Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Viscous Modified Cosmic Chaplygin Gas Cosmology  

E-Print Network (OSTI)

In this paper we construct modified cosmic Chaplygin gas which has viscosity. We use exponential function method to solve non-linear equation and obtain time-dependent dark energy density. Then discuss Hubble expansion parameter and scale factor and fix them by using observational data. We also investigate stability of this theory.

Behnam Pourhassan

2013-01-13T23:59:59.000Z

2

Holographic Dark Energy Scenario and Variable Modified Chaplygin Gas  

E-Print Network (OSTI)

In this letter, we have considered that the universe is filled with normal matter and variable modified Chaplygin gas. Also we have considered the interaction between normal matter and variable modified Chaplygin gas in FRW universe. Then we have considered a correspondence between the holographic dark energy density and interacting variable modified Chaplygin gas energy density. Then we have reconstructed the potential of the scalar field which describes the variable modified Chaplygin cosmology.

Surajit Chattopadhyay; Ujjal Debnath

2009-01-15T23:59:59.000Z

3

Holographic Dark Energy Model with Modified Variable Chaplygin Gas  

E-Print Network (OSTI)

In this letter we consider a correspondence between holographic dark energy and variable modified Chaplygin gas to obtain a holographic dark energy model of the universe. The corresponding potential of the scalar field has been reconstructed which describes the modified variable Chaplygin gas. The stability of the holographic dark energy in this case is also discussed.

B. C. Paul

2010-06-17T23:59:59.000Z

4

Holographic Dark Energy Model with Modified Generalized Chaplygin Gas  

E-Print Network (OSTI)

We present a holographic dark energy model of the universe considering modified generalized Chaplygin gas (GCG). The modified GCG behaves as an ordinary barotropic fluid in the early epoch when the universe was tiny but behaves subsequently as a $\\Lambda$CDM model at late epoch. An equivalent model with scalar field is obtained here by constructing the corresponding potential. The holographic dark energy is identified with the modified GCG and we determine the corresponding holographic dark energy field and its potential. The stability of the holographic dark energy in this case is also discussed.

B. C. Paul; P. Thakur; A. Saha

2007-07-31T23:59:59.000Z

5

Some Discussion on Thermodynamical Behaviour of Modified Chaplygin Gas  

E-Print Network (OSTI)

On going good number of research works establish Modified Chaplygin Gas as one one of the most favoured candidates of Dark Energy. In our present work, new bound on the parameter space of associated model - parameter has been worked out with new explanation. Moreover, the explicit relation between the mysterious state parameter $w$ and scale factor $a(t)$ has been derived.

Balendra Kr. Dev Choudhury; Julie Saikia

2010-06-08T23:59:59.000Z

6

Spherical Thin-Shell Wormholes and Modified Chaplygin Gas  

E-Print Network (OSTI)

The purpose of this paper is to construct spherical thin-shell wormhole solutions through cut and paste technique and investigate the stability of these solutions in the vicinity of modified Chaplygin gas. The Darmois-Israel formalism is used to formulate the stresses of the surface concentrating the exotic matter. We explore the stability of the wormhole solutions by using the standard potential method. We conclude that there exist more stable as well as unstable solutions than the previous study with generalized Chaplygin gas \\cite{15}.

M. Sharif; M. Azam

2013-09-28T23:59:59.000Z

7

Cosmic Ray Anomalies Inspired Some Discussion on Modified Chaplygin Gas  

E-Print Network (OSTI)

The postulation of Dark energy and Dark matter on the basis of observational results does not end the mystery of their existence. Theoretically new insights into dark matter have been achieved analyzing recent experimental data from the cosmic ray physics. It has been shown that, if the dark matter is a hidden scalar field, then it is not only possible to explain the ATIC/PPB BETS excess but also the observed dark matter abundance naturally and simultaneously. Being motivated, mainly by the assumption of hidden scalar field and some associated works, we consider the Modified Chaplygin Gas for some thermodynamical analysis. The point that if the scalar field is assumed to oscillate before the reheating was not completed, i.e., T_R importance of thermodynamical analysis. We, assuming the properties of Modified Chaplygin Gas, derive an expression for the second law of thermodynamics. It is obse...

Saikia, Julie

2009-01-01T23:59:59.000Z

8

Cosmic Ray Anomalies Inspired Some Discussion on Modified Chaplygin Gas  

E-Print Network (OSTI)

The postulation of Dark energy and Dark matter on the basis of observational results does not end the mystery of their existence. Theoretically new insights into dark matter have been achieved analyzing recent experimental data from the cosmic ray physics. It has been shown that, if the dark matter is a hidden scalar field, then it is not only possible to explain the ATIC/PPB BETS excess but also the observed dark matter abundance naturally and simultaneously. Being motivated, mainly by the assumption of hidden scalar field and some associated works, we consider the Modified Chaplygin Gas for some thermodynamical analysis. The point that if the scalar field is assumed to oscillate before the reheating was not completed, i.e., T_R importance of thermodynamical analysis. We, assuming the properties of Modified Chaplygin Gas, derive an expression for the second law of thermodynamics. It is observed that it also sheds some new lights on Generalised Second Law.

Julie Saikia; Balendra Kr. Dev Choudhury

2009-06-03T23:59:59.000Z

9

Wormholes supported by phantom-like modified Chaplygin gas  

E-Print Network (OSTI)

We have examined the possible construction of a stationary, spherically symmetric and spatially inhomogeneous wormhole spacetime supported by the phantom energy. The later is supposed to be represented by the modified Chaplygin gas equation of state. The solutions so obtained satisfy the flare out and the asymptotic flatness conditions. It is also shown that the averaged null energy condition has to be violated for the existence of the wormhole.

Mubasher Jamil; M. Umar Farooq; Muneer Ahmad Rashid

2008-09-19T23:59:59.000Z

10

Interaction between phantom field and modified Chaplygin gas  

E-Print Network (OSTI)

In this letter, we have considered a flat FRW universe. Instead of considering only one candidate for dark energy, we have considered interaction between phantom field and modified Chaplygin gas. It has been shown that the potential of the phantom field increases from a lower value with evolution of the Universe. It has been observed that, the field has an increasing tendency and potential has also an increasing tendency with passage of cosmic time. In the evolution of the universe the crossing of $w=-1$ has been realized by this interacting model.

Surajit Chattopadhyay; Ujjal Debnath

2010-12-27T23:59:59.000Z

11

Observational Constraints of New Variable Modified Chaplygin Gas Model  

E-Print Network (OSTI)

Assuming the flat FRW universe in Einstein's gravity filled with New Variable Modified Chaplygin gas (NVMCG) dark energy and dark matter having negligible pressure. In this research work we analyze the viability on the basis of recent observation. Hubble parameter $H$ is expressed in terms of the observable parameters $H_0$, $\\Omega_m^0$ and the model parameters $A_0$, $B_0$, $C_0$, $m$, $n$, $\\alpha$ and the red shift parameter $z$. Here we find a best fitted parameter range of $A_0$, $B_0$ keeping $0\\leq \\alpha \\leq 1$ and using Stern data set (12 points) by minimizing the $\\chi^2$ test at 66%, 90% and 99% confidence levels. Next we do the joint analysis with BAO and CMB observations. Again evaluating the distance modulus $\\mu(z)$ vs redshift ($z$) curve obtained in the model NVMCG with dark matter with the best fitted value of the parameters and comparing with that derived from the union2 compilation data.

Jhumpa Bhadra; Ujjal Debnath

2012-11-09T23:59:59.000Z

12

Thermodynamics of Modified Chaplygin Gas and Tachyonic Field  

E-Print Network (OSTI)

Here we generalize the results of the work of ref. [10] in modified Chaplygin gas model and tachyonic field model. Here we have studied the thermodynamical behaviour and the equation of state in terms of volume and temperature for both models. We have used the solution and the corresponding equation of state of our previous work [12] for tachyonic field model. We have also studied the thermodynamical stability using thermal equation of state for the tachyonic field model and have shown that there is no critical points during thermodynamical expansion. The determination of $T_{*}$ due to expansion for the tachyonic field have been discussed by assuming some initial conditions. Here, the thermal quantities have been investigated using some reduced parameters.

Samarpita Bhattacharya; Ujjal Debnath

2010-12-26T23:59:59.000Z

13

Observational Constraints of Modified Chaplygin Gas in RS II Brane  

E-Print Network (OSTI)

FRW universe in RS II braneworld model filled with a combination of dark matter and dark energy in the form of modified Chaplygin gas (MCG) is considered. It is known that the equation of state (EoS) for MCG is a three-variable equation determined by $A$, $\\alpha$ and $B$. The permitted values of these parameters are determined by the recent astrophysical and cosmological observational data. Here we present the Hubble parameter in terms of the observable parameters $\\Omega_{m0}$, $\\Omega_{x0}$, $H_{0}$, redshift $z$ and other parameters like $A$, $B$, $C$ and $\\alpha$. From Stern data set (12 points), we have obtained the bounds of the arbitrary parameters by minimizing the $\\chi^{2}$ test. The best-fit values of the parameters are obtained by 66%, 90% and 99% confidence levels. Next due to joint analysis with BAO and CMB observations, we have also obtained the bounds of the parameters ($B,C$) by fixing some other parameters $\\alpha$ and $A$. The best fit value of distance modulus $\\mu(z)$ is obtained for the MCG model in RS II brane, and it is concluded that our model is perfectly consistent with the union2 sample data.

Chayan Ranjit; Prabir Rudra; Sujata Kundu

2013-04-24T23:59:59.000Z

14

Role of Modified Chaplygin Gas as a Dark Energy Model in Collapsing Spherically Symmetric Cloud  

E-Print Network (OSTI)

In this work, gravitational collapse of a spherical cloud, consists of both dark matter and dark energy in the form of modified Chaplygin gas is studied. It is found that dark energy alone in the form of modified Chaplygin gas forms black hole. Also when both components of the fluid are present then the collapse favors the formation of black hole in cases the dark energy dominates over dark matter. The conclusion is totally opposite to the usually known results.

Ujjal Debnath; Subenoy Chakraborty

2006-01-12T23:59:59.000Z

15

Phenomenological Varying Modified Chaplygin Gas with Variable $G$ and $?$: Toy Models for Our Universe  

E-Print Network (OSTI)

This article motivated by the recent articles and results of two authors. Recently, J. Sadeghi and H. Farahani presented a work [1], where they include viscosity and analyze general model, by this way they extended models considered by M. Khurshudyan [2] and [3]. In this article, We tempt to consider varying Modified Chaplygin gas model in case of variable $G$ and $\\Lambda$. It is well known, that varying $G$ and $\\Lambda$ gives rise to modified field equations and modified conservation laws. We will consider two different toy models. First model is a Universe with one component phenomenological gas of our consideration, while for the second model we assume existence of a composed fluid of gas and a matter with $P=\\omega(t)\\rho_{m}$. Sign changeable interaction between fluids is accepted. We will analyze important cosmological parameters like EoS parameter of a fluid, deceleration parameter $q$ of the model.

J. Sadeghi; M. Khurshudyan; H. Farahani

2013-08-08T23:59:59.000Z

16

Investigation of flow modifying tools for the continuous unloading of wet-gas wells  

E-Print Network (OSTI)

Liquid loading in low production gas wells is a common problem faced in many producing regions around the world. Once gas rates fall below the minimum lift velocity, it is essential that some action be taken to maintain continuous operation of the well. Commonly applied solutions include: 1) reduction in wellhead pressure (compression); 2) reduction of tubing diameter (velocity strings); and 3) installation of artificial lift (plunger lift or sucker rod pumping). This thesis examines the use of a patented vortex flow modifier to lift liquids from low rate (stripper) gas wells. Vortex Flow LLC has developed a flow modifying tool using the patented EcoVeyor technology developed by EcoTech. This technology has been used successfully for almost a decade to transport solids in the coal and potash industries and is now being adapted to the oil and gas industries. Recent field tests in horizontal production pipelines have shown the ability to alter basic flow characteristics, significantly decreasing backpressure on wells and increasing production. This thesis evaluates this technology for use in the wellbore, where a tool is introduced at the bottom of the tubing string. Laboratory experiments were conducted using a 125-ft vertical flow loop of 2-in diameter clear PVC. In these experiments, the effects of the vortex device on gas and water flow was examined and compared with the behavior in normal pipe flow. An optimized tool was developed that alters the flow patterns in the pipe resulting in improved liquid unloading accompanied by a decrease in the tubing pressure loss by more than 15 percent. The optimized tool also lowered the minimum lift velocity required for liquid unloading. Visual observations at four locations along the test loop confirmed that the liquid phase is transported in an upward helical manner along the pipe wall, providing an improved flow path for the gas phase. Apart from assisting liquid unloading, the flow modifying tool enhances the operational envelope at low gas rates as well as forming smaller slugs during liquid unloading. Therefore the flow modifier can also reduce gas requirements during artificial gas lift and can also serve as a flow stabilizing device.

Ali, Ahsan Jawaid

2003-01-01T23:59:59.000Z

17

Assignment of human myocyte-specific enhancer binding factor 2C (hMEF2C) to human chromosome 5q14 and evidence that MEF2C is evolutionarily conserved  

SciTech Connect

Human myocyte-specific enhancer binding factor 2C (hMEF2C) belongs to the MEF2 subfamily of the MADS (MCM1, AGAMOUS, DEF A, serum response factor) family of transcription factors. Members of the MADS family share a conserved domain - the MADS domain - that is necessary for DNA binding. Highly conserved versions of the MADS domain and of an adjacent domain that is known as the MEF2 domain are found in members of the MEF2 subfamily. Both of these domains are necessary for binding to the MEF2 regulatory element. This regulatory element is known to be functionally important in a variety of muscle-specific genes and possibly in the brain creatine kinase gene. The MEF2C gene product activates transcription by binding to the MEF2 element. hMEF2C is expressed at high levels in postmitotic neurons in the brain, where it is most abundant in the cerebral cortex, and is also expressed in differentiated myotubes. Several lines of evidence suggest the existence of a rat homologue of MEF2C, and a mouse homologue has been cloned. The mouse gene was mapped to mouse chromosome 13 in a region that is syntenic to human 5q13-q15. 12 refs., 1 fig.

Krainc, D.; Lipton, S.A. [Harvard Medical School, Boston, MA (United States); Haas, M.; Ward, D.C. [Yale Univ. School of Medicine, New Haven, CT (United States)] [and others

1995-10-10T23:59:59.000Z

18

Modified Chaplygin Gas as Scalar Field and Holographic Dark Energy Model  

E-Print Network (OSTI)

We study the correspondence between field theoretic and holographic dark energy density of the universe with the modified Chaplygin gas (MCG) respectively both in a flat and non-flat FRW universe. We present an equivalent representation of the MCG with a homogeneous minimally coupled scalar field by constructing the corresponding potential. A new scalar field potential is obtained here which is physically realistic and important for cosmological model building. In addition we also present holographic dark energy model described by the MCG. The dynamics of the corresponding holographic dark energy field is determined by reconstructing the potential in a non-flat universe. The stability of the holographic dark energy in this case in a non-flat universe is also discussed.

B. C. Paul; P. Thakur; A. Saha

2008-09-20T23:59:59.000Z

19

Effect of Fuel Fraction on Small Modified CANDLE Burn-up Based Gas Cooled Fast Reactors  

Science Conference Proceedings (OSTI)

A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE Burn-up has been performed. The objective of this research is to get optimal design parameters of such type reactors. The parameters of nuclear design including the critical condition, conversion ratio, and burn-up level were compared. These parameters are calculated by variation in the fuel fraction 47.5% up to 70%. Two dimensional full core multi groups diffusion calculations was performed by CITATION code. Group constant preparations are performed by using SRAC code system with JENDL-3.2 nuclear data library. In this design the reactor cores with cylindrical cell two dimensional R-Z core models are subdivided into several parts with the same volume in the axial directions. The placement of fuel in core arranged so that the result of plutonium from natural uranium can be utilized optimally for 10 years reactor operation. Modified CANDLE burn-up was established successfully in a core radial width 1.4 m. Total thermal power output for reference core is 550 MW. Study on the effect of fuel to coolant ratio shows that effective multiplication factor (k{sub eff}) is in almost linear relations with the change of the fuel volume to coolant ratio.

Ariani, Menik [Departmen of Physics Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40134 (Indonesia); Physics Department, Sriwijaya University, Kampus Indralaya, Ogan Ilir, Sumatera Selatan (Indonesia); Su'ud, Zaki; Waris, Abdul; Asiah, Nur [Departmen of Physics Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40134 (Indonesia); Shafii, M. Ali [Departmen of Physics Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40134 (Indonesia); Physics Department, Andalas University, Kampus Limau Manis, Padang, Sumatera Barat (Indonesia); Khairurrijal

2010-12-23T23:59:59.000Z

20

SLOWLY ROTATING GAS-RICH GALAXIES IN MODIFIED NEWTONIAN DYNAMICS (MOND)  

SciTech Connect

We have carried out a search for gas-rich dwarf galaxies that have lower rotation velocities in their outskirts than MOdified Newtonian Dynamics (MOND) predicts, so that the amplitude of their rotation curves cannot be fitted by arbitrarily increasing the mass-to-light ratio of the stellar component or by assuming additional undetected matter. With presently available data, the gas-rich galaxies UGC 4173, Holmberg II, ESO 245-G05, NGC 4861, and ESO 364-G029 deviate most from MOND predictions and, thereby, provide a sample of promising targets in testing the MOND framework. In the case of Holmberg II and NGC 4861, we find that their rotation curves are probably inconsistent with MOND, unless their inclinations and distances differ significantly from the nominal ones. The galaxy ESO 364-G029 is a promising target because its baryonic mass and rotation curve are similar to Holmberg II but presents a higher inclination. Deeper photometric and H I observations of ESO 364-G029, together with further decreasing systematic uncertainties, may provide a strong test to MOND.

Sanchez-Salcedo, F. J.; Martinez-Garcia, E. E. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico City (Mexico); Hidalgo-Gamez, A. M., E-mail: jsanchez@astro.unam.mx [Departamento de Fisica, Escuela Superior de Fisica y Matematicas, IPN, U.P. Adolfo Lopez Mateos, C.P. 07738, Mexico City (Mexico)

2013-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE  

Science Conference Proceedings (OSTI)

Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of potentially hazardous chemicals, and could be readily adapted to an automated system.

Lynn E. Katz; R.S. Bowman; E.J. Sullivan

2003-11-01T23:59:59.000Z

22

Constraining the Parameters of Modified Chaplygin Gas in Einstein-Aether Gravity  

E-Print Network (OSTI)

We have assumed FRW model of the universe in Einstein-Aether gravity filled with dark matter and Modified Chaplygin gas (MCG) type dark energy. We present the Hubble parameter in terms of some unknown parameters and observational parameters with the redshift z. From observed Hubble data (OHD) set (12 points), we have obtained the bounds of the arbitrary parameters (A,B) of MCG by minimizing the \\chi^{2} test. Next due to joint analysis of BAO and CMB observations, we have also obtained the best fit values and the bounds of the parameters (A,B) by fixing some other parameters. We have also taken type Ia supernovae data set (union 2 data set with 557 data points). Next due to joint analysis with SNe, we have obtained the best fit values of parameters. The best-fit values and bounds of the parameters are obtained by 66%, 90% and 99% confidence levels for OHD, OHD+BAO, OHD+BAO+CMB and OHD+BAO+CMB+SNe joint analysis. The distance modulus \\mu(z) against redshift z for our theoretical MCG model in Einstein-Aether gravity have been tested for the best fit values of the parameters and the observed SNe Ia union2 data sample.

Ujjal Debnath

2013-10-06T23:59:59.000Z

23

Observational Constraints of Homogeneous Higher Dimensional Cosmology with Modified Chaplygin Gas  

E-Print Network (OSTI)

In this work, we have considered the flat FRW model of the universe in $(n+2)$-dimensions filled with the dark matter (perfect fluid with negligible pressure) and the modified Chaplygin gas (MCG) type dark energy. We present the Hubble parameter in terms of the observable parameters $\\Omega_{m0}$, $\\Omega_{x0}$ and $H_{0}$ with the redshift $z$ and the other parameters like $A$, $B$, $C$, $n$ and $\\alpha$. From Stern data set (12 points), we have obtained the bounds of the arbitrary parameters by minimizing the $\\chi^{2}$ test. The best-fit values of the parameters are obtained by 66%, 90% and 99% confidence levels. Now to find the bounds of the parameters and to draw the statistical confidence contour, we first fixed three parameters $C, n, \\alpha$ and then fixed the three parameters $A, n, \\alpha$. In the first case we find the bounds of $(A, B)$ and draw the contour between them for 4D$(n=2)$, 5D$(n=3)$ and 6D$(n=4)$. In the second case we fixed three different values of A as 1, 1/3, -1/3 to find the bounds of $(B, C)$ and draw the contour between them. Here the parameter $n$ determines the higher dimensions and we perform comparative study between three cases : 4D $(n=2)$, 5D $(n=3)$ and 6D $(n=4)$ respectively. Next due to joint analysis with BAO observation, we have also obtained the bounds of the parameters ($A,B$) by fixing some other parameters $\\alpha$ and $A$ for 4D, 5D and 6D.

Chayan Ranjit; Shuvendu Chakraborty; Ujjal Debnath

2012-11-09T23:59:59.000Z

24

A Modified Generalized Chaplygin Gas as the Unified Dark Matter-Dark Energy Revisited  

E-Print Network (OSTI)

A modified generalized Chaplygin gas (MGCG) is considered as the unified dark matter-dark energy revisited. The character of MGCG is endued with the dual role, which behaves as matter at early times and as an quiessence dark energy at late times. The equation of state for MGCG is $p=-\\alpha\\rho/(1+\\alpha)-\\vartheta(z)\\rho^{-\\alpha}/(1+\\alpha) $, where $\\vartheta(z)=-[\\rho_{0c}(1+z)^{3}]^{(1+\\alpha)}(1-\\Omega_{0B})^{\\alpha}\\{\\alpha\\Omega_{0DM}+ \\Omega_{0DE}[\\omega_{DE}+\\alpha(1+\\omega_{DE})](1+z)^{3\\omega_{DE}(1+\\alpha)}\\}$. Some cosmological quantities, such as the densities of different components of the universe $\\Omega_{i}$ ($i$ respectively denotes baryons, dark matter and dark energy) and the deceleration parameter $q$, are obtained. The present deceleration parameter $q_{0}$, the transition redshift $z_{T}$ and the redshift $z_{eq}$, which describes the epoch when the densities in dark matter and dark energy are equal, are also calculated. To distinguish MGCG from others, we then apply the Statefinder diagnostic. Later on, the parameters ($\\alpha$ and $\\omega_{DE}$) of MGCG are constrained by combination of the sound speed $c^{2}_{s}$, the age of the universe $t_{0}$, the growth factor $m$ and the bias parameter $b$. It yields $\\alpha=-3.07^{+5.66}_{-4.98}\\times10^{-2}$ and $\\omega_{DE}=-1.05^{+0.06}_{-0.11}$. Through the analysis of the growth of density perturbations for MGCG, it is found that the energy will transfer from dark matter to dark energy which reach equal at $z_{eq}\\sim 0.48$ and the density fluctuations start deviating from the linear behavior at $z\\sim 0.25$ caused by the dominance of dark energy.

Xue-Mei Deng

2011-10-10T23:59:59.000Z

25

Conceptual Design study of Small Long-life Gas Cooled Fast Reactor With Modified CANDLE Burn-up Scheme  

SciTech Connect

In this paper, conceptual design study of Small Long-life Gas Cooled Fast Reactors with Natural Uranium as Fuel Cycle Input has been performed. In this study Gas Cooled Fast Reactor is slightly modified by employing modified CANDLE burn-up scheme so that it can use Natural Uranium as fuel cycle input. Due to their hard spectrum, GCFR in this study showed very good performance in converting U-238 to plutonium in order to maintain the operation condition requirement of long-life reactors. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. With such condition we got an optimal design of 325 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input. The average discharge burn-up is about 290 GWd/ton HM.

Nur Asiah, A.; Su'ud, Zaki [Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia); Ferhat, A. [National Nuclear Energ Agency of Indonesia (BATAN) (Indonesia); Sekimoto, H. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology (Japan)

2010-06-22T23:59:59.000Z

26

Modified 13Cr Tubulars in Sour Oil and Gas Service – Known ...  

Science Conference Proceedings (OSTI)

However, there is still no industry-wide consensus on the H2S serviceability limits for high-strength MSS in oil and gas production environments. This paper ...

27

How effective is new variable modified Chaplygin gas to play the role of dark energy- A dynamical system analysis in RS II Brane model  

E-Print Network (OSTI)

Motivated by some previous works of Rudra et al we set to explore the background dynamics when dark energy in the form of New Variable Modified Chaplygin gas is coupled to dark matter with a suitable interaction in the universe described by brane cosmology. The main idea is to find out the efficiency of New variable modified Chaplygin gas to play the role of DE. As a result we resort to the technique of comparison with standard dark energy models. Here the RSII brane model have been considered as the gravity theory. An interacting model is considered in order to search for a possible solution of the cosmic coincidence problem. A dynamical system analysis is performed because of the high complexity of the system . The statefinder parameters are also calculated to classify the dark energy model. Graphs and phase diagrams are drawn to study the variations of these parameters and get an insight into the effectiveness of the dark energy model. It is also seen that the background dynamics of New Variable Modified Chaplygin gas is consistent with the late cosmic acceleration. After performing an extensive mathematical analysis, we are able to constrain the parameters of new variable modified Chaplygin gas as $mgas. Our investigation leads us to the fact that New Variable Modified Chaplygin gas is not as effective as other Chaplygin gas models to play the role of dark energy.

Prabir Rudra; Chayan Ranjit; Sujata Kundu

2013-03-19T23:59:59.000Z

28

Flammable Gas Release Estimates for Modified Sluicing Retrieval of Waste from Selected Hanford Single-Shell Tanks  

DOE Green Energy (OSTI)

The high-level radioactive wastes in many single-shell tanks (SSTs) at the Hanford Site are to be retrieved by a modified sluicing method that uses water jets to dissolve the water-soluble waste and mobilize the water-insoluble waste. Retrieval operations will liberate any waste gases trapped in the wetted solid waste matrix, and these gases will be released into the tank headspaces. Because the trapped gases include the flammable species hydrogen, methane, and ammonia, a concern exists that a flammable mixture could be formed in the tank headspaces. This report combines conservative retained gas inventory estimates and tank data with anticipated waste retrieval rates to estimate the potential headspace flammability of selected SSTs during modified sluicing waste retrieval operations. Considered here are nine of the 12 tanks from the 241-S tank farm (241-S-107, 241-S-111, and 241-S 112 are not considered) and Tank 241-U-107. This report is intended to support the specification of process controls that ensure flammable conditions do not develop in the tank headspaces. Consequently, the physical scenarios considered, the models developed to estimate retained gas releases and the tank headspace compositions under these scenarios, and the model input data are intended to conservatively assess the potential to reach headspace flammability. The analyses are intended to address worst-case conditions and establish reasonable upper bounds on the achievable flammability of the tank headspaces. Flammable retained gas inventories, for example, are based on the 95th percentile developed by Barker and Hedengren (2003), giving 95% confidence that actual inventories are smaller than those used in the calculations. Gas releases and headspace flammability were evaluated for three general scenarios: a very aggressive dissolution and erosion of saltcake waste by water jets impinging on the waste surface, the drainage of interstitial liquids from saltcake during a shutdown of the retrieval process, and the dissolution of saltcake by unsaturated liquids during a shutdown of the retrieval process. The simple model of waste retrieval using the modified sluicing approach indicated that the flammable gas headspace concentrations can rapidly approach the action level of 25% of the lower flammability limit (LFL) when the tank is passively ventilated. While it is not necessary to use the portable exhauster to maintain the headspace hydrogen concentration below this action level, retrieval rates would probably be limited by the slow removal of flammable gases by passive ventilation. It was determined that using a portable exhauster anywhere in the assumed operating range of 270 to 475 cfm would prevent the headspaces from reaching the 25% of LFL action level even if the water jets are very effective at eroding the saltcake. Specific guidelines are developed to ensure that, in the event of a catastrophic loss of the retrieval pump and portable exhauster, headspace flammability will not reach the LFL. This report is Revision 1 of PNNL-14271. This revision expands the analysis of interstitial liquid drainage-induced gas releases to address a general retrieval scenario (the previous version of this report assumed a center-out retrieval approach and conditions). Tank waste conditions (waste volumes, interstitial liquid levels, temperatures, retained gas void fractions, etc.) have also been updated from the previous version.

Huckaby, James L.; Wells, Beric E.

2004-03-05T23:59:59.000Z

29

Performance analysis of compositional and modified black-oil models for rich gas condensate reservoirs with vertical and horizontal wells  

E-Print Network (OSTI)

It has been known that volatile oil and gas condensate reservoirs cannot be modeled accurately with conventional black-oil models. One variation to the black-oil approach is the modified black-oil (MBO) model that allows the use of a simple, and less expensive computational algorithm than a fully compositional model that can result in significant timesaving in full field studies. The MBO model was tested against the fully compositional model and performances of both models were compared using various production and injection scenarios for a rich gas condensate reservoir. The software used to perform the compositional and MBO runs were Eclipse 300 and Eclipse 100 versions 2002A. The effects of black-oil PVT table generation methods, uniform composition and compositional gradient with depth, initialization methods, location of the completions, production and injection rates, kv/kh ratios on the performance of the MBO model were investigated. Vertical wells and horizontal wells with different drain hole lengths were used. Contrary to the common belief that oil-gas ratio versus depth initialization gives better representation of original fluids in place, initializations with saturation pressure versus depth gave closer original fluids in place considering the true initial fluids in place are given by the fully compositional model initialized with compositional gradient. Compared to the compositional model, results showed that initially there was a discrepancy in saturation pressures with depth in the MBO model whether it was initialized with solution gas-oil ratio (GOR) and oil-gas ratio (OGR) or dew point pressure versus depth tables. In the MBO model this discrepancy resulted in earlier condensation and lower oil production rates than compositional model at the beginning of the simulation. Unrealistic vaporization in the MBO model was encountered in both natural depletion and cycling cases. Oil saturation profiles illustrated the differences in condensate saturation distribution for the near wellbore area and the entire reservoir even though the production performance of the models was in good agreement. The MBO model representation of compositional phenomena for a gas condensate reservoir proved to be successful in the following cases: full pressure maintenance, reduced vertical communication, vertical well with upper completions, and producer set as a horizontal well.

Izgec, Bulent

2003-12-01T23:59:59.000Z

30

Flammable Gas Release Estimates for Modified Sluicing Retrieval of Waste from Selected Hanford Single-Shell Tanks  

DOE Green Energy (OSTI)

The high-level radioactive wastes in many single-shell tanks (SSTs) at the Hanford Site are to be retrieved by a modified sluicing method. Retrieval operations will hydraulically erode and dissolve the saltcake waste, and the resulting brine will then be pumped to a double-shell tank (DST). Waste gases residing in the solid waste matrix will be released into the tank headspace when the matrix is eroded or dissolved. These retained waste gases include the flammable species hydrogen, methane, and ammonia, and there is a concern that these flammable gases could produce a flammable mixture in the tank headspaces during the retrieval operations. This report combines conservative retained gas inventory estimates and tank data with anticipated waste retrieval rates to estimate the potential headspace flammability of selected SSTs during waste retrieval operations. The SSTs considered here are ten of the twelve 241-S farm tanks (tanks 241-S-107 and 241-S-111 are excluded from consideration here) and tank 241-U-107 (U-107).

Huckaby, James L.; Wells, Beric E.

2003-05-13T23:59:59.000Z

31

Benefits of rapid solidification processing of modified LaNi{sub 5} alloys by high pressure gas atomization for battery applications  

DOE Green Energy (OSTI)

A high pressure gas atomization approach to rapid solidification has been employed to investigate simplified processing of Sn modified LaNi{sub 5} powders that can be used for advanced Ni/metal hydride (Ni/MH) batteries. The current industrial practice involves casting large ingots followed by annealing and grinding and utilizes a complex and costly alloy design. This investigation is an attempt to produce powders for battery cathode fabrication that can be used in an as-atomized condition without annealing or grinding. Both Ar and He atomization gas were tried to investigate rapid solidification effects. Sn alloy additions were tested to promote subambient pressure absorption/desorption of hydrogen at ambient temperature. The resulting fine, spherical powders were subject to microstructural analysis, hydrogen gas cycling, and annealing experiments to evaluate suitability for Ni/MH battery applications. The results demonstrate that a brief anneal is required to homogenize the as-solidified microstructure of both Ar and He atomized powders and to achieve a suitable hydrogen absorption behavior. The Sn addition also appears to suppress cracking during hydrogen gas phase cycling in particles smaller than about 25 {micro}m. These results suggest that direct powder processing of a LaNi{sub 5{minus}x}Sn{sub x} alloy has potential application in rechargeable Ni/MH batteries.

Anderson, I.E.; Pecharsky, V.K.; Ting, J. [Ames Lab., IA (United States); Witham, C.; Bowman, R.C. [California Inst. of Tech., Pasadena, CA (United States)

1997-12-31T23:59:59.000Z

32

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

33

Gas atomization processing of tin and silicon modified LaNi{sub 5} for nickel-metal hydride battery applications  

DOE Green Energy (OSTI)

Numerous researchers have studied the relevant material properties of so-called AB{sub 5} alloys for battery applications. These studies involved LaNi{sub 5} substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 {micro}m) atomized powders with high surface area for enhanced battery performance. Concurrently, development of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB{sub 5} alloy powder for further processing advantage. Gas atomization processing of the AB{sub 5} alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB{sub 5} alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB{sub 5} alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB{sub 5} production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle applications in the foreseeable future.

Ting, J.

1999-02-12T23:59:59.000Z

34

Simulated Passage Through A Modified Kaplan Turbine Pressure Regime: A Supplement to "Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish"  

DOE Green Energy (OSTI)

Migratory and resident fish in the Columbia River basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage and dissolved gas supersaturation (resulting from the release of water from the spillway). The responses of fall Chinook salmon and bluegill sunfish to these two stresses, both singly and in combination, were investigated in the laboratory. A previous test series (Abernethy et al. 2001) evaluated the effects of passage through a Kaplan turbine under the ?worst case? pressure conditions. For this series of tests, pressure changes were modified to simulate passage through a Kaplan turbine under a more ?fish-friendly? mode of operation. The results were compared to results from Abernethy et al. (2001). Fish were exposed to total dissolved gas (TDG) levels of 100%, 120%, or 135% of saturation for 16-22 hours at either surface (101 kPa) or 30 ft (191 kPa) of pressure, then held at surface pressure at 100% saturation for a 48-hour observation period. Sensitivity of fall Chinook salmon to gas supersaturation was slightly higher than in the previous test series, with 15% mortality for surface-acclimated fish at 120% TDG, compared to 0% in the previous tests.

Abernethy, Cary S.; Amidan, Brett G.; Cada, G. F.

2002-03-15T23:59:59.000Z

35

Improvement of Sulphur Resistance of a Nickel-modified Catalytic Filter for Tar Removal from Biomass Gasification Gas  

DOE Green Energy (OSTI)

This work focuses on the development of catalytic candle filters for the simultaneous removal of tars and particles from the biomass gasification gas at high temperature. An improvement of sulphur resistance of the nickel-activated catalytic filter was developed by the addition of CaO. The influences of preparation procedure of catalytic filter, the ratio of Ni/CaO and the loading of Ni and CaO on the performance of the catalytic filter were investigated.

Zhang, Y.; Draelants, D.J.; Engelen, K.; Baron, G.V.

2002-09-19T23:59:59.000Z

36

Dense gas-compatible enzymes  

DOE Patents (OSTI)

An enzymatic reaction system including a modified enzyme, and a dense gas system; modified enzymes; and methods of reacting modified enzymes in a dense gas system or liquid carbon dioxide.

Kao, Fu-jung (Dracut, MA); Laintz, Kenneth E. (Los Alamos, NM); Sawan, Samuel P. (Tyngsborough, MA); Sivils, L. Dale (Jupiter, FL); Spall, W. Dale (Los Alamos, NM)

1998-07-21T23:59:59.000Z

37

/select/modify/life  

Science Conference Proceedings (OSTI)

... OOF: Finite Element Analysis of Microstructures. Table of Contents, /select/modify/life, OOF home. Prev, ... select/modify/life. /select ...

2013-08-23T23:59:59.000Z

38

REVIEW PAPER Evaluating the effect of modified atmosphere  

E-Print Network (OSTI)

the natural gas surrounding the product in the package in order to delay deteriorative changes. In this paper. ,, , , Keywords Modified atmosphere packaging (MAP) . Cheese . Headspace gas composition evolution the optimal gas composition, which could be especially important for products with relatively short shelf life

Recanati, Catherine

39

Chemically modified carbonic anhydrases useful in carbon capture systems  

Science Conference Proceedings (OSTI)

The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

Novick, Scott J; Alvizo, Oscar

2013-10-29T23:59:59.000Z

40

Chemically modified carbonic anhydrases useful in carbon capture systems  

DOE Patents (OSTI)

The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

Novick, Scott; Alvizo, Oscar

2013-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MODIFIED ZONE METHOD CALCULATOR  

NLE Websites -- All DOE Office Websites (Extended Search)

Zone Method is recommended for R-value calculations in steel stud walls by the 1997 ASHRAE Handbook of Fundamentals ASHRAE 1997. The Modified Zone Method is similar to the...

42

REVIEW OF RHEOLOGY MODIFIERS FOR HANFORD WASTE  

Science Conference Proceedings (OSTI)

As part of Savannah River National Laboratory (SRNL)?s strategic development scope for the Department of Energy ? Office of River Protection (DOE-ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste feed acceptance and product qualification scope, the SRNL has been requested to recommend candidate rheology modifiers to be evaluated to adjust slurry properties in the Hanford Tank Farm. SRNL has performed extensive testing of rheology modifiers for use with Defense Waste Processing Facility (DWPF) simulated melter feed ? a high undissolved solids (UDS) mixture of simulated Savannah River Site (SRS) Tank Farm sludge, nitric and formic acids, and glass frit. A much smaller set of evaluations with Hanford simulated waste have also been completed. This report summarizes past work and recommends modifiers for further evaluation with Hanford simulated wastes followed by verification with actual waste samples. Based on the review of available data, a few compounds/systems appear to hold the most promise. For all types of evaluated simulated wastes (caustic Handford tank waste and DWPF processing samples with pH ranging from slightly acidic to slightly caustic), polyacrylic acid had positive impacts on rheology. Citric acid also showed improvement in yield stress on a wide variety of samples. It is recommended that both polyacrylic acid and citric acid be further evaluated as rheology modifiers for Hanford waste. These materials are weak organic acids with the following potential issues: ? The acidic nature of the modifiers may impact waste pH, if added in very large doses. If pH is significantly reduced by the modifier addition, dissolution of UDS and increased corrosion of tanks, piping, pumps, and other process equipment could occur. Smaller shifts in pH could reduce aluminum solubility, which would be expected to increase the yield stress of the sludge. Therefore, it is expected that use of an acidic modifier would be limited to concentrations that do not appreciably change the pH of the waste. ? Organics are typically reductants and could impact glass REDOX if not accounted for in the reductant addition calculations. ? Stability of the modifiers in a caustic, radioactive environment is not known, but some of the modifiers tested were specifically designed to withstand caustic conditions. ? These acids will add to the total organic carbon content of the wastes. Radiolytic decomposition of the acids could result in organic and hydrogen gas generation. These potential impacts must be addressed in future studies with simulants representative of real waste and finally with tests using actual waste based on the rheology differences seen between SRS simulants and actual waste. The only non-organic modifier evaluated was sodium metasilicate. Further evaluation of this modifier is recommended if a reducing modifier is a concern.

Pareizs, J.

2013-09-30T23:59:59.000Z

43

REVIEW OF RHEOLOGY MODIFIERS FOR HANFORD WASTE  

SciTech Connect

As part of Savannah River National Laboratory (SRNL)?s strategic development scope for the Department of Energy ? Office of River Protection (DOE-ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste feed acceptance and product qualification scope, the SRNL has been requested to recommend candidate rheology modifiers to be evaluated to adjust slurry properties in the Hanford Tank Farm. SRNL has performed extensive testing of rheology modifiers for use with Defense Waste Processing Facility (DWPF) simulated melter feed ? a high undissolved solids (UDS) mixture of simulated Savannah River Site (SRS) Tank Farm sludge, nitric and formic acids, and glass frit. A much smaller set of evaluations with Hanford simulated waste have also been completed. This report summarizes past work and recommends modifiers for further evaluation with Hanford simulated wastes followed by verification with actual waste samples. Based on the review of available data, a few compounds/systems appear to hold the most promise. For all types of evaluated simulated wastes (caustic Handford tank waste and DWPF processing samples with pH ranging from slightly acidic to slightly caustic), polyacrylic acid had positive impacts on rheology. Citric acid also showed improvement in yield stress on a wide variety of samples. It is recommended that both polyacrylic acid and citric acid be further evaluated as rheology modifiers for Hanford waste. These materials are weak organic acids with the following potential issues:  The acidic nature of the modifiers may impact waste pH, if added in very large doses. If pH is significantly reduced by the modifier addition, dissolution of UDS and increased corrosion of tanks, piping, pumps, and other process equipment could occur. Smaller shifts in pH could reduce aluminum solubility, which would be expected to increase the yield stress of the sludge. Therefore, it is expected that use of an acidic modifier would be limited to concentrations that do not appreciably change the pH of the waste.  Organics are typically reductants and could impact glass REDOX if not accounted for in the reductant addition calculations.  Stability of the modifiers in a caustic, radioactive environment is not known, but some of the modifiers tested were specifically designed to withstand caustic conditions.  These acids will add to the total organic carbon content of the wastes. Radiolytic decomposition of the acids could result in organic and hydrogen gas generation. These potential impacts must be addressed in future studies with simulants representative of real waste and finally with tests using actual waste based on the rheology differences seen between SRS simulants and actual waste. The only non-organic modifier evaluated was sodium metasilicate. Further evaluation of this modifier is recommended if a reducing modifier is a concern.

Pareizs, J.

2013-09-30T23:59:59.000Z

44

Modified clay sorbents  

DOE Patents (OSTI)

A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

Fogler, H. Scott (Ann Arbor, MI); Srinivasan, Keeran R. (Livonia, MI)

1990-01-01T23:59:59.000Z

45

Ruslands Gas.  

E-Print Network (OSTI)

??This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to… (more)

Elkjćr, Jonas Bondegaard

2009-01-01T23:59:59.000Z

46

New probe of modified gravity  

E-Print Network (OSTI)

We suggest a new efficient way to constrain a certain class of large scale modifications of gravity. We show that the scale-free relation between density and size of Dark Matter halos, predicted within the LambdaCDM model with Newtonian gravity, gets modified in a wide class of theories of modified gravity.

Boyarsky, Alexey

2010-01-01T23:59:59.000Z

47

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

48

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

49

Gas Week  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Gas WeekHouston, TexasSeptember 24, 2003

Information Center

2003-09-24T23:59:59.000Z

50

Effect of Varying Bulk Viscosity on Generalized Chaplygin Gas  

E-Print Network (OSTI)

In this paper, viscous generalized Chaplygin gas as a model of dark energy considered. We assume non-constant bulk viscous coefficient and study dark energy density. We consider several cases of density-dependent viscosities. We find that, in the special case, the viscous generalized Chaplygin gas is corresponding to modified Chaplygin gas.

Saadat, H

2013-01-01T23:59:59.000Z

51

Effect of Varying Bulk Viscosity on Generalized Chaplygin Gas  

E-Print Network (OSTI)

In this paper, viscous generalized Chaplygin gas as a model of dark energy considered. We assume non-constant bulk viscous coefficient and study dark energy density. We consider several cases of density-dependent viscosities. We find that, in the special case, the viscous generalized Chaplygin gas is corresponding to modified Chaplygin gas.

H. Saadat; B. Pourhassan

2013-05-26T23:59:59.000Z

52

Structure formation in modified gravity  

Science Conference Proceedings (OSTI)

We pursue a (1+3) ?covariant analysis of cosmological peculiar velocity of pressure?free matter induced by the matter density perturbations in modified f(R) gravity theories. Instead of working in a quasi?Newtonian Eulerian frame

D. M. Solomons; P. K. S. Dunsby; S. Carloni

2009-01-01T23:59:59.000Z

53

Designing Self-Modifying Agents  

E-Print Network (OSTI)

Agents need to be able to adapt to changes in their environment. One way to achieve this, is to provide agents with the ability of self-modification. Self-modification requires reflection and strategies with which new knowledge can be acquired, a necessary condition for creativity. This paper describes a knowledge-level model for the design of self-modifying agents and explores the feasibility of automatically designing self-modifying agents.

Frances M.T. Brazier; Frances M. T; Brazier; Niek J. E. Wijngaards

2001-01-01T23:59:59.000Z

54

Black Warrior: Sub-soil Gas and Fluid Inclusion Exploration and...  

Open Energy Info (EERE)

Warrior: Sub-soil Gas and Fluid Inclusion Exploration and Slim Well Drilling Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Black...

55

Natural gas transmission and distribution model of the National Energy Modeling System  

SciTech Connect

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

1997-02-01T23:59:59.000Z

56

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

57

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

58

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

59

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

60

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

62

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

63

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

64

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

65

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

66

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

67

Gas separating  

DOE Patents (OSTI)

Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

Gollan, A.

1988-03-29T23:59:59.000Z

68

Missouri Natural Gas Number of Gas and Gas Condensate ...  

U.S. Energy Information Administration (EIA)

Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

69

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

70

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

71

A MODIFIED LUNDEGARDH SPRAY CHAMBER  

SciTech Connect

Operation of an apparatus for analysis of solutions by the Lundegardh flame technique was greatiy facilituted by the modification of a spray chamber. Samples can be introduced and removed from the modified spray chamber without extinguishing the flame or dismantling the assembly. (auth)

Palin, P.C.

1951-04-01T23:59:59.000Z

72

Outlook for U.S. shale oil and gas  

U.S. Energy Information Administration (EIA)

Title: Outlook for U.S. shale oil and gas Author: Kondis, Paul Last modified by: ch4 Created Date: 5/9/2013 1:27:26 PM Document presentation format

73

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

74

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

75

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

76

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

77

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

78

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

79

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

80

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

82

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

83

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

84

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

85

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

86

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

87

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

88

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

89

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

90

Lectures on Screened Modified Gravity  

E-Print Network (OSTI)

The acceleration of the expansion of the Universe has led to the construction of Dark Energy models where a light scalar field may have a range reaching up to cosmological scales. Screening mechanisms allow these models to evade the tight gravitational tests in the solar system and the laboratory. I will briefly review some of the salient features of screened modified gravity models of the chameleon, dilaton or symmetron types using $f(R)$ gravity as a template.

Philippe Brax

2012-11-22T23:59:59.000Z

91

Observational Tests of Modified Gravity  

E-Print Network (OSTI)

Modified gravity theories have richer observational consequences for large-scale structure than conventional dark energy models, in that different observables are not described by a single growth factor even in the linear regime. We examine the relationships between perturbations in the metric potentials, density and velocity fields, and discuss strategies for measuring them using gravitational lensing, galaxy cluster abundances, galaxy clustering/dynamics and the ISW effect. We show how a broad class of gravity theories can be tested by combining these probes. A robust way to interpret observations is by constraining two key functions: the ratio of the two metric potentials, and the ratio of the Gravitational ``constant'' in the Poisson equation to Newton's constant. We also discuss quasilinear effects that carry signatures of gravity, such as through induced three-point correlations. Clustering of dark energy can mimic features of modified gravity theories and thus confuse the search for distinct signatures of such theories. It can produce pressure perturbations and anisotropic stresses, which breaks the equality between the two metric potentials even in general relativity. With these two extra degrees of freedom, can a clustered dark energy model mimic modified gravity models in all observational tests? We show with specific examples that observational constraints on both the metric potentials and density perturbations can in principle distinguish modifications of gravity from dark energy models. We compare our result with other recent studies that have slightly different assumptions (and apparently contradictory conclusions).

Bhuvnesh Jain; Pengjie Zhang

2007-09-17T23:59:59.000Z

92

Modified Newtonian Dynamics in the Milky Way  

E-Print Network (OSTI)

Both microlensing surveys and radio-frequency observations of gas flow imply that the inner Milky Way is completely dominated by baryons, contrary to the predictions of standard cold dark matter (CDM) cosmology. We investigate the predictions of the Modified Newtonian Dynamics (MOND) formula for the Galaxy given the measured baryon distribution. Satisfactory fits to the observationally determined terminal-velocity curve are obtained for different choices of the MOND's interpolating function mu(x). However, with simple analytical forms of mu(x), the local circular speed v_c(R_0) can be as large as 220 km/s only for values of the parameter a_0 that are excluded by observations of NGC 3198. Only a numerically specified interpolating function can produce v_c(R_0)=220 km/s, which is therefore an upper limit in MOND, while the asymptotic velocity is predicted to be v_c(infty)=170+-5 km/s. The data are probably not consistent with the functional form of mu(x) that has been explored as a toy model in the framework of Bekenstein's covariant theory of gravity.

B. Famaey; J. Binney

2005-06-29T23:59:59.000Z

93

The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions  

E-Print Network (OSTI)

and greenhouse gas emissions Jerome Dumortier1 , Dermot J Hayes2 , Miguel Carriquiry2 , Fengxia Dong3 , Xiaodong production and trade model with a greenhouse gas model to assess leakage associated with modified beef

Zhou, Yaoqi

94

Modified biogeography-based optimisation (MBBO)  

Science Conference Proceedings (OSTI)

Modified biogeography-based optimisation (MBBO) technique is modified version of BBO which is a bio-inspired and population-based optimisation technique. Biogeography is the study of distribution of species in nature. In this paper, ...

M. R. Lohokare; S. Devi; S. S. Pattnaik; B. K. Panigrahi; J. G. Joshi

2011-07-01T23:59:59.000Z

95

Image analysis by modified Legendre moments  

Science Conference Proceedings (OSTI)

In the paper, a new set of orthogonal moments based on the modified Legendre polynomials is introduced. Three properties of the modified Legendre polynomials, which are orthogonality, orthogonal invariance and the characteristic that an interval on the ... Keywords: Feature representation capability, Legendre moments, Modified Legendre moments, Translation invariance

Bo Fu; Jianzhong Zhou; Yuhong Li; Guojun Zhang; Cheng Wang

2007-02-01T23:59:59.000Z

96

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

97

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens ’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

98

Gas laser  

SciTech Connect

According to the invention, the gas laser comprises a housing which accommodates two electrodes. One of the electrodes is sectional and has a ballast resistor connected to each section. One of the electrodes is so secured in the housing that it is possible to vary the spacing between the electrodes in the direction of the flow of a gas mixture passed through an active zone between the electrodes where the laser effect is produced. The invention provides for a maximum efficiency of the laser under different operating conditions.

Kosyrev, F. K.; Leonov, A. P.; Pekh, A. K.; Timofeev, V. A.

1980-08-12T23:59:59.000Z

99

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 15:

100

Mississippi Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Thermal fluctuations of granular gas under HCS using two-point kinetic theory  

E-Print Network (OSTI)

Thermal fluctuations of the granular gas under the homogeneous cooling state (HCS) are estimated using two-point kinetic theory by Tsuge-Sagara. Thermal fluctuations of the elastic gas are modified for the granular gas by nonequilibrium moments, which defines the distribution function under the HCS. The deviations of thermal fluctuations for the granular gas from those for the elastic gas obtained by the fluctuation-dissipation theorem are calculated as a function of the restitution coefficient.

Yano, Ryosuke

2011-01-01T23:59:59.000Z

102

Electrochemical Apparatus with Disposable and Modifiable Parts  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts The invention also includes electrochemical apparatus that can interface with optical instrumentation. If the working electrode is transparent, light from an optical fiber may be directed through the working electrode and into a cuvette. July 3, 2013 Electrochemical Apparatus with Disposable and Modifiable Parts Available for thumbnail of Feynman Center (505) 665-9090 Email Electrochemical Apparatus with Disposable and Modifiable Parts Applications: Electrochemical experiments in solution Electrochemical experiments on surfaces Bulk electrolysis experiments Fuel cells Corrosion studies Academic Labs Teaching and research Benefits: Incorporates disposable, commercially available cuvettes

103

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

104

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

105

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

106

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

107

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

134,294 32,451 0.37 0 0.00 32 1.09 43,764 0.83 10,456 0.38 39,786 1.26 126,488 0.63 C o n n e c t i c u t Connecticut 54. Summary Statistics for Natural Gas Connecticut, 1992-1996...

108

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

109

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

110

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

111

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

112

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

113

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

114

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

115

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

116

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

117

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

118

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

119

Natural Gas  

Annual Energy Outlook 2012 (EIA)

3.91 119,251 0.60 229 7.81 374,824 7.15 2,867 0.10 189,966 6.01 915,035 4.57 O h i o Ohio 83. Summary Statistics for Natural Gas Ohio, 1992-1996 Table 1992 1993 1994 1995 1996...

120

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0.00 53 1.81 147,893 2.82 7,303 0.27 93,816 2.97 398,581 1.99 W i s c o n s i n Wisconsin 97. Summary Statistics for Natural Gas Wisconsin, 1992-1996 Table 1992 1993 1994...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gas Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

Prices Gasoline Prices for U.S. Cities Click on the map to view gas prices for cities in your state. AK VT ME NH NH MA MA RI CT CT DC NJ DE DE NY WV VA NC SC FL GA AL MS TN KY IN...

122

Natural Gas  

Annual Energy Outlook 2012 (EIA)

10,799 1,953 0.02 0 0.00 0 0.00 2,523 0.05 24 0.00 2,825 0.09 7,325 0.04 V e r m o n t Vermont 93. Summary Statistics for Natural Gas Vermont, 1992-1996 Table 1992 1993 1994 1995...

123

Natural Gas  

Annual Energy Outlook 2012 (EIA)

845,998 243,499 2.75 135,000 0.68 35 1.19 278,606 5.32 7,239 0.26 154,642 4.90 684,022 3.42 P e n n s y l v a n i a Pennsylvania 86. Summary Statistics for Natural Gas...

124

Impacts of a gas cartel on the European gas market – selected results from the supply model EUGAS  

E-Print Network (OSTI)

b, * This article introduces the simulation model EUGAS which allows a quantitative analysis of the long-term natural gas supply of Europe. Based on chosen parameter specifications, the simulation shows that no discernible physical gas scarcity at least for the next 20-30 years will occur in Europe. Significant investments in new production and transport facilities will be necessary during the next decades. Diversification of supplies and political considerations will have a significant impact on the development of new natural gas resources. Possibly, a new built gas cartel similar to the OPEC may modify the gas supply pattern of Europe.

J. Perner A; A. Seeliger

2003-01-01T23:59:59.000Z

125

Thermodynamics in Modified Gravity Theories  

E-Print Network (OSTI)

We demonstrate that there does exist an equilibrium description of thermodynamics on the apparent horizon in the expanding cosmological background for a wide class of modified gravity theories with the Lagrangian density $f(R, \\phi, X)$, where $R$ is the Ricci scalar and $X$ is the kinetic energy of a scalar field $\\phi$. This comes from a suitable definition of an energy momentum tensor of the "dark" component obeying the local energy conservation law in the Jordan frame. It is shown that the equilibrium description in terms of the horizon entropy $S$ is convenient because it takes into account the contribution of the horizon entropy $\\hat{S}$ in non-equilibrium thermodynamics as well as an entropy production term.

Kazuharu Bamba; Chao-Qiang Geng; Shinji Tsujikawa

2011-01-19T23:59:59.000Z

126

SUMMARY OF 2009 RHEOLOGY MODIFIER PROGRAM  

SciTech Connect

The overall objective of the EM-31 Rheological Modifiers and Wetting Agents program is to utilize commercially available rheology modifiers to increase the solids fraction of radioactive sludge based waste streams, resulting in an increase in throughput and decreasing the overall processing time. The program first investigates the impact of rheology modifiers on slurry simulants and then utilizes the most effective rheology modifiers on radioactive slurries. The work presented in this document covers the initial investigation of rheology modifier testing with simulants. This task is supported by both the Savannah River National Laboratory (SRNL) and Pacific Northwest National Laboratory (PNNL). The SRNL EM-31 task, for this year, was to investigate the use of rheology modifiers on simulant Defense Waste Processing Facility (DWPF) melter feeds. The task is to determine, based on the impact of the rheology modifier, if there are rheology modifiers that could reduce the water content of the slurry going to the DWPF melter, hence increasing the melt rate by decreasing the water loading. The rheology modifier in essence would allow a higher solids content slurry to have the same type of rheology or pumpability of a lower solids slurry. The modifiers selected in this report were determined based on previous modifiers used in high level waste melter feed simulants, on-going testing performed by counterparts at PNNL, and experiences gain through use of modifiers in other Department of Energy (DOE) processes such as grout processing. There were 12 rheology modifiers selected for testing, covering both organic and inorganic types and they were tested at four different concentrations for a given melter feed. Five different DWPF melter feeds were available and there was adequate material in one of the melter feeds to increase the solids concentration, resulting in a total of six simulants for testing. The mass of melter feed available in each simulant was not adequate for testing each rheology modifier, hence based on the changes in rheology for a given rheology modifier, rheology modifiers were either dropped or added between simulants. Three rheology modifiers were used on all simulants. The results from this testing indicate that citric acid or polycarboxylate based rheology modifiers are the most effective in reducing the yield stress, by as much as 70% at the higher rheology modifier additions and were effective on most of the tested simulants. These rheology modifiers are organic, hence the can also be used as reductants in melter operations. The most effective non-organic rheology modifiers, sodium metasilicate reduced the yield stress by 10%. It is recommended that both citric acid and commercially available polycarboxylate rheology modifiers be further investigated. Different molecular weight polycarboxylates and different types of polycarboxylates used in other industries must be considered. These polycarboxylates are extensively utilized in the cement, ceramic, and water treatment processes, hence readily available. Future work on DWPF melter feeds involving rheology modifiers should include, assuming the present method of processing sludge through DPWF does not change, is: (1) Investigate the use of polycarboxylate in various processes and procure polycarboxylates for testing. Limit rheology modifier selection and future testing between four and eight different types. (2) Test rheology modifiers on at least two different chemical types or bounding DWPF SME product simulants. Test to include the impact of boiling and the effectiveness in reducing water content via rheology versus weight percent curves. (3) Based on selected modifiers, perform testing on actual radioactive melter feed based on results from simulant testing.

Hansen, E.

2009-12-08T23:59:59.000Z

127

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Unconventional Natural Gas Los Alamos scientists are committed to the efficient and environmentally-safe development of major U.S. natural gas and oil resources....

128

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

129

,"Texas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Texas Natural Gas Exports...

130

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

131

,"Montana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Montana Natural Gas Exports...

132

,"Michigan Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Michigan Natural Gas Exports...

133

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

134

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network (OSTI)

by numerical simulation below. pipeline gas shalecushion gas sand shale CH4 working gas CH4 working gas sand

Oldenburg, Curtis M.

2003-01-01T23:59:59.000Z

135

GAS SEAL  

DOE Patents (OSTI)

A seal is described for a cover closing an opening in the top of a pressure vessel that may house a nuclear reactor. The seal comprises a U-shaped trough formed on the pressure vessel around the opening therein, a mass of metal in the trough, and an edge flange on the cover extending loosely into the trough and dipping into the metal mass. The lower portion of the metal mass is kept melted, and the upper portion, solid. The solid pontion of the metal mass prevents pressure surges in the vessel from expelling the liquid portion of the metal mass from the trough; the liquld portion, thus held in place by the solid portion, does not allow gas to go through, and so gas cannot escape through shrinkage holes in the solid portion.

Monson, H.; Hutter, E.

1961-07-11T23:59:59.000Z

136

Shale gas is natural gas trapped inside  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

137

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 152 170 165 195 224 Production (million cubic feet)...

138

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 280 300 225 240 251 Production (million cubic feet)...

139

Natural Gas Gross Withdrawals from Gas Wells  

U.S. Energy Information Administration (EIA)

Natural Gas Gross Withdrawals and Production (Volumes in Million Cubic Feet) Data Series: ... coalbed production data are included in Gas Well totals.

140

Natural Gas Gross Withdrawals from Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

System configured for applying a modifying agent to a non-equidimensional substrate  

DOE Patents (OSTI)

The present invention is related to systems and methods for modifying various non-equidimensional substrates with modifying agents. The system comprises a processing chamber configured for passing the non-equidimensional substrate therethrough, wherein the processing chamber is further configured to accept a treatment mixture into the chamber during movement of the non-equidimensional substrate through the processing chamber. The treatment mixture can comprise of the modifying agent in a carrier medium, wherein the carrier medium is selected from the group consisting of a supercritical fluid, a near-critical fluid, a superheated fluid, a superheated liquid, and a liquefied gas. Thus, the modifying agent can be applied to the non-equidimensional substrate upon contact between the treatment mixture and the non-equidimensional substrate.

Janikowski; Stuart K. (Idaho Falls, ID), Argyle; Mark D. (Idaho Falls, ID), Fox; Robert V. (Idaho Falls, ID), Propp; W. Alan (Idaho Falls, ID), Toth; William J. (Idaho Falls, ID), Ginosar; Daniel M. (Idaho Falls, ID), Allen; Charles A. (Idaho Falls, ID), Miller; David L. (Idaho Falls, ID)

2007-07-10T23:59:59.000Z

142

Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs).

143

Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas: Gas in place at the time that a reservoir was converted to use as an underground storage reservoir, as in contrast to injected gas volumes. Natural Gas: A gaseous mixture...

144

Novel Nitride-Modified Multielectron Conversion Electrode ...  

Novel Nitride-Modified Multielectron Conversion Electrode Materials for Lithium Ion Batteries Note: The technology described above is an early stage opportunity.

145

Enzymatic treatment of wool with modified proteases.  

E-Print Network (OSTI)

??The tendency of wool to felt and shrink is mainly due to its scaly structure. The chlorine-Hercosett is the most widespread process used to modify… (more)

Silva, Carla J. S. M.

2005-01-01T23:59:59.000Z

146

Gas Metrology Portal  

Science Conference Proceedings (OSTI)

... automobile industry meeting more stringent … more. Audit of EPA Protocol Gas Suppliers EPA Protocol gas mixture calibration ...

2012-12-19T23:59:59.000Z

147

STAR FORMATION IN ATOMIC GAS  

SciTech Connect

Observations of nearby galaxies have firmly established, over a broad range of galactic environments and metallicities, that star formation occurs exclusively in the molecular phase of the interstellar medium (ISM). Theoretical models show that this association results from the correlation between chemical phase, shielding, and temperature. Interstellar gas converts from atomic to molecular only in regions that are well shielded from interstellar ultraviolet (UV) photons, and since UV photons are also the dominant source of interstellar heating, only in these shielded regions does the gas become cold enough to be subject to Jeans instability. However, while the equilibrium temperature and chemical state of interstellar gas are well correlated, the timescale required to reach chemical equilibrium is much longer than that required to reach thermal equilibrium, and both timescales are metallicity-dependent. Here I show that the difference in timescales implies that, at metallicities below a few percent of the solar value, well shielded gas will reach low temperatures and proceed to star formation before the bulk of it is able to convert from atomic to molecular. As a result, at extremely low metallicities, star formation will occur in a cold atomic phase of the ISM rather than a molecular phase. I calculate the observable consequences of this result for star formation in low-metallicity galaxies, and I discuss how some current numerical models for H{sub 2}-regulated star formation may need to be modified.

Krumholz, Mark R., E-mail: krumholz@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

2012-11-01T23:59:59.000Z

148

Thermal instability in the collisionally cooled gas  

E-Print Network (OSTI)

We have presented the non-equilibrium (time-dependent) cooling rate and ionization state calculations for a gas behind shock waves with $v \\sim 50-150$ km s$^{-1}$ ($T_s \\sim 0.5 - 6\\times 10^5$ K). Such shock waves do not lead to the radiative precursor formation, i.e. the thermal evolution of a gas behind the shock waves are controlled by collisions only. We have found that the cooling rate in a gas behind the shock waves with $v \\sim 50-120$ km s$^{-1}$ ($T_s \\sim 0.5 - 3\\times 10^5$ K) differs considerably from the cooling rate for a gas cooled from $T = 10^8$ K. It is well-known that a gas cooled from $T = 10^8$ K is thermally unstable for isobaric and isochoric perturbations at $T \\simgt 2\\times 10^4$ K. We have studied the thermal instability in a collisionally controlled gas for shock waves with $v \\sim 50-150$ km s$^{-1}$. We have found that the temperature range, where the postshock gas is thermally unstable, is significantly modified and depends on both gas metallicity and ionic composition of a ga...

Vasiliev, Evgenii O

2011-01-01T23:59:59.000Z

149

New Applications Of Geothermal Gas Analysis To Exploration | Open Energy  

Open Energy Info (EERE)

New Applications Of Geothermal Gas Analysis To Exploration New Applications Of Geothermal Gas Analysis To Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: New Applications Of Geothermal Gas Analysis To Exploration Details Activities (4) Areas (4) Regions (0) Abstract: Gas analysis is applied to exploration at the Lightn~gD ock geothe~aflie ld, which has no surface manifestations, to exploration by drilling, and to monitoring Cerro Prieto - a producing field. It is assumed that reservoir fluids have a different gas chemistry than local groundwater, and that gas chemistry can be interpreted as a three source system, magmatic, crustal, and meteoric, modified by processes of boiling, mixing, and condensation. We show that gas analyses can delineate the location of major structures that serve as fluid conduits, map fluid flow

150

LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE  

SciTech Connect

In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

2004-08-01T23:59:59.000Z

151

Fuel gas conditioning process  

DOE Patents (OSTI)

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

152

On-line ultrasonic gas entrainment monitor  

DOE Patents (OSTI)

Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One specific embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose.

Day, Clifford K. (Richland, WA); Pedersen, Herbert N. (Richland, WA)

1978-01-01T23:59:59.000Z

153

Fundamental mechanisms in flue-gas conditioning  

Science Conference Proceedings (OSTI)

The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.

1992-01-09T23:59:59.000Z

154

Fundamental mechanisms in flue gas conditioning  

Science Conference Proceedings (OSTI)

The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ask properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

Bush, P.V.; Snyder, T.R.

1992-01-09T23:59:59.000Z

155

Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model  

SciTech Connect

The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

1985-05-01T23:59:59.000Z

156

Fourteenth Semi-Annual Report to Congress on Appliance Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Society of North America IRL - Incandescent Reflector Lamp LED - Light-Emitting Diode MEF- Modified Energy Factor MV - Medium Voltage NEMA - National Electrical...

157

Texas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Gas Wells...

158

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...

159

Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million...

160

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price...  

Gasoline and Diesel Fuel Update (EIA)

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per...

162

North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) North Dakota Natural Gas Gross Withdrawals from Shale Gas...

163

Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals from Shale Gas...

164

Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Arkansas Natural Gas Gross Withdrawals from Shale Gas...

165

Montana Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

166

Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million...

167

Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

168

Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Virginia Natural Gas Gross Withdrawals from Shale Gas...

169

Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas...

170

California Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) California Natural Gas Gross Withdrawals from Shale Gas...

171

New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) New Mexico Natural Gas Gross Withdrawals from Shale Gas...

172

Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Shale Gas...

173

West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Annual Download Data (XLS File) West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) West Virginia Natural Gas Gross Withdrawals from Shale Gas...

174

Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Shale Gas...

175

Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Shale Gas (Million...

176

Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Shale Gas...

177

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet)...

178

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million...

179

Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic...

180

South Dakota Natural Gas Withdrawals from Gas Wells (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) South Dakota Natural Gas Withdrawals from Gas Wells...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

South Dakota Natural Gas Removed from Natural Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Removed from Natural Gas (Million Cubic Feet) South Dakota Natural Gas Removed from Natural Gas...

182

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 22,442 22,117 23,554 18,774 16,718 Production...

183

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

2004 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year... 341,678 373,304 387,772 393,327 405,048 Production...

184

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 1,169 1,244 1,232 1,249 1,272 Production (million...

185

Observationally Verifiable Predictions of Modified Gravity  

Science Conference Proceedings (OSTI)

MOG is a fully relativistic modified theory of gravity based on an action principle. The MOG field equations are exactly solvable numerically in two important cases. In the spherically symmetric

J. W. Moffat; V. T. Toth

2010-01-01T23:59:59.000Z

186

Theory of Deliquescence and Modified Köhler Curves  

Science Conference Proceedings (OSTI)

The conventional Köhler theory, which describes the equilibrium sizes of hygroscopic aerosol particles in humid air, is modified by considering the solubility limitation so that the deliquescence and hysteresis processes can also be explained. A ...

Jen-Ping Chen

1994-12-01T23:59:59.000Z

187

Gas Utilities (New York)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

188

Gas amplified ionization detector for gas chromatography  

DOE Patents (OSTI)

A gas-amplified ionization detector for gas chromatography which possesses increased sensitivity and a very fast response time is described. Solutes eluding from a gas chromatographic column are ionized by uv photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the uv photoionization of at least a portion of each solute passing through the detector. 4 figs.

Huston, G.C.

1989-11-27T23:59:59.000Z

189

Program on Technology Innovation: Crystal Habit Modifiers  

Science Conference Proceedings (OSTI)

This report presents the results of a review of the scientific and technical literature pertaining to the potential use of crystal habit modifiers to control the formation or consequent effects of deposits in nuclear plant systems. Crystal habit modifiers (CHMs) could potentially be added to the primary or secondary circuits of a pressurized water reactor (PWR) or to boiling water reactor (BWR) coolant as a means of controlling the crystal habit (shape) of the crystals that comprise primary and secondary...

2007-12-17T23:59:59.000Z

190

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) Eligibility...

191

South Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas...

192

International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas International Energy Outlook 2004 Natural Gas Natural gas is the fastest growing primary energy source in the IEO2004 forecast. Consumption of natural gas is projected...

193

Natural Gas Annual Archives  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

194

Liquefied Natural Gas  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

195

EIA - Natural Gas Publications  

Annual Energy Outlook 2012 (EIA)

and a weather snapshot. Monthly Natural Gas Monthly Natural and supplemental gas production, supply, consumption, disposition, storage, imports, exports, and prices in the...

196

Natural Gas Annual 2005  

U.S. Energy Information Administration (EIA)

Oil and Gas Field Code Master List ... Hawaii, 2001-2005 ... Energy Information Administration/Natural Gas Annual 2005 vii 54.

197

Natural Gas Exports (Summary)  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

198

Gas scrubbing liquids  

DOE Patents (OSTI)

Fully chlorinated and/or fluorinated hydrocarbons are used as gas scrubbing liquids for preventing noxious gas emissions to the atmosphere.

Lackey, Walter J. (Oak Ridge, TN); Lowrie, Robert S. (Oak Ridge, TN); Sease, John D. (Knoxville, TN)

1981-01-01T23:59:59.000Z

199

Natural Gas Processed  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

200

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas prices, successful application of horizontal drilling, and hydraulic fracturing, as well as significant investments made by natural gas companies in production...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Natural Gas Dry Production  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

202

Natural Gas Production  

U.S. Energy Information Administration (EIA)

Natural Gas Production. Measured By. Disseminated Through. Survey of Producing States and Mineral Management Service “Evolving Estimate” in Natural Gas Monthly.

203

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

7, 2009 Next Release: May 14, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 6, 2009) Natural gas...

204

February Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

205

November Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

206

January Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

207

March Natural Gas Monthly  

Gasoline and Diesel Fuel Update (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

208

May Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

209

CONTINUOUS GAS ANALYZER  

DOE Patents (OSTI)

A reagent gas and a sample gas are chemically combined on a continuous basis in a reaction zone maintained at a selected temperature. The reagent gas and the sample gas are introduced to the reaction zone at preselected. constant molar rates of flow. The reagent gas and the selected gas in the sample mixture combine in the reaction zone to form a product gas having a different number of moles from the sum of the moles of the reactants. The difference in the total molar rates of flow into and out of the reaction zone is measured and indicated to determine the concentration of the selected gas.

Katz, S.; Weber, C.W.

1960-02-16T23:59:59.000Z

210

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

211

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

212

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

213

Genetically Modified Organism (GMO) Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Genetically Modified Organism(GMO) in Roundup Ready, Soy Flour, Non-Modified Soy Flour samples. Genetically Modified Organism (GMO) Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs appli

214

DNA polymerase having modified nucleotide binding site for DNA sequencing  

DOE Patents (OSTI)

A modified gene encoding a modified DNA polymerase is disclosed. The modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase. 6 figs.

Tabor, S.; Richardson, C.

1997-03-25T23:59:59.000Z

215

Natural gas production from Arctic gas hydrates  

Science Conference Proceedings (OSTI)

The natural gas hydrates of the Messoyakha field in the West Siberian basin of Russia and those of the Prudhoe Bay-Kuparuk River area on the North Slope of Alaska occur within a similar series of interbedded Cretaceous and Tertiary sandstone and siltstone reservoirs. Geochemical analyses of gaseous well-cuttings and production gases suggest that these two hydrate accumulations contain a mixture of thermogenic methane migrated from a deep source and shallow, microbial methane that was either directly converted to gas hydrate or was first concentrated in existing traps and later converted to gas hydrate. Studies of well logs and seismic data have documented a large free-gas accumulation trapped stratigraphically downdip of the gas hydrates in the Prudhoe Bay-Kuparuk River area. The presence of a gas-hydrate/free-gas contact in the Prudhoe Bay-Kuparuk River area is analogous to that in the Messoyakha gas-hydrate/free-gas accumulation, from which approximately 5.17x10[sup 9] cubic meters (183 billion cubic feet) of gas have been produced from the hydrates alone. The apparent geologic similarities between these two accumulations suggest that the gas-hydrated-depressurization production method used in the Messoyakha field may have direct application in northern Alaska. 30 refs., 15 figs., 3 tabs.

Collett, T.S. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

216

Standards of performance for new stationary sources gas turbines  

SciTech Connect

In order to implement the Clean Air Act, the U.S. Environmental Protection Agency establishes standards of performance which limit emissions of nitrogen oxides and sulfur dioxide from new, modified, and reconstructed stationary gas turbines. The intended effect of this regulation is to require new, modified, and reconstructed stationary gas turbines to use the best demonstrated system of continuous emission reduction. There are no emission limits for gas turbines below 10.7 gigaj/hr. For all gas turbines 10.7 gigaj/hr and larger, the sulfur dioxide emission limit is 150 ppm; alternatively, a fuel with less than 0.8Vertical Bar3< sulfur can be fired. For gas turbines between 10.7 and 107.2 giga8/hr used for gas and oil transportation or production not located in a Metropolitan Statistical Area (MSA), the nitrogen oxides emission limit is 150 ppm. For gas turbines larger than 107.2 gigaj/hr used for gas and oil transportation or production located in an MSA, and for all other uses, the nitrogen oxides emission limit is 75 ppm. These regulations are effective as of 9/10/79.

1979-09-10T23:59:59.000Z

217

Accounting for Adsorbed gas and its effect on production bahavior of Shale Gas Reservoirs  

E-Print Network (OSTI)

Shale gas reservoirs have become a major source of energy in recent years. Developments in hydraulic fracturing technology have made these reservoirs more accessible and productive. Apart from other dissimilarities from conventional gas reservoirs, one major difference is that a considerable amount of gas produced from these reservoirs comes from desorption. Ignoring a major component of production, such as desorption, could result in significant errors in analysis of these wells. Therefore it is important to understand the adsorption phenomenon and to include its effect in order to avoid erroneous analysis. The objective of this work was to imbed the adsorbed gas in the techniques used previously for the analysis of tight gas reservoirs. Most of the desorption from shale gas reservoirs takes place in later time when there is considerable depletion of free gas and the well is undergoing boundary dominated flow (BDF). For that matter BDF methods, to estimate original gas in place (OGIP), that are presented in previous literature are reviewed to include adsorbed gas in them. More over end of the transient time data can also be used to estimate OGIP. Kings modified z* and Bumb and McKee’s adsorption compressibility factor for adsorbed gas are used in this work to include adsorption in the BDF and end of transient time methods. Employing a mass balance, including adsorbed gas, and the productivity index equation for BDF, a procedure is presented to analyze the decline trend when adsorbed gas is included. This procedure was programmed in EXCEL VBA named as shale gas PSS with adsorption (SGPA). SGPA is used for field data analysis to show the contribution of adsorbed gas during the life of the well and to apply the BDF methods to estimate OGIP with and without adsorbed gas. The estimated OGIP’s were than used to forecast future performance of wells with and without adsorption. OGIP estimation methods when applied on field data from selected wells showed that inclusion of adsorbed gas resulted in approximately 30 percent increase in OGIP estimates and 17 percent decrease in recovery factor (RF) estimates. This work also demonstrates that including adsorbed gas results in approximately 5percent less stimulated reservoir volume estimate.

Mengal, Salman Akram

2010-08-01T23:59:59.000Z

218

Portable gas chromatograph-mass spectrometer  

DOE Patents (OSTI)

A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

Andresen, B.D.; Eckels, J.D.; Kimmins, J.F.; Myers, D.W.

1994-12-31T23:59:59.000Z

219

HYDRAULIC CALCULATIONS FOR A MODIFIED IN-SITU RETORT  

E-Print Network (OSTI)

LBL-1 0431 UC-91 HYDRAULIC CALCULATIONS FOR A MODIFIED IN-REFERENCES • . • • • • . , . HYDRAULIC CALCULATIONS FOR ACalifomia. LBL-10431 HYDRAULIC CALCULATIONS FOR A MODIFIED

Hall, W.G.

2012-01-01T23:59:59.000Z

220

Cell properties for modified PTMA cathodes of organic radical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell properties for modified PTMA cathodes of organic radical batteries Title Cell properties for modified PTMA cathodes of organic radical batteries Publication Type Journal...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural Gas Pipeline Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

222

Gas network model allows full reservoir coupling  

Science Conference Proceedings (OSTI)

The gas-network flow model (Gasnet) developed for and added to an existing Qatar General Petroleum Corp. (OGPC) in-house reservoir simulator, allows improved modeling of the interaction among the reservoir, wells, and pipeline networks. Gasnet is a three-phase model that is modified to handle gas-condensate systems. The numerical solution is based on a control volume scheme that uses the concept of cells and junctions, whereby pressure and phase densities are defined in cells, while phase flows are defined at junction links. The model features common numerical equations for the reservoir, the well, and the pipeline components and an efficient state-variable solution method in which all primary variables including phase flows are solved directly. Both steady-state and transient flow events can be simulated with the same tool. Three test cases show how the model runs. One case simulates flow redistribution in a simple two-branch gas network. The second simulates a horizontal gas well in a waterflooded gas reservoir. The third involves an export gas pipeline coupled to a producing reservoir.

Methnani, M.M. [Qatar General Petroleum Corp., Doha (Qatar)

1998-02-23T23:59:59.000Z

223

Transportation and Greenhouse Gas Mitigation  

E-Print Network (OSTI)

fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

224

Electromagnetic fields and transport coefficients in a hot pion gas  

E-Print Network (OSTI)

We present recent results on finite temperature electromagnetic form factors and the electrical conductivity in a pion gas. The standard Chiral Perturbation Theory power counting needs to be modified for transport coefficients. We pay special attention to unitarity and to possible applications for dilepton and photon production.

A. Gomez Nicola; D. Fernandez-Fraile

2006-08-24T23:59:59.000Z

225

Thermodynamics of Ideal Gas in Doubly Special Relativity  

E-Print Network (OSTI)

We study thermodynamics of an ideal gas in Doubly Special Relativity. New type of special functions (which we call Incomplete Modified Bessel functions) emerge. We obtain a series solution for the partition function and derive thermodynamic quantities. We observe that DSR thermodynamics is non-perturbative in the SR and massless limits. A stiffer equation of state is found.

Chandra, Nitin

2011-01-01T23:59:59.000Z

226

Lorentz Invariance Violation in Modified Gravity  

E-Print Network (OSTI)

We consider an environmentally dependent violation of Lorentz invariance in scalar-tensor models of modified gravity where General Relativity is retrieved locally thanks to a screening mechanism. We find that fermions have a modified dispersion relation and would go faster than light in an anisotropic and space-dependent way along the scalar field lines of force. We analyse briefly the OPERA results and show that they could be reproduced with chameleon models. We suggest that neutrinos emitted radially, at different energies, and observed on the other side of the earth would provide a test of these models.

Brax, Philippe

2012-01-01T23:59:59.000Z

227

Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

228

Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

229

Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

230

Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

231

North Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

232

Montana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

233

West Virginia Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

234

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

235

Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

236

New York Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

237

Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

238

Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

239

Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

240

Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network (OSTI)

as cushion gas for natural gas storage, Energy and Fuels,GAS RECOVERY AND NATURAL GAS STORAGE Curtis M. Oldenburgits operation as a natural gas storage reservoir. In this

Oldenburg, Curtis M.

2003-01-01T23:59:59.000Z

242

New Mexico Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

243

Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

244

Cosmological Acceleration: Dark Energy or Modified Gravity?  

E-Print Network (OSTI)

We review the evidence for recently accelerating cosmological expansion or "dark energy", either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any Dark Energy constituent. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of "dark energy" cannot be derived from the homogeneous expansion alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, with nearly static Dark Energy, or with gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish static "dark energy" from dynamic "dark energy" with equation of state $w(z)$ either changing rapidly or tracking the background matter. But to cosmologically distinguish $\\Lambda$CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati modifications of Einstein gravity may also be detected in refined bservations in the solar system or at the intermediate Vainstein scale. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence ("Why now?") without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity.

Sidney Bludman

2006-05-08T23:59:59.000Z

245

Cosmological singularities and modified theories of gravity  

Science Conference Proceedings (OSTI)

We consider perturbative modifications of the Friedmann equations in terms of energy density corresponding to modified theories of gravity proposed as an alternative route to comply with the observed accelerated expansion of the universe. Assuming that the present matter content of the universe is a pressureless fluid

Leonardo Fernández?Jambrina; Ruth Lazkoz

2009-01-01T23:59:59.000Z

246

Using MIDI to modify video game content  

Science Conference Proceedings (OSTI)

This paper discusses the concept of using background music to control video game parameters and thus actions on the screen. Each song selected by the player makes the game look different and behave variedly. The concept is explored by modifying an existing ... Keywords: MIDI, MIDI-controlled games, background music reactive games, games, music, musically controlled games, rhythm games, virtual sequencer

Jukka Holm; Juha Arrasvuori; Kai Havukainen

2006-06-01T23:59:59.000Z

247

Modified borohydrides for reversible hydrogen storage  

DOE Green Energy (OSTI)

In attempt to develop lithium borohydrides as the reversible hydrogen storage materials with the high capacity, the feasibility to reduce dehydrogenation temperature of the lithium borohydride and moderate rehydrogenation condition has been explored. The commercial available lithium borohydride has been modified by ball milling with metal oxides and metal chlorides as the additives. The modified lithium borohydrides release 9 wt% hydrogen starting from 473K. The dehydrided modified lithium borohydrides absorb 7-9 wt% hydrogen at 873K and 7 MPa. The additive modification reduces dehydriding temperature from 673K to 473K and moderates rehydrogenation conditions to 923K and 15 MPa. XRD and SEM analysis discovered the formation of the intermediate compound TiB{sub 2} that may plays the key role in change the reaction path resulting the lower dehydriding temperature and reversibility. The reversible hydrogen storage capacity of the oxide modified lithium borohydrides decreases gradually during hydriding-dehydriding cycling due to the lost of the boron during dehydrogenation. But, it can be prevented by selecting the suitable additive, forming intermediate boron compounds and changing the reaction path. The additives reduce dehydriding temperature and improve the reversibility, it also reduces the hydrogen storage capacity. The best compromise can be reached by optimization of the additive loading and introducing new process other than ball milling.

Au, Ming

2005-08-29T23:59:59.000Z

248

Chemically modified electrodes: molecular design for electroanalysis  

Science Conference Proceedings (OSTI)

Electrochemical methods traditionally have found important applications in sample analysis and organic and inorganic synthesis. The electrode surface itself can be a powerful tool. This article is an update of chemically modified electrodes (CMEs) and rational molecular design of electrode surfaces.

Murray, R.W.; Ewing, A.G.; Durst, R.A.

1987-03-01T23:59:59.000Z

249

Air extraction in gas turbines burning coal-derived gas  

SciTech Connect

In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

1993-11-01T23:59:59.000Z

250

Coal seam natural gas producing areas (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting Provider Louisiana Department of Natural Resources In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is authorized, as provided in this law, to establish a single unit to be served by one or more wells for a coal seam natural gas producing area. Without in any way modifying the authority granted to the commissioner to establish a drilling unit or

251

Notice of Weekly Natural Gas Storage Report Changes  

Weekly Natural Gas Storage Report (EIA)

Released: September 23, 2013 Released: September 23, 2013 EIA to Modify Format of the Weekly Natural Gas Storage Report to Better Serve Customers The U.S. Energy Information Administration (EIA) is announcing changes to the format of its Weekly Natural Gas Storage Report (WNGSR) to better serve its customers who make use of automated computer systems to collate information on changes in natural gas storage. Specifically, EIA intends to enhance the WNGSR summary table. In addition to what is currently presented, EIA plans to provide an estimate of the "implied flow" of working natural gas into or out of underground natural gas storage facilities that excludes reportable reclassifications-those totaling 7 billion cubic feet (Bcf) or more-from the weekly "net change" in

252

Biological conversion of synthesis gas  

DOE Green Energy (OSTI)

Syngas is known to contain approximately 1 percent H[sub 2]S, along with CO[sub 2], C0[sub 2], H[sub 2] and CH[sub 4]. Similarly, the syngas may become contaminated with oxygen, particularly during reactor start-up and during maintenance. Previous studies with the water-gas shift bacterium Rhodospirillum rubrum have shown that the bacterium is tolerant of small quantities of oxygen, but the effects of oxygen on CO-consumption are unknown. Similarly, R. rubrum is known to be tolerant of H[sub 2]S, with high concentrations of H[sub 2]S negatively affecting CO-uptake. Batch experiments were thus carried out to determine the effects of H[sub 2]S and O[sub 2] on CO-uptake by R. rubrum. The results of these experiments were quantified by using Monod equations modified by adding terms for CO, H[sub 2]S and O[sub 2] inhibition. The techniques used in determining kinetic expressions previously shown for other gas-phase substrate bacterial systems including R. rubrum were utilized.

Ackerson, M.D.; Clausen, E.C.; Gaddy, J.L.

1993-01-05T23:59:59.000Z

253

Measurements of gas permeability on crushed gas shale.  

E-Print Network (OSTI)

??In the last decade, more attention has been given to unconventional gas reservoirs, including tight gas shales. Accurate description of gas transport and permeability measurements… (more)

Guarnieri, R.V.

2012-01-01T23:59:59.000Z

254

EIA - Natural Gas Pipeline Network - Natural Gas Transmission...  

Annual Energy Outlook 2012 (EIA)

Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural...

255

Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Natural Gas Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate Program Eligibility Commercial Savings For Other Heating...

256

Baltimore Gas and Electric Company (Gas) - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For...

257

EIA - Natural Gas Pipeline Network - Generalized Natural Gas...  

Annual Energy Outlook 2012 (EIA)

Gas based on data through 20072008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic...

258

Natural Gas Gross Withdrawals from Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

259

EIA - Natural Gas Pipeline Network - Natural Gas Transportation...  

Gasoline and Diesel Fuel Update (EIA)

Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates...

260

December Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

DOEEIA-0130(9712) Distribution CategoryUC-950 Natural Gas Monthly December 1997 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

262

Southern California Gas Co  

Gasoline and Diesel Fuel Update (EIA)

Southern California Gas Co ... 236,147,041 98,326,527 274,565,356 690,930 139,093,560 748,823,414 Lone Star Gas Co......

263

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

264

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

265

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas futures also reversed gains made in the previous week. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased by 63 Bcf...

266

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Working gas in storage was 3,121 Bcf as of Friday, Oct 24, 2003, according to the Energy Information Administration (EIA) Weekly Natural Gas Storage Report. This is 2.7...

267

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

268

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

269

,"Kentucky Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,451,1,35,17,,,10,3,0,48...

270

,"Oklahoma Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,13889,36,837,1016,,,1129,181,...

271

,"Florida Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,151,-1,1,6,,,0,0,0,36...

272

,"Wyoming Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,6305,-3,226,165,,,884,391,10,...

273

,"Ohio Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,495,-3,48,11,,,113,0,31,60...

274

,"Kansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,11457,-3,122,171,,,219,21,7,7...

275

,"Utah Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,877,0,37,79,,,93,32,2,62...

276

Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Res., 104(B10), 22985-23003. Collett, T.S. (1992), Potential of gas hydrates outlined, Oil Gas J., 90(25), 84-87. 70 Cook, A.E., Goldberg, D., and R.L. Kleinberg (2008),...

277

Natural gas annual 1996  

Science Conference Proceedings (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

278

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

279

Landfill Gas | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Jump to: navigation, search TODO: Add description List of Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173"...

280

5. Natural Gas Liquids Statistics  

U.S. Energy Information Administration (EIA)

5. Natural Gas Liquids Statistics Natural Gas Liquids Proved Reserves U.S. natural gas liquids proved reserves decreased 7 percent to 7,459 million ...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Transportation and Greenhouse Gas Mitigation  

E-Print Network (OSTI)

Summary of transportation greenhouse gas mitigation optionsof alternative fuels. Low greenhouse gas fuels Mixing ofreplacement. Greenhouse gas budgets for households and

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

282

,"North Dakota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Exports...

283

Natural Gas Outlook  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Ohio Oil & Gas Association ConferenceMarch 12, 2004

Information Center

2004-03-12T23:59:59.000Z

284

Gas Turbine Engines  

Science Conference Proceedings (OSTI)

...times higher than atmospheric pressure.Ref 25The gas turbine was developed generally for main propulsion and power

285

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

with active programs. More information is available at: http:www.eia.doe.govcneafelectricitypagerestructuringrestructureelect.html. Information about natural gas...

286

Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

... 6 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ... 7 Task 6: Numerical Models for...

287

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

288

Natural gas annual 1995  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

289

Natural Gas Outlook  

Reports and Publications (EIA)

Presented to: Ohio Oil & Gas Association Conference, March 12, 2004 Presented by: Guy F. Caruso, Administrator, Energy Information Administration

Information Center

2004-03-12T23:59:59.000Z

290

Residual gas analysis device  

SciTech Connect

A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

Thornberg, Steven M. (Peralta, NM)

2012-07-31T23:59:59.000Z

291

Natural gas industry directory  

SciTech Connect

This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

NONE

1999-11-01T23:59:59.000Z

292

Valve for gas centrifuges  

DOE Patents (OSTI)

The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, C.A.; Rurbage, C.H.

1982-03-17T23:59:59.000Z

293

Gas turbine engines  

SciTech Connect

A core engine or gas generator is described for use in a range of gas turbine engines. A multi-stage compressor and a single stage supersonic turbine are mounted on a single shaft. The compressor includes a number of stages of variable angle and the gas generator has an annular combustion chamber.

MacDonald, A.G.

1976-05-18T23:59:59.000Z

294

Pennsylvania's Natural Gas Future  

E-Print Network (OSTI)

sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ Fossil backed by a growing portfolio of assets. #12;Shale Gas Geography 5 | MARCELLUS SHALE COALITION #12;Shale Permits Price #12;Pricing Trend of Oil and Gas in the US $- $5.00 $10.00 $15.00 $20.00 $25.00 USDper

Lee, Dongwon

295

Compressed Gas Cylinder Policy  

E-Print Network (OSTI)

, storage, and usage of compressed gas cylinders. 2.0 POLICY Colorado School of Mines ("Mines" or "the, storage, and usage requirements outlined below. This policy is applicable school-wide including all, or electrical circuits. Flammable gas cylinders must be stored in the building's gas cylinder storage cage until

296

Natural gas monthly  

Science Conference Proceedings (OSTI)

Monthly highlights of activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry are presented. Feature articles for this issue are: Natural Gas Overview for Winter 1983-1984 by Karen A. Kelley; and an Analysis of Natural Gas Sales by John H. Herbert. (PSB)

Not Available

1983-11-01T23:59:59.000Z

297

Modified Gravity via Spontaneous Symmetry Breaking  

E-Print Network (OSTI)

We construct effective field theories in which gravity is modified via spontaneous breaking of local Lorentz invariance. This is a gravitational analogue of the Higgs mechanism. These theories possess additional graviton modes and modified dispersion relations. They are manifestly well-behaved in the UV and free of discontinuities of the van Dam-Veltman-Zakharov type, ensuring compatibility with standard tests of gravity. They may have important phenomenological effects on large distance scales, offering an alternative to dark energy. For the case in which the symmetry is broken by a vector field with the wrong sign mass term, we identify four massless graviton modes (all with positive-definite norm for a suitable choice of a parameter) and show the absence of the discontinuity.

B. M. Gripaios

2004-08-17T23:59:59.000Z

298

Intramolecular ET Rates in Modified Ferrocytochromes c  

NLE Websites -- All DOE Office Websites (Extended Search)

Intramolecular Electron-Transfer Rates on Driving Force, pH, Intramolecular Electron-Transfer Rates on Driving Force, pH, and Temperature in Ammineruthenium-Modified Ferrocytochromes c James F. Wishart, Ji Sun, Myung Cho, Chang Su, and Stephan S. Isied J. Phys. Chem. B 101, 687-693 (1997) [Find paper at ACS Publications] or use ACS Articles on Request Abstract: Several ruthenium ammine complexes were used to modify horse-heart cytochrome c at histidine-33, creating a series of (NH3)4(L)Ru-Cyt c derivatives (L = H2O/OH-, ammonia, 4-ethylpyridine, 3,5-lutidine, pyridine, isonicotinamide, N-methylpyrazinium) with a wide range of driving forces for Fe-to-Ru electron transfer (-DG° = -0.125 to +0.46 eV). Electron-transfer rates and activation parameters were measured by pulse radiolysis using azide or carbonate radicals. The driving-force dependence

299

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

300

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

302

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

303

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

304

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

305

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

306

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

307

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

308

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

309

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

310

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

311

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

312

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

313

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

314

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

315

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

316

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

317

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

318

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

319

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

320

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

322

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

323

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

324

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

325

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

326

Program on Technology Innovation: Crystal Habit Modifiers  

Science Conference Proceedings (OSTI)

Effective water chemistry control in nuclear power plants is required for materials and fuel reliability, radiation source term control, and operations. This report documents the results of laboratory screening conducted in support of an EPRI initiative to assess the feasibility of using crystal habit modifiers (CHMs) in the primary or secondary coolant of pressurized water reactors (PWRs). Successful implementation of CHMs could have a significant impact on plant material condition, and operation and ma...

2010-10-21T23:59:59.000Z

327

ComEd, Nicor Gas, Peoples Gas & North Shore Gas - Bonus Rebate...  

Open Energy Info (EERE)

Rebates Central Air Conditioner Unit 14 SEER or above: 350 Central Air Conditioner Unit Energy Star rated: 500 Nicor Gas, Peoples Gas & North Shore Gas Furnace: 200 - 500...

328

Experimental Study of Main Gas Ingestion and Purge Gas Egress Flow in Model Gas Turbine Stages.  

E-Print Network (OSTI)

??Efficient performance of gas turbines depends, among several parameters, on the mainstream gas entry temperature. At the same time, transport of this high temperature gas… (more)

Balasubramanian, Jagdish Harihara

2010-01-01T23:59:59.000Z

329

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

330

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

331

NUCLEAR GAS ENGINE  

SciTech Connect

A preliminary design study of the nuclear gas engine, consisting of a gas-cooled reactor directly coupled to a reciprocating engine, is presented. The principles of operation of the proposed gas engine are outlined and typical variations anre discussed. The nuclear gas engine is compared with other reciprocating engines and air compressors. A comparison between the ideal and actual cycles is made, with particular attention given to pumping, heat, and other losses to be expected. The applications and development of the nuclear gas engine are discussed. (W.D.M.)

Fraas, A.P.

1958-09-25T23:59:59.000Z

332

Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model. [Cyclic thermal injection  

SciTech Connect

The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

1985-05-01T23:59:59.000Z

333

Southwest Gas Corporation - Southwest Gas Corporation - Residential...  

Open Energy Info (EERE)

Insulation: 0.15sq ft Floor Insulation: 0.30sq ft Builders Energy Star Certified Home: 450 Natural Gas Tankless Water Heater: 450 Attic Insulation: 0.15sq ft Equipment...

334

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

335

Natural-gas liquids  

SciTech Connect

Casinghead gasoline or natural gasoline, now more suitably known as natural-gas liquids (NGL), was a nuisance when first found, but was developed into a major and profitable commodity. This part of the petroleum industry began at about the turn of the century, and more than 60 yr later the petroleum industry recovers approx. one million bbl of natural-gas liquids a day from 30 billion cu ft of natural gas processed in more than 600 gasoline plants. Although casinghead gasoline first was used for automobile fuel, natural-gas liquids now are used for fuel, industrial solvents, aviation blending stock, synthetic rubber, and many other petrochemical uses. Production from the individual plants is shipped by tank car, tank truck, pipeline, and tankers all over the world. Most of the natural-gas liquids come from wet natural gas which contains a considerable quantity of vapor, ranging from 0.5 to 6 gal/Mcf, and some particularly rich gases contain even more which can be liquefied. Nonassociated gas is generally clean, with a comparatively small quantity of gasoline, 0.1 to 0.5 gas/Mcf. The natural-gas liquids branch of the industry is build around the condensation of vapors in natural gas. Natural-gas liquids are processed either by the compression method or by adsorption processes.

Blackstock, W.B.; McCullough, G.W.; McCutchan, R.C.

1968-01-01T23:59:59.000Z

336

Natural gas sdtrategic plan  

SciTech Connect

The US Department of Energy`s natural gas program is aimed at meeting simultaneously our national energy needs, reducing oil imports, protecting our environment, and improving our economy The Natural Gas Strategic Plan for 1995 represents a Department-wide effort to articulate the key issues related to the expanded development and utilization of natural gas, and defines the roles of the federal government and US industry in partnering to accomplish the strategic goals defined. The four overarching goals of the Natural Gas Strategic Plan are to: foster the development of advanced natural gas technologies; encourage the adoption of advanced natural gas technologies in new and existing markets; support the removal of policy impediments to natural gas use in new and existing markets; and foster technologies and policies to maximize the environmental benefits of natural gas use. DOE`s proposed fiscal year (FY) 1996 budget represents a commitment to natural gas research, development, and demonstration (RD&D) from reservoir to end use. DOE has redirected and increased funding for its natural gas exploration, production, delivery and storage, processing, and utilization RD&D programs, shifting funds from other energy programs to programs that will enhance efficiency and advance the role of natural gas in our domestic energy resources portfolio.

1995-06-01T23:59:59.000Z

337

Gas Hydrate Storage of Natural Gas  

Science Conference Proceedings (OSTI)

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

338

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

339

Natural gas leak mapper  

DOE Patents (OSTI)

A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

2008-05-20T23:59:59.000Z

340

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gas Pipelines:- long, thin, bombs?  

Science Conference Proceedings (OSTI)

... Gas Pipelines:- long, thin, bombs? Gas pipelines attract substantial reseach to improve safety and cut costs. They operate ...

342

Natural Gas 1995: Preliminary Highlights  

U.S. Energy Information Administration (EIA)

Energy Information Administration / Natural Gas Monthly April 1996 1. ... Widespread economic growth ... Growth in electric utility gas con-

343

Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel [Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Welding of Metals > Laser Welding of Metals > Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Laser Welding of Metals Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel Zhiyue Xu Nuclear Engineering Division of Argonne National Laboratory

344

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Maximum Rebate $1,000 Program Info Start Date 01/01/2013 Expiration Date 04/30/2013 State Illinois Program Type Utility Rebate Program Rebate Amount ComEd Rebates Central Air Conditioner Unit 14 SEER or above: $350 Central Air Conditioner Unit Energy Star rated: $500 Nicor Gas, Peoples Gas and North Shore Gas Furnace: $200 - $500 (varies based on gas company and unit installed) Provider ComEd Energy ComEd, Nicor Gas, Peoples Gas and North Shore Gas are offering a Complete System Replacement Rebate Program to residential customers. The program is

345

U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Biomass Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

346

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

347

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

348

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

349

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

350

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

351

Flue gas desulfurization  

DOE Patents (OSTI)

The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

Im, K.H.; Ahluwalia, R.K.

1984-05-01T23:59:59.000Z

352

Modified Bayer Process for Alumina Removal from Hanford Waste  

AREVA NC Inc. Modified Bayer Process for Alumina Removal from Hanford Waste January 24, 2007 Don Geniesse AREVA NC Inc.

353

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network (OSTI)

gas reservoirs for carbon sequestration and enhanced gasproduction and carbon sequestration, Society of Petroleumfeasibiilty of carbon sequestration with enhanced gas

Oldenburg, Curtis M.

2003-01-01T23:59:59.000Z

354

Modified Higgs Sectors and NLO Associated Production  

E-Print Network (OSTI)

Many beyond the Standard Model (BSM) scenarios involve Higgs couplings to additional electroweak fields. It is well established that these new fields may modify Higgs gamma-gamma and gamma-Z decays at one-loop. However, one unexplored aspect of such scenarios is that by electroweak symmetry one should also expect modifications to the Higgs Z-Z coupling at one-loop and, more generally, modifications to Higgs production and decay channels beyond tree-level. In this paper we investigate the full BSM modified electroweak corrections to associated Higgs production at both the LHC and a future lepton collider in two simple SM extensions. From both inclusive and differential NLO associated production cross sections we find BSM-NLO corrections can be as large as O(>10%) when compared to the SM expectation, consistent with other precision electroweak measurements, even in scenarios where modifications to the Higgs diphoton rate are not significant. At the LHC such corrections are comparable to the involved QCD uncertainties. At a lepton collider the Higgs associated production cross section can be measured to high accuracy (O(1%) independent of uncertainties in total width and other couplings), and such a deviation could be easily observed even if the new states remain beyond kinematic reach. This should be compared to the expected accuracy for a model-independent determination of the Higgs diphoton coupling at a lepton collider, which is O(15%). This work demonstrates that precision measurements of the Higgs associated production cross section constitute a powerful probe of modified Higgs sectors and will be valuable for indirectly exploring BSM scenarios.

Christoph Englert; Matthew McCullough

2013-03-06T23:59:59.000Z

355

Modified MTS MRB500 CATALYST PERFORMANCE TEST  

DOE Green Energy (OSTI)

An experiment was conducted to determine if the oxygen supply in a CuO catalyst considered for use in the TMIST-2 irradiation test would be sufficient to convert all the hydrogen isotopes coming from the irradiation test to water. A mixture of 2% H2 in Ar was supplied to a modified MRB 500 stack m onitor from Mound Techology Solutions, Miamisburg, OH. It was found that the catalyst could convert 3.75E-03 moles of H2 before losing its effectiveness. Conversion was found to begin at a catalyst temperature of about 220 deg C and to be fully effective at about 300 deg C.

Glen R. Longhurst; Robert J. Pawelko

2008-10-01T23:59:59.000Z

356

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIAÂ’s Weekly Natural Gas Storage Report.

357

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, July 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 21, 2010) Natural gas prices rose across market locations in the lower 48 States during the report week. The Henry Hub natural gas spot price rose 31 cents, or 7 percent, during the week, averaging $4.70 per million Btu (MMBtu) yesterday, July 21. At the New York Mercantile Exchange (NYMEX), the price of the August 2010 natural gas futures contract for delivery at the Henry Hub rose about 21 cents, or 5 percent, ending the report week at $4.513 per MMBtu. Working natural gas in storage increased to 2,891 billion cubic feet (Bcf) as of Friday, July 16, according to EIAÂ’s Weekly Natural Gas Storage

358

GAS METERING PUMP  

DOE Patents (OSTI)

A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

George, C.M.

1957-12-31T23:59:59.000Z

359

Nonlinearities in modified gravity cosmology: Signatures of modified gravity in the nonlinear matter power spectrum  

SciTech Connect

A large fraction of cosmological information on dark energy and gravity is encoded in the nonlinear regime. Precision cosmology thus requires precision modeling of nonlinearities in general dark energy and modified gravity models. We modify the Gadget-2 code and run a series of N-body simulations on modified gravity cosmology to study the nonlinearities. The modified gravity model that we investigate in the present paper is characterized by a single parameter {zeta}, which determines the enhancement of particle acceleration with respect to general relativity (GR), given the identical mass distribution ({zeta}=1 in GR). The first nonlinear statistics we investigate is the nonlinear matter power spectrum at k < or approx. 3h/Mpc, which is the relevant range for robust weak lensing power spectrum modeling at l < or approx. 2000. In this study, we focus on the relative difference in the nonlinear power spectra at corresponding redshifts where different gravity models have the same linear power spectra. This particular statistics highlights the imprint of modified gravity in the nonlinear regime and the importance of including the nonlinear regime in testing GR. By design, it is less susceptible to the sample variance and numerical artifacts. We adopt a mass assignment method based on wavelet to improve the power spectrum measurement. We run a series of tests to determine the suitable simulation specifications (particle number, box size, and initial redshift). We find that, the nonlinear power spectra can differ by {approx}30% for 10% deviation from GR (|{zeta}-1|=0.1) where the rms density fluctuations reach 10. This large difference, on one hand, shows the richness of information on gravity in the corresponding scales, and on the other hand, invalidates simple extrapolations of some existing fitting formulae to modified gravity cosmology.

Cui Weiguang; Zhang Pengjie; Yang Xiaohu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Partner Group of MPA, Nandan Road 80, Shanghai, 200030 (China)

2010-05-15T23:59:59.000Z

360

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Business  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Collect Data to Evaluate Greenhouse Gas Emissions Profile for Business Travel Collect Data to Evaluate Greenhouse Gas Emissions Profile for Business Travel October 7, 2013 - 1:27pm Addthis YOU ARE HERE Step 2 To evaluate a greenhouse gas (GHG) emissions profile, most of the information required to support air travel demand management is currently available through Federal agency-level travel information systems, such as GovTrip. However, that information may not be distributed to programs, regional offices, and sites, which are in the best position to evaluate opportunities to reduce travel. Considerations that may help the agency determine the level at which data should be collected and analyzed include: Where are budgets and policies regarding travel made and modified?

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Solid fuel combustion system for gas turbine engine  

DOE Patents (OSTI)

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

362

Thermodynamics of Chaplygin gas  

E-Print Network (OSTI)

We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

Yun Soo Myung

2008-12-02T23:59:59.000Z

363

GAS DISCHARGE DEVICES  

DOE Patents (OSTI)

The construction of gas discharge devices where the object is to provide a gas discharge device having a high dark current and stabilized striking voltage is described. The inventors have discovered that the introduction of tritium gas into a discharge device with a subsequent electrical discharge in the device will deposit tritium on the inside of the chamber. The tritium acts to emit beta rays amd is an effective and non-hazardous way of improving the abovementioned discharge tube characteristics

Arrol, W.J.; Jefferson, S.

1957-08-27T23:59:59.000Z

364

Thermodynamics of Chaplygin gas  

E-Print Network (OSTI)

We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

Myung, Yun Soo

2008-01-01T23:59:59.000Z

365

Pulsed gas laser  

DOE Patents (OSTI)

A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

Anderson, Louis W. (Madison, WI); Fitzsimmons, William A. (Madison, WI)

1978-01-01T23:59:59.000Z

366

Valve for gas centrifuges  

DOE Patents (OSTI)

The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, Charles A. (Oak Ridge, TN); Burbage, Charles H. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

367

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

each of the consumption sectors, excluding the industrial sector, according to BENTEK Energy Services, LLC. Moderating temperatures likely contributed to lower natural gas...

368

4. Natural Gas Statistics  

U.S. Energy Information Administration (EIA)

hydraulic fracturing, including shales and low permeability (tight) formations. Total U.S. dry natural gas reserves additions replaced 237 percent of 2007 dry

369

Greenhouse Gas Emission Measurements  

Science Conference Proceedings (OSTI)

... climate change as a serious problem and that greenhouse gas (GHG ... models to determine the baselines of GHG emissions and the effect of GHG ...

2010-10-05T23:59:59.000Z

370

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Report," and the Historical Weekly Storage Estimates Database. Other Market Trends: FERC Investigates Natural Gas Wash-Trading: The Federal Energy Regulatory Commission (FERC)...

371

String Gas Baryogenesis  

E-Print Network (OSTI)

We describe a possible realization of the spontaneous baryogenesis mechanism in the context of extra-dimensional string cosmology and specifically in the string gas scenario.

G. L. Alberghi

2010-02-19T23:59:59.000Z

372

Natural Gas Monthly  

U.S. Energy Information Administration (EIA)

sector organizations associated with the natural gas industry. Volume and price data are presented each month for ... Tables 1 and 2 ...

373

Natural Gas Outlook  

U.S. Energy Information Administration (EIA)

Natural Gas Outlook National Association of State Energy Officials State Heating Oil and Propane Conference August 30, 2004 William Trapmann Energy Information ...

374

Gas Turbine Optimum Operation.  

E-Print Network (OSTI)

??Many offshore installations are dependent on power generated by gas turbines and a critical issue is that these experience performance deterioration over time. Performance deterioration… (more)

Flesland, Synnřve Mangerud

2010-01-01T23:59:59.000Z

375

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

increased to 3,683 billion cubic feet (Bcf) as of Friday, October 15, according to the Energy Information Administrations (EIA) Weekly Natural Gas Storage Report. The West...

376

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

storage facilities. Other Market Trends: EIA Releases Report on Underground Natural Gas Storage Developments: The Energy Information Administration (EIA) released a special...

377

,"Wisconsin Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Prices",8,"Monthly","72013","1151989" ,"Release Date:","9302013"...

378

,"Texas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

379

Oil and Gas (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

380

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2012,"6301968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 6","Consumption",11,"Annual",2012,...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

382

,"Nebraska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

383

,"Arkansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

384

,"Oregon Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

385

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

386

,"Illinois Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

387

,"Tennessee Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301968" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

388

,"Nevada Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

301967" ,"Data 2","Production",11,"Annual",2012,"6301991" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2012,"6301982" ,"Data 4","Consumption",10,"Annual",2012,"6...

389

,"Colorado Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",2,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

390

,"Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",10,"Annual",2012,"6...

391

,"Pennsylvania Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

392

,"Indiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

393

Natural Gas Citygate Price  

Annual Energy Outlook 2012 (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross...

394

,"Pennsylvania Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Prices",8,"Monthly","72013","1151989" ,"Release Date:","9302013" ,"Next Release...

395

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

damage was not immediately clear, and the pipeline did not indicate how long the three lines will be out of service. Texas Gas Transmission Company has begun unscheduled...

396

,"Idaho Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Prices",8,"Monthly","102013","1151989" ,"Release Date:","172014"...

397

String Gas Baryogenesis  

E-Print Network (OSTI)

We describe a possible realization of the spontaneous baryogenesis mechanism in the context of extra-dimensional string cosmology and specifically in the string gas scenario.

Alberghi, G L

2010-01-01T23:59:59.000Z

398

String Gas Cosmology  

E-Print Network (OSTI)

String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the current standard paradigm of cosmology, the inflationary universe scenario. Here, the current status of string gas cosmology is reviewed.

Brandenberger, Robert H

2009-01-01T23:59:59.000Z

399

String gas baryogenesis  

Science Conference Proceedings (OSTI)

We describe a possible realization of the spontaneous baryogenesis mechanism in the context of extra-dimensional string cosmology and specifically in the string gas scenario.

Alberghi, G. L. [Physics Department, Bologna University, I.N.F.N. Bologna (Italy)

2010-05-15T23:59:59.000Z

400

Natural Gas Citygate Price  

U.S. Energy Information Administration (EIA)

... electric power price data are for regulated electric ... Gas volumes delivered for vehicle fuel are included in the State monthly totals from January ...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gas utilization technologies  

SciTech Connect

One of the constant challenges facing the research community is the identification of technology needs 5 to 15 years from now. A look back into history indicates that the forces driving natural gas research have changed from decade to decade. In the 1970s research was driven by concerns for adequate supply; in the 1980s research was aimed at creating new markets for natural gas. What then are the driving forces for the 1990s? Recent reports from the natural gas industry have helped define a new direction driven primarily by market demand for natural gas. A study prepared by the Interstate Natural Gas Association of America Foundation entitled ``Survey of Natural Research, Development, and Demonstration RD&D Priorities`` indicated that in the 1990s the highest research priority should be for natural gas utilization and that technology development efforts should not only address efficiency and cost, but environmental and regulatory issues as well. This study and others, such as the report by the American Gas Association (A.G.A.) entitled ``Strategic Vision for Natural Gas Through the Year 2000,`` clearly identify the market sectors driving today`s technology development needs. The biggest driver is the power generation market followed by the industrial, transportation, appliance, and gas cooling markets. This is best illustrated by the GRI 1994 Baseline Projection on market growth in various sectors between the year 1992 and 2010. This paper highlights some of the recent technology developments in each one of these sectors.

Biljetina, R.

1994-09-01T23:59:59.000Z

402

Natural Gas Wellhead Prices  

U.S. Energy Information Administration (EIA)

Slide 19 of 27. Price: Wellhead. Natural gas wellhead prices are projected to move up 5 percent this winter, averaging about $2.28 per Mcf during this ...

403

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

of about 50 percent of natural gas production from the Gulf. (See "Other Market Trends" below for details.) Ivan's major impact on prices occurred on Monday, September 13,...

404

Breathable gas distribution apparatus  

SciTech Connect

The disclosure is directed to an apparatus for safely supplying breathable gas or air through individual respirators to personnel working in a contaminated area.

Garcia, Elmer D. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

405

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

since July 27, 2004. Prices: Moderate temperatures and a favorable supply situation led to widespread declines in natural gas spot prices in the Lower 48 States since last...

406

Pot Gas Cooling Technologies  

Science Conference Proceedings (OSTI)

... has been enormously increased by the suppliers of pot gas treatment plants, ... and Capillary Instabilities in Carbon-anode using Lattice Boltzmann Method.

407

Gas pressure reduction circuits  

Science Conference Proceedings (OSTI)

This note describes passive pressure reduction devices for use with sensitive instruments. Two gas circuits are developed which not only provide a pressure reduction under flow demand

D. W. Guillaume; D. DeVries

1989-01-01T23:59:59.000Z

408

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Release: Thursday, August 26, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 18, 2010) Natural...

409

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Release: Thursday, November 4, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 27, 2010) As the...

410

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Next Release: Thursday, May 13, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 5, 2010) Since...

411

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

that have helped reshape the natural gas market, with particular emphasis on policy directives during the past 26 years. The linked files provided on the web site provide...

412

Gas-recovery system  

DOE Patents (OSTI)

Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)

Heckman, R.A.

1971-12-14T23:59:59.000Z

413

Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

Others wanting to learn more about greenhouse gas emissions and their reduction. About the ... based on ensuring the sustainability of finite natural resources.

414

Natural Gas Storage Valuation .  

E-Print Network (OSTI)

??In this thesis, one methodology for natural gas storage valuation is developed and two methodologies are improved. Then all of the three methodologies are applied… (more)

Li, Yun

2007-01-01T23:59:59.000Z

415

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",8,"Annual",2012,"...

416

,"Wisconsin Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",8,"Annual",2012,"...

417

,"Delaware Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",9,"Annual",2012,"...

418

,"Minnesota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

419

,"Idaho Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",2,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301981" ,"Data 5","Consumption",9,"Annual",2012,"6...

420

,"California Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",4,"Annual",2012,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 7","Consumption",11,"Annual",2012,"6...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

,"Alaska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",2,"Annual",1975,"6301973" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301969" ,"Data 7","Consumption",11,"Annual",2012,"6...

422

,"Georgia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",3,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

423

,"Louisiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",4,"Annual",2012,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 7","Consumption",11,"Annual",2012,"6...

424

,"Washington Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",9,"Annual",2012,"6...

425

,"Maryland Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",10,"Annual",2012,"6...

426

,"Massachusetts Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",3,"Annual",1975,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

427

,"Wyoming Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

428

,"Iowa Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

429

,"Nebraska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

430

,"Vermont Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Prices",10,"Annual",2012,"6301980" ,"Release Date:","10312013" ,"Next Release...

431

,"Ohio Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

432

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

433

,"Wisconsin Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

434

,"Maryland Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

435

,"Michigan Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

436

,"Illinois Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

437

,"Kansas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

438

,"Arkansas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

439

,"Texas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

440

,"Arizona Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

,"Minnesota Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

442

,"Florida Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

443

,"Tennessee Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

444

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

445

,"Virginia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

446

,"Oklahoma Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

447

,"Washington Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

448

,"Maine Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

449

,"Louisiana Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

450

,"Utah Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

451

,"Oregon Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

452

,"Mississippi Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

453

,"Massachusetts Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

454

,"Nevada Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

455

,"Delaware Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

456

,"Pennsylvania Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

457

,"Kentucky Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

458

,"Montana Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

459

,"Idaho Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

460

,"Missouri Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

,"Georgia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

462

,"Indiana Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

463

,"Alabama Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

464

,"Connecticut Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

465

,"Alaska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

466

,"Hawaii Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Prices",8,"Annual",2012,"6301980" ,"Release Date:","10312013" ,"Next Release...

467

Natural gas annual 1997  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

468

Natural Gas Rules (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

469

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2009 Next Release: January 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 14, 2009) In the...

470

,"Iowa Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Iowa Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

471

,"Alabama Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Alabama Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

472

,"Georgia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Georgia Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

473

,"Connecticut Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Connecticut Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

474

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Colorado Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

475

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"California Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

476

,"Florida Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Florida Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

477

,"Arkansas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Arkansas Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

478

,"Arizona Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Arizona Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

479

,"Alaska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Alaska Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

480

,"Delaware Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Delaware Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

Note: This page contains sample records for the topic "gas mef modified" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

,"Hawaii Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Hawaii Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

482

Natural gas monthly  

Science Conference Proceedings (OSTI)

This report presents current data on the consumption, disposition, production, prices, storage, import and export of natural gas in the United States. Also included are operating and financial data for major interstate natural gas pipeline companies plus data on fillings, ceiling prices, and transportation under the Natural Gas Policy Act of 1978. A feature article, entitled Main Line Natural Gas Sales to Industrial Users, 1981, is included. Highlights of this month's publication are: Marketed production of natural gas during 1982 continued its downward trend compared to 1981, with November production of 1511 Bcf compared to 1583 Bcf for November 1981; total natural gas consumption also declined when compared to 1981; as of November 1982, working gas in underground storage was running ahead of a similar period in 1981 by 109 Bcf (3.4 percent); the average wellhead price of natural gas continued to rise in 1982; and applications for determination of maximum lawful prices under the Natural Gas Policy Act (NGPA) showed a decrease from October to November, principally for Section 103 classification wells (new onshore production wells).

Not Available

1983-01-01T23:59:59.000Z

483

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

ends up in Clarington was delivered upstream. El Paso Natural Gas Pipeline issued an Emergency Critical Operating Condition Declaration for February 2 until further notice....

484

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

operational by April 1, 2010. Tennessee Gas Pipeline Company issued a notice of an emergency repair at its Compressor Station 827 near Alexandria, Louisiana. The pipeline...

485

International Natural Gas Workshop  

U.S. Energy Information Administration (EIA)

International Natural Gas Workshop U.S. Energy Information Administration 1000 Independence Ave. SW, Room 2E-069 Washington, DC 20585 and a member of ...

486

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

487

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,000 4,825 6,755 7,606 3,460 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 156,333 150,972 147,734 157,039 176,221 From Oil Wells.................................................. 15,524 16,263 14,388 12,915 11,088 Total................................................................... 171,857 167,235 162,122 169,953 187,310 Repressuring ...................................................... 8 0 0 0 0 Vented and Flared.............................................. 206 431 251 354 241 Wet After Lease Separation................................ 171,642 166,804

488

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,178 4,601 3,005 3,220 3,657 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 244,826 264,809 260,554 254,488 259,432 From Oil Wells.................................................. 36,290 36,612 32,509 29,871 31,153 Total................................................................... 281,117 301,422 293,063 284,359 290,586 Repressuring ...................................................... 563 575 2,150 1,785 1,337 Vented and Flared.............................................. 1,941 1,847 955 705 688 Wet After Lease Separation................................

489

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

490

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

491

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

492

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

493

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9,907 13,978 15,608 18,154 20,244 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,188,657 1,467,331 1,572,728 1,652,504 1,736,136 From Oil Wells.................................................. 137,385 167,656 174,748 183,612 192,904 Total................................................................... 1,326,042 1,634,987 1,747,476 1,836,115 1,929,040 Repressuring ...................................................... 50,216 114,407 129,598 131,125 164,164 Vented and Flared.............................................. 9,945 7,462 12,356 16,685 16,848

494

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

495

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60,577 63,704 65,779 68,572 72,237 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 5,859,358 4,897,366 4,828,188 4,947,589 5,074,067 From Oil Wells.................................................. 999,624 855,081 832,816 843,735 659,851 Total................................................................... 6,858,983 5,752,446 5,661,005 5,791,324 5,733,918 Repressuring ...................................................... 138,372 195,150 212,638 237,723 284,491 Vented and Flared.............................................. 32,010 26,823 27,379 23,781 26,947

496

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,700 16,350 17,100 16,939 20,734 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 4,260,529 1,398,981 1,282,137 1,283,513 1,293,204 From Oil Wells.................................................. 895,425 125,693 100,324 94,615 88,209 Total................................................................... 5,155,954 1,524,673 1,382,461 1,378,128 1,381,413 Repressuring ...................................................... 42,557 10,838 9,754 18,446 19,031 Vented and Flared.............................................. 20,266 11,750 10,957 9,283 5,015 Wet After Lease Separation................................

497

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 36,000 40,100 40,830 42,437 44,227 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 150,000 130,853 157,800 159,827 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 150,000 130,853 157,800 159,827 197,217 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 150,000 130,853 157,800 159,827 197,217

498

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 4,359 4,597 4,803 5,157 5,526 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 555,043 385,915 380,700 365,330 333,583 From Oil Wells .................................................. 6,501 6,066 5,802 5,580 5,153 Total................................................................... 561,544 391,981 386,502 370,910 338,735 Repressuring ...................................................... 13,988 12,758 10,050 4,062 1,307 Vented and Flared .............................................. 1,262 1,039 1,331 1,611 2,316 Wet After Lease Separation................................

499

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,321 4,331 4,544 4,539 4,971 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 61,974 71,985 76,053 78,175 87,292 From Oil Wells.................................................. 8,451 9,816 10,371 8,256 10,546 Total................................................................... 70,424 81,802 86,424 86,431 97,838 Repressuring ...................................................... 1 0 0 2 5 Vented and Flared.............................................. 488 404 349 403 1,071 Wet After Lease Separation................................ 69,936 81,397 86,075 86,027 96,762

500

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,051 3,521 3,429 3,506 3,870 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,545 71,543 76,915 R 143,644 152,495 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,545 71,543 76,915 R 143,644 152,495 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,545 71,543 76,915 R 143,644 152,495 Nonhydrocarbon Gases Removed