters. They include the following items: (1) wind speed, such as the mean wind speed and maximum instantaneous wind speed; (2) wind direction such as the azimuth di...

Yozo Fujino; Kichiro Kimura; Hiroshi Tanaka

2012-01-01T23:59:59.000Z

155

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

156

Optimal investment in wind and solar power in California.  

E-Print Network [OSTI]

?? Wind and solar electricity are increasingly attractive as their costs decline and greater value is given to avoiding greenhouse gas emissions. However, these technologies… (more)

Fripp, Matthias

2010-01-01T23:59:59.000Z

157

WIND ENERGY POLICIES IN TURKEY  

E-Print Network [OSTI]

Energy is a strategic parameter, which demonstrates the development of a country. In Turkey, energy and energy politics are mainly based on the supply due to the inadequate fossil fuel resources. In the beginning of the 21 st century, due to the increase in the price of fossil fuels and environmental burdens, many countries showed renewed interest in alternative energy resources. Climate change and environmental problems caused by greenhouse gas emissions showed the importance of renewable energy resources and especially wind energy. The major reason for the interest in wind energy technologies out of many renewable energy resources is the bulk availability of this resource without any cost. In Turkey, the major solution to the dependency on foreign energy resources is: domestic production, development, and operation of renewable energy resources. However, in order to make these investments, suitable conditions and strategies must be generated. In order to accelerate the wind energy investments in Turkey: (i) the problems related to the interconnectivity of the wind power systems to the grid must be solved (ii) the guaranteed purchase price of the wind energy must be updated (iii) and the construction/operation of wind power plants must be subsidised by government initiatives. In this study, the politics related to wind energy is extensively reviewed and the possible suggestions/solutions related to the acceleration of wind energy production and investments in Turkey are given.

S?tk? Güner; Irem Firtina; Mehmet Meliko?lu; Ayhan Albostan

158

A real options approach to investing in the first nuclear power plant under cost uncertainty: comparison with natural gas power plant for the Tunisian case  

Science Journals Connector (OSTI)

This paper uses a real options approach to present a method for evaluating the first Nuclear Power Plant (NPP) investment in Tunisia in 2020. The evaluating model integrates the value of real options: option to wait in the standard discount cash flow analysis. According to the IAEA (2007), starting the first stage of a nuclear power programme makes it possible to construct the first NPP in second time. This study considers that the economic worth of the NPP investment depends on the production cost of the natural gas power plant. This study assumes that the profit realised by the NPP project, defined as the difference between natural gas and nuclear production costs, represented the cash flow of the NPP investment. However, the value of this cash flow is uncertain. This is an investment choice problem under uncertainty. The analysis proposes the optimal investment strategy in NPP project for the Tunisian government. Furthermore, the threshold value of investment cash flow defining the timing of starting NPP construction is calculated. [Received: July 10, 2008; Accepted: November 23, 2008

Mohamed Ben Abdelhamid; Chaker Aloui; Corinne Chaton

2009-01-01T23:59:59.000Z

159

Wind News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters http://energy.gov/eere/articles/new-report-shows-trend-toward-larger-offshore-wind-systems-11-advanced-stage-projects wind-systems-11-advanced-stage-projects" class="title-link">New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

160

Gathering Interstellar Gas  

Science Journals Connector (OSTI)

...pressure of the solar wind and the inward pressure...heliosphere encounters a mass equivalent to Mount...heliosphere—a lower velocity brings into question...that can be used with the map of the interstellar gas...strength of its stellar wind. As we explore the diverse...

Seth Redfield

2012-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nuclear Waste  

Science Journals Connector (OSTI)

Nuclear waste is radioactive material no longer considered valuable...238U, 235U, and 226Ra (where the latter decays to 222Rn gas by emitting an alpha particle) or formed through fission of fissile radioisotopes ...

Rob P. Rechard

2014-01-01T23:59:59.000Z

162

Wind energy  

Science Journals Connector (OSTI)

Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also addressed within the issue is how much conventional power production can be replaced by the ceaseless wind, with the question of how Greece's target of 29% renewables by 2020 is to be met efficiently. Other topics include an innovative way to determine the power curve of a turbine experimentally more accurately, the use of fluid dynamics tools to investigate the implications of placing vortex generators on wind turbine blades (thereby possibly improving their efficiency) and a study of the perception of wind turbine noise. It turns out that a small but significant fraction of wind turbine neighbours feel that turbine generated noise impairs their ability to rest. The annoyance is correlated with a negative attitude towards the visual impact on the landscape, but what is cause and effect is too early to say. As mentioned there is a rush for wind turbines in many countries. However, this positive development for the global climate is currently limited by practical barriers. One bottleneck is the difficulties for the sub-suppliers of gears and other parts to meet the demand. Another is the difficulties to meet the demand for engineers specialized in wind. For that reason the Technical University of Denmark (DTU) recently launched the world's first Wind Energy Masters Program. Here and elsewhere in the world of wind education and research we should really speed up now, as our chances of contributing to emission free energy production and a healthier global climate have never been better. Focus on Wind Energy Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Wind turbines—low level noise sources interfering with restoration? Eja Pedersen and Kerstin Persson Waye On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece George Caralis, Yiannis Perivolaris, Konstantinos Rados and Arthouros Zervos Large-eddy simulation of spectral coherence in a wind turbine wake A Jimenez, A Crespo, E Migoya and J Garcia How to improve the estimation of

Jakob Mann; Jens Nørkær Sørensen; Poul-Erik Morthorst

2008-01-01T23:59:59.000Z

163

Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository  

E-Print Network [OSTI]

We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.

Alain Bourgeat; Mladen Jurak; Farid Smaï

2008-02-29T23:59:59.000Z

164

Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository  

E-Print Network [OSTI]

We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.

Bourgeat, Alain; Smaï, Farid

2008-01-01T23:59:59.000Z

165

Microsoft Word - Gas-Electricity Briefing Memo 072414 FINAL  

Energy Savers [EERE]

natural gas power plants to back up increasing amounts of intermittent wind and solar power. Though the electricity and natural gas pipeline industries have operated...

166

Flexing Cable for Wind Power Applications  

Science Journals Connector (OSTI)

As conventional energy sources -- namely oil, gas, and coal -- are increasingly limited in their respective quantities, many countries are encouraging the development of renewable energies. Wind energy, already a well-developed technology, is quickly ... Keywords: Wind Power, Flexing, Cable, energy, Flexibility

Wenyan Qiu; Huili Zhang; Lu Li

2012-05-01T23:59:59.000Z

167

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...  

Broader source: Energy.gov (indexed) [DOE]

Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

168

Patterson Pass Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Pass Wind Farm Pass Wind Farm Jump to: navigation, search Name Patterson Pass Wind Farm Facility Patterson Pass Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner International Wind Companies Developer International Wind Companies Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

NREL: Wind Research - Wind Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

170

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

171

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Bolinger, Mark

2013-01-01T23:59:59.000Z

172

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Wiser, Ryan

2012-01-01T23:59:59.000Z

173

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

174

Balancing of Wind Power.  

E-Print Network [OSTI]

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind… (more)

Ülker, Muhammed Akif

2011-01-01T23:59:59.000Z

175

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

176

WINDExchange: Learn About Wind  

Wind Powering America (EERE)

Curricula & Teaching Materials Resources Learn About Wind Learn about how wind energy generates power; where the best wind resources are; how you can own, host, partner...

177

Wind power and Wind power and  

E-Print Network [OSTI]

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

178

CFD Analysis of Core Bypass Flow and Crossflow in the Prismatic Very High Temperature Gas-cooled Nuclear Reactor  

E-Print Network [OSTI]

Very High Temperature Rector (VHTR) had been designated as one of those promising reactors for the Next Generation (IV) Nuclear Plant (NGNP). For a prismatic core VHTR, one of the most crucial design considerations is the bypass flow and crossflow...

Wang, Huhu 1985-

2012-12-13T23:59:59.000Z

179

Response to Comment by Rabilloud on “Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power”  

Science Journals Connector (OSTI)

This is similar to the way climate change deniers cherry-pick data and cite work and opinions of others who dispute the fundamental scientific consensus reflected in IPCC assessment reports, regardless of how discredited those results and views may be. ... Nuclear power remains controversial, however, because of public concern about storage of nuclear waste, the potential for catastrophic accident or terrorist attack, and the diversion of fissionable material for weapons production. ...

Pushker A. Kharecha; James E. Hansen

2013-11-12T23:59:59.000Z

180

Some Recent Advances in Liquefied Natural Gas (LNG) Production, Spill, Dispersion, and Safety  

Science Journals Connector (OSTI)

Furthermore, according to the U.S. Energy Information Administration,(3) new gas power plants required ?50% of the levelized capital cost of coal per MWh, less than 33% the cost of nuclear, and less than 20% the cost of onshore wind, let alone offshore wind (Table 1). ... coil-wound heat exchanger (CWHE) ... Rudan, S.; Ascic, B.; Visic, I. Proceedings of the 6th International Conference on Collision and Grounding of Ship and Offshore Structures; Trondheim, Norway, June 17–19, 2013; pp 331– 337. ...

Walter Chukwunonso Ikealumba; Hongwei Wu

2014-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

182

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

183

NREL: Wind Research - International Wind Resource Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the recognition of higher class winds in areas where none were...

184

Wildlife and Wind Energy | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wildlife and Wind Energy Jump to: navigation, search Sage grouse sitting in grassland. Photo from LuRay Parker, NREL 17429 Birds and bats are occasionally killed in collisions with wind turbines. Like any form of development, wind projects can also negatively impact wildlife by altering habitat. However, although the wind industry receives a lot of attention for avian impacts, research shows that nuclear and fossil-fueled plants have a greater impact. The Avian and Wildlife Costs of Fossil Fuels and Nuclear Power report quantifies those impacts. The study estimates that wind farms are responsible for roughly 0.27 avian fatalities

185

Synergic and conflicting issues in planning underground use to produce energy in densely populated countries, as Italy: Geological storage of CO2, natural gas, geothermics and nuclear waste disposal  

Science Journals Connector (OSTI)

In densely populated countries there is a growing and compelling need to use underground for different and possibly coexisting technologies to produce “low carbon” energy. These technologies include (i) clean coal combustion merged with CO2 Capture and Storage (CCS); (ii) last-generation nuclear power or, in any case, safe nuclear wastes disposal, both “temporary” and “geological” somewhere in Europe (at least in one site): Nuclear wastes are not necessarily associated to nuclear power plants; (iii) safe natural gas (CH4) reserves to allow consumption also when the foreign pipelines are less available or not available for geopolitical reasons and (iv) “low-space-consuming” renewables in terms of Energy Density Potential in Land (EDPL measured in [GW h/ha/year]) as geothermics. When geothermics is exploited as low enthalpy technology, the heat/cool production could be associated, where possible, to increased measures of “building efficiency”, low seismic risks building reworking and low-enthalpy heat managing. This is undispensable to build up “smart cities”. In any case the underground geological knowledge is prerequisite. All these technologies have been already proposed and defined by the International Energy Agency (IEA) Road Map 2009 as priorities for worldwide security: all need to use underground in a rational and safe manner. The underground is not renewable in most of case histories [10,11]. IEA recently matched and compared different technologies in a unique “Clean Energy Economy” improved document (Paris, November 16–17, 2011), by the contribution of this vision too (see reference). In concert with “energy efficiency” improvement both for plants and buildings, in the frame of the “smart cities” scenarios, and the upstanding use of “energy savings”, the energetic planning on regional scale where these cities are located, are strategic for the year 2050: this planning is strongly depending by the underground availability and typology. Therefore, if both literature and European Policy are going fast to improve the concept of “smart cities” this paper stresses the concept of “smart regions”, more strategic than “smart cities”, passing throughout a discussion on the synergic and conflicting use of underground to produce energy for the “smart regions” as a whole. The paper highlights the research lines which are urgent to plan the soundest energy mix for each region by considering the underground performances case by case: a worldwide mapping, by GIS tools of this kind of information could be strategic for all the “world energy management” authorities, up to ONU, with its Intergovernmental Panel on Climate Change (IPCC), the G20, the Carbon Sequestration Leadership Forum (CSLF) and the European Platforms such as the “Zero Emissions Fossil Fuel Power Plants” (EU-ZEP Platform), the Steel Platform, the Biomass Platform too. All of these organizations agree on the need for synergistic and coexistent uses of underground for geological storage of CO2, CH4, nuclear waste and geothermic exploitation. The paper is therefore a discussion of the tools, methods and approaches to these underground affecting technologies, after a gross view of the different uses of underground to produce energy for each use, with their main critical issues (i.e. public acceptance in different cases). The paper gives some gross evaluation for the Lazio Region and some hints from the Campania Region, located in Central Italy. Energy Density Potential in Land (EDPL), is calculated for each renewable energy technology (solar, wind, geothermal) highlighting the potentiality of the last. Why the Italian case history among the densely populated countries? on the Italian territory is hard to find suitable areas (mostly if greenfields) to use the own underground, with respect to other European countries, due to the presence of seismotectonic activity and many faulted areas characterized by Diffuse Degassing Structures (DDSs, which are rich in CO2 and CH4). In this cases, public acceptan

Fedora Quattrocchi; Enzo Boschi; Angelo Spena; Mauro Buttinelli; Barbara Cantucci; Monia Procesi

2013-01-01T23:59:59.000Z

186

Estimated airborne release of plutonium from Atomics International's Nuclear Materials Development Facility in the Santa Susana site, California, as a result of postulated damage from severe wind and earthquake hazard  

SciTech Connect (OSTI)

The potential mass of airborne releases of plutonium (source term) that could result from wind and seismic damage is estimated for the Atomics International Company's Nuclear Materials Development Facility (NMDF) at the Santa Susana site in California. The postulated source terms will be useful as the basis for estimating the potential dose to the maximum exposed individual by inhalation and to the total population living within a prescribed radius of the site. The respirable fraction of airborne particles is thus the principal concern. The estimated source terms are based on the damage ratio, and the potential airborne releases if all enclosures suffer particular levels of damage. In an attempt to provide a realistic range of potential source terms that include most of the normal processing conditions, a best estimate bounded by upper and lower limits is provided. The range of source terms is calculated by combining a high best estimate and a low damage ratio, based on a fraction of enclosures suffering crush or perforation, with the airborne release from enclosures based upon an upper limit, average, and lower limit inventory of dispersible materials at risk. Two throughput levels are considered. The factors used to evaluate the fractional airborne release of materials and the exchange rates between enclosed and exterior atmospheres are discussed. The postulated damage and source terms are discussed for wind and earthquake hazard scenarios in order of their increasing severity.

Mishima, J.; Ayer, J.E.

1981-09-01T23:59:59.000Z

187

Ris-R-Report Comparison of NWP wind speeds and  

E-Print Network [OSTI]

for nuclear power plants, and for Risø, the site of the Danish nuclear research reactors now being Risø 5 German nuclear power plant sites 9 Brunsbüttel 9 Brokdorf 12 Krümmel 15 Obrigheim 18) of wind speed and direction has been compared to measurements for seven German sites for nuclear power

188

Advanced Hydraulic Wind Energy  

Science Journals Connector (OSTI)

The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems ... Keywords: wind, tide, energy, power, hydraulic

Jack A. Jones; Allan Bruce; Adrienne S. Lam

2013-04-01T23:59:59.000Z

189

WINDExchange: Wind Economic Development  

Wind Powering America (EERE)

help you analyze the economics of a small wind electric system and decide whether wind energy will work for you. Wind Energy Finance Online Calculator Wind Energy Finance developed...

190

Exploiting Wind Versus Coal  

Science Journals Connector (OSTI)

...be offset with turbine mass production...of installed turbines, more than the...Denmark have wind parks offshore, where winds...of installed turbines, more than the...Denmark have wind parks offshore, where winds...

Mark Z. Jacobson; Gilbert M. Masters

2001-08-24T23:59:59.000Z

191

NREL: Wind Research - Wind Energy Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As...

192

wind power station  

Science Journals Connector (OSTI)

wind power station [It may consist of just one wind turbine or a network of windmills] ? Windkraftanlage

2014-08-01T23:59:59.000Z

193

Net Energy Payback and CO{sub 2} Emissions from Three Midwestern Wind Farms: An Update  

SciTech Connect (OSTI)

This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO{sub 2} analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO{sub 2} analysis for each power plant was calculated from the life-cycle energy input data.A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data.The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO{sub 2} emissions, in tonnes of CO{sub 2} per GW{sub e}h, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively.

White, Scott W. [University of Kansas, Kansas Geological Survey (United States)], E-mail: whites@kgs.ku.edu

2006-12-15T23:59:59.000Z

194

NREL: Wind Research - Small Wind Turbine Webinars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

195

New England Wind Forum: Small Wind  

Wind Powering America (EERE)

Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia August 26, 2013 Workshop Explores Information's Role in Wind Project Siting: A Wind Powering America Success Story November 19, 2012 More News Subscribe to News Updates Events Renewable Energy Market Update Webinar January 29, 2014 Strategic Energy Planning: Webinar February 26, 2014 Introduction to Wind Systems March 10, 2014 More Events Publications 2012 Market Report on Wind Technologies in Distributed Applications August 12, 2013 More Publications Features Sign up for the New England Wind Forum Newsletter. New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England

196

NREL: Wind Research - Small Wind Turbine Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

197

The gas turbine-modular helium reactor (GT-MHR), high efficiency, cost competitive, nuclear energy for the next century  

SciTech Connect (OSTI)

The Gas Turbine-Modular Helium Reactor (GT-MHR) is the result of coupling the evolution of a small passively safe reactor with key technology developments in the US during the last decade: large industrial gas turbines, large active magnetic bearings, and compact, highly effective plate-fin heat exchangers. The GT-MHR is the only reactor concept which provides a step increase in economic performance combined with increased safety. This is accomplished through its unique utilization of the Brayton cycle to produce electricity directly with the high temperature helium primary coolant from the reactor directly driving the gas turbine electrical generator. This cannot be accomplished with another reactor concept. It retains the high levels of passive safety and the standardized modular design of the steam cycle MHTGR, while showing promise for a significant reduction in power generating costs by increasing plant net efficiency to a remarkable 47%.

Zgliczynski, J.B.; Silady, F.A.; Neylan, A.J.

1994-04-01T23:59:59.000Z

198

Offshore Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a collaboration between Middelgrunden Wind Turbine Cooperative and Copenhagen Energy, each installing 10 2-MW Bonus wind turbines. The farm is located off the coast of Denmark, east of the northern tip of Amager. Photo from H.C. Sorensen, NREL 17856 Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

199

Hatchet Ridge Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Hatchet Ridge Wind Farm Hatchet Ridge Wind Farm Jump to: navigation, search Name Hatchet Ridge Wind Farm Facility Hatchet Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer RES Americas/Pattern Energy Energy Purchaser Pacific Gas & Electric Co Location West of Burney CA Coordinates 40.875836°, -121.741233° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.875836,"lon":-121.741233,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Taloga Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Taloga Wind Farm Taloga Wind Farm Jump to: navigation, search Name Taloga Wind Farm Facility Taloga Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Energy Developer Edison Mission Group Energy Purchaser Oklahoma Gas & Electric Location North of Taloga OK Coordinates 36.08915°, -98.979716° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.08915,"lon":-98.979716,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Montezuma Winds II | Open Energy Information  

Open Energy Info (EERE)

Winds II Winds II Jump to: navigation, search Name Montezuma Winds II Facility Montezuma Winds II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Rio Vista CA Coordinates 38.16867552°, -121.8061924° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.16867552,"lon":-121.8061924,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

The economics of wind energy within the generation mix  

Science Journals Connector (OSTI)

With more than 15,000 plants of different capacity ranges, Germany has become the world's No. 1 in generating electricity from wind power, covering around 4% of the electricity requirements at home. This is due on the one hand to the successful promotion by the Renewable Energy Act (EEG) and, on the other hand, to the tax breaks from loss allocation and depreciation. During low-load periods, load dispatchers today already have to balance power gradients of more than 10% of the respective network load per minute, which are increasingly covered by the provision of balancing power from conventional power plants. The legally fixed permanent subsidy burden of the electricity industry due to the high compensation fee for wind power alone currently amounts to euro 1.4 billion a year. If base load capacity from nuclear power plants is replaced in the medium term, this will not reduce but rather increase CO2 emissions as generation from gas turbines will have to be increased temporarily in times of flagging winds.

Helmut Alt

2005-01-01T23:59:59.000Z

203

Response to Comment by Rabilloud on "Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear  

E-Print Network [OSTI]

(GHG) emission factors are implicitly time-invariant. Indeed, no conversion factor normalized about our paper2 and about nuclear energy in general. The nature of his comments bears a striking energy has prevented, and can continue to prevent, a very high number of fatalities and very large

204

New England Wind Forum: Wind Compared to the Cost of Other Electricity  

Wind Powering America (EERE)

Wind Compared to the Cost of Other Electricity Generation Options Wind Compared to the Cost of Other Electricity Generation Options Figure 1: Average Cumulative Wind and Wholesale Power Prices by Region The chart shows average cumulative wind and wholesale power prices by region. Click on the graph to view a larger version. View a larger version of the graph. In terms of direct costs, larger wind farms in windier areas are now considered economically competitive with "conventional" fossil fuel power plants in many locations. In New England, direct costs for wind power at larger sites with strong winds are approaching the cost of alternatives, particularly given the recent high natural gas and oil prices. Figure 1 compares wind contract prices1 with wholesale electricity market prices in different U.S. regions for 2006. Although not directly comparable to wind prices due to wind's production timing and intermittence, the value of wind Renewable Energy Credits and carbon offsets, and the cost of wind integration and transmission, the average wholesale market energy price is a good indicator of the cost of alternative generation options. This graph demonstrates several points:

205

Regional variations in the health, environmental, and climate benefits of wind and solar generation  

Science Journals Connector (OSTI)

...a 1-MW wind turbine will offset more...than a 1-MW solar installation...demand is high and gas is more often...resource, a wind turbine on the plains...emissions than a turbine in West Virginia...benefits when wind or solar displace coal...rather than gas-fired, generators...

Kyle Siler-Evans; Inês Lima Azevedo; M. Granger Morgan; Jay Apt

2013-01-01T23:59:59.000Z

206

Potential wind power generation in South Egypt  

Science Journals Connector (OSTI)

Egypt is one of the developing countries. The production of electricity in Egypt is basically on petroleum, natural gas, hydro-power and wind energy. The objective of this work to prove the availability of sufficient wind potential in the wide area of deep south Egypt for the operation of wind turbines there. Nevertheless, it gives in general an approximate profile which is useful to the wind parks design for this area. The data used in the calculation are published and analyzed for the first time. The diagrams of the measured wind data for three meteorological stations over a period of two years (wind speed, frequency, direction), wind shear coefficient, the mean monthly and annual wind speed profile for every location are presented. Monthly Weibull parameters, standard deviation and coefficient of variation have been statistically discussed. A comparison of the rose diagrams shows that the wind speed is more persistent and blow over this region of Egypt in two main sectors N and NNW with long duration of frequencies from 67% to 87% over the year with an average wind speed in the range 6.8–7.9 m/s at the three stations. Evaluation of monthly wind energy density at 10 m height by two different methods was carried out. And the final diagram for every site shows no significant difference between them. The annual natural wind energies at 70 m A.G.L. lie between 333 and 377 W/m2 for Dakhla South and Kharga stations, respectively, which is similar to the inland wind potential of Vindeby (Denmark) and some European countries. These results indicate that Kharga and Dakhla South locations are new explored sites for future wind power generation projects.

Ahmed Shata Ahmed

2012-01-01T23:59:59.000Z

207

Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)  

SciTech Connect (OSTI)

Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbine response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.

Guo, Y.; Damiani, R.; Musial, W.

2014-04-01T23:59:59.000Z

208

NREL: Wind Research - Offshore Wind Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

209

NREL: Wind Research - Site Wind Resource Characteristics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Wind Resource Characteristics Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the site highly suitable for testing wind turbines. Take a tour of the NWTC and its facilities to better understand its location and layout. Another prime feature of the NWTC is the strong directionality of the wind - most of the strong winds come within a few degrees of 285°. West of

210

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect (OSTI)

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

211

2010 Wind Technologies Market Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2010 Wind Technologies Market Report 2010 Wind Technologies Market Report Title 2010 Wind Technologies Market Report Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Wiser, Ryan H., and Mark Bolinger Tertiary Authors Darghouth, Naïm, Kevin Porter, Michael Buckley, Sari Fink, Russell Raymond, Frank Oteri, Galen L. Barbose, Joachim Seel, Andrew D. Mills, and Ben Hoen Pagination 98 Date Published 06/2011 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department, power system economics, renewable energy, wind power Abstract The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the "inertia" in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.

212

An Exploration of Wind Energy & Wind Turbines | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Exploration of Wind Energy & Wind Turbines An Exploration of Wind Energy & Wind Turbines Below is information about the student activitylesson plan from your search. Grades...

213

A National Offshore Wind Strategy: Creating an Offshore Wind...  

Broader source: Energy.gov (indexed) [DOE]

A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

214

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

215

Wind pro?le assessment for wind power purposes.  

E-Print Network [OSTI]

??Preliminary estimation of wind speed at the wind turbine hub height is critically important when planning new wind farms. Wind turbine power output is proportional… (more)

Sointu, Iida

2014-01-01T23:59:59.000Z

216

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...  

Office of Environmental Management (EM)

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014...

217

Wind for Schools Project Power System Brief, Wind Powering America...  

Wind Powering America (EERE)

Wind Powering America Fact Sheet Series Energy Efficiency & Renewable Energy Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief Wind for...

218

The metallicity of galactic winds  

E-Print Network [OSTI]

The abundance evolution of galaxies depends critically on the balance between the mixing of metals in their interstellar medium, the inflow of new gas and the outflow of enriched gas. We study these processes in gas columns perpendicular to a galactic disk using sub-parsec resolution simulations that track stellar ejecta with the Flash code. We model a simplified interstellar medium stirred and enriched by supernovae and their progenitors. We vary the density distribution of the gas column and integrate our results over an exponential disk to predict wind and ISM enrichment properties for disk galaxies. We find that winds from more massive galaxies are hotter and more highly enriched, in stark contrast to that which is often assumed in galaxy formation models. We use these findings in a simple model of galactic enrichment evolution, in which the metallicity of forming galaxies is the result of accretion of nearly pristine gas and outflow of enriched gas along an equilibrium sequence. We compare these predicti...

Creasey, Peter; Bower, Richard G

2014-01-01T23:59:59.000Z

219

Off-Gas Cleaning in an FRG Reprocessing Plant  

Science Journals Connector (OSTI)

Technical Paper / Development of Nuclear Gas Cleaning and Filtering Techniques / Radiation Biology and Environment

Jürgen Furrer; Walter Weinländer

220

"1. Seabrook","Nuclear","NextEra Energy Seabrook LLC",1247 "2. Granite Ridge","Gas","Granite Ridge Energy LLC",678  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire" Hampshire" "1. Seabrook","Nuclear","NextEra Energy Seabrook LLC",1247 "2. Granite Ridge","Gas","Granite Ridge Energy LLC",678 "3. NAEA Newington Power","Gas","NAEA Newington Energy LLC",525 "4. Merrimack","Coal","Public Service Co of NH",485 "5. Newington","Gas","Public Service Co of NH",400 "6. S C Moore","Hydroelectric","TransCanada Hydro Northeast Inc.,",194 "7. Schiller","Coal","Public Service Co of NH",156 "8. Comerford","Hydroelectric","TransCanada Hydro Northeast Inc.,",145 "9. Berlin Gorham","Hydroelectric","Great Lakes Hydro America LLC",30

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Life cycle assessment of 50 MW wind firms and strategies for impact reduction  

Science Journals Connector (OSTI)

The world today is continuously striving toward a carbon neutral clean energy technology. Hence, renewable wind power systems are increasingly receiving the attention of mankind. Energy production with structurally more promising and economically more competitive design is no more the sole criterion while installing new megawatt (MW) range of turbines. Rather important life cycle analysis (LCA) issues like climate change, ozone layer depletion, effect on surrounding environments e.g. eco-system quality, natural resources and human health emerge as dominant factors from green energy point of view. Hence, the study covers life cycle impact analysis (LCIA) of three wind farms: one onshore horizontal, one offshore horizontal, another vertical axis. It appears that vertical axis wind farm generates per unit electricity with lowest impact followed by horizontal offshore and horizontal onshore farms. The study, henceforward, discovers most adverse impact contributing materials in today's multi megawatt wind turbines and subsequently substitutes copper, the topmost impact contributor, with more eco-friendly aluminum alloys and its corresponding process routes. In this process, it reduces overall life cycle impacts up to 30% for future greener wind farms. In later stages, it compares all major electricity production technologies, viz., oil, diesel, coal, natural gas, wind, solar, biomass, nuclear, hydro plant in a common platform which demonstrates the wind farms performing the best except the hydro-kinetic ones. However, as the study suggests, offshore VAWT farm may even perform better than hydro-kinetic farms because of higher capacity factors in the high sea. Findings from the study can be deployed to harness massive scale green electricity from environmentally more clean and green turbines.

A. Rashedi; I. Sridhar; K.J. Tseng

2013-01-01T23:59:59.000Z

222

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.an Order Revising the Wind Integration Rate for Wind Powered

Wiser, Ryan

2010-01-01T23:59:59.000Z

223

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

2010. SPP WITF Wind Integration Study. Little Rock,an Order Revising the Wind Integration Rate for Wind PoweredPacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Wiser, Ryan

2012-01-01T23:59:59.000Z

224

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

225

Sandia National Laboratories: Wind Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyWind Resources Wind Resources Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test Facilities Capital...

226

Sandia National Laboratories: wind energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

227

Wind Energy | Department of Energy  

Office of Environmental Management (EM)

Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of...

228

NREL: Wind Research - Small Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

229

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Wind Vision Wind Farm Facility Wind Vision Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224°, -92.888816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.348224,"lon":-92.888816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds Wind Farm Winds Wind Farm Jump to: navigation, search Name High Winds Wind Farm Facility High Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Solano County CA Coordinates 38.124844°, -121.764915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.124844,"lon":-121.764915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 3 -- October 2007 (Newsletter)  

Wind Powering America (EERE)

3 - October 2007 3 - October 2007 Regional Greenhouse Gas Initiative Moves Forward - What Does It Mean for Wind Power? In early 2007, Massachusetts and Rhode Island announced their intent to join the Regional Greenhouse Gas Initiative (RGGI), a cooperative effort to reduce carbon dioxide (CO 2 ) emissions, the major contributor to global climate change. The impending implementation of RGGI has raised ques- tions regarding the treatment of wind power (and other zero-emission renewable energy generation sources) within RGGI, and how RGGI may impact representations of wind power and its benefits. Some have argued that emissions will be reduced to RGGI targets with or without the help of wind. Analysis reveals, however, that wind power is essential to meeting and surpassing the emission reductions required to

232

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Massachusetts Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable 1 304 2.2 1,274 3.0 Petroleum 3,031 22.1 296 0.7 Total 13,697 100.0 42,805 100.0 * = Absolute percentage less than 0.05. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

233

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Mississippi Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable 1 235 1.5 1,504 2.8 Petroleum 35 0.2 81 0.1 Total 15,691 100.0 54,487 100.0 * = Absolute percentage less than 0.05. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

234

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Illinois Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable 1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110 0.1 Total 44,127 100.0 201,352 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

235

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

63 63 Wisconsin Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable 1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

236

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Georgia Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 4,061 11.1 33,512 24.4 Coal 13,230 36.1 73,298 53.3 Hydro and Pumped Storage 3,851 10.5 3,044 2.2 Natural Gas 12,668 34.6 23,884 17.4 Other 1 - - 18 * Other Renewable 1 637 1.7 3,181 2.3 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 137,577 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1

237

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Tennessee Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable 1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

238

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

Arizona Arizona Total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable 1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

239

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

7 7 Illinois Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable 1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110 0.1 Total 44,127 100.0 201,352 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

240

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable 1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

48 48 Pennsylvania Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable 1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

242

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other 1 100 0.3 643 0.4 Other Renewable 1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

243

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

41 41 New Jersey New Jersey total electric power industry, summer capacity and net generation, by source, 2010 Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable 1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

244

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

7 7 Michigan Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable 1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

245

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

6 6 Ohio Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable 1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total 33,071 100.0 143,598 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

246

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

1 1 Missouri Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable 1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

247

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable 1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

248

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

1 1 Florida Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other 1 544 0.9 2,842 1.2 Other Renewable 1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

249

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 Minnesota Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,594 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable 1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

250

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

21 21 Louisiana Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable 1 325 1.2 2,468 2.4 Petroleum 881 3.3 3,281 3.2 Total 26,744 100.0 102,885 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

251

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

3 3 Georgia Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 4,061 11.1 33,512 24.4 Coal 13,230 36.1 73,298 53.3 Hydro and Pumped Storage 3,851 10.5 3,044 2.2 Natural Gas 12,668 34.6 23,884 17.4 Other 1 - - 18 * Other Renewable 1 637 1.7 3,181 2.3 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 137,577 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1

252

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

253

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

34 34 North Carolina North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable 1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

254

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

1 1 South Carolina South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable 1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

255

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

Alabama Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other 1 100 0.3 643 0.4 Other Renewable 1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

256

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

3 3 Massachusetts Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable 1 304 2.2 1,274 3.0 Petroleum 3,031 22.1 296 0.7 Total 13,697 100.0 42,805 100.0 * = Absolute percentage less than 0.05. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

257

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

7 7 California California total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable 1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 67,328 100.0 204,126 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

258

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

3 3 New York New York total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable 1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3 2,005 1.5 Total 39,357 100.0 136,962 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

259

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

63 63 Wisconsin Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable 1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

260

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

9 9 Connecticut Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable 1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

5 5 Maryland Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable 1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

262

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

263

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 California California total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable 1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 67,328 100.0 204,126 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

264

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Missouri Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable 1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

265

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Florida Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other 1 544 0.9 2,842 1.2 Other Renewable 1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

266

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable 1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

267

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

9 9 Minnesota Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,594 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable 1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

268

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

6 6 Texas Texas total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 4,966 4.6 41,335 10.0 Coal 22,335 20.6 150,173 36.5 Hydro and Pumped Storage 689 0.6 1,262 0.3 Natural Gas 69,291 64.0 186,882 45.4 Other 1 477 0.4 3,630 0.9 Other Renewable 1 10,295 9.5 27,705 6.7 Petroleum 204 0.2 708 0.2 Total 108,258 100.0 411,695 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

269

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

34 34 North Carolina North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable 1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

270

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Texas Texas total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 4,966 4.6 41,335 10.0 Coal 22,335 20.6 150,173 36.5 Hydro and Pumped Storage 689 0.6 1,262 0.3 Natural Gas 69,291 64.0 186,882 45.4 Other 1 477 0.4 3,630 0.9 Other Renewable 1 10,295 9.5 27,705 6.7 Petroleum 204 0.2 708 0.2 Total 108,258 100.0 411,695 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

271

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 New York New York total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable 1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3 2,005 1.5 Total 39,357 100.0 136,962 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

272

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Ohio Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable 1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total 33,071 100.0 143,598 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

273

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

48 48 Pennsylvania Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable 1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

274

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Virginia Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable 1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent)

275

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

9 9 New Hampshire New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable 1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

276

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

8 8 Virginia Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable 1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent)

277

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

3 3 Mississippi Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable 1 235 1.5 1,504 2.8 Petroleum 35 0.2 81 0.1 Total 15,691 100.0 54,487 100.0 * = Absolute percentage less than 0.05. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

278

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Maryland Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable 1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

279

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 South Carolina South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable 1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

280

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Michigan Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable 1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advanced gas cooled nuclear reactor materials evaluation and development program. Progress report, October 1, 1979-December 31, 1979  

SciTech Connect (OSTI)

This report presents the results of work performed from October 1, 1979 through December 31, 1979. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described. This includes: screening creep results, weight gain and post-exposure mechanical properties for materials thermally exposed at 750/sup 0/ and 850/sup 0/C (1382/sup 0/ and 1562/sup 0/F). In addition, the status of the data management system is described.

Not Available

1980-04-18T23:59:59.000Z

282

Wind pump systems  

Science Journals Connector (OSTI)

The application of wind mills for water pumping is of lesser importance ... it is useful to discuss this type of wind energy application in a wind energy book targeted at development and planning...

Prof. Dr.-Ing. Robert Gasch; Prof. Dr.-Ing. Jochen Twele

2012-01-01T23:59:59.000Z

283

NREL: Wind Research - Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind...

284

Fixed Offshore Wind Turbines  

Science Journals Connector (OSTI)

In this chapter, a perspective of offshore wind farms, applied concepts for fixed offshore wind turbines, and related statistics are given. One example of a large wind farm, which is successfully operating, is st...

Madjid Karimirad

2014-01-01T23:59:59.000Z

285

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2006-05-01T23:59:59.000Z

286

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

287

Wind farm noise  

Science Journals Connector (OSTI)

Arrays of small wind turbines recently coined as “wind farms” offer several advantages over single larger wind turbines producing the same electrical power. Noise source characteristics of wind farms are also different from those associated with a single wind turbine. One?third octave band noise measurements from 2 Hz to 10 kHz have been made and will be compared to measurements of noise produced by a single large wind turbine. [J. R. Balombin Technical Memorandum 81486.

Gregory C. Tocci; Brion G. Koning

1981-01-01T23:59:59.000Z

288

Nucleosynthesis in Early Neutrino Driven Winds  

SciTech Connect (OSTI)

Two recent issues related to nucleosynthesis in early proton-rich neutrino winds are investigated. In the first part we investigate the effect of nuclear physics uncertainties on the synthesis of {sup 92}Mo and {sup 94}Mo. Based on recent experimental results, we find that the proton rich winds of the model investigated here can not be the only source of the solar abundance of {sup 92}Mo and {sup 94}Mo. In the second part we investigate the nucleosynthesis from neutron rich bubbles and show that they do not contribute to the nucleosynthesis integrated over both neutron and proton-rich bubbles and proton-rich winds.

Hoffman, R; Fisker, J; Pruet, J; Woosley, S; Janka, H; Buras, R

2008-01-09T23:59:59.000Z

289

Nucleosynthesis in Early Neutrino Driven Winds  

SciTech Connect (OSTI)

Two recent issues realted to nucleosynthesis in early proton-rich neutrino winds are investigated. In the first part we investigate the effect of nuclear physics uncertainties on the synthesis of {sup 92}Mo and {sup 94}Mo. Based on recent experimental results, we find that the proton rich winds of the model investigated here can not be the only source of the solar abundance of {sup 92}Mo and {sup 94}Mo. In the second part we investigate the nucleosynthesis from neutron rich bubbles and show that they do not contribute to the nucleosynthesis integrated over both neutron and proton-rich bubbles and proton-rich winds.

Hoffman, R. D.; Fisker, J. L. [Lawrence Livermore National Laboratory, PO Box 808, L-414, Livermore, CA 94550 (United States); Pruet, J. [Lawrence Livermore National Laboratory, PO Box 808, L-059, Livermore, CA 94550 (United States); Woosley, S. E. [Department of Astronomy and Astrophysics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Janka, H.-T.; Buras, R. [Max Plank Institute for Astrophysics, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

2008-04-17T23:59:59.000Z

290

Trent Mesa Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Trent Mesa Wind Farm Trent Mesa Wind Farm Facility Trent Mesa Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner American Electric Power Developer American Electric Power Energy Purchaser TXU Electric & Gas Location Nolan and Taylor Counties TX Coordinates 32.295161°, -100.150645° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.295161,"lon":-100.150645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

CWES I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

CWES I Wind Farm CWES I Wind Farm Jump to: navigation, search Name CWES I Wind Farm Facility CWES I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Altech Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Altech Energy Wind Farm Altech Energy Wind Farm Jump to: navigation, search Name Altech Energy Wind Farm Facility Altech Energy Ltd Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Vantage Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Vantage Wind Energy Center Vantage Wind Energy Center Facility Vantage Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Pacific Gas & Electric Co Location East of Ellensburg between Vantage Highway and I90 Coordinates 46.965336°, -120.245204° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.965336,"lon":-120.245204,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

CWES II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name CWES II Wind Farm Facility CWES II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Ocotillo Wind I | Open Energy Information  

Open Energy Info (EERE)

Ocotillo Wind I Ocotillo Wind I Facility Ocotillo Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy Developer Pattern Energy Energy Purchaser San Diego Gas & Electric Location Ocotillo CA Coordinates 32.749379°, -116.03876° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.749379,"lon":-116.03876,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Shiloh II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Shiloh II Wind Farm Shiloh II Wind Farm Jump to: navigation, search Name Shiloh II Wind Farm Facility Shiloh II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer EnXco Energy Purchaser Pacific Gas & Electric Co Location Northern CA CA Coordinates 38.179998°, -121.822° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.179998,"lon":-121.822,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Nuclear Energy Technical Assistance | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gas emitting electricity. In addition, nuclear power plants do not release air pollutants, providing an important option for improving air quality. Globally, nuclear...

298

NREL: Wind Research - Offshore Wind Resource Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

299

NREL: Wind Research - Midsize Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

300

Wind for Schools (Poster)  

SciTech Connect (OSTI)

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wind Turbine Tribology Seminar  

Broader source: Energy.gov [DOE]

Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

302

Wind energy bibliography  

SciTech Connect (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

303

Northern Wind Farm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a draft environmental assessment (EA) on the proposed interconnection of the Northern Wind Farm (Project) in Roberts County, near the city of Summit, South Dakota. Northern Wind,...

304

Wind Program News  

Broader source: Energy.gov (indexed) [DOE]

eerewindwind-program-news en EERE Leadership Celebrates Offshore Wind in Maine http:energy.goveerearticleseere-leadership-celebrates-offshore-wind-maine

305

British wind band music.  

E-Print Network [OSTI]

??I have chosen to be assessed as an interpreter and conductor of British wind band music from the earliest writings for wind band up to,… (more)

Jones, GO

2005-01-01T23:59:59.000Z

306

WINDExchange: Wind Energy Ordinances  

Wind Powering America (EERE)

Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The exact nature of the project and its location will largely drive the...

307

Wind Program: WINDExchange  

Wind Powering America (EERE)

Version Bookmark and Share WINDExchange logo WINDExchange is the U.S. Department of Energy (DOE) Wind Program's platform for disseminating credible information about wind...

308

WINDExchange: Siting Wind Turbines  

Wind Powering America (EERE)

Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by...

309

WINDExchange: Collegiate Wind Competition  

Wind Powering America (EERE)

& Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges interdisciplinary teams of undergraduate...

310

ARM - Wind Chill Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human...

311

Nuclear condensation  

Science Journals Connector (OSTI)

This work draws an analogy between a heated nucleus breaking up into clusters and a liquid undergoing a phase transition to a gas in which droplets appear. The critical temperature and density in the nucleus are investigated using a Skyrme effective interaction and finite temperature Hartree-Fock theory. The energy and pressure as a function of density are calculated. The effects of compressibility, effective mass, and binding energy per particle on the critical temperature and critical density of nuclear systems is developed. In some cases, analytic expressions for these quantities can be obtained.NUCLEAR REACTIONS Phase transitions in hot nuclear matter.

H. Jaqaman; A. Z. Mekjian; L. Zamick

1983-06-01T23:59:59.000Z

312

Module Handbook Specialisation Wind Energy  

E-Print Network [OSTI]

of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Credit points 8 CP

Habel, Annegret

313

Sandia National Laboratories: Wind Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

specialprogramsslide5 windplantoptslide4 rotorinnovationslide3 offshorewindslide2 Materialsslide1 Wind Energy Wind Plant Optimization Materials,...

314

Western Interstate Nuclear Compact State Nuclear Policy (Multiple States) |  

Broader source: Energy.gov (indexed) [DOE]

Western Interstate Nuclear Compact State Nuclear Policy (Multiple Western Interstate Nuclear Compact State Nuclear Policy (Multiple States) Western Interstate Nuclear Compact State Nuclear Policy (Multiple States) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Arizona Program Type Siting and Permitting Provider Western Interstate Energy Board Legislation authorizes states' entrance into the Western Interstate Nuclear Compact, which aims to undertake the cooperation of participating states in

315

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

West Winds Wind Farm West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Southern California Edison/PacifiCorp Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

NREL: Energy Analysis - Wind Power Results - Life Cycle Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind LCA Harmonization (Fact Sheet) Wind LCA Harmonization (Fact Sheet) Cover of the LWind LCA Harmonization Fact Sheet Download the Fact Sheet Wind Power Results - Life Cycle Assessment Harmonization To better understand the state of knowledge of greenhouse gas (GHG) emissions from utility-scale wind power systems, NREL developed and applied a systematic approach to review life cycle assessment literature, identify sources of variability and, where possible, reduce variability in GHG emissions estimates through a meta-analytical process called "harmonization." Over the last 30 years, several hundred life cycle assessments have been conducted for wind power technologies with wide-ranging results. Harmonization for onshore and offshore wind power systems was performed by adjusting published greenhouse gas estimates to achieve:

317

"1. Braidwood Generation Station","Nuclear","Exelon Nuclear",2330  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois" Illinois" "1. Braidwood Generation Station","Nuclear","Exelon Nuclear",2330 "2. Byron Generating Station","Nuclear","Exelon Nuclear",2300 "3. LaSalle Generating Station","Nuclear","Exelon Nuclear",2238 "4. Baldwin Energy Complex","Coal","Dynegy Midwest Generation Inc",1785 "5. Quad Cities Generating Station","Nuclear","Exelon Nuclear",1774 "6. Dresden Generating Station","Nuclear","Exelon Nuclear",1734 "7. Powerton","Coal","Midwest Generations EME LLC",1538 "8. Elwood Energy LLC","Gas","Dominion Elwood Services Co",1350

318

Howard County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

319

Assessing climate change impacts on the near-term stability of the wind energy resource over the United States  

Science Journals Connector (OSTI)

...sensitivity to greenhouse gas forcing (21). However...potentially be harnessed by wind turbines, scales with the cube...the wind speed at wind turbine hub height and compute...of the United States ( Solar Technical Information...global total greenhouse gas emissions. For this and...

S. C. Pryor; R. J. Barthelmie

2011-01-01T23:59:59.000Z

320

Nuclear spirals in galaxies  

E-Print Network [OSTI]

Recent high-resolution observations indicate that nuclear spirals are often present in the innermost few hundred parsecs of disc galaxies. My models show that nuclear spirals form naturally as a gas response to non-axisymmetry in the gravitational potential. Some nuclear spirals take the form of spiral shocks, resulting in streaming motions in the gas, and in inflow comparable to the accretion rates needed to power local Active Galactic Nuclei. Recently streaming motions of amplitude expected from the models have been observed in nuclear spirals, confirming the role of nuclear spirals in feeding of the central massive black holes.

Witold Maciejewski

2006-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nuclear Eclectic Power  

Science Journals Connector (OSTI)

...much higher future costs for oil and natural gas. However, the...ELECTRICITY GENERATION FROM COAL, OIL, AND NUCLEAR FUEL, NUCLEAR...electricity generation from coal, oil, and nuclear fuel, cite about...possibility that stimu-lated a marathon debate between the Union of...

David J. Rose

1974-04-19T23:59:59.000Z

322

WIND DATA REPORT Ragged Mt Maine  

E-Print Network [OSTI]

...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions........................................................................................................... 9 Monthly Average Wind Speeds

Massachusetts at Amherst, University of

323

Wind Powering America  

Wind Powering America (EERE)

These news items are notable additions These news items are notable additions to the Wind Powering America Web site. The Wind Powering America Web site reports recent national and state wind market changes by cataloging wind activities such as wind resource maps, small wind consumer's guides, local wind workshops, news articles, and publications in the areas of policy, public power, small wind, Native Americans, agricultural sector, economic development, public lands, and schools. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America http://www.windpoweringamerica.gov/ Nominate an Electric Cooperative for Wind Power Leadership Award by January 15 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 Mon, 16

324

0 Riso-R-434 Wind Speed and Direction  

E-Print Network [OSTI]

meteorological statistics for the area as it was considered a possible site for a nuclear power plant. \\ \\ Duringm I 0 Riso-R-434 t Wind Speed and Direction Changes due to Terrain Effects revealed-4000 Roskilde, Denmark May 1983 #12;RISÃ?-R-434 WIND SPEED AND DIRECTION CHANGES DUE TO TERRAIN EFFECTS

325

Study on the Wind and Solar Hybrid Control System  

Science Journals Connector (OSTI)

In the Twelfth Five-Year Plan, a comprehensive layout has been made for the new energy industry as the representative of nuclear energy, wind, solar and so on in the future. The comprehensive utilization of renewable energy for sustainable development ... Keywords: Wind and Solar Hybrid, control system, Pulse width modulation, BOOST

Hua-wei Zhang; Nan Li

2012-12-01T23:59:59.000Z

326

New England Wind Forum: New England Wind Resources  

Wind Powering America (EERE)

New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resources Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Resources Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Massachusetts wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. New England Wind Resource Maps Wind resources maps of Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont.

327

Wind Resource Maps (Postcard)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

328

Wind energy offers considerable promise; the wind itself is free,  

E-Print Network [OSTI]

Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

329

New Forecasting Tools Enhance Wind Energy Integration In Idaho...  

Energy Savers [EERE]

mix and what types of other resources-such as quick-start gas- fired units or demand response-will be needed should wind conditions change during the day, as they typically...

330

Department of Energy Wind Vision: An Industry Preview (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

energy source, wind has already helped the nation reduce its greenhouse gas, water, and air pollution footprint from the power sector. The 96 million metric tons of avoided CO2...

331

INTEGRATING WIND GENERATED ELECTRICITY WITH SPACE HEATING AND STORAGE BATTERIES.  

E-Print Network [OSTI]

??The world faces two major energy-related challenges: reducing greenhouse-gas emissions and improving energy security. Wind-electricity, a clean and environmentally sustainable energy source, appears promising. However,… (more)

Muralidhar, Anirudh

2011-01-01T23:59:59.000Z

332

Greenhouse Gas Initiatives - Analysis of McCain-Lieberman Bill S.280 ‘The ClimateStewardship and Innovation Act of 2007’ Using the National Energy Modeling System  

E-Print Network [OSTI]

assumptions to SAIC-NEMS. Some key technical, societal and political uncertainties include: (1) the number of new nuclear generation builds, (2) availability of renewable generation (bio-power and wind power), (3) the technological development...) Installed Electric Generating Capacity, (3) Produced Electric Energy, (4) Prices of CO 2 Offsets and Permits (5) Natural Gas Prices, (6) Electricity Prices, and (7) Other Energy Prices. While the study ran seven scenarios for each focus area, two...

Ellsworth, C.

2008-01-01T23:59:59.000Z

333

Diesel and gas turbine marine engine alternatives. 1976-January, 1982 (citations from Information Services in Mechanical Engineering Data Base). Report for 1976-January 1982  

SciTech Connect (OSTI)

Reports are cited which discuss the development and utilization of power plants designed for marine use. Power generated by coal burning, wind, nuclear reactors, water jet propulsion, and high-power water-cooled electric propulsion are among the alternative sources of power for marine application. Performance evaluations of existing unconventional marine propulsion systems are examined. This bibliography does not consider diesel internal combustion or gas turbine marine engines. (Contains 207 citations fully indexed and includes a title list.)

Not Available

1982-01-01T23:59:59.000Z

334

Wind Energy Systems Technologies LLC WEST | Open Energy Information  

Open Energy Info (EERE)

LLC WEST LLC WEST Jump to: navigation, search Name Wind Energy Systems Technologies LLC (WEST) Place New Iberia, Louisiana Sector Wind energy Product Wants to install wind turbines on abandoned Gulf of Mexico oil and natural gas platforms to generate electric power for both homes and secondary recovery efforts. References Wind Energy Systems Technologies LLC (WEST)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Wind Energy Systems Technologies LLC (WEST) is a company located in New Iberia, Louisiana . References ↑ "Wind Energy Systems Technologies LLC (WEST)" Retrieved from "http://en.openei.org/w/index.php?title=Wind_Energy_Systems_Technologies_LLC_WEST&oldid=353071

335

EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine  

Broader source: Energy.gov (indexed) [DOE]

EA-1792: University of Maine's Deepwater Offshore Floating Wind EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine Summary This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals of DOE's Office of Energy Efficiency and Renewable Energy Wind and Water Power Program to improve performance, lower costs, and accelerate deployment of innovative wind power technologies. Development of offshore wind energy technologies would help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and

336

Surface wind speed distributions| Implications for climate and wind power.  

E-Print Network [OSTI]

?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until… (more)

Capps, Scott Blair

2010-01-01T23:59:59.000Z

337

Flexibility assessment in nuclear energy dominated systems with  

E-Print Network [OSTI]

generation (2008). The study evaluates the ability of nuclear reactors to follow the load under severalEA 4272 Flexibility assessment in nuclear energy dominated systems with increased wind energy;1 Flexibility assessment in nuclear energy dominated systems with increased wind energy shares Rodica Loisel

Paris-Sud XI, Université de

338

Implementation and economical study of HAWT under different wind scenarios  

Science Journals Connector (OSTI)

Abstract Wind energy has seen a tremendous growth over the past decade and continues to grow into a major player into the renewable energy market. More than 3% of global electricity supply comes from wind power in 2012. The technology continues to mature thereby reducing the deployment cost at a value competing with the least expensive natural gas power plant. Diligent analysis of the wind including average wind speed, wind gust, boundary layer, seasonal and diurnal wind pattern adding to land mortgage, public perception, road and grid accessibility are all key factors for successful and profitable wind turbine implementation. In this work, the implementation of wind energy in Abu Dhabi was considered. In this study the annual wind data recorded every 10 min at Masdar metrological station over a period of three years from 2010 to 2012 are analyzed. The probability density distributions are derived from time series data and the distributional parameters are identified. It is followed by fitting the measured wind data with the maximum likelihood Weibull distribution. The power curves of two commercially available horizontal axis wind turbines (HAWTs) a large size 600 kW and small size 3.5 kW are coupled with the modelled data to account for the annual energy production and capacity factor. Considering the turbine efficiency, economical study that evaluates the cost of wind energy implementation, returns on investment are conducted accounting for capital cost, annuity, depreciation and operation and maintenance.

Franklyn Kanyako; Isam Janajreh

2014-01-01T23:59:59.000Z

339

NREL: Wind Research - WindPACT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WindPACT WindPACT The Wind Partnerships for Advanced Component Technology (WindPACT) studies were conducted to assist industry by testing innovative components, such as advanced blades and drivetrains, to lower the cost of energy. Specific goals included: Foster technological advancements to reduce the cost of wind energy Determine probable size ranges of advanced utility-scale turbines over the next decade for U.S. application Evaluate advanced concepts that are necessary to achieve objectives of cost and size for future turbines Identify and solve technological hurdles that may block industry from taking advantage of promising technology Design, fabricate, and test selected advanced components to prove their viability Support wind industry through transfer of technology from

340

Collision of two identical hypersonic stellar winds in binary systems  

E-Print Network [OSTI]

We investigate the hydrodynamics of two identical hypersonic stellar winds in a binary system. The interaction of these winds manifests itself in the form of two shocks and a contact surface between them. We neglect the binary rotation and assume that the gas flow ahead of the shocks is spherically symmetrical. In this case the contact surface that separates the gas emanated from the different stars coincides with the midplane of the binary components. In the shock the gas is heated and flows away nearly along the contact surface. We find the shock shape and the hot gas parameters in the shock layer between the shock and the contact surface.

Nikolay N. Pilyugin; Vladimir V. Usov

2006-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Collision of two identical hypersonic stellar winds in binary systems  

E-Print Network [OSTI]

We investigate the hydrodynamics of two identical hypersonic stellar winds in a binary system. The interaction of these winds manifests itself in the form of two shocks and a contact surface between them. We neglect the binary rotation and assume that the gas flow ahead of the shocks is spherically symmetrical. In this case the contact surface that separates the gas emanated from the different stars coincides with the midplane of the binary components. In the shock the gas is heated and flows away nearly along the contact surface. We find the shock shape and the hot gas parameters in the shock layer between the shock and the contact surface.

Pilyugin, N N; Pilyugin, Nikolay N.; Usov, Vladimir V.

2006-01-01T23:59:59.000Z

342

Density Perturbations in the Upper Atmosphere Caused by the Dissipation of Solar Wind Energy  

Science Journals Connector (OSTI)

The upper atmosphere constitutes the outer region of the terrestrial gas envelope above about 100 km altitude. The energy budget of this outer gas layer is partly controlled by the dissipation of solar wind energy

Gerd W. Prölss

2011-03-01T23:59:59.000Z

343

Wind | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Wind Wind America is home to one of the largest and fastest growing wind markets in the world. Watch the video to learn more about the latest trends in the U.S. wind power market and join us this Thursday, August 8 at 3 pm ET for a Google+ Hangout on wind energy in America. The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our energy economy and bring the next-generation of

344

Life cycle cost analysis of wind power considering stochastic uncertainties  

Science Journals Connector (OSTI)

Abstract This paper presents a long-term cost analysis of wind power and compares its competitiveness to non-renewable generating technologies. The analysis considers several important attributes related to wind intermittency that are sometimes ignored in traditional generation planning or LCOE (levelized cost of energy) studies, including the need for more nameplate capacity due to intermittency, hourly fluctuations in wind outputs and cost for reserves. The competitiveness of wind power is assessed by evaluating four scenarios: 1) adding natural gas generating capacity to the power grid; 2) adding coal generating capacity to the power grid; 3) adding wind capacity to the power grid; and, 4) adding wind capacity and energy storage to the power grid where an energy storage device is used to cover wind intermittency. A case study in the state of Michigan is presented to demonstrate the use of the proposed methodology, in which a time horizon from 2010 to 2040 is considered. The results show that wind energy will still be more expensive than natural gas power plants in the next three decades, but will be cheaper than coal capacities if wind intermittency is mitigated. Furthermore, if the costs of carbon emissions and environmental externalities are considered, wind generation will be a competitive option for grid capacity expansion.

Chiao-Ting Li; Huei Peng; Jing Sun

2014-01-01T23:59:59.000Z

345

Offshore Wind Projects | Department of Energy  

Office of Environmental Management (EM)

Offshore Wind Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2014. Offshore Wind...

346

Natural Gas - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

injections typically continue beyond the end of October storage Natural gas, solar, and wind lead power plant capacity additions in first-half 2014 statescapacity and...

347

Crusius, John, and Rik Wanninkhof, Gas transfer velocities ...  

Science Journals Connector (OSTI)

Jun 29, 2000 ... 2003, by the American Society of Limnology and Oceanography, Inc. Gas transfer velocities measured at low wind speed over a lake.

2003-05-02T23:59:59.000Z

348

NREL: Wind Research - Offshore Wind Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

standards Third-party design verification of innovative floating and fixed-bottom wind turbines NREL's standards and testing capabilities address the need to validate our...

349

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

Wiser, Ryan

2014-01-01T23:59:59.000Z

350

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.PacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Bolinger, Mark

2013-01-01T23:59:59.000Z

351

NREL: Wind Research - @NWTC Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Investigates the Logistics of Transporting and Installing Bigger, Taller Wind Turbines NREL Plays Founding, Developmental Role in Major Wind Journal Boosting Wind Plant...

352

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

Department of Energy (DOE). 2008. 20% Wind Energy by2030: Increasing Wind Energy’s Contribution to U.S.Integrating Midwest Wind Energy into Southeast Electricity

Wiser, Ryan

2014-01-01T23:59:59.000Z

353

Sandia National Laboratories: Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant Opt. Rotor Innovation Materials, Reliability & Standards Siting & Barrier Mitigation...

354

Sandia National Laboratories: wind manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

manufacturing Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the...

355

Wind Energy | OpenEI  

Open Energy Info (EERE)

Energy Energy Dataset Summary Description Reduction of global greenhouse gas emission to arrest global warming requires minimizing the use of fossil fuels. To achieve this a large scale use of renewable energies must be made over the globe for production of electrical and thermal energy. Success of wind and solar energy projects require detailed and precise information on the resources. For most developing countries adequate information on the resources are not available. Source Renewable Energy Research Centre, University of Dhaka Date Released February 19th, 2007 (7 years ago) Date Updated Unknown Keywords Feasibility Study resource assessment Solar Energy SWERA Bangladesh Wind Energy Data application/pdf icon swera_bangladesh_fullreport.pdf (pdf, 2.7 MiB)

356

Forward Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Forward Expansion Wind Farm Forward Expansion Wind Farm Facility Forward Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Alliant- Wisconsin Public Service-Madison Gas & Electric- Wisconsin Public Power Location Dodge and Fond du Lac Counties WI Coordinates 43.631519°, -88.556421° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.631519,"lon":-88.556421,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Ocotillo Wind I Expansion | Open Energy Information  

Open Energy Info (EERE)

I Expansion I Expansion Jump to: navigation, search Name Ocotillo Wind I Expansion Facility Ocotillo Wind I Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner Pattern Energy Developer Pattern Energy Energy Purchaser San Diego Gas & Electric Location Ocotillo CA Coordinates 32.76302656°, -116.0466957° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.76302656,"lon":-116.0466957,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

NREL: Wind Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 December 9, 2008 Extra-High-Voltage Line from AEP Would Connect Wind-Rich Dakotas American Electric Power is evaluating the feasibility of building a multi-state, extra-high-voltage transmission project across the Upper Midwest. December 9, 2008 Colorado Study Confirms Low Grid Integration Costs for Wind A new study released this week once again adds to the body of peer-reviewed literature confirming that the cost of integrating wind energy with the electric grid is quite low. December 2, 2008 Spanish Wind Power Hits Record 43% of Demand Renewable energy has boomed in recent years in Spain, as the country tries to cut greenhouse gas emissions and reduce its heavy dependence on fuel imports. Spain is also saving large sums of money in the process. November 11, 2008

359

Gaseous isotope separation using solar wind phenomena  

Science Journals Connector (OSTI)

...the use of light carrier gas, a necessity that greatly...the separative process. Gases with low molecular weight...manner similar to that of a turbine, can be placed just outside...the calculation of light gases, we have not included...the author was measuring solar wind parameters under...

Chia-Gee Wang

1980-01-01T23:59:59.000Z

360

NREL: Wind Research - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects Projects NREL's wind energy research and development projects focus on reducing the cost of wind technology and expanding access to wind energy sites. Our specialized technical expertise, comprehensive design and analysis tools, and unique testing facilities help industry overcome challenges to bringing new wind technology to the marketplace. Some of these success stories are described in NREL's Wind R&D Success Stories. We also work closely with universities and other national laboratories supporting fundamental research in wind technologies, including aerodynamics, aeroacoustics, and material sciences essential in the development of new blade technologies and advanced controls, power electronics, and testing to further refine drivetrain topology.

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Wind power today  

SciTech Connect (OSTI)

This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

NONE

1998-04-01T23:59:59.000Z

362

Wind Power Career Chat  

SciTech Connect (OSTI)

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

363

Wind energy information guide  

SciTech Connect (OSTI)

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

364

Exoplanet transit variability: bow shocks and winds around HD 189733b  

Science Journals Connector (OSTI)

......both cases, the maps show the distribution...2.2 Stellar wind model The magnetic surface maps are used as one...conditions in our stellar wind simulation. We...equations, for the wind mass density rhow, gas pressure p w, the velocity of the plasma and......

J. Llama; A. A. Vidotto; M. Jardine; K. Wood; R. Fares; T. I. Gombosi

2013-01-01T23:59:59.000Z

365

Wind Power for Municipal Utilities. Office of Energy Efficiency and Renewable Energy (EERE) Brochure.  

Wind Powering America (EERE)

Clean energy has a bright future. Today a growing number Clean energy has a bright future. Today a growing number of public utilities are harvesting a new source of homegrown energy. From Massachusetts to California, more than two dozen municipal utilities have wind power in their energy mix. Wind energy is attractive for many reasons: * Wind energy is clean and renewable. * Wind energy is economically competitive. * Wind energy reduces energy price risks. Unlike coal, natural gas, or oil, the "fuel" for a wind turbine will always be free. * Wind energy is popular with the public. A RECORD YEAR - Wind power is booming. Worldwide, a record 3,800 megawatts (MW) were installed in 2001. These sleek, impressive wind turbines have closed the cost gap with conventional power plants. Depending on size and location, wind farms produce electricity for 3-6

366

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Broader source: Energy.gov (indexed) [DOE]

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

367

Women of Wind Energy Honor Wind Program Researchers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Women of Wind Energy Honor Wind Program Researchers Women of Wind Energy Honor Wind Program Researchers August 1, 2013 - 2:54pm Addthis This is an excerpt from the Second Quarter...

368

Economic and environmental analysis of power generation expansion in Japan considering Fukushima nuclear accident using a multi-objective optimization model  

Science Journals Connector (OSTI)

Nuclear power has long been a cornerstone of energy policy in Japan, a country with few natural resources of its own. However, following on from the Fukushima Daiichi accident, the Japanese government is now in the throes of reviewing its nuclear power policy. On the other hand, under continuing policies of greenhouse gas reduction, it is crucial to consider scenarios for the country to realize an economic, safe and low-carbon power generation system in the future. Therefore, in the present study, economic and environmental analysis was conducted on the power generation system in Japan up to 2030 using a multi-objective optimization methodology. Four nuclear power scenarios were proposed in light of the nuclear accident: (1) actively anti-nuclear; (2) passively negative towards nuclear; (3) conservative towards nuclear; and (4) active expansion of nuclear power. The obtained capacity mix, generation mix, generation cost, CO2 emissions and fuel consumption of the scenarios were compared and analysed. The obtained results show that the large scale penetration of PV (photovoltaic), wind and LNG (Liquefied Natural Gas) power can partly replace nuclear power, however, removing nuclear power entirely was not suggested from economic, environmental and energy security perspectives.

Qi Zhang; Benjamin C. Mclellan; Tetsuo Tezuka; Keiichi N. Ishihara

2012-01-01T23:59:59.000Z

369

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect (OSTI)

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

Not Available

2009-01-01T23:59:59.000Z

370

NREL: Wind Research - National Wind Technology Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center Center The National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC), located at the base of the foothills just south of Boulder, Colorado, is the nation's premier wind energy technology research facility. Built in 1993, the center provides an ideal environment for the development of advanced wind energy technologies. The goal of the research conducted at the center is to help industry reduce the cost of energy so that wind can compete with traditional energy sources, providing a clean, renewable alternative for our nation's energy needs. Research at the NWTC is organized under two main categories, Wind Technology Development and Testing and Operations. Illustration of the National Wind Technology Center's organization chart. Fort Felker is listed as the Center Director, with Mike Robinson, Deputy Center Director; Paul Veers, Chief Engineer, and Laura Davis and Dorothy Haldeman beneath him. The Associate Director position is empty. Beneath them is the Wind Technology Research and Development Group Manager, Mike Robinson; the Testing and Operations Group Manager, Dave Simms; and the Offshore Wind and Ocean Power Systems Acting Supervisor, Fort Felker.

371

Wind Rose Bias Correction  

Science Journals Connector (OSTI)

Wind rose summaries, which provide a basis for understanding and evaluating the climatological behavior of local wind, have a directional bias if a conventional method is used in their generation. Three techniques used to remove this bias are ...

Scott Applequist

2012-07-01T23:59:59.000Z

372

Surface Wind Direction Variability  

Science Journals Connector (OSTI)

Common large shifts of wind direction in the weak-wind nocturnal boundary layer are poorly understood and are not adequately captured by numerical models and statistical parameterizations. The current study examines 15 datasets representing a ...

Larry Mahrt

2011-01-01T23:59:59.000Z

373

GSA Wind Supply Opportunity  

Office of Environmental Management (EM)

Wind Supply Opportunity 1 2 3 Proposed Location * Size: 100-210 MegaWatts *Location: Bureau County, IL *Planned COD: December 2014 or 2015 *Site Control: 17,000 acres *Wind...

374

Scale Models & Wind Turbines  

Broader source: Energy.gov (indexed) [DOE]

Scale Models and Wind Turbines Grades: 5-8, 9-12 Topics: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of...

375

Distributed Wind 2015  

Broader source: Energy.gov [DOE]

Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

376

Competitive Wind Grants (Vermont)  

Broader source: Energy.gov [DOE]

The Clean Energy Development Fund Board will offer a wind grant program beginning October 1, 2013. The grant program will replace the wind incentives that were originally part of the [http:/...

377

NREL: Wind Research - Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Awards NREL has received many awards for its technical innovations in wind energy. In addition, the research conducted at the National Wind Technology Center (NWTC) at NREL has led...

378

Talbot County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

379

Wind Career Map  

K-12 Energy Lesson Plans and Activities Web site (EERE)

This wind career map explores an expanding universe of wind energy occupations, describing diverse jobs across the industry, charting possible progression between them, and identifying the high-quality training necessary to do them well.

380

WINDExchange: Wind Events  

Wind Powering America (EERE)

Sun, 15 Feb 2015 00:00:00 MST 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair http:www.iowawindenergy.org...

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

382

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence ...

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjørn Mo Østgren; Trond Friisø

2014-10-01T23:59:59.000Z

383

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Wind Logics, Inc. 2004. Wind Integration Study—Final Report.EnerNex Corp. 2006. Wind Integration Study for Public

Bolinger, Mark

2010-01-01T23:59:59.000Z

384

How Do Wind Turbines Work?  

Broader source: Energy.gov [DOE]

Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.

385

WINDExchange: Wind Basics and Education  

Wind Powering America (EERE)

locate higher education and training programs. Learn about Wind Learn about how wind energy generates power; where the best wind resources are; how you can get wind power; and...

386

WINDExchange: What Is Wind Power?  

Wind Powering America (EERE)

animation to see how a wind turbine works or take a look inside. Wind power or wind energy describes the process by which the wind is used to generate mechanical power or...

387

The Wind at Our Backs  

Science Journals Connector (OSTI)

...uncertainty that chills U.S. wind farm development. He...serious challenge of siting wind turbines in the United States...a community college wind training program, and...and the nation's first offshore wind project near Nantucket...

Dan Reicher

2012-05-11T23:59:59.000Z

388

Kent County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

389

Wind Energy Markets, 2. edition  

SciTech Connect (OSTI)

The report provides an overview of the global market for wind energy, including a concise look at wind energy development in key markets including installations, government incentives, and market trends. Topics covered include: an overview of wind energy including the history of wind energy production and the current market for wind energy; key business drivers of the wind energy market; barriers to the growth of wind energy; key wind energy trends and recent developments; the economics of wind energy, including cost, revenue, and government subsidy components; regional and national analyses of major wind energy markets; and, profiles of key wind turbine manufacturers.

NONE

2007-11-15T23:59:59.000Z

390

Top of Iowa III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Top of Iowa III Wind Farm Facility Top of Iowa III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Madison Gas & Electric Developer Midwest Renewable Energy Projects Energy Purchaser Madison Gas & Electric Location Worth County IA Coordinates 43.361088°, -93.294282° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.361088,"lon":-93.294282,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

is located in Europe. In contrast, all wind power projectsin Europe. In 2009, for example, more wind power was

Wiser, Ryan

2010-01-01T23:59:59.000Z

392

CONGRESSIONAL BRIEFING Offshore Wind  

E-Print Network [OSTI]

CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

Firestone, Jeremy

393

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (ms) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total...

394

Offshore wind energy systems  

Science Journals Connector (OSTI)

Wind energy systems deployed in the shallow but windy waters of the southern North Sea have the potential to provide more than 20% of UK electricity needs. With existing experience of windmills, and of aircraft and offshore structures, such wind energy systems could be developed within a relatively short timescale. A preliminary assessment of the economics of offshore wind energy systems is encouraging.

P Musgrove

1978-01-01T23:59:59.000Z

395

Wind Turbine Competition Introduction  

E-Print Network [OSTI]

Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

Wang, Xiaorui "Ray"

396

New England Wind Forum: New England Wind Projects  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Projects This page shows the location of installed and planned New England wind projects. Find windfarms, community-scale wind projects, customer-sited wind projects, small wind projects, and offshore wind projects. Read more information about how to use the Google Map and how to add your wind project to the map. Text version New England Wind Energy Projects Connecticut, East Canaan Wind Connecticut, Klug Farm Connecticut, Phoenix Press Connecticut, Wind Colebrook (South and North)

397

Nuclear Energy  

Science Journals Connector (OSTI)

Nuclear Energy ... A brief summary of the history and key concepts of nuclear energy. ... Nuclear / Radiochemistry ...

Charles D. Mickey

1980-01-01T23:59:59.000Z

398

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

399

Wind: wind speed and wind power density maps at 10m and 50m above...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer....

400

Wind: wind speed and wind power density GIS data at 10m and 50m...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer....

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

"EMM Region","PC","IGCC","PC","Conv. CT","Adv. CT","Conv. CC","Adv. CC","Adv. CC w/CCS","Fuel Cell","Nuclear","Biomass","MSW","On-shore Wind","Off-shore Wind","Solar Thermal","Solar PV"  

U.S. Energy Information Administration (EIA) Indexed Site

Regional cost adjustments for technologies modeled by NEMS by Electric Market Modul (EMM) region 10,11" Regional cost adjustments for technologies modeled by NEMS by Electric Market Modul (EMM) region 10,11" "EMM Region","PC","IGCC","PC","Conv. CT","Adv. CT","Conv. CC","Adv. CC","Adv. CC w/CCS","Fuel Cell","Nuclear","Biomass","MSW","On-shore Wind","Off-shore Wind","Solar Thermal","Solar PV" ,,,"w/CCS" "1 (ERCT)",0.91,0.92,0.92,0.93,0.95,0.91,0.92,0.9,0.96,0.96,0.93,0.93,0.95,0.92,0.86,0.87 "2 (FRCC)",0.92,0.93,0.94,0.93,0.93,0.91,0.92,0.92,0.97,0.97,0.94,0.94,"N/A","N/A",0.89,0.9 "3 (MROE)",1.01,1.01,0.99,0.99,1.01,0.99,0.99,0.97,0.99,1.01,0.99,0.98,0.99,0.97,"N/A",0.96

402

Multifuel fossil fired Power Plant combined with off-shore wind  

E-Print Network [OSTI]

! Condensator pressure 0.022 bar 0.3 psi ! Electric efficiency 48.3 % LHV #12;Main Cycle Efficiency 42 43 44 45 into consideration #12;Reduction of CO2 High efficiency powerstations ? Oilfiring ? Gasfiring ? Offshore wind-koncept with Rolls-Royce-Trent Gas/gas Efficiency Biomasse/Gas Coal/Gas Efficiency Electric Power MW Two

403

Prairie Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Prairie Winds Wind Farm Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Basin Electric Power Coop/Central Power Electric Coop Developer Basin Electric Power Coop/Central Power Electric Coop Energy Purchaser Basin Electric Power Coop/Central Power Electric Coop Location Near Minot ND Coordinates 48.022927°, -101.291435° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.022927,"lon":-101.291435,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

405

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

406

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

407

Tres Vaqueros II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Tres Vaqueros II Wind Farm Tres Vaqueros II Wind Farm Jump to: navigation, search Name Tres Vaqueros II Wind Farm Facility Tres Vaqueros II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer International Wind Companies Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Tres Vaqueros I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Vaqueros I Wind Farm Vaqueros I Wind Farm Jump to: navigation, search Name Tres Vaqueros I Wind Farm Facility Tres Vaqueros I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer International Wind Companies Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4...

410

Energy in the Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced to electrical concepts by using a hand held generator utilizing a multimeter, modeling, and designing a wind turbine in a wind tunnel (modifications are given if a wind tunnel is not available). Students investigate how wind nergy is used as a renewable energy resource. e

411

NREL: Wind Research - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications The NREL wind research program develops publications about its R&D activities in wind energy technologies. Below you'll find links to recently published publications, links to the NREL Avian Literature and Publications Databases, and information about the Technical Library at the National Wind Technology Center (NWTC). The NWTC's quarterly newsletter, @NWTC, contains articles on current wind energy research projects and highlights the latest reports, papers, articles, and events published or sponsored by NREL. Subscribe to @NWTC. Selected Publications Featured Publication Large-scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers Here are some selected NWTC publications: 2011 Cost of Wind Energy Review Built-Environment Wind Turbine Roadmap

412

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence it is still expensive to install in large scale. It therefore needs to be considered from different aspects of technologies in order to overcome these challenges. One of the problems of the offshore wind is that information comes from different sources with diversity in types and format. Besides, there are existing wind databases that should be utilised in order to enrich the knowledge base of the wind domain. This paper describes an approach to managing offshore wind metadata effectively using semantic technologies. An offshore wind ontology has been developed. The semantic gap between the developed ontology and the relational database is investigated. A prototype system has been developed to demonstrate the use of the ontology.

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjørn Mo �stgren; Trond Friisø

2014-01-01T23:59:59.000Z

413

Wind energy conversion system  

DOE Patents [OSTI]

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

414

Nuclear Forensics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear forensics Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear...

415

Applications for Certificates for Electric, Gas, or Natural Gas  

Broader source: Energy.gov (indexed) [DOE]

Electric, Gas, or Natural Gas Electric, Gas, or Natural Gas Transmission Facilities (Ohio) Applications for Certificates for Electric, Gas, or Natural Gas Transmission Facilities (Ohio) < Back Eligibility Commercial Developer Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State Ohio Program Type Siting and Permitting Provider The Ohio Power Siting Board An applicant for a certificate to site a major electric power, gas, or natural gas transmission facility shall provide a project summary and overview of the proposed project. In general, the summary should be suitable as a reference for state and local governments and for the public. The applicant shall provide a statement explaining the need for the

416

Keenan II Wind Facility | Open Energy Information  

Open Energy Info (EERE)

Keenan II Wind Facility Keenan II Wind Facility Jump to: navigation, search Name Keenan II Wind Facility Facility Keenan II Wind Facility Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner CPV Renewable Energy Developer CPV Renewable Energy Company Energy Purchaser Oklahoma Gas & Electric Location 12 miles southwest of Woodward OK Coordinates 36.387336°, -99.450502° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.387336,"lon":-99.450502,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Rim Rock Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Rim Rock Wind Farm Rim Rock Wind Farm Jump to: navigation, search Name Rim Rock Wind Farm Facility Rim Rock Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NaturEner Developer NaturEner Energy Purchaser San Diego Gas & Electric Location Glacier and Toole Counties MT Coordinates 48.779564°, -112.061291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.779564,"lon":-112.061291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

OU Spirit Wind Farm | Open Energy Information  

Open Energy Info (EERE)

OU Spirit Wind Farm OU Spirit Wind Farm Jump to: navigation, search Name OU Spirit Wind Farm Facility OU Spirit Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner CPV Renewable Energy Developer CPV Renewable Energy Company Energy Purchaser Oklahoma Gas & Electric Location Woodward County OK Coordinates 36.245403°, -99.433011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.245403,"lon":-99.433011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Kumeyaay Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Kumeyaay Wind Power Project Kumeyaay Wind Power Project Jump to: navigation, search Name Kumeyaay Wind Power Project Facility Kumeyaay Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Superior Renewable Energy Energy Purchaser San Diego Gas & Electric Location East of San Diego CA Coordinates 32.710183°, -116.333224° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.710183,"lon":-116.333224,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

New England Wind Forum: Buying Wind Power  

Wind Powering America (EERE)

Buying Wind Power Buying Wind Power On this page find information about: Green Marketing Renewable Energy Certificates Green Pricing Green Marketing Green power marketing refers to selling green power in the competitive marketplace, in which multiple suppliers and service offerings exist. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Connecticut Connecticut Clean Energy Options Beginning in April 2005, Connecticut's two investor-owned utilities, Connecticut Light and Power and United Illuminating, began to offer a simple, affordable program to their customers for purchasing clean energy such as wind power. In late 2006, stakeholders started to explore a new offering that would convey the price stability of wind energy (and other renewable energy resources) to Connecticut consumers. This new offering is still under development.

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

VP 100: Brevini Wind Factory Helps Rust Belt Town's Economy | Department  

Broader source: Energy.gov (indexed) [DOE]

VP 100: Brevini Wind Factory Helps Rust Belt Town's Economy VP 100: Brevini Wind Factory Helps Rust Belt Town's Economy VP 100: Brevini Wind Factory Helps Rust Belt Town's Economy October 5, 2010 - 10:00am Addthis Brevini Wind is building a 127,000-square foot state-of-the-art factory in Muncie, Ind.| Photo courtesy of Brevini Wind Brevini Wind is building a 127,000-square foot state-of-the-art factory in Muncie, Ind.| Photo courtesy of Brevini Wind Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Brevini Wind awarded $12.8 million tax credit to build wind gear box plant Company will tap into manufacturing workforce, creating 450 jobs in next two years Faced with a recession and an auto industry that ran out gas, many manufacturing towns in the Rust Belt have reinvented themselves. Some found

422

Advanced Nuclear Final Solicitation Fact Sheet_Dec-2014  

Office of Environmental Management (EM)

tails to a higher isotopic content of U235 including by (1) gas centrifuge or (2) laser isotope separation and; c) Nuclear Fuel Fabrication Projects that fabricate nuclear...

423

Applying Learning Curves to Modeling Future Coal and Gas Power Generation Technologies  

Science Journals Connector (OSTI)

Other potential improvements to the model include an expansion to cover competing energy technologies not included in the current model such as nuclear, wind, and solar. ... Given the dominance of power plant emissions of greenhouse gases, and the growing worldwide interest in CO2 capture and storage (CCS) as a potential climate change mitigation option, the expected future cost of power plants with CO2 capture is of significant interest. ... Bergek, A.; Tell, F.; Berggren, C.; Watson, J.Technological Capabilities and Late Shakeouts: Industrial Dynamics in the Advanced Gas Turbine Industry, 1987–2002 Industrial and Corporate Change 2008, 17 ( 2) 335– 392 ...

Chris Ordowich; John Chase; Daniel Steele; Ripudaman Malhotra; Michiaki Harada; Keiji Makino

2011-11-28T23:59:59.000Z

424

DOE Science Showcase - Wind Power  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Wind Power DOE Science Showcase - Wind Power Wind Powering America Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

425

New England Wind Forum: Selling Wind Power  

Wind Powering America (EERE)

Selling Wind Power Selling Wind Power Markets are either well-developed or developing for each of the 'products' produced by wind generators. These include electricity products and generation attributes. Electricity Electricity can be used in two ways: on-site (interconnected behind a retail customer's meter) of for sales of electricity over the electric grid. On-site generation can displace a portion of a customer's purchases of electricity from the grid. In addition, net metering rules are in place at the state level that in some cases allow generation in excess of on-site load to be sold back to the local utility (see state pages for net metering specifics). For sales over the electricity grid, the Independent System Operator of New England (ISO New England) creates and manages a wholesale market for electric energy, capacity, and ancillary services within the New England Power Pool (NEPOOL). Wind generators may sell their electric energy and capacity in spot markets organized by the ISO, or they may contract with wholesale buyers to sell these products for any term to buyers operating in the ISO New England marketplace. Wind generators do not generally produce other marketable ancillary services. The ISO has rules specific to the operation of wind generators reflecting operations, scheduling, calculation of installed capacity credit, and so forth.

426

Wind Power Partners '90-'92 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

0-'92 Wind Farm 0-'92 Wind Farm Jump to: navigation, search Name Wind Power Partners '90-'92 Wind Farm Facility Wind Power Partners '90-'92 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Kenetech Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Microsoft Word - Nuclear_hybrid_systems_for_Wyoming_-__final...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of primary energy resources in the forms of coal, natural gas, wind, uranium, and oil shale. Most of Wyoming's coal and gas resources are exported from the state in unprocessed...

428

NREL: Wind Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Below are some select news stories from the National Wind Technology Below are some select news stories from the National Wind Technology Center. Subscribe to the RSS feed RSS . Learn about RSS. January 3, 2014 New Modularization Framework Transforms FAST Wind Turbine Modeling Tool The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently released an expanded version of its FAST wind turbine computer-aided engineering tool under a new modularization framework. January 2, 2014 The Denver Post Highlights the NWTC's New 5-MW Dynamometer On January 2, a reporter from The Denver Post toured the new 5-megawatt dynamometer test facility at the National Wind Technology Center (NWTC). Archives 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 Printable Version Wind Research Home Capabilities Projects Facilities

429

Wind energy conversion system  

SciTech Connect (OSTI)

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

430

Session: Offshore wind  

SciTech Connect (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

431

Wind Turbine Blade Design  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

432

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name: Howden Wind Turbines Ltd Place: United Kingdom Sector: Wind energy Product: Howden was a manufacturer of wind turbines in...

433

ABO Wind AG | Open Energy Information  

Open Energy Info (EERE)

AG Place: Hessen, Germany Zip: 65193 Sector: Bioenergy, Wind energy Product: German developer of wind and bioenergy generation assets. ABO Wind has no direct holding in any wind...

434

TS Wind Power Developers | Open Energy Information  

Open Energy Info (EERE)

TS Wind Power Developers Jump to: navigation, search Name: TS Wind Power Developers Place: Satara, Maharashtra, India Sector: Wind energy Product: Setting up 30MW wind farm in...

435

Daqing Longjiang Wind Power | Open Energy Information  

Open Energy Info (EERE)

Longjiang Wind Power Jump to: navigation, search Name: Daqing Longjiang Wind Power Place: Daqing, Heilongjiang Province, China Zip: 163316 Sector: Wind energy Product: Local wind...

436

Heilongjiang Lishu Wind Power | Open Energy Information  

Open Energy Info (EERE)

Lishu Wind Power Jump to: navigation, search Name: Heilongjiang Lishu Wind Power Place: Heilongjiang Province, China Sector: Wind energy Product: China-based wind project developer...

437

WINDExchange Offshore Wind Webinar: Transmission Planning and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

438

Blyth Offshore Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Blyth Offshore Wind Ltd Jump to: navigation, search Name: Blyth Offshore Wind Ltd Place: United Kingdom Sector: Renewable Energy, Wind energy Product: Blyth Offshore Wind Limited,...

439

2013 Wind Technologies Market Report Presentation | Department...  

Office of Environmental Management (EM)

3 Wind Technologies Market Report Presentation 2013 Wind Technologies Market Report Presentation Presentation summarizing the 2013 Wind Technologies Market Report. 2013 Wind...

440

Environmental Wind Projects | Department of Energy  

Energy Savers [EERE]

Wind Projects Environmental Wind Projects This report covers the Wind and Water Power Technologies Office's environmental wind projects from fiscal years 2006 to 2014....

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NREL: Wind Research - Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Printable Version Wind Research Home Research & Development Utility-Scale Wind Turbines Offshore Wind Turbines Small Wind Turbines Grid Integration Market Acceleration...

442

Workforce Development Wind Projects | Department of Energy  

Energy Savers [EERE]

Workforce Development Wind Projects Workforce Development Wind Projects This report covers the Wind and Water Power Technologies Office's workforce development wind projects from...

443

Environmental Wind Projects | Department of Energy  

Energy Savers [EERE]

Environmental Wind Projects Environmental Wind Projects This report covers the Wind and Water Power Technologies Office's environmental wind projects from fiscal years 2006 to...

444

Sandia National Laboratories: Wind Software Downloads  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* SAND 2014-3685P * Wind software * wind tools Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test...

445

Wind Power | Open Energy Information  

Open Energy Info (EERE)

Wind Power Wind Power Jump to: navigation, search Wind Power WIndfarm.Sunset.jpg Wind power is a form of solar energy.[1] Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. Mountains, bodies of water, and vegetation all influence wind flow patterns[2], [3]. Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator.[2] Three key factors affect the amount of energy a turbine can harness from the wind: wind speed, air density, and swept area.[4] Mechanical power can also be utilized directly for specific tasks such as

446

Solano County Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farm Farm Jump to: navigation, search Name Solano County Wind Farm Facility Solano County Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Kenetech Windpower Energy Purchaser Pacific Gas & Electric Co Location Solano County CA Coordinates 38.1535°, -121.858° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.1535,"lon":-121.858,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Gone with the Wind.  

E-Print Network [OSTI]

?? The purpose of this thesis is to explore disruptions Swedish wind turbines onshore are exposed to, and to estimate their economic impacts on the… (more)

Duncker, Nadja; Klötzer, Anneke

2010-01-01T23:59:59.000Z

448

Barstow Wind Turbine Project  

Broader source: Energy.gov [DOE]

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

449

Vertical axis wind turbines  

DOE Patents [OSTI]

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

450

NREL: Innovation Impact - Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Wind turbines must withstand powerful aerodynamic forces unlike any other propeller-drive...

451

Wind energy analysis system .  

E-Print Network [OSTI]

??One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis… (more)

Koegelenberg, Johan

2014-01-01T23:59:59.000Z

452

Wind Power Forecasting  

Science Journals Connector (OSTI)

The National Center for Atmospheric Research (NCAR) has configured a Wind Power Forecasting System for Xcel Energy that integrates high resolution and ensemble...

Sue Ellen Haupt; William P. Mahoney; Keith Parks

2014-01-01T23:59:59.000Z

453

Wind Program: Publications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

pres Details Bookmark & Share View Related Product Thumbnail Image 2014 Offshore Wind Market and Economic Analysis The objective of this report is to provide a...

454

Wind Success Stories  

Energy Savers [EERE]

+0000 843456 at http:energy.gov United States Launches First Grid-Connected Offshore Wind Turbine http:energy.goveeresuccess-storiesarticlesunited-states-launches-f...

455

wind_guidance  

Broader source: Energy.gov [DOE]

Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

456

Allegany County Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance sets requirements for industrial wind energy conversion systems. These requirements include minimum separation distances, setback requirements, electromagnetic interference analysis ...

457

Wind Power , Introduction  

Science Journals Connector (OSTI)

Successful implementation of new technologies requires social acceptance. Historically, for the implementation of wind energy this was considered a relatively simple issue ... strategies. Without much study, soci...

Prof. Lennart Söder

2013-01-01T23:59:59.000Z

458

Wind Power , Introduction  

Science Journals Connector (OSTI)

Successful implementation of new technologies requires social acceptance. Historically, for the implementation of wind energy this was considered a relatively simple issue ... strategies. Without much study, soci...

Prof. Lennart Söder

2012-01-01T23:59:59.000Z

459

Wind Energy Myths  

SciTech Connect (OSTI)

This two-sided fact sheet succinctly outlines and counters the top misconceptions about wind energy. It is well suited for general audiences.

Not Available

2005-05-01T23:59:59.000Z

460

Campbell County Wind Farm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environmental assessment (EA) on the proposed interconnection of the Campbell County Wind Farm (Project) in Campbell County, near the city of Pollock, South Dakota. Dakota...

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy from the wind  

Science Journals Connector (OSTI)

The large?scale generation of electrical power by wind turbine fields is discussed. It is shown that the maximum power which can be extracted by a wind turbine is 16/27 or 59.3% of the power available in the wind. An estimate is made of the total electrical power which could be generated in the United States by utilizing wind energy. The material in this paper was presented by the authors in a one?semester course on energy science. It could also be used in an introductory physics class as an illustration of elementary fluid mechanics concepts and of the basic principles of energy and momentum conservation.

David G. Pelka; Robert T. Park; Runbir Singh

1978-01-01T23:59:59.000Z

462

What is Distributed Wind?  

Broader source: Energy.gov (indexed) [DOE]

and refurbishers, including those from Canada, Mexico, Europe, China, and South Africa. In 2013, 30.4 MW of new distributed wind capacity was added, representing nearly...

463

Proceedings Nordic Wind Power Conference  

E-Print Network [OSTI]

Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

464

Optimization of Wind Turbine Operation  

E-Print Network [OSTI]

inclination angle was about 1°. The spinner anemometer measurements were correlated with wind speed and windOptimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy

465

Use of wind power forecasting in operational decisions.  

SciTech Connect (OSTI)

The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

2011-11-29T23:59:59.000Z

466

Michigan Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind II Wind Farm Wind II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer Exelon Wind Energy Purchaser Consumers Energy Location Minden City MI Coordinates 43.6572421°, -82.7681278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6572421,"lon":-82.7681278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Here you will find the...

468

NREL: Wind Research - Get to Know a Wind Energy Expert  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Get to Know a Wind Energy Expert The Evolution of a Wind Expert A professional headshot photo of Maureen Hand Maureen Hand Maureen Hand knows wind. Growing up in Glenrock, Wyoming,...

469

American Wind Energy Association Wind Energy Finance and Investment...  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT to October 21, 2014 5:00PM EDT...

470

United States Wind Resource Map: Annual Average Wind Speed at...  

Wind Powering America (EERE)

4.0 Source: Wind resource estimates developed by AWS Truepower, LLC for windNavigator . Web: http:www.windnavigator.com | http:www.awstruepower.com. Spatial resolution of wind...

471

WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore...

472

Nuclear non-proliferation regime effectiveness : an integrated methodology for analyzing highly enriched uranium production scenarios at gas centrifuge enrichment plants  

E-Print Network [OSTI]

The dramatic change in the international security environment after the collapse of the bipolar system has had a negative impact on the effectiveness of the existing nuclear non-proliferation regime. Furthermore, the success ...

Kwak, Taeshin (Taeshin S.)

2010-01-01T23:59:59.000Z

473

GHG emissions and energy performance of offshore wind power  

Science Journals Connector (OSTI)

Abstract This paper presents specific life cycle GHG emissions from wind power generation from six different 5 MW offshore wind turbine conceptual designs. In addition, the energy performance, expressed by the energy indicators Energy Payback Ratio (EPR) Energy Payback Time (EPT), is calculated for each of the concepts. There are currently few LCA studies in existence which analyse offshore wind turbines with rated power as great as 5 MW. The results, therefore, give valuable additional environmental information concerning large offshore wind power. The resulting GHG emissions vary between 18 and 31.4 g CO2-equivalents per kWh while the energy performance, assessed as EPR and EPT, varies between 7.5 and 12.9, and 1.6 and 2.7 years, respectively. The relatively large ranges in GHG emissions and energy performance are chiefly the result of the differing steel masses required for the analysed platforms. One major conclusion from this study is that specific platform/foundation steel masses are important for the overall GHG emissions relating to offshore wind power. Other parameters of importance when comparing the environmental performance of offshore wind concepts are the lifetime of the turbines, wind conditions, distance to shore, and installation and decommissioning activities. Even though the GHG emissions from wind power vary to a relatively large degree, wind power can fully compete with other low GHG emission electricity technologies, such as nuclear, photovoltaic and hydro power.

Hanne Lerche Raadal; Bjørn Ivar Vold; Anders Myhr; Tor Anders Nygaard

2014-01-01T23:59:59.000Z

474

LARGE SCALE WIND CLIMATOLOGICAL EXAMINATIONS OF WIND ENERGY UTILIZATION  

E-Print Network [OSTI]

The aim of this article is to describe the particular field of climatology which analyzes air movement characteristics regarding utilization of wind for energy generation. The article describes features of wind energy potential available in Hungary compared to wind conditions in other areas of the northern quarter sphere in order to assist the wind energy use development in Hungary. Information on wind climate gives a solid basis for financial and economic decisions of stakeholders in the field of wind energy utilization.

Andrea Kircsi

475

WIND BRAKING OF MAGNETARS  

SciTech Connect (OSTI)

We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L{sub x}<- E-dot{sub rot} may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

Tong, H. [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Xu, R. X.; Qiao, G. J. [KIAA and School of Physics, Peking University, Beijing 100871 (China); Song, L. M., E-mail: tonghao@xao.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

2013-05-10T23:59:59.000Z

476

Life Extension Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Extension Programs B61-12 Life Extension Program Undergoes First Full-Scale Wind Tunnel Test WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) announced today...

477

Maintaining the Stockpile | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

the Stockpile B61-12 Life Extension Program Undergoes First Full-Scale Wind Tunnel Test WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) announced today...

478

Q-Winds satellite hurricane wind retrievals and H*Wind comparisons  

E-Print Network [OSTI]

tailored to extreme wind events. Because of this and precipitation effects, scatterometers have failed/passive scatterometer retrieval algorithm designed specifically for extreme wind events, hereafter identified1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W

Hennon, Christopher C.

479

Assessment of wind and solar energy resources in Batna, Algeria  

Science Journals Connector (OSTI)

Due to several climate changes caused by greenhouse gas and to the increasing need for clean energies, scientists drew attention to renewable energy sources, which are the most suitable solution in the future. Sparsely populated and flat open terrains observed in Batna region (North East of Algeria) and its semi-arid climate, make it a promising region for the development of solar and wind energies. In this article, we analyzed ten years of daily wind speed data in a remote area of Batna: Mustafa Ben Boulaid Airport. Wind power availability, as well as annual mean values of wind speed and power, were estimated. Frequency distribution of daily totals of wind speed data were counted and illustrated too. The results have been used to estimate net energy output of different wind turbines. This simulation shows a difference in wind generators production and allows us to choose the best wind turbine adapted to site conditions. Since solar and wind energy resources may be used to compensate each other, we evaluated also the solar potential of the same area.

Mounir Aksas; Amor Gama

2011-01-01T23:59:59.000Z

480

Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels -- Final Report under the International Nuclear Energy Research Initiative (I-NERI)  

SciTech Connect (OSTI)

The objective of this INERI project was to develop improved fuel behavior models for gas reactor coated-particle fuels and to explore improved coated-particle fuel designs that could be used reliably at very high burnups and potentially in gas-cooled fast reactors. Project participants included the Idaho National Engineering Laboratory (INEEL), Centre Étude Atomique (CEA), and the Massachusetts Institute of Technology (MIT). To accomplish the project objectives, work was organized into five tasks.

David Petti; Philippe Martin; Mayeul Phélip; Ronald Ballinger; Petti does not have NT account

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas nuclear wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Offshore Wind Research (Fact Sheet), National Wind Technology Center (NWTC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Offshore Wind Research The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: * Developing offshore design tools and methods * Collaborating with international partners * Testing offshore systems and developing standards * Conducting economic analyses * Characterizing offshore wind resources * Identifying and mitigating offshore wind grid integration challenges and barriers NREL documented the status of offshore wind energy in the United

482

NREL: Wind Research - Utility-Scale Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wind turbine research addresses performance and reliability issues that large wind turbines experience throughout their lifespan and reduces system costs through innovative...

483

NREL: Wind Research - National Wind Technology Center Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Technology Center in Golden, Colorado Structural Testing Laboratory (STL) As wind turbines grow in size and their blades become longer and more flexible, it becomes more...

484

Wind Power Today, 2010, Wind and Water Power Program (WWPP) ...  

Office of Environmental Management (EM)

& Publications Wind Program Accomplishments Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems A...

485

NREL: Wind Research - NREL Supports Innovative Offshore Wind...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Supports Innovative Offshore Wind Energy Projects Demonstration Projects Eligible for up to 46.7M Additional Funding An offshore wind turbine floating off the coast of...

486

American Wind Energy Association Wind Energy Finance and Investment Seminar  

Broader source: Energy.gov [DOE]

The American Wind Energy Association Wind Energy Finance and Investment Seminar will be attended by representatives in the financial sector, businesses, bankers, government and other nonprofit...

487

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech...

488

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) Executive summary of a report on the requirements needed...

489

Reliability analysis of wind turbine at high uncertain wind;.  

E-Print Network [OSTI]

??Wind energy plays a vital role in the renewable energy scenario of newlinethe world The wind turbine systems have complex components which are newlinerepairable The… (more)

Sunder selwyn T

2014-01-01T23:59:59.000Z

490

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

ERCOT (Brown 2012). Wind power plants with negative offersThermal Power Plants Under Increasing Wind Energy Supply. ”power plants that, among other benefits, lowers the costs of integrating wind

Wiser, Ryan

2014-01-01T23:59:59.000Z

491

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

Wiser, Ryan

2010-01-01T23:59:59.000Z

492

Foundations for offshore wind turbines  

Science Journals Connector (OSTI)

...wind farms, although supplying green energy, tend to provoke some objections...wind farms, although supplying 'green energy', tend to provoke some objections...wind farms, although supplying `green energy', tend to provoke some objections...

2003-01-01T23:59:59.000Z

493

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

Bolinger, Mark

2013-01-01T23:59:59.000Z

494

Sandia National Laboratories: Offshore Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyOffshore Wind Offshore Wind Sandia executes several projects in support of the DOE Offshore Wind program, which address unique R&D needs related to offshore siting and, in...

495

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

Bolinger, Mark

2013-01-01T23:59:59.000Z

496

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

Wiser, Ryan

2012-01-01T23:59:59.000Z

497

Wind Farms in North America  

E-Print Network [OSTI]

Public Perceptions of a Wind Energy Landscape. Landscape andDepartment of Energy (US DOE) (2008) 20% Wind Energy by2030: Increasing Wind Energy's Contribution to U.S.

Hoen, Ben

2014-01-01T23:59:59.000Z

498

Sandia National Laboratories: wind energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

uses the blade information to generate input files for other tools: The ANSYS ... Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant...

499

Foundations for offshore wind turbines  

Science Journals Connector (OSTI)

...T. Thompson Foundations for offshore wind turbines B. W. Byrne G. T...civil-engineering problems encountered for offshore wind turbines. A critical component...energy suppliers. Foundations|Offshore Wind Turbines|Renewable Energy...

2003-01-01T23:59:59.000Z

500

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

the contribution of wind power to electricity consumption,GW per year needed for wind power to contribute 20% of thegrid; such wind turbines can also provide power to off-grid

Bolinger, Mark

2013-01-01T23:59:59.000Z