Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,"California Federal Offshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

2

Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

3

Texas State Offshore Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves...

4

Texas - RRC District 10 Nonassociated Natural Gas, Wet After...  

Annual Energy Outlook 2012 (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 10 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves...

5

Texas - RRC District 8A Nonassociated Natural Gas, Wet After...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves...

6

Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

7

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

8

Utah Nonassociated Natural Gas, Wet After Lease Separation, Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade...

9

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

10

,"Utah Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

11

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

12

Utah Nonassociated Natural Gas, Wet After Lease Separation, New...  

U.S. Energy Information Administration (EIA) Indexed Site

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet)...

13

,"Utah Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2011...

14

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

15

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

16

,"Louisiana State Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

17

,"U.S. Federal Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

18

,"California Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

19

,"California State Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

20

,"Ohio Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

,"North Dakota Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

22

,"Michigan Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

23

,"Ohio Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",20...

24

,"Colorado Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

25

,"Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

26

,"Texas - RRC District 5 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 5 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

27

,"Texas - RRC District 8 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

28

,"Texas Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

29

,"Texas - RRC District 6 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 6 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

30

,"Texas - RRC District 8A Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8A Nonassociated Natural Gas, Wet After Lease Separation, Proved...

31

,"Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

32

,"Texas - RRC District 7B Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7B Nonassociated Natural Gas, Wet After Lease Separation, Proved...

33

,"Texas State Offshore Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves...

34

,"Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

35

,"Texas - RRC District 7C Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7C Nonassociated Natural Gas, Wet After Lease Separation, Proved...

36

,"Texas - RRC District 9 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 9 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

37

,"Texas - RRC District 1 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 1 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

38

,"Texas - RRC District 10 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 10 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

39

California Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,881 1980's 1,792 1,424 1,230 1,120 1,006 1990's 911 901 799 817 808 736 610 570 453 355 2000's 754 842 796 759 767 799 780 686 621 612 2010's 503 510 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 California Nonassociated Natural Gas Proved Reserves, Wet After

40

Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,820 1,100 1,218 1,002 1,042 1990's 812 875 691 789 820 714 626 613 473 541 2000's 592 627 428 448 333 370 386 327 248 215 2010's 279 468 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

California State Offshore Nonassociated Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8 1980's 6 12 22 22 29 1990's 6 5 4 2 4 3 2 2 5 19 2000's 5 5 6 7 2 1 5 4 3 4 2010's 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet

42

Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 142 1980's 146 181 47 50 63 52 95 53 56 48 1990's 50 62 82 87 56 37 40 13 22 13 2000's 23 64 80 120 98 118 120 226 263 271 2010's 353 270 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Miscellaneous Nonassociated Natural Gas Proved Reserves, Wet After

43

Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 432 1980's 282 165 158 396 364 395 522 477 749 686 1990's 844 805 780 763 780 699 715 594 548 777 2000's 717 631 772 823 767 714 801 926 886 799 2010's 742 684 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Ohio Nonassociated Natural Gas Proved Reserves, Wet After Lease

44

Florida Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 26 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Florida Nonassociated Natural Gas Proved Reserves, Wet After Lease

45

California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 1 1 1 1 3 0 0 0 0 1990's 0 0 3 0 0 0 0 3 1 0 2000's 1 1 0 0 0 0 0 0 0 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Nonassociated Natural Gas Proved

46

California Federal Offshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 73 1980's 107 227 217 258 267 1990's 240 179 149 147 110 94 115 58 52 48 2000's 76 50 56 55 47 49 55 53 3 9 2010's 3 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore California Nonassociated Natural Gas Proved

47

New York Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New York Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 211 1980's 208 262 226 295 387 367 457 410 351 364 1990's 354 331 329 264 240 195 229 223 217 212 2000's 320 311 315 365 324 346 361 365 360 196 2010's 271 245 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

48

Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 786 1980's 1,186 1,247 789 813 748 793 725 704 733 821 1990's 834 782 814 631 672 739 755 727 737 784 2000's 822 822 820 956 872 837 874 848 817 681 2010's 657 522 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

49

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

50

Utah Nonassociated Natural Gas, Wet After Lease Separation, New...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

51

North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 284 1980's 355 401 448 416 376 319 317 302 327 312 1990's 316 290 301 311 293 255 257 274 240 225 2000's 223 225 209 181 145 165 182 155 119 143 2010's 152 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

52

Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,971 35,867 34,584 32,852 32,309 32,349 1990's 32,412 30,729 29,474 29,967 31,071 31,949 33,432 33,322 33,429 35,470 2000's 38,585 40,376 41,104 42,280 46,728 53,175 58,736 68,827 74,284 76,272 2010's 84,157 90,947 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

53

Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 502 1980's 525 547 580 581 630 793 866 921 938 993 1990's 1,039 1,177 1,118 1,030 978 1,075 1,022 1,403 1,275 1,501 2000's 1,810 1,925 1,974 1,946 1,963 2,210 2,333 2,554 2,812 2,887 2010's 2,674 2,030 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

54

Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 16,316 10,943 10,724 10,826 11,171 1990's 10,597 9,969 9,060 8,615 9,165 8,890 9,038 9,020 8,569 8,667 2000's 8,704 9,245 8,520 8,952 9,235 10,091 10,149 9,651 10,581 19,898 2010's 28,838 29,906 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

55

Texas - RRC District 1 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 732 1980's 683 870 708 960 714 754 716 639 1,002 1,037 1990's 744 660 606 540 586 498 523 950 1,101 1,165 2000's 1,037 1,024 1,047 1,047 1,184 1,148 1,048 1,029 987 1,456 2010's 2,332 5,227 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

56

Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 680 1980's 659 658 1990's 4,159 5,437 5,840 5,166 4,842 4,886 5,062 4,983 4,615 4,338 2000's 4,241 3,931 3,891 4,313 4,127 3,977 3,945 4,016 3,360 2,919 2010's 2,686 2,522 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

57

Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,058 1980's 4,828 4,373 4,188 3,883 4,120 3,131 2,462 2,983 2,910 2,821 1990's 2,466 2,924 3,002 3,492 3,326 3,310 3,216 2,957 2,768 2,646 2000's 2,564 2,309 2,157 2,081 2,004 1,875 1,447 1,270 1,139 1,090 2010's 1,021 976 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

58

Texas - RRC District 9 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 633 1980's 502 796 965 845 786 753 761 717 686 617 1990's 703 674 613 636 715 730 749 785 665 1,180 2000's 1,645 2,428 3,070 3,514 4,445 4,608 6,660 7,846 9,390 11,100 2010's 12,587 9,963 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

59

Gulf of Mexico Federal Offshore - Texas Nonassociated Natural Gas, Wet  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,411 6,191 6,956 6,739 6,745 6,504 1990's 6,884 6,305 6,353 6,138 5,739 5,674 5,240 4,799 4,452 4,507 2000's 5,030 5,404 4,967 4,235 3,258 2,807 2,360 2,173 1,937 1,822 2010's 1,456 1,015 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

60

West Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,593 1980's 2,437 1,881 2,169 2,238 2,173 2,104 2,207 2,210 2,299 2,244 1990's 2,243 2,513 2,293 2,408 2,569 2,514 2,722 2,887 2,925 2,952 2000's 2,929 2,777 3,477 3,376 3,489 4,553 4,638 4,865 5,243 6,066 2010's 7,134 10,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Michigan Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 601 1980's 668 494 481 529 419 375 665 1,002 943 1,011 1990's 922 967 938 890 1,022 1,018 1,778 1,975 2,158 2,086 2000's 2,558 2,873 3,097 3,219 2,961 2,808 2,925 3,512 3,105 2,728 2010's 2,903 2,472 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

62

Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 1,923 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

63

Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,657 1980's 2,970 2,969 3,345 3,200 2,932 2,928 3,008 2,912 3,572 4,290 1990's 4,249 5,329 5,701 5,817 5,948 6,520 7,009 6,627 7,436 8,591 2000's 9,877 11,924 13,251 14,707 13,956 15,796 16,141 20,642 22,159 22,199 2010's 23,001 23,633 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

64

Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,559 1980's 1,602 1,637 1,800 1,887 2,051 1,875 1,861 1,873 1,843 1,637 1990's 1,672 1,536 1,619 1,462 1,525 1,462 1,383 1,423 1,294 1,505 2000's 1,545 1,589 1,616 1,629 1,797 1,921 2,227 3,269 5,616 10,852 2010's 14,152 16,328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

65

Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,299 1980's 11,656 13,066 14,714 14,992 14,858 14,929 15,588 15,686 15,556 14,948 1990's 15,147 14,112 13,249 12,549 12,981 13,067 12,929 13,296 13,321 12,252 2000's 13,430 13,256 14,576 15,176 16,301 17,337 17,735 19,225 21,155 23,115 2010's 26,873 27,683 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

66

New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,634 1980's 2,266 2,377 2,331 2,214 2,117 2,001 1,750 1,901 2,030 2,131 1990's 2,290 2,073 1,948 1,860 1,791 1,648 1,612 1,694 1,694 1,880 2000's 2,526 2,571 2,632 2,205 2,477 2,569 2,605 2,633 2,737 2,658 2010's 2,612 2,475 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

67

New Mexico Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,568 1980's 12,267 12,913 11,562 10,868 10,458 9,948 11,094 11,176 17,030 15,219 1990's 17,094 18,204 18,802 18,354 16,947 17,069 16,232 15,280 14,816 15,172 2000's 16,922 17,112 16,971 16,681 18,109 17,683 17,332 16,556 15,592 14,662 2010's 14,316 13,586 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

68

Texas - RRC District 6 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

6 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 6 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,710 1980's 3,622 3,653 3,749 4,279 4,087 4,274 4,324 4,151 4,506 5,201 1990's 5,345 4,856 4,987 5,170 5,131 5,425 5,690 5,616 5,691 5,562 2000's 5,901 6,016 6,161 6,572 7,564 8,999 9,205 11,468 12,207 12,806 2010's 14,958 15,524 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

69

Lower 48 States Nonassociated Natural Gas, Wet After Lease Separation,  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Lower 48 States Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 143,852 1980's 139,421 143,515 142,984 143,469 141,226 138,464 139,070 135,256 141,211 139,798 1990's 141,941 140,584 138,883 136,953 138,213 139,369 141,136 140,382 139,015 142,098 2000's 154,113 159,612 163,863 166,512 171,547 183,197 189,329 213,851 224,873 249,406 2010's 280,880 305,010 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013

70

Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,276 1980's 11,273 11,178 10,364 9,971 9,162 8,328 7,843 7,644 7,631 7,661 1990's 7,386 6,851 6,166 5,570 5,880 5,446 5,478 5,538 5,336 5,259 2000's 4,954 4,859 3,968 3,506 3,168 3,051 3,058 2,960 2,445 2,463 2010's 2,496 2,125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

71

Texas - RRC District 5 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

5 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 5 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,127 1980's 1,117 1,265 1,322 1,477 1,911 2,100 2,169 2,106 1,989 1,789 1990's 1,835 1,841 1,692 1,790 1,926 1,876 2,088 1,681 1,906 2,301 2000's 3,089 4,206 4,588 5,398 6,525 9,560 12,591 17,224 20,420 22,602 2010's 24,686 28,147 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

72

Texas - RRC District 8 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8,073 1980's 7,216 6,620 6,084 6,064 5,362 5,246 5,254 4,973 4,738 4,403 1990's 4,323 4,023 3,792 3,569 3,267 3,218 3,069 2,886 2,727 2,947 2000's 3,345 3,405 3,284 3,032 3,266 3,829 3,891 4,267 4,506 3,950 2010's 3,777 3,006 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

73

New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

- West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) - West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9,934 1980's 10,001 10,536 9,231 8,654 8,341 7,947 9,344 9,275 15,000 13,088 1990's 14,804 16,131 16,854 16,494 15,156 15,421 14,620 13,586 13,122 13,292 2000's 14,396 14,541 14,339 14,476 15,632 15,114 14,727 13,923 12,855 12,004 2010's 11,704 11,111 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

74

Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,796 1980's 8,039 8,431 9,095 9,769 10,147 10,519 9,702 9,881 10,287 10,695 1990's 9,860 9,861 10,681 10,885 10,740 11,833 12,260 13,471 13,577 14,096 2000's 16,559 18,911 20,970 22,266 23,278 24,338 24,116 30,531 32,176 36,386 2010's 36,192 36,612 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

75

,"U.S. Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",20...

76

Texas - RRC District 7B Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

B Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) B Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 608 1980's 530 655 733 872 645 574 589 546 576 364 1990's 413 379 380 393 332 263 378 299 306 275 2000's 242 203 237 314 288 859 1,589 2,350 2,682 2,322 2010's 2,504 3,754 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

77

U.S. Federal Offshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 25,076 23,427 21,871 21,466 22,075 22,047 21,982 21,098 19,931 19,505 2000's 20,456 18,990 17,772 15,616 13,386 12,348 10,915 10,033 8,786 7,633 2010's 6,916 5,374 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

78

California - Coastal Region Onshore Nonassociated Natural Gas...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

79

Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,143 1980's 7,074 7,251 7,802 7,847 8,094 7,825 7,964 7,317 6,891 7,009 1990's 7,473 7,096 6,813 7,136 7,679 7,812 7,877 8,115 8,430 9,169 2000's 9,942 10,206 9,711 8,919 8,902 8,956 8,364 8,210 7,803 6,961 2010's 7,301 9,993 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

80

Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,079 1980's 1,645 1,920 1,785 1,890 1,965 1,895 1,760 1,861 1,703 1,419 1990's 1,418 1,127 1,176 1,137 1,169 1,126 1,178 1,497 1,516 1,772 2000's 1,930 1,798 1,797 1,768 1,858 2,066 2,048 2,249 2,292 1,837 2010's 2,101 2,766 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Texas - RRC District 7C Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

7C Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 7C Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7C Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,427 1980's 2,023 2,065 2,224 2,150 2,393 2,475 2,373 2,295 2,374 2,776 1990's 3,061 2,833 2,873 2,945 3,029 2,828 3,371 3,247 2,939 2,977 2000's 3,439 3,123 3,430 3,864 4,196 4,665 4,531 4,714 4,147 3,724 2010's 3,502 2,857 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

82

Table 12. Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases SalesAcquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 1,021 -1 95 128 34 171 1 0 3 152 976 Lower 48 States 280,880 2,326 47,832 50,046 43,203 45,818 41,677 376 1,097 21,747 305,010 Alabama 2,686 -48 470 163 586 378 3 0 0 218 2,522 Arkansas 14,152 705 581 311 6,724 6,882 2,094 0 23 1,074 16,328 California 503 -12 118 32 48 44 1 0 0 64 510 Coastal Region Onshore 2 0 0 1 0 0 0 0 0 0 1 Los Angeles Basin Onshore 0 0 0 0 0 0 0 0 0 0 0 San Joaquin Basin Onshore 498 -12 116 31 47 44 1 0 0 63 506 State Offshore

83

,"California - Coastal Region Onshore Nonassociated Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

84

U.S. Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir  

Gasoline and Diesel Fuel Update (EIA)

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,373 1980's 2,279 2,809 3,155 2,745 2,482 2,712 1,666 1,401 1,640 2,139 1990's 2,242 1,321 1,481 1,767 3,404 1,884 2,871 2,268 2,022 1,841 2000's 2,211 2,420 1,421 1,529 1,147 1,164 1,132 1,171 858 2,487 2010's 1,515 1,100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas New Reservoir Discoveries in Old Fields,

85

Utah Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Utah Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1...

86

Table 19. Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Reported proved nonproducing reserves of crude oil, lease condensate, : Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011 a Lease Nonassociated Associated Total Crude Oil Condensate Gas Dissolved Gas Gas State and Subdivision (Million bbls) (Million bbls) (Bcf) (Bcf) (Bcf) Alaska 566 0 288 63 351 Lower 48 States 8,483 880 104,676 13,197 117,873 Alabama 1 0 101 1 102 Arkansas 0 0 5,919 0 5,919 California 542 2 267 128 395 Coastal Region Onshore 248 0 0 20 20 Los Angeles Basin Onshore 69 0 0 23 23 San Joaquin Basin Onshore 163 0 265 54 319 State Offshore 62 2 2 31 33 Colorado 208 30 5,316 1,478 6,794 Florida 4 0 4 0 4 Kansas 4 0 244 39 283 Kentucky 0 0 75 0 75 Louisiana 152 29 14,905 257 15,162 North 30 10 13,820 12 13,832 South Onshore 113 17 1,028 232 1,260 State Offshore 9 2 57 13 70 Michigan 0

87

Table 12: Nonassociated natural gas proved reserves, reserves changes, and produ  

U.S. Energy Information Administration (EIA) Indexed Site

: Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 " : Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 " "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

88

California - San Joaquin Basin Onshore Nonassociated Natural...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

89

,"California - San Joaquin Basin Onshore Nonassociated Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

90

,"California - Los Angeles Basin Onshore Nonassociated Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

91

Natural Gas Nonassociated Proved Reserves, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 Federal Offshore U.S. 10,915 10,033 8,786 7,633 6,916 5,374 1990-2011 Pacific (California) 55 53 3 9 3 0 1979-2011 Louisiana & Alabama 8,500 7,807 6,846 5,802 5,457 4,359 1981-2011 Texas 2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Alaska 1,447 1,270 1,139 1,090 1,021 976 1979-2011 Lower 48 States 189,329 213,851 224,873 249,406 280,880 305,010 1979-2011 Alabama 3,945 4,016 3,360 2,919 2,686 2,522 1979-2011 Arkansas 2,227 3,269 5,616 10,852 14,152 16,328 1979-2011 California 780 686 621 612 503 510 1979-2011 Coastal Region Onshore 6 1 1 1 2 1 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 769 681 617 607 498 506 1979-2011

92

Natural Gas Nonassociated Proved Reserves, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 Federal Offshore U.S. 10,915 10,033 8,786 7,633 6,916 5,374 1990-2011 Pacific (California) 55 53 3 9 3 0 1979-2011 Louisiana & Alabama 8,500 7,807 6,846 5,802 5,457 4,359 1981-2011 Texas 2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Alaska 1,447 1,270 1,139 1,090 1,021 976 1979-2011 Lower 48 States 189,329 213,851 224,873 249,406 280,880 305,010 1979-2011 Alabama 3,945 4,016 3,360 2,919 2,686 2,522 1979-2011 Arkansas 2,227 3,269 5,616 10,852 14,152 16,328 1979-2011 California 780 686 621 612 503 510 1979-2011 Coastal Region Onshore 6 1 1 1 2 1 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 769 681 617 607 498 506 1979-2011

93

Nonassociated Natural Gas Reserves Acquisitions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

5,122 14,620 7,910 3,477 10,879 45,989 2000-2011 5,122 14,620 7,910 3,477 10,879 45,989 2000-2011 Federal Offshore U.S. 2,264 987 558 165 784 418 2000-2011 Pacific (California) 0 0 0 0 0 0 2000-2011 Louisiana & Alabama 1,150 804 481 152 594 355 2000-2011 Texas 1,114 183 77 13 190 63 2000-2011 Alaska 0 5 0 0 0 171 2000-2011 Lower 48 States 25,122 14,615 7,910 3,477 10,879 45,818 2000-2011 Alabama 259 385 20 0 153 378 2000-2011 Arkansas 5 280 5 36 807 6,882 2000-2011 California 47 234 23 25 0 44 2000-2011 Coastal Region Onshore 0 0 0 0 0 0 2000-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 2000-2011 San Joaquin Basin Onshore 47 234 23 25 0 44 2000-2011 State Offshore 0 0 0 0 0 0 2000-2011 Colorado 1,009 448 1,382 446 81 1,278 2000-2011

94

Nonassociated Natural Gas Reserves Sales, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

2,178 14,403 7,249 3,813 9,436 43,237 2000-2011 2,178 14,403 7,249 3,813 9,436 43,237 2000-2011 Federal Offshore U.S. 2,317 763 672 142 827 266 2000-2011 Pacific (California) 0 0 0 0 0 0 2000-2011 Louisiana & Alabama 1,261 674 587 108 697 243 2000-2011 Texas 1,056 89 85 34 130 23 2000-2011 Alaska 0 8 0 4 132 34 2000-2011 Lower 48 States 22,178 14,395 7,249 3,809 9,304 43,203 2000-2011 Alabama 188 303 11 2 270 586 2000-2011 Arkansas 4 298 19 49 393 6,724 2000-2011 California 154 165 1 0 2 48 2000-2011 Coastal Region Onshore 2 0 0 0 0 0 2000-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 2000-2011 San Joaquin Basin Onshore 152 165 1 0 2 47 2000-2011 State Offshore 0 0 0 0 0 1 2000-2011 Colorado 1,009 769 774 382 253 1,292 2000-2011

95

Nonassociated Natural Gas Reserves Revision Increases, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

6,268 28,004 28,998 27,142 37,411 47,927 1979-2011 6,268 28,004 28,998 27,142 37,411 47,927 1979-2011 Federal Offshore U.S. 1,559 1,240 1,131 1,511 2,054 984 1990-2011 Pacific (California) 8 0 0 8 0 0 1979-2011 Louisiana & Alabama 1,274 963 886 997 1,814 740 1981-2011 Texas 277 277 245 506 240 244 1981-2011 Alaska 32 70 149 191 392 95 1979-2011 Lower 48 States 16,236 27,934 28,849 26,951 37,019 47,832 1979-2011 Alabama 234 153 287 90 208 470 1979-2011 Arkansas 99 310 1,247 1,907 1,060 581 1979-2011 California 67 80 113 97 50 118 1979-2011 Coastal Region Onshore 0 0 0 0 1 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 65 80 111 96 47 116 1979-2011 State Offshore 2 0 2 1 2 2 1979-2011 Colorado 981 3,823 3,154 1,661 2,985 2,522 1979-2011

96

Nonassociated Natural Gas New Reservoir Discoveries in Old Fields, Wet  

Gasoline and Diesel Fuel Update (EIA)

1,132 1,171 858 2,487 1,515 1,100 1979-2011 1,132 1,171 858 2,487 1,515 1,100 1979-2011 Federal Offshore U.S. 388 325 248 186 95 38 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 329 294 169 150 83 38 1981-2011 Texas 59 31 79 36 12 0 1981-2011 Alaska 2 0 5 0 0 3 1979-2011 Lower 48 States 1,130 1,171 853 2,487 1,515 1,097 1979-2011 Alabama 7 17 1 0 0 0 1979-2011 Arkansas 33 27 41 36 27 23 1979-2011 California 4 1 7 0 0 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 1 1 7 0 0 0 1979-2011 State Offshore 3 0 0 0 0 0 1979-2011 Colorado 27 24 17 0 29 0 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 3 0 2 0 1 1 1979-2011

97

Utah Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

Annual Energy Outlook 2012 (EIA)

4,894 6,095 6,393 6,810 6,515 7,199 1979-2011 Adjustments -22 12 -11 67 -50 157 1979-2011 Revision Increases 184 1,085 376 1,181 776 649 1979-2011 Revision Decreases 472 326 491...

98

Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 Federal Offshore U.S. 10,915 10,033 8,786 7,633 6,916 5,374 1990-2011 Pacific (California) 55 53 3 9 3 0 1979-2011 Louisiana & Alabama 8,500 7,807 6,846 5,802 5,457 4,359 1981-2011 Texas 2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Alaska 1,447 1,270 1,139 1,090 1,021 976 1979-2011

99

Nonassociated Natural Gas Reserves Revision Decreases, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

20,957 15,664 27,810 31,865 34,375 50,174 1979-2011 20,957 15,664 27,810 31,865 34,375 50,174 1979-2011 Federal Offshore U.S. 1,887 1,561 1,631 1,400 1,433 1,711 1990-2011 Pacific (California) 0 0 48 0 5 3 1979-2011 Louisiana & Alabama 1,445 1,172 1,073 1,021 1,000 1,219 1981-2011 Texas 442 389 510 379 428 489 1981-2011 Alaska 267 103 153 103 195 128 1979-2011 Lower 48 States 20,690 15,561 27,657 31,762 34,180 50,046 1979-2011 Alabama 205 35 747 336 176 163 1979-2011 Arkansas 112 139 161 621 301 311 1979-2011 California 49 186 129 60 87 32 1979-2011 Coastal Region Onshore 0 5 0 1 0 1 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 49 180 128 59 84 31 1979-2011 State Offshore 0 1 1 0 3 0 1979-2011

100

Nonassociated Natural Gas Reserves Revision Decreases, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

20,957 15,664 27,810 31,865 34,375 50,174 1979-2011 20,957 15,664 27,810 31,865 34,375 50,174 1979-2011 Federal Offshore U.S. 1,887 1,561 1,631 1,400 1,433 1,711 1990-2011 Pacific (California) 0 0 48 0 5 3 1979-2011 Louisiana & Alabama 1,445 1,172 1,073 1,021 1,000 1,219 1981-2011 Texas 442 389 510 379 428 489 1981-2011 Alaska 267 103 153 103 195 128 1979-2011 Lower 48 States 20,690 15,561 27,657 31,762 34,180 50,046 1979-2011 Alabama 205 35 747 336 176 163 1979-2011 Arkansas 112 139 161 621 301 311 1979-2011 California 49 186 129 60 87 32 1979-2011 Coastal Region Onshore 0 5 0 1 0 1 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 49 180 128 59 84 31 1979-2011 State Offshore 0 1 1 0 3 0 1979-2011

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nonassociated Natural Gas New Field Discoveries, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

385 768 1,122 1,160 793 376 1979-2011 385 768 1,122 1,160 793 376 1979-2011 Federal Offshore U.S. 87 575 228 96 65 66 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 58 309 195 25 65 66 1981-2011 Texas 29 266 33 71 0 0 1981-2011 Alaska 0 0 0 0 0 0 1979-2011 Lower 48 States 385 768 1,122 1,160 793 376 1979-2011 Alabama 0 0 2 0 1 0 1979-2011 Arkansas 7 0 0 0 0 0 1979-2011 California 0 0 0 1 1 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 0 0 0 1 1 0 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 15 15 18 8 23 19 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 0 0 6 0 3 0 1979-2011 Kentucky 0 0 0 0 0 2 1979-2011

102

Nonassociated Natural Gas Reserves Sales, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

2,178 14,403 7,249 3,813 9,436 43,237 2000-2011 2,178 14,403 7,249 3,813 9,436 43,237 2000-2011 Federal Offshore U.S. 2,317 763 672 142 827 266 2000-2011 Pacific (California) 0 0 0 0 0 0 2000-2011 Louisiana & Alabama 1,261 674 587 108 697 243 2000-2011 Texas 1,056 89 85 34 130 23 2000-2011 Alaska 0 8 0 4 132 34 2000-2011 Lower 48 States 22,178 14,395 7,249 3,809 9,304 43,203 2000-2011 Alabama 188 303 11 2 270 586 2000-2011 Arkansas 4 298 19 49 393 6,724 2000-2011 California 154 165 1 0 2 48 2000-2011 Coastal Region Onshore 2 0 0 0 0 0 2000-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 2000-2011 San Joaquin Basin Onshore 152 165 1 0 2 47 2000-2011 State Offshore 0 0 0 0 0 1 2000-2011 Colorado 1,009 769 774 382 253 1,292 2000-2011

103

Nonassociated Natural Gas Estimated Production, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

7,092 18,022 19,066 19,981 20,779 21,899 1979-2011 7,092 18,022 19,066 19,981 20,779 21,899 1979-2011 Federal Offshore U.S. 2,206 2,178 1,745 1,779 1,660 1,210 1990-2011 Pacific (California) 2 2 2 1 1 0 1979-2011 Louisiana & Alabama 1,574 1,628 1,371 1,425 1,318 960 1981-2011 Texas 630 548 372 353 341 250 1981-2011 Alaska 192 164 149 136 145 152 1979-2011 Lower 48 States 16,900 17,858 18,917 19,845 20,634 21,747 1979-2011 Alabama 286 273 262 256 225 218 1979-2011 Arkansas 183 265 454 694 948 1,074 1979-2011 California 88 101 88 80 69 64 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 87 99 86 78 68 63 1979-2011 State Offshore 1 2 2 2 1 1 1979-2011 Colorado

104

Nonassociated Natural Gas Reserves Adjustments, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

,000 714 -184 5,046 1,774 2,325 1979-2011 ,000 714 -184 5,046 1,774 2,325 1979-2011 Federal Offshore U.S. -11 -46 -1 2 -41 73 1990-2011 Pacific (California) 0 0 0 -1 0 0 1979-2011 Louisiana & Alabama -10 1 -11 -3 -25 72 1981-2011 Texas -1 -47 10 6 -16 1 1981-2011 Alaska -49 1 -1 1 -2 -1 1979-2011 Lower 48 States 1,049 713 -183 5,045 1,776 2,326 1979-2011 Alabama -3 2 -7 42 47 -48 1979-2011 Arkansas -31 -22 -67 -8 -31 705 1979-2011 California -11 29 3 2 -3 -12 1979-2011 Coastal Region Onshore 0 0 0 1 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore -11 28 3 1 -3 -12 1979-2011 State Offshore 0 1 0 0 0 0 1979-2011 Colorado 44 91 -70 474 578 921 1979-2011 Florida 0 0 0 0 33 -26 1979-2011

105

Nonassociated Natural Gas New Reservoir Discoveries in Old Fields, Wet  

Gasoline and Diesel Fuel Update (EIA)

1,132 1,171 858 2,487 1,515 1,100 1979-2011 1,132 1,171 858 2,487 1,515 1,100 1979-2011 Federal Offshore U.S. 388 325 248 186 95 38 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 329 294 169 150 83 38 1981-2011 Texas 59 31 79 36 12 0 1981-2011 Alaska 2 0 5 0 0 3 1979-2011 Lower 48 States 1,130 1,171 853 2,487 1,515 1,097 1979-2011 Alabama 7 17 1 0 0 0 1979-2011 Arkansas 33 27 41 36 27 23 1979-2011 California 4 1 7 0 0 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 1 1 7 0 0 0 1979-2011 State Offshore 3 0 0 0 0 0 1979-2011 Colorado 27 24 17 0 29 0 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 3 0 2 0 1 1 1979-2011

106

Nonassociated Natural Gas Estimated Production, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

7,092 18,022 19,066 19,981 20,779 21,899 1979-2011 7,092 18,022 19,066 19,981 20,779 21,899 1979-2011 Federal Offshore U.S. 2,206 2,178 1,745 1,779 1,660 1,210 1990-2011 Pacific (California) 2 2 2 1 1 0 1979-2011 Louisiana & Alabama 1,574 1,628 1,371 1,425 1,318 960 1981-2011 Texas 630 548 372 353 341 250 1981-2011 Alaska 192 164 149 136 145 152 1979-2011 Lower 48 States 16,900 17,858 18,917 19,845 20,634 21,747 1979-2011 Alabama 286 273 262 256 225 218 1979-2011 Arkansas 183 265 454 694 948 1,074 1979-2011 California 88 101 88 80 69 64 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 87 99 86 78 68 63 1979-2011 State Offshore 1 2 2 2 1 1 1979-2011 Colorado

107

California Nonassociated Natural Gas Proved Reserves, Wet After...  

Annual Energy Outlook 2012 (EIA)

780 686 621 612 503 510 1979-2011 Adjustments -11 29 3 2 -3 -12 1979-2011 Revision Increases 67 80 113 97 50 118 1979-2011 Revision Decreases 49 186 129 60 87 32 1979-2011 Sales...

108

Ohio Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

Gasoline and Diesel Fuel Update (EIA)

01 926 886 799 742 684 1979-2011 Adjustments 110 92 -19 68 184 -87 1979-2011 Revision Increases 32 122 129 57 63 13 1979-2011 Revision Decreases 81 65 105 35 58 38 1979-2011 Sales...

109

,"New Mexico - East Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

29767,2377 30132,2331 30497,2214 30863,2117 31228,2001 31593,1750 31958,1901 32324,2030 32689,2131 33054,2290 33419,2073 33785,1948 34150,1860 34515,1791 34880,1648 35246,1612...

110

Louisiana - North Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 250 1980's 241 160 205 218 177 194 287 213 518 318 1990's 324 421 463 392 407 503 449 597 774 930...

111

Louisiana - North Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 279 134 247 241 284 141 190 1,259 1,157 51 2010's 564 5,009 - No Data Reported; -- Not Applicable;...

112

Michigan Nonassociated Natural Gas Proved Reserves, Wet After...  

Gasoline and Diesel Fuel Update (EIA)

2,925 3,512 3,105 2,728 2,903 2,472 1979-2011 Adjustments 112 -48 -24 -286 254 3 1979-2011 Revision Increases 406 791 140 334 255 207 1979-2011 Revision Decreases 290 210 407 307...

113

Colorado Nonassociated Natural Gas Proved Reserves, Wet After...  

Gasoline and Diesel Fuel Update (EIA)

16,141 20,642 22,159 22,199 23,001 23,633 1979-2011 Adjustments 44 91 -70 474 578 921 1979-2011 Revision Increases 981 3,823 3,154 1,661 2,985 2,522 1979-2011 Revision Decreases...

114

Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22,897 1990's 17,952 16,943 15,369 15,181 16,226 16,279 16,627 16,241 15,427 14,950 2000's 15,350 13,536 12,749 11,326 10,081 9,492 8,500 7,807 6,846 5,802 2010's 5,457 4,359 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

115

Federal Offshore, Gulf of Mexico, Texas Natural Gas Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Nonassociated, Wet After Lease Separation 2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Natural Gas Associated-Dissolved, Wet After Lease Separation 378 377...

116

Federal Offshore, Pacific (California) Natural Gas Reserves Summary...  

Annual Energy Outlook 2012 (EIA)

811 805 704 739 724 710 1977-2011 Natural Gas, Wet After Lease Separation 811 805 705 740 725 711 1979-2011 Natural Gas Nonassociated, Wet After Lease Separation 55 53 3 9 3 0...

117

Ohio Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2012 (EIA)

975 1,027 985 896 832 758 1977-2011 Natural Gas, Wet After Lease Separation 975 1,027 985 896 832 758 1979-2011 Natural Gas Nonassociated, Wet After Lease Separation 801 926 886...

118

Miscellaneous Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2012 (EIA)

138 239 270 349 350 379 1977-2011 Natural Gas, Wet After Lease Separation 139 241 272 349 363 393 1979-2011 Natural Gas Nonassociated, Wet After Lease Separation 120 226 263 271...

119

Table 3. Wet natural gas production and resources (trillion cubic ...  

U.S. Energy Information Administration (EIA)

2013 EIA/ARI unproved wet shale gas technically recoverable resources (TRR) 2012 USGS conventional unproved wet natural gas TRR, including reserve

120

Texas State Offshore Associated-Dissolved Natural Gas, Wet After...  

Annual Energy Outlook 2012 (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

122

Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

123

Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

124

Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

125

Colorado Natural Gas, Wet After Lease Separation Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

126

New Mexico - East Natural Gas, Wet After Lease Separation Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico - East Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade...

127

Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet After Lease Separation Proved Reserves...

128

Texas - RRC District 1 Natural Gas, Wet After Lease Separation...  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade...

129

Texas - RRC District 6 Natural Gas, Wet After Lease Separation...  

Annual Energy Outlook 2012 (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade...

130

California - Coastal Region Onshore Natural Gas, Wet After Lease ...  

U.S. Energy Information Administration (EIA)

California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Reserves Sales (Billion Cubic Feet)

131

Wet powder seal for gas containment  

DOE Patents (OSTI)

A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

Stang, L.G.

1979-08-29T23:59:59.000Z

132

Wet powder seal for gas containment  

DOE Patents (OSTI)

A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

Stang, Louis G. (Sayville, NY)

1982-01-01T23:59:59.000Z

133

Utah Natural Gas Wet After Lease Separation, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Utah Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic...

134

Chaoticity of the Wet Granular Gas  

E-Print Network (OSTI)

In this work we derive an analytic expression for the Kolmogorov-Sinai entropy of dilute wet granular matter, valid for any spatial dimension. The grains are modelled as hard spheres and the influence of the wetting liquid is described according to the Capillary Model, in which dissipation is due to the hysteretic cohesion force of capillary bridges. The Kolmogorov-Sinai entropy is expanded in a series with respect to density. We find a rapid increase of the leading term when liquid is added. This demonstrates the sensitivity of the granular dynamics to humidity, and shows that the liquid significantly increases the chaoticity of the granular gas.

A. Fingerle; S. Herminghaus; V. Yu. Zaburdaev

2007-05-22T23:59:59.000Z

135

Texas - RRC District 5 Natural Gas, Wet After Lease Separation ...  

U.S. Energy Information Administration (EIA)

Texas - RRC District 5 Natural Gas, Wet After Lease Separation Reserves New Field Discoveries (Billion Cubic Feet)

136

Texas - RRC District 4 Onshore Natural Gas, Wet After Lease ...  

U.S. Energy Information Administration (EIA)

Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet)

137

U.S. Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf of Mexico, TX Alaska Lower 48 States Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana Nebraska New Mexico NM, East NM, West New York North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC District 7C TX, RRC District 8 TX, RRC District 8A TX, RRC District 9 TX, RRC District 10 TX, State Offshore Utah Virginia West Virginia Wyoming Miscellaneous Period:

138

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

139

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

140

Utah Natural Gas, Wet After Lease Separation New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

142

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

143

,"Utah Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

144

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic...

145

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

146

,"Utah Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annua...

147

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Field Discoveries (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

148

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet)...

149

,"Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

150

,"Louisiana State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

151

,"California - Los Angeles Basin Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

152

,"California State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

153

,"California - Coastal Region Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

154

,"California Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

155

,"California - San Joaquin Basin Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

156

,"California Federal Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

157

,"California Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

158

,"Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

159

,"Ohio Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

160

,"Michigan Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

,"Michigan Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

162

,"Ohio Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

163

,"Estimated Production of Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production of Natural Gas, Wet After Lease Separation " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Lates...

164

,"Colorado Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

165

,"Colorado Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

166

Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet...  

Gasoline and Diesel Fuel Update (EIA)

Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet After Lease Separation, Proved Reserves from Greater than 200...

167

Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet...  

Annual Energy Outlook 2012 (EIA)

from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet After Lease Separation, Production from Greater than 200 Meters...

168

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Annual Energy Outlook 2012 (EIA)

Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves from Greater than 200 Meters Deep...

169

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Annual Energy Outlook 2012 (EIA)

Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production from Greater than 200 Meters Deep (Billion...

170

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Gasoline and Diesel Fuel Update (EIA)

Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production from Less than 200 Meters Deep (Billion Cubic...

171

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Annual Energy Outlook 2012 (EIA)

Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves from Less than 200 Meters Deep (Billion...

172

,"Texas - RRC District 5 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 5 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

173

,"Texas - RRC District 9 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 9 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

174

,"Texas Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

175

,"Texas Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

176

,"Texas State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

177

,"Texas - RRC District 2 Onshore Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

178

,"Texas - RRC District 10 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 10 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

179

,"Texas - RRC District 3 Onshore Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 3 Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

180

,"Texas State Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

,"Texas - RRC District 1 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 1 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

182

,"Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

183

,"Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

184

,"Texas - RRC District 4 Onshore Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

185

,"Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

186

,"Texas - RRC District 6 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 6 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

187

,"Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

188

,"Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

189

,"Texas - RRC District 8 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

190

,"Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

191

Texas State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,112 1,073 739 634 564 610 1990's 461 477 350 337 230 313 293 290 350 419 2000's 400 468 436 456 321 265 305 261 220 164 2010's 131 118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 TX, State Offshore Natural Gas Reserves Summary as of Dec. 31 Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

192

California State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 234 1980's 166 256 254 243 235 1990's 194 60 63 65 63 59 49 56 44 77 2000's 91 85 91 83 87 90 90 83 57 57 2010's 66 82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, State Offshore Natural Gas Reserves Summary as of Dec. 31 Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

193

Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After

194

Utah Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

5,146 6,391 6,643 7,257 6,981 7,857 1977-2011 Natural Gas, Wet After Lease Separation 5,211 6,463 6,714 7,411 7,146 8,108 1979-2011 Natural Gas Nonassociated, Wet After Lease...

195

Federal Offshore, Gulf of Mexico, Texas Natural Gas Reserves...  

Annual Energy Outlook 2012 (EIA)

,725 2,544 2,392 2,451 2,145 1,554 1981-2011 Natural Gas, Wet After Lease Separation 2,738 2,550 2,402 2,451 2,145 1,554 1981-2011 Natural Gas Nonassociated, Wet After Lease...

196

California Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

2,794 2,740 2,406 2,773 2,647 2,934 1977-2011 Natural Gas, Wet After Lease Separation 2,935 2,879 2,538 2,926 2,785 3,042 1979-2011 Natural Gas Nonassociated, Wet After Lease...

197

Michigan Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2012 (EIA)

3,065 3,630 3,174 2,763 2,919 2,505 1977-2011 Natural Gas, Wet After Lease Separation 3,117 3,691 3,253 2,805 2,975 2,549 1979-2011 Natural Gas Nonassociated, Wet After Lease...

198

California Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

794 2,740 2,406 2,773 2,647 2,934 1977-2011 Natural Gas, Wet After Lease Separation 2,935 2,879 2,538 2,926 2,785 3,042 1979-2011 Natural Gas Nonassociated, Wet After Lease...

199

Colorado Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2012 (EIA)

17,149 21,851 23,302 23,058 24,119 24,821 1977-2011 Natural Gas, Wet After Lease Separation 17,682 22,480 24,169 24,081 25,372 26,151 1979-2011 Natural Gas Nonassociated, Wet After...

200

Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 837 1980's 1,308 1,336 870 921 825 884 823 801 834 889 1990's 920 848 875 684 727 792 806 769 789 851 2000's 892 907 914 1,068 1,002 998 1,069 1,067 1,014 993 2010's 959 792 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Montana Natural Gas Reserves Summary as of Dec. 31

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

California - Los Angeles Basin Onshore Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 207 163 104 115 163 188 149 155 158 141 1990's 110 120 103 108 108 115 112 146 154 174 2000's 204 195 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Natural Gas Reserves Summary as of

202

California - Coastal Region Onshore Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 395 1980's 330 325 384 405 284 277 275 255 232 238 1990's 232 231 215 201 205 163 168 176 118 233 2000's 244 185 197 174 196 277 214 212 151 169 2010's 180 173 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Coastal Region Onshore Natural Gas Reserves Summary as of Dec.

203

Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,269 1,351 1,478 1,209 1,273 1990's 1,019 1,082 845 946 988 862 783 743 571 661 2000's 721 772 512 527 394 433 442 392 934 728 2010's 386 519 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Natural Gas Reserves Summary as of Dec. 31

204

Miscellaneous States Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Miscellaneous States Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 156 1980's 180 193 74 81 77 77 136 66 84 87 1990's 72 76 93 96 67 69 68 44 39 67 2000's 42 83 100 134 110 132 139 241 272 349 2010's 363 393 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Miscellaneous Natural Gas Reserves Summary as of Dec. 31

205

North Dakota Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) North Dakota Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 485 1980's 594 654 696 673 643 650 610 578 593 625 1990's 650 533 567 585 568 518 512 531 501 475 2000's 487 495 524 497 465 508 539 572 603 1,213 2010's 1,869 2,652 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 North Dakota Natural Gas Reserves Summary as of Dec. 31

206

Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

207

Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

208

Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

209

Texas - RRC District 3 Onshore Natural Gas, Wet After Lease Separation...  

Annual Energy Outlook 2012 (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)...

210

TX, RRC District 1 Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

6,127 1979-2011 Natural Gas Nonassociated, Wet After Lease Separation 1,048 1,029 987 1,456 2,332 5,227 1979-2011 Natural Gas Associated-Dissolved, Wet After Lease Separation 61...

211

Federal Offshore U.S. Natural Gas Reserves Summary as of Dec...  

Annual Energy Outlook 2012 (EIA)

5,360 14,439 13,546 12,552 11,765 10,420 1990-2011 Natural Gas, Wet After Lease Separation 15,750 14,813 13,892 12,856 12,120 10,820 1990-2011 Natural Gas Nonassociated, Wet After...

212

California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 307 1980's 265 265 325 344 256 254 261 243 220 233 1990's 228 220 196 135 145 109 120 129 116 233 2000's 244 185 197 173 188 269 208 211 150 168 2010's 178 172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

213

Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 51 1980's 122 89 81 108 77 91 98 97 101 68 1990's 86 66 61 53 55 53 51 42 52 67 2000's 70 85 94 112 130 161 195 219 197 312 2010's 302 270 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

214

Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 765 1980's 916 1,040 832 775 690 632 567 488 249 237 1990's 241 192 160 120 134 133 255 287 183 260 2000's 186 168 159 139 107 98 90 73 78 53 2010's 73 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

215

Utah Natural Gas, Wet After Lease Separation Reserves Sales ...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

216

Utah Natural Gas, Wet After Lease Separation Reserves Acquisitions...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

217

Utah Natural Gas, Wet After Lease Separation Reserves Adjustments...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

218

Utah Natural Gas, Wet After Lease Separation Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

219

Utah Natural Gas, Wet After Lease Separation Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

220

Utah Natural Gas, Wet After Lease Separation Reserves Extensions...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Utah Natural Gas, Wet After Lease Separation Reserves New Field...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

222

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

223

Utah Natural Gas, Wet After Lease Separation Reserves Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

224

California Federal Offshore Associated-Dissolved Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 249 1980's 307 1,110 1,249 1,312 1,252 1990's 1,229 995 987 976 1,077 1,195 1,151 498 437 488 2000's 500 490 459 456 412 776 756 752 702 731 2010's 722 711 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

225

Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 733 1980's 883 758 719 824 774 689 577 569 491 432 1990's 408 437 352 328 357 326 347 281 228 227 2000's 214 159 214 269 193 153 192 179 148 77 2010's 72 77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

226

Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 34 12 27 31 14 25 41 13 28 39 1990's 22 14 11 9 11 32 28 31 17 54 2000's 19 19 20 14 12 14 19 15 9 78 2010's 10 104 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

227

Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

228

Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 1980's 194 184 174 194 189 157 150 145 157 145 1990's 67 136 133 93 85 104 89 56 38 41 2000's 39 30 38 37 40 46 44 37 12 20 2010's 29 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

229

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Gasoline and Diesel Fuel Update (EIA)

(Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

230

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Annual Energy Outlook 2012 (EIA)

(Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

231

Air Toxics Control by Wet Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

This report provides an update on three tasks associated with the EPRI project, Air Toxics Control by Wet Flue Gas Desulfurization (FGD) Systems. The first task is an investigation of the factors that influence and control the oxidation-reduction potential (ORP) at which a limestone forced oxidation FGD system operates. Both a literature review and a numerical analysis of full-scale wet FGD data were conducted. Results from this task are presented and discussed in Section 2 of the ...

2012-12-31T23:59:59.000Z

232

Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Kentucky Associated-Dissolved Natural Gas Proved Reserves, Wet After

233

Florida Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 108 1980's 122 99 86 64 90 81 69 62 69 57 1990's 53 45 55 59 117 110 119 112 106 100 2000's 93 96 102 92 88 87 50 110 1 7 2010's 30 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Florida Associated-Dissolved Natural Gas Proved Reserves, Wet After

234

Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46,803 46,620 44,319 42,192 41,404 41,554 1990's 41,411 39,288 38,141 37,847 39,020 39,736 41,592 41,108 40,793 43,350 2000's 45,419 46,462 47,491 48,717 53,275 60,178 65,805 76,357 81,843 85,034 2010's 94,287 104,454 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Texas Natural Gas Reserves Summary as of Dec. 31

235

Mississippi Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Mississippi Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,511 1980's 1,776 2,042 1,803 1,603 1,496 1,364 1,304 1,223 1,146 1,108 1990's 1,129 1,061 873 800 653 667 634 583 662 681 2000's 620 663 746 748 692 758 816 958 1,035 922 2010's 858 868 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Mississippi Natural Gas Reserves Summary as of Dec. 31

236

Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 504 1980's 536 561 592 600 647 806 883 940 957 1,015 1990's 1,047 1,187 1,126 1,036 1,025 1,102 1,046 1,429 1,295 1,530 2000's 1,837 1,950 1,999 1,971 1,982 2,240 2,369 2,588 2,846 2,919 2010's 2,785 2,128 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Kentucky Natural Gas Reserves Summary as of Dec. 31

237

California Federal Offshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 322 1980's 414 1,337 1,466 1,570 1,519 1990's 1,469 1,174 1,136 1,123 1,187 1,289 1,266 556 489 536 2000's 576 540 515 511 459 825 811 805 705 740 2010's 725 711 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore, Pacific (California) Natural Gas Reserves Summary

238

Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 693 1980's 682 683 1990's 4,184 5,460 5,870 5,212 4,898 4,930 5,100 5,013 4,643 4,365 2000's 4,269 3,958 3,922 4,345 4,159 4,006 3,963 4,036 3,379 2,948 2010's 2,724 2,570 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Alabama Natural Gas Reserves Summary as of Dec. 31

239

California Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,842 1980's 5,137 4,084 3,893 3,666 3,513 1990's 3,311 3,114 2,892 2,799 2,506 2,355 2,193 2,390 2,332 2,505 2000's 2,952 2,763 2,696 2,569 2,773 3,384 2,935 2,879 2,538 2,926 2010's 2,785 3,042 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 California Natural Gas Reserves Summary as of Dec. 31

240

Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,676 13,334 12,852 12,620 12,912 1990's 12,151 11,363 10,227 9,541 10,145 9,891 10,077 10,036 9,480 9,646 2000's 9,512 10,040 9,190 9,538 9,792 10,679 10,710 10,292 11,816 20,970 2010's 29,517 30,545 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Louisiana Natural Gas Reserves Summary as of Dec. 31

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 2,446 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Virginia Natural Gas Reserves Summary as of Dec. 31

242

California Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,961 1980's 3,345 2,660 2,663 2,546 2,507 1990's 2,400 2,213 2,093 1,982 1,698 1,619 1,583 1,820 1,879 2,150 2000's 2,198 1,922 1,900 1,810 2,006 2,585 2,155 2,193 1,917 2,314 2010's 2,282 2,532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

243

Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,516 1980's 951 1,265 1,430 1,882 1,576 1,618 1,562 1,650 2,074 1,644 1990's 1,722 1,631 1,533 1,722 1,806 1,488 1,702 1,861 1,848 1,780 2000's 1,740 1,782 2,225 2,497 2,371 2,793 3,064 3,377 3,594 7,018 2010's 14,068 26,719 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

244

California - San Joaquin Basin Onshore Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,037 1980's 4,434 4,230 4,058 3,964 3,808 3,716 3,404 3,229 3,033 2,899 1990's 2,775 2,703 2,511 2,425 2,130 2,018 1,864 2,012 2,016 2,021 2000's 2,413 2,298 2,190 2,116 2,306 2,831 2,470 2,430 2,249 2,609 2010's 2,447 2,685 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

245

Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,360 2,391 2,128 1,794 1,741 1990's 1,554 1,394 1,167 926 980 1,001 1,039 1,016 911 979 2000's 807 796 670 586 557 588 561 641 1,235 1,072 2010's 679 639 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

246

Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,580 1980's 13,407 13,049 12,153 11,553 10,650 10,120 9,416 9,024 8,969 8,934 1990's 8,492 7,846 7,019 6,219 6,558 6,166 6,105 6,137 5,966 5,858 2000's 5,447 5,341 4,395 3,874 3,557 3,478 3,473 3,463 2,916 2,969 2010's 2,995 2,615 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

247

Michigan Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Michigan Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,334 1980's 1,551 1,252 1,200 1,353 1,193 1,064 1,242 1,571 1,434 1,443 1990's 1,330 1,404 1,290 1,218 1,379 1,344 2,125 2,256 2,386 2,313 2000's 2,772 3,032 3,311 3,488 3,154 2,961 3,117 3,691 3,253 2,805 2010's 2,975 2,549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

248

West Virginia Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) West Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,669 1980's 2,559 1,944 2,252 2,324 2,246 2,177 2,272 2,360 2,440 2,342 1990's 2,329 2,672 2,491 2,598 2,702 2,588 2,793 2,946 2,968 3,040 2000's 3,062 2,825 3,498 3,399 3,509 4,572 4,654 4,881 5,266 6,090 2010's 7,163 10,532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

249

Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,725 1980's 1,796 1,821 1,974 2,081 2,240 2,032 2,011 2,018 2,000 1,782 1990's 1,739 1,672 1,752 1,555 1,610 1,566 1,472 1,479 1,332 1,546 2000's 1,584 1,619 1,654 1,666 1,837 1,967 2,271 3,306 5,628 10,872 2010's 14,181 16,374 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

250

Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,824 1980's 10,065 10,443 10,128 10,183 9,981 9,844 11,093 11,089 10,530 10,509 1990's 10,004 9,946 10,302 9,872 9,705 9,093 8,145 7,328 6,862 6,248 2000's 5,682 5,460 5,329 5,143 5,003 4,598 4,197 4,248 3,795 3,500 2010's 3,937 3,747 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

251

Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 1980's 200 259 206 173 208 167 190 219 177 236 1990's 510 682 762 1,162 1,088 1,072 1,055 533 772 781 2000's 960 1,025 1,097 1,186 1,293 1,326 1,541 1,838 2,010 1,882 2010's 2,371 2,518 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

252

Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,834 1980's 9,413 9,659 10,155 10,728 11,014 11,229 10,393 10,572 10,903 11,276 1990's 10,433 10,433 11,305 11,387 11,351 12,712 13,084 14,321 14,371 14,809 2000's 17,211 19,399 21,531 22,716 23,640 24,722 24,463 30,896 32,399 36,748 2010's 36,526 36,930 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

253

2009 Update on Mercury Capture by Wet Flue Gas Desulfurization  

Science Conference Proceedings (OSTI)

This technical update presents results of four research and development projects focused on understanding and enhancing mercury emissions control associated with wet flue gas desulfurization (FGD) technology. The first project was directed at characterizing partitioning of elemental and oxidized mercury species in solid, liquid, and gas phases within process streams involved in an operating commercial system. The second project explored dewatering options with an objective of producing low-mercury-conten...

2009-12-15T23:59:59.000Z

254

,"U.S. Federal Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

255

,"U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

256

,"U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

257

,"Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

258

,"Texas - RRC District 8A Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8A Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

259

,"Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

260

,"Texas - RRC District 7B Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7B Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

,"Texas - RRC District 7C Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7C Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

262

,"Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

263

U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report  

Science Conference Proceedings (OSTI)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

NONE

1998-12-01T23:59:59.000Z

264

Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 449 251 260 207 231 1990's 207 207 154 157 168 148 157 130 98 120 2000's 129 145 84 79 61 63 56 65 686 513 2010's 107 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Associated-Dissolved Natural Gas Proved Reserves,

265

New York Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New York Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 211 1980's 208 264 229 295 389 369 457 410 351 368 1990's 354 331 329 264 242 197 232 224 218 221 2000's 322 318 315 365 324 349 363 375 389 196 2010's 281 253 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 New York Natural Gas Reserves Summary as of Dec. 31

266

New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 151 1980's 156 150 146 180 194 181 214 213 259 178 1990's 184 156 127 107 97 119 108 106 98 92 2000's 115 99 103 89 90 98 82 87 86 82 2010's 105 143 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

267

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

268

Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 167 1980's 185 139 112 132 110 115 132 115 103 101 1990's 114 115 94 93 75 67 82 51 60 52 2000's 40 105 66 85 80 83 82 83 85 83 2010's 79 127 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

269

North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717 2,511 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

270

Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,047 1980's 1,417 800 984 1,635 1,178 938 898 594 480 589 1990's 371 376 381 343 315 355 399 391 342 402 2000's 469 340 346 304 208 184 174 101 99 97 2010's 90 74 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

271

Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After  

Gasoline and Diesel Fuel Update (EIA)

4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,416 1980's 1,292 1,005 890 765 702 684 596 451 393 371 1990's 301 243 228 215 191 209 246 368 394 182 2000's 176 140 150 136 165 148 110 117 127 96 2010's 91 61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

272

California State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 226 1980's 160 244 232 221 206 1990's 188 55 59 63 59 56 47 54 39 58 2000's 86 80 85 76 85 89 85 79 54 53 2010's 63 79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

273

Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 209 1980's 172 180 216 175 170 260 241 205 204 251 1990's 333 401 361 191 151 248 446 68 51 67 2000's 69 43 47 48 45 57 61 72 60 67 2010's 267 900 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

274

West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 76 1980's 122 63 83 86 73 73 65 150 141 98 1990's 86 159 198 190 133 74 71 59 43 88 2000's 98 48 21 23 20 19 16 16 23 24 2010's 29 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

275

Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 955 1980's 921 806 780 747 661 570 517 512 428 430 1990's 407 352 308 288 299 245 252 235 204 202 2000's 115 65 70 81 76 109 118 137 72 72 2010's 134 924 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

276

,"U.S. Natural Gas Proved Reserves, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2011,"6301979"...

277

Status and outlook for shale gas and tight oil development in...  

Gasoline and Diesel Fuel Update (EIA)

10 15 20 25 30 35 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 Associated with oil Coalbed methane Tight gas Shale gas Alaska Non-associated onshore Non-associated...

278

Shale Gas and the Outlook for U.S. Natural Gas Markets and ...  

U.S. Energy Information Administration (EIA)

Shale Gas and the Outlook for U.S. Natural Gas Markets and Global Gas Resources ... Associated with oil Coalbed methane Net imports Non-associated ...

279

Ohio Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Ohio Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,479 1980's 1,699 965 1,142 2,031 1,542 1,333 1,420 1,071 1,229 1,275 1990's 1,215 1,181 1,161 1,106 1,095 1,054 1,114 985 890 1,179 2000's 1,186 971 1,118 1,127 975 898 975 1,027 985 896 2010's 832 758 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Ohio Natural Gas Reserves Summary as of Dec. 31

280

Texas - RRC District 7B Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 842 1980's 862 947 947 1,210 937 850 833 828 840 560 1990's 627 536 550 580 513 539 610 559 510 465 2000's 356 290 294 383 364 932 1,663 2,412 2,750 2,424 2010's 2,625 3,887 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 TX, RRC District 7B Natural Gas Reserves Summary as of Dec. 31

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 31,849 29,914 28,186 27,586 28,813 29,518 29,419 29,011 27,426 26,598 2000's 27,467 27,640 25,862 23,033 19,747 18,252 15,750 14,813 13,892 12,856 2010's 12,120 10,820 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore U.S. Natural Gas Reserves Summary as of Dec. 31

282

Table 3. Changes to proved reserves of wet natural gas by source, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Changes to proved reserves of wet natural gas by source, 2011" Changes to proved reserves of wet natural gas by source, 2011" "trillion cubic feet" ,"Proved",,"Revisions &",,"Proved" ,"Reserves","Discoveries","Other Changes","Production","Reserves" "Source of Gas","Year-End 2010",2011,2011,2011,"Year-End 2011" "Coalbed Methane",17.5,0.7,0.4,-1.8,16.8 "Shale",97.4,33.7,8.5,-8,131.6 "Other (Conventional & Tight)" " Lower 48 Onshore",181.7,14.7,-3.5,-12.8,180.1 " Lower 48 Offshore",12.1,0.8,-0.4,-1.7,10.8 " Alaska",8.9,0,0.9,-0.3,9.5 "TOTAL",317.6,49.9,5.9,-24.6,348.8 "Source: U.S. Energy Information Administration, Form EIA-23, "Annual Survey of Domestic Oil and Gas Reserves."

283

Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,772 1990's 23,050 22,028 20,006 19,751 21,208 21,664 22,119 22,428 21,261 20,172 2000's 20,466 20,290 19,113 17,168 15,144 14,073 12,201 11,458 10,785 9,665 2010's 9,250 8,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

284

Texas - RRC District 5 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,189 1980's 1,192 1,309 1,369 1,529 1,955 2,140 2,238 2,224 2,090 1,925 1990's 1,951 1,930 1,818 1,931 2,074 1,923 2,141 1,749 1,995 2,350 2000's 3,217 4,289 4,653 5,460 6,583 9,611 12,648 17,274 20,460 22,623 2010's 24,694 28,187 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

285

Texas - RRC District 9 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 808 1980's 751 1,070 1,264 1,100 1,060 1,043 1,024 984 927 829 1990's 917 874 797 814 863 868 870 932 864 1,360 2000's 1,854 2,552 3,210 3,639 4,555 4,734 6,765 7,985 9,548 11,522 2010's 13,172 10,920 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

286

Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8,559 1980's 8,366 8,256 8,692 8,612 8,796 8,509 8,560 7,768 7,284 7,380 1990's 7,774 7,339 7,041 7,351 7,870 8,021 8,123 8,483 8,824 9,351 2000's 10,118 10,345 9,861 9,055 9,067 9,104 8,474 8,327 7,930 7,057 2010's 7,392 10,054 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

287

Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,017 1980's 1,284 2,057 2,253 2,472 2,325 2,288 2,205 2,341 1,984 1,940 1990's 1,887 2,001 2,018 2,198 1,917 1,701 1,747 2,005 2,502 3,371 2000's 4,472 4,753 4,274 3,617 3,951 4,359 5,211 6,463 6,714 7,411 2010's 7,146 8,108 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

288

New Mexico Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,391 1980's 13,956 14,562 13,082 12,371 12,027 11,438 12,540 12,621 18,483 16,597 1990's 18,529 19,758 20,399 19,939 18,588 18,747 17,925 16,700 16,259 16,750 2000's 18,509 18,559 18,453 18,226 19,687 19,344 19,104 18,397 17,347 16,644 2010's 16,529 16,138 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

289

Texas - RRC District 8 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,718 1980's 9,785 9,250 8,992 9,078 8,294 8,250 8,330 7,871 7,810 7,531 1990's 7,391 6,793 6,534 6,131 6,018 6,052 6,050 6,030 5,547 6,122 2000's 6,136 6,007 6,056 5,835 6,002 6,800 6,855 7,303 7,586 7,440 2010's 8,105 8,088 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

290

Texas - RRC District 10 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 10 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,289 1980's 6,927 6,720 6,731 6,485 6,060 6,044 5,857 5,512 5,300 5,213 1990's 4,919 5,061 4,859 4,478 4,669 4,910 4,845 4,613 4,744 4,688 2000's 4,433 4,263 4,299 4,510 5,383 5,430 5,950 6,932 7,601 7,594 2010's 8,484 8,373 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

291

U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,773 6,487 6,315 6,120 6,738 7,471 7,437 7,913 7,495 7,093 2000's 7,010 8,649 8,090 7,417 6,361 5,904 4,835 4,780 5,106 5,223 2010's 5,204 5,446 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

292

Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,034 1980's 2,566 2,726 2,565 2,637 2,626 2,465 2,277 2,373 2,131 1,849 1990's 1,825 1,479 1,484 1,425 1,468 1,371 1,430 1,732 1,720 1,974 2000's 2,045 1,863 1,867 1,849 1,934 2,175 2,166 2,386 2,364 1,909 2010's 2,235 3,690 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

293

Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,304 1980's 2,134 1,871 1,789 1,582 1,488 1,792 1,573 1,380 1,338 1,273 1990's 1,106 995 853 649 678 720 627 599 630 599 2000's 492 483 427 368 389 427 415 503 471 506 2010's 499 490 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

294

Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,832 10,753 9,735 9,340 9,095 9,205 1990's 8,999 8,559 8,667 7,880 7,949 7,787 8,160 7,786 7,364 7,880 2000's 6,833 6,089 6,387 6,437 6,547 7,003 7,069 7,530 7,559 8,762 2010's 10,130 13,507 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

295

New Mexico - West Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico - West Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,085 1980's 10,157 10,686 9,377 8,834 8,535 8,128 9,558 9,488 15,259 13,266 1990's 14,988 16,287 16,981 16,601 15,253 15,540 14,728 13,692 13,220 13,384 2000's 14,511 14,640 14,442 14,565 15,722 15,212 14,809 14,010 12,941 12,086 2010's 11,809 11,254 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

296

Texas - RRC District 8A Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,556 1980's 1,465 1,545 1,457 1,345 1,315 1,353 1,309 1,301 1,291 1,550 1990's 1,547 1,542 1,598 1,463 1,587 1,333 1,294 1,247 1,115 1,557 2000's 1,215 1,190 1,167 1,137 1,281 1,471 1,384 1,531 1,257 1,289 2010's 1,228 1,289 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

297

Texas - RRC District 7C Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 7C Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,080 1980's 2,543 2,750 2,928 2,855 3,169 3,255 3,039 3,032 3,101 3,497 1990's 3,829 3,592 3,621 3,578 3,660 3,468 4,063 3,843 3,496 3,593 2000's 4,132 3,757 4,167 4,791 5,190 5,702 5,727 6,028 5,529 5,430 2010's 5,432 5,236 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

298

Enhanced Control of Mercury by Wet Flue Gas Desulfurization Systems - Site 3 Topical Report  

Science Conference Proceedings (OSTI)

Researchers conducted field tests to evaluate the ability of a variety of materials to oxidize vapor-phase elemental mercury at a coal-fired power plant equipped with a wet flue gas desulfurization (FGD) system. Results, while confounded by measurement difficulties, showed that under bituminous coal flue gas conditions, two catalysts, Pd #1 and Carbon #6, continued to oxidize at least 85 percent of the inlet elemental mercury after three months.

2002-02-06T23:59:59.000Z

299

Enhanced Control of Mercury by Wet Flue Gas Desulfurization Systems - Site 2 Results  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy and EPRI are co-funding this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project is investigating catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installation...

2000-11-28T23:59:59.000Z

300

,"Crude Oil and Lease Condensate","Wet Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Changes to proved reserves, 2011" Changes to proved reserves, 2011" ,"Crude Oil and Lease Condensate","Wet Natural Gas" ,"(billion barrels)","(trillion cubic feet)" "U.S. proved reserves at December 31, 2011",25.18,317.647 " Total discoveries",3.68,49.9 " Net revisions",1.41,-0.1 " Net Adjustments, Sales, Acquisitions",0.74,6 " Production",-2.06,-24.6 "Net additions to U.S. proved reserves",3.77,31.2 "Reserves at December 31, 2011",28.95,348.8 "Percentage change in proved reserves",0.15,0.098 "Notes: Wet natural gas includes natural gas plant liquids. Columns may not add to total due to independent rounding." "Percent change calculated from unrounded numbers."

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New  

Gasoline and Diesel Fuel Update (EIA)

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 264 1980's 369 271 365 326 296 341 189 155 339 174 1990's 250 334 292 163 202 634 338 187 218 424 2000's 249 477 331 124 97 79 65 73 820 169 2010's 186 160 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas New Reservoir Discoveries in Old Fields, Wet After Lease Separation

302

New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,823 1980's 1,689 1,649 1,520 1,503 1,569 1,490 1,446 1,445 1,453 1,378 1990's 1,435 1,554 1,597 1,585 1,641 1,678 1,693 1,420 1,443 1,578 2000's 1,588 1,447 1,482 1,545 1,578 1,661 1,772 1,841 1,755 1,982 2010's 2,213 2,552 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

303

New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,672 1980's 1,533 1,499 1,374 1,323 1,375 1,309 1,232 1,232 1,194 1,200 1990's 1,251 1,398 1,470 1,478 1,544 1,559 1,585 1,314 1,345 1,486 2000's 1,473 1,348 1,379 1,456 1,488 1,563 1,690 1,754 1,669 1,900 2010's 2,108 2,409 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

304

Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32,208 1980's 33,443 32,870 31,268 31,286 30,282 29,515 28,684 27,457 26,609 26,611 1990's 26,242 25,088 24,701 23,551 23,913 24,532 24,715 24,666 23,385 24,206 2000's 23,065 23,232 23,165 22,285 21,180 21,874 20,754 21,916 22,396 25,290 2010's 27,850 34,288 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

305

Lower 48 States Natural Gas, Wet After Lease Separation Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Lower 48 States Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176,060 1980's 172,864 176,385 174,252 174,755 171,508 167,979 167,754 162,713 167,820 166,409 1990's 168,183 165,672 163,584 160,504 162,126 163,901 165,851 165,048 162,400 166,304 2000's 177,179 182,842 187,028 188,797 192,727 205,071 210,083 235,767 247,269 274,696 2010's 308,730 339,298 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

306

Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 27,217 1980's 28,567 28,676 30,814 30,408 30,356 31,092 30,893 30,732 6,269 6,198 1990's 6,927 6,729 6,723 6,494 6,487 6,265 6,080 7,716 7,275 7,209 2000's 6,768 6,592 6,376 6,267 6,469 6,362 8,886 10,752 6,627 8,093 2010's 7,896 8,535 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

307

EPRI Environmental Control Technology Center: FGD Wet Scrubber Performance At High Flue Gas Velocities  

Science Conference Proceedings (OSTI)

This report summarizes the impact of operating a wet flue gas desulfurization scrubber system at high flue gas velocities up to 20ft/sec (6.1 m/sec). It includes results for countercurrent spray, tray, and packing designs a variety of nozzle types. The report also describes the effect of adding dibasic acid and the impact of operation of state-of-the-art mist elimination systems. These results will be useful for planning compliance with SO2 emission regulations whether a new system is planned or addition...

1997-01-28T23:59:59.000Z

308

Federal Offshore California Nonassociated Natural Gas Proved...  

Annual Energy Outlook 2012 (EIA)

55 53 3 9 3 0 1979-2011 Adjustments 0 0 0 -1 0 0 1979-2011 Revision Increases 8 0 0 8 0 0 1979-2011 Revision Decreases 0 0 48 0 5 3 1979-2011 Sales 0 0 0 0 0 0 2000-2011...

309

Greenhouse gas fluxes following tillage and wetting in a wheat-fallow cropping system  

SciTech Connect

Little is known about the relative contributions of episodic tillage and precipitation events to annual greenhouse gas emissions from soil. Consequently, the authors measured carbon dioxide (CO{sub 2}), nitrous oxide (N{sub 2}O), and methane (CH{sub 4}) fluxes from soil in a wheat-fallow cropping system in western Nebraska using vented surface chambers, before and immediately after tillage and wetting with 5.1 cm of water, during the fallow period in 1995/1996. Replicated fallow management treatments included no-tillage, subtillage, and plow representing a wide range in degree of soil disturbance. Soil bulk density, water-filled pore space, electrical conductivity (EC{sub 1:1}), nitrate (NO{sub 3}), and pH within the top 30.5 cm soil, and soil temperature at 0 to 7.6 cm were measured to assess their correlation with variations in gas flux and tillage and wetting. Atmospheric concentrations above the soil (at {approximately} 40 cm) increased by 15% for CO{sub 2} and 9 to 31% for N{sub 2}O and 6 to 16% for CH{sub 4} within 1 min after tillage and returned to background concentrations within 2 h. Except immediately after tillage, net CH{sub 4} flux was negative, from the atmosphere into soil, and is referred to as CH{sub 4} uptake. Overall, increases (1.5--4-fold) in CO{sub 2} and N{sub 2}O losses from soil, and CH{sub 4} uptake by soil were short lived and returned to background levels within 8 to 24 h after tillage. Losses of CO{sub 2} and N{sub 2}O increased to 1.7 and 5 times background emissions, respectively, for 24 h following wetting, while CH{sub 4} uptake declined by about 60% for 3 to 14 d after wetting. Water-filled pore space in the surface soil fell below 60% within 24 h after saturation and exhibited an inverse relationship (R{sup 2} = 0.66) with CH{sub 4} uptake. A significant decline in soil NO{sub 3} and EC{sub 1:1} in the top 7.6 cm occurred following wetting. Under the experimental conditions, and the expected frequency of tillage and wetting events, failure to include these short-lived episodic gas pulses in annual flux estimations may underestimate annual CO{sub 2} and N{sub 2}O loss up to 13 and 24%, respectively, and overestimate CH{sub 4} uptake by up to 18% in this cropping system.

Kessavalou, A.; Drijber, R.A. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Agronomy; Doran, J.W. [Dept. of Agriculture, Lincoln, NE (United States)]|[Univ. of Nebraska, Lincoln, NE (United States); Mosier, A.R. [Dept. of Agriculture, Fort Collins, CO (United States)

1998-09-01T23:59:59.000Z

310

Table 9. Total U.S. proved reserves of wet natural gas and dry natural gas, 2001-2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Total U.S. proved reserves of wet natural gas and dry natural gas, 2001-2011 : Total U.S. proved reserves of wet natural gas and dry natural gas, 2001-2011 billion cubic feet Revisions a Net of Sales b New Reservoir Proved d Change Net and and New Field Discoveries Total c Estimated Reserves from Adjustments Revisions Adjustments Acquisitions Extensions Discoveries in Old Fields Discoveries Production 12/31 Prior Year Year (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) Wet Natural Gas (billion cubic feet) 2001 1,849 -2,438 -589 2,715 17,183 3,668 2,898 23,749 20,642 191,743 5,233 2002 4,006 1,038 5,044 428 15,468 1,374 1,752 18,594 20,248 195,561 3,818 2003 2,323 -1,715 608 1,107 17,195 1,252 1,653 20,100 20,231 197,145 1,584 2004 170 825 995 1,975 19,068 790 1,244 21,102 20,017 201,200 4,055 2005 1,693 2,715 4,408 2,674 22,069 973 1,243 24,285 19,259 213,308 12,108 2006 946 -2,099 -1,153 3,178 22,834 425 1,197 24,456 19,373 220,416

311

Topsoe`s Wet gas Sulfuric Acid (WSA) process: An alternative technology for recovering refinery sulfur  

SciTech Connect

The Topsoe Wet gas Sulfuric Acid (WSA) process is a catalytic process which produces concentrated sulfuric acid from refinery streams containing sulfur compounds such as H{sub 2}S (Claus plant feed), Claus plant tail gas, SO{sub 2} (FCC off-gas, power plants), and spent sulfuric acid (alkylation acid). The WSA process recovers up to 99.97% of the sulfur value in the stream as concentrated sulfuric acid (93--98.5 wt%). No solid waste products or waste water is produced and no chemicals are consumed in the process. The simple process layout provides low capital cost and attractive operating economy. Twenty four commercial WSA plants have been licensed. The WSA process is explained in detail and comparisons with alternative sulfur management technology are presented. Environmental regulations applying to SO{sub x} abatement and sulfuric acid production plants are explained in the context of WSA plant operation.

Ward, J.W. [Haldor Topsoe, Inc., Houston, TX (United States)

1995-09-01T23:59:59.000Z

312

Model predictive control of a wet limestone flue gas desulfurization pilot plant  

SciTech Connect

A model predictive control (MPC) strategy based on a dynamic matrix (DMC) is designed and applied to a wet limestone flue gas desulfurization (WLFGD) pilot plant to evaluate what enhancement in control performance can be achieved with respect to a conventional decentralized feedback control strategy. The results reveal that MPC can significantly improve both reference tracking and disturbance rejection. For disturbance rejection, the main control objective in WLFGD plants, selection of tuning parameters and sample time, is of paramount importance due to the fast effect of the main disturbance (inlet SO{sub 2} load to the absorber) on the most important controlled variable (outlet flue gas SO{sub 2} concentration). The proposed MPC strategy can be easily applied to full-scale WLFGD plants.

Perales, A.L.V.; Ollero, P.; Ortiz, F.J.G.; Gomez-Barea, A. [University of Seville, Seville (Spain). Dept. of Chemical & Environmental Engineering

2009-06-15T23:59:59.000Z

313

Table 10. Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 8,917 -2 938 207 36 222 4 0 3 328 9,511 Lower 48 States 308,730 2,717 55,077 55,920 44,539 47,651 47,631 987 1,257 24,293 339,298 Alabama 2,724 -45 472 163 595 398 3 2 0 226 2,570 Arkansas 14,181 729 631 324 6,762 6,882 2,094 0 23 1,080 16,374 California 2,785 917 1,542 1,959 49 55 75 0 0 324 3,042 Coastal Region Onshore 180 15 21 32 0 0 1 0 0 12 173 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 2,447 895 1,498

314

U.S. Natural Gas, Wet After Lease Separation New Reservoir Discoveries in  

Gasoline and Diesel Fuel Update (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,637 1980's 2,648 3,080 3,520 3,071 2,778 3,053 1,855 1,556 1,979 2,313 1990's 2,492 1,655 1,773 1,930 3,606 2,518 3,209 2,455 2,240 2,265 2000's 2,463 2,898 1,752 1,653 1,244 1,243 1,197 1,244 1,678 2,656 2010's 1,701 1,260 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: New Reservoir Discoveries in Old Fields of Natural Gas, Wet After

315

Table 15. Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old FieldsProduction Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 97,449 1,584 25,993 23,455 22,694 27,038 32,764 232 699 7,994 131,616 Alabama 0 0 0 0 0 0 0 0 0 0 0 Arkansas 12,526 655 502 141 6,087 6,220 2,073 0 0 940 14,808 California 0 1 912 0 0 0 43 0 0 101 855 Colorado 4 0 4 0 0 0 5 0 0 3 10 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 0 0 0 0 0 0 0 0 0 0 0 Kentucky 10 0 44 11 45 45 2 0 0 4 41 Louisiana 20,070 -172 2,002 3,882 3,782 4,291 5,367 0 140 2,084 21,950 North Onshore 20,070 -172 2,002 3,882 3,782 4,291 5,367

316

Recycle/reuse of boiler chemical cleaning wastes in wet limestone flue gas desulfurization (FGD) systems  

Science Conference Proceedings (OSTI)

Boiler chemical cleaning wastes (BCCW) are generated by the periodic waterside cleaning of utility boilers to remove metallic deposits from boiler tube surfaces. Depending on boiler metallurgy, BCCW generally contain high concentrations of iron and copper or both, as well as other heavy metals such as chromium, lead, nickel, and zinc. BCCW treatment and disposal methods include precipitation, coponding in an ash pond, evaporation in the fireside of an operating boiler (for organic solvents), and contracted off-site disposal. Depending on the type of BCCW chemical treatment methods achieve varying degrees of success. BCCW which contain organic chelating agents can be especially difficult to treat to national pollutant discharge elimination system (NPDES) limits (1 mg/L for both iron and copper) with conventional lime precipitation.Research is being done to evaluate different BCCW treatment and disposal methods. One waste management option under consideration is reuse of BCCW in utility wet flue gas desulfurization (FGD) systems. To investigate this option, a series of laboratory tests were performed in which five different types of BCCW were added to the reaction tank of EPRI's bench-scale wet limestone FGD system. This paper presents the results and conclusions from this study.

Stohs, M.; Owens, D.R. (Radian Corp. (US)); Micheletti, W. (Electric Power Research Inst., Palo Alto, CA (USA))

1988-01-01T23:59:59.000Z

317

US crude oil, natural gas, and natural gas liquids reserves 1996 annual report  

Science Conference Proceedings (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

NONE

1997-12-01T23:59:59.000Z

318

U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report  

Science Conference Proceedings (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

NONE

1996-11-01T23:59:59.000Z

319

Controllability analysis and decentralized control of a wet limestone flue gas desulfurization plant  

Science Conference Proceedings (OSTI)

Presently, decentralized feedback control is the only control strategy used in wet limestone flue gas desulfurization (WLFGD) plants. Proper tuning of this control strategy is becoming an important issue in WLFGD plants because more stringent SO{sub 2} regulations have come into force recently. Controllability analysis is a highly valuable tool for proper design of control systems, but it has not been applied to WLFGD plants so far. In this paper a decentralized control strategy is designed and applied to a WLFGD pilot plant taking into account the conclusions of a controllability analysis. The results reveal that good SO{sub 2} control in WLFGD plants can be achieved mainly because the main disturbance of the process is well-aligned with the plant and interactions between control loops are beneficial to SO{sub 2} control.

Perales, A.L.V.; Ortiz, F.J.G.; Ollero, P.; Gil, F.M. [University of Seville, Seville (Spain)

2008-12-15T23:59:59.000Z

320

Pilot-plant technical assessment of wet flue gas desulfurization using limestone  

Science Conference Proceedings (OSTI)

An experimental study was performed on a countercurrent pilot-scale packed scrubber for wet flue gas desulfurization (FGD). The flow rate of the treated flue gas was around 300 Nm{sup 3}/h, so the pilot-plant capacity is one of the largest with respect to other published studies on a pilot-plant wet FGD. The tests were carried out at an SO{sub 2} inlet concentration of 2000 ppm by changing the recycle slurry pH to around 4.8 and the L/G ratio to between 7.5 and 15. Three types of limestone were tested, obtaining desulfurization efficiencies from 59 to 99%. We show the importance of choosing an appropriate limestone in order to get a better performance from the FGD plant. Thus, it is important to know the reactivity (on a laboratory scale) and the sorbent utilization (on a pilot-plant scale) in order to identify if a limestone is reactive enough and to compare it with another type. In addition, by using the transfer-unit concept, a function has been obtained for the desulfurization efficiency, using the L/G ratio and the recycle slurry pH as independent variables. The Ca/S molar ratio is related to these and to the SO{sub 2} removal efficiency. This function, together with a simplified function of the operation variable cost, allows us to determine the pair (L/G ratio and pH) to achieve the desired SO{sub 2} removal with the minimum operation cost. Finally, the variable operation costs between packed towers and spray scrubbers have been compared, using as a basis the pilot packed tower and the industrial spray column at the Compostilla Power Station's FGD plant (in Leon, Spain).

Ortiz, F.J.G.; Vidal, F.; Ollero, P.; Salvador, L.; Cortes, V.; Gimenez, A. [University of Seville, Seville (Spain)

2006-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Corrosion in Wet Flue Gas Desulfurization (FGD) Systems: Technical Root Cause Analysis of Internal Corrosion on Wet FGD Alloy Absorbers  

Science Conference Proceedings (OSTI)

State-of-the-art flue gas desulfurization (FGD) technologies have been or are being installed on most large coal-fired electric generating units in response to new regulatory emission requirements. Aggressive corrosion has been noted in some of these systems, presumably from the low pH, high chloride environments created in the FGD process. There exists a plethora of material systems (metallic, organic, plastics, coating, and so forth) available to construct these systems, but, because of cost, fabricabi...

2012-04-30T23:59:59.000Z

322

Wet Stacks Design Guide  

Science Conference Proceedings (OSTI)

The expense of fluegas reheat has led to increased application of less expensive wet stacks downstream of wet FGD (flue gas desulfurization) systems. Good data is necessary to properly design the wet stack system or serious problems can occur. This design guide summarizes all the latest information and provides guidance on developing detailed design specifications.

1997-01-04T23:59:59.000Z

323

Natural-gas liquids  

SciTech Connect

Casinghead gasoline or natural gasoline, now more suitably known as natural-gas liquids (NGL), was a nuisance when first found, but was developed into a major and profitable commodity. This part of the petroleum industry began at about the turn of the century, and more than 60 yr later the petroleum industry recovers approx. one million bbl of natural-gas liquids a day from 30 billion cu ft of natural gas processed in more than 600 gasoline plants. Although casinghead gasoline first was used for automobile fuel, natural-gas liquids now are used for fuel, industrial solvents, aviation blending stock, synthetic rubber, and many other petrochemical uses. Production from the individual plants is shipped by tank car, tank truck, pipeline, and tankers all over the world. Most of the natural-gas liquids come from wet natural gas which contains a considerable quantity of vapor, ranging from 0.5 to 6 gal/Mcf, and some particularly rich gases contain even more which can be liquefied. Nonassociated gas is generally clean, with a comparatively small quantity of gasoline, 0.1 to 0.5 gas/Mcf. The natural-gas liquids branch of the industry is build around the condensation of vapors in natural gas. Natural-gas liquids are processed either by the compression method or by adsorption processes.

Blackstock, W.B.; McCullough, G.W.; McCutchan, R.C.

1968-01-01T23:59:59.000Z

324

Fog Cooling, Wet Compression and Droplet Dynamics In Gas Turbine Compressors.  

E-Print Network (OSTI)

??During hot days, gas turbine power output deteriorates significantly. Among various means to augment gas turbine output, inlet air fog cooling is considered as the… (more)

Khan, Jobaidur Rahman

2009-01-01T23:59:59.000Z

325

Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet Flue Gas Desulfurization System  

Science Conference Proceedings (OSTI)

The objective of this project was to demonstrate at full scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury (Hg0) in flue gas from coal combustion. The project was conducted from July 24, 2006 through June 30, 2010. It was conducted with cofunding from the U.S. Department of Energy's National Energy Technology Laboratory as part of Cooperative Agreement DE-FC26-06NT42778, "Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System." Private secto...

2010-08-31T23:59:59.000Z

326

Figure 10. Annual change in U.S. wet natural gas proved reserves ...  

U.S. Energy Information Administration (EIA)

Figure 8 Bcf Shale Total Other Shale % Total Proved Reserves Change in Natural Gas Proved Reserves Tcf Natural Gas Proved Reserves shale other 2006.00 14182.00

327

Table 13. Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 7,896 -1 843 79 2 51 3 0 0 176 8,535 Lower 48 States 27,850 391 7,245 5,874 1,336 1,833 5,954 611 160 2,546 34,288 Alabama 38 3 2 0 9 20 0 2 0 8 48 Arkansas 29 24 50 13 38 0 0 0 0 6 46 California 2,282 929 1,424 1,927 1 11 74 0 0 260 2,532 Coastal Region Onshore 178 15 21 31 0 0 1 0 0 12 172 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 1,949 907 1,382 1,892 0 0 70 0 0 237 2,179 State Offshore 63 1 9 0 1 8 3 0 0 4 79

328

The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations  

Science Conference Proceedings (OSTI)

The article introduces a predictive capability for mercury (Hg) retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given Hg speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO{sub 2}) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections show that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO{sub 2} absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO{sub 2} capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O{sub 2} levels and the FGD temperature; weakly dependent on SO{sub 2} capture efficiency; and insensitive to HgCl{sub 2}, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO{sub 3} levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg{sub 0} but only for inlet O{sub 2} levels that are much lower than those in full-scale FGDs. 12 refs., 5 figs., 3 tabs.

Stephen Niksa; Naoki Fujiwara [Niksa Energy Associates, Belmont, CA (US)

2005-07-01T23:59:59.000Z

329

Investigation of flow modifying tools for the continuous unloading of wet-gas wells  

E-Print Network (OSTI)

Liquid loading in low production gas wells is a common problem faced in many producing regions around the world. Once gas rates fall below the minimum lift velocity, it is essential that some action be taken to maintain continuous operation of the well. Commonly applied solutions include: 1) reduction in wellhead pressure (compression); 2) reduction of tubing diameter (velocity strings); and 3) installation of artificial lift (plunger lift or sucker rod pumping). This thesis examines the use of a patented vortex flow modifier to lift liquids from low rate (stripper) gas wells. Vortex Flow LLC has developed a flow modifying tool using the patented EcoVeyor technology developed by EcoTech. This technology has been used successfully for almost a decade to transport solids in the coal and potash industries and is now being adapted to the oil and gas industries. Recent field tests in horizontal production pipelines have shown the ability to alter basic flow characteristics, significantly decreasing backpressure on wells and increasing production. This thesis evaluates this technology for use in the wellbore, where a tool is introduced at the bottom of the tubing string. Laboratory experiments were conducted using a 125-ft vertical flow loop of 2-in diameter clear PVC. In these experiments, the effects of the vortex device on gas and water flow was examined and compared with the behavior in normal pipe flow. An optimized tool was developed that alters the flow patterns in the pipe resulting in improved liquid unloading accompanied by a decrease in the tubing pressure loss by more than 15 percent. The optimized tool also lowered the minimum lift velocity required for liquid unloading. Visual observations at four locations along the test loop confirmed that the liquid phase is transported in an upward helical manner along the pipe wall, providing an improved flow path for the gas phase. Apart from assisting liquid unloading, the flow modifying tool enhances the operational envelope at low gas rates as well as forming smaller slugs during liquid unloading. Therefore the flow modifier can also reduce gas requirements during artificial gas lift and can also serve as a flow stabilizing device.

Ali, Ahsan Jawaid

2003-01-01T23:59:59.000Z

330

SNG or syn-gas from wet solid waste and low grade fuels  

SciTech Connect

The substitute natural gas (SNG) or a synthesis gas (syngas) is prepared by partly oxidizing wastes and low-grade fuels (peat, lignite, many forms of biomass) containing 0.5-30 times as much water as the dry solids with O or air at 240-300/sup 0/C and 70-100 atmospheres. Sulfur in high S coal is oxidized selectively to SO/sub 4//sup -2/, and the heat to bring the combustible to the necessary temperature is supplied by burning part of the combustible itself. The residual solids (now 70-95% of the original fuel) are mechanically separated from all but 0.5-2 lb water. These solids come from the dewatering unit at a high pressure and may be passed, without loss of pressure or temperature to be gasified in conventional processes and gasifiers by partial oxidation.

Othmer, D.F.

1981-02-17T23:59:59.000Z

331

Federal Offshore Texas Nonassociated Natural Gas Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Adjustments -1 -47 10 6 -16 1 1981-2011 Revision Increases 277 277 245 506 240 244 1981-2011 Revision Decreases 442 389 510 379 428...

332

TX, RRC District 4 Onshore Nonassociated Natural Gas Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Increases 860 980 1,064 798 1,129 2,390 1979-2011 Revision Decreases 1,900 854 1,684 1,456 882 1,133 1979-2011 Sales 1,198 1,895 191 273 219 964 2000-2011 Acquisitions 1,235...

333

TX, RRC District 1 Nonassociated Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,048 1,029 987 1,456 2,332 5,227 1979-2011 Adjustments 83 -6 113 5 -95 -42 1979-2011 Revision Increases 32 51 37 110 430 2,184 1979-2011 Revision Decreases 186 109 143 110 331 116...

334

TX, RRC District 3 Onshore Nonassociated Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

1979-2011 Adjustments 28 16 74 -105 56 -29 1979-2011 Revision Increases 401 445 324 456 419 355 1979-2011 Revision Decreases 454 444 491 338 288 225 1979-2011 Sales 412 565 70...

335

Federal Offshore U.S. Nonassociated Natural Gas Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

0,915 10,033 8,786 7,633 6,916 5,374 1990-2011 Adjustments -11 -46 -1 2 -41 73 1990-2011 Revision Increases 1,559 1,240 1,131 1,511 2,054 984 1990-2011 Revision Decreases 1,887...

336

Spray type wet scrubber  

SciTech Connect

A spray type wet scrubber includes a plurality of spray nozzles installed in parallel banks across the path of gas stream within the scrubber body, and partition walls held upright in grating fashion to divide the path of gas stream into a plurality of passages, each of which accommodates one of the spray nozzles.

Atsukawa, M.; Tatani, A.

1978-01-10T23:59:59.000Z

337

Longer-term Characterization of Mercury Partitioning and Re-emissions in a Full-scale Wet Flue Gas Desulfurization System, Site 2  

Science Conference Proceedings (OSTI)

This document presents and discusses results from an EPRI project focused on understanding and enhancing how mercury is captured by a wet flue gas desulfurization (FGD) system and how it partitions among the FGD liquor, fine solids, and bulk FGD solid byproduct. A second objective was to close a mercury balance around the host unit by determining what portion of the coal mercury exits the stack with the scrubbed flue gas and how much ends up in the fly ash, byproduct gypsum, and FGD wastewater. During t...

2010-12-23T23:59:59.000Z

338

Zipping Wetting  

E-Print Network (OSTI)

Water droplets can completely wet micro-structured superhydrophobic surfaces. The {\\it dynamics} of this rapid process is analyzed by ultra-high-speed imaging. Depending on the scales of the micro-structure, the wetting fronts propagate smoothly and circularly or -- more interestingly -- in a {\\it stepwise} manner, leading to a growing {\\it square-shaped} wetted area: entering a new row perpendicular to the direction of front propagation takes milliseconds, whereas once this has happened, the row itself fills in microseconds ({\\it ``zipping''}). Numerical simulations confirm this view and are in quantitative agreement with the experiments.

Sbragaglia, Mauro; Pirat, Christophe; Borkent, Bram M; Lammertink, Rob G H; Wessling, Matthias; Lohse, Detlef

2007-01-01T23:59:59.000Z

339

Natural Gas Liquids Proved Reserves as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

Million Barrels) Million Barrels) Data Series: Dry Natural Gas Wet NG Wet Nonassociated NG Wet Associated-Dissolved NG Natural Gas Liquids Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2003 2004 2005 2006 2007 2008 View History U.S. 7,459 7,928 8,165 8,472 9,143 9,275 1979-2008 Federal Offshore U.S. 725 721 696 653 624 548 1981-2008 Pacific (California) 8 8 8 4 4 1 1979-2008 Gulf of Mexico 717 713 688 649 620 1992-2007 Louisiana & Alabama 598 615 603 575 528 464 1981-2008 Texas 119 98 85 74 92 83 1981-2008 Alaska 387 369 352 338 325 312 1979-2008 Lower 48 States 7,072 7,559 7,813 8,134 8,818 8,963 1979-2008

340

Dry Natural Gas Proved Reserves as of 12/31 (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Feet) Feet) Data Series: Dry Natural Gas Wet NG Wet Nonassociated NG Wet Associated-Dissolved NG Natural Gas Liquids Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 211,085 237,726 244,656 272,509 304,625 334,067 1925-2011 Federal Offshore U.S. 15,360 14,439 13,546 12,552 11,765 10,420 1990-2011 Pacific (California) 811 805 704 739 724 710 1977-2011 Gulf of Mexico 14,549 13,634 1992-2007 Louisiana & Alabama 11,824 11,090 10,450 9,362 8,896 8,156 1981-2011 Texas 2,725 2,544 2,392 2,451 2,145 1,554 1981-2011 Alaska 10,245 11,917 7,699 9,101 8,838 9,424 1977-2011

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Survey of Wet Electrostatic Precipitators  

Science Conference Proceedings (OSTI)

Wet electrostatic precipitators (ESPs) have found application since they were first installed for sulfuric acid collection on a smelter and patented by Dr. Frederick Cottrell in 1907–1908. Power generation applications typically use dry ESPs for collection of coal fly ash in nonsaturated flue gas streams. This report summarizes the physical installations, specifications, operating environments, and operational experience of wet ESPs currently operating in the United States on power generation ...

2012-12-31T23:59:59.000Z

342

International Conference on Gas Hydrates May 19-23, 2002, Yokohama  

E-Print Network (OSTI)

established liquefied natural gas technology is only considered feasible in large-scale development. About 80 volume by about 600-times. Large-scale CNG technology suitable for stranded gas is under development technology is being developed in Norway for associated and non-associated natural gas applications

Gudmundsson, Jon Steinar

343

Self-oscillations on a partially wetted catalyst pellet in ? ...  

Science Conference Proceedings (OSTI)

and the vapor–gas phases on wetted and dry catalyst pellets, respectively. ... perature and flooding states of the catalyst pellet was first observed, which were ...

344

NETL: Control Technology - Field Testing of a Wet FGD Additive...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Mercury Control URS Corporation will demonstrate the use of an additive in wet lime or limestone flue gas desulfurization (FGD) systems to prevent oxidized mercury that...

345

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA)

proved natural gas reserves (3) 2013 EIA/ARI unproved wet shale gas technically recoverable resources (TRR) 2012 USGS conventional unproved wet natural gas TRR,

346

Enhanced Mercury Removal by Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report provides results from testing conducted in 2005 as part of three EPRI co-funded projects that are aimed at enhancing the capture of mercury in flue gas from coal-fired power boilers when scrubbed by wet flue gas desulfurization (FGD) systems. The first project is co-sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) under Cooperative Agreement DE-FC26-01NT41185, "Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD," as well as by two...

2006-03-07T23:59:59.000Z

347

Fate of Mercury in Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report describes the results of a bench-scale, laboratory investigation of the fate of flue gas mercury species in wet flue gas desulfurization (FGD) scrubbers that are used for sulfur dioxide (SO2) control in coal-fired power plants. Data collected in the EPA mercury Information Collection Request (ICR), and in research projects sponsored by EPRI show that most wet scrubbers used for SO2 control achieve high removals of oxidized mercury and little or no elemental mercury removal. However, some scru...

2004-03-12T23:59:59.000Z

348

Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

349

PPT Slide  

U.S. Energy Information Administration (EIA)

PPT Slide. 0. 100. 200. 300. 400. Onshore. Offshore. Undiscovered nonassociated. Inferred nonassociated. Unconventional. Other unproved. Proved. Shale gas. Coalbed ...

350

Utah Associated-Dissolved Natural Gas, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0...

351

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

1995-01-01T23:59:59.000Z

352

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

Maxey, L.C.; Simpson, M.L.

1995-01-17T23:59:59.000Z

353

A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part II: The Uptake and Redistribution Of (NH4)2SO4 Particles and SO2 Gas Simultaneously Scavenged by Growing Cloud Drops  

Science Conference Proceedings (OSTI)

A theoretical model has been formulated which allows the processes which control the wet deposition of atmospheric aerosol particles and pollutant gases to be included in cloud dynamic models. The cloud considered in the model was allowed to grow ...

A. I. Flossmann; H. R. Pruppacher; J. H. Topalian

1987-10-01T23:59:59.000Z

354

Wet-limestone scrubbing fundamentals  

Science Conference Proceedings (OSTI)

The article examines important concepts of wet-limestone scrubbing. It also addresses the topic of by-product disposal. 3 refs., 1 fig.

Buecker, B.

2006-08-15T23:59:59.000Z

355

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

356

Federal Offshore, Gulf of Mexico, Louisiana & Alabama Natural...  

Gasoline and Diesel Fuel Update (EIA)

11,824 11,090 10,450 9,362 8,896 8,156 1981-2011 Natural Gas, Wet After Lease Separation 12,201 11,458 10,785 9,665 9,250 8,555 1981-2011 Natural Gas Nonassociated, Wet After Lease...

357

Revised Wet Stack Design Guide  

Science Conference Proceedings (OSTI)

For the past 14 years, the design of wet stacks around the world has been guided by the original EPRI Wet Stacks Design Guide (1996). Since that time, the number of wet stack installations has grown considerably, and a wealth of practical real-world operating and maintenance experience has been obtained. The laws of physics have not changed, and most of the information presented in 1996 is just as valid today as it was when originally published. What has changed is the power-generation ...

2012-12-12T23:59:59.000Z

358

Venezuela`s gas industry poised for long term growth  

Science Conference Proceedings (OSTI)

Venezuela`s enormous gas resource, combined with a new willingness to invite outside investment, could result in rapid growth in that industry into the next century. The development of liquefied natural gas exports will depend on the future course of gas prices in the US and Europe, but reserves are adequate to supply additional projects beyond the proposed Cristobal Colon project. Venezuela`s gas reserves are likely to increase if exploration for nonassociated gas is undertaken on a larger scale. The paper discusses gas reserves in Venezuela, internal gas markets, the potential for exports, competition from Trinidad, LNG export markets, and the encouragement of foreign investment in the gas industry of Venezuela.

Croft, G.D. [Pantera Petroleum Inc., San Leandro, CA (United States)

1995-06-19T23:59:59.000Z

359

Pore-scale mechanisms of gas flow in tight sand reservoirs  

E-Print Network (OSTI)

adjacent fractures. Natural gas composition consists mostlyNatural gas is called wet or dry depending on how large is the lique?able portion of gas composition.

Silin, D.

2011-01-01T23:59:59.000Z

360

Ionizing wet scrubber for air pollution control  

Science Conference Proceedings (OSTI)

Air pollution control equipment manufacturers are continually developing sophisticated systems designed to dramatically reduce plant emissions. One such system, the ionizing wet scrubber (IWS), has demonstrated outstanding air pollution control characteristics while meeting the challenge of energy efficiency. The IWS system removes fine solid and liquid particulate down to 0.05 micron at high collection efficiencies and low energy comsumption. It also simultaneously removes noxious, corrosive and odor-bearing gases from flue gas streams as well as coarse particulate matter above 1 micron in diameter. Due to its simplified design and low pressure drop, operating energy costs of the IWS are only a fraction of those for alternative air pollution control equipment. Pressure drop through a single-stage IWS is only 0.5 to 1.5 in. Water (125 to 374 pa) column and is controlled primarily by pressure drop through the wet scrubber section. Total system energy usage is approximately 2.0-2.5 bhp/1,000 actual ft/sup 3//min (0.7-0.9 kw/m/sup 3//min) for a single-stage IWS and 4.0-5.0 bhp/1,000 actual ft/sup 3//min for a two-stage installation. These energy requirements represent a significant savings as opposed to other air pollution control systems such as Venturi scrubbers.

Sheppard, S.V.

1986-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Mercury Emissions Control in Wet FGD Systems  

E-Print Network (OSTI)

The Babcock & Wilcox Company (B&W) and McDermott Technology, Inc. (MTI) have had a continuing program over the past decade for characterizing and optimizing mercury control in flue gas desulfurization (FGD) systems. These efforts have led to the characterization of mercury emissions control at two utility installations and full-scale demonstration (55 MW and 1300 MW) of the effect of a mercury control performance enhancement additive for wet FGD systems. This paper presents the results of the mercury emissions control testing conducted at these two sites. The performance is related to EPA Information Collection Request (ICR) data from an FGD system supplier’s perspective, highlighting the need to consider the effects of system design and operation when evaluating mercury emissions control performance.

Paul S. Nolan; Babcock Wilcox; Kevin E. Redinger; Babcock Wilcox; Gerald T. Amrhein; Gregory A. Kudlac

2002-01-01T23:59:59.000Z

362

EIAs Proposed Definitions for Natural Gas Liquids  

Gasoline and Diesel Fuel Update (EIA)

Definitions for Natural Gas Liquids 1 Definitions for Natural Gas Liquids 1 June 14, 2013 EIA's Proposed Definitions for Natural Gas Liquids Term Current Definition Proposed Definition Note Lease condensate Condensate (lease condensate): A natural gas liquid recovered from associated and non associated gas wells from lease separators or field facilities, reported in barrels of 42 U.S. gallons at atmospheric pressure and 60 degrees Fahrenheit. Lease condensate: Light liquid hydrocarbons recovered from lease separators or field facilities at associated and non-associated natural gas wells. Mostly pentanes and heavier hydrocarbons. Normally enters the crude oil stream after production. Includes lease condensate as part of the crude oil stream, not an NGL. Plant condensate Plant condensate: One of the

363

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 " Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 ",53,"Annual",2011,"6/30/1979" ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","ng_enr_nang_a_epg0_r31_bcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_enr_nang_a_epg0_r31_bcf_a.htm" ,"Source:","Energy Information Administration"

364

FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS  

SciTech Connect

Wet flue gas desulfurization (wet FGD) systems are currently installed on about 25% of the coal-fired utility generating capacity in the U.S., representing about 15% of the number of coal-fired units. Depending on the effect of operating parameters such as mercury content of the coal, form of mercury (elemental or oxidized) in the flue gas, scrubber spray tower configuration, liquid-to-gas ratio, and slurry chemistry, FGD systems can provide cost-effective, near-term mercury emissions control options with a proven history of commercial operation. For boilers already equipped with FGD systems, the incremental cost of any vapor phase mercury removal achieved is minimal. To be widely accepted and implemented, technical approaches that improve mercury removal performance for wet FGD systems should also have low incremental costs and have little or no impact on operation and SO{sub 2} removal performance. The ultimate goal of the Full-scale Testing of Enhanced Mercury Control for Wet FGD Systems Program was to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The program was funded by the U.S. Department of Energy's National Energy Technology Laboratory, the Ohio Coal Development Office within the Ohio Department of Development, and Babcock & Wilcox. Host sites and associated support were provided by Michigan South Central Power Agency (MSCPA) and Cinergy. Field-testing was completed at two commercial coal-fired utilities with wet FGD systems: (1) MSCPA's 55 MW{sub e} Endicott Station and (2) Cinergy's 1300 MW{sub e} Zimmer Station. Testing was conducted at these two locations because of the large differences in size and wet scrubber chemistry. Endicott employs a limestone, forced oxidation (LSFO) wet FGD system, whereas Zimmer uses Thiosorbic{reg_sign} Lime (magnesium enhanced lime) and ex situ oxidation. Both locations burn Ohio bituminous coal.

D.K. McDonald; G.T. Amrhein; G.A. Kudlac; D. Madden Yurchison

2003-05-07T23:59:59.000Z

365

Mercury removal in utility wet scrubber using a chelating agent  

DOE Patents (OSTI)

A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

Amrhein, Gerald T. (Louisville, OH)

2001-01-01T23:59:59.000Z

366

Chemical Processing in High-Pressure Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass  

E-Print Network (OSTI)

Gasification of Wet Biomass Feedstocks Douglas C. Elliott,* Gary G. Neuenschwander, Todd R. Hart, R. Scott catalyst, gasification of wet biomass can be accomplished with high levels of carbon conversion to gas of the organic structure of biomass to gases has been achieved in the presence of a ruthenium metal catalyst

367

Evaluation of the Impact of Limestone on Gypsum Crystal Habit in Wet FGD Scrubbers  

Science Conference Proceedings (OSTI)

This document summarizes the results of a laboratory program focused on determining what key limestone components are responsible for impacting wet flue gas desulfurization (FGD) byproduct gypsum properties. Tests were conducted using several commercial limestone samples for which documented full-scale limestone forced oxidation wet FGD operating experience exists. These include limestone samples known to produce FGD gypsum with both ‘good’ and ‘poor’ crystallization ...

2012-12-28T23:59:59.000Z

368

Wet Corn Milling Plant EPI | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Wet Corn Milling Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

369

Wet Corn Milling Energy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

307 307 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Corn Wet Milling Industry An ENERGY STAR Guide for Energy and Plant Managers Christina Galitsky, Ernst Worrell and Michael Ruth Environmental Energy Technologies Division Sponsored by the U.S. Environmental Protection Agency July 2003 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,

370

Update of Enhanced Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on three mercury control technology research and development projects. One project is co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE-NETL), the second is funded solely by EPRI, and the third is co-funded by EPRI, DOE-NETL, and several EPRI-member companies. All three projects are focused on understanding and/or enhancing mercury capture (co-removal) by wet flue gas desulfurization (FGD) systems. The first project, c...

2007-03-12T23:59:59.000Z

371

Catalytic gasification of wet biomass in supercritical water  

Science Conference Proceedings (OSTI)

Wet biomass (water hyacinth, banana trees, cattails, green algae, kelp, etc.) grows rapidly and abundantly around the world. As a biomass crop, aquatic species are particularly attractive because their cultivation does not compete with land-based agricultural activities designed to produce food for consumption or export. However, wet biomass is not regarded as a promising feed for conventional thermochemical conversion processes because the cost associated with drying it is too high. This research seeks to address this problem by employing water as the gasification medium. Prior work has shown that low concentrations of glucose (a model compound for whole biomass) can be completely gasified in supercritical water at 600{degrees}C and 34.5 Wa after a 30 s reaction time. Higher concentrations of glucose (up to 22% by weight in water) resulted in incomplete conversion under these conditions. The gas contained hydrogen, carbon dioxide, carbon monoxide, methane, ethane, propane, and traces of other hydrocarbons. The carbon monoxide and hydrocarbons are easily converted to hydrogen by commercial technology available in most refineries. This prior work utilized capillary tube reactors with no catalyst. A larger reactor system was fabricated and the heterogeneous catalytic gasification of glucose and wet biomass slurry of higher concentration was studied to attain higher conversions.

Antal, M.J. Jr.; Matsumura, Yukihiko; Xu, Xiaodong [Univ. of Hawaii, Honolulu, HI (United States)] [and others

1995-12-31T23:59:59.000Z

372

Asbestos/NESHAP adequately wet guidance  

SciTech Connect

The Asbestos NESHAP requires facility owners and/or operators involved in demolition and renovation activities to control emissions of particulate asbestos to the outside air because no safe concentration of airborne asbestos has ever been established. The primary method used to control asbestos emissions is to adequately wet the Asbestos Containing Material (ACM) with a wetting agent prior to, during and after demolition/renovation activities. The purpose of the document is to provide guidance to asbestos inspectors and the regulated community on how to determine if friable ACM is adequately wet as required by the Asbestos NESHAP.

Shafer, R.; Throwe, S.; Salgado, O.; Garlow, C.; Hoerath, E.

1990-12-01T23:59:59.000Z

373

,"Louisiana State Offshore Associated-Dissolved Natural Gas,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

374

,"California Federal Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation,...

375

,"California State Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

376

Natural Gas Liquids Proved Reserves as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

NG Wet Associated-Dissolved NG Natural Gas Liquids Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

377

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

378

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

379

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

380

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

382

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

383

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

384

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

385

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

386

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

387

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

388

Breakdown in the Wetting Transparency of Graphene  

E-Print Network (OSTI)

We develop a theory to model the van der Waals interactions between liquid and graphene, including quantifying the wetting behavior of a graphene-coated surface. Molecular dynamics simulations and contact angle measurements ...

Shih, Chih-Jen

389

Wetting of a Chemically Heterogeneous Surface  

Science Conference Proceedings (OSTI)

Theories for inhomogeneous fluids have focused in recent years on wetting, capillary conden- sation, and solvation forces for model systems where the surface(s) is(are) smooth homogeneous parallel plates, cylinders, or spherical drops. Unfortunately natural systems are more likely to be hetaogeneous both in surt%ce shape and surface chemistry. In this paper we discuss the conse- quences of chemical heterogeneity on wetting. Specifically, a 2-dimensional implementation of a nonlocal density functional theory is solved for a striped surface model. Both the strength and range of the heterogeneity are varied. Contact angles are calculated, and phase transitions (both the wetting transition and a local layering transition) are located. The wetting properties of the surface ase shown to be strongly dependent on the nature of the surface heterogeneity. In addition highly ordered nanoscopic phases are found, and the operational limits for formation of ordered or crystalline phases of nanoscopic extent are discussed.

Frink, L.J.D.; Salinger, A.G.

1998-11-20T23:59:59.000Z

390

Reducing the atmospheric impact of wet slaking  

SciTech Connect

Means of reducing the atmospheric emissions due to the wet slaking of coke are considered. One option, investigated here, is to remove residual active silt and organic compounds from the biologically purified wastewater sent for slaking, by coagulation and flocculation.

B.D. Zubitskii; G.V. Ushakov; B.G. Tryasunov; A.G.Ushakov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

391

OPERATIONAL WINDOWS FOR DRY-WALL AND WETTED-WALL IFE CHAMBERS  

E-Print Network (OSTI)

OPERATIONAL WINDOWS FOR DRY-WALL AND WETTED-WALL IFE CHAMBERS F. NAJMABADI* University the trade- offs, to develop operational windows for chamber con- cepts, and to identify high the injection process; (d) for relatively low yield targets ( 250 MJ), an operational window with no buffer gas

California at San Diego, University of

392

Wet/dry cooling tower and method  

DOE Patents (OSTI)

A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

Glicksman, Leon R. (Lynnfield, MA); Rohsenow, Warren R. (Waban, MA)

1981-01-01T23:59:59.000Z

393

Development of Mercury Oxidation Catalyst for Enhanced Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on a mercury control technology development program co-funded by EPRI, the U.S. Department of Energy’s National Energy Technology Laboratory (DOE-NETL), and several EPRI-member companies. The mercury control process under development uses catalysts installed downstream of the air heater and particulate control device to promote the oxidation of elemental mercury in flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) ...

2007-03-13T23:59:59.000Z

394

Laboratory Evaluation of Novel Trace Element Removal Technologies for Wet FGD Wastewater  

Science Conference Proceedings (OSTI)

Wet flue gas desulfurization (FGD) systems can remove a wide range of trace elements, such as mercury, selenium, arsenic, and others from the flue gas. Some trace elements leave the FGD system with solid byproduct streams, but a portion generally leaves as dissolved species in the FGD chloride purge stream. The U.S. Environmental Protection Agency (EPA) effluent limitation guidelines and state or local regulations generally limit the quantities of these trace species in wastewater discharges from ...

2012-12-31T23:59:59.000Z

395

Multimedia Mercury Fate at Coal-Fired Power Plants Equipped With SCR and Wet FGD Controls  

Science Conference Proceedings (OSTI)

Given the current regulatory climate in the United States, a number of selective catalytic reduction (SCR) and flue gas desulfurization (FGD) systems will be installed at new and existing coal-fired power plants to remove nitrogen oxide (NOx), sulfur dioxide (SO2), and mercury. The multimedia fate of trace metal species, especially mercury, in SCR/wet FGD systems is not well understood. Understanding and quantifying the amount of mercury removed from the flue gas and distributed to the solid and aqueous ...

2008-03-19T23:59:59.000Z

396

WETTABILITY AND IMBIBITION: MICROSCOPIC DISTRIBUTION OF WETTING AND ITS CONSEQUENCES AT THE CORE AND FIELD SCALES  

SciTech Connect

The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting the onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this project we have many new tools for studying wetting at microscopic and macroscopic scales and a library of well-characterized fluids for use in studies of crude oil/brine/rock interactions.

Jill S. Buckley; Norman R. Morrow; Chris Palmer; Purnendu K. Dasgupta

2003-02-01T23:59:59.000Z

397

Natural Gas Associated-Dissolved Proved Reserves, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

29,640 32,668 29,023 33,383 35,746 42,823 1979-2011 29,640 32,668 29,023 33,383 35,746 42,823 1979-2011 Federal Offshore U.S. 4,835 4,780 5,106 5,223 5,204 5,446 1990-2011 Pacific (California) 756 752 702 731 722 711 1979-2011 Louisiana & Alabama 3,701 3,651 3,939 3,863 3,793 4,196 1981-2011 Texas 378 377 465 629 689 539 1981-2011 Alaska 8,886 10,752 6,627 8,093 7,896 8,535 1979-2011 Lower 48 States 20,754 21,916 22,396 25,290 27,850 34,288 1979-2011 Alabama 18 20 19 29 38 48 1979-2011 Arkansas 44 37 12 20 29 46 1979-2011 California 2,155 2,193 1,917 2,314 2,282 2,532 1979-2011 Coastal Region Onshore 208 211 150 168 178 172 1979-2011 Los Angeles Basin Onshore 161 154 81 91 92 102 1979-2011 San Joaquin Basin Onshore 1,701 1,749 1,632 2,002 1,949 2,179 1979-2011

398

Associated-Dissolved Natural Gas Reserves Extensions, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

810 1,098 1,488 2,669 2,660 5,957 1979-2011 810 1,098 1,488 2,669 2,660 5,957 1979-2011 Federal Offshore U.S. 61 136 287 90 87 32 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 60 133 280 90 54 32 1981-2011 Texas 1 3 7 0 33 0 1981-2011 Alaska 4 6 0 0 2 3 1979-2011 Lower 48 States 806 1,092 1,488 2,669 2,658 5,954 1979-2011 Alabama 0 0 0 0 0 0 1979-2011 Arkansas 0 0 0 0 4 0 1979-2011 California 21 4 100 470 12 74 1979-2011 Coastal Region Onshore 5 0 0 0 0 1 1979-2011 Los Angeles Basin Onshore 4 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 11 1 95 468 9 70 1979-2011 State Offshore 1 3 5 2 3 3 1979-2011 Colorado 113 180 127 165 318 506 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 1 6 6 1 3 53 1979-2011

399

Natural Gas Reserves Revision Increases, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

1,640 33,404 31,941 32,664 42,394 56,015 1979-2011 1,640 33,404 31,941 32,664 42,394 56,015 1979-2011 Federal Offshore U.S. 2,084 1,862 1,740 2,365 3,082 2,567 1990-2011 Pacific (California) 43 48 23 79 23 39 1979-2011 Louisiana & Alabama 1,658 1,477 1,269 1,690 2,721 2,150 1981-2011 Texas 383 337 448 596 338 378 1981-2011 Alaska 2,882 2,168 186 1,887 628 938 1979-2011 Lower 48 States 18,758 31,236 31,755 30,777 41,766 55,077 1979-2011 Alabama 238 165 288 101 214 472 1979-2011 Arkansas 101 321 1,250 1,912 1,072 631 1979-2011 California 163 372 277 274 575 1,542 1979-2011 Coastal Region Onshore 29 33 21 42 39 21 1979-2011 Los Angeles Basin Onshore 7 16 1 38 9 12 1979-2011 San Joaquin Basin Onshore 118 311 253 191 514 1,498 1979-2011 State Offshore

400

Associated-Dissolved Natural Gas Estimated Production, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

2,281 2,296 2,349 2,556 2,445 2,722 1979-2011 2,281 2,296 2,349 2,556 2,445 2,722 1979-2011 Federal Offshore U.S. 635 625 563 659 564 514 1990-2011 Pacific (California) 35 39 35 36 28 31 1979-2011 Louisiana & Alabama 462 507 436 522 468 415 1981-2011 Texas 138 79 92 101 68 68 1981-2011 Alaska 218 227 207 225 174 176 1979-2011 Lower 48 States 2,063 2,069 2,142 2,331 2,271 2,546 1979-2011 Alabama 4 4 3 5 6 8 1979-2011 Arkansas 5 4 3 4 4 6 1979-2011 California 180 163 163 171 186 260 1979-2011 Coastal Region Onshore 9 12 11 12 12 12 1979-2011 Los Angeles Basin Onshore 8 8 7 7 6 7 1979-2011 San Joaquin Basin Onshore 157 139 143 148 164 237 1979-2011 State Offshore 6 4 2 4 4 4 1979-2011 Colorado 96 104 125 134 126 160 1979-2011

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Associated-Dissolved Natural Gas Reserves Acquisitions, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

960 1,350 938 678 2,469 1,884 2000-2011 960 1,350 938 678 2,469 1,884 2000-2011 Federal Offshore U.S. 360 231 74 21 250 56 2000-2011 Pacific (California) 0 3 0 0 0 0 2000-2011 Louisiana & Alabama 234 219 68 12 222 49 2000-2011 Texas 126 9 6 9 28 7 2000-2011 Alaska 0 1 0 0 0 51 2000-2011 Lower 48 States 1,960 1,349 938 678 2,469 1,833 2000-2011 Alabama 0 1 1 0 0 20 2000-2011 Arkansas 0 0 0 0 0 0 2000-2011 California 219 9 8 58 0 11 2000-2011 Coastal Region Onshore 60 6 6 0 0 0 2000-2011 Los Angeles Basin Onshore 41 0 1 0 0 3 2000-2011 San Joaquin Basin Onshore 118 3 1 58 0 0 2000-2011 State Offshore 0 0 0 0 0 8 2000-2011 Colorado 579 15 14 10 160 5 2000-2011 Florida 0 0 0 0 0 0 2000-2011 Kansas 0 0 0 0 3 1 2000-2011

402

Associated-Dissolved Natural Gas Reserves Extensions, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

810 1,098 1,488 2,669 2,660 5,957 1979-2011 810 1,098 1,488 2,669 2,660 5,957 1979-2011 Federal Offshore U.S. 61 136 287 90 87 32 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 60 133 280 90 54 32 1981-2011 Texas 1 3 7 0 33 0 1981-2011 Alaska 4 6 0 0 2 3 1979-2011 Lower 48 States 806 1,092 1,488 2,669 2,658 5,954 1979-2011 Alabama 0 0 0 0 0 0 1979-2011 Arkansas 0 0 0 0 4 0 1979-2011 California 21 4 100 470 12 74 1979-2011 Coastal Region Onshore 5 0 0 0 0 1 1979-2011 Los Angeles Basin Onshore 4 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 11 1 95 468 9 70 1979-2011 State Offshore 1 3 5 2 3 3 1979-2011 Colorado 113 180 127 165 318 506 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 1 6 6 1 3 53 1979-2011

403

Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 29,640 32,668 29,023 33,383 35,746 42,823 1979-2011 Federal Offshore U.S. 4,835 4,780 5,106 5,223 5,204 5,446 1990-2011 Pacific (California) 756 752 702 731 722 711 1979-2011 Louisiana & Alabama 3,701 3,651 3,939 3,863 3,793 4,196 1981-2011 Texas 378 377 465 629 689 539 1981-2011 Alaska 8,886 10,752 6,627 8,093 7,896 8,535 1979-2011

404

Associated-Dissolved Natural Gas Reserves Revision Decreases, Wet After  

Gasoline and Diesel Fuel Update (EIA)

2,782 1,804 7,385 2,698 3,964 5,953 1979-2011 2,782 1,804 7,385 2,698 3,964 5,953 1979-2011 Federal Offshore U.S. 984 351 430 517 879 1,393 1990-2011 Pacific (California) 22 10 38 7 5 18 1979-2011 Louisiana & Alabama 827 304 282 442 841 1,152 1981-2011 Texas 135 37 110 68 33 223 1981-2011 Alaska 111 10 3,954 5 260 79 1979-2011 Lower 48 States 2,671 1,794 3,431 2,693 3,704 5,874 1979-2011 Alabama 8 1 0 1 4 0 1979-2011 Arkansas 2 7 28 0 0 13 1979-2011 California 391 102 388 139 389 1,927 1979-2011 Coastal Region Onshore 12 22 72 14 17 31 1979-2011 Los Angeles Basin Onshore 31 17 71 25 5 4 1979-2011 San Joaquin Basin Onshore 341 49 217 97 367 1,892 1979-2011 State Offshore 7 14 28 3 0 0 1979-2011 Colorado 35 14 50 185 71 269 1979-2011

405

Utah Associated-Dissolved Natural Gas Proved Reserves, Wet After...  

Annual Energy Outlook 2012 (EIA)

317 368 321 601 631 909 1979-2011 Adjustments 1 0 5 4 -15 38 1979-2011 Revision Increases 36 40 7 190 117 190 1979-2011 Revision Decreases 37 3 80 2 61 48 1979-2011 Sales 16 0 0 4...

406

Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 484 1980's 546 456 489 537 617 560 537 482 424 364 1990's 311 298 396 264 264 254 253 227 234 241 2000's...

407

Natural Gas Reserves Revision Decreases, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

3,739 17,468 35,195 34,563 38,339 56,127 1979-2011 3,739 17,468 35,195 34,563 38,339 56,127 1979-2011 Federal Offshore U.S. 2,871 1,912 2,061 1,917 2,312 3,104 1990-2011 Pacific (California) 22 10 86 7 10 21 1979-2011 Louisiana & Alabama 2,272 1,476 1,355 1,463 1,841 2,371 1981-2011 Texas 577 426 620 447 461 712 1981-2011 Alaska 378 113 4,107 108 455 207 1979-2011 Lower 48 States 23,361 17,355 31,088 34,455 37,884 55,920 1979-2011 Alabama 213 36 747 337 180 163 1979-2011 Arkansas 114 146 189 621 301 324 1979-2011 California 440 288 517 199 476 1,959 1979-2011 Coastal Region Onshore 12 27 72 15 17 32 1979-2011 Los Angeles Basin Onshore 31 17 71 25 5 4 1979-2011 San Joaquin Basin Onshore 390 229 345 156 451 1,923 1979-2011 State Offshore

408

Natural Gas Reserves Extensions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

22,834 28,255 27,800 43,500 46,283 47,635 1979-2011 22,834 28,255 27,800 43,500 46,283 47,635 1979-2011 Federal Offshore U.S. 751 675 924 298 333 98 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 547 543 630 279 193 85 1981-2011 Texas 204 132 294 19 140 13 1981-2011 Alaska 50 28 18 2 15 4 1979-2011 Lower 48 States 22,784 28,227 27,782 43,498 46,268 47,631 1979-2011 Alabama 150 125 61 21 29 3 1979-2011 Arkansas 492 1,149 1,755 4,629 3,083 2,094 1979-2011 California 186 18 107 476 13 75 1979-2011 Coastal Region Onshore 5 0 0 0 0 1 1979-2011 Los Angeles Basin Onshore 4 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 176 14 102 472 9 71 1979-2011 State Offshore 1 4 5 4 4 3 1979-2011 Colorado 2,042 2,893 2,379 3,495 2,986 2,123 1979-2011

409

New Field Discoveries of Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

425 814 1,229 1,423 895 987 1979-2011 425 814 1,229 1,423 895 987 1979-2011 Federal Offshore U.S. 114 618 321 310 71 590 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 85 313 288 50 71 590 1981-2011 Texas 29 305 33 260 0 0 1981-2011 Alaska 0 0 0 0 0 0 1979-2011 Lower 48 States 425 814 1,229 1,423 895 987 1979-2011 Alabama 0 0 2 0 3 2 1979-2011 Arkansas 7 0 0 0 0 0 1979-2011 California 0 0 0 1 1 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 0 0 0 1 1 0 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 15 15 18 8 23 19 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 0 0 10 0 4 0 1979-2011 Kentucky

410

Associated-Dissolved Natural Gas Reserves Revision Increases, Wet After  

Gasoline and Diesel Fuel Update (EIA)

5,372 5,400 2,943 5,522 4,983 8,088 1979-2011 5,372 5,400 2,943 5,522 4,983 8,088 1979-2011 Federal Offshore U.S. 525 622 609 854 1,028 1,583 1990-2011 Pacific (California) 35 48 23 71 23 39 1979-2011 Louisiana & Alabama 384 514 383 693 907 1,410 1981-2011 Texas 106 60 203 90 98 134 1981-2011 Alaska 2,850 2,098 37 1,696 236 843 1979-2011 Lower 48 States 2,522 3,302 2,906 3,826 4,747 7,245 1979-2011 Alabama 4 12 1 11 6 2 1979-2011 Arkansas 2 11 3 5 12 50 1979-2011 California 96 292 164 177 525 1,424 1979-2011 Coastal Region Onshore 29 33 21 42 38 21 1979-2011 Los Angeles Basin Onshore 7 16 1 38 9 12 1979-2011 San Joaquin Basin Onshore 53 231 142 95 467 1,382 1979-2011 State Offshore 7 12 0 2 11 9 1979-2011 Colorado 234 214 211 11 142 122 1979-2011

411

Associated-Dissolved Natural Gas Reserves Acquisitions, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

960 1,350 938 678 2,469 1,884 2000-2011 960 1,350 938 678 2,469 1,884 2000-2011 Federal Offshore U.S. 360 231 74 21 250 56 2000-2011 Pacific (California) 0 3 0 0 0 0 2000-2011 Louisiana & Alabama 234 219 68 12 222 49 2000-2011 Texas 126 9 6 9 28 7 2000-2011 Alaska 0 1 0 0 0 51 2000-2011 Lower 48 States 1,960 1,349 938 678 2,469 1,833 2000-2011 Alabama 0 1 1 0 0 20 2000-2011 Arkansas 0 0 0 0 0 0 2000-2011 California 219 9 8 58 0 11 2000-2011 Coastal Region Onshore 60 6 6 0 0 0 2000-2011 Los Angeles Basin Onshore 41 0 1 0 0 3 2000-2011 San Joaquin Basin Onshore 118 3 1 58 0 0 2000-2011 State Offshore 0 0 0 0 0 8 2000-2011 Colorado 579 15 14 10 160 5 2000-2011 Florida 0 0 0 0 0 0 2000-2011 Kansas 0 0 0 0 3 1 2000-2011

412

Associated-Dissolved Natural Gas Reserves Adjustments, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

-54 276 455 877 -482 390 1979-2011 -54 276 455 877 -482 390 1979-2011 Federal Offshore U.S. 0 -4 7 12 -14 -22 1990-2011 Pacific (California) 1 -5 0 1 1 -1 1979-2011 Louisiana & Alabama 0 0 8 7 -14 -21 1981-2011 Texas -1 1 -1 4 -1 0 1981-2011 Alaska -1 1 -1 1 -1 -1 1979-2011 Lower 48 States -53 275 456 876 -481 391 1979-2011 Alabama 1 -1 0 5 13 3 1979-2011 Arkansas 3 -7 3 12 -3 24 1979-2011 California -62 6 1 6 7 929 1979-2011 Coastal Region Onshore -64 2 1 2 2 15 1979-2011 Los Angeles Basin Onshore -1 2 4 4 3 6 1979-2011 San Joaquin Basin Onshore 2 3 -4 -2 2 907 1979-2011 State Offshore 1 -1 0 2 0 1 1979-2011 Colorado -2 9 -4 14 68 -38 1979-2011 Florida 1 -1 78 6 31 -28 1979-2011 Kansas 3 8 4 -5 -2 -4 1979-2011

413

Natural Gas Reserves Extensions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

22,834 28,255 27,800 43,500 46,283 47,635 1979-2011 22,834 28,255 27,800 43,500 46,283 47,635 1979-2011 Federal Offshore U.S. 751 675 924 298 333 98 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 547 543 630 279 193 85 1981-2011 Texas 204 132 294 19 140 13 1981-2011 Alaska 50 28 18 2 15 4 1979-2011 Lower 48 States 22,784 28,227 27,782 43,498 46,268 47,631 1979-2011 Alabama 150 125 61 21 29 3 1979-2011 Arkansas 492 1,149 1,755 4,629 3,083 2,094 1979-2011 California 186 18 107 476 13 75 1979-2011 Coastal Region Onshore 5 0 0 0 0 1 1979-2011 Los Angeles Basin Onshore 4 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 176 14 102 472 9 71 1979-2011 State Offshore 1 4 5 4 4 3 1979-2011 Colorado 2,042 2,893 2,379 3,495 2,986 2,123 1979-2011

414

New Field Discoveries of Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

425 814 1,229 1,423 895 987 1979-2011 425 814 1,229 1,423 895 987 1979-2011 Federal Offshore U.S. 114 618 321 310 71 590 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 85 313 288 50 71 590 1981-2011 Texas 29 305 33 260 0 0 1981-2011 Alaska 0 0 0 0 0 0 1979-2011 Lower 48 States 425 814 1,229 1,423 895 987 1979-2011 Alabama 0 0 2 0 3 2 1979-2011 Arkansas 7 0 0 0 0 0 1979-2011 California 0 0 0 1 1 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 0 0 0 1 1 0 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 15 15 18 8 23 19 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 0 0 10 0 4 0 1979-2011 Kentucky

415

Associated-Dissolved Natural Gas Reserves Revision Decreases, Wet After  

Gasoline and Diesel Fuel Update (EIA)

2,782 1,804 7,385 2,698 3,964 5,953 1979-2011 2,782 1,804 7,385 2,698 3,964 5,953 1979-2011 Federal Offshore U.S. 984 351 430 517 879 1,393 1990-2011 Pacific (California) 22 10 38 7 5 18 1979-2011 Louisiana & Alabama 827 304 282 442 841 1,152 1981-2011 Texas 135 37 110 68 33 223 1981-2011 Alaska 111 10 3,954 5 260 79 1979-2011 Lower 48 States 2,671 1,794 3,431 2,693 3,704 5,874 1979-2011 Alabama 8 1 0 1 4 0 1979-2011 Arkansas 2 7 28 0 0 13 1979-2011 California 391 102 388 139 389 1,927 1979-2011 Coastal Region Onshore 12 22 72 14 17 31 1979-2011 Los Angeles Basin Onshore 31 17 71 25 5 4 1979-2011 San Joaquin Basin Onshore 341 49 217 97 367 1,892 1979-2011 State Offshore 7 14 28 3 0 0 1979-2011 Colorado 35 14 50 185 71 269 1979-2011

416

Natural Gas Reserves Sales, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

3,904 15,518 7,911 4,377 10,582 44,575 2000-2011 3,904 15,518 7,911 4,377 10,582 44,575 2000-2011 Federal Offshore U.S. 2,772 924 720 162 910 332 2000-2011 Pacific (California) 0 1 0 0 0 0 2000-2011 Louisiana & Alabama 1,581 830 635 128 771 309 2000-2011 Texas 1,191 93 85 34 139 23 2000-2011 Alaska 0 11 0 5 132 36 2000-2011 Lower 48 States 23,904 15,507 7,911 4,372 10,450 44,539 2000-2011 Alabama 192 308 11 2 272 595 2000-2011 Arkansas 4 298 19 54 393 6,762 2000-2011 California 287 173 8 4 3 49 2000-2011 Coastal Region Onshore 72 4 6 0 1 0 2000-2011 Los Angeles Basin Onshore 37 0 1 0 0 0 2000-2011 San Joaquin Basin Onshore 178 167 1 4 2 47 2000-2011 State Offshore 0 2 0 0 0 2 2000-2011 Colorado 1,587 772 775 391 255 1,311 2000-2011

417

Estimated Production of Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

9,373 20,318 21,415 22,537 23,224 24,621 1979-2011 9,373 20,318 21,415 22,537 23,224 24,621 1979-2011 Federal Offshore U.S. 2,841 2,803 2,308 2,438 2,224 1,724 1990-2011 Pacific (California) 37 41 37 37 29 31 1979-2011 Louisiana & Alabama 2,036 2,135 1,807 1,947 1,786 1,375 1981-2011 Texas 768 627 464 454 409 318 1981-2011 Alaska 410 391 356 361 319 328 1979-2011 Lower 48 States 18,963 19,927 21,059 22,176 22,905 24,293 1979-2011 Alabama 290 277 265 261 231 226 1979-2011 Arkansas 188 269 457 698 952 1,080 1979-2011 California 268 264 251 251 255 324 1979-2011 Coastal Region Onshore 9 12 11 12 12 12 1979-2011 Los Angeles Basin Onshore 8 8 7 7 6 7 1979-2011 San Joaquin Basin Onshore 244 238 229 226 232 300 1979-2011 State Offshore 7 6 4 6 5 5 1979-2011

418

Natural Gas Reserves Acquisitions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

7,082 15,970 8,848 4,155 13,348 47,873 2000-2011 7,082 15,970 8,848 4,155 13,348 47,873 2000-2011 Federal Offshore U.S. 2,624 1,218 632 186 1,034 474 2000-2011 Pacific (California) 0 3 0 0 0 0 2000-2011 Louisiana & Alabama 1,384 1,023 549 164 816 404 2000-2011 Texas 1,240 192 83 22 218 70 2000-2011 Alaska 0 6 0 0 0 222 2000-2011 Lower 48 States 27,082 15,964 8,848 4,155 13,348 47,651 2000-2011 Alabama 259 386 21 0 153 398 2000-2011 Arkansas 5 280 5 36 807 6,882 2000-2011 California 266 243 31 83 0 55 2000-2011 Coastal Region Onshore 60 6 6 0 0 0 2000-2011 Los Angeles Basin Onshore 41 0 1 0 0 3 2000-2011 San Joaquin Basin Onshore 165 237 24 83 0 44 2000-2011 State Offshore 0 0 0 0 0 8 2000-2011 Colorado 1,588 463 1,396 456 241 1,283 2000-2011

419

Natural Gas Reserves Acquisitions, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

7,082 15,970 8,848 4,155 13,348 47,873 2000-2011 7,082 15,970 8,848 4,155 13,348 47,873 2000-2011 Federal Offshore U.S. 2,624 1,218 632 186 1,034 474 2000-2011 Pacific (California) 0 3 0 0 0 0 2000-2011 Louisiana & Alabama 1,384 1,023 549 164 816 404 2000-2011 Texas 1,240 192 83 22 218 70 2000-2011 Alaska 0 6 0 0 0 222 2000-2011 Lower 48 States 27,082 15,964 8,848 4,155 13,348 47,651 2000-2011 Alabama 259 386 21 0 153 398 2000-2011 Arkansas 5 280 5 36 807 6,882 2000-2011 California 266 243 31 83 0 55 2000-2011 Coastal Region Onshore 60 6 6 0 0 0 2000-2011 Los Angeles Basin Onshore 41 0 1 0 0 3 2000-2011 San Joaquin Basin Onshore 165 237 24 83 0 44 2000-2011 State Offshore 0 0 0 0 0 8 2000-2011 Colorado 1,588 463 1,396 456 241 1,283 2000-2011

420

Estimated Production of Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

9,373 20,318 21,415 22,537 23,224 24,621 1979-2011 9,373 20,318 21,415 22,537 23,224 24,621 1979-2011 Federal Offshore U.S. 2,841 2,803 2,308 2,438 2,224 1,724 1990-2011 Pacific (California) 37 41 37 37 29 31 1979-2011 Louisiana & Alabama 2,036 2,135 1,807 1,947 1,786 1,375 1981-2011 Texas 768 627 464 454 409 318 1981-2011 Alaska 410 391 356 361 319 328 1979-2011 Lower 48 States 18,963 19,927 21,059 22,176 22,905 24,293 1979-2011 Alabama 290 277 265 261 231 226 1979-2011 Arkansas 188 269 457 698 952 1,080 1979-2011 California 268 264 251 251 255 324 1979-2011 Coastal Region Onshore 9 12 11 12 12 12 1979-2011 Los Angeles Basin Onshore 8 8 7 7 6 7 1979-2011 San Joaquin Basin Onshore 244 238 229 226 232 300 1979-2011 State Offshore 7 6 4 6 5 5 1979-2011

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ohio Associated-Dissolved Natural Gas Proved Reserves, Wet After...  

Annual Energy Outlook 2012 (EIA)

74 101 99 97 90 74 1979-2011 Adjustments 18 46 229 2 -57 -12 1979-2011 Revision Increases 17 22 6 13 5 4 1979-2011 Revision Decreases 31 133 228 8 1 0 1979-2011 Sales 0 0 0 0 0 0...

422

Virginia Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

5 2006 2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 0 0 0 0 0 1982-2010 Adjustments 0 0 0 0 0 0 1982-2010 Revision Increases 0 0 0 0 0 0 1982-2010 Revision...

423

Inspection Guideline for Wet Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

Severe corrosion attack has occurred in several absorber vessels constructed of duplex 2205 and 255 stainless steels. There are also mounting concerns that earlier generation absorber vessels fabricated with austenitic stainless steels may also be subject to underdeposit and pitting corrosion attack. This corrosion attack has been found in several of the spray tower/ tray tower and jet bubble reactor designs constructed of stainless steels and are reported to be occurring with relatively little service l...

2011-08-22T23:59:59.000Z

424

NM, East Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Revision Increases 334 229 270 298 198 323 1979-2011 Revision Decreases 135 146 157 285 241 180 1979-2011 Sales 205 113 118 64 57 101 2000-2011 Acquisitions 247 117 24 66 319 138...

425

Louisiana - South Onshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,428 1980's 1,241 1,568 1,576 1,258 1,027 1,402 1,117 1,318 1,076 1,596 1990's 1,119 1,364 888 958 969...

426

Oklahoma Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

361 177 237 1979-2011 Revision Decreases 102 86 210 158 103 221 1979-2011 Sales 13 125 6 241 70 274 2000-2011 Acquisitions 21 108 45 67 90 61 2000-2011 Extensions 41 103 88 52 398...

427

Kansas Natural Gas, Wet After Lease Separation Reserves Adjustments...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 314 1980's -264 416 -87 312 -230 219 -241 265 -282 252 1990's -93 83 208 29 219 -296 340 -5 -120 -73 2000's 10 50 219 148 66 50...

428

Michigan Associated-Dissolved Natural Gas Proved Reserves, Wet...  

Annual Energy Outlook 2012 (EIA)

192 179 148 77 72 77 1979-2011 Adjustments 0 1 5 -28 4 2 1979-2011 Revision Increases 61 2 7 39 10 6 1979-2011 Revision Decreases 5 3 34 105 13 12 1979-2011 Sales 3 20 0 0 0 0...

429

Mathematical modeling of wet magnesia flue gas desulphurization process  

Science Conference Proceedings (OSTI)

Desulphurization of flue gases from various chemical industries in a techno-econo-enviro manner is a demanding technology. The concentrations of sulphur dioxide in and around these plants overshoot the danger point. In recent years, the process analysis ...

M. K. Mondal

2008-01-01T23:59:59.000Z

430

,"New Field Discoveries of Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

from Web Page:","http:www.eia.govdnavngngenrwalsaepg0r28bcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)...

431

,"New Reservoir Discoveries in Old Fields of Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

from Web Page:","http:www.eia.govdnavngngenrwalsaepg0r29bcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)...

432

Colorado Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

1,541 1,838 2,010 1,882 2,371 2,518 1979-2011 Adjustments -2 9 -4 14 68 -38 1979-2011 Revision Increases 234 214 211 11 142 122 1979-2011 Revision Decreases 35 14 50 185 71 269...

433

Membrane-based wet electrostatic precipitation  

Science Conference Proceedings (OSTI)

Emissions of fine particulate matter, PM2.5, in both primary and secondary form, are difficult to capture in typical dry electrostatic precipitators (ESPs). Wet (or waterbased) ESPs are well suited for collection of acid aerosols and fine particulates because of greater corona power and virtually no re-entrainment. However, field disruptions because of spraying (misting) of water, formation of dry spots (channeling), and collector surface corrosion limit the applicability of current wet ESPs in the control of secondary PM2.5. Researchers at Ohio University have patented novel membrane collection surfaces to address these problems. Water-based cleaning in membrane collectors made of corrosion-resistant fibers is facilitated by capillary action between the fibers, maintaining an even distribution of water. This paper presents collection efficiency results of lab-scale and pilot-scale testing at First Energy's Bruce Mansfield Plant for the membrane-based wet ESP. The data indicate that a membrane wet ESP was more effective at collecting fine particulates, acid aerosols, and oxidized mercury than the metal-plate wet ESP, even with {approximately}15% less collecting area. 15 refs., 7 figs., 6 tabs.

David J. Bayless; Liming Shi; Gregory Kremer; Ben J. Stuart; James Reynolds; John Caine [Ohio University, Athens, OH (US). Ohio Coal Research Center

2005-06-01T23:59:59.000Z

434

Cost benefits from applying advanced heat rejection concepts to a wet/dry-cooled binary geothermal plant  

SciTech Connect

Optimized ammonia heat rejection system designs were carried out for three water allocations equivalent to 9, 20, and 31% of that of a 100% wet-cooled plant. The Holt/Procon design of a 50-MWe binary geothermal plant for the Heber site was used as a design basis. The optimization process took into account the penalties for replacement power, gas turbine capital, and lost capacity due to increased heat rejection temperature, as well as added base plant capacity and fuel to provide fan and pump power to the heat rejection system. Descriptions of the three plant designs are presented. For comparison, a wet tower loop was costed out for a 100% wet-cooled plant using the parameters of the Holt/Procon design. Wet/dry cooling was found to increase the cost of electricity by 28% above that of a 100% wet-cooled plant for all three of the water allocations studied (9, 20, and 31%). The application selected for a preconceptual evaluation of the BCT (binary cooling tower) system was the use of agricultural waste water from the New River, located in California's Imperial Valley, to cool a 50-MWe binary geothermal plant. Technical and cost evaluations at the preconceptual level indicated that performance estimates provided by Tower Systems Incorporated (TSI) were reasonable and that TSI's tower cost, although 2 to 19% lower than PNL estimates, was also reasonable. Electrical cost comparisonswere made among the BCT system, a conventional 100% wet system, and a 9% wet/dry ammonia system, all using agricultural waste water with solar pond disposal. The BCT system cost the least, yielding a cost of electricity only 13% above that of a conventional wet system using high quality water and 14% less than either the conventional 100% wet or the 9% wet/dry ammonia system.

Faletti, D.W.

1981-03-01T23:59:59.000Z

435

Cost benefits from applying advanced heat rejection concepts to a wet/dry-cooled binary geothermal plant  

DOE Green Energy (OSTI)

Optimized ammonia heat rejection system designs were carried out for three water allocations equivalent to 9, 20, and 31% of that of a 100% wet-cooled plant. The Holt/Procon design of a 50-MWe binary geothermal plant for the Heber site was used as a design basis. The optimization process took into account the penalties for replacement power, gas turbine capital, and lost capacity due to increased heat rejection temperature, as well as added base plant capacity and fuel to provide fan and pump power to the heat rejection system. Descriptions of the three plant designs are presented. For comparison, a wet tower loop was costed out for a 100% wet-cooled plant using the parameters of the Holt/Procon design. Wet/dry cooling was found to increase the cost of electricity by 28% above that of a 100% wet-cooled plant for all three of the water allocations studied (9, 20, and 31%). The application selected for a preconceptual evaluation of the BCT (binary cooling tower) system was the use of agricultural waste water from the New River, located in California's Imperial Valley, to cool a 50-MWe binary geothermal plant. Technical and cost evaluations at the preconceptual level indicated that performance estimates provided by Tower Systems Incorporated (TSI) were reasonable and that TSI's tower cost, although 2 to 19% lower than PNL estimates, was also reasonable. Electrical cost comparisonswere made among the BCT system, a conventional 100% wet system, and a 9% wet/dry ammonia system, all using agricultural waste water with solar pond disposal. The BCT system cost the least, yielding a cost of electricity only 13% above that of a conventional wet system using high quality water and 14% less than either the conventional 100% wet or the 9% wet/dry ammonia system.

Faletti, D.W.

1981-03-01T23:59:59.000Z

436

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

437

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

438

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

439

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

440

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

442

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

443

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

444

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

445

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

446

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

447

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

448

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

449

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

450

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

451

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

452

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

453

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

454

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

455

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

456

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

457

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

458

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

459

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

460

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

462

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

463

Reduction of Water Use in Wet FGD Systems  

Science Conference Proceedings (OSTI)

Cooperative Agreement DE-FC26-06NT42726 was established in January 2006, and is current through Amendment 2, April 2006. The current reporting period, April 1, 2008 through June 30, 2008, is the eighth progress-reporting period for the project. However, this report will be the final report (instead of a quarterly report) because this project is being terminated. Efforts to bring this project to a close over the past several months focused on internal project discussions, and subsequent communications with NETL, regarding the inherent difficulty with completing this project as originally scoped, and the option of performing an engineering study to accomplish some of the chief project objectives. However, NETL decided that the engineering study did indeed constitute a significant scope deviation from the original concepts, and that pursuit of this option was not recommended. These discussions are summarized in the Results and Discussion, and the Conclusion sections. The objective of this project by a team lead by URS Group was to demonstrate the use of regenerative heat exchange to reduce flue gas temperature and minimize evaporative water consumption in wet flue gas desulphurization (FGD) systems on coal-fired boilers. Furthermore, the project intended to demonstrate that regenerative heat exchange to cool flue gas upstream of the electrostatic precipitator (ESP) and reheat flue gas downstream of the FGD system would result in the following benefits to air pollution control (APC) systems on coal-fired power plants: (1) Improve ESP performance due to reduced gas volume and improved ash resistivity characteristics, (2) Control SO3 emissions through condensation on the fly ash, and (3) Avoid the need to install wet stacks or to provide flue gas reheat. Finally, operation at cooler flue gas temperatures offered the potential benefit of increasing mercury (Hg) removal across the ESP and FGD systems. This project planned to conduct pilot-scale tests of regenerative heat exchange to determine the reduction in FGD water consumption that can be achieved and assess the resulting impact on APC systems. An analysis of the improvement in the performance of the APC systems and the resulting reduction in capital and operating costs were going to be conducted. The tests were intended to determine the impact of operation of cooling flue gas temperatures on FGD water consumption, ESP particulate removal, SO{sub 3} removal, and Hg removal, and to assess the potential negative impact of excessive corrosion rates in the regenerative heat exchanger. Testing was going to be conducted on Columbian coal (with properties similar to low-sulfur Eastern bituminous coal) and SO{sub 3} will be spiked onto the flue gas to simulate operation with higher SO{sub 3} concentrations resulting from firing a higher sulfur coal, or operating with a selective catalytic reduction (SCR) unit. The project was also going to include associate planning, laboratory analytical support, reporting, and management activities. The URS project team finalized a conceptual alternative approach to demonstrate, via an engineering study, the use of regenerative heat exchange to reduce flue gas temperature and minimize evaporative water consumption. This idea was presented in summary format to NETL for consideration. NETL determined that this alternative approach deviated from the original project objectives, and that it would be in the best interest of all parties involved to cancel the project.

David Rencher

2008-06-30T23:59:59.000Z

464

Indian Centre for Wind Energy Technology C WET | Open Energy...  

Open Energy Info (EERE)

Centre for Wind Energy Technology C WET Jump to: navigation, search Name Indian Centre for Wind Energy Technology (C-WET) Place Chennai, India Zip 601 302 Sector Wind energy...

465

High-Speed Permanent-Magnet Motors for the Oil&Gas ...  

Science Conference Proceedings (OSTI)

... Enable tight integration of drive motor with compressor ... raw / wet gas design ... Tighter integration of compressor, motor and drive components and ...

2012-10-14T23:59:59.000Z

466

Categorical Exclusion 4497: Lithium Wet Chemistry Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8/2012 07:36 8/2012 07:36 8655749041 ENVIRONMENTAL COMPL U.S. Department of Energy Categorical Exclusion Detennination Form Proposed Action Tills: Lithium W@t Chemistry Project (4597) Program or Fi~ld Oftke: Y-12 Site Office L&cationfs) (CiWLCount:r/State): Oak Ridge, Anderson County; Tennessee Proposed Action Description: PAGE 03/04 r: :;: :: !: s .a : brnl, i ~ y. : $ ~-rtl~il : t·:~::;J The proposed action is to develop a small lithium wet chemistry operation for the following purposes: (1) to capture wet chemistry operations, (2) to provide processing path for Lithium materials such as machine dust, (3) to provide lithium based materials, and (4) to produce the littlium hydroxide needed to support production. CategQrj~l Exclusion(s) Applied

467

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results  

Science Conference Proceedings (OSTI)

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

Gary M. Blythe

2006-03-01T23:59:59.000Z

468

Development of a catalytic system for gasification of wet biomass  

DOE Green Energy (OSTI)

A gasification system is under development at Pacific Northwest Laboratory that can be used with high-moisture biomass feedstocks. The system operates at 350 C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet biomass can be fed as a slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. This paper includes assessment of processing test results of different catalysts. Reactor system results including batch, bench-scale continuous, and engineering-scale processing results are presented to demonstrate the applicability of this catalytic gasification system to biomass. The system has utility both for direct conversion of biomass to fuel gas or as a wastewater cleanup system for treatment of unconverted biomass from bioconversion processes. By the use of this system high conversion of biomass to fuel gas can be achieved. Medium-Btu is the primary product. Potential exists for recovery/recycle of some of the unreacted inorganic components from the biomass in the aqueous byproduct stream.

Elliott, D.C.; Sealock, L.J.; Phelps, M.R.; Neuenschwander, G.G.; Hart, T.R.

1993-08-01T23:59:59.000Z

469

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids ...  

U.S. Energy Information Administration (EIA)

Table 4. Total U.S. Proved Reserves of Wet Natural Gas, and Crude Oil plus Lease Condensate, 2001-2009 Revisionsa Net of Salesb New Reservoir Provedd Change

470

Wetting heterogeneity in mixed-wet porous media controls flow dissipation  

E-Print Network (OSTI)

Wettability is crucial for multiphase flow in porous media. However, the effect of spatial distribution of wetting domains has previously only been dealt with by averaging contact angles over several pores. By preparing tailored bead packings with the same average surface wettability, but differing in the typical spatial extension of the same-type wetting domains, we show that models based solely on averages do not capture the dynamics of two phase flow in such systems. Using X-ray tomography we measure the typical length scale xi of the wetting domains in our samples. In capillary pressure saturation (CPS) experiments we find that xi controls the width of the hysteresis loop for xi <= d, d being the bead diameter. X-Ray tomography of the samples during both water and oil invasion shows that the front morphology is smoothened at small values of xi. Both observations are consistent with an increase of dissipation for small correlation length.

Murison, Julie; Baret, Jean-Christophe; Herminghaus, Stephan; Schröter, Matthias; Brinkmann, Martin

2013-01-01T23:59:59.000Z

471

Wetting heterogeneity in mixed-wet porous media controls flow dissipation  

E-Print Network (OSTI)

Wettability is crucial for multiphase flow in porous media. However, the effect of spatial distribution of wetting domains has previously only been dealt with by averaging contact angles over several pores. By preparing tailored bead packings with the same average surface wettability, but differing in the typical spatial extension of the same-type wetting domains, we show that models based solely on averages do not capture the dynamics of two phase flow in such systems. Using X-ray tomography we measure the typical length scale xi of the wetting domains in our samples. In capillary pressure saturation (CPS) experiments we find that xi controls the width of the hysteresis loop for xi <= d, d being the bead diameter. X-Ray tomography of the samples during both water and oil invasion shows that the front morphology is smoothened at small values of xi. Both observations are consistent with an increase of dissipation for small correlation length.

Julie Murison; Benoît Semin; Jean-Christophe Baret; Stephan Herminghaus; Matthias Schröter; Martin Brinkmann

2013-10-11T23:59:59.000Z

472

Method for the wet quenching of coke  

SciTech Connect

A method and apparatus for the wet quenching of coke is disclosed wherein hot coke is sprayed from above with quenching water, the steam generated by the heat of the coke is condensed by a spray of condensation water from the top of the quenching tower, and the hot condensate-water mixture is collected at the bottom of the quenching tower and recirculated to the top of the tower where it is sprayed between quenching operations to be cooled by a counterflowing stream of air. The cooled condensate water mixture is suitable for reuse as the condensation spray water.

Blase, M.; Flockenhaus, C.; Wagener, D.

1982-03-30T23:59:59.000Z

473

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

2010-12-31T23:59:59.000Z

474

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

2010-12-31T23:59:59.000Z

475

Water Treatment For Wet Electrostatic Precipitators: Conceptual Design  

Science Conference Proceedings (OSTI)

Pilot testing has shown that replacement of the last field of a small dry electrostatic precipitator (ESP) with a single wet field can significantly reduce outlet particulate emissions from coal-fired power plants. This report summarizes a pilot wet ESP performance test, cost projections from an economic study, and results from a study of the water use and chemistry issues that need to be resolved to make the wet ESP technology an attractive option for electric utilities.

1997-09-25T23:59:59.000Z

476

Wet Gasification of Ethanol Residue: A Preliminary Assessment  

DOE Green Energy (OSTI)

A preliminary technoeconomic assessment has been made of several options for the application of catalytic hydrothermal gasification (wet gasification) to ethanol processing residues.

Brown, Michael D.; Elliott, Douglas C.

2008-09-22T23:59:59.000Z

477

Wetting Properties of Molten Silicon with Graphite Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, The wetting behavior of molten-silicon/refractory-materials system is important in ... Electrorefining of Metallurgical Grade Silicon in Molten Salts.

478

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period October 1, 2002 through December 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future fullscale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fifth full reporting period for the subject Cooperative Agreement. During this period, project efforts included starting up the pilot unit with three catalysts at the first site, conducting catalyst activity measurements, completing comprehensive flue gas sampling and analyses, and procuring additional catalysts for the pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-01-21T23:59:59.000Z

479

BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES  

Science Conference Proceedings (OSTI)

Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

Youmans-Mcdonald, L.

2011-02-18T23:59:59.000Z

480

Gas Bubbles and Gas Pancakes at Liquid/Solid Interface: A Continuum Theory Incorporated with Molecular Interactions  

E-Print Network (OSTI)

The states of gas accumulated at the liquid-solid interface are analyzed based on the continuum theory where the Hamaker constant is used to describe the long-range interaction at the microscopic scale. The Hamaker constant is always negative, whereas the gas spreading coefficient can be either sign. Despite the complexity of gas, including that the density profile may not be uniform due to absorption on both solid and liquid surfaces, we predict three possible gas states at the liquid-solid interface, i.e. complete wetting, partial wetting and pseudopartial wetting. These possible gas states correspond respectively to a gas pancake (or film) surrounded by a wet solid, a gas bubble with a finite contact angle, and a gas bubble(s) coexisting with a gas pancake. Typical thickness of the gas pancakes is at the nanoscale within the force range of the long-range interaction, whereas the radius of the gas bubbles can be large. The state of gas bubble(s) coexisting with a gas film is predicted theoretically for the first time. Our theoretical results can contribute to the development of a unified picture of gas nucleation at the liquid-solid interface.

Zhaoxia Li; Xuehua Zhang; Lijuan Zhang; Xiaocheng Zeng; Jun Hu; Haiping Fang

2006-08-04T23:59:59.000Z

Note: This page contains sample records for the topic "gas nonassociated wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-04NT41992, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems'', during the time-period January 1 through March 31, 2006. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, EPRI, Great River Energy (GRE), TXU Generation Company LP, the Southern Company, and Duke Energy. URS Group is the prime contractor. The mercury control process under development uses honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The current project is testing previously identified catalyst materials at pilot scale and in a commercial form to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months or longer at each of two sites to provide longer-term catalyst life data. Pilot-scale wet FGD tests are being conducted periodically at each site to confirm the ability to scrub the catalytically oxidized mercury at high efficiency. This is the ninth reporting period for the subject Cooperative Agreement. During this period, project efforts primarily consisted of operating the catalyst pilot units at the TXU Generation Company LP's Monticello Steam Electric Station and at Georgia Power's Plant Yates. Two catalyst activity measurement trips were made to Plant Yates during the quarter. This Technical Progress Report presents catalyst activity results from the oxidation catalyst pilot unit at Plant Yates and discusses the status of the pilot unit at Monticello.

Gary M. Blythe

2006-03-31T23:59:59.000Z

482

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-04NT41992, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems'', during the time-period January 1 through March 31, 2006. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, EPRI, Great River Energy (GRE), TXU Generation Company LP, the Southern Company, and Duke Energy. URS Group is the prime contractor. The mercury control process under development uses honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The current project is testing previously identified catalyst materials at pilot scale and in a commercial form to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months or longer at each of two sites to provide longer-term catalyst life data. Pilot-scale wet FGD tests are being conducted periodically at each site to confirm the ability to scrub the catalytically oxidized mercury at high efficiency. This is the ninth reporting period for the subject Cooperative Agreement. During this period, project efforts primarily consisted of operating the catalyst pilot units at the TXU Generation Company LP's Monticello Steam Electric Station and at Georgia Power's Plant Yates. Two catalyst activity measurement trips were made to Plant Yates during the quarter. This Technical Progress Report presents catalyst activity results from the oxidation catalyst pilot unit at Plant Yates and discusses the status of the pilot unit at Monticello.

Gary M. Blythe

2006-03-31T23:59:59.000Z

483

Method for wetting a boron alloy to graphite  

DOE Patents (OSTI)

A method is provided for wetting a graphite substrate and spreading a a boron alloy over the substrate. The wetted substrate may be in the form of a needle for an effective ion emission source. The method may also be used to wet a graphite substrate for subsequent joining with another graphite substrate or other metal, or to form a protective coating over a graphite substrate. A noneutectic alloy of boron is formed with a metal selected from the group consisting of nickel (Ni), palladium (Pd), and platinum (Pt) with excess boron, i.e., and atomic percentage of boron effective to precipitate boron at a wetting temperature of less than the liquid-phase boundary temperature of the alloy. The alloy is applied to the substrate and the graphite substrate is then heated to the wetting temperature and maintained at the wetting temperature for a time effective for the alloy to wet and spread over the substrate. The excess boron is evenly dispersed in the alloy and is readily available to promote the wetting and spreading action of the alloy. 1 fig.

Storms, E.K.

1987-08-21T23:59:59.000Z

484

California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas,  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 207 162 103 114 162 185 149 155 158 141 1990's 110 120 100 108 108 115 112 143 153 174 2000's 203 194 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

485

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period July 1, 2002 through September 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The coprecipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fourth full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to completing, installing and starting up the pilot unit, completing laboratory runs to size catalysts, and procuring catalysts for the pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2002-10-04T23:59:59.000Z

486

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time period January 1, 2003 through March 31, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the sixth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the pilot unit with three catalysts, conducting catalyst activity measurements, and procuring the fourth catalyst, all for the GRE Coal Creek pilot unit site. Laboratory efforts were also conducted to support catalyst selection for the second pilot unit site, at CPS' Spruce Plant. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-05-01T23:59:59.000Z

487

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period April 1, 2003 through June 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the seventh full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit, conducting catalyst activity measurements, installing sonic horns for on-line catalyst cleaning, and installing the fourth catalyst, all for the GRE Coal Creek site. CPS began installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter. Laboratory efforts were conducted to support catalyst selection for that second pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-07-01T23:59:59.000Z

488

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period April 1, 2002 through June 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the third full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to constructing the pilot unit and conducting laboratory runs to help size catalysts for the pilot unit. This technical progress report provides an update on these two efforts.

Gary M. Blythe

2002-07-17T23:59:59.000Z

489

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

490

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,000 4,825 6,755 7,606 3,460 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 156,333 150,972 147,734 157,039 176,221 From Oil Wells.................................................. 15,524 16,263 14,388 12,915 11,088 Total................................................................... 171,857 167,235 162,122 169,953 187,310 Repressuring ...................................................... 8 0 0 0 0 Vented and Flared.............................................. 206 431 251 354 241 Wet After Lease Separation................................ 171,642 166,804

491

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,178 4,601 3,005 3,220 3,657 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 244,826 264,809 260,554 254,488 259,432 From Oil Wells.................................................. 36,290 36,612 32,509 29,871 31,153 Total................................................................... 281,117 301,422 293,063 284,359 290,586 Repressuring ...................................................... 563 575 2,150 1,785 1,337 Vented and Flared.............................................. 1,941 1,847 955 705 688 Wet After Lease Separation................................

492

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7,068 7,425 7,700 8,600 8,500 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 241,776 224,560 224,112 194,121 212,276 From Oil Wells.................................................. 60,444 56,140 56,028 48,530 53,069 Total................................................................... 302,220 280,700 280,140 242,651 265,345 Repressuring ...................................................... 2,340 2,340 2,340 2,340 2,340 Vented and Flared.............................................. 3,324 3,324 3,324 3,324 3,324 Wet After Lease Separation................................

493

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 13,487 14,370 14,367 12,900 13,920 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,545 81,723 88,259 87,608 94,259 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,545 81,723 88,259 87,608 94,259 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,545 81,723 88,259 87,608 94,259 Nonhydrocarbon Gases Removed

494

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,897 33,917 34,593 33,828 33,828 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 98,551 97,272 97,154 87,993 85,018 From Oil Wells.................................................. 6,574 2,835 6,004 5,647 5,458 Total................................................................... 105,125 100,107 103,158 93,641 90,476 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 105,125 100,107 103,158

495

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

496

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

497

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

498

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

499

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

500

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,700 16,350 17,100 16,939 20,734 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 4,260,529 1,398,981 1,282,137 1,283,513 1,293,204 From Oil Wells.................................................. 895,425 125,693 100,324 94,615 88,209 Total................................................................... 5,155,954 1,524,673 1,382,461 1,378,128 1,381,413 Repressuring ...................................................... 42,557 10,838 9,754 18,446 19,031 Vented and Flared.............................................. 20,266 11,750 10,957 9,283 5,015 Wet After Lease Separation................................