National Library of Energy BETA

Sample records for gas management institute

  1. GHG Management Institute | Open Energy Information

    Open Energy Info (EERE)

    GHG Management Institute Jump to: navigation, search Name: GHG Management Institute Address: Greenhouse Gas Management Institute 9215 View Avenue NW Seattle, WA USA 98117 Place:...

  2. Gas Technology Institute (Partnership for Advanced Residential...

    Open Energy Info (EERE)

    Technology Institute (Partnership for Advanced Residential Retrofit) Jump to: navigation, search Name: Gas Technology Institute Place: Des Plaines, IL Website:...

  3. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........32 Comprehensive Legacy Management and Institutional Controls ...

  4. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........49 Comprehensive Legacy Management and Institutional Controls ...

  5. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........52 Comprehensive Legacy Management and Institutional Controls ...

  6. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........34 Comprehensive Legacy Management and Institutional Controls ...

  7. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. .........33 Comprehensive Legacy Management and Institutional Controls ...

  8. Biomass IBR Fact Sheet: Gas Technology Institute

    Office of Energy Efficiency and Renewable Energy (EERE)

    Gas Technology Institute will conduct research and development on hydropyrolysis and hydroconversion processes to make gasoline and diesel.

  9. Demand Management Institute (DMI) | Open Energy Information

    Open Energy Info (EERE)

    Demand Management Institute (DMI) Jump to: navigation, search Name: Demand Management Institute (DMI) Address: 35 Walnut Street Place: Wellesley, Massachusetts Zip: 02481 Region:...

  10. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. ... Appendix A Contact List Comprehensive Legacy Management and Institutional Controls ...

  11. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Preserve, Fernald, Ohio Comprehensive Legacy Management and Institutional Controls Plan ... blank LMSFERS03496-9.0 Comprehensive Legacy Management and Institutional Controls ...

  12. Natural gas applications in waste management

    SciTech Connect (OSTI)

    Tarman, P.B.

    1991-01-01

    The Institute of Gas Technology (IGT) is engaged in several projects related to the use of natural gas for waste management. These projects can be classified into four categories: cyclonic incineration of gaseous, liquid, and solid wastes; fluidized-bed reclamation of solid wastes; two-stage incineration of liquid and solid wastes; natural gas injection for emissions control. 5 refs., 8 figs.

  13. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Section 4.0 No significant changes. Comprehensive Legacy Management and Institutional Controls Plan, Revision 9, Draft Volume I, Legacy Management Plan Significant Changes Summary ...

  14. New Guidance Helps LM Manage Institutional Controls

    Broader source: Energy.gov [DOE]

    The official Guidance for Developing and Implementing Institutional Controls for Long-Term Surveillance and Maintenance at DOE Legacy Management Sites, was issued in January as a supplemental...

  15. Fuel cell gas management system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  16. Midwest Research Institute Receives Contract Extension to Manage NREL -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Midwest Research Institute Receives Contract Extension to Manage NREL February 9, 2004 Golden, Colo. - Midwest Research Institute (MRI) in Kansas City has received a four-year contract extension to manage and operate the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). The NREL contract was last competed in 1998 and this extends MRI's management for the full 10 years. Midwest Research Institute has managed NREL since the Laboratory's founding as

  17. Health Education Specialist/Project Manager Oak Ridge Institute...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to addressing minority health disparities in your community, please contact: rose marie Womble, mSSW Health Education SpecialistProject Manager Oak Ridge Institute for...

  18. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Contact Legacy Management 24-hour Monitored Security Telephone Number (877) 695-5322 This page intentionally left blank U.S. Department of Energy Comprehensive Legacy Management ...

  19. Project Management Institute Highlights Savannah River Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the train derailment EM Contractor Responds to Train Derailment SRNS Solid Waste Management Director John Gilmour presents on nuclear waste management at the information ...

  20. Savannah River Site Contractor Receives Project Management Institute Award

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The local chapter of the Project Management Institute (PMI) recently honored the Savannah River Site liquid waste contractor with its 2011 Project of the Year award.

  1. Project Management Institute Highlights Savannah River Nuclear Solutions in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publication | Department of Energy Project Management Institute Highlights Savannah River Nuclear Solutions in Publication Project Management Institute Highlights Savannah River Nuclear Solutions in Publication February 6, 2014 - 12:00pm Addthis American Recovery and Reinvestment Act workers at the Savannah River Site imploded the 455-foot-tall K Reactor Cooling Tower in May 2010. American Recovery and Reinvestment Act workers at the Savannah River Site imploded the 455-foot-tall K Reactor

  2. Managing the National Greenhouse Gas Inventory Process | Open...

    Open Energy Info (EERE)

    Managing the National Greenhouse Gas Inventory Process Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Managing the National Greenhouse Gas Inventory Process Agency...

  3. Managing natural gas volume analysis

    SciTech Connect (OSTI)

    Parker, J. ); Treat, R. ); Bergen, H. )

    1994-07-01

    In late 1992, Natural Gas Pipeline Co. of America and BMP Energy Systems began the joint development of a system for the automated verification and statistical correction of gas volume data captured at meter locations by flow computers. NGPL required a single system that would provide functionality for both chart processing and automated EFM data validation and correction. The pipeline company was looking for a vendor that would help develop a system to handle EFM data. The NGAS 4[trademark] system implemented at NGPL made the bridge from monthly to daily gas volume processing. The automated and rapid validation of flow data within the NGAS 4 system minimizes human intervention for validation and correction. NGPL has moved from reliance on paper chart processing to the EFM capability required in the evolving US gas market.

  4. Greenhouse Gas Management Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    Program fact sheet highlighting federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) assists Federal agencies with managing their greenhouse gas (GHG) emissions. GHG management entails measuring emissions and understanding their sources, setting a goal for reducing emissions, developing a plan to meet this goal, and implementing the plan to achieve reductions in emissions. FEMP provides the following services to help Federal agencies meet the requirements of inventorying and reducing their GHG emissions: (1) FEMP offers one-on-one technical assistance to help agencies understand and implement the Federal Greenhouse Gas Accounting and Reporting Guidance and fulfill their inventory reporting requirements. (2) FEMP provides training, tools, and resources on FedCenter to help agencies complete their annual inventories. (3) FEMP serves a leadership role in the interagency Federal Working Group on Greenhouse Gas Accounting and Reporting that develops recommendations to the Council on Environmental Quality (CEQ) for the Federal Greenhouse Gas Accounting and Reporting Guidance. (4) As the focus continues to shift from measuring emissions (completing inventories) to mitigating emissions (achieving reductions), FEMP is developing a strategic planning framework and resources for agencies to prioritize among a variety of options for mitigating their GHG emissions, so that they achieve their reduction goals in the most cost-effective manner. These resources will help agencies analyze their high-quality inventories to make strategic decisions about where to use limited resources to have the greatest impact on reducing emissions. Greenhouse gases trap heat in the lower atmosphere, warming the earth's surface temperature in a natural process known as the 'greenhouse effect.' GHGs include carbon dioxide (CO{sub 2}), methane (CH{sub 4

  5. DOE - Office of Legacy Management -- Battelle Memorial Institute Battelle

    Office of Legacy Management (LM)

    Columbus Labs - OH 01 Memorial Institute Battelle Columbus Labs - OH 01 FUSRAP Considered Sites Site: Battelle Memorial Institute Battelle Columbus Labs (OH.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Documents Related to Battelle Memorial Institute Battelle Columbus Labs

  6. Greenhouse Gas Management Institute (GHGMI) | Open Energy Information

    Open Energy Info (EERE)

    Inventories * 302 GHG Accounting for Forest Projects * 311 GHG Accounting for Landfill Methane Projects (forthcoming) * 312 GHG Accounting for Coalmine Methane Projects * 321 GHG...

  7. DOE - Office of Legacy Management -- Carnegie-Mellon Institute Cyclone

    Office of Legacy Management (LM)

    Facility - PA 09 Carnegie-Mellon Institute Cyclone Facility - PA 09 FUSRAP Considered Sites Site: Carnegie-Mellon Institute Cyclone Facility ( PA.09 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Carnegie-Mellon University, Nuclear Research Center Carnegie Institute of Technology PA.09-1 PA.09-2 Location: Saxonburg , Pennsylvania PA.09-1 Evaluation Year: Circa 1987 PA.09-2 Site Operations: Conducted experiments and studies of the effects

  8. DOE - Office of Legacy Management -- Rensslaer Polytechnic Institute...

    Office of Legacy Management (LM)

    Related to RENSSLAER POLYTECHNIC INSTITUTE NY.18-1 - Aerospace Corporation Letter; C. Young to A. Wallo; Subject: Elimination Recommendation -- Colleges and Universities;...

  9. Underground natural gas storage reservoir management

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  10. The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PNNL-23318 The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence May 2014 C McDermott EL Malone PNNL-23318 The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence C McDermott EL Malone May 2014 Prepared for the U.S. Department of Energy under Contract DEAC0576RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 PNNL-23318 Summary This report assesses the use of institutional change principles and the

  11. DOE - Office of Legacy Management -- Boyce Thompson Institute for Plant

    Office of Legacy Management (LM)

    Research - NY 0-05 Boyce Thompson Institute for Plant Research - NY 0-05 FUSRAP Considered Sites Site: Boyce Thompson Institute for Plant Research (NY.0-05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Yonkers , New York NY.0-05-1 Evaluation Year: 1987 NY.0-05-1 Site Operations: Site activities limited to research operations involving small quantities of radioactive materials. NY.0-05-1 Site Disposition: Eliminated - Potential for

  12. DOE - Office of Legacy Management -- California Institute of Technology -

    Office of Legacy Management (LM)

    CA 04 California Institute of Technology - CA 04 FUSRAP Considered Sites Site: California Institute of Technology (CA.04 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Pasadena , California CA.04-1 Evaluation Year: 1989 CA.04-1 Site Operations: Research and development. CA.04-3 Site Disposition: Eliminated - NRC licensed facility CA.04-1 CA.04-3 Radioactive Materials Handled: None indicated Primary Radioactive Materials Handled: No

  13. DOE - Office of Legacy Management -- Massachusetts Institute of Technology

    Office of Legacy Management (LM)

    Hood Building - MA 01 Massachusetts Institute of Technology Hood Building - MA 01 FUSRAP Considered Sites Site: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, HOOD BUILDING (MA.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Cambridge , Massachusetts MA.01-1 Evaluation Year: 1986 MA.01-2 Site Operations: Facility was acquired by the AEC and engaged in research and development activities involving research quantities of uranium,

  14. DOE - Office of Legacy Management -- Polytechnic Institute of Brooklyn - NY

    Office of Legacy Management (LM)

    0-19 Polytechnic Institute of Brooklyn - NY 0-19 FUSRAP Considered Sites Site: NY.0-19 (POLYTECHNIC INSTITUTE OF BROOKLYN) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New York , New York NY.0-19-1 Evaluation Year: 1987 NY.0-19-1 Site Operations: Research and development involving only small quantities of radiological material in a controlled environment. NY.0-19-1 Site Disposition: Eliminated - Potential for contamination remote

  15. DOE - Office of Legacy Management -- Rensselaer Polytechnic Institute - NY

    Office of Legacy Management (LM)

    18 Rensselaer Polytechnic Institute - NY 18 Site ID (CSD Index Number): NY.18 Site Name: RENSSELAER POLYTECHNIC INSTITUTE Site Summary: Site Link: External Site Link: Alternate Name(s): None Alternate Name Documents: Location: Troy , New York Location Documents: NY.18-1 Historical Operations (describe contaminants): Research activities involving small quantities of radioactive materials in a controlled environment - under AEC license. Historical Operations Documents: NY.18-1 Eligibility

  16. DOE - Office of Legacy Management -- Rockefeller Institute for Medical

    Office of Legacy Management (LM)

    Research - NY 0-21 Rockefeller Institute for Medical Research - NY 0-21 FUSRAP Considered Sites Site: ROCKEFELLER INSTITUTE FOR MEDICAL RESEARCH (NY.0-21) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New York , New York NY.0-21-1 Evaluation Year: 1987 NY.0-21-1 Site Operations: Research and development involving only small amounts of radioactive material in a controlled environment. NY.0-21-1 Site Disposition: Eliminated -

  17. DOE - Office of Legacy Management -- ANC Gas Hills Site - 040

    Office of Legacy Management (LM)

    ANC Gas Hills Site - 040 FUSRAP Considered Sites Site: ANC Gas Hills Site (040) Active UMTRCA Title II site; when complete, site will be managed by LM Designated Name: Not Designated under FUSRAP Alternate Name: Gas Hills West, WY, Disposal Site Location: Fremont County, WY Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Disposal site Site Disposition: Remediation under UMTRCA Title II - site not ready to transition Radioactive Materials Handled: Yes Primary

  18. DOE - Office of Legacy Management -- Carnegie Institute of Washington Dept

    Office of Legacy Management (LM)

    of Genetics - NY 0-07 Carnegie Institute of Washington Dept of Genetics - NY 0-07 FUSRAP Considered Sites Site: Carnegie Institute of Washington (Dept. of Genetics) (NY.0-07 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Cold Spring Harbor , New York NY.0-07-1 Evaluation Year: 1987 NY.0-07-1 Site Operations: This site served as a meeting place on June 25, 1942 for the 'Executive Committee of S-1,' a group comprised of various

  19. DOE - Office of Legacy Management -- Southern Research Institute - AL 03

    Office of Legacy Management (LM)

    Southern Research Institute - AL 03 FUSRAP Considered Sites Site: SOUTHERN RESEARCH INSTITUTE (AL.03) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 917 South 20th Street , Birmingham , Alabama AL.03-1 AL.03-2 Evaluation Year: 1993 AL.03-3 Site Operations: Licensed for the period 11/10/55 - 6/1/58. Basic license and three amendments for possession and title to up to 140# of refined source material for research on properties of

  20. The Oil and Natural Gas Knowledge Management Database from NETL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Knowledge Management Database (KMD) Portal provides four options for searching the documents and data that NETL-managed oil and gas research has produced over the years for DOE’s Office of Fossil Energy. Information includes R&D carried out under both historical and ongoing DOE oil and gas research and development (R&D). The Document Repository, the CD/DVD Library, the Project Summaries from 1990 to the present, and the Oil and Natural Gas Program Reference Shelf provide a wide range of flexibility and coverage.

  1. The Oil and Natural Gas Knowledge Management Database from NETL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Knowledge Management Database (KMD) Portal provides four options for searching the documents and data that NETL-managed oil and gas research has produced over the years for DOEs Office of Fossil Energy. Information includes R&D carried out under both historical and ongoing DOE oil and gas research and development (R&D). The Document Repository, the CD/DVD Library, the Project Summaries from 1990 to the present, and the Oil and Natural Gas Program Reference Shelf provide a wide range of flexibility and coverage.

  2. Infrastructure support for a waste management institute. Final project report, September 12, 1994--September 11, 1997

    SciTech Connect (OSTI)

    1997-11-01

    North Carolina A and T State University has completed the development of an infrastructure for the interdisciplinary Waste Management Institute (WMI). The Interdisciplinary Waste Management Institute (WMI) was approved in June, 1994 by the General Administration of the University of North Carolina as an academic support unit with research and public service functions. The mission of the WMI is to enhance awareness and understanding of waste management issues and to provide instructional support including research and outreach. The goals of WMI are as follows: increase the number of minority professionals who will work in waste management fields; develop cooperative and exchange programs involving faculty, students, government, and industry; serve as institutional sponsor of public awareness workshops and lecture series; and support interdisciplinary research programs. The vision of the WMI is to provide continued state-of-the art environmental educational programs, research, and outreach.

  3. Recent Improvement Of The Institutional Radioactive Waste Management System In Slovenia

    SciTech Connect (OSTI)

    Sueiae, S.; Fabjan, M.; Hrastar, U.; Mali, T.; Steinkuhler, C.; Lenie, K.

    2008-07-01

    The task of managing institutional radioactive waste was assigned to the Slovenian National Agency for Radwaste Management by the Governmental Decree of May 1999. This task ranges from the collection of waste at users' premises to the storage in the Central Storage Facility in (CSF) and afterwards to the planned Low and Intermediate Level Waste (LILW) repository. By this Decree ARAO also became the operator of the CSF. The CSF has been in operation since 1986. Recent improvements of the institutional radioactive waste management system in Slovenia are presented in this paper. ARAO has been working on the reestablishment of institutional radioactive waste management since 1999. The Agency has managed to prepare the most important documents and carry out the basic activities required by the legislation to assure a safe and environmentally acceptable management of the institutional radioactive waste. With the aim to achieve a better organized operational system, ARAO took the advantage of the European Union Transition Facility (EU TF) financing support and applied for the project named 'Improvement of the management of institutional radioactive waste in Slovenia via the design and implementation of an Information Business System'. Through a public invitation for tenders one of the Slovenian largest software company gained the contract. Two international radwaste experts from Belgium were part of their project team. The optimization of the operational system has been carried out in 2007. The project was executed in ten months and it was divided into two phases. The first phase of the project was related with the detection of weaknesses and implementation of the necessary improvements in the current ARAO operational system. With the evaluation of the existing system, possible improvements were identified. In the second phase of the project the software system Information Business System (IBS) was developed and implemented by the group of IT experts. As a software

  4. Water management practices used by Fayetteville shale gas producers.

    SciTech Connect (OSTI)

    Veil, J. A.

    2011-06-03

    Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

  5. Exploring the Optimum Role of Natural Gas in Biofuels Production

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Vann Bush, Managing Director, Energy Conversion, Gas Technology Institute

  6. Greenhouse gas reduction strategy: A team approach to resource management

    SciTech Connect (OSTI)

    Ngai, C.C.; Borchert, G.; Ho, K.T.; Lee, S.

    1996-12-31

    In spite of the conflicting evidence of global warming due to greenhouse gas emission, PanCanadian accepts the reduction of greenhouse gas as both a political and environmental reality. While PanCanadian is committed to participate in the government and industry sponsored voluntary climate change challenge, we are also acutely aware of its potential impact on our competitiveness considering our status as a hydrocarbon producer and exporter. This paper describes a multi-discipline team approach to the challenge of reducing greenhouse gas. This includes identification of all greenhouse gas emission sources, listing the opportunities and relative impact of each remedial solution, and estimated cost associated with the reduction. Both immediate solutions and long term strategies are explored. This includes energy conservation, improving process efficiency and promoting environmental training and awareness programs. A number of important issues become evident in greenhouse gas reduction related to the exploration and production of hydrocarbons: depleting pressure and water encroachment in reservoirs; energy required for producing oil as opposed to producing gas; and public perception of flaring as compared with venting. A cost and benefit study of greenhouse gas reduction opportunities in terms of net present values is discussed. This paper describes a process that can be adapted by other producers in managing air emissions.

  7. Social and economic aspects of radioactive waste disposal: considerations for institutional management

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Issues addressed in this book include: magnitude, characteristics, and trends of public concerns over radioactive waste; the issue of public trust and confidence in the institutions responsible for radioactive waste management; effects of the number and location of waste repositories on socioeconomic and institutional burdens associated with nuclear waste management; effects associated with interim storage facilities located at reactors or away from reactors; kinds and relative magnitudes of effects associated with the use of alternative forms of transportation (rail, truck, barge); participation by local citizens in identifying, assessing, and proposing ways to ameliorate social and economic siting effects; and potential options for resolving conflict at federal, state, and local levels over repository siting.

  8. The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence

    SciTech Connect (OSTI)

    McDermott, Christa; Malone, Elizabeth L.

    2014-05-20

    This report assesses the use of institutional change principles and the institutional impact of award-winning projects through interviews with 22 Department of Energy Federal Energy Management Program (DOE FEMP) award winners. Award winners identified institutional facilitators and barriers in their projects and programs as well as factors in their implementation processes, thus providing information that can guide other efforts. We found that award winners do use strategies based on eight principles of institutional change, most frequently in terms of making changes to infrastructure, engaging leadership, and capitalizing on multiple motivations for making an energy efficiency improvement. The principles drawn on the least often were commitment and social empowerment. Award winners also faced five major types of obstacles that were institutional in nature: lack of resources, constraints of rules, psychological barriers, lack of information, and communication problems. We also used the seven categories of Energy Management Excellence (EME) as a lens to interpret the interview data and assess whether these categories relate to established institutional change principles. We found that the eight principles reflect strategies that have been found to be useful in improving energy efficiency in organizations, whereas the EME categories capture more of a blend of social contextual factors and strategies. The EME categories fill in some of the social context gaps that facilitate institutional change and energy management excellence, for example, personal persistence, a culture that supports creativity and innovation, regular engagement with tenants, contractors, and staff at all levels. Taking together the use of principles, EME criteria, and obstacles faced by interviewees, we make recommendations for how FEMP can better foster institutional change in federal agencies.

  9. NORM Management in the Oil and Gas Industry

    SciTech Connect (OSTI)

    Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat

    2008-08-07

    It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil and gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

  10. Institutional Controls: A Site Manager's Guide to Identifying, Evaluating and Selecting Institutional Controls at Superfund and RCRA Corrective Action Cleanups, September 2000

    Office of Legacy Management (LM)

    1 Site Manager, as used in this fact sheet, refers to both CERCLA sites and RCRA facilities. In RCRA, project managers are the equivalent to site managers in CERCLA. 2 This document provides guidance to EPA Regions and states involved in Superfund and RCRA corrective action cleanups. It also provides guidance to the public and the regulated community on how EPA intends to evaluate and implement institutional controls as part of a cleanup decision. The guidance is designed to implement national

  11. Gas cylinder disposal pit remediation waste minimization and management

    SciTech Connect (OSTI)

    Alas, C.A.; Solow, A.; Criswell, C.W.; Spengler, D.; Brannon, R.; Schwender, J.M.; Eckman, C.K.; Rusthoven, T.

    1995-02-01

    A remediation of a gas cylinder disposal pit at Sandia National Laboratories, New Mexico has recently been completed. The cleanup prevented possible spontaneous releases of hazardous gases from corroded cylinders that may have affected nearby active test areas at Sandia`s Technical Area III. Special waste management, safety, and quality plans were developed and strictly implemented for this project. The project was conceived from a waste management perspective, and waste minimization and management were built into the planning and implementation phases. The site layout was planned to accommodate light and heavy equipment, storage of large quantities of suspect soil, and special areas to stage and treat gases and reactive chemicals removed from the pit, as well as radiation protection areas. Excavation was a tightly controlled activity using experienced gas cylinder and reactive chemical specialists. Hazardous operations were conducted at night under lights, to allow nearby daytime operations to function unhindered. The quality assurance plan provided specific control of, and documentation for, critical decisions, as well as the record of daily operations. Both hand and heavy equipment excavation techniques were utilized. Hand excavation techniques were utilized. Hand excavation techniques allows sealed glass containers to be exhumed unharmed. In the end, several dozen thermal batteries; 5 pounds (2.3 kg) of lithium metal; 6.6 pounds (3.0 kg) of rubidium metal; several kilograms of unknown chemicals; 140 cubic yards (107 cubic meters) of thorium-contaminated soil; 270 cubic yards (205 cubic meters) of chromium-contaminated soil; and 450 gas cylinders, including 97 intact cylinders containing inert, flammable, toxic, corrosive, or oxidizing gases were removed and effectively managed to minimize waste.

  12. Flexible CHP System with Low NOx, CO, and VOC Emissions- Presentation by the Gas Technology Institute (GTI), June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Flexible CHP System with Low NOx, CO, and VOC Emissions, given by David Cygan of the Gas Technology Institute, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  13. Federal Oil and Gas Royalty Management Act of 1982 | Open Energy...

    Open Energy Info (EERE)

    Management Act of 1982 Jump to: navigation, search Statute Name Federal Oil and Gas Royalty Management Act of 1982 Year 1982 Url RoyaltyAct.jpg Description The Royalty Management...

  14. Office Civilian Waste Management Transportation Institutional Program Update on Collaborative Efforts with Key Stakeholders

    SciTech Connect (OSTI)

    E. Saris; P. Austin; J.J. Offner

    2004-12-29

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) created the Office of National Transportation in 2003 recognizing the need to revitalize and accelerate development of the transportation system. The Department has made a commitment to work through a collaborative planning process before developing specific policies and procedures and making transportation decisions. OCRWM has begun to build the institutional framework to support development of this transportation system. Interactions with stakeholders have been initiated. The authors describe the key stakeholders, identified issues, regional and national planning activities, and mechanisms for interaction.

  15. Pennsylvania Bureau of Oil and Gas Management | Open Energy Informatio...

    Open Energy Info (EERE)

    and the environment. The bureau develops policy and programs for the regulation of oil and gas development and production pursuant to the Oil and Gas Act, the Coal and Gas...

  16. Water management technologies used by Marcellus Shale Gas Producers.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  17. Zero Discharge Water Management for Horizontal Shale Gas Well...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of...

  18. GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy...

    Open Energy Info (EERE)

    a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential...

  19. Underground natural gas storage reservoir management: Phase 2. Final report, June 1, 1995--March 30, 1996

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.

    1996-12-31

    Gas storage operators are facing increased and more complex responsibilities for managing storage operations under Order 636 which requires unbundling of storage from other pipeline services. Low cost methods that improve the accuracy of inventory verification are needed to optimally manage this stored natural gas. Migration of injected gas out of the storage reservoir has not been well documented by industry. The first portion of this study addressed the scope of unaccounted for gas which may have been due to migration. The volume range was estimated from available databases and reported on an aggregate basis. Information on working gas, base gas, operating capacity, injection and withdrawal volumes, current and non-current revenues, gas losses, storage field demographics and reservoir types is contained among the FERC Form 2, EIA Form 191, AGA and FERC Jurisdictional databases. The key elements of this study show that gas migration can result if reservoir limits have not been properly identified, gas migration can occur in formation with extremely low permeability (0.001 md), horizontal wellbores can reduce gas migration losses and over-pressuring (unintentionally) storage reservoirs by reinjecting working gas over a shorter time period may increase gas migration effects.

  20. Institutional project summary University of Redlands direct fired gas absorption chiller system

    SciTech Connect (OSTI)

    Tanner, G.R.

    1996-05-01

    The University of Redlands, located in the California Inland Empire City of Redlands supplies six campus building with chilled and hot water for cooling and space heating from a centrally located Mechanical Center. The University was interested in lowering chilled water production costs and eliminating Ozone depleting chloroflourocarbon (CFC) refrigerants in addition to adding chiller capacity for future building to be added to the central plant piping {open_quotes}loop{close_quotes}. After initially providing a feasibility study of chiller addition alternatives and annual hourly load models, GRT & Associates, Inc. (GRT) provided design engineering for the installation of a 500 Ton direct gas fired absorption chiller addition to the University of Redland`s mechanical center. Based on the feasibility study and energy consumption tests done after the new absorption chiller was added, the university estimates annual energy cost saving versus the existing electric chiller is approximately $65,000 per year. Using actual construction costs, the simple before tax payback period for the project is six years.

  1. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make

  2. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect (OSTI)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with

  3. MCO combustible gas management leak test acceptance criteria

    SciTech Connect (OSTI)

    SHERRELL, D.L.

    1999-05-11

    Existing leak test acceptance criteria for mechanically sealed and weld sealed multi-canister overpacks (MCO) were evaluated to ensure that MCOs can be handled and stored in stagnant air without compromising the Spent Nuclear Fuel Project's overall strategy to prevent accumulation of combustible gas mixtures within MCO's or within their surroundings. The document concludes that the integrated leak test acceptance criteria for mechanically sealed and weld sealed MCOs (1 x 10{sup -5} std cc/sec and 1 x 10{sup -7} std cc/sec, respectively) are adequate to meet all current and foreseeable needs of the project, including capability to demonstrate compliance with the NFPA 60 Paragraph 3-3 requirement to maintain hydrogen concentrations [within the air atmosphere CSB tubes] t or below 1 vol% (i.e., at or below 25% of the LFL).

  4. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology and Waste Management Consortium annual report, 1990--1991

    SciTech Connect (OSTI)

    1991-12-31

    The HBCU/MI Environmental Technology and Waste Management Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among the member institutions. This group of research-oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MI) agreed to work together to initiate research, technology development and education programs to address the nation`s critical environmental problems. As a group the HBCU/MI Consortium is uniquely positioned to reach women and the minority populations of African Americans, Hispanics and American Indians. As part of their initial work, they developed the Research, Education, and Technology Transfer (RETT) Plan to actualize the Consortium`s guiding principles. In addition to developing a comprehensive research agenda, four major programs were begun to meet these goals. This report summarizes the 1990--1991 progress.

  5. Derivatives and Risk Management in the Petroleum, Natural Gas, and Electricity Industries

    Reports and Publications (EIA)

    2002-01-01

    In February 2002 the Secretary of Energy directed the Energy Information Administration (EIA) to prepare a report on the nature and use of derivative contracts in the petroleum, natural gas, and electricity industries. Derivatives are contracts ('financial instruments') that are used to manage risk, especially price risk.

  6. Reducing energy costs at state agencies and institutions in Texas through the Governor's energy management center

    SciTech Connect (OSTI)

    White, J.A.

    1989-01-01

    The one year internship required for partial fulfillment of the Doctor of Engineering Degree was completed at the Governor's Energy Management Center in Austin, Texas. The intern worked for the State Agencies Department of the Energy Management Center. The intern was involved in a variety of projects, but the primary projects requiring the greatest time were the involvement with the design reviews for energy efficiency of new prisons being constructed in Texas, conducting energy management audits at 18 major state universities, and the technical and administrative assistance to the State Cogeneration Council. Other project involvement included managing the preliminary engineering design of the cogeneration facility at Austin State Hospital, responsibility for applying for a $1.4 million dollar crude oil refund on the behalf of all state agencies in Texas, and assisting in the planning and coordination of the $48 million Revolving Loan Program for the state of Texas. The internship taught many things about management and communications. The experience also provided a better understanding of how the state and federal government operate. The greatest contribution of the internship experience was the improvement of the intern's written and oral communication skills.

  7. Energy management action plan: Developing a strategy for overcoming institutional barriers to municipal energy conservation

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Energy offices working to improve efficiency of local government facilities face not only technical tasks, but institutional barriers, such as budget structures that do not reward efficiency, a low awareness of energy issues, and purchasing procedures based only on minimizing initial cost. The bureau, in working to remove such barriers in San Francisco, has identified 37 institutional barriers in areas such as operations & maintenance, purchasing, and facility design; these barriers were then reorganized into three groupings-- policy & attitudes, budget & incentives, and awareness & information-- and mapped. This map shows that the barriers mutually reinforce each other, and that a holistic approach is required for permanent change. The city`s recreation & parks department was used as a model department, and information about facility energy use was compiled into a departmental energy review. Staff interviews showed how barriers affect conservation. The bureau then generated ideas for projects to remove specific barriers and rated them according to potential impact and the resources required to implement them. Four of the six projects selected focused on maintenance staff: a cost- sharing lighting retrofit program, a boiler efficiency program, a departmental energy tracking system, and a budgetary incentive program for conservation. The other two projects are city-wide: promotion of a new term contract supplying energy-efficient light materials, and publication/distribution of ENERGY NEWS newsletter. A general methodology, the EMAP Strategy Guide, has been created to assist other energy offices in developing EMAPs.

  8. Quality assurance in the petroleum industry: Oil and gas industry Total Quality Management (TQM)

    SciTech Connect (OSTI)

    Penny, N.P.

    1991-01-01

    This paper describes the development and implementation of Total Quality Management (TQM) at the Naval Petroleum Reserves in California (NPRC), known as Elk Hills', and one of the largest oil and gas producing and processing facilities in the nation. NPRC is jointly owned by the United States Department of Energy (DOE), and Chevron USA Inc. (CUSA), and is managed and operated by Bechtel Petroleum Operations Inc. (BPOI). This paper describes step-by-step methods for getting started in TQM in the oil and gas industry, including the essential quality systems ingredients. The paper also illustrates how the President's Award for Quality and Productivity Improvement and the Malcolm Baldrige National Quality Award (MBNQA) can be used as the assessment standards and benchmarks for measuring TQM. 8 refs., 2 figs.

  9. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  10. Framework for managing wastes from oil and gas exploration and production (E&P) sites.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2007-09-15

    Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

  11. Information Science & Technology Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ISTI Information Science & Technology Institute Providing connection to program management for capability needs, as well as IS&T integration and support for mission-critical...

  12. Understanding the response of commercial and institutional organizations to the California energy crisis. A report to the California Energy Commission - Sylvia Bender, Project Manager

    SciTech Connect (OSTI)

    Lutzenhiser, Loren; Janda, Kathryn; Kunkle, Rick; Payne, Christopher

    2002-07-24

    Beginning in the summer of 2000, California experienced serious energy supply problems, sharp increases in wholesale (and retail) electricity and natural gas prices, and isolated blackouts. In response to the rapidly worsening electricity situation in California in late 2000, the state set, as an initial goal, the reduction of the state's peak demand for the summer of 2001 by 5,000 megawatts. To meet this goal, the governor and legislature took a variety of steps to enhance supply, encourage rapid voluntary reductions in demand, and provide incentives for actions that would result in load reductions. Three bills-Assembly Bill 970, Senate Bill X1 5 and Assembly Bill X1 29-allocated roughly $950 million for consumption and demand reduction programs. The governor also enacted a variety of additional measures, including the ''Flex Your Power'' (media awareness and direct business involvement) campaign, requirements for retail sector outdoor lighting reductions, and toughening of energy efficiency building codes. There were, in fact, significant reductions in electricity demand in California during the summer of 2001 and the large number of expected supply disruptions was avoided. To understand the nature of these demand reductions and the motivations for consumer response, Washington State University (WSU) undertook a study for the California Energy Commission (CEC) focusing on conservation behavior in the residential, commercial, and agricultural sectors. The research presented in this report represents an exploration of the response of commercial and institutional organizations to the California energy situation and the unique set of influences that existed during this time. These influences included informational messages and media attention, program interventions, price changes, and external triggering events (e.g., blackouts). To better understand the effects of these influences on organizational response to the energy situation, we conducted 84 semi

  13. Long-Term Stewardship: Institutional Controls on Department of Energy Sites. Development and Management of Institutional Controls at U.S. Department of Energy Office of Legacy Management Sites

    SciTech Connect (OSTI)

    Schiesswohl, S.; Bahrke, C.; Deyo, Y.; Uhlmeyer, T.

    2007-07-01

    The U.S. Department of Energy (DOE) has managed the Long Term Stewardship and Maintenance activities at DOE sites since 1988. DOE's Office of Legacy Management (LM) was established in December 2003, and its specific mission is to manage the DOE's post-closure responsibilities and ensure the future protection of human health and the environment. LM has control and custody for legacy land, structures, and facilities and is responsible for maintaining them at levels suitable for their long-term use. LM uses DOE Policy 454.1: Use of Institutional Controls (ICs) and Associated Guidance. Many major Federal laws, Executive Orders, regulations, and various other drivers influence the establishment and use of ICs at LM sites. LM uses a wide range of ICs as part of efforts to appropriately limit access to, or uses of, land, facilities and other real and personal property assets; protect the environment; maintain the physical safety and security of DOE facilities; and prevent or limit inadvertent human and environmental exposure to residual contaminants and other hazards. ICs generally fall into one of four categories identified by EPA guidance, and DOE is successfully using a 'defense in depth' strategy which uses multiple mechanisms to provide 'layering' for additional durability and protectiveness: - Proprietary controls - such as easements and covenants. - Governmental controls - implemented and enforced by state or local governments. - Enforcement and permit tools with IC components - such as CERCLA agreements or RCRA permits. - Informational devices - such as state registries or public advisories. An additional practice that supports ICs at LM sites entails the use of engineered controls, such as fences, gates, access controls, etc. to ensure public access to applicable areas is limited. An engineered control that is not an IC is the disposal cell itself with its design criteria that protects the contaminated interior, controls the penetration of precipitation, and the

  14. The Critical Materials Institute | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Critical Materials Institute Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Photo left to right: CMI Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Not pictured: Carol Bergman. CMI staff phone 515-296-4500, e-mail CMIdirector@ameslab.gov 2332 Pammel Drive, 134 Wilhelm Hall, Iowa State University, Ames, IA 50011-1025 The Critical Materials Institute focuses on technologies that make better use of

  15. Local government energy management: liquid petroleum gas (LPG) as a motor vehicle fuel

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.

    1983-10-01

    The retrofit or conversion of automotive engines to operate on liquid petroleum gas (LPG) or propane fuel is one of many potentially cost-effective strategies for reducing a local government's annual fleet operating and maintenance costs. The cost effectiveness of an LPG conversion decision is highly dependent on the initial conversion cost, vehicle type, current and projected fuel costs, vehicle fuel economy (miles per gallon), and yearly average mileage. A series of plots have been developed which indicate simple paybacks for the conversion of several vehicle types (passenger car, small and standard pickups, and two and three ton trucks) over a wide range of fuel economies and annual usage patterns. A simple payback of less than three years can be achieved for vehicles with poor fuel economy and high annual use. The figures provided in this report may be used by fleet management personnel as a screening tool to identify those passenger cars, small or standard pickups, or light duty trucks which are candidates for LPG conversion. In addition to examining the benefits of an LPG conversion, local governments should also consider the competing energy management strategies of downsizing, and the acquisition of fuel efficient, diesel powered vehicles.

  16. Larry Brand - Gas Technology Institute

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... > Seven (7) states do not track this information > Difference likely related to geography Survey Results - Appliance Location Building America Webinar 33 > States with data (4 ...

  17. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    SciTech Connect (OSTI)

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  18. Review of disaster management implementation for the community safety in the vicinity of oil and gas field

    SciTech Connect (OSTI)

    Musa, R. Abdullah; Heni, Siti; Harjanto, Meddy

    2015-04-24

    Sukowati site which is operated by Production Sharing Contract (PSC) Joint Operating Body Pertamina Petrochina East Java (JOB P-PEJ) located at Bojonegoro regency East Java Province. This site is close to densely populated settlements with approximately 6,010 people within a radius less than 600 m. The fluid produced have a dangerous potential to the above mention community, due to accompanying of hydrogen sulphide gas (H2S) with a concentration about 0.6% – 2% from the total gas produced. In 2006, there was incident of gas leak from drilling development well of Sukowati # 5. The incident made the surrounding community panic due to lack of preparedness and awareness. Learning from the incident, the company together with the government and local communities initiated to make improvements through the disaster management system approach. The efforts are carried out in accordance with the 4 (four) periods in a continuous cycle consist of (1) mitigation; (2) preparation; (3) response and (4) recovery. Emergency response drills conducted regularly at least once a year, its main purpose is to find out the results of the implementation of the existing disaster management. The results of the drills showed an increase in public awareness and responsiveness to emergency situations caused by the operational failures of oil and gas exploration and production activities near their settlement.

  19. DOE - Office of Legacy Management -- Project Gas Buggy Site - NM 14

    Office of Legacy Management (LM)

    Gas Buggy Site - NM 14 FUSRAP Considered Sites Site: Project Gas Buggy Site (NM.14 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Gasbuggy, New Mexico, Site Nevada Test Site History Documents Related to Project Gas Buggy Site Fact Sheet Gasbuggy, New Mexico The Gasbuggy Site is located in northwestern New Mexico in Rio Arriba County

  20. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2005-07-01

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  1. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China

    SciTech Connect (OSTI)

    Zhao Wei; Huppes, Gjalt; Voet, Ester van der

    2011-06-15

    The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

  2. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    SciTech Connect (OSTI)

    Morris, Jeremy W.F.; Crest, Marion; Barlaz, Morton A.; Spokas, Kurt A.; Akerman, Anna; Yuan, Lei

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of

  3. Financial Institutions

    Broader source: Energy.gov [DOE]

    A lending program begins with a financial institution that procures the funds they lend from a number of other sources.

  4. Engineering Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Engineering Institute Multidisciplinary engineering research that integrates advanced modeling and simulations, novel sensing systems and new developments in information technology. May 14, 2013 Los Alamos Research Park Los Alamos Research Park, the home of Engineering Institute Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI Director Michael Todd (858) 534-5951 Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505)

  5. Seaborg Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Seaborg Institute The institute provides a primary mechanism for fostering cooperation and collaboration in actinide science among the national laboratories, university campuses, and the national and international actinide science community. Contact Director Albert Migliori (505) 663-5627 Email Deputy Director Franz Freibert (505) 667-6879 Email Professional Staff Assistant Susan Ramsay (505) 665-0858 Email actinide The Seaborg Institute at Los Alamos integrates research programs,

  6. Resources on Institutional Change for Sustainability

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Management Program (FEMP) offers resources to help agencies achieve institutional change in their organizations.

  7. Development of Real-Time, Gas Quality Sensor Technology - Fact Sheet 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Real-Time, Gas Quality Sensor Technology - Fact Sheet 2015 Development of Real-Time, Gas Quality Sensor Technology - Fact Sheet 2015 The Gas Technology Institute, in collaboration with several project partners, will bring together real-time, gas quality sensor technology with engine management for opportunity fuels. The project is a unique industry effort that will improve the performance, increase efficiency, raise system reliability, and provide improved project

  8. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2004-07-01

    This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

  9. COMPREHENSIVE LEGACY MANAGEMENT

    Office of Legacy Management (LM)

    Fernald Preserve, Fernald, Ohio Comprehensive Legacy Management and Institutional Controls ... blank LMSFERS03496-8.0 Comprehensive Legacy Management and Institutional Controls ...

  10. Great Lakes Energy Institute

    SciTech Connect (OSTI)

    Alexander, J. Iwan

    2012-11-18

    The vision of the Great Lakes Energy Institute is to enable the transition to advanced, sustainable energy generation, storage, distribution and utilization through coordinated research, development, and education. The Institute will place emphasis on translating leading edge research into next generation energy technology. The Institute’s research thrusts focus on coordinated research in decentralized power generation devices (e.g. fuel cells, wind turbines, solar photovoltaic devices), management of electrical power transmission and distribution, energy storage, and energy efficiency.

  11. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Market Trends: MMS Announces New Incentives for Gulf Gas Production: The Minerals Management Service (MMS) unveiled proposed new incentives to increase deep gas production...

  12. Institutional Change for Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institutional Change » Institutional Change for Sustainability Institutional Change for Sustainability Inspire Change with an Awards Program Inspire Change with an Awards Program Report shares 22 stories of FEMP Federal Energy and Water Management Award winners whose projects fostered institutional change in agencies. Read more Promote Institutional Change Promote Institutional Change This magazine article provides practical, evidence-based strategies to promote institutional change. Read more

  13. Engineering Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upon completion of their graduate degrees Over the last seven years, 150 students from 50 academic institutions have participated in the summer school and sixteen such TSM's have...

  14. Managing and controlling gas volume analysis in the post FERC 636 environment

    SciTech Connect (OSTI)

    Treat, R.; Bergen, H.; Parker, J.

    1995-12-31

    Late in 1992, Natural Gas Pipeline Company of America (NGPL) and BMP Energy Systems (BMP) initiated a project to jointly develop a system for the automated verification and statistical correction of electronic flow measurement data. When NGPL and BMP began their original discussions, the primary purpose was for NGPL to evaluate the possibility of using BMP`s NGAS (Natural Gas Accounting System) software for handling Electronic Flow Meter (EFM) data. During these discussions, it became apparent that there was a unique opportunity to provide a business solution for both NGPL and BMP. NGPL faced the challenge of re-engineering their monthly chart processing organization to a daily volume analysis organization. BMP faced the challenge of re-engineering its chart processing system to a volume process system. The paper describes the challenges, the existing system, the decision process, and cost justification.

  15. Engineering Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Opportunities » Engineering Institute Engineering Institute Engineering dynamics that include flight, vibration isolation for precision manufacturing, earthquake engineering, blast loading, signal processing, and experimental model analysis. Contact Leader, Los Alamos Charles Farrar Email Leader, UCSD Michael Todd Email Los Alamos Program Administrator Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email Collaboration for conducting

  16. Determine Institutional Change Sustainability Goals

    Office of Energy Efficiency and Renewable Energy (EERE)

    The first step in the institutional change process is defining your federal agency's sustainability goals. That is, decide what outcomes are desired (or required) over what period of time. Behavioral, organizational, and institutional changes typically are means to achieve desired energy, resource, or greenhouse gas emission outcomes. They are not ends in and of themselves.

  17. Cyclotron Institute Upgrade Project - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upgrade Overview / K150 Cyclotron / Light Ion Guide / Heavy Ion Guide / Negative Ion Source / CB-ECRIS Facility Upgrade White Paper Overview Picture of the experimental set up to measure beta-decay half-lives. On January 3, 2005 the Cyclotron Institute Upgrade Project (CIUP) began with the approval of the CIUP management plan by the Department of Energy Nuclear Physics Office. The project will extend to the first quarter of calendar year 2011. When completed, the upgraded facility will provide

  18. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Market Trends: The Minerals Management Service Reports Royalty Gas Sale for the First Time in Offshore Louisiana. On November 4, the Minerals Management Service (MMS) of the...

  19. Use of Institutional Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-09

    The Policy ensures that the Department of Energy will use institutional controls in the management of resources, facilities and properties under its control, and in implementing its programmatic responsibilities. Certified 1-28-11. Superseded by Chg 1 (Admin Chg), dated 12-7-15.

  20. Use of Institutional Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-09

    The Policy ensures that the Department of Energy will use institutional controls in the management of resources, facilities and properties under its control, and in implementing its programmatic responsibilities. Certified 1-28-11. Supersedes DOE P 454.1, dated 4-9-03.

  1. ENERGY EFFICIENT THERMAL MANAGEMENT FOR NATURAL GAS ENGINE AFTERTREATMENT VIA ACTIVE FLOW CONTROL

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen

    2004-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  2. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2006-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  3. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2005-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  4. Engineering Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software Download and Data Sets First name * Last name * Email address * Institution * Software & Data Set Selection (Select one or more) SHMTools Software (0.20.0 Beta) mFUSE ...

  5. Quantum Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Institute Quantum Institute A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. Contact Leader Malcolm Boshier (505) 665-8892 Email Two of LANL's most successful quantum technology initiatives: quantum cryptography and the race for quantum computer The area of quantum information, science, and technology is rapidly evolving, with important applications in the areas of quantum

  6. Engineering Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EI Software Download Request EI Software Download Request Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email Software Download and Data Sets First name * Last name * Email address * Institution * Software & Data Set Selection (Select one or more) SHMTools Software (0.20.0 Beta) mFUSE Interface (0.2.0 Beta) Datasets

  7. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-10-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

  8. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    1997-05-01

    On September 30, 1993, the US Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate two technologies for the placement of coal combustion residues in abandoned underground coal mines, and will assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement, using virtually dry materials, and (2) hydraulic placement, using a {open_quotes}paste{close_quotes} mixture of materials with about 70% solids. Phase II of the overall program began April 1, 1996. The principal objective of Phase II is to develop and fabricate the equipment for placing the coal combustion by-products underground, and to conduct a demonstration of the technologies on the surface. Therefore, this quarter has been largely devoted to developing specifications for equipment components, visiting fabrication plants throughout Southern Illinois to determine their capability for building the equipment components in compliance with the specifications, and delivering the components in a timely manner.

  9. ORISE: Emergency Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Emergency Management Effective emergency management relies on thorough integration of preparedness plans at all levels of government. The Oak Ridge Institute for Science...

  10. Sustainable Management of Flowback Water during Hydraulic Fracturing of Marcellus Shale for Natural Gas Production

    SciTech Connect (OSTI)

    Vidic, Radisav

    2015-01-24

    This study evaluated the feasibility of using abandoned mine drainage (AMD) as make- up water for the reuse of produced water for hydraulic fracturing. There is an abundance of AMD sources near permitted gas wells as documented in this study that can not only serve as makeup water and reduce the demand on high quality water resources but can also as a source of chemicals to treat produced water prior to reuse. The assessment of AMD availability for this purpose based on proximity and relevant regulations was accompanied by bench- and pilot-scale studies to determine optimal treatment to achieve desired water quality for use in hydraulic fracturing. Sulfate ions that are often present in AMD at elevated levels will react with Ba²⁺ and Sr²⁺ in produced water to form insoluble sulfate compounds. Both membrane microfiltration and gravity separation were evaluated for the removal of solids formed as a result of mixing these two impaired waters. Laboratory studies revealed that neither AMD nor barite formed in solution had significant impact on membrane filtration but that some produced waters contained submicron particles that can cause severe fouling of microfiltration membrane. Coagulation/flocculation was found to be an effective process for the removal of suspended solids and both bench- and pilot-scale studies revealed that optimal process conditions can consistently achieve the turbidity of the finished water below 5 NTU. Adjusting the blending ratio of AMD and produced water can achieve the desired effluent sulfate concentration that can be accurately predicted by chemical thermodynamics. Co-treatment of produced water and AMD will result in elevated levels of naturally occurring radioactive materials (NORM) in the solid waste generated in this process due to radium co-precipitation with barium sulfate. Laboratory studies revealed that the mobility of barite that may form in the subsurface due to the presence of sulfate in the fracturing fluid can be

  11. Natural Gas Utilities Options Analysis for the Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30 August 2005 Augusta, GA Mark E. Richards Manager, Advanced Energy Systems 2 Team and Collaborators > Team - Gas Technology Institute - RAND Corporation - Ares Corporation > Collaborators - Keyspan - NiSource - Southern California Gas 3 Funding and Duration > Funding: $300,000 - Carve-out of NiSource earmark > Duration - Original plan was nine months - Current expectation is approximately 12-14 months, completion in fourth quarter 2005 4 Objectives > Identify business

  12. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with

  13. GAS STORAGE TECHNOLGOY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-23

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  14. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  15. Human Resources at Critical Materials Institute | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources at Critical Materials Institute Each partner within the Critical Materials Institute manages its own hiring. Use these links to find key contacts for CMI partners ...

  16. RVA. 3-D Visualization and Analysis Software to Support Management of Oil and Gas Resources

    SciTech Connect (OSTI)

    Keefer, Donald A.; Shaffer, Eric G.; Storsved, Brynne; Vanmoer, Mark; Angrave, Lawrence; Damico, James R.; Grigsby, Nathan

    2015-12-01

    A free software application, RVA, has been developed as a plugin to the US DOE-funded ParaView visualization package, to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed as an open-source plugin to the 64 bit Windows version of ParaView 3.14. RVA was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing joint visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including

  17. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, January--March 1995

    SciTech Connect (OSTI)

    Chugh, Y.; Dutta, D.; Esling, S.

    1995-04-01

    On September 30, 1993, the U.S. Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC 30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, as well as the management plan and the test plan for the overall program, and a discussion of these will not be repeated here. Rather, this report, will set forth the technical progress made during the period January 1 through March 31, 1995. The demonstration of the SEEC, Inc. technology for the transporting of coal combustion residues was completed with the unloading and final disposition of the three Collapsible Intermodal Containers (CIC). The loading and transport by rail of the three CIC`s was quire successful; however some difficulties were encountered in the unloading of the containers. A full topical report on the entire SEEC demonstration is being prepared. As a result of the demonstration some modifications of the SEEC concept may be undertaken. Also during the quarter the location of the injection wells at the Peabody No. 10 mine demonstration site were selected. Peabody Coal Company has developed the specifications for the wells and sought bids for the actual drilling. It is expected that the wells will be drilled early in May.

  18. Resources on Institutional Change for Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institutional Change » Resources on Institutional Change for Sustainability Resources on Institutional Change for Sustainability The Federal Energy Management Program (FEMP) offers resources to help agencies achieve institutional change in their organizations. Case studies are also available. Publications These publications offer information about institutional change programs. Communities of Practice: A Tool for Creating Institutional Change in Support of the Mission of the Federal Energy

  19. Contact - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Website Manager Bruce Hyman Email: hyman@comp.tamu.edu Mailing Address Cyclotron Institute Texas A&M University 3366 TAMU College Station, TX, 77843-3366 Campus Location Luedecke Building / Building #434 Campus Map Google Map Phone Number 979-845-1411 Fax Number 979-845-1899 Directory Graduate Faculty Full Directory For Information about Graduate Studies Contact: Professor Che Ming Ko Email: ko@comp.tamu.edu For Potential Use of Our Facility Contact: Professor Sherry J. Yennello

  20. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October--December 1994

    SciTech Connect (OSTI)

    Chugh, Y.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

    1995-01-01

    On September 30, 1993, the US Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative agreement entitled ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines`` (DE-FC21-93MC30252). Under the agreement, Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. The major event during the quarter was the demonstration of the SEEC, Inc. technology for loading and transporting coal combustion residues in the SEEC developed Collapsible Intermodal Containers (CIC). The demonstration was held on November 17, 1994, at the Illinois Power Company Baldwin power plant, and was attended by about eighty (80) invited guest. Also during the quarter meetings were held with Peabody Coal Company officials to finalize the area in the Peabody No. 10 mine to be used for the placement of coal combustion residues. Work under the Materials Handling and Systems Economics area continued, particularly in refining the costs and systems configuration and in economic evaluation of various systems using equipment leasing rather than equipment purchases. Likewise, work progressed on residues characterization, with some preparations being made for long-term testing.

  1. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Strzepek, K.; Neumann, Jim; Smith, Joel; Martinich, Jeremy; Boehlert, Brent; Hejazi, Mohamad I.; Henderson, Jim; Wobus, Cameron; Jones, Russ; Calvin, Katherine V.; et al

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  2. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    SciTech Connect (OSTI)

    Strzepek, K.; Neumann, Jim; Smith, Joel; Martinich, Jeremy; Boehlert, Brent; Hejazi, Mohamad I.; Henderson, Jim; Wobus, Cameron; Jones, Russ; Calvin, Katherine V.; Johnson, D.; Monier, Erwan; Strzepek, J.; Yoon, Jin-Ho

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richness in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.

  3. Information Science and Technology Institute (ISTI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UC, Santa CruzLANL Institute for Scalable Scientific Data Management (ISSDM) OPEN SOURCE SOFTWARE AND DATA RELEASES Open Source Software (FSIO) Super Computer Operational...

  4. Plan for Management of Mineral Assess on Native Tribal Lands and for Formation of a Fully Integrated Natural Gas and Oil Exploration and Production Company

    SciTech Connect (OSTI)

    Blechner, Michael H.; Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    This report describes a plan for Native American tribes to assume responsibility for and operation of tribal mineral resources using the Osage Tribe as an example. Under this plan, the tribal council select and employ a qualified Director to assume responsibility for management of their mineral reservations. The procurement process should begin with an application for contracting to the Bureau of Indian Affairs. Under this plan, the Director will develop strategies to increase income by money management and increasing exploitation of natural gas, oil, and other minerals.

  5. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1995

    SciTech Connect (OSTI)

    1997-05-01

    On September 30, 1993, the U.S. Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SITJC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC-30252). Under the agreement SIUC will develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mine workings, and assess the environmental impact of such underground placements. This report discusses the technical progress achieved during the period October 1 - December 31, 1995. Rapid Aging Test columns were placed in operation during the second quarter of 1995, and some preliminary data were acquired during this quarter. These data indicate that the highly caustic pH is initially generated in the pneumatic mix, but that such pH is short lived. The initial pH rapidly declines to the range of 8 to 9. Leachates in this pH range will have little or no effect on environmental concerns. Dedicated sampling equipment was installed in the groundwater monitoring wells at the proposed placement site at the Peabody Number 10 mine. Also, the groundwater monitoring wells were {open_quotes}developed{close_quotes} during the quarter to remove the fines trapped in the sand pack and screen. A new procedure was used in this process, and proved successful. A series of tests concerning the geotechnical characteristics of the pneumatic mixes were conducted. Results show that both moisture content and curing time have a direct effect on the strength of the mixes. These are, of course, the expected general results. The Christmas holidays and the closing of the University during an extended period affected the progress of the program during the quarter. However, the program is essentially on schedule, both technically and fiscally, and any delays will be overcome during the first quarter of 1996.

  6. Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect (OSTI)

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-07-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, and a discussion of these is not repeated here. Rather, this report discusses the technical progress made during the period April 1 - June 30, 1995. A final topical report on the SEEC, Inc. demonstration of its technology for the transporting of coal combustion residues was completed during the quarter, although final printing of the report was accomplished early in July, 1995. The SEEC technology involves the use of Collapsible Intermodal Containers (CIC`s) developed by SEEC, and the transportation of such containers - filled with fly ash or other coal combustion residues - on rail coal cars or other transportation means. Copies of the final topical report, entitled {open_quotes}The Development and Testing of Collapsible Intermodal Containers for the Handling and Transport of Coal Combustion Residues{close_quotes} were furnished to the Morgantown Energy Technology Center. The Rapid Aging Test colums were placed in operation during the quarter. This test is to determine the long-term reaction of both the pneumatic and hydraulic mixtures to brine as a leaching material, and simulates the conditions that will be encountered in the actual underground placement of the coal combustion residues mixtures. The tests will continue for about one year.

  7. Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, [October 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Thomasson, E.M.; Chugh, Y.P.; Esling, S.; Honaker, R.; Paul, B.; Sevin, H.

    1994-01-01

    The ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines`` program is one of the largest programs ever undertaken by the Mining Engineering Department of Southern Illinois university, both in terms of complexity and in terms of funding. Total funding over the expected four-year extent of the program, including both Department of Energy, matching Southern Illinois University funds, and contributed funds, this program exceeds three million dollars. The number of cooperating organizations adds to the management complexity of the program. It was believed, therefore, that sound management plan and management base is essential for the efficient and effective conduct of the program. This first quarter period (i.e., October 1--December 31, 1993) was developed to establishing the management base, developing a sound management plan, developing a test plan, and developing sound fiscal management and control. Actual technical operations, such as residue sample acquisition, residue analyses, groundwater sample acquisition and analyses, and material handling studies will get underway early in the next quarter (i.e., January 1--March 31, 1994). Some early results of residue analyses and groundwater analyses should be available by the end of the second quarter. These results will be reported in the next Technical Progress Report.

  8. management

    National Nuclear Security Administration (NNSA)

    5%2A en Management and Budget http:www.nnsa.energy.govaboutusouroperationsmanagementandbudget

  9. Institutional Support | Grid Modernization | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) Institutional Research & Development Functions The Office of Advanced Simulation and Computing and Institutional R&D, a program office part of the NNSA Office of Defense Programs, advocates for and manages NNSA's Laboratory Directed Research and Development (LDRD) and Site Directed Research and Development (SDRD) Programs, with SDRD work performed at the Nevada National Security Site (NNSS). This includes providing strategic R&D guidance and support,

  10. The FEMP Awards Program: Fostering Institutional Change and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Excellence | Department of Energy The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence Report provides an assessment of the Federal Energy Management Program's (FEMP) Energy and Water Management Awards program to identify the institutional elements of award-winning projects and analyze the relative emphasis placed on them. Download the FEMP Awards Program:

  11. Natural gas annual 1995

    SciTech Connect (OSTI)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  12. Natural gas annual 1994

    SciTech Connect (OSTI)

    1995-11-17

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  13. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Other Market Trends: MMS Issues Final Notice of Western Gulf Lease Sale: The Minerals Management Service (MMS) will offer several incentives to increase domestic oil and gas...

  14. management

    National Nuclear Security Administration (NNSA)

    5%2A en Management and Budget http:nnsa.energy.govaboutusouroperationsmanagementandbudget

    P...

  15. Comprehensive Lifecycle Planning and Management System For Addressing Water Issues Associated With Shale Gas Development In New York, Pennsylvania, And West Virginia

    SciTech Connect (OSTI)

    Arthur, J. Daniel

    2012-07-01

    The objective of this project is to develop a modeling system to allow operators and regulators to plan all aspects of water management activities associated with shale gas development in the target project area of New York, Pennsylvania, and West Virginia (target area ), including water supply, transport, storage, use, recycling, and disposal and which can be used for planning, managing, forecasting, permit tracking, and compliance monitoring. The proposed project is a breakthrough approach to represent the entire shale gas water lifecycle in one comprehensive system with the capability to analyze impacts and options for operational efficiency and regulatory tracking and compliance, and to plan for future water use and disposition. It will address all of the major water-related issues of concern associated with shale gas development in the target area, including water withdrawal, transport, storage, use, treatment, recycling, and disposal. It will analyze the costs, water use, and wastes associated with the available options, and incorporate constraints presented by permit requirements, agreements, local and state regulations, equipment and material availability, etc. By using the system to examine the water lifecycle from withdrawals through disposal, users will be able to perform scenario analysis to answer "what if" questions for various situations. The system will include regulatory requirements of the appropriate state and regional agencies and facilitate reporting and permit applications and tracking. These features will allow operators to plan for more cost effective resource production. Regulators will be able to analyze impacts of development over an entire area. Regulators can then make informed decisions about the protections and practices that should be required as development proceeds. This modeling system will have myriad benefits for industry, government, and the public. For industry, it will allow planning all water management operations for a

  16. Institutional Change Process Step 1: Determine Goals

    Broader source: Energy.gov [DOE]

    The first step in the institutional change process is defining your federal agency's sustainability goals. That is, decide what outcomes are desired (or required) over what period of time. Behavioral, organizational, and institutional changes typically are means to achieve desired energy, resource, or greenhouse gas emission outcomes. They are not ends in and of themselves.

  17. Step 1: Determine Goals for Institutional Change

    Office of Energy Efficiency and Renewable Energy (EERE)

    The first step in the institutional change process is defining your federal agency's sustainability goals. That is, decide what outcomes are desired (or required) over what period of time. Behavioral, organizational, and institutional changes typically are means to achieve desired energy, resource, or greenhouse gas emission outcomes. They are not ends in and of themselves.

  18. Assistance to Oil and Gas State Agencies and Industry through Continuation of Environmental and Production Data Management and a Water Regulatory Initiative

    SciTech Connect (OSTI)

    Grunewald, Ben; Arthur, Dan; Langhus, Bruce; Gillespie, Tom; Binder, Ben; Warner, Don; Roberts, Jim; Cox, D.O.

    2002-05-31

    This grant project was a major step toward completion of the Risk Based Data Management System (RBDMS) project. Additionally the project addresses the needs identified during the projects initial phases. By implementing this project, the following outcomes were sought: (1) State regulatory agencies implemented more formalized environmental risk management practices as they pertain to the production of oil and gas, and injection via Class II wells. (2) Enhancement of oil and gas production by implementing a management system supporting the saving of abandoned or idle wells located in areas with a relatively low environmental risk of endangering underground sources of drinking water (USDWs) in a particular state. (3) Verification that protection of USDWs is adequate and additional restrictions of requirements are not necessary in areas with a relatively low environmental risk. (4) Standardization of data and information maintained by state regulatory agencies and decrease the regulatory cost burden on producers operating in multiple states, and (5) Development of a system for electronic data transfer among operators and state regulatory agencies and reduction of overall operator reporting burdens.

  19. Primer on gas integrated resource planning

    SciTech Connect (OSTI)

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S.

    1993-12-01

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  20. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances ...

  1. Purchasing Energy-Efficient Residential Gas Boilers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Boilers Purchasing Energy-Efficient Residential Gas Boilers The Federal Energy Management Program (FEMP) provides acquisition guidance for residential gas boilers, a product ...

  2. The Natural Gas Heat Pump and Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Heat Pump and Air Conditioner 2016 Building Technologies Office Peer Review ... Gas Technology Institute to optimize integration of NOx-free radiation burner. * Testing ...

  3. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Savers [EERE]

    A.O. Smith Gas Technology Institute Project Goal: Develop and demonstrate a gas-fired ... Partners, Subcontractors, and Collaborators: * AO Smith (OEM): Provides component design, ...

  4. Institute Recognizes Washington Closure Hanford as International...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 17, 2015 - 12:05pm Addthis RICHLAND, Wash. - The Project Management Institute (PMI) ... "This was a very special honor for me to attend the PMI Global Congress award ...

  5. The Petascale Data Storage Institute

    SciTech Connect (OSTI)

    Gibson, Garth; Long, Darrell; Honeyman, Peter; Grider, Gary; Kramer, William; Shalf, John; Roth, Philip; Felix, Evan; Ward, Lee

    2013-07-01

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability.The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools.The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz.

  6. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host

  7. Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system

    SciTech Connect (OSTI)

    Bolinsky, F.T. (Pure Air, Allentown, PA (United States)); Ross, J. (Northern Indiana Public Service Co., Hammond, IN (United States)); Dennis, D.S. (United Engineers and Constructors, Inc., Denver, CO (United States). Stearns-Roger Div.); Huston, J.S. (Environmental Alternatives, Inc., Warren NJ (USA))

    1991-01-01

    Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO{sub 2}) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO{sub 2} will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO{sub 2} is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs.

  8. Natural Gas Utilities Options Analysis for the Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 January 2005 Oak Ridge National Laboratory Oak Ridge, TN Mark E. Richards Manager, Advanced Energy Systems 2 Gas Technology Institute > GTI is an independent non-profit R&D organization > GTI focuses on energy & environmental issues - Specialize on natural gas & hydrogen > Our main facility is an 18- acre campus near Chicago - Over 350,000 ft 2 GTI's Main Research Facility GTI's Energy & Environmental Technology Center 3 GTI RD&D Organization Robert Stokes

  9. Low-cost integrated teamwork and seismic monitoring improved reservoir management of Norwegian gas reservoir with active water drive

    SciTech Connect (OSTI)

    Grinde, P.; Blanche, J.P.; Schnapper, D.B.

    1994-12-31

    This paper shows how new techniques, using integrated seismic and reservoir modelling, have shown there is no need to drill two previously proposed additional need to drill two previously proposed additional producers on the Heimdal gas field. Older simulations had shown this to be necessary in order to recover locally trapped gas. The study emphasizes the necessity of close team work to obtain the detailed reservoir description needed for such a study. A multidisciplinary team of geologists, geophysicists and reservoir specialists performed this study to reappraise the Heimdal Field. Using seismic attributes from 3D (mainly 2D amplitude versus offset AVO) a detailed structural and seismic stratigraphic interpretation provided the geometrical basis for the field model. A heterogenetic approach (identifying potential flow barriers) to detailed geology was then applied using regional experience and detailed field data including the production characteristics. The resulting reservoir model also incorporated offset fields on common regional aquifers, to properly monitor and predict the dynamic pressure behavior and aquifer energy in this series of connecting, Paleocene, turbiditic sands. Two repetitive seismic campaigns have been acquired since the pre-production 3D seismic survey. Mapping of the water encroachment was accomplished using advanced interpretation techniques of 2D AVO and inversion. The results have been integrated into the dynamic matching process in the reservoir simulation.

  10. INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INSTITUTE INSTITUTE INSTITUTE INSTITUTE COLLOQUIA AND SEMINARS April 1, 2000-March 31, 2001 2000 April 4 Dr. B. Launé, Institut de Physique Nucléaire - Orsay, France GANIL: Overview and Perspectives April 11 Dr. Z. Lin, Cyclotron Institute, TAMU J/psi Absorption in Hadronic Matter April 20 Dr. R. Tribble, Texas A&M University Nuclear Astrophysics at Texas A&M April 23 Prof. S.A. Gurvitz, The Weizmann Institute of Science, Rehovot, Israel Confinement and Scaling in Deep Inelastic

  11. CMI Factsheet | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Factsheet 3D printer uses laser and metals to build new combinations of materials What is the Energy Innovation Hub for Critical Materials? Created by the U.S. Department of Energy, the Energy Innovation Hub is operated under the name the Critical Materials Institute. CMI is led by the DOE's Ames Laboratory, and managed by DOE's Advanced Manufacturing Office. It brings together the expertise of DOE national laboratories, universities, and industry partners to eliminate materials criticality

  12. Activities of the Institute of Chemical Processing of Coal at Zabrze

    SciTech Connect (OSTI)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  13. The FEMP Awards Program: Fostering Institutional Change and Energy...

    Office of Environmental Management (EM)

    The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence The FEMP Awards ... More Documents & Publications Communities of Practice: A Tool for ...

  14. Communities of Practice: A Tool for Creating Institutional Change...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Communities of Practice: A Tool for Creating Institutional Change in Support of the Mission of the Federal Energy Management Program Communities of Practice: A Tool for Creating ...

  15. Natural gas annual 1997

    SciTech Connect (OSTI)

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  16. Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.; Brackebusch, F.; Carpenter, J.

    1998-12-31

    This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

  17. In-Situ Measurements of Low Enrichment Uranium Holdup Process Gas Piping at K-25 - Paper for Waste Management Symposia 2010 East Tennessee Technology Park Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Rasmussen B.

    2010-01-01

    This document is the final version of a paper submitted to the Waste Management Symposia, Phoenix, 2010, abstract BJC/OR-3280. The primary document from which this paper was condensed is In-Situ Measurement of Low Enrichment Uranium Holdup in Process Gas Piping at K-25 Using NaI/HMS4 Gamma Detection Systems, BJC/OR-3355. This work explores the sufficiency and limitations of the Holdup Measurement System 4 (HJVIS4) software algorithms applied to measurements of low enriched uranium holdup in gaseous diffusion process gas piping. HMS4 has been used extensively during the decommissioning and demolition project of the K-25 building for U-235 holdup quantification. The HMS4 software is an integral part of one of the primary nondestructive assay (NDA) systems which was successfully tested and qualified for holdup deposit quantification in the process gas piping of the K-25 building. The initial qualification focused on the measurement of highly enriched UO{sub 2}F{sub 2} deposits. The purpose of this work was to determine if that qualification could be extended to include the quantification of holdup in UO{sub 2}F{sub 2} deposits of lower enrichment. Sample field data are presented to provide evidence in support of the theoretical foundation. The HMS4 algorithms were investigated in detail and found to sufficiently compensate for UO{sub 2}F{sub 2} source self-attenuation effects, over the range of expected enrichment (4-40%), in the North and East Wings of the K-25 building. The limitations of the HMS4 algorithms were explored for a described set of conditions with respect to area source measurements of low enriched UO{sub 2}F{sub 2} deposits when used in conjunction with a 1 inch by 1/2 inch sodium iodide (NaI) scintillation detector. The theoretical limitations of HMS4, based on the expected conditions in the process gas system of the K-25 building, are related back to the required data quality objectives (DQO) for the NBA measurement system established for the K-25

  18. NIPSCO Prescriptive Electric and Natural Gas Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Prescriptive Natural Gas & Electric Program offers rebates to NIPSCO's large commercial, industrial, non-profit, governmental and institutional customers, who...

  19. Renewable Natural Gas- Developer Perspective

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsRenewable Natural Gas - Developer PerspectiveDavid Ross, Managing Director, MultiGen International, LLC

  20. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three

  1. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute » Advanced Studies Institute Science of Signatures Advanced Studies Institute Developing innovative solution strategies for problems that support the forward deployment theme of the Science of Signatures Pillar, and building skills needed for successful research program development. Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI Director Michael Todd (858) 534-5951 Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran

  2. INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-March 31, 2006 2005 April 1 Dr. Ralf Rapp, Cyclotron Institute, Texas A&M University, College Station, Texas Thermal Field Theory and Instantons II April 8 Mr. Deqiang Sun, Cyclotron Institute, Texas A&M University, College Station, Texas Bottomonium in QGP and Heavy-Ion Collisions April 22 Dr. Ralf Rapp, Cyclotron Institute, Texas A&M University, College Station, Texas Thermal Field Theory and Instantons III May 6 Dr. Massimo Mannarelli, Massachusetts Institute of Technology,

  3. Southern Research Institute Visit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southern Reaserch Engineering Capabilities Briefing 2010 Southern Research Institute Pharmaceutical and Biotechnology Research Briefing 2010 CAMD Introduction - Richard Kurtz Mary ...

  4. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Lease Sale for Offshore Tracts in the Central Gulf of Mexico: On October 3, the Minerals Management Service (MMS) announced that the Central Gulf of Mexico Oil and Gas Lease Sale...

  5. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    further downward pressure on spot prices. As of yesterday, October 1, the Minerals Management Service (MMS) reported that 3.5 billion cubic feet (Bcf) per day of natural gas...

  6. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Commodities Group Inc. BLM Releases Results of Lease Sale: The Bureau of Land Management (BLM) reported on Wednesday, March 28, that the recent auction of oil and gas...

  7. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Trends Natural Gas and Crude Oil Production Shut-ins in the Gulf of Mexico. The Minerals Management Service (MMS) of the Department of the Interior reported that a significant...

  8. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Hurricanes Katrina and Rita has disrupted natural gas supplies and continued to prop up prices at near-record highs around the nation. According to the Minerals Management...

  9. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Leasing. The U. S. Department of the Interior's Minerals Management Service (MMS) held a sale of offshore oil and natural gas leases in the Central Gulf of Mexico on March 20,...

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of Mexico continued to recover from the hurricane damage suffered in 2005. The Minerals Management Service (MMS) reported that shut-in natural gas production fell to 1.95 Bcf per...

  11. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    12), shut-in natural gas production exceeded 2.3 Bcf per day, as reported by the Minerals Management Service (MMS). Cumulative "lost" production since late August is 526.2 Bcf,...

  12. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    over the period covered by this report (September 28 to October 5). The Minerals Management Service (MMS) reported that as of Wednesday, October 5, shut-in natural gas...

  13. Communities of Practice: A Tool for Creating Institutional Change in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support of the Mission of the Federal Energy Management Program | Department of Energy Communities of Practice: A Tool for Creating Institutional Change in Support of the Mission of the Federal Energy Management Program Communities of Practice: A Tool for Creating Institutional Change in Support of the Mission of the Federal Energy Management Program Report describes how the Federal Energy Management Program could use communities of practice as tools to stimulate organizational, social, and

  14. DOE - Office of Legacy Management -- Massachusetts Institute...

    Office of Legacy Management (LM)

    involving research quantities of uranium, thorium and beryllium and other rare metals. ... Radioactive Materials Handled: Uranium, Thorium, Beryllium MA.01-4 Radiological ...

  15. GHG Management Institute curriculum | Open Energy Information

    Open Energy Info (EERE)

    Inventories * 302 GHG Accounting for Forest Projects * 311 GHG Accounting for Landfill Methane Projects (forthcoming) * 312 GHG Accounting for Coalmine Methane Projects * 321 GHG...

  16. Management of dry gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1996

    SciTech Connect (OSTI)

    1996-12-31

    The objective is to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement using virtually dry coal combustion by-products, and (2) hydraulic placement using a paste mixture of combustion by-products with about 70% solids. Phase 2 of the overall program began April 1, 1996. The principal objective of Phase 2 is to develop and fabricate the equipment for both the pneumatic and hydraulic placement technologies, and to conduct a limited, small-scale shakedown test of the pneumatic and hydraulic placement equipment. The shakedown test originally was to take place on the surface, in trenches dug for the tests. However, after a thorough study it was decided, with the concurrence of DOE-METC, to drill additional injection wells and conduct the shakedown tests underground. This will allow a more thorough test of the placement equipment.

  17. Oil and gas leasing in proposed wilderness areas: the Wyoming District Court's interpretation of Section 603 of the Federal Land Policy Management Act of 1976 - Rocky Mountain Oil and Gas Association v. Andrus, 500 F. Supp. 1338 (D. Wyo. 1980), appeal docketed, No. 81-1040 (10th Cir. Jan. 5, 1981)

    SciTech Connect (OSTI)

    Corbett, H.E.

    1982-01-01

    Plaintiff Rocky Mountain Oil and Gas Association, a non-profit trade association, brought suit against the Secretary of the Interior, challenging land management policies of the Department of the Interior which plaintiff contended have effectively prohibited oil and gas exploration in areas proposed as wilderness under the Federal Land Policy Management Act of 1976 (FLPMA). The principal issue at trial was Interior's interpretation of the wilderness study provisions contained in Section 603 of the Act, which directed that activities on oil and gas leases in proposed wilderness areas be managed so as to prevent impairment of wilderness values. The United States Court for the District of Wyoming, Kerr, J., held that strict application of the non-impairment standard of Section 603, FLPMA, by the Department of the Interior virtually halted oil and gas exploration in proposed wilderness areas, and is therefore statutorily erroneous, clearly contrary to Congressional intent, and counter-productive to public interest. The Trial Court's decision is being appealed to the Tenth Circuit Court of Appeals under the title Rocky Mountain Oil and Gas Association v. Watt. 91 references.

  18. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.

    1997-12-31

    The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

  19. Environmental Management Internships | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minority Serving Institution (MSI) MSIs are institutions of higher education enrolling populations with significant percentages of undergraduate minority students. Eligible Minority Serving Institutions Featured Videos Student Intern: Water Table Management Student Intern: Citizen Science Student Intern: Non-Traditional Water Resources Contact undergrad@anl.gov Environmental Management Internships Minority Serving Institutions Partnership Program (MSIPP) The Minority Serving Institutions

  20. Office of Legacy Management

    Office of Legacy Management (LM)

    Energy Office of Legacy Management JUL 1 0 2008 Alonso Ramirez, Scientific Director EI Verde Research Station Institute for Tropical Ecosystem Studies University of Puerto Rico...

  1. ORISE: Peer Review Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Man participating in a peer review The Oak Ridge Institute for Science and Education (ORISE) ensures that scientific reviews are conducted in a professional manner and...

  2. Incorporating Agricultural Management Practices into the Assessment of Soil Carbon Change and Life-Cycle Greenhouse Gas Emissions of Corn Stover Ethanol Production

    SciTech Connect (OSTI)

    Qin, Zhangcai; Canter, Christina E.; Dunn, Jennifer B.; Mueller, Steffen; Kwon, Ho-young; Han, Jeongwoo; Wander, Michelle M.; Wang, Michael

    2015-09-01

    Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and no tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain constant

  3. Institutional Research & Development | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Institutional Research & Development Functions The Office of Advanced Simulation and Computing and Institutional R&D, a program office part of the NNSA Office of Defense Programs, advocates for and manages NNSA's Laboratory Directed Research and Development (LDRD) and Site Directed Research and Development (SDRD) Programs, with SDRD work performed at the Nevada National Security Site (NNSS). This includes providing strategic R&D guidance and support,

  4. National Institute for Global Environmental Change

    SciTech Connect (OSTI)

    Werth, G.C.

    1992-04-01

    This document is the Semi-Annual Report of the National Institute for Global Environmental Change for the reporting period July 1 to December 31, 1991. The report is in two parts. Part I presents the mission of the Institute, examples of progress toward that mission, a brief description of the revised management plan, and the financial report. Part II presents the statements of the Regional Center Directors along with progress reports of the projects written by the researchers themselves.

  5. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland

    SciTech Connect (OSTI)

    Hupponen, M. Grönman, K.; Horttanainen, M.

    2015-08-15

    Highlights: • Environmental criteria for the MSW incineration location procurements are needed. • Focus should be placed on annual energy efficiency and on substitute fuels. • In SRF combustion it is crucial to know the share and the treatment of rejects. • The GWP of transportation is a small part of the total emissions. - Abstract: The ongoing trend in the public sector is to make more sustainable procurements by taking into account the impacts throughout the entire life cycle of the procurement. Despite the trend, the only deciding factor can still be the total costs. This article answers the question of how greenhouse gas (GHG) emissions should be taken into account in municipal solid waste (MSW) management when selecting an incineration plant for source separated mixed MSW. The aim is to guide the decision making of MSW management towards more environmentally friendly procurements. The study was carried out by calculating the global warming potentials (GWPs) and costs of mixed MSW management by using the waste composition from a case area in Finland. Scenarios of landfilling and combustion in three actual waste incineration plants were used to recognise the main processes that affect the results. GWP results show that the combustion of mixed MSW is a better alternative than landfilling the waste. The GHG results from combustion are greatly affected by emissions from the combustion and substituted energy production. The significance of collection and transportation is higher from the costs’ perspective than from the point of view of GHG emissions. The main costs, in addition to collection and transportation costs, result from the energy utilization or landfilling of mixed MSW. When tenders are invited for the incineration location of mixed MSW, the main focus should be: What are the annual electricity and heat recovery efficiencies and which are the substituted fuels in the area? In addition, in the case of a fluidized bed combustor it is crucial to

  6. Graduate Studies - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Students wishing to carry out their dissertation research at the Cyclotron Institute must be formally enrolled in the graduate program of either the Department of Physics or the Department of Chemistry, but may elect to work with any Institute faculty research advisor, irrespective of that advisor's departmental affiliation. Research programs at the Cyclotron Institute are funded by the U.S. Department of Energy, the National Science Foundation, and the Robert A. Welch Foundation. Application

  7. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emeritus Institute for Theoretical Condensed Matter Physics (KIT) The Exotic World of Quantum Matter: Novel States Induced by Fluctuations Tuesday, June 30, 2015 2 - 3pm MSL...

  8. INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shanghai Jiao Tong University, Shanghai, China Probing the Nuclear Symmetry Energy with ... Jiansong Wang, Institute of Modern Physics, Lanzhou, China The Status of Hadronic Physics ...

  9. INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeffrey W. Martin, Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California Ultracold Neutrons April 20 Professor J. W. Watson, Department of Physics, ...

  10. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    professor in the Woodruff School of Mechanical Engineering at Georgia Institute of Technology. She was previously a postdoctoral research fellow at the Center for Integrated...

  11. Edison Electric Institute Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the Edison Electric Institute (EEI) and the current electricity landscape.

  12. Careers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers The Critical Materials Institute at the The Ames Laboratory, a Department of Energy national laboratory affiliated with Iowa State University, offers a variety of career ...

  13. INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hass, The Weizmann Institute, Rehovot, Israel A New Precision Measurement of the 7 Be ... Yigal Ronen, Ben Gurion University Beer-Sheva, Israel Space Travel: Science or Fiction? ...

  14. INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raymond Moreh, Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Rensselaer Polytechnic Institute, Troy, New York Neutron Scattering of keV ...

  15. Institute for Advanced Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    working on joint NMC proposals. Participation in the projects must not negatively impact partner institutions. Funding for joint projects should be through partner...

  16. Institutional plan. Fiscal year, 1997--2002

    SciTech Connect (OSTI)

    1996-10-01

    The Institutional Plan is the culmination of Argonne`s annual planning cycle. The document outlines what Argonne National Laboratory (ANL) regards as the optimal development of programs and resources in the context of national research and development needs, the missions of the Department of Energy and Argonne National Laboratory, and pertinent resource constraints. It is the product of ANL`s internal planning process and extensive discussions with DOE managers. Strategic planning is important for all of Argonne`s programs, and coordination of planning for the entire institution is crucial. This Institutional Plan will increasingly reflect the planning initiatives that have recently been implemented.

  17. Management and Development of the Western Resources Project

    SciTech Connect (OSTI)

    Terry Brown

    2009-03-09

    The purpose of this project was to manage the Western Resources Project, which included a comprehensive, basin-wide set of experiments investigating the impacts of coal bed methane (CBM; a.k.a. coal bed natural gas, CBNG) production on surface and groundwater in the Powder River Basin in Wyoming. This project included a number of participants including Apache Corporation, Conoco Phillips, Marathon, the Ucross Foundation, Stanford University, the University of Wyoming, Montana Bureau of Mines and Geology, and Western Research Institute.

  18. Institutional Plan FY 2003 - 2007

    SciTech Connect (OSTI)

    Chartock, Michael; Hansen, Todd

    2003-01-27

    The Fiscal Year (FY) 2003-2007 Institutional Plan describes the strategic directions and key issues that Lawrence Berkeley National Laboratory management must address with the Department of Energy (DOE) in charting its future as a multiprogram national laboratory. The Plan provides an overview of the Laboratory's mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Plan facilitates the Department of Energy's ongoing efforts to strengthen the Integrated Laboratory System. Preparation and review of the Institutional Plan is one element of the Department of Energy's strategic management planning activities, implemented through an annual planning process. The Plan supports the President's Management Agenda and the Government Performance and Results Act of 1993. The Plan complements the current performance-based contract between the Department of Energy and the Regents of the University of California, and summarizes Best Management Practices for a potential future results-based contract as a basis for achieving DOE goals and the Laboratory's scientific and operations objectives. It identifies technical and administrative directions in the context of national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Planning and Strategic Development Office from information contributed by Berkeley Lab's scientific and support divisions and DOE comments on prior years' plans. The Laboratory Mission section identifies the specific strengths of Berkeley Lab that contribute to the mission in general and the Integrated Laboratory System in particular. The Laboratory Strategic Plan section identifies the existing activities in support of DOE Office of Science and other sponsors; support for DOE goals; and the Laboratory Scientific Vision and

  19. The outlook for natural gas

    SciTech Connect (OSTI)

    1993-12-31

    The proceedings of the Institute of Gas Technology`s Houston Conference on the Outlook for Natural Gas held October 5, 1993 are presented. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

  20. Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Cyclotron Institute has expanded steadily since commissioning the original cyclotron in 1967 and is currently upgrading again. The diagram to the left shows the variety of sophisticated detectors and spectrometers that enhance the Institute's capacity for nuclear research. Follow the above links for more detailed information about our facilities.

  1. Institutional Change Process Step 1: Determine Goals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Determine Goals Institutional Change Process Step 1: Determine Goals Process for Continuous Change The first step in the institutional change process for continuous change is defining your sustainability goals. That is, decide what outcomes are desired (or required) over what period of time. Behavioral, organizational, and institutional changes typically are means to achieve desired energy, resource, or greenhouse gas emission outcomes. They are not ends in and of themselves. Agencies may

  2. Oil and Gas Technical Assistance Capabilities Forum | Department...

    Broader source: Energy.gov (indexed) [DOE]

    DOE's National Energy Technology Laboratory (NETL) Oil and Gas program and overall capabilities related to program management, system analysis, and applied research in oil and gas. ...

  3. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Market Trends: MMS Announces New Incentives for Gulf Gas Production: The Minerals Management Service (MMS) unveiled proposed new incentives to increase deep gas production...

  4. Purchasing Energy-Efficient Residential Gas Storage Water Heaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Storage Water Heaters Purchasing Energy-Efficient Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for ...

  5. Purchasing Energy-Efficient Residential Whole-Home Gas Tankless...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole-Home Gas Tankless Water Heaters Purchasing Energy-Efficient Residential Whole-Home Gas Tankless Water Heaters The Federal Energy Management Program (FEMP) provides ...

  6. INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-March 31, 2003 2002 April 2 Dr. Bency John, Cyclotron Institute, Texas A&M University Isoscalar Giant Resonances in 12 C April 9 Professor J. Rapaport, Ohio University, Athens, Ohio Charge Exchange Reactions and Spin Transfer Measurements April 16 M. Sanchez-Vega and V. E. Jacob, Cyclotron Institute, Texas A&M University Test of the Unitarity of the CKM Matrix via Superallowed β + decay. April 23 Dr. Subrata Pal, Cyclotron Institute, Texas A&M University Strange Particle

  7. Classification Training Institute Catalog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Classification Training Institute Catalog Classification Training Institute Catalog Classification Training Institute (CTI) Catalog

  8. Financial Institution Lending Programs

    Broader source: Energy.gov [DOE]

    Financial institution loans for clean energy projects are originated and serviced through an entity other than the government, typically banks. In this case, a state or local government is not the...

  9. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  10. New England Fuel Institute

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and CEO of the New England Fuel Institute Before the U.S. Department of Energy and the Quadrennial Energy Review Task Force Public Hearing on "New England Regional ...

  11. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PSI: the X-ray free electron laser SwissFEL and its future experimental capabilities. Biography: Prof. Dr. Jol Mesot is, since 2008, director of the Paul Scherrer Institute...

  12. People - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Dr. Ralf Rapp meets with his research group. At the Institute we focus on conducting basic research, educating students in accelerator-based science and technology, and providing technical capabilities for a wide variety of applications in space science, materials science, analytical procedures and nuclear medicine. Approximately 100 Institute members - scientists, engineers, technicians, support staff, graduate students and undergraduate students - are involved in these programs.

  13. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources The Critical Materials Institute offers connections to resources, including: List of resources U.S. Rare Earth Magnet Patents Table Government agency contacts CMI unique facilities CMI recent presentations Photographs via Flick'r: Critical Materials Institute, The Ames Laboratory Videos from The Ames Laboratory Webinars from Colorado School of Mines To offer comments on the CMI website or to ask questions, please contact us via e-mail at CMIdirector@ameslab.gov or call 515-296-4500.

  14. Site Map - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Cyclotron Institute About K500 Beam Schedule Recent News Seminars and Colloquia Cyclotron Institute Safety (limited access) Radiation Effects Facility REU Program Research Heavy Ion Reactions Fundamental Interactions Nuclear Astrophysics Interactions of Highly Charged Ions With Matter Theoretical Nuclear Physics Nuclear Structure External Collaborations Publications Research Groups Facilities K500 Cyclotron ECR Ion Sources MARS Big Sol MDM Spectrometer NIMROD Precision On-Line Decay

  15. INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INSTITUTE COLLOQUIA AND SEMINARS April 1, 2010-March 31, 2011 2010 May 11 Dr. J. J. Ressler, Lawrence Livermore National Laboratory, Livermore, California Surrogate Reactions for Nuclear Energy Application May 12 Professor Lie-Wen Chen, Institute of Nuclear, Particle Astronomy and Cosmology (INPAC) and Department of Physics, Shanghai Jiao Tong University, Shanghai, China Probing the Nuclear Symmetry Energy with Heavy-Ion Reactions and Neutron Skin Thickness of Heavy Nuclei May 13 Professor A. R.

  16. DOE - Office of Legacy Management -- Fernald

    Office of Legacy Management (LM)

    for the Fernald Preserve pdficon 2016 Comprehensive Legacy Management and Institutional Controls Plan (LMICP): Volume I-Legacy Management Plan pdficon 2016 Volume ...

  17. Research Portfolio Report Unconventional Oil & Gas Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Produced Water Treatment & Management Cover image: Western Research Institute treating and reusing coal-bed methane (CBM) pro- duced water. Research Portfolio Report Unconventional ...

  18. Greenhouse Gas Source Attribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greenhouse Gas Source Attribution - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  19. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Market Trends: The Minerals Management Service Reports Royalty Gas Sale for the First Time in Offshore Louisiana. On November 4, the Minerals Management Service (MMS) of the...

  20. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 12-13, 2014 DOE's Natural Gas Modernization Initiative Christopher Freitas, Program Manager, Natural Gas Midstream Infrastructure R&D, Office of Oil and Natural Gas, U.S. ...

  1. News - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News August 25th, 2016 12:46 AM "Texas A&M Science - Labors of Lab." REU student Kassie Marble featured in TAMU College of Science Video July 23rd, 2016 12:46 AM The 2015-2016 Cyclotron Institute Annual Report, "Progress in Research", is now available. You may view/download the complete document and you may also browse individual articles. July 7th, 2015 1:01 AM The 2014-2015 Cyclotron Institute Annual Report, "Progress in Research", is now available. You may

  2. Gas venting

    DOE Patents [OSTI]

    Johnson, Edwin F.

    1976-01-01

    Improved gas venting from radioactive-material containers which utilizes the passageways between interbonded impervious laminae.

  3. Renewed Importance of the Mound Site Annual Institutional Controls Assessments

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) completed its 2014 annual institutional controls (IC) assessment of the Mound site in Miamisburg, Ohio, and confirmed that the...

  4. AMO's New Institute Focused on Wide Bandgap Power Electronics Manufacturing

    Broader source: Energy.gov [DOE]

    The Next Generation Power Electronics National Manufacturing Institute announced by President Obama today will use $70 million provided by the U.S. Department of Energy's Advanced Manufacturing Office to support and manage its programs over the next five years.

  5. Rahus Institute | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Rahus Institute is a policy organization located in Martinez, California. References About Rahus Institute Retrieved...

  6. Institutional Change Process for Sustainability

    Broader source: Energy.gov [DOE]

    For establishing institutional change in a federal agency to achieve sustainability or other energy efficiency goals, follow the five-step institutional change process.

  7. Strategies for Achieving Institutional Change

    Broader source: Energy.gov [DOE]

    Many strategies—including those derived from Institutional Change Principles–may be used to effect institutional change in support of energy and sustainability objectives.

  8. Ecologic Institute | Open Energy Information

    Open Energy Info (EERE)

    Institute Name: Ecologic Institute Address: Pfalzburger Strasse 4344 Place: Berlin, Germany Year Founded: 1995 Phone Number: +49 (30) 86880-0 Website: ecologic.eu...

  9. Secretary Chu Announces New Institute to Help Scientists Improve Massive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Set Research on DOE Supercomputers | Department of Energy Institute to Help Scientists Improve Massive Data Set Research on DOE Supercomputers Secretary Chu Announces New Institute to Help Scientists Improve Massive Data Set Research on DOE Supercomputers March 29, 2012 - 2:48pm Addthis Washington D.C. - Energy Secretary Steven Chu today announced $5 million to establish the Scalable Data Management, Analysis and Visualization (SDAV) Institute as part of the Obama Administration's

  10. EERE Success Story-Indiana Manufacturing Institute Breaks Ground at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purdue University in support of Composites Manufacturing Research | Department of Energy Indiana Manufacturing Institute Breaks Ground at Purdue University in support of Composites Manufacturing Research EERE Success Story-Indiana Manufacturing Institute Breaks Ground at Purdue University in support of Composites Manufacturing Research July 14, 2015 - 1:16pm Addthis Left: Gary Bertoline, Dean of Purdue Polytechnic Institute; Kelly Visconti, Technology Manager for the U.S. Department of

  11. Institute Recognizes Washington Closure Hanford as International Award

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finalist | Department of Energy Institute Recognizes Washington Closure Hanford as International Award Finalist Institute Recognizes Washington Closure Hanford as International Award Finalist December 17, 2015 - 12:05pm Addthis RICHLAND, Wash. - The Project Management Institute (PMI) honored Hanford Site contractor Washington Closure Hanford (WCH) as a finalist for the international Project of the Year Award. WCH and the River Corridor team were recognized for their cleanup progress in this

  12. Commitment Institutional Change Principle

    Office of Energy Efficiency and Renewable Energy (EERE)

    Commitment can be a crucial element that helps federal agencies inject and emphasize sustainability in their organizational culture. Institutions and people change when they have made definite commitments to change, especially when those commitments relate to future conditions. Research shows that explicit commitments improve the rate at which people adopt energy-efficient behaviors.

  13. Overview of advanced Stirling and gas turbine engine development programs and implications for solar thermal electrical applications

    SciTech Connect (OSTI)

    Alger, D.

    1984-03-01

    The DOE automotive advanced engine development projects managed by the NASA Lewis Research Center were described. These included one Stirling cycle engine development and two air Brayton cycle development. Other engine research activities included: (1) an air Brayton engine development sponsored by the Gas Research Institute, and (2) plans for development of a Stirling cycle engine for space use. Current and potential use of these various engines with solar parabolic dishes were discussed.

  14. The Greenhouse Gas Protocol Initiative: Measurement and Estimation...

    Open Energy Info (EERE)

    GHG Emissions AgencyCompany Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Greenhouse Gas Phase:...

  15. Renewable Natural Gas Clean-up Challenges and Applications

    Broader source: Energy.gov [DOE]

    Presentation by Brian Weeks, Gas Technology Institute, at the Waste-to-Energy Using Fuel Cells Workshop held Jan. 13, 2011

  16. The Greenhouse Gas Protocol Initiative: Sector Specific Tools...

    Open Energy Info (EERE)

    World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate...

  17. Low-Cost Gas Heat Pump fro Building Space Heating

    Energy Savers [EERE]

    A.O. Smith Gas Technology Institute Target MarketAudience: Residential & Light Commercial ... Partners, Subcontractors, and Collaborators: * AO Smith (OEM): Provides component design, ...

  18. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Savers [EERE]

    Potable Water Heating Key Partners: A.O. Smith Gas Technology Institute Project Goal: ... Partners, Subcontractors, and Collaborators: * AO Smith (OEM): Provides component design, ...

  19. Surface Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    In The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff &...

  20. Analysis of Cluster Management Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Configuration Management Tools Computer System, Cluster, and Networking Summer Institute Team: Evan Leeseberg, James Kang, Katherine Nystrom Mentors: Kevin Tegtmeier,...

  1. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evaluation and management of technology. He has been elected to the American Academy of Arts and Sciences, the US National Academy of Sciences and the Royal Society (London), and...

  2. Nuclear Energy Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NEI) Summit Presentation University-Industry- Laboratory Partnerships: Gauging Effectiveness Douglas Kothe, CASL Director Oak Ridge National Laboratory February 26, 2014 CASL-U-2014-0355-000 CASL-U-2014-0355-000 University-Industry-Laboratory Partnerships Gauging Effectiveness CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub Douglas B. Kothe Oak Ridge National Laboratory Director, CASL 9 th Nuclear Energy R&D Summit Nuclear Energy Institute

  3. Publications - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications "Progress in Research", Cyclotron Institute Annual Reports View individual articles: 2016 / 2015 / 2014 / 2013 / 2012 / 2011 / 2010 / 2009 / 2008 / 2007 / 2006 / 2005 / 2004 / 2003 / 2002 / 2001 / 2000 / 1999 Download complete documents: 2016 / 2015 / 2014 / 2013 / 2012 / 2011 / 2010 / 2009 / 2008 / 2007 / 2006 / 2005 / 2004 / 2003 List of Papers Published by Year 2012 / 2011 / 2010 / 2009 / 2008 / 2007/ 2006 / 2005 / 2004 / 2003 / 2002 / 2001 / 2000 / 1999 / 1998 / 1997 /

  4. Research - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Viewing gamma ray spectra. The Institute research program focuses on the atomic nucleus, a many-body system of strongly interacting constituents bound together by the strongest forces known in nature. The properties investigated often can be described in terms of the motions of single nucleons (neutrons and protons), the correlated motions of several nucleons, and the collective motions of many nucleons. On a finer scale, they can be understood in terms of the degrees of freedom of

  5. Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Four Research Thrusts organizational chart of four research thrusts (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses for leaders.) CMI has more than 30 projects focused in four areas. Project titles are available in a table, which can be sorted by project leader, location of project leader, project title or project number. CMI research is conducted at partner institutions, including national laboratories, universities and

  6. SRF Institute | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRF Institute Jefferson Lab is recognized as a world leader in accelerator science. This expertise comes from the planning, building, maintaining and operating of the Continuous Electron Beam Accelerator Facility (CEBAF) - the lab's particle accelerator. CEBAF is based on superconducting radiofrequency (SRF) technology and produces a stream of charged electrons that scientists use to probe the nucleus of the atom. CEBAF was the first large-scale application of SRF technology in the U.S., and it

  7. INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-March 31, 2002 2001 April 10 Dr. Massimo Di Toro, LNS/INFN and the University of Catania, Italy Isospin Effects on Nuclear Dynamics April 12 Dr. C. Lewis, U.S. Environmental Protection Agency, Research Triangle, North Carolina Air Pollution Research Using Radiocarbon Measurements April 17 Professor Olga Kocharovskaya, Department of Physics, Texas A&M University, College Station, Texas Laser Control of Mossbauer Nuclear Transitions May 1 Dr. Bency John, Cyclotron Institute, Texas A&M

  8. INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-March 31, 2007 2006 April 6 Dr. Jamal Jalilian-Marian, Institute for Nuclear Theory, University of Washington, Seattle, Washington An Introduction to Particle Production in High Energy Nuclear Collisions April 7 Professor Taka Kajino, National Astronomical Observatory, University of Tokyo, Tokyo, Japan A Frontier of Nuclear Astrophysics: Big-Bang Cosmology and Supernova Nucleosynthesis April 19 Dr. Anna Stasto, Brookhaven National Laboratory, Upton, New York High Energy Limit and Parton

  9. INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7-March 31, 2008 2007 April 5 Dr. Nigel Orr, Laboratoire de Physique Corpusculaire, Universite de Caen Basse-Normandie, France Probing Nuclear Structure Far from Stability: from Breakup to Knockout April 10 Dr. Lie-wen Chen, Institute of Theoretical Physics, Shanghai Jiao Tong University, Shanghai, China Probing the Nuclear Symmetry Energy with Heavy-Ion Reactions Induced by Neutron- Rich Nuclei April 11 Dr. Nigel Orr, Laboratoire de Physique Corpusculaire, Universite de Caen Basse-Normandie,

  10. INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09-March 31, 2010 2009 April 17 Professor Jian-Wei Qiu, Department of Physics and Astronomy, Iowa State University, Ames, Iowa and Brookhaven National Laboratory, Upton, New York QCD and High Energy Nuclear Collisions April 21 Dr. Peter Levai, KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary Can We Find Quark-Gluon Plasma in pp Collision at LHC? April 28 Professor Wolfgang Mittig, NSCL, Michigan State University, East Lansing, Michigan Nuclear Power and Global Energy

  11. Institutional plan. FY 1997-2002

    SciTech Connect (OSTI)

    1996-06-01

    The FY 1997-2002 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. Of particular significance this year is the role of computing sciences in supporting a broad range of research activities, at Berkeley Lab in particular and throughout the entire Department of Energy system in general. The Institutional Plan is a management report for integration with the Department of Energy`s mission and programs and is an element of Department of Energy`s strategic management planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives.

  12. US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"

    SciTech Connect (OSTI)

    William E. Wallace

    2006-09-30

    The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

  13. Ethiopian Development Research Institute | Open Energy Information

    Open Energy Info (EERE)

    Ethiopian Development Research Institute Jump to: navigation, search Logo: Ethiopian Development Research Institute Name: Ethiopian Development Research Institute Address: Ethiopia...

  14. Utilization Technology Institute | Open Energy Information

    Open Energy Info (EERE)

    Utilization Technology Institute Jump to: navigation, search Name: Utilization Technology Institute Place: Des Plaines, IL References: Utilization Technology Institute1...

  15. CMI Social Media | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Social Media Facebook: Critical Materials Institute Twitter: CMI_hub LinkedIn: Critical Materials Institute Flickr: Critical Materials Institute

  16. Utilization of Common Automotive Three-Way NO{sub x} Reduction Catalyst for Managing Off- Gas from Thermal Treatment of High-Nitrate Waste - 13094

    SciTech Connect (OSTI)

    Foster, Adam L.; Ki Song, P.E.

    2013-07-01

    Studsvik's Thermal Organic Reduction (THOR) steam reforming process has been tested and proven to effectively treat radioactive and hazardous wastes streams with high nitrate contents to produce dry, stable mineral products, while providing high conversion (>98%) of nitrates and nitrites directly to nitrogen gas. However, increased NO{sub x} reduction may be desired for some waste streams under certain regulatory frameworks. In order to enhance the NO{sub x} reduction performance of the THOR process, a common Three-Way catalytic NO{sub x} reduction unit was installed in the process gas piping of a recently completed Engineering Scale Technology Demonstration (ESTD). The catalytic DeNO{sub x} unit was located downstream of the main THOR process vessel, and it was designed to catalyze the reduction of residual NO{sub x} to nitrogen gas via the oxidation of the hydrogen, carbon monoxide, and volatile organic compounds that are inherent to the THOR process gas. There was no need for auxiliary injection of a reducing gas, such as ammonia. The unit consisted of four monolith type catalyst sections positioned in series with a gas mixing section located between each catalyst section. The process gas was monitored for NO{sub x} concentration upstream and downstream of the catalytic DeNO{sub x} unit. Conversion efficiencies ranged from 91% to 97% across the catalytic unit, depending on the composition of the inlet gas. Higher concentrations of hydrogen and carbon monoxide in the THOR process gas increased the NO{sub x} reduction capability of the catalytic DeNO{sub x} unit. The NO{sub x} destruction performance of THOR process in combination with the Three-Way catalytic unit resulted in overall system NO{sub x} reduction efficiencies of greater than 99.9% with an average NO{sub x} reduction efficiency of 99.94% for the entire demonstration program. This allowed the NO{sub x} concentration in the ESTD exhaust gas to be maintained at less than 40 parts per million (ppm), dry

  17. Comments of the American Petroleum Institute | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum Institute Comments of the American Petroleum Institute Similar to the electric utility industry's implementation of smart grid, oil and natural gas companies are in the midst of transitioning to next generation communications technology that will provide significant benefits in terms of safety, incident response, effectiveness and efficiency that are critical to United States energy independence. At the same time, however, API's members find themselves increasingly constrained by the

  18. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  19. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  20. For Institutional Officials | U.S. DOE Office of Science (SC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Subjects Protection Program (HSPP) HSPP Home About For Researchers For IRB Managers Administrators For IRB Members For Institutional Officials For Prospective Human ...

  1. Massachusetts Institute of Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    05/2010 Teppei Katori, MIT 1 Teppei Katori for the MiniBooNE collaboration Massachusetts Institute of Technology U-Maryland Nuclear/HEP seminar, College Park, October, 5, 2010 MiniBooNE, a neutrino oscillation experiment at Fermilab 10/05/2010 Teppei Katori, MIT 2 Outline 1. Introduction 2. Neutrino beam 3. Events in the detector 4. Cross section model 5. Oscillation analysis and result 6. New Low energy excess result 7. Anti-neutrino oscillation result 8. Neutrino disappearance result 9.

  2. LIG - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Ion Guide Light Ion Guide. Texas A&M University is currently configuring a scheme for the production of radioactive-ion beams that incorporates a light-ion guide (LIG) coupled with an ECRIS constructed for charge-boosting (CB-ECRIS). This scheme is part of an upgrade to the Cyclotron Institute and is intended to produce radioactive beams suitable for injection into the K500 superconducting cyclotron. The Light-Ion Guide (LIG) will produce radioactive species mainly from (p,n)

  3. Cyclotron Institute REU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Texas A&M Science - Labors of Lab." REU student Kassie Marble featured in TAMU College of Science Video The Texas A&M Cyclotron Institute, with support from the National Science Foundation, serves as a Research Experiences for Undergraduates site during the summer of each year. Alysssa Dibidad in the K150 control room. This REU site focuses on research in nuclear and particle science. Students will have the opportunity to work closely with internationally renowned scientists

  4. INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-March 31, 2005 2004 April 8 Dr. Jeffrey W. Martin, Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California Ultracold Neutrons April 20 Professor J. W. Watson, Department of Physics, Kent State University, Kent, Ohio Short-range Correlations in Nuclei from (p,2p+n) and (e,e'p+N) Measurements May 10 Mr. Sean Liddick, NSCL- Michigan State University, East Lansing, Michigan The Evolution of Shell Structure in the A~60 Mass Region May 25 Dr. Juha Ärje, Department of

  5. The institutional needs of joint implementation projects

    SciTech Connect (OSTI)

    Watt, E.; Sathaye, J.; Buen, O. de; Masera, O.; Gelil, I.A.; Ravindranath, N.H.; Zhou, D.; Li, J.; Intarapravich, D.

    1995-10-21

    In this paper, the authors discuss options for developing institutions for joint implementation (JI) projects. They focus on the tasks which are unique to JI projects or require additional institutional needs--accepting the project by the host and investor countries and assessing the project`s greenhouse gas (GHG) emission reduction or sequestration--and they suggest the types of institutions that would enhance their performance. The evaluation is based on four sets of governmental and international criteria for JI projects, the experiences of ten pilot JI projects, and the perspectives of seven collaborating authors from China, Egypt, India, Mexico, and Thailand, who interviewed relevant government and non-government staff involved in JI issue assessment in their countries. After examining the roles for potential JI institutions, they present early findings arguing for a decentralized national JI structure, which includes: (1) national governmental panels providing host country acceptance of proposed JI projects; (2) project parties providing the assessment data on the GHG reduction or sequestration for the projects; (3) technical experts calculating these GHG flows; (4) certified verification teams checking the GHG calculations; and (5) members of an international JI Secretariat training and certifying the assessors, as well as resolving challenges to the verifications. 86 refs.

  6. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  7. HIG - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy Ion Guide Heavy Ion Guide. Our present plans for a heavy-ion guide system are based on developments at Argonne National Laboratory (ANL). For the heavy-ion guide, pre-selection of ions will be done using a superconducting solenoid similar to that being used now in the BigSol spectrometer. After extraction from the gas cell 1+ ions will be delivered to the charge breeding ECR source where they will be stripped to a high charge state and then the highly charged ions will be injected into and

  8. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  9. ORGANIZATIONAL CHART - CYCLOTRON INSTITUTE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 DIRECTOR Tribble SEE Line Proj. Manager H. Clark Brinkley Chubaryan Horvat Hyman Senior ME Derrig Graduate Students Research Associates Research Scientists Research Group Leaders Administration/ Accounting Jeske Computer Systems Hagel Burch Senior Accelerator Physicist May Accelerator Physicists Kim H. Clark Tabacaru Operations Chief Abegglen Building Maint. Gallegos Kingsbury Mynar Piolet Electrical Shop Cowden Eisenmann Ford Gathings LaPoint Law Morgan O'Berski Peeler Russell Sherman Yendrey

  10. ORGANIZATIONAL CHART - CYCLOTRON INSTITUTE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 DIRECTOR Tribble SEE Line Proj. Manager H. Clark Brinkley Chubaryan Horvat Hyman Senior ME Derrig Graduate Students Research Associates Research Scientists Research Group Leaders Administration/ Accounting Jeske Computer Systems Hagel Burch Senior Accelerator Physicist May Accelerator Physicists Kim H. Clark Tabacaru Operations Chief Abegglen Building Maint. Gallegos Kingsbury Mynar Piolet Electrical Shop Cowden Eisenmann Ford Gathings LaPoint Law Morgan O'Berski Peeler Russell Sherman Yendrey

  11. Produced Water Management and Beneficial Use

    SciTech Connect (OSTI)

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  12. Cyclotron Institute Upgrade Project

    SciTech Connect (OSTI)

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  13. U.S. Department of Energy ENVIRONMENTAL MANAGEMENT ADVISORY BOARD

    Office of Environmental Management (EM)

    ... overall project management performance results Lessons learned - NASA James Webb Space Telescope (NASA) Project Management Institute view on the pulse of the industry and ...

  14. ENVIRONMENTAL MANAGEMENT ADVISORY BOARD U.S. DEPARTMENT OF ENERGY

    Office of Environmental Management (EM)

    ... overall project management performance results Lessons learned - NASA James Webb Space Telescope (NASA) Project Management Institute view on the pulse of the industry and ...

  15. Gas magnetometer

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  16. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  17. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  18. Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... Grid Integration & Advanced Inverters Materials & Fabrication Microsystems Enabled ...

  19. Institutional Plan FY 2001-2005

    SciTech Connect (OSTI)

    Chartock, Michael; Hansen, Todd, editors

    2000-07-01

    The FY 2001-2005 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  20. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual

  1. Risk-Based Data Management System design specifications and implementation plan for the Alaska Oil and Gas Conservation Commission; the Mississippi State Oil and Gas Board; the Montana Board of Oil and Gas Conservation; and the Nebraska Oil and Gas Conservation Commission

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The purpose of this document is to present design specifications and an implementation schedule for the development and implementation of Risk Based Data Management Systems (RBDMS`s) in the states of Alaska, Mississippi, Montana, and Nebraska. The document presents detailed design information including a description of the system database structure, data dictionary, data entry and inquiry screen layouts, specifications for standard reports that will be produced by the system, functions and capabilities (including environmental risk analyses), And table relationships for each database table within the system. This design information provides a comprehensive blueprint of the system to be developed and presents the necessary detailed information for system development and implementation. A proposed schedule for development and implementation also is presented. The schedule presents timeframes for the development of system modules, training, implementation, and providing assistance to the states with data conversion from existing systems. However, the schedule will vary depending upon the timing of funding allocations from the United States Department of Energy (DOE) for the development and implementation phase of the project. For planning purposes, the schedule assumes that initiation of the development and implementation phase will commence November 1, 1993, somewhat later than originally anticipated.

  2. Integrative Bioengineering Institute

    SciTech Connect (OSTI)

    Eddington, David; Magin,L,Richard; Hetling, John; Cho, Michael

    2009-01-09

    Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the design philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.

  3. Gas-Phase Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase Diagnostics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  4. Meet CMI Researcher Rod Eggert | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rod Eggert Image of Rod Eggert, researcher at Critical Materials Institute CMI researcher Rod Eggert is a geochemist turned economist. More formally, he is professor and former director of the Division of Economics and Business at the Colorado School of Mines, where he has taught since 1986. As deputy director of the Critical Materials Institute, he works with the director and the rest of the leadership team to guide and manage CMI, oversee the supply-chain and economic analysis that provides

  5. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing

  6. Los Alamos National Laboratory Institutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Institutes The National Security Education Center has formed several institutes, each with a partner university or consortia of universities. The formation of these institutes serves the need for LANL to recruit new staff and provide educational opportunities that will enhance retention at the Laboratory. This is accomplished by:  Developing long-term collaborative relationships with universities whose research interests are important to the Laboratory. 

  7. Izabela Stroe: Worcester Polytechnic Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Izabela Stroe: Worcester Polytechnic Institute Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Izabela Stroe: Worcester Polytechnic Institute Former postdoc, now collaborator November 1, 2014 Izabela Stroe Izabela Stroe Contact Linda Anderman Email Izabela Stroe Izabela Stroe now at Worcester Polytechnic Institute Izabela Stroe's history with the Lab dates back to 2001 and over the years she's been a summer student,

  8. Atlanta Community Leaders’ Institute Conference

    Broader source: Energy.gov [DOE]

    The Atlanta Community Leaders Institute (CLI) held a conference on February 8 and 9 at Morehouse School of Medicine, in Atlanta, Georgia.

  9. Bolton Community Leaders’ Institute Conference

    Broader source: Energy.gov [DOE]

    The Bolton Community Leaders Institute (CLI) held a conference on February 22 and 23 at the Southeastern Community College in Whiteville, North Carolina.

  10. Institutional Change Basics for Sustainability

    Office of Energy Efficiency and Renewable Energy (EERE)

    Institutional change integrates technology, policy, and behavior to make new sustainability practices and perspectives become a typical part of how an agency operates.

  11. Continuous Change Institutional Change Principle

    Office of Energy Efficiency and Renewable Energy (EERE)

    ecause it takes time to establish institutional change, federal agencies need multiyear plans that continuously work to achieve, reinforce, and improve significant and persistent sustainability goals.

  12. Research and Institutional Integrity Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about any of these ethics policies and related procedures, please contact Meredith Montgomery, Director of Institutional Assurance and Integrity, at 510-486-4453 or...

  13. My Account | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    My Account Primary tabs Log in(active tab) Request new password Username * Enter your Critical Materials Institute username. Password * Enter the password that accompanies your ...

  14. PNNL: About PNNL - Institutional Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    we engage at the institutional level, inviting them to provide input into the Laboratory strategy. Joint Appointments To enable long term strategic collaborations with...

  15. Form:Research Institution | Open Energy Information

    Open Energy Info (EERE)

    Research Institution Jump to: navigation, search Add a Research or Development Institution Input your research or development institution name below to add to the registry. If your...

  16. Low Carbon Research Institute | Open Energy Information

    Open Energy Info (EERE)

    Research Institute Jump to: navigation, search Logo: Low Carbon Research Institute Name: Low Carbon Research Institute Address: King Edward VII Avenue CF10 3NB Place: Cardiff,...

  17. Cornell Fuel Cell Institute | Open Energy Information

    Open Energy Info (EERE)

    Cornell Fuel Cell Institute Jump to: navigation, search Name: Cornell Fuel Cell Institute Place: Ithaca, New York Zip: 14850 Product: The Cornell Fuel Cell Institute (CFCI)...

  18. Hitachi Research Institute | Open Energy Information

    Open Energy Info (EERE)

    Institute Jump to: navigation, search Name: Hitachi Research Institute Place: Tokyo, Japan Zip: 101-8010 Product: Hitachi Research Institute is the think tank of the Hitachi...

  19. Rocky Mountain Institute | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain Institute Jump to: navigation, search Logo: Rocky Mountain Institute Name: Rocky Mountain Institute Address: 1820 Folsom Street Place: Boulder, Colorado Zip: 80302...

  20. Industrial Technology Research Institute | Open Energy Information

    Open Energy Info (EERE)

    Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name: Industrial Technology Research Institute Address: Rm. 112, Bldg. 24,...

  1. Sustainable Europe Research Institute | Open Energy Information

    Open Energy Info (EERE)

    Europe Research Institute Jump to: navigation, search Logo: Sustainable Europe Research Institute Name: Sustainable Europe Research Institute Address: Garnisongasse 721 A -1090...

  2. UC Berkeley- Energy Institute | Open Energy Information

    Open Energy Info (EERE)

    Berkeley- Energy Institute Jump to: navigation, search Logo: UC Berkeley- Energy Institute Name: UC Berkeley- Energy Institute Address: 2547 Channing Way Place: Berkeley,...

  3. Honda Research Institute | Open Energy Information

    Open Energy Info (EERE)

    search Name: Honda Research Institute Place: Mountain View, California Sector: Biofuels, Solar Product: California-based research institute of Honda. The institute conducts...

  4. Oil and Natural Gas Program Commericialized Technologies and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    natural gas and oil can remain part of the U.S. energy portfolio for decades to come. ... more than 30 years through Fossil Energy's Oil and Natural Gas Program, managed by NETL. ...

  5. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect (OSTI)

    Howard S. Meyer

    2004-10-01

    Efforts this quarter have concentrated on design and planning for of a 50 MM scf/d dehydration skid testing at ChevronTexaco's Headlee Gas Plant in Odessa, TX. Potting and module materials testing concluded. Construction of the bench-scale equipment continued and a pre-engineering study on a subsea application of the technology was performed cofunded contracts with Research Partnership for Secure Energy for America and Gas Research Institute. GTI has decreased the effort under this contract pending DOE's obligation of the total contract funding.

  6. Federal Energy and Water Management Awards 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greg Leifer U.S. Department of Health and Human Services National Institutes of Health Bethesda, Maryland Greg Leifer is the federal energy program manager for the National ...

  7. Denver University - International Institute for Environment and...

    Open Energy Info (EERE)

    - International Institute for Environment and Enterprise Name: Denver University - International Institute for Environment and Enterprise Address: 2199 S. University Blvd....

  8. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart Manufacturing: ...

  9. Plumbing Manufacturer's Institute Ex Parte Communication Regarding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Letter to Department ...

  10. Clean Energy Manufacturing Innovation Institute for Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures ...

  11. INEEL Institutional Plan - FY 2000-2004

    SciTech Connect (OSTI)

    Enge, Ray Stevenson

    1999-11-01

    In this first Institutional Plan prepared by Bechtel BWXT Idaho, LLC, for the Idaho National Engineering and Environmental Laboratory, the INEEL will focus it's efforts on three strategic thrusts; (1) Environmental Management stewardship for DOE-EM, (2) Nuclear reactor technology for DOE-Nuclear Energy (NE), and (3) Energy R&D, demonstration, and deployment (initial focus on biofuels and chemical from biomass). The first strategic thrust focuses on meeting DOE-EM's environmental cleanup and long-term stewardship needs in a manner that is safe, cost-effective, science-based, and approved by key stakeholders. The science base at the INEEL will be further used to address a grand challenge for the INEEL and the DOE complex - the development of a fundamental scientific understanding of the migration of subsurface contaminants. The second strategic thrust is directed at DOE-NE's needs for safe, economical, waste-minimized, and proliferation-resistant nuclear technologies. As NE lead laboratories, the INEEL and ANL will pursue specific priorities. The third strategic thrust focuses on DOE's needs for clean, efficient, and renewable energy technology. As an initial effort, the INEEL will enhance its capability in biofuels, bioprocessing, and biochemicals. The content of this Institutional Plan is designed to meet basic DOE requirements for content and structure and reflect the key INEEL strategic thrusts. Updates to this Institutional Plan will offer additional content and resource refinements.

  12. Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    William Eleazer, PE Brown and Caldwell Project Design Manager St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids U.S Department of Energy - Biomass 2014 John Willis, PE, BCEE Brown and Caldwell Project Technical Supervisor Steven Marshall, PE St. Petersburg City Project Manager Eron Jacobson, PE Brown and Caldwell Gas Upgrade Systems Process Area Manager Project Summary Biogas to Recycled Natural Gas Technology Evaluation and Design Phase Future

  13. Performance Assessment Institute-NV

    SciTech Connect (OSTI)

    Lombardo, Joesph

    2012-12-31

    The National Supercomputing Center for Energy and the Environment’s intention is to purchase a multi-purpose computer cluster in support of the Performance Assessment Institute (PA Institute). The PA Institute will serve as a research consortium located in Las Vegas Nevada with membership that includes: national laboratories, universities, industry partners, and domestic and international governments. This center will provide a one-of-a-kind centralized facility for the accumulation of information for use by Institutions of Higher Learning, the U.S. Government, and Regulatory Agencies and approved users. This initiative will enhance and extend High Performance Computing (HPC) resources in Nevada to support critical national and international needs in "scientific confirmation". The PA Institute will be promoted as the leading Modeling, Learning and Research Center worldwide. The program proposes to utilize the existing supercomputing capabilities and alliances of the University of Nevada Las Vegas as a base, and to extend these resource and capabilities through a collaborative relationship with its membership. The PA Institute will provide an academic setting for interactive sharing, learning, mentoring and monitoring of multi-disciplinary performance assessment and performance confirmation information. The role of the PA Institute is to facilitate research, knowledge-increase, and knowledge-sharing among users.

  14. Legal, regulatory & institutional issues facing distributed resources development

    SciTech Connect (OSTI)

    1996-10-01

    This report describes legal, regulatory, and institutional considerations likely to shape the development and deployment of distributed resources. It is based on research co-sponsored by the National Renewable Energy Laboratory (NREL) and four investor-owned utilities (Central & South West Services, Cinergy Corp., Florida Power Corporation, and San Diego Gas & Electric Company). The research was performed between August 1995 and March 1996 by a team of four consulting firms experienced in energy and utility law, regulation, and economics. It is the survey phase of a project known as the Distributed Resources Institutional Analysis Project.

  15. Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Natural Gas Pipeline Network DOE'S HYDROGEN ENERGY STORAGE FOR GRID AND TRANSPORTATION SERVICES WORKSHOP Sacramento, CA May 14, 2014 Brian Weeks Gas Technology Institute 2 2 Topics for Today >GTI Introduction >Natural Gas Infrastructure is Undergoing Changes >Questions that have been addressed >Two Scenarios >Unanswered Questions >CEC's Mobile Hydrogen Station 3 3 Company Overview ESTABLISHED 1941 > Independent, not-for-profit company established by natural gas

  16. Institutional computing (IC) information session

    SciTech Connect (OSTI)

    Koch, Kenneth R; Lally, Bryan R

    2011-01-19

    The LANL Institutional Computing Program (IC) will host an information session about the current state of unclassified Institutional Computing at Los Alamos, exciting plans for the future, and the current call for proposals for science and engineering projects requiring computing. Program representatives will give short presentations and field questions about the call for proposals and future planned machines, and discuss technical support available to existing and future projects. Los Alamos has started making a serious institutional investment in open computing available to our science projects, and that investment is expected to increase even more.

  17. SoCalGas- Non-Residential On-Bill Financing Program

    Broader source: Energy.gov [DOE]

    The SoCalGas On-Bill Financing (OBF) program offers qualified business customers 0% financing from $5,000 to $100,000 per meter for qualifying natural gas equipment. All institutional customers (i...

  18. Benjamin K. Keitz | Center for Gas SeparationsRelevant to Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute of Technology BS in Chemical Engineering, University of Texas at Austin EFRC research: Metal-organic frameworks (MOFs) have shown great promise for a variety of gas...

  19. Low-Cost Gas Heat Pump For Building Space Heating | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Credit: Stone Mountain Technologies Lead Performer: Stone Mountain Technologies - Erwin, TN Partners: -- A.O. Smith - Milwaukee, WI -- Gas Technology Institute - Des Plaines, IL ...

  20. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Other Market Trends: MMS Issues Final Notice of Western Gulf Lease Sale: The Minerals Management Service (MMS) will offer several incentives to increase domestic oil and gas...

  1. SoCalGas- Multi-Family Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Southern California Gas Company provides incentives to encourage the owners and managers of multi-family residential buildings to increase their energy efficiency. The program offers rebates for...

  2. Multiple Motivations Institutional Change Principle

    Office of Energy Efficiency and Renewable Energy (EERE)

    The multiple motivations principle suggests that a portfolio approach—rather than a single strategy—may be required to achieve change. Research demonstrates that people and institutions adopt new...

  3. Latest News | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News News releases CMI in the news News archive CMI social media Latest News News about CMI: Critical Materials Institute, Oddello Industries pursue recovery of rare-earth magnets from used hard drives, August 16, 2016 Solar panels power materials exhibit at Geology Museum, August 2, 2016 New alloy promises to boost rare earth production while improving energy efficiency of engines, June 3, 2016 Critical Materials Institute gains ten industrial and research affiliates, April 11, 2016 On

  4. Hydraulic Institute Mission and Vision:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institute Mission and Vision: Vision: To be a global authority on pumps and pumping systems. Mission: To be a value-adding resource to member companies and pump users worldwide by: * Developing and delivering comprehensive industry standards. * Expanding knowledge by providing education and tools for the effective application, testing, installation, operation and maintenance of pumps and pumping systems. * Serving as a forum for the exchange of industry information. The Hydraulic Institute is a

  5. Climate Models from the Joint Global Change Research Institute

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Staff at the Joint Institute develop and use models to simulate the economic and physical impacts of global change policy options. The GCAM, for example, gives analysts insight into how regional and national economies might respond to climate change mitigation policies including carbon taxes, carbon trading, and accelerated deployment of energy technology. Three available models are Phoenix, GCAM, and EPIC. Phoenix is a global, dynamic recursive, computable general equilibrium model that is solved in five-year time steps from 2005 through 2100 and divides the world into twenty-four regions. Each region includes twenty-six industrial sectors. Particular attention is paid to energy production in Phoenix. There are nine electricity-generating technologies (coal, natural gas, oil, biomass, nuclear, hydro, wind, solar, and geothermal) and four additional energy commodities: crude oil, refined oil products, coal, and natural gas. Phoenix is designed to answer economic questions related to international climate and energy policy and international trade. Phoenix replaces the Second Generation Model (SGM) that was formerly used for general equilibrium analysis at JGCRI. GCAM is the Global Change Assessment Model, a partial equilibrium model of the world with 14 regions. GCAM operates in 5 year time steps from 1990 to 2095 and is designed to examine long-term changes in the coupled energy, agriculture/land-use, and climate system. GCAM includes a 151-region agriculture land-use module and a reduced form carbon cycle and climate module in addition to its incorporation of demographics, resources, energy production and consumption. The model has been used extensively in a number of assessment and modeling activities such as the Energy Modeling Forum (EMF), the U.S. Climate Change Technology Program, and the U.S. Climate Change Science Program and IPCC assessment reports. GCAM is now freely available as a community model. The Environmental Policy Integrated Climate (EPIC) Model

  6. ASSESSMENT OF SUBSURFACE FATE OF MONOETHANOLAMINE AT SOUR GAS PROCESSING PLANT SITES-PHASE III

    SciTech Connect (OSTI)

    James A. Sorensen

    1999-02-01

    Alkanolamines are commonly used by the natural gas industry to remove hydrogen sulfide, carbon dioxide, and other acid gases from the natural gas in which they occur (''sour'' gas if hydrogen sulfide is present). At sour gas-processing plants, as at all plants that use alkanolamines for acid gas removal (AGR), spills and on-site management of wastes containing alkanolamines and associated reaction products have occasionally resulted in subsurface contamination that is presently the focus of some environmental concern. In 1994, the Energy and Environmental Research Center (EERC) initiated a three-phase program to investigate the natural attenuation processes that control the subsurface transport and fate of the most commonly used alkanolamine in Canada, monoethanolamine (MEA). Funding for the MEA research program was provided by the U.S. Department of Energy (DOE), Canadian Association of Petroleum Producers (CAPP), Canadian Occidental Petroleum Ltd. (CanOxy), Gas Research Institute (GRI), Environment Canada, and the National Energy Board of Canada. The MEA research program focused primarily on examining the biodegradability of MEA and MEA-related waste materials in soils and soil-slurries under a variety of environmentally relevant conditions, evaluating the mobility of MEA in soil and groundwater and the effectiveness of bioremediation techniques for removing contaminants and toxicity from MEA-contaminated soil. The presently inactive Okotoks sour gas-processing plant, owned by CanOxy in Alberta, Canada, was the source of samples and field data for much of the laboratory-based experimental work and was selected to be the location for the field-based efforts to evaluate remediation techniques. The objective of the research program is to provide the natural gas industry with ''real world'' data and insights developed under laboratory and field conditions regarding the effective and environmentally sound use of biological methods for the remediation of soil

  7. Pacific Northwest National Laboratory Institutional Plan FY 2001-2005

    SciTech Connect (OSTI)

    Fisher, Darrell R.; Pearson, Erik W.

    2000-12-29

    The Pacific Northwest National Laboratory Institutional Plan for FY 2001-2005 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; managaement procatices and standards; and communications and trust.

  8. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  9. Comment and Response Management System

    Energy Science and Technology Software Center (OSTI)

    1998-06-09

    CRMS is a Web-based client/server application that helps manage, track, and report on institutional responses to public comments on published documents such as environmental impact statements.

  10. Natural gas annual 1993 supplement: Company profiles

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  11. Sandia, Georgia Institute of Technology Form Academic Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Georgia Institute of Technology Form Academic Collaboration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense

  12. Sandia, the Atlantic Council, and NM Water Resource Research Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sponsor Roundtable on Western Water Scarcity the Atlantic Council, and NM Water Resource Research Institute Sponsor Roundtable on Western Water Scarcity - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy

  13. Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability Report Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid

  14. Institutional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Reports, Publications, and Research Agricultural Commercial Consumer...

  15. Natural Gas Applications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  16. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    natural gas demand, thereby contributing to larger net injections of natural gas into storage. Other Market Trends: EIA Releases The Natural Gas Annual 2006: The Energy...

  17. Section 43: Passive Institutional Controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Committee (RWMC) issued and approved the Draft Vision Document for the Long-Term Preservation of Information and Memory project. This resulted in the establishment of...

  18. GAS SEAL

    DOE Patents [OSTI]

    Monson, H.; Hutter, E.

    1961-07-11

    A seal is described for a cover closing an opening in the top of a pressure vessel that may house a nuclear reactor. The seal comprises a U-shaped trough formed on the pressure vessel around the opening therein, a mass of metal in the trough, and an edge flange on the cover extending loosely into the trough and dipping into the metal mass. The lower portion of the metal mass is kept melted, and the upper portion, solid. The solid pontion of the metal mass prevents pressure surges in the vessel from expelling the liquid portion of the metal mass from the trough; the liquld portion, thus held in place by the solid portion, does not allow gas to go through, and so gas cannot escape through shrinkage holes in the solid portion.

  19. Idaho National Laboratory's FY13 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2014-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  20. UCLA Anderson School of Management LGBT Leadership Institute

    Broader source: Energy.gov [DOE]

    This three day on-campus experience at UCLA spans five months, centering on three days on campus. Online trainings during and following the program cover leadership, decision-making, identity,...

  1. DOE - Office of Legacy Management -- Carnegie Institute of Washington...

    Office of Legacy Management (LM)

    NY.0-07-1 Site Operations: This site served as a meeting place on June 25, 1942 for the 'Executive Committee of S-1,' a group comprised of various military and academic personnel. ...

  2. GHG Management Institute GHG MRV Curriculum | Open Energy Information

    Open Energy Info (EERE)

    measure and report their carbon footprints. Coursework will cover the basics of GHG accounting and reporting to The Registry as well as GHG verification for inventories,...

  3. New Mexico Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Base Gas) ... Underground Base Natural Gas in Storage - All Operators New Mexico Underground Natural Gas ...

  4. New York Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Base Gas) ... Underground Base Natural Gas in Storage - All Operators New York Underground Natural Gas ...

  5. Category:Academic Institutions | Open Energy Information

    Open Energy Info (EERE)

    title"Alternative Energy Institute">Alternative Energy Institute","title":"Alternative Energy Institute","link":null,"lat":34.9848017,"lon":-101.9100121,"alt":0,"add...

  6. Idaho National Laboratory (INL) Sitewide Institutional Controls Plan

    SciTech Connect (OSTI)

    W. L. Jolley

    2006-07-27

    On November 9, 2002, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and the Idaho Department of Environmental Quality approved the Record of Decision Experimental Breeder Reactor-I/Boiling Water Reactor Experiment Area and Miscellaneous Sites, which requires a Sitewide Institutional Controls Plan for the then Idaho National Engineering and Environmental Laboratory (now known as the Idaho National Laboratory). This document, first issued in June 2004, fulfilled that requirement. The revision is needed to provide an update as remedial actions are completed and new areas of concern are found. This Sitewide Institutional Controls Plan is based on guidance in the May 3, 1999, EPA Region 10 Final Policy on the Use of Institutional Controls at Federal Facilities; the September 29, 2000, EPA guidance Institutional Controls: A Site Manager's Guide to Identifying, Evaluating, and Selecting Institutional Controls at Superfund and RCRA Corrective Action Cleanups; and the April 9, 2003, DOE Policy 454.1, "Use of Institutional Controls." These policies establish measures that ensure short- and long-term effectiveness of institutional controls that protect human health and the environment at federal facility sites undergoing remedial action pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or corrective action pursuant to the Resource Conservation and Recovery Act (RCRA). The site-specific institutional controls currently in place at the Idaho National Laboratory are documented in this Sitewide Institutional Controls Plan. This plan is being updated, along with the Idaho National Engineering and Environmental Laboratory Comprehensive Facilities and Land Use Plan, to reflect the progress of remedial activities and changes in CERCLA sites.

  7. Institutional plan. FY 1998--2003

    SciTech Connect (OSTI)

    1997-07-01

    This Institutional Plan for Argonne National Laboratory contains central elements of Argonne`s strategic plan. Chapter II of this document discusses the Laboratory`s mission and core competencies. Chapter III presents the Science and Technology Strategic Plan, which summarizes key features of the external environment, presents Argonne`s vision, and describes how the Laboratory`s strategic goals and objectives map onto and support DOE`s four business lines. The balance of the chapter comprises the science and technology area plans, organized by the four DOE business lines. Chapter IV describes the Laboratory`s ten major initiatives, which cover a broad spectrum of science and technology. Our proposal for an Exotic Beam Facility aims at, among other things, increased understanding of the processes of nuclear synthesis during and shortly after the Big Bang. Our Advanced Transportation Technology initiative involves working with US industry to develop cost-effective technologies to improve the fuel efficiency and reduce the emissions of transportation systems. The Laboratory`s plans for the future depend significantly on the success of its major initiatives. Chapter V presents our Operations and Infrastructure Strategic Plan. The main body of the chapter comprises strategic plans for human resources; environmental protection, safety, and health; site and facilities; and information management. The chapter concludes with a discussion of the business and management practices that Argonne is adopting to improve the quality and cost-effectiveness of its operations. The structure and content of this document depart from those of the Institutional Plan in previous years. Emphasis here is on directions for the future; coverage of ongoing activities is less detailed. We hope that this streamlined plan is more direct and accessible.

  8. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  9. Shale gas is natural gas trapped inside

    Broader source: Energy.gov (indexed) [DOE]

    Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary ... Fossil Energy Research Benefits FE's early investments in shale research in the 1970s ...

  10. Institute for Energy Research | Open Energy Information

    Open Energy Info (EERE)

    Energy Research Jump to: navigation, search Logo: Institute for Energy Research Name: Institute for Energy Research Address: 1415 S. Voss Rd. Place: Houston, Texas Zip: 77057...

  11. Shaoxing Jinggong Mechanical and Electrical Research Institute...

    Open Energy Info (EERE)

    Shaoxing Jinggong Mechanical and Electrical Research Institute Company SJMERI Jump to: navigation, search Name: Shaoxing Jinggong Mechanical and Electrical Research Institute...

  12. EMei Semiconductor Materials Plant Research Institute | Open...

    Open Energy Info (EERE)

    EMei Semiconductor Materials Plant Research Institute Jump to: navigation, search Name: EMei Semiconductor Materials Plant & Research Institute Place: Emei, Sichuan Province, China...

  13. Electronics and Telecommunications Research Institute ETRI |...

    Open Energy Info (EERE)

    and Telecommunications Research Institute ETRI Jump to: navigation, search Name: Electronics and Telecommunications Research Institute (ETRI) Place: Daejeon, Korea (Republic) Zip:...

  14. National Environmental Research Institute | Open Energy Information

    Open Energy Info (EERE)

    Research Institute Jump to: navigation, search Name: National Environmental Research Institute Address: Box. 358 Frederiksborgvej 399 DK 4000 Place: Roskilde, Denmark Phone Number:...

  15. Stockholm Environment Institute (SEI) | Open Energy Information

    Open Energy Info (EERE)

    The Stockholm Environment Institute, located in Stockholm, Sweden, is an independent international research institute. The SEI is dedicated to bringing scientific insights to...

  16. Finnish Meteorological Institute Doppler Lidar (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    Finnish Meteorological Institute Doppler Lidar Title: Finnish Meteorological Institute Doppler Lidar This doppler lidar system provides co-polar and cross polar attenuated ...

  17. Tokyo Institute of Technology | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Tokyo Institute of Technology Place: Tokyo, Tokyo, Japan Zip: 152-8550 Product: The Tokyo Institute of Technology runs collaboration programmes...

  18. Institute of Geophysics, Planetary Physics, and Signatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute of Geophysics, Planetary Physics, and Signatures Institute of Geophysics, Planetary Physics, and Signatures Promoting and supporting high-quality, cutting-edge science in...

  19. Officials Establish Training Institute, Creating Enterprise Solution...

    Office of Environmental Management (EM)

    Officials Establish Training Institute, Creating Enterprise Solution for Worker Safety Officials Establish Training Institute, Creating Enterprise Solution for Worker Safety March ...

  20. International Institute for Sustainable Development (IISD) |...

    Open Energy Info (EERE)

    by working collaboratively with other institutions -building long term strategic alliances, while retaining the institutional agility necessary to confront the challenges of...

  1. NREL: Energy Executive Leadership Academy - Leadership Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Institute Participants in NREL's Executive Energy Leadership Institute learn about renewable energy and energy efficiency from the experts through this accelerated...

  2. Alternative Energy Institute | Open Energy Information

    Open Energy Info (EERE)

    Alternative Energy Institute Name: Alternative Energy Institute Address: 2402 russell long blvd Place: Canyon, Texas Zip: 79016 Region: Texas Area Number of Employees: 11-50 Year...

  3. Category:Public Institutions | Open Energy Information

    Open Energy Info (EERE)

    :,"polygons":,"circles":,"rectangles":,"locations":"text":"Institute" title"Alternative Energy Institute">Alternative Energy...

  4. Social Empowerment Institutional Change Principle | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Empowerment Institutional Change Principle Social Empowerment Institutional Change Principle By creating a context in which workers feel empowered to take action, federal agencies ...

  5. Renewable Energy Institute International | Open Energy Information

    Open Energy Info (EERE)

    International Jump to: navigation, search Logo: Renewable Energy Institute International Name: Renewable Energy Institute International Address: 5022 Bailey Loop Place: McClellan,...

  6. Institutional Change Process for Sustainability | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process for Sustainability Institutional Change Process for Sustainability For establishing institutional change in a federal agency to achieve sustainability or other energy ...

  7. Institute for Environmental Solutions | Open Energy Information

    Open Energy Info (EERE)

    Environmental Solutions Jump to: navigation, search Logo: Institute for Environmental Solutions Name: Institute for Environmental Solutions Address: 761 Newport St. Place: Denver,...

  8. Solar Living Institute | Open Energy Information

    Open Energy Info (EERE)

    Living Institute Jump to: navigation, search Name: Solar Living Institute Address: 13771 S. Hwy. 101 Place: Hopland, California Zip: 95449 Region: Bay Area Website:...

  9. Victoria Transport Policy Institute | Open Energy Information

    Open Energy Info (EERE)

    Transport Policy Institute Jump to: navigation, search Name: Victoria Transport Policy Institute Address: 1250 Rudlin Street, Place: Victoria, British Columbia Website:...

  10. Hahn Meitner Institute | Open Energy Information

    Open Energy Info (EERE)

    Meitner Institute Jump to: navigation, search Name: Hahn-Meitner-Institute Place: Berlin, Germany Zip: 14109 Product: Berlin-based, scientific research centre. Coordinates:...

  11. Energy Biosciences Institute EBI | Open Energy Information

    Open Energy Info (EERE)

    EBI Jump to: navigation, search Name: Energy Biosciences Institute (EBI) Place: Berkeley, California Zip: 94720 Sector: Biofuels Product: US-based research institution...

  12. Australian Solar Institute | Open Energy Information

    Open Energy Info (EERE)

    search Name: Australian Solar Institute Place: Newcastle, New South Wales, Australia Zip: 2300 Sector: Solar Product: New South Wales-based institute providing support...

  13. Edison Welding Institute | Open Energy Information

    Open Energy Info (EERE)

    Welding Institute Jump to: navigation, search Name: Edison Welding Institute Address: 1250 Arthur E. Adams Drive Place: Columbus, Ohio Zip: 43221-3585 Sector: Efficiency, Services...

  14. Paul Scherrer Institut | Open Energy Information

    Open Energy Info (EERE)

    Paul Scherrer Institut Jump to: navigation, search Name: Paul Scherrer Institut Place: Aargau, Villigen Zip: 5232 Number of Employees: 1001-5000 Website: www.psi.ch Coordinates:...

  15. Global Climate Change Institute | Open Energy Information

    Open Energy Info (EERE)

    Change Institute Jump to: navigation, search Name: Global Climate Change Institute Place: Tsinghua University, Beijing Municipality, China Zip: 100084 Product: Global Climate...

  16. ORISE: Oak Ridge Sitewide Institutional Review Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Protection of Human Subjects, also known as the Common Rule, requires that each institution that engages in human subjects research establish an institutional review board (IRB). ...

  17. Natural gas annual 1992: Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

  18. Joint BioEnergy Institute

    SciTech Connect (OSTI)

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2015-06-15

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  19. PROJECT PROFILE: Southwest Research Institute

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Southwest Research Institute (SwRI) will design, manufacture, and test an ultra-high efficiency supercritical carbon dioxide (sCO2) compressor-expander, or “compander,” for power generation at CSP plants. SwRI will collaborate with Samsung Techwin America to develop the technology.

  20. Facility Upgrade - Cyclotron Institute - TAMU

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Cyclotron Institute Facility Upgrade White Paper Follow the links below to open the files, or right click and select "Save Target As..." to save the file to your computer. File Type File Size Adobe PDF 752 KB MS-Word 18840 KB Postscript 1660 KB

  1. Synthetic biology R&D risks: Social-institutional contexts matter!

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wolfe, Amy K.; Bjornstad, David J.; Shumpert, Barry L.; Campa, Maria Fernanda; Bergmann, Rachael A.; Stelling, Savannah C.

    2016-02-15

    Social and institutional analyses currently are missing from considerations of synthetic biology R&D-related biosafety, which instead have bioethics, governance, or technical orientations. Social and institutional context shapes standard practice. Here, analyzing context helps identify circumstances that create, amplify, or diminish risk, thereby revealing new opportunities for avoiding or managing those risks.

  2. Integrated Safety Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Management BEHAVIOR (SAFETY CULTURE) - principles of behavior (values) - align motivations PLAN WORK define project scope define facility functional requirements define and analyze hazards mitigate hazards develop & implement controls authorize work assess & improve work execution reaction to changed conditions LEVELS - INSTITUTIONAL - site wide programs - DOE directives & requirements, cultural values - DOE/contractor interface - FACILITY OR PROJECT - Documented Safety

  3. Natural Gas Basics

    SciTech Connect (OSTI)

    NREL Clean Cities

    2010-04-01

    Fact sheet answers questions about natural gas production and use in transportation. Natural gas vehicles are also described.

  4. How EIA Estimates Natural Gas Production

    Reports and Publications (EIA)

    2004-01-01

    The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

  5. Defense Waste Management Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Management Programs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  6. Institutional Computing Executive Group Review of Multi-programmatic & Institutional Computing, Fiscal Year 2005 and 2006

    SciTech Connect (OSTI)

    Langer, S; Rotman, D; Schwegler, E; Folta, P; Gee, R; White, D

    2006-12-18

    The Institutional Computing Executive Group (ICEG) review of FY05-06 Multiprogrammatic and Institutional Computing (M and IC) activities is presented in the attached report. In summary, we find that the M and IC staff does an outstanding job of acquiring and supporting a wide range of institutional computing resources to meet the programmatic and scientific goals of LLNL. The responsiveness and high quality of support given to users and the programs investing in M and IC reflects the dedication and skill of the M and IC staff. M and IC has successfully managed serial capacity, parallel capacity, and capability computing resources. Serial capacity computing supports a wide range of scientific projects which require access to a few high performance processors within a shared memory computer. Parallel capacity computing supports scientific projects that require a moderate number of processors (up to roughly 1000) on a parallel computer. Capability computing supports parallel jobs that push the limits of simulation science. M and IC has worked closely with Stockpile Stewardship, and together they have made LLNL a premier institution for computational and simulation science. Such a standing is vital to the continued success of laboratory science programs and to the recruitment and retention of top scientists. This report provides recommendations to build on M and IC's accomplishments and improve simulation capabilities at LLNL. We recommend that institution fully fund (1) operation of the atlas cluster purchased in FY06 to support a few large projects; (2) operation of the thunder and zeus clusters to enable 'mid-range' parallel capacity simulations during normal operation and a limited number of large simulations during dedicated application time; (3) operation of the new yana cluster to support a wide range of serial capacity simulations; (4) improvements to the reliability and performance of the Lustre parallel file system; (5) support for the new GDO petabyte

  7. Natural gas annual 1992. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data for the Nation from 1930 to 1992, and by State from 1967 to 1992. The Supplement of this report presents profiles of selected companies.

  8. Manager`s views of public involvement

    SciTech Connect (OSTI)

    Branch, K.M.; Heerwagen, J.; Bradbury, J.

    1995-12-01

    Four issues commonly form the framework for debates about the acceptability of proposed projects or technologies--the substantive decision or technological choice; the treatment of the community by the proponent organization; the way the decision-making process has been structured and managed; and the status of institutional safeguards and protection. One of the clear messages of cultural theory is that differences in perspectives are a normal and inevitable part of society, and that attempts to resolve differences by persuasion are not likely to work. These findings are useful when considering the goals and possibilities of public involvement as a decision-making tool, and when designing or evaluating public involvement training programs for managers. The research reported here examines the viewpoints and concerns of managers and decision-makers about the four issues identified above, with particular emphasis on their perspectives and concerns about opening decision-making processes to the public and about managers` roles and responsibilities for structuring and managing open decision-making processes. Implications of these findings for public involvement training for managers is also discussed. The data presented in this paper were obtained from face-to-face interviews with managers and decision-makers with experience managing a variety of hazardous waste management decision-making processes. We conducted these interviews in the course of four separate research projects: needs assessments to support the design and development of a public involvement training program for managers; a study of community residents` and managers` perspectives on the chemical stockpile disposal program; an evaluation of the effectiveness of public involvement training for managers in the Department of Energy; and a study to develop indicators of the benefits and costs of public involvement.

  9. New York Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New York Natural Gas ...

  10. Six Manufacturers to Offer Natural-Gas-Powered Trucks in 1996

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ix truck manufacturers will offer natural-gas-powered versions of their medium- and heavy-duty trucks in 1996, according to the Gas Research Institute (GRI). The trucks will be the first fully dedicated natural gas vehicles (NGVs) offered in U.S. medium- and heavy-duty markets by original equipment manufacturers (OEMs). Four manufacturers will design trucks to operate on liquefied natural gas (LNG), and one manufacturer will design trucks to run on compressed natural gas (CNG). These

  11. U.S. Natural Gas Markets and Perspectives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Natural Gas Markets and Perspectives U.S. Natural Gas Markets and Perspectives Presentation by Bill Liss, Gas Technology Institute, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held October 18-19, 2011, in Lemont, Illinois. oct11_infrastructure_liss.pdf (3.77 MB) More Documents & Publications NGV and FCV Light Duty Transportation Perspective Synergies in Natural Gas and Hydrogen Fuels Workshop Goals, Objectives, and Desired Outcomes

  12. News Archive | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archive CMI in the news 2016 Oak Ridge National Laboratory: Critical Materials Institute, Oddello Industries pursue recovery of rare-earth magnets from used hard drives, August 16, 2016 Colorado School of Mines: Solar panels power materials exhibit at Geology Museum, August 2, 2016 The White House: The Materials Genome Initiative: The First Five Years, August 2, 2016 Oak Ridge National Laboratory: Mirzadeh, Moyer, Wesolowski named ORNL Corporate Fellows, June 30, 2016 newswise: CMI taps the

  13. News Releases | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases CMI taps the power of supercomputing to find rare-earth refining alternatives, June 20, 2016 Mr. Rare Earth, Karl Gschneidner passes away on April 27, April 29, 2016 Ames Laboratory scientist inducted into National Academy of Inventors, April 15, 2016 Critical Materials Institute gains ten industrial and research affiliates, April 11, 2016 How true is conventional wisdom about price volatility of tech metals?, Feb. 11, 2016 Ames Laboratory scientist named to National Academy of

  14. Nuclear Structure - Research - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Structure depiction of giant resonance modes (ref. Xinfeng Chen, "Giant Resonance Study By 6Li Scattering" Nuclear structure studies at the Institute explore a wide range of single-particle and collective properties of the nucleus. The most extensive study in this area is centered about the determination of the nuclear compressibility with measurements of the properties of giant resonance states in a variety of nuclei. The nuclear compressibility is a quantity of great

  15. External Collaborations - Research - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    External Collaborations STAR detector offers a unique myriad of subsystems which can be utilized to distinguish decay photons from direct photons. A number of research projects involving Institute scientists are carried out at other large national and international accelerator facilities in collaboration with groups from other universities and laboratories worldwide. Many of these are directly complementary to the local experimental program but others, as described below, explore other

  16. University of Delaware Energy Institute

    SciTech Connect (OSTI)

    Klein, Michael T

    2012-09-30

    The main goal of this project funded through this DOE grant is to help in the establishment of the University of Delaware Energy Institute (UDEI) which is designed to be a long-term, on-going project. The broad mission of UDEI is to develop collaborative programs encouraging research activities in the new and emerging energy technologies and to partner with industry and government in meeting the challenges posed by the nationâ??s pressing energy needs.

  17. PNNL: About PNNL - Institutional Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research, Development, and Deployment Collaborations See what we offer universities, other research institutions, and private industry. We look forward to working with you! For Universities Here's what we offer our university partners: Paloma Borque and Andrea Neumann Paloma Borque of McGill University and Andrea Neumann of the University of North Dakota monitor sophisticated instruments onboard an atmospheric research aircraft as part of a climate field study. It's part of a national,

  18. invention disclosures | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    invention disclosures CMI Invention Disclosures Success for the Critical Materials Institute will be defined by how well it meets its mission to assure supply chains of materials critical to clean energy technologies. To enable innovation in U.S. manufacturing and to enhance U.S. energy security, CMI must develop, demonstrate, and deploy clean energy technology. To direct research in a way to minimize the time to discovery and the time between discovery and deployment, the CMI team includes both

  19. CASL - Electric Power Research Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Research Institute Palo Alto, CA EPRI is a collaborative nonprofit organization that conducts research and development relating to generation, delivery, and use of electricity for the benefit of the public. Our members include operators of all U.S. nuclear power plants and a large fraction of the nuclear plants worldwide. Key Contributions Leading the CASL Industry Council Technology and expertise on fuel performacne modeling User requirements for virtual reactor simulation

  20. CASL - Massachusetts Institute of Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Massachusetts Institute of Technology Cambridge, MA The Department of Nuclear Science and Engineering at MIT has been a leader in the development of the nuclear engineering spectrum of curriculum and research activities, integrating foundational scientific knowledge with engineering proactive to advance. Fission and fusion energy Advanced materials Nuclear radiation technologies Security science and policy Key Contributions Scientific contribution and coordination in the Material Performance and

  1. Table 4.3 Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 1949-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 1949-2010 Year Crude Oil 1 Natural Gas (Dry) Natural Gas Liquids 1 Total Thousand Barrels Million Cubic Feet 2 Thousand Barrels COE 3 Thousand Barrels Thousand Barrels COE 3 Thousand Barrels COE 3 American Petroleum Institute and American Gas Association Data<//td> 1949 24,649,489 179,401,693 32,013,150 3,729,012 3,069,146 59,731,785 1950 25,268,398 184,584,745 32,938,034 4,267,663 3,495,219 61,701,652 1951 27,468,031

  2. Technology on In-Situ Gas Generation to Recover Residual Oil Reserves

    SciTech Connect (OSTI)

    Sayavur Bakhtiyarov

    2008-02-29

    This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define the sweep efficiency

  3. Edison Electric Institute Comments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comments Edison Electric Institute Comments The Edison Electric Institute (EEi) is submitting this letter and the enclosed comments in response to the above-referenced request for infonnation (RFI). DOE - Reg review - EEI cmts 7-11-16 (497.95 KB) More Documents & Publications Edison Electric Institute (EEI) Regulatory Burden RFI, 77 Fed. Reg. 47328 Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012) Edison Electric Institute (EEI) Reducing

  4. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  5. Meet CMI Leader Cynthia Howell | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Howell Dr. Cynthia Howell CMI education, training and outreach program manager is Dr. Cynthia Howell. She works at Colorado School of Mines half-time in this position for CMI and half-time for the Colorado Energy Research Institute. She brings a national perspective and knowledge of energy, education, industry and workforce issues with expertise in partnership development, collaborative project design, education reform and tool development. She has unique multidisciplinary experience working and

  6. Meet CMI Leader Deb Covey | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deb Covey Deb Covey Ames Lab Director Adam Schwartz (left) and Associate Director for Sponsored Research Administration Deb Covey (right) explain BAM, a low-friction, high-wear coating, to State Senator Jerry Behn (center) during ISU Day at the State Capital on Feb. 23, 2015. Deb Covey leads the Critical Materials Institute efforts in commercialization. She started working for The Ames Laboratory in 1989 in its Fossil Energy Program. In 1992, she accepted a position managing the Intellectual

  7. PROJECT PROFILE: Electric Power Research Institute (SHINES) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SHINES) PROJECT PROFILE: Electric Power Research Institute (SHINES) Title: Beneficial Integration of Energy Storage and Load Management with Photovoltaics epri-logo.jpg Funding Opportunity: Sustainable and Holistic Integration of Energy Storage and Solar PV SunShot Subprogram: Systems Integration Location: Knoxville, Tennessee Partners: FirstEnergy, NYPA, Con Edison, Southern Company, Gulf Power, Case Western Reserve University, Queens College of the City University of New York,

  8. Meet CMI Researcher Corby Anderson | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corby Anderson Image of Corby Anderson, researcher at Critical Materials Institute CMI researcher Dr. Corby Anderson has more than 34 years of global experience in industrial operations, management, engineering, design, consulting, teaching, research and professional service. His career includes positions with Morton Thiokol, Key Tronic Corporation, Sunshine Mining and Refining Company, H. A Simons Ltd. and at Montana Tech. He holds a BSc in Chemical Engineering and an MSc and PhD in

  9. Argonne National Laboratory institutional plan FY 2001--FY 2006.

    SciTech Connect (OSTI)

    Beggs, S.D.

    2000-12-07

    This Institutional Plan describes what Argonne management regards as the optimal future development of Laboratory activities. The document outlines the development of both research programs and support operations in the context of the nation's R and D priorities, the missions of the Department of Energy (DOE) and Argonne, and expected resource constraints. The Draft Institutional Plan is the product of many discussions between DOE and Argonne program managers, and it also reflects programmatic priorities developed during Argonne's summer strategic planning process. That process serves additionally to identify new areas of strategic value to DOE and Argonne, to which Laboratory Directed Research and Development funds may be applied. The Draft Plan is provided to the Department before Argonne's On-Site Review. Issuance of the final Institutional Plan in the fall, after further comment and discussion, marks the culmination of the Laboratory's annual planning cycle. Chapter II of this Institutional Plan describes Argonne's missions and roles within the DOE laboratory system, its underlying core competencies in science and technology, and six broad planning objectives whose achievement is considered critical to the future of the Laboratory. Chapter III presents the Laboratory's ''Science and Technology Strategic Plan,'' which summarizes key features of the external environment, presents Argonne's vision, and describes how Argonne's strategic goals and objectives support DOE's four business lines. The balance of Chapter III comprises strategic plans for 23 areas of science and technology at Argonne, grouped according to the four DOE business lines. The Laboratory's 14 major initiatives, presented in Chapter IV, propose important advances in key areas of fundamental science and technology development. The ''Operations and Infrastructure Strategic Plan'' in Chapter V includes strategic plans for human resources; environmental protection, safety, and health; site and

  10. Earned Value Management System (EVMS)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-03-13

    To support DOE's initiatives to improve program, project, and contract management through the implementation and surveillance of a contractor's Earned Value Management System (EVMS) that is in conformance with DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, the American National Standards Institute/Electronic Industries Alliance (ANSI/EIA)-748-B, Earned Value Management System (or as required by contract), and Federal Acquisition Regulation (FAR) 52.234-4, Earned Value Management System (EVMS). Admin Chg 1 dated 10-22-2015.

  11. MASSACHUSETTS INSTITUTE OF TECHNOLOGY | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MASSACHUSETTS INSTITUTE OF TECHNOLOGY American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MASSACHUSETTS INSTITUTE OF TECHNOLOGY

  12. Agricultural, industrial and municipal waste management

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    It is right that consideration of the environment is of prime importance when agricultural and industrial processes are being developed. This book compiles the papers presented at the Institution of Mechanical Engineers conference. The contents include: The use of wastes for land reclamation and restoration; landfill, an environmentally acceptable method of waste disposal and an economic source of energy; control of leachate from waste disposal landfill sites using bentonite; landfill gas migration from operational landfill sites, monitoring and prevention; monitoring of emissions from hazardous waste incineration; hazardous wastes management in Hong Kong, a summary of a report and recommendations; the techniques and problems of chemical analysis of waste waters and leachate from waste tips; a small scale waste burning combustor; energy recovery from municipal waste by incineration; anaerobic treatment of industrial waste; a review of developments in the acid hydrolysis of cellulosic wastes; reduction of slag deposits by magnesium hydroxide injection; integrated rural energy centres (for agriculture-based economies); resource recovery; straw as a fuel in the UK; the computer as a tool for predicting the financial implications of future municipal waste disposal and recycling projects; solid wastes as a cement kiln fuel; monitoring and control of landfill gas; the utilization of waste derived fuels; the economics of energy recovery from municipal and industrial wastes; the development and construction of a municipal waste reclamation plant by a local authority.

  13. Renewable Natural Gas - Producer Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DAVID ROSS MANAGING DIRECTOR MULTIGEN INTERNATIONAL, LLC Your Economic Onsite Energy Solution Bioenergy 2015: Opportunities in a Changing Energy Landscape Renewable Natural Gas - Developer Perspective Overview  MultiGen International  Biogas  Anaerobic Digestion  Biogas Upgrade Technologies  Development Risk  Recommendations MultiGen International, LLC MultiGen International (MGI) - is a project development company focused on solving waste issues using commercial technologies

  14. Oil field management system

    DOE Patents [OSTI]

    Fincke, James R.

    2003-09-23

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  15. 2016 Federal Energy and Water Management Awards - Nomination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at an installation or facility; "Program" for overall management approaches that effectively instituted new strategies or policies; or "Contracting" for efforts to award energy ...

  16. Management of Selected Advanced Research Projects Agency-Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from start-up companies to established corporations, and to institutions of higher education. ... would also include documentation of management's review of audit report results. ...

  17. Best Management Practice #8: Steam Boiler Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Steam Boiler Systems Best Management Practice 8: Steam Boiler Systems Steam boilers are commonly used in large heating systems, institutional kitchens, or in facilities where ...

  18. ORISE: Capabilities in National Security and Emergency Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities ORISE Emergency Management Capabilities In preparation for a natural or man-made disaster, the Oak Ridge Institute for Science and Education (ORISE) provides national...

  19. WIPP - Passive Institutional Controls (PICs)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The U.S. Department of Energy has developed a program for the development of Passive Institutional Controls to alert future generations to the potential hazards of intersecting the Waste Isolation Pilot Plant (WIPP) repository. These controls are required by U.S. Environmental Protection Agency [Title 40 CFR, Sections 191.14 and 194.43]. The purpose of a passive control, or a PIC, is to indicate the location of the repository and to convey the dangers associated with human exposure to the

  20. Critical Materials Institute Affiliates Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Critical Materials Institute Affiliates Program MEMBER AGREEMENT ("Agreement") WHEREAS, The Ames Laboratory ("AMES"), a U.S. Department of Energy ("DOE") National Laboratory operated by Iowa State University of Science and Technology ("ISU") under the authority of its Contract DE-AC02-07CH11358, with administrative offices at 311 TASF, 2408 Pammel Dr,. Ames, IA 50011-1015, is the recipient of funding from the U.S. Department of Energy's Office of Energy

  1. Natural Gas Regulation - Other Gas-Related Information Sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Regulation - Other Gas-Related Information Sources Natural Gas Regulation - Other Gas-Related Information Sources The single largest source of energy information...

  2. Reliability of natural gas cogeneration systems

    SciTech Connect (OSTI)

    1995-12-01

    Cogeneration systems fueled by natural gas exceed the reliability of most central station power generating units, according to a study conducted by RINC Corporation for Gas Research Institute (GRI). In the study, researchers obtained operating data from 122 natural gas cogeneration units nationwide representing 2,200 megawatts (MW) of capacity and nearly 2 million hours of operating time at 37 facilities. Units were grouped into categories reflecting size (from 60 kilowatts to 100 MW), type of system (gas engine or gas turbine technology), use of emission controls, and type of thermal application. Various types and sizes of gas systems reported average availability factors ranging from 90.0 to 95.8 versus a weighted average of 85.9 percent for fossil-fuel steam, nuclear, and gas-turbine-based central station power generating units. Comparisons are based on study data and data reported by the North American Electric Reliability Council for utility power plants. Gas cogeneration can improve utility operations because as a group the relatively small, dispersed cogeneration units are more reliable than one or more large central station units of similar capacity.

  3. Second Annual Electric Power Research Institute/Sandia Photovoltaic Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chu Travels to Houston Sec. Chu Travels to Houston February 2, 2012 - 5:19pm Addthis The Houston Medical Center Thermal Energy Corporation Control Room. | Photo Courtesy of the Texas Medical Center The Houston Medical Center Thermal Energy Corporation Control Room. | Photo Courtesy of the Texas Medical Center Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Secretary Chu traveled to Houston, Texas, today to meet with executives from various oil and gas

  4. Idaho National Laboratory’s FY14 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Frerichs, Kimberly Irene

    2015-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2014 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL’s GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries, but are a consequence of INL’s activities). This inventory found that INL generated 73,521 metric tons (MT) of CO2 equivalent (CO2e ) emissions during FY14. The following conclusions were made from looking at the results of the individual contributors to INL’s FY14 GHG inventory: • Electricity (including the associated transmission and distribution losses) is the largest contributor to INL’s GHG inventory, with over 50% of the CO2e emissions • Other sources with high emissions were

  5. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of the Alaska gas pipeline. The opening of ANWR might reduce the gas resource risk of building an Alaska gas pipeline, as the area has an estimated 3.6 trillion cubic...

  6. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  7. Gas amplified ionization detector for gas chromatography

    DOE Patents [OSTI]

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  8. New Mexico Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New Mexico Natural ...

  9. North Dakota Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) North Dakota Natural ...

  10. The Energy Institute | Open Energy Information

    Open Energy Info (EERE)

    The Energy Institute (EI), located in London, United Kingdom, is a professional support body for nearly 13,500 professionals worldwide. The Energy Institute is a tool for society...

  11. Energy & Geoscience Institute | Open Energy Information

    Open Energy Info (EERE)

    Institute Name: Energy & Geoscience Institute Address: 423 Wakara way, Suite 300 Place: Salt Lake City, Utah Zip: 84108 Region: Utah Number of Employees: 51-200 Year Founded: 1972...

  12. White House Announces Eighth Manufacturing Innovation Institute

    Broader source: Energy.gov [DOE]

    On Thursday, April 1, the White House announced a new institute which will focus on revolutionary fibers and textile manufacturing. This new institute is the eighth manufacturing hub to be awarded...

  13. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of natural gas vehicles. The Department of Energys Office of Energy Efficiency and Renewable Energy reports that there were 841 compressed natural gas (CNG) fuel stations and 41...

  14. Oil and Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business ...

  15. Gas scrubbing liquids

    DOE Patents [OSTI]

    Lackey, Walter J.; Lowrie, Robert S.; Sease, John D.

    1981-01-01

    Fully chlorinated and/or fluorinated hydrocarbons are used as gas scrubbing liquids for preventing noxious gas emissions to the atmosphere.

  16. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    ability to process gas. The company's Main Pass 260 line to Pascagoula Gas Plant in Jackson, Mississippi, will not be available for transportation services. While the plant is...

  17. CONTINUOUS GAS ANALYZER

    DOE Patents [OSTI]

    Katz, S.; Weber, C.W.

    1960-02-16

    A reagent gas and a sample gas are chemically combined on a continuous basis in a reaction zone maintained at a selected temperature. The reagent gas and the sample gas are introduced to the reaction zone at preselected. constant molar rates of flow. The reagent gas and the selected gas in the sample mixture combine in the reaction zone to form a product gas having a different number of moles from the sum of the moles of the reactants. The difference in the total molar rates of flow into and out of the reaction zone is measured and indicated to determine the concentration of the selected gas.

  18. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Weekly Underground Natural Gas Storage Report. The sample change occurred over a transition period that began with the release of the Weekly Natural Gas Storage Report (WNGSR)...

  19. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    strong price contango during the report week, mitigated withdrawals of natural gas from storage. Other Market Trends: EIA Releases New Report on U.S. Greenhouse Gas Emissions:...

  20. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 12, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Spot gas at most market locations (outside the Rocky Mountain Region) traded...

  1. Historical Natural Gas Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  2. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  3. Historical Natural Gas Annual

    Gasoline and Diesel Fuel Update (EIA)

    8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  4. Imported resources - gas

    SciTech Connect (OSTI)

    Marxt, J.

    1995-12-01

    This paper examines aspects of the supply and demand of natural gas and natural gas products such as LNG in the Czech Republic.

  5. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5, 2009 Next Release: July 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 24, 2009) Natural gas...

  6. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    , 2008 Next Release: July 10, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, June 25, natural gas spot prices...

  7. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas...

  8. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  9. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  10. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Next Release: November 6, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 29) Natural gas...

  11. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9, 2008 Next Release: June 26, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, June 11, natural gas spot prices...

  12. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prices using spot prices from producing areas, plus an allowance for interstate natural gas pipeline and local distribution company charges to transport the gas to market. Such a...

  13. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    cooling demand for natural gas. Meanwhile, it became increasingly clear that Hurricane Frances likely would not pose a significant threat to natural gas production in the Gulf of...

  14. Oil & Gas Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional ... quantify potential risks associated with oil and gas resources in shale reservoirs that ...

  15. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    more from the system than they nominate. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  16. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    that had been in place since February 1. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  17. Unconventional Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... lb Pound LCA Life cycle analysis LNG Liquefied natural gas M Magnitude (Richter ... reversed plans to import liquefied natural gas (LNG), and many are now proposing exports. ...

  18. Screening Assessment of Potential Human-Health Risk from Future Natural-Gas Drilling Near Project Rulison in Western Colorado

    SciTech Connect (OSTI)

    Daniels Jeffrey I.,Chapman Jenny B.

    2012-01-01

    The Project Rulison underground nuclear test was conducted in 1969 at a depth of 8,400 ft in the Williams Fork Formation of the Piceance Basin, west-central Colorado (Figure 1). The U.S. Department of Energy Office of Legacy Management (LM) is the steward of the site. Their management is guided by data collected from past site investigations and current monitoring, and by the results of calculations of expected behavior of contaminants remaining in the deep subsurface. The purpose of this screening risk assessment is to evaluate possible health risks from current and future exposure to Rulison contaminants so the information can be factored into LM's stewardship decisions. For example, these risk assessment results can inform decisions regarding institutional controls at the site and appropriate monitoring of nearby natural-gas extraction activities. Specifically, the screening risk analysis can provide guidance for setting appropriate action levels for contaminant monitoring to ensure protection of human health.

  19. Commitment Institutional Change Principle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institutional Change » Commitment Institutional Change Principle Commitment Institutional Change Principle Commitment can be a crucial element that helps federal agencies inject and emphasize sustainability in their organizational culture. Institutions and people change when they have made definite commitments to change, especially when those commitments relate to future conditions. Research shows that explicit commitments improve the rate at which people adopt energy-efficient behaviors.

  20. Institute for Molecular Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn more about the Institute for Molecular Engineering. When completed in early 2015, the William Eckhardt Research Center at the University of Chicago will be the home of the Institute of Molecular Engineering. Institute for Molecular Engineering The new Institute for Molecular Engineering explores innovative technologies that address fundamental societal problems through advances in nanoscale manipulation and design at a molecular scale. Addressing Societal Problems with Molecular Science

  1. Coordinating with Corporate and Institutional Affiliates | Department...

    Energy Savers [EERE]

    Coordinating with Corporate and Institutional Affiliates Better Buildings Residential ... More Documents & Publications Better Buildings Residential Network Orientation Webinar ...

  2. Minority Serving Institutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Serving Institutions Minority Serving Institutions Map by Matt Loveless, Department of Energy. Our Office of Minority Economic Impact works daily to tap into the talents of students and faculty attending our nation's Minority Serving Institutions. To accomplish the mission of the Department of Energy, we need the best and brightest individuals to work at and partner with the Department. We're proud of the work of our Minority Educational Institution partners, and we work to advance our

  3. Institutional plan FY 1998--FY 2003

    SciTech Connect (OSTI)

    1997-10-01

    The Institutional Plan has been rearranged this year as a reflection of new Department of Energy (DOE) guidelines and to better illustrate the Laboratory`s mission-oriented focus. In Section 1 of this plan, the authors set forth their vision, mission, core competencies, strategic view, and related material. This section illustrates integration with the vision, mission, priorities, and core businesses of DOE. They define strategies, tactics, and guidelines and describe how they measure progress. In Section 2, they have elaborated on how they plan to address the Laboratory`s mission, describing programs and activities in the context of their role in this mission. Section 3 contains information on their approach to managing their business and operations. First they address the most critical issue safety. In this section, they confirm that Los Alamos is addressing the DOE critical success factors and describe the initiatives and plans that make their mission successful and leads them toward their vision. Section 4 contains details of their resources. 44 figs., 56 tabs.

  4. Institutional Plan, FY 1995--2000

    SciTech Connect (OSTI)

    1994-10-01

    Sandia recently completed an updated strategic plan, the essence of which is presented in chapter 4. Sandia`s Strategic Plan 1994 takes its direction from DOE`s Fueling a Competitive Economy: Strategic Plan and provides tangible guidance for Sandia`s programs and operations. Although it is impossible to foresee precisely what activities Sandia will pursue many years from now, the strategic plan makes one point clear: the application of our scientific and engineering skills to the stewardship of the nation`s nuclear deterrent will be central to our service to the nation. We will provide the necessary institutional memory and continuity, experience base, and technical expertise to ensure the continued safety, security, and reliability of the nuclear weapons stockpile. As a multiprogram laboratory, Sandia will also continue to focus maximum effort on a broad spectrum of other topics consistent with DOE`s enduring core mission responsibilities: Defense (related to nuclear weapons), Energy, Environment (related to waste management and environmental remediation), and Basic Science.

  5. Geophysical Institute. Biennial report, 1993-1994

    SciTech Connect (OSTI)

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  6. Financial Institution Partnership Program - Commercial Technology Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Generation Projects Issued: October 7, 2009 | Department of Energy Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 (498.91 KB) Fixed Rate Agreement (110.33

  7. Member Institutions | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Member Institutions Member Institutions The 14 participating institutions and 21 principal investigators that comprise the Photosynthetic Antenna Research Center (PARC) are listed below. Washington University in St. Louis -- PARC's Host and Administrative Home - Bob Blankenship, PARC Director - Dewey Holten, PARC Associate Director - Michael Gross - Christine Kirmaier - Himadri Pakrasi Los Alamos National Laboratory - Gabriel Montaño North Carolina State University - Jonathan Lindsey

  8. Minority Educational Institution Student Partnership Program (MEISPP) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Development » Minority Educational Institution Student Partnership Program (MEISPP) Minority Educational Institution Student Partnership Program (MEISPP) Our Minority Educational Institution Student Partnership Program (MEISPP) offers talented undergraduate and graduate students summer internship positions with the Department of Energy and our National Laboratories, with the goal of reaching underrepresented students in STEM fields, such as women and girls. Positions

  9. LANSCE | Lujan Center | Data Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lujan Center Data Management Lujan Neutron Scattering Center Logo The Lujan Center within LANSCE utilizes a pulsed source and has a complement of 15 instruments. It maintains a data archive of approximately 4 TB that includes all neutron scattering data collected since it came on line in 1986. Data gathered at the Lujan Center are now archived using the IBM Tivoli Storage System. No Personal information shall be stored with the data other than the User's home institution and institutional

  10. Materials Control and Accountability Program Manager | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Materials Control and Accountability Program Manager Amy Whitworth Amy Whitworth July 2009 Fellow by the Institute of Nuclear Materials Management NNSA Materials Control and Accountability Program Manager Amy Whitworth was awarded the prestigious title of Fellow by the Institute of Nuclear Materials Management during its recent annual meeting in Tucson, Ariz. Fellows must be nominated by their peers, recommended by the INMM Fellows Committee and approved by

  11. American Gas Association (AGA) for DOE Furnace Product Class | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (AGA) for DOE Furnace Product Class American Gas Association (AGA) for DOE Furnace Product Class Thank you for the opportunity to brief your staff in recent weeks on an impact analysis of a national condensing furnace standard, which was conducted jointly by the American Gas Association (AGA), the American Public Gas Association (APGA), and the Gas Technology Institute (GTI). AGA e-mail for DOE Furnace Product Class (83.56 KB) AGA Cover Letter for Furnace Product Class White Paper

  12. Management Rachana Ananthakrishnan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Globus for Data Management Rachana Ananthakrishnan (ranantha@uchicago.edu) Computation Institute Data Management Challenges * "Transfers often take longer than expected based on available network capacities" * "Lack of an easy to use interface to some of the high-performance tools" * "Tools [are] too difficult to install and use" * "Time and interruption to other work required to supervise large data transfers" * "Need data transfer tools that are

  13. ENERGY STAR® Portfolio Manager® Guidance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA's ENERGY STAR Portfolio Manager is an online tool you can use to measure and track energy and water consumption, greenhouse gas emissions, and benchmark the performance of ...

  14. Tools for Forest Carbon Inventory, Management, and Reporting...

    Open Energy Info (EERE)

    of carbon in forests are crucial for forest carbon management, carbon credit trading, national reporting of greenhouse gas inventories to the United Nations Framework...

  15. Data Management at the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Management at the ALS Print Users of the ALS are responsible for meeting their data management obligations to their home institutions and granting agencies. Except as noted below for data stored at NERSC, the ALS does not provide specific resources to manage data that are generated through user experiments. Because the ALS does not have a facility-wide data archiving service or staff to manage the data, the user must generally make arrangements to copy data to their own storage systems or

  16. Sulfur gas emissions from stored flue-gas-desulfurization sludges

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1980-01-01

    In field studies conducted for the Electric Power Research Institute by the University of Washington (1978) and the University of Idaho (1979), 13 gas samples from sludge storage sites at coal-burning power plants were analyzed by wall-coated open-tube cryogenic capillary-column gas chromatography with a sulfur-selective flame-photometric detector. Hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide were identified in varying concentrations and ratios in the emissions from both operating sludge ponds and landfills and from FGD sludge surfaces that had been stored in the open for 3-32 mo or longer. Other sulfur compounds, probably propanethiols, were found in emissions from some sludges. Chemical ''stabilization/fixation'' sulfate-sulfite ratio, sludge water content, and temperature were the most significant variables controlling sulfur gas production. The average sulfur emissions from each of the 13 FGD storage sites ranged from 0.01 to 0.26 g/sq m/yr sulfur.

  17. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  18. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  19. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    SciTech Connect (OSTI)

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  20. PETASCALE DATA STORAGE INSTITUTE (PDSI) Final Report

    SciTech Connect (OSTI)

    Gibson, Garth

    2012-11-26

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability. The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools. The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz. Because the Institute focuses on low level files systems and storage systems, its role in improving SciDAC systems was one of supporting application middleware such as data management and system-level performance tuning. In retrospect, the Petascale Data Storage Institute’s most innovative and impactful contribution is the Parallel Log-structured File System (PLFS). Published in SC09, PLFS is middleware that operates in MPI-IO or embedded in FUSE for non-MPI applications. Its function is to decouple concurrently written files into a per-process log file, whose impact (the contents of the single file that the parallel application was concurrently writing) is determined on later reading, rather than during its writing. PLFS is transparent to the parallel application, offering a POSIX or MPI-IO interface, and it shows an order of magnitude speedup to the Chombo benchmark and two orders of magnitude to the FLASH benchmark. Moreover, LANL production applications see speedups of 5X to 28X, so PLFS has been put into production at LANL. Originally conceived and prototyped in a PDSI collaboration between LANL and CMU, it has grown to engage many other PDSI institutes, international partners like AWE

  1. Asian natural gas

    SciTech Connect (OSTI)

    Klass, D.L. ); Ohashi, T. )

    1989-01-01

    This book presents an overview of the present status and future development in Asia of domestic and export markets for natural gas and to describes gas utilization technologies that will help these markets grow. A perspective of natural gas transmission, transport, distribution, and utilization is presented. The papers in this book are organized under several topics. The topics are : Asian natural gas markets, Technology of natural gas export projects, Technology of domestic natural gas projects, and Natural gas utilization in power generation, air conditioning, and other applications.

  2. A critique of the performance of EIA within the offshore oil and gas sector

    SciTech Connect (OSTI)

    Barker, Adam Jones, Carys

    2013-11-15

    The oil and gas sector is a key driver of the offshore economy. Yet, it is also associated with a number of unwanted environmental impacts which potentially threaten the long term economic and environmental viability of marine ecosystems. Environmental Impact Assessment (EIA) can potentially make a significant contribution to the identification and management of adverse impacts through the promotion of evidence based decision making. However, the extent to which EIA has been embraced by key stakeholders is poorly understood. On this basis, this paper provides an initial evaluation of EIA performance within the oil and gas sector. The methodology adopted for the paper consisted of the structured review of 35 Environmental Statements (ESs) along with interviews with regulators, operators, consultants and advisory bodies. The findings reveal a mixed picture of EIA performance with a significant number of ESs falling short of satisfactory quality and a tendency for the process to be driven by compliance rather than best practice. -- Highlights: • Concerns identified relating to impacts of offshore oil and gas industry. • Research assesses performance of EIA in addressing impacts. • Findings highlight weak quality standards and procedural deficiencies. • Institutional reforms identified in order to improve practice.

  3. International Power Institute`s quarterly technical progress report, July--September 1998

    SciTech Connect (OSTI)

    Coles, J.E.

    1998-10-30

    The International Power Institute (IPI) at Morehouse College has organized a team to design and create a Short Term Training Program for ESKOM Union Leaders which will last four weeks and take place at a location in South Africa to be designated by ESKOM. This proposal envisions a group of no more than 25 union leaders to be trained at the same time but the program could be expanded to accommodate up to 40 trainees. The program is designed around interactive training with lectures followed by discussion, case studies, trainee work groups, homework assignments and two field study visits. Also, the program is designed to have a number of ESKOM management people join the course for one day in the second week and one day at the end, in each case after a half day of preparation in separate sessions from the union leaders, to share with the trainees expectations and, at the end of the program, their course experiences. In addition, IPI has prepared a follow on proposal for a Long Term Training Program. This LT program is specified in less detail but can be expanded based on future discussions with ESKOM management. The training program is designed with the following objectives: determine and identify the most pressing problems facing ESKOM Union Leadership in their relationship with management; instill in the union leadership a heightened sense of purpose and willingness to take ownership of a process that will increase effective outcomes of meaningful, good faith bargaining; develop skills and experience leading to improved union administration; enhance realistic expectations and improve process knowledge to facilitate future labor negotiations and grievance proceedings; and provide participants with enhanced skills and knowledge to develop and/or strengthen a functioning, democratic work culture and structure internal to the union.

  4. NETL: Natural Gas Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Resources Useful for heating, manufacturing, and as chemical feedstock, natural gas has the added benefit of producing fewer greenhouse gas emissions than other fossil fuels used in power production.The United States is endowed with an abundance of natural gas resources, so increasing use of natural gas power can help strengthen domestic energy security. NETL research efforts enhance technologies that reduce the cost, increase the efficiency, and reduce the environmental risk of

  5. DOE Joint Genome Institute 2008 Progress Report

    SciTech Connect (OSTI)

    Gilbert, David

    2009-03-12

    dominated how sequencing was done in the last decade is being replaced by a variety of new processes and sequencing instruments. The JGI, with an increasing number of next-generation sequencers, whose throughput is 100- to 1,000-fold greater than the Sanger capillary-based sequencers, is increasingly focused in new directions on projects of scale and complexity not previously attempted. These new directions for the JGI come, in part, from the 2008 National Research Council report on the goals of the National Plant Genome Initiative as well as the 2007 National Research Council report on the New Science of Metagenomics. Both reports outline a crucial need for systematic large-scale surveys of the plant and microbial components of the biosphere as well as an increasing need for large-scale analysis capabilities to meet the challenge of converting sequence data into knowledge. The JGI is extensively discussed in both reports as vital to progress in these fields of major national interest. JGI's future plan for plants and microbes includes a systematic approach for investigation of these organisms at a scale requiring the special capabilities of the JGI to generate, manage, and analyze the datasets. JGI will generate and provide not only community access to these plant and microbial datasets, but also the tools for analyzing them. These activities will produce essential knowledge that will be needed if we are to be able to respond to the world's energy and environmental challenges. As the JGI Plant and Microbial programs advance, the JGI as a user facility is also evolving. The Institute has been highly successful in bending its technical and analytical skills to help users solve large complex problems of major importance, and that effort will continue unabated. The JGI will increasingly move from a central focus on 'one-off' user projects coming from small user communities to much larger scale projects driven by systematic and problem-focused approaches to selection of

  6. National Institute for Global Environmental Change. Semi-annual report, July 1, 1991--December 31, 1991

    SciTech Connect (OSTI)

    Werth, G.C.

    1992-04-01

    This document is the Semi-Annual Report of the National Institute for Global Environmental Change for the reporting period July 1 to December 31, 1991. The report is in two parts. Part I presents the mission of the Institute, examples of progress toward that mission, a brief description of the revised management plan, and the financial report. Part II presents the statements of the Regional Center Directors along with progress reports of the projects written by the researchers themselves.

  7. Applications from Universities and Other Research Institutions | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Applications from Universities and Other Research Institutions Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search / Public Abstracts Additional Requirements and Guidance for Digital Data Management Peer Review Policies EFRCs FOA Applications from Universities and Other Research Institutions Construction Review EPSCoR

  8. 11th Annual Energy Department Joint Genome Institute Genomics of Energy & Environment Meeting

    Broader source: Energy.gov [DOE]

    The 11th Annual DOE Joint Genome Institute Genomics of Energy & Environment Meeting will be held March 21–25, 2016 in Walnut Creek, California. The meeting will gather together experts and researchers working in energy and environmental genomics and synthetic biology, and it will have a special focus on the work done at the DOE Joint Genome Institute. Bioenergy Technologies Office Technology Manager Daniel Fishman will be in attendance.

  9. 11th Annual DOE Joint Genome Institute Genomics of Energy & Environment Meeting

    Broader source: Energy.gov [DOE]

    The 11th Annual DOE Joint Genome Institute Genomics of Energy & Environment Meeting will be held March 21–25, 2016 in Walnut Creek, California. The meeting will gather together experts and researchers working in energy and environmental genomics and synthetic biology, and it will have a special focus on the work done at the DOE Joint Genome Institute. Bioenergy Technologies Office Technology Manager Daniel Fishman will be in attendance.

  10. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    Menu You must login in order to post into this group. Recent content Global Onshore Oil and Gas Market Research Report To 2019: Radiant Insights Group members (8) Managers:...

  11. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Energy Commodities Group Inc. BLM Releases Results of Lease Sale: The Bureau of Land Management (BLM) reported on Wednesday, March 28, that the recent auction of oil and gas...

  12. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    further downward pressure on spot prices. As of yesterday, October 1, the Minerals Management Service (MMS) reported that 3.5 billion cubic feet (Bcf) per day of natural gas...

  13. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Lease Sale for Offshore Tracts in the Central Gulf of Mexico: On October 3, the Minerals Management Service (MMS) announced that the Central Gulf of Mexico Oil and Gas Lease Sale...

  14. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Trends Natural Gas and Crude Oil Production Shut-ins in the Gulf of Mexico. The Minerals Management Service (MMS) of the Department of the Interior reported that a significant...

  15. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Gas Co. announced on Monday, March 20, that it will require the balancing of some Load Management (Market Area) Service (LMS-MA) contracts as a result of system imbalances. The...

  16. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    of Hurricanes Katrina and Rita has disrupted natural gas supplies and continued to prop up prices at near-record highs around the nation. According to the Minerals Management...

  17. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Leasing. The U. S. Department of the Interior's Minerals Management Service (MMS) held a sale of offshore oil and natural gas leases in the Central Gulf of Mexico on March 20,...

  18. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    over the period covered by this report (September 28 to October 5). The Minerals Management Service (MMS) reported that as of Wednesday, October 5, shut-in natural gas...

  19. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    12), shut-in natural gas production exceeded 2.3 Bcf per day, as reported by the Minerals Management Service (MMS). Cumulative "lost" production since late August is 526.2 Bcf,...

  20. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of Mexico continued to recover from the hurricane damage suffered in 2005. The Minerals Management Service (MMS) reported that shut-in natural gas production fell to 1.95 Bcf per...