National Library of Energy BETA

Sample records for gas lng facilities

  1. LNG plants in the US and abroad. [Liquefied Natural Gas (LNG)

    SciTech Connect (OSTI)

    Blazek, C.F.; Biederman, R.T.

    1992-01-01

    The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT's LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

  2. Renewable LNG: Update on the World's Largest Landfill Gas to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LNG: Update on the World's Largest Landfill Gas to LNG Plant Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant Success story about LNG from landfill gas....

  3. The application of expansion foam on liquefied natural gas (LNG) to suppress LNG vapor and LNG pool fire thermal radiation 

    E-Print Network [OSTI]

    Suardin, Jaffee Arizon

    2009-05-15

    Liquefied Natural Gas (LNG) hazards include LNG flammable vapor dispersion and LNG pool fire thermal radiation. A large LNG pool fire emits high thermal radiation thus preventing fire fighters from approaching and extinguishing the fire. One...

  4. Orders Granting Natural Gas, LNG & CNG Authorizations Issued...

    Office of Environmental Management (EM)

    Orders Granting Natural Gas, LNG & CNG Authorizations Issued in 2014 Orders Granting Natural Gas, LNG & CNG Authorizations Issued in 2014 Order 3378 - Encana Natural Gas Inc. Order...

  5. Supplying LNG markets using nitrogen rejection units at Exxon Shute Creek Facility

    SciTech Connect (OSTI)

    Hanus, P.M.; Kimble, E.L.

    1995-11-01

    Interest is growing in the United States for using Liquid Natural Gas (LNG) as an alternative transportation fuel for diesel and as a source of heating fuel. For gas producers, LNG offers a premium price opportunity versus conventional natural gas sales. To supply this developing market, two existing Nitrogen Rejection Units (NRU) at the Exxon Shute Creek Facility in Wyoming were modified allowing LNG extraction and truck loading for transport to customers. The modifications involved adding heat exchanger capacity to the NRUs to compensate for the refrigeration loss when LNG is removed. Besides allowing for LNG extraction, the modifications also debottlenecked the NRUs resulting in higher methane recovery and lower compression costs. With the modifications, the NRUs are capable of producing for sale 60,000 gpd (5 MMscfd gas equivalent) of high purity LNG. Total investment has been $5 million with initial sales of LNG occurring in September 1994.

  6. Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report

    SciTech Connect (OSTI)

    Brown, W.R.; Cook, W. J.; Siwajek, L.A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

  7. ,"Arkansas Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. ,"Maryland Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  9. ,"Nevada Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  10. ,"Nebraska Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"Wisconsin Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  12. ,"Wisconsin Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  13. ,"Connecticut Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  14. ,"Idaho Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  15. ,"Tennessee Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  16. ,"Indiana Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  17. ,"Missouri Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  18. ,"Pennsylvania Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  19. ,"Minnesota Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  20. ,"Nevada Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  1. ,"Pennsylvania Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  2. ,"California Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  3. ,"Georgia Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  4. ,"Washington Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. ,"Oregon Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"Connecticut Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. ,"Delaware Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. ,"Tennessee Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  9. ,"Maryland Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  10. ,"Arkansas Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"Louisiana Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  12. ,"Alaska Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Natural Gas LNG Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. ,"Missouri Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  14. ,"Texas Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  15. ,"Colorado Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  16. ,"Washington Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  17. ,"Alabama Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  18. ,"Georgia Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  19. ,"Virginia Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  20. ,"California Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  1. ,"Virginia Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  2. ,"Indiana Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  3. ,"Massachusetts Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  4. ,"Louisiana Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. ,"Minnesota Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"Oregon Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. ,"Idaho Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. ,"Delaware Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  9. ,"Nebraska Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  10. ,"Alabama Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"Massachusetts Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  12. ,"Maine Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  13. ,"Maine Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015"...

  14. Simulation and integration of liquefied natural gas (lng) processes 

    E-Print Network [OSTI]

    Al-Sobhi, Saad Ali

    2009-05-15

    gas (LNG). When there is a considerable distance involved in transporting natural gas, LNG is becoming the preferred method of supply because of technical, economic, and political reasons. Thus, LNG is expected to play a major role in meeting...

  15. Gas treating alternatives for LNG plants

    SciTech Connect (OSTI)

    Clarke, D.S.; Sibal, P.W.

    1998-12-31

    This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

  16. 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas...

  17. International Trade in Natural Gas: Golden Age of LNG?

    E-Print Network [OSTI]

    International Trade in Natural Gas: Golden Age of LNG? Yichen Du and Sergey Paltsev Report No. 271;1 International Trade in Natural Gas: Golden Age of LNG? Yichen Du* and Sergey Paltsev* Abstract The introduction of liquefied natural gas (LNG) as an option for international trade has created a market for natural gas where

  18. Caribbean LNG project marks progress; LNG tanker launched

    SciTech Connect (OSTI)

    1997-10-20

    World LNG trade continues to expand as construction of a major LNG project in the Caribbean hits full stride this fall and another LNG carrier was launched earlier this year. Engineering is nearly complete and construction is nearing midway on Trinidad`s Atlantic LNG. In Japan, NKK Corp. launched another LNG tanker that employs the membrane-storage system. The 50-mile pipeline to move natural gas to the Atlantic LNG facility is also on track for completion by October 1998.

  19. Bayesian-lopa methodology for risk assessment of an LNG importation terminal 

    E-Print Network [OSTI]

    Yun, Geun-Woong

    2009-05-15

    LNG (Liquefied Natural Gas) is one of the fastest growing energy sources in the U.S. to fulfill the increasing energy demands. In order to meet the LNG demand, many LNG facilities including LNG importation terminals are operating currently...

  20. Visual Simulation of Offshore Liquefied Natural Gas (LNG) Terminals

    E-Print Network [OSTI]

    Visual Simulation of Offshore Liquefied Natural Gas (LNG) Terminals in a Decision-Making Context1 potential offshore Liquified Natural Gas (LNG) sites and the types of terminals that might occupy those sites. The study had to evaluate the engineering feasibility of siting an LNG receiving terminal

  1. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu...

    Broader source: Energy.gov (indexed) [DOE]

    the potential environmental impacts of constructing and operating the proposed Magnolia LNG Project, an on-land liquefied natural gas (LNG) terminal and associated facilities near...

  2. Analysis of LNG peakshaving-facility release-prevention systems

    SciTech Connect (OSTI)

    Pelto, P.J.; Baker, E.G.; Powers, T.B.; Schreiber, A.M.; Hobbs, J.M.; Daling, P.M.

    1982-05-01

    The purpose of this study is to provide an analysis of release prevention systems for a reference LNG peakshaving facility. An overview assessment of the reference peakshaving facility, which preceeded this effort, identified 14 release scenarios which are typical of the potential hazards involved in the operation of LNG peakshaving facilities. These scenarios formed the basis for this more detailed study. Failure modes and effects analysis and fault tree analysis were used to estimate the expected frequency of each release scenario for the reference peakshaving facility. In addition, the effectiveness of release prevention, release detection, and release control systems were evaluated.

  3. ,"New Hampshire Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  4. ,"New Jersey Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. ,"New York Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"New Hampshire Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. ,"South Carolina Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. ,"North Carolina Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  9. ,"Rhode Island Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  10. ,"North Carolina Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"New Mexico Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  12. ,"New York Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  13. ,"South Dakota Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  14. ,"South Carolina Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  15. ,"Rhode Island Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  16. ,"New Jersey Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  17. Development of mid-scale and floating LNG facilities

    SciTech Connect (OSTI)

    Price, B.C.; Mortko, R.A.

    1998-12-31

    The development of large-scale base load LNG facilities has dominated the process industry for decades. However, in many areas of the world, base load facilities are not feasible due to inadequate reserves. Mid-scale facilities can be economically attractive in certain locations and, in fact, have several advantages which aid in their development. The PRICO II LNG liquefaction process offers a process configuration which fits well with these developments. The process has been used in a range of facility sizes from base load to peak shaving applications. In addition to onshore facilities, floating liquefaction facilities can be developed on barges or tankers to handle mid-scale to large scale LNG production. Concepts for several sizes and configurations of floating facilities have been developed using the PRICO II process integrated into a total production, liquefaction, and load-out system. This paper covers the PRICO process concept, application areas and facility configurations which are currently being developed for mid-scale and floating LNG facilities.

  18. International Trade in Natural Gas: Golden Age of LNG?

    E-Print Network [OSTI]

    Du, Y.

    The introduction of liquefied natural gas (LNG) as an option for international trade has created a market for natural gas where global prices may eventually be differentiated by the transportation costs between world ...

  19. Application of Computational Fluid Dynamics in the Forced Dispersion Modeling of LNG Vapor Clouds 

    E-Print Network [OSTI]

    Kim, Byung-Kyu

    2013-05-31

    The safety and security of liquefied natural gas (LNG) facilities has prompted the need for continued study of LNG mitigation systems. Water spray systems are widely recognized as an effective measure for dispersing LNG vapor clouds. Currently...

  20. New LNG process scheme

    SciTech Connect (OSTI)

    Foglietta, J.H.

    1999-07-01

    A new LNG cycle has been developed for base load liquefaction facilities. This new design offers a different technical and economical solution comparing in efficiency with the classical technologies. The new LNG scheme could offer attractive business opportunities to oil and gas companies that are trying to find paths to monetize gas sources more effectively; particularly for remote or offshore locations where smaller scale LNG facilities might be applicable. This design offers also an alternative route to classic LNG projects, as well as alternative fuel sources. Conceived to offer simplicity and access to industry standard equipment, This design is a hybrid result of combining a standard refrigeration system and turboexpander technology.

  1. Conceptual Liquefied Natural Gas (LNG) terminal design for Kuwait 

    E-Print Network [OSTI]

    Aljeeran, Fares

    2006-08-16

    This research study investigated a new conceptual design for a modular structural configuration incorporating storage for Liquefied Natural Gas (LNG) within the base of the platform structure. The structure, referred to as a modified gravity base...

  2. ,"Alaska Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Additions (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska...

  3. LNG plants in the US and abroad

    SciTech Connect (OSTI)

    Blazek, C.F.; Biederman, R.T.

    1992-12-31

    The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT`s LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

  4. Liquified Natural Gas (LNG) for Hawaii: Policy, Economic, and Technical Questions

    E-Print Network [OSTI]

    Liquified Natural Gas (LNG) for Hawaii: Policy, Economic, and Technical Questions This report presents analyses for the potential demand for LNG in Hawai`i, potential benefits and costs of LNG importation, and features of the regulatory structure, policy, and practices for LNG. The report was submitted

  5. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.

    SciTech Connect (OSTI)

    Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

    2004-12-01

    While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

  6. Notes on Sable Natural Gas Production December 1999 to November 2005

    E-Print Network [OSTI]

    Hughes, Larry

    , as well as its embracing of the proposed liquefied natural gas (LNG) facilities at Bear Head and Guysboro. Without the availability of natural gas from LNG, Nov

  7. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect (OSTI)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  8. Control of Vapor Dispersion and Pool Fire of Liquefied Natural Gas (LNG) with Expansion Foam 

    E-Print Network [OSTI]

    Yun, Geun Woong

    2011-10-21

    Liquefied Natural Gas (LNG) is flammable when it forms a 5 – 15 percent volumetric concentration mixture with air at atmospheric conditions. When the LNG vapor comes in contact with an ignition source, it may result in fire and/or explosion. Because...

  9. Study of the Effects of Obstacles in Liquefied Natural Gas (LNG) Vapor Dispersion using CFD Modeling 

    E-Print Network [OSTI]

    Ruiz Vasquez, Roberto

    2012-10-19

    The evaluation of the potential hazards related with the operation of an LNG terminal includes possible release scenarios with the consequent flammable vapor dispersion within the facility; therefore, it is important to know the behavior...

  10. EIS-0519: Rio Grande LNG Project and Rio Bravo Pipeline Project...

    Broader source: Energy.gov (indexed) [DOE]

    (LNG) export terminal and marine facilities on the Brownsville Ship Channel in Cameron County, Texas, and two parallel 140-mile-long natural gas pipelines from Kleberg County,...

  11. Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes 

    E-Print Network [OSTI]

    Qi, Ruifeng

    2012-10-19

    Federal regulation 49 CFR 193 and standard NFPA 59A require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. For modeling purposes, the physical...

  12. Using LNG to meet the challenge of gas composition

    SciTech Connect (OSTI)

    Pehrson, N.C. [Minnegasco, Minneapolis, MN (United States)

    1995-12-31

    Currently NGV fuel providers are taking actions in response to customer concerns regarding moisture and oil in compressed natural gas (CNG) fuel. Dryers are being installed and oil coalescing or non-lubricated compression equipment is being evaluated in order to minimize problems. Some utilities actively pursuing the NGV market utilize propane-air peak shaving plants to meet cold weather distribution systems demands. The effects of adding these heavier hydrocarbons have not yet appeared to result in major NGV engine problems. However, commercialization of new engine technologies will result in engines that are more fuel sensitive. As the market matures and engine tolerances narrow, increasingly stringent fuel quality standards will be developed and enforced. The Natural Gas Vehicle Technology Partnership has a proposed plan for its Fuel Composition Project which tentatively targets establishing an enforcement mechanisms for meeting gas composition standards in all fifty states as early as December 1996. Propane-air peak shaving utilities need to evaluate how they will address NGV gas quality requirements or risk serious engine problems and customer dissatisfaction. LNG may be a viable solution to meeting gas composition requirements.

  13. ,"South Dakota Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Additions (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota...

  14. LNG production for peak shaving operations

    SciTech Connect (OSTI)

    Price, B.C.

    1999-07-01

    LNG production facilities are being developed as an alternative or in addition to underground storage throughout the US to provide gas supply during peak gas demand periods. These facilities typically involved a small liquefaction unit with a large LNG storage tank and gas sendout facilities capable of responding to peak loads during the winter. Black and Veatch is active in the development of LNG peak shaving projects for clients using a patented mixed refrigerant technology for efficient production of LNG at a low installed cost. The mixed refrigerant technology has been applied in a range of project sizes both with gas turbine and electric motor driven compression systems. This paper will cover peak shaving concepts as well as specific designs and projects which have been completed to meet this market need.

  15. Strategic evaluation central to LNG project formation

    SciTech Connect (OSTI)

    Nissen, D.; DiNapoli, R.N.; Yost, C.C.

    1995-07-03

    An efficient-scale, grassroots LNG facility of about 6 million metric tons/year capacity requires a prestart-up outlay of $5 billion or more for the supply facilities--production, feedgas pipeline, liquefaction, and shipping. The demand side of the LNG chain requires a similar outlay, counting the import-regasification terminal and a combination of 5 gigawatts or more of electric power generation or the equivalent in city gas and industrial gas-using facilities. There exist no well-developed commodity markets for free-on-board (fob) or delivered LNG. A new LNG supply project is dedicated to its buyers. Indeed, the buyers` revenue commitment is the project`s only bankable asset. For the buyer to make this commitment, the supply venture`s capability and commitment must be credible: to complete the project and to deliver the LNG reliably over the 20+ years required to recover capital committed on both sides. This requirement has technical, economic, and business dimensions. In this article the authors describe a LNG project evaluation system and show its application to typical tasks: project cost of service and participant shares; LNG project competition; alternative project structures; and market competition for LNG-supplied electric power generation.

  16. EIS-0487: Freeport LNG Liquefaction Project, Brazoria County, Texas

    Broader source: Energy.gov [DOE]

    Federal Energy Regulatory Commission (FERC) prepared an EIS to analyze the potential environmental impacts of a proposal to construct and operate the Freeport Liquefied Natural Gas (LNG) Liquefaction Project, which would expand an existing LNG import terminal and associated facilities in Brazoria County, Texas, to enable the terminal to liquefy and export LNG. DOE, Office of Fossil Energy – a cooperating agency in preparing the EIS – has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  17. Liquified Natural Gas (LNG) for Hawaii: Policy, Economic, and Technical Questions

    E-Print Network [OSTI]

    Liquified Natural Gas (LNG) for Hawaii: Policy, Economic, and Technical Questions This report Natural Gas for Hawai`i: Policy Economic and Technical Questions Prepared for the U.S. Department Hawai`i Energy Sustainability Program Task 4: Deliverable on Liquefied Natural Gas Prepared by FACTS

  18. Selection of an acid-gas removal process for an LNG plant

    SciTech Connect (OSTI)

    Stone, J.B.; Jones, G.N.; Denton, R.D.

    1996-12-31

    Acid gas contaminants, such as, CO{sub 2}, H{sub 2}S and mercaptans, must be removed to a very low level from a feed natural gas before it is liquefied. CO{sub 2} is typically removed to a level of about 100 ppm to prevent freezing during LNG processing. Sulfur compounds are removed to levels required by the eventual consumer of the gas. Acid-gas removal processes can be broadly classified as: solvent-based, adsorption, cryogenic or physical separation. The advantages and disadvantages of these processes will be discussed along with design and operating considerations. This paper will also discuss the important considerations affecting the choice of the best acid-gas removal process for LNG plants. Some of these considerations are: the remoteness of the LNG plant from the resource; the cost of the feed gas and the economics of minimizing capital expenditures; the ultimate disposition of the acid gas; potential for energy integration; and the composition, including LPG and conditions of the feed gas. The example of the selection of the acid-gas removal process for an LNG plant.

  19. Energy Department Authorizes Alaska LNG Project, LLC to Export...

    Broader source: Energy.gov (indexed) [DOE]

    Department announced today that it has issued a conditional authorization for the Alaska LNG Project, LLC (Alaska LNG) to export domestically produced liquefied natural gas (LNG)...

  20. Method and apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    DOE Patents [OSTI]

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2005-05-31

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  1. LNG fire and vapor control system technologies

    SciTech Connect (OSTI)

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  2. Opening of the Cheniere Energy Sabine Pass LNG Regasification Facility |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 NewsORMATDepartment of Energy Presenter:

  3. Potential for long-term LNG supplies to the United States

    SciTech Connect (OSTI)

    Lihn, M.L.

    1992-02-01

    Topics discussed here include: (1) terminal capacity; (2) potential sources for US LNG (liquefied natural gas) imports; (3) LNG liquefaction and transportation capacity; (4) historical US LNG imports; (5) LNG supply costs; (6)delivered cost of future LNG imports.

  4. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  5. 3 , LNG (Liquefied Natural Gas) -165oC

    E-Print Network [OSTI]

    Hong, Deog Ki

    . GTL CNG (Compressed Natural Gas), GTW (Gas to Wire), NGH . CNG () . NGH () . NGH . CNG , ANG (Adsorbed Natural Gas) . . . .ANG CNG . #12;

  6. Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

    1998-02-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

  7. Energy Department Authorizes Dominion Cove Point LNG to Export...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Authorizes Dominion Cove Point LNG to Export Liquefied Natural Gas Energy Department Authorizes Dominion Cove Point LNG to Export Liquefied Natural Gas May 7,...

  8. Energy Department Authorizes Freeport LNG to Export Liquefied...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Authorizes Freeport LNG to Export Liquefied Natural Gas Energy Department Authorizes Freeport LNG to Export Liquefied Natural Gas November 14, 2014 - 2:00pm Addthis News...

  9. Energy Department Authorizes American LNG Marketing LLC's Application...

    Energy Savers [EERE]

    American LNG Marketing LLC's Application to Export Liquefied Natural Gas Energy Department Authorizes American LNG Marketing LLC's Application to Export Liquefied Natural Gas...

  10. Energy Department Conditionally Authorizes Cameron LNG to Export...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cameron LNG to Export Liquefied Natural Gas Energy Department Conditionally Authorizes Cameron LNG to Export Liquefied Natural Gas February 11, 2014 - 11:15am Addthis WASHINGTON -...

  11. ,"Maine Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNGUndergroundDry NaturalGas, Wet AfterAnnual",2014LNG

  12. ,"Maryland Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNGUndergroundDry NaturalGas,Annual",2014 ,"ReleaseLNG

  13. ,"Virginia Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, WetGas, Wet AfterLNG Storage Net Withdrawals

  14. ,"Washington Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, WetGas, Wet AfterLNGNonassociated NaturalConsumptionLNG

  15. ,"Wisconsin Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, WetGas,ConsumptionAnnual",2014Consumption byLNG

  16. ,"Louisiana Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNGUndergroundDry Natural Gas ExpectedDryLNG Storage Net

  17. Comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG) used by transit agencies in Texas. Research report

    SciTech Connect (OSTI)

    Lede, N.W.

    1997-09-01

    This study is a detailed comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG). The study provides data on two alternative fuels used by transit agencies in Texas. First, we examine the `state-of-the- art` in alternative fuels to established a framework for the study. Efforts were made to examine selected characteristics of two types of natural gas demonstrations in terms of the following properties: energy source characteristics, vehicle performance and emissions, operations, maintenance, reliability, safety costs, and fuel availability. Where feasible, two alternative fuels were compared with conventional gasoline and diesel fuel. Environmental considerations relative to fuel distribution and use are analyzed, with a focus on examining flammability an other safety-related issues. The objectives of the study included: (1) assess the state-of-the-art and document relevant findings pertaining to alternative fuels; (2) analyze and synthesize existing databases on two natural gas alternatives: liquefied natural gas (LNG) and compressed natural gas (CNG): and (3) compare two alterative fuels used by transit properties in Texas, and address selected aspects of alternative fuels such as energy source characteristics, vehicle performance and emissions, safety, costs, maintenance and operations, environmental and related issues.

  18. Arkansas Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear JanYear

  19. Colorado Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas WellsFoot)Year Jan FebNet

  20. LNG Observer: Second Qatargas train goes onstream

    SciTech Connect (OSTI)

    1997-01-01

    The January-February, 1997 issue of the LNG Observer is presented. The following topics are discussed: second Qatargas train goes onstream; financing for the eighth Indonesian liquefaction train; Koreans take stakes in Oman LNG; US imports and exports of LNG in 1996; A 60% increase in proved reserves on the North West Shelf; proposals for Indian LNG terminal CEDIGAZ forecasts world LNG trade by 2010; growth for North African gas production and exports; and new forecast sees strong growth for Asian gas.

  1. Virginia Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved

  2. Georgia Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved% of TotalInput Supplemental FuelsNet

  3. Idaho Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillion Cubic Feet) Havre,1BureauImports (NoYearNet

  4. Illinois Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillion Cubic Feet)ThousandYear Jan Feb Mar AprNet

  5. Indiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillion CubicOctober 2015 Estimates%InputNet

  6. Iowa Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillion CubicOctoberperFeet) Year JanNet

  7. Louisiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of33Cubic Foot)Year Jan Feb MarNet

  8. Maine Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUM FOR: JOHN CONTIPeterFeet)InputNet

  9. Maryland Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUM FOR:Decade Year-0 Year-1Net Withdrawals

  10. Massachusetts Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUM FOR:DecadeCubic Foot)Year

  11. Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY,ProvedFeet) YearYear JanNet

  12. Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32 4.46ProductionCrude%DecadeYearNet

  13. California Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona -ProductionWetReservesCubic(NoNet

  14. Connecticut Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet)Cubic1992 ConsumptionYearYear

  15. Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet)Cubic1992Thousand9)% ofYear

  16. Nebraska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (next release 2:00Decade Year-0Net Withdrawals

  17. Nevada Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (nextNet Withdrawals (Million Cubic Feet)

  18. Oregon Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ LeaseWellhead%TexasCubicDecade%YearNet

  19. Pennsylvania Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+Elements)

  20. Minnesota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S.2Imports

  1. Missouri Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved ReservesFoot) DecadeNet Withdrawals

  2. Tennessee Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1Plant Processing Definitions KeycontainsFeet)Year JanNet

  3. Texas Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation,% of Total ResidentialYear Jan FebInputNet

  4. Washington Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2 Year-3DecemberImports

  5. Wisconsin Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2YearWesternYear Jan Feb Mar AprNet

  6. Alabama Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic(MillionDecade Year-0 Year-1Additions

  7. Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic(MillionDecade Year-0

  8. Alaska Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304Exports (NoYear Jan Feb Mar

  9. Alaska Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304Exports (NoYear Jan Feb Mar

  10. Arkansas Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570MonthThousand8 2 2 2Additions (Million

  11. Arkansas Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570MonthThousand8 2 2 2Additions

  12. California Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSales (BillionFeet)Feet)Additions

  13. California Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSales

  14. Colorado Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991Feet) Year

  15. Connecticut Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions (Million Cubic Feet)

  16. Connecticut Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions (Million Cubic

  17. Delaware Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions1 0 0 02009Decade

  18. Delaware Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions1 0 0 02009DecadeWithdrawals

  19. Georgia Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar87.1 81.2 38.0Feet)

  20. Georgia Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar87.1 81.2 38.0Feet)Withdrawals

  1. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar87.1CubicYearFeet)Cubic

  2. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar87.1CubicYearFeet)CubicTobago

  3. Idaho Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousandThousand Cubic.C

  4. Idaho Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousandThousand Cubic.CWithdrawals

  5. Illinois Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan Feb Mar Apr MayFeet)

  6. Illinois Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan Feb Mar Apr MayFeet)Withdrawals

  7. Indiana Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan FebperDecade Year-0Feet) Year

  8. Indiana Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan FebperDecade Year-0Feet)

  9. Iowa Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear JanDecadeperInjections into

  10. Iowa Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear JanDecadeperInjections intoWithdrawals

  11. Louisiana Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear Jan Feb Mar AprAdditions

  12. Louisiana Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear Jan Feb Mar

  13. Maine Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0 Year-1 Year-2 Year-3Decade

  14. Maine Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0 Year-1 Year-2

  15. Maryland Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0Year Jan Feb Mar Apr

  16. Maryland Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0Year Jan Feb Mar AprWithdrawals

  17. Massachusetts Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0YearDecade Year-0Feet)

  18. Massachusetts Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0YearDecade Year-0Feet)Withdrawals

  19. Minnesota Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15May-15DecadeAdditions (Million

  20. Minnesota Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15May-15DecadeAdditions

  1. Missouri Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522Decade(MillionfromFeet)

  2. Missouri Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19

  3. Project financing knits parts of costly LNG supply chain

    SciTech Connect (OSTI)

    Minyard, R.J.; Strode, M.O.

    1997-06-02

    The supply and distribution infrastructure of an LNG project requires project sponsors and LNG buyers to make large, interdependent capital investments. For a grassroots project, substantial investments may be necessary for each link in the supply chain: field development; liquefaction plant and storage; ports and utilities; ships; receiving terminal and related facilities; and end-user facilities such as power stations or a gas distribution network. The huge sums required for these projects make their finance ability critical to implementation. Lenders have become increasingly comfortable with LNG as a business and now have achieved a better understanding of the risks associated with it. Raising debt financing for many future LNG projects, however, will present new and increasingly difficult challenges. The challenge of financing these projects will be formidable: political instability, economic uncertainty, and local currency volatility will have to be recognized and mitigated. Described here is the evolution of financing LNG projects, including the Rasgas LNG project financing which broke new ground in this area. The challenges that lie ahead for sponsors seeking to finance future projects selling LNG to emerging markets are also discussed. And the views of leading experts from the field of project finance, specifically solicited for this article, address major issues that must be resolved for successful financing of these projects.

  4. The Asia Pacific LNG trade: Status and technology development

    SciTech Connect (OSTI)

    Hovdestad, W.R.

    1995-10-01

    The Asia Pacific Region is experiencing a period of sustained economic expansion. Economic growth has led to an increasing demand for energy that has spurred a rapid expansion of baseload liquefied natural gas (LNG) facilities in this region. This is illustrated by the fact that seven of the ten baseload facilities in existence provide LNG for markets in the Asia Pacific region. With the three exceptions having been initially commissioned in 1972 and earlier, it is fair to observed that most advances in LNG technology have been developed and applied for this market. The paper presents the current status and identified future trends for the Asia Pacific LNG trade. Technology development in terms of application to onstream production, processing and transportation facilities, including LNG tankers, is presented. The potential of future advances to applied technology and operational practices to improve the cost-effectiveness of new and existing facilities is discussed. Current design data and methods as actually used are examined in terms of identifying where fundamental research and basic physical data are insufficient for optimization purposes. These findings are then summarized and presented in terms of the likely evolution of future and existing LNG projects in the Asia Pacific region.

  5. Overview study of LNG release prevention and control systems

    SciTech Connect (OSTI)

    Pelto, P.J.; Baker, E.G.; Holter, G.M.; Powers, T.B.

    1982-03-01

    The liquefied natural gas (LNG) industry employs a variety of release prevention and control techniques to reduce the likelihood and the consequences of accidental LNG releases. A study of the effectiveness of these release prevention and control systems is being performed. Reference descriptions for the basic types of LNG facilities were developed. Then an overview study was performed to identify areas that merit subsequent and more detailed analyses. The specific objectives were to characterize the LNG facilities of interest and their release prevention and control systems, identify possible weak links and research needs, and provide an analytical framework for subsequent detailed analyses. The LNG facilities analyzed include a reference export terminal, marine vessel, import terminal, peakshaving facility, truck tanker, and satellite facility. A reference description for these facilities, a preliminary hazards analysis (PHA), and a list of representative release scenarios are included. The reference facility descriptions outline basic process flows, plant layouts, and safety features. The PHA identifies the important release prevention operations. Representative release scenarios provide a format for discussing potential initiating events, effects of the release prevention and control systems, information needs, and potential design changes. These scenarios range from relatively frequent but low consequence releases to unlikely but large releases and are the principal basis for the next stage of analysis.

  6. Energy Department Conditionally Authorizes Oregon LNG to Export...

    Broader source: Energy.gov (indexed) [DOE]

    WASHINGTON - The Energy Department announced today that it has conditionally authorized LNG Development Co., LLC (Oregon LNG) to export domestically produced liquefied natural gas...

  7. Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000

    SciTech Connect (OSTI)

    Brown, W. R.; Cook, W. J.; Siwajek, L. A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

  8. Environmental and Economical Evaluation of Integrating NGL Extraction and LNG Liquefaction Technology in Iran LNG Project 

    E-Print Network [OSTI]

    Manesh, M. H. K.; Mazhari, V.

    2009-01-01

    The combination of changing global markets for natural gas liquids (NGL) with the simultaneous increase in global demand for liquefied natural gas (LNG) has stimulated an interest in the integration of NGL recovery technology with LNG liquefaction...

  9. First LNG from North field overcomes feed, start-up problems

    SciTech Connect (OSTI)

    Redha, A.; Rahman, A.; Al-Thani, N.H.; Ishikura, Masayuki; Kikkawa, Yoshitsugi

    1998-08-24

    Qatar Gas LNG is the first LNG project in the gas-development program of the world`s largest gas reservoir, North field. The LNG plant was completed within the budget and schedule. The paper discusses the LNG plant design, LNG storage and loading, alternative mercaptan removal, layout modification, information and control systems, training, data management systems, start-up, and performance testing.

  10. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect (OSTI)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  11. Liquefied Natural Gas: Global Challenges (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    U.S. imports of liquefied natural gas (LNG) in 2007 were more than triple the 2000 total, and they are expected to grow in the long term as North Americas conventional natural gas production declines. With U.S. dependence on LNG imports increasing, competitive forces in the international markets for natural gas in general and LNG in particular will play a larger role in shaping the U.S. market for LNG. Key factors currently shaping the future of the global LNG market include the evolution of project economics, worldwide demand for natural gas, government policies that affect the development and use of natural resources in countries with LNG facilities, and changes in seasonal patterns of LNG trade.

  12. Introduction to LNG vehicle safety. Topical report

    SciTech Connect (OSTI)

    Bratvold, D.; Friedman, D.; Chernoff, H.; Farkhondehpay, D.; Comay, C.

    1994-03-01

    Basic information on the characteristics of liquefied natural gas (LNG) is assembled in this report to provide an overview of safety issues and practices for the use of LNG vehicles. This document is intended for those planning or considering the use of LNG vehicles, including vehicle fleet owners and operators, public transit officials and boards, local fire and safety officials, manufacturers and distributors, and gas industry officials. Safety issues and mitigation measures that should be considered for candidate LNG vehicle projects are addressed.

  13. A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG

    SciTech Connect (OSTI)

    Michael M. McCall; William M. Bishop; Marcus Krekel; James F. Davis; D. Braxton Scherz

    2005-05-31

    This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly when located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. Operating costs of a salt cavern terminal are lower than tank based terminals because ''boil off'' is eliminated and maintenance costs of caverns are lower than LNG tanks. Phase II included the development of offshore mooring designs, wave tank tests, high pressure LNG pump field tests, heat exchanger field tests, and development of a model offshore LNG facility and cavern design. Engineers designed a model facility, prepared equipment lists, and confirmed capital and operating costs. In addition, vendors quoted fabrication and installation costs, confirming that an offshore salt cavern based LNG terminal would have lower capital and operating costs than a similarly sized offshore tank based terminal. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or purposeful damage, and much more acceptable to the community. More than thirty industry participants provided cost sharing, technical expertise, and guidance in the conduct and evaluation of the field tests, facility design and operating and cost estimates. Their close participation has accelerated the industry's acceptance of the conclusions of this research. The industry participants also developed and submitted several alternative designs for offshore mooring and for high pressure LNG heat exchangers in addition to those that were field tested in this project. HNG Storage, a developer, owner, and operator of natural gas storage facilities, and a participant in the DOE research has announced they will lead the development of the first offshore salt cavern based LNG import facility. Which will be called the Freedom LNG Terminal. It will be located offshore Louisiana, and is expected to be jointly developed with other members of the research group yet to be named. An offshore port license application is scheduled to be filed by fourth quarter 2005 and the terminal could be operational by 2009. This terminal allows the large volume importa

  14. The effect of LNG on the relationship between UK and Continental Europena natural gas markets

    E-Print Network [OSTI]

    Koenig, Philipp

    2012-12-10

    the structural relationship between UK and Continental European markets. (ii) The effect of UK import capacity extensions since 2005, through both pipeline and LNG regasification capacity, on this long-term relationship will be analyzed. The results suggest...

  15. Large Neighborhood Search for LNG Inventory Routing

    E-Print Network [OSTI]

    Feb 3, 2012 ... Abstract: Liquefied Natural Gas (LNG) is steadily becoming a common mode for commercializing natural gas. Due to the capital intensive ...

  16. Nippon Kokan technical report No. 42, December 1984: overseas. LNG technology special issue

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Contents INCLUDE: fracture toughness of 9% Ni steel and safety of LNG storage tank; fatigue strength and safety assessment of membrane components; comparison of LNG carriers of membrane tank system and spherical tank system; diesel-driven LNG carrier with reliquefaction plant; construction of TGZ MK I system LNG carrier model tank and its cryogenic tests; vacuum insulation test using LNG model tank; estimation of impact pressure and hydrodynamic force due to sloshing in LNG carrier; Higashi-Ohgishima LNG receiving facility for the Tokyo Electric Power Co., Inc.; design of LNG receiving facility; receiving and circulation control system of Higashi-Ohgishima LNG terminal; welding procedure of LNG pipelines; the design method of inground LNG storage tank; the design method of aboveground LNG storage tank; various applications of LNG tank roll-over simulation program ROSP.

  17. Optimal operation of a mixed fluid cascade LNG process

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Optimal operation of a mixed fluid cascade LNG process Jørgen Bauck Jensen & Sigurd Skogestad distances is to first produce liquefied natural gas (LNG) and then transport the LNG by ships. At atmospheric pressure LNG has approximately 600 times the density of gaseous NG and a temperature of ap

  18. Monitoring, safety systems for LNG and LPG operators

    SciTech Connect (OSTI)

    True, W.R.

    1998-11-16

    Operators in Korea and Australia have chosen monitoring and control systems in recent contracts for LNG and LPG storage. Korea Gas Corp. (Kogas) has hired Whessoe Varec, Calais, to provide monitoring systems for four LNG storage tanks being built at Kogas` Inchon terminal. For Elgas Ltd., Port Botany, Australia, Whessoe Varec has already shipped a safety valve-shutdown system to a new LPG cavern-storage facility under construction. The paper describes the systems, terminal monitoring, dynamic approach to tank management, and meeting the growing demand for LPG.

  19. ,"Nevada Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA -LiquidsAnnual",2014LNG Storageb. Historical NetLNG Storage Net

  20. ,"Colorado Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG Storage NetConsumption by End Use"LNG Storage Net

  1. ,"Connecticut Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG Storage NetConsumptionConsumption by EndLNG Storage Net

  2. ,"Delaware Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG Storage NetConsumptionConsumption byConsumption byLNG Storage

  3. ,"Georgia Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG StorageCoalbed MethaneWellhead PriceConsumption byLNG Storage

  4. ,"Idaho Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG StorageCoalbedPrices" ,"ClickConsumption byLNG

  5. ,"Indiana Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG StorageCoalbedPrices"+Wellhead PriceLNG Storage Net

  6. ,"Iowa Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG StorageCoalbedPrices"+WellheadWellheadLNG Storage Net

  7. EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun and Jackson Counties, Texas

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal consisting of two floating liquefaction, storage and offloading units and a 29-mile pipeline header system to transport natural gas from existing pipeline systems to the LNG terminal facilities.

  8. Energy Department Authorizes Cameron LNG and Carib Energy to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cameron LNG and Carib Energy to Export Liquefied Natural Gas Energy Department Authorizes Cameron LNG and Carib Energy to Export Liquefied Natural Gas September 10, 2014 - 2:00pm...

  9. Tempe Transportation Division: LNG Turbine Hybrid Electric Buses

    SciTech Connect (OSTI)

    Not Available

    2002-02-01

    Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

  10. Method for processing LNG for rankine cycle

    SciTech Connect (OSTI)

    Aoki, I.; Matsumoto, O.

    1983-06-14

    A method is disclosed for processing lng using a mixed heat medium for performing a rankine cycle to gasify the lng. The medium is prepared by batch distillation using only lng. The method comprises the steps of condensing an upflow vapor in a single distillation column employing part of the lng in an lng batch distillation cycle, venting one fraction having low boiling point components mainly containing methane, and accumulating the other fractions containing ethane and components heavier than ethane. The supply of lng to be distilled in the column is halted. A total condensing operation is performed in which the other fractions are sequentially condensed by part of the lng at the condenser to sequentially recover and mix each component with the other fractions. Lng is added as the methane component to the recovered mixture of components to prepare a mixed heat medium consisting of components selected from hydrocarbons having 1-6 carbon atoms, or hydrocarbons having 1-6 carbon atoms and nitrogen. The mixed heat medium is stored. A mixed heat medium vapor generated by heat input to the stored mixed heat medium is condensed by lng and returned to the mixed heat medium; collection and complete gasification of the low boiling point components mainly containing methane and the lng is gasified by condensation to provide an lng vapor gas. Lng is gasified by performing the rankine cycle with the mixed heat medium.

  11. Cove Point: A step back into the LNG business

    SciTech Connect (OSTI)

    Katz, M.G.

    1995-12-31

    In 1978, ships began unloading LNG from Algeria at Cove Point`s berthing facilities 1.25 miles offshore. An underwater pipeline transported the LNG to land, where it was stored in the terminal`s four 140-foot-high cryogenic storage tanks. When the LNG was needed, the terminals 10 vaporizers converted it back to gas for send out via an 87-mile-long, 36-inch-diameter pipeline linking the terminal with interstate pipelines of CNG Transmission Corp. and Columbia Gas Transmission Corp. in Loudon County, Va. But Cove Point handled only about 80 shiploads of LNG before shutting down in December 1980, after a dispute about gas prices between US customers and Algeria. The plant sat dormant until the natural gas industry`s deregulation under Order 636. Deregulation resulted in major pipelines abandoning their sales service, and gas distributors and large customers found it was now their obligation to ensure that they had adequate gas supplies during winter peak-demand periods. Enter Cove Point`s peaking capabilities. They had to add the liquefaction unit and recommission other parts of the plant, but the timing was right. Cove Point`s new liquefaction unit is liquefying about 15 million cubic feet (MMcf) of LNG per day of domestic gas. It chills the gas to {minus}260 degrees Fahrenheit to turn it into a liquid for injection and storage in one of the facility`s double-walled insulated tanks. During its initial injection season, which ends Dec. 15, Cove Point is expected to produce enough LNG to almost fill one tank, which can store up to 1.25 billion cubic feet (Bcf). Were the gas not intended for peak-shaving purposes, it would be enough to supply 14,000 homes for a year. As it is, most of the gas will be returned as pipeline gas, during next January and February`s expected cold snaps, to the utilities and users who supplied it. Cove Point`s initial daily sendout capacity is about 400 MMcf.

  12. Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01

    of Interchangeability of Vaporized LNG and Natural Gas. Deswith Domestic Natural Gas. LNG and the Changing U.S. NaturalInterchangeability, and LNG Utilization in the United

  13. LANDFILL GAS CONVERSION TO LNG AND LCO{sub 2}. PHASE 1, FINAL REPORT FOR THE PERIOD MARCH 1998-FEBRUARY 1999

    SciTech Connect (OSTI)

    COOK,W.J.; NEYMAN,M.; SIWAJEK,L.A.; BROWN,W.R.; VAN HAUWAERT,P.M.; CURREN,E.D.

    1998-02-25

    Process designs and economics were developed to produce LNG and liquid carbon dioxide (CO{sub 2}) from landfill gas (LFG) using the Acrion CO{sub 2} wash process. The patented Acrion CO{sub 2} wash process uses liquid CO{sub 2} to absorb contaminants from the LFG. The process steps are compression, drying, CO{sub 2} wash contaminant removal and CO{sub 2} recovery, residual CO{sub 2} removal and methane liquefaction. Three flowsheets were developed using different residual CO{sub 2} removal schemes. These included physical solvent absorption (methanol), membranes and molecular sieves. The capital and operating costs of the flowsheets were very similar. The LNG production cost was around ten cents per gallon. In parallel with process flowsheet development, the business aspects of an eventual commercial project have been explored. The process was found to have significant potential commercial application. The business plan effort investigated the economics of LNG transportation, fueling, vehicle conversion, and markets. The commercial value of liquid CO{sub 2} was also investigated. This Phase 1 work, March 1998 through February 1999, was funded under Brookhaven National laboratory contract 725089 under the research program entitled ``Liquefied Natural Gas as a Heavy Vehicle Fuel.'' The Phase 2 effort will develop flowsheets for the following: (1) CO{sub 2} and pipeline gas production, with the pipeline methane being liquefied at a peak shaving site, (2) sewage digester gas as an alternate feedstock to LFG and (3) the use of mixed refrigerants for process cooling. Phase 2 will also study the modification of Acrion's process demonstration unit for the production of LNG and a market site for LNG production.

  14. LNG, Public Opinion and Decision-making: Conflict in Oregon

    E-Print Network [OSTI]

    Scott, Christopher

    LNG, Public Opinion and Decision-making: Conflict in Oregon Lisa MB Harrington Kansas State University #12;2 LNG · Liquified Natural Gas · Natural gas condensed into a liquid by cooling to about -163º;· LNG is considered cleaner than coal and petroleum- based fuels, but development also poses issues

  15. Energy Department Authorizes Dominion Cove Point LNG to Export...

    Broader source: Energy.gov (indexed) [DOE]

    Dominion Cove Point LNG, LP to export domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States. The Cove...

  16. LNG links remote supplies and markets

    SciTech Connect (OSTI)

    Avidan, A.A.; Gardner, R.E.; Nelson, D.; Borrelli, E.N.; Rethore, T.J.

    1997-06-02

    Liquefied natural gas (LNG) has established a niche for itself by matching remote gas supplies to markets that both lacked indigenous gas reserves and felt threatened in the aftermath of the energy crises of the 1970s and 1980s. It has provided a cost-effective energy source for these markets, while also offering an environmentally friendly fuel long before that was fashionable. The introduction of natural-gas use via LNG in the early years (mostly into France and Japan) has also allowed LNG to play a major role in developing gas infrastructure. Today, natural gas, often supplied as LNG, is particularly well-suited for use in the combined cycle technology used in independent power generation projects (IPPs). Today, LNG players cannot simply focus on monetizing gas resources. Instead, they must adapt their projects to meet the needs of changing markets. The impact of these changes on the LNG industry has been felt throughout the value chain from finding and producing gas, gas treatment, liquefaction, transport as a liquid, receiving terminals and regasification, and finally, to consumption by power producers, industrial users, and households. These factors have influenced the evolution of the LNG industry and have implications for the future of LNG, particularly in the context of worldwide natural gas.

  17. LNG -- Technology on the edge

    SciTech Connect (OSTI)

    Alexander, C.B.

    1995-10-01

    With immense promise and many supporters, LNG as a vehicular fuel is still, a nascent industry. In about two years, an array of LNG engines should be commercially available, and infrastructure greatly expanded. These developments should reduce the present premium of LNG equipment, greatly improving industry economics. The most propitious sign for LNG-market developed lies in the natural gas industry`s recently refined strategy for natural gas vehicles. The new strategy targets the right competitor--diesel, not gasoline. It also targets the right market for an emerging fuel--high-fuel-usage fleets made up of medium- and heavy-duty vehicles, often driven long distances. But problems persist in critical areas of development. These problems are related to the materials handling of LNG and the refueling of vehicles. The paper discusses the studies on LNG handling procedures, its performance benefits to high-fuel use vehicles, economic incentives for its use, tax disadvantages that are being fought, and LNG competition with ``clean`` diesel fuels.

  18. Qatargas exporting LNG from Qatar`s new Ras Laffan Port

    SciTech Connect (OSTI)

    1997-02-24

    When the 135,000 cu m LNG carrier Al Zubarah departed Ras Laffan Port in December, Qatar entered a new era of commerce that will both boost the emirate`s economic development and influence energy trade around the world. The event capped more than a decade of planning, design, and construction of Ras Laffan Port--the world`s newest and largest LNG exporting facility. During the 1980s, the focus in Qatar was on exploration and development of North field, which holds the world`s largest reserves of nonassociated natural gas. In the 1990s, efforts concentrated on establishing a direct production and export link between North field, the new multi-billion-dollar Qatar Liquefied Gas Co. (Qatargas) gas liquefaction plant at Ras Laffan, and LNG export facilities at the 8.5 sq km Ras Laffan Port. Markets of the Far East will be first to be served by LNG from Ras Laffan Port. Two 25-year LNG supply contracts have been signed with buyers in Japan and South Korea, and negotiations are under way with potential customers from China, Taiwan, and Thailand. The paper describes the port, its operations, and export projects.

  19. ,"Massachusetts Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNGUndergroundDryAnnual",2014Consumption by EndLNG Storage

  20. ,"Minnesota Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA -Liquids Lease Condensate, ProvedShale ProvedConsumption byLNG Storage

  1. ,"Nebraska Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA -LiquidsAnnual",2014LNG Storage Net Withdrawals (MMcf)"

  2. ,"New Hampshire Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA -LiquidsAnnual",2014LNG

  3. ,"New Jersey Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEAAnnual",2014 ,"ReleaseAnnual",2014 ,"ReleaseLNG

  4. ,"New Mexico Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEAAnnual",2014Summary" ,"ClickCoalbedandAnnual",2014LNG

  5. ,"New York Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 ©Annual",2014 ,"ReleaseLiquids LeaseAnnual",2014 ,"ReleaseLNG

  6. ,"North Carolina Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 ©Annual",2014Annual",2014 ,"ReleaseLNG Storage Net Withdrawals

  7. ,"Oregon Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead Price (Dollars per Thousand CubicCoalbedWellhead PriceConsumption byLNG

  8. ,"Pennsylvania Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead Price (Dollars per ThousandAnnual",2014Coalbed MethaneConsumptionLNG

  9. ,"Rhode Island Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by End Use" ,"Click worksheet nameLNG Storage Net

  10. ,"South Carolina Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by End Use" ,"ClickConsumptionLNG Storage Net

  11. ,"Tennessee Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by9" ,"Released:3a. January MonthlyConsumptionLNG

  12. ,"Texas Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by9"Coalbed MethaneDryDryDryLNG Storage Net

  13. ,"Alaska Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEAConsumed" ,"Click worksheet name orLNG

  14. ,"Arkansas Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices" ,"ClickAnnual",2014 ,"ReleaseLNG

  15. ,"California Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet

  16. ,"Illinois Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG StorageCoalbedPrices"+ Lease

  17. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2001-01-25

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  18. Parallel Large-Neighborhood Search Techniques for LNG Inventory ...

    E-Print Network [OSTI]

    2014-04-17

    Liquefied natural gas (LNG) is estimated to account for a growing portion of the world ... sites with little local demand to locations with an established natural gas.

  19. Analysis of LNG import terminal release prevention systems

    SciTech Connect (OSTI)

    Baker, E G

    1982-04-01

    The release prevention systems of liquefied natural gas (LNG) import terminal were analyzed. A series of potential release scenarios were analyzed to determine the frequency of the release events, the probability these releases are not stopped or isolated by emergency shutdown systems, the estimated release quantities, and the critical components of the system. The two plant areas identified as being most significant with respect to safety are the unloading system and the storage system. Rupture of the main transfer line and gross failure of the storage tanks are the two release scenarios of primary safety interest. Reducing the rate of failure by improved design, better maintenance and testing, or adding redundancy of the critical system components for these plant areas and release scenarios will result in improved safety. Several design alternatives which have the potential to significantly reduce the probability of a large release of LNG occurring at an import terminal are identified. These design alternatives would reduce the probability of a large release of LNG by reducing the expected number of failures which could cause a release or by reducing the magnitude of releases that do occur. All of these alternatives are technically feasible and have been used or considered for use in at least one LNG facility. A more rigorous analysis of the absolute risk of LNG import terminal operation is necessary before the benefits of these design alternatives can be determined. In addition, an economic evaluation of these alternatives must be made so the costs and benefits can be compared. It is concludd that for remotely located facilities many of these alternatives are probably not justified; however, for facilities located in highly populated areas, these alternatives deserve serious consideration.

  20. SEMI-ANNUAL REPORTING REQUIREMENTS (LNG EXPORTERS) 2010-2015...

    Broader source: Energy.gov (indexed) [DOE]

    Companies with authorizations to export LNG are required to file, on a semi-annual basis, written reports describing the progress of the planned liquefaction facility project that...

  1. Reserves hike to buoy Bontang LNG

    SciTech Connect (OSTI)

    Not Available

    1992-07-27

    This paper reports that a redetermination of reserves in an Indonesian production sharing contract (PSC) will boost liquefied natural gas sales for an Indonesian joint venture (IJV) of Lasmo plc, Union Texas (South East Asia) Inc., Chinese Petroleum Corp. (CPC), and Japex Rantau Ltd. The Indonesian reserves increase involves the Sanga PSC operated by Virginia Indonesia Co., a 50-50 joint venture of Lasmo and Union Texas. Union Texas holds a 38% interest in the IJV and Lasmo 37.8%, with remaining interests held by CPC and Japex. meantime, in US LNG news: Shell LNG Co. has shelved plans to buy an added interest in the LNG business of Columbia Gas System Inc. Panhandle Eastern Corp. units Trunkline Gas Co., Trunkline LNG Co., and Panhandle Eastern Pipe Line Co. (PEPL) filed settlement agreements with the Federal Energy Regulatory Commission to recover from customers $243 million in costs associated with Panhandle's Trunkline LNG operation at Lake Charles, Louisiana.

  2. Asia-Pacific focus of coming LNG trade boom

    SciTech Connect (OSTI)

    Not Available

    1992-11-16

    This paper reports that the Asia-Pacific region remains the centerpiece of a booming world trade in liquefied natural gas. Biggest growth in LNG demand is expected from some of the region's strongest economies such as Japan, South Korea, and Taiwan, Key LNG exporters such as Brunei, Malaysia, and Indonesia are scrambling to implement projects to meet that expected demand growth. Uncertainties cloud the outlook for Far East LNG trade, Australia, for one, is more cautious in pressing expansion of its LNG export capacity as more competing LNG expansions spring up around the world, notably in the Middle East and Africa.

  3. Eni USA Gas Marketing LLC- FE Dkt. No.- 15-13-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed January 21, 2015 by Eni USA Gas Marketing LLC (ENI USA Gas Marketing), requesting blanket authorization to export...

  4. Small Scale LNG Terminals Market Installed Capacity is anticipated...

    Open Energy Info (EERE)

    Although large scale LNG terminals have been preferably constructed across the world till date, the emergence of small demand centers for natural gas within small...

  5. Energy Department Authorizes Alaska LNG Project, LLC to Export...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States. Subject to environmental review and final...

  6. Safety implications of a large LNG tanker spill over water.

    SciTech Connect (OSTI)

    Hightower, Marion Michael; Gritzo, Louis Alan; Luketa-Hanlin, Anay Josephine

    2005-04-01

    The increasing demand for natural gas in the United States could significantly increase the number and frequency of marine LNG (liquefied natural gas) imports. Although many studies have been conducted to assess the consequences and risks of potential LNG spills, the increasing importance of LNG imports suggests that consistent methods and approaches be identified and implemented to help ensure protection of public safety and property from a potential LNG spill. For that reason the U.S. Department of Energy (DOE), Office of Fossil Energy, requested that Sandia National Laboratories (Sandia) develop guidance on a risk-based analysis approach to assess and quantify potential threats to an LNG ship, the potential hazards and consequences of a large spill from an LNG ship, and review prevention and mitigation strategies that could be implemented to reduce both the potential and the risks of an LNG spill over water. Specifically, DOE requested: (1) An in-depth literature search of the experimental and technical studies associated with evaluating the safety and hazards of an LNG spill from an LNG ship; (2) A detailed review of four recent spill modeling studies related to the safety implications of a large-scale LNG spill over water; (3) Evaluation of the potential for breaching an LNG ship cargo tank, both accidentally and intentionally, identification of the potential for such breaches and the potential size of an LNG spill for each breach scenario, and an assessment of the potential range of hazards involved in an LNG spill; (4) Development of guidance on the use of modern, performance-based, risk management approaches to analyze and manage the threats, hazards, and consequences of an LNG spill over water to reduce the overall risks of an LNG spill to levels that are protective of public safety and property.

  7. An Investigation of Using Isochoric Data Points in the Development of Natural Gas Equation of State 

    E-Print Network [OSTI]

    Khazndar, Aoubai M

    2014-02-27

    gas consumer and will account for 55 percent of total gas use in 2035. This increase of natural gas consumption can be attributed to the big LNG and GTL projects that exist in this region. Qatar more than doubled its LNG liquefaction capacity over... the last 7-years and more than doubled its fuel use in LNG liquefaction plants. [18, 19] In addition to the two GTL facilities (Oryx and Pearl) that are located in Qatar. The Oryx plant consumes 120 billion cubic feet of natural gas per year and produces...

  8. Safety issues relating to the liquefied petroleum gas, compressed natural gas and liquefied natural gas

    SciTech Connect (OSTI)

    Petru, T.D.

    1995-12-31

    The Railroad Commission of Texas, LP-Gas Division, is statutorily responsible for the safety aspects of liquefied petroleum gas (LPG) most commonly known as LP-gas or propane, compressed natural gas (CNG) and liquefied natural gas (LNG). This presentation will address the safety issues relating to their use as alternative fuels. The paper discusses the safety of pressure vessels used for storage of the fuels at refueling facilities and the containers mounted in vehicles. Other topics include the lack of odorants in LNG, the use of protective clothing when handling cryogenic fluids, and where to obtain a copy of the safety regulations for handling these three fuels.

  9. SANDCASTLE PETROLEUM GAS & ENERGY, LLC- FE DKT. NO. 15-39-LNG- (FTA)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an Application filed March 3, 2015, by Sandcastle Petroleum Gas & Energy, LLC (Sandcastle), seeking blanket authorization to export...

  10. Bound Improvement for LNG Inventory Routing

    E-Print Network [OSTI]

    2013-10-29

    The LNG supply chain includes one or multiple production terminals where natural gas is .... we include penalty for unmet annual delivery requirements at each demand port; ..... Nevertheless, these studies show that their optimality gaps

  11. Norcal Prototype LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  12. Worldwide Natural Gas Supply and Demand and the Outlook for Global LNG Trade

    Reports and Publications (EIA)

    1997-01-01

    This article is adapted from testimony by Jay Hakes, Administrator of the Energy Information Administration, before the Senate Energy and Natural Resources Committee on July 23, 1997. The hearing focused on the examination of certain aspects of natural gas into the next century with special emphasis on world natural gas supply and demand to 2015.

  13. LNG -- A paradox of propulsion potential

    SciTech Connect (OSTI)

    McKay, D.J.

    1995-12-31

    Liquefied natural gas (LNG) has been demonstrating its viability as a clean-burning alternative fuel for buses and medium- and heavy-duty trucks for the past 30 years. The first known LNG vehicle project began in San Diego in 1965, When San Diego Gas and Electric converted 22 utility trucks and three passenger vehicles to dedicated LNG. A surge in LNG vehicle project activity over the past five years has led to a fairly robust variety of vehicles testing the fuel, from Class 8 tractors, refuse haulers and transit buses to railroad locomotives and ferry boats. Recent technology improvements in engine design, cryogenic tanks, fuel nozzles and other related equipment have made LNG more practical to use than in the 1960s. LNG delivers more than twice the driving range from the same-sized fuel tank as a vehicle powered by compressed natural gas (CNG). Although technical and economic hurdles must be overcome before this fuel can achieve widespread use, various ongoing demonstration projects are showing LNG`s practicality, while serving the vital role of pinpointing those areas of performance that are the prime candidates for improvement.

  14. LNG ventures raise economic, technical, partnership issues

    SciTech Connect (OSTI)

    Acord, H.K.

    1995-07-03

    The author feels that natural gas will remain a competitive energy alternative and the preferred fuel for many residential and industrial customers around the globe. The article attempts to explain where liquefied natural gas will fit into the global picture. The paper discusses the growth in the Asia-Pacific region; the complex interactions in a LNG project involving buyers, sellers, governments, financial institutions, and shipping companies; the cost of development of such projects; and the elements of a LNG venture.

  15. Thermodynamic analysis of solar energy utilization combined with the exploitation of the LNG physical energy

    SciTech Connect (OSTI)

    Bisio, G.; Pisoni, C.

    1995-11-01

    The consumption of LNG (liquid natural gas) is growing and will probably increase rapidly in the near future. Consequently, (in addition to the use of the chemical exergy) the exploitation of the physical energy of LNG, due to its state in liquid phase at a temperature under that of the environment, is becoming more important. Nowadays most of LNG is regassified using the thermal energy of sea water or of warm sea water effluent from a power plant, destroying in this way its physical exergy. Several processes have been considered to utilize the physical exergy of fluids in liquid phase by vaporizing these fluids at atmospheric pressure and cryogenic temperatures. Two general alternatives may be envisaged: (a) direct utilization in cryogenic facilities (cold storage or other process uses); (b) indirect utilization in the generation of electric power. Griepentrog and Weber and others proposed a closed-cycle gas turbine with several kinds of heat sources and with liquid natural gas or hydrogen as the heat sink. In this paper a combined system utilizing a gas turbine with solar heating and LNG refrigerating is examined.

  16. Recommended research on LNG safety

    SciTech Connect (OSTI)

    Carpenter, H.J.; Gilmore, F.R.

    1981-03-01

    The US Department of Energy (DOE) is conducting research on the safety and other environmental aspects of liquefied energy gases including liquefied natural gas (LNG). The effort reported here was conducted as part of the planning for further research into the safety aspects of transporting and storing LNG, with primary emphasis on public safety. Although the modern LNG industry has enjoyed excellent success in providing for safe operations, significant questions remain on the part of many, the expressions of which were intensified with the addition of marine-based LNG import terminals. Public safety with regard to large-scale importation of this fuel has received widespread attention in the US Congress, state legislatures, county and city governments, and from various individuals and public groups, with coverage in all the news media, including books published on the subject. The safety concerns have centered around the consequences to the public of a large spill of the cryogenic liquid from an ocean tanker or a larger storage tank, either of which might hold as much as 125,000 m/sup 3/ of LNG.

  17. Study of gelled LNG. Final technical report

    SciTech Connect (OSTI)

    Rudnicki, M I; Cabeal, J A; Hoffman, L C; Newton, R A; Schaplowsky, R K; Vander Wall, E M

    1980-01-01

    Research involved the characterization of gelled LNG (GELNG) with respect to process, flow, and use properties and an examination of the degree of safety enhancement attainable by gelation. The investigation included (1) an experimental examination of gel properties and gel safety characteristics as well as (2) an analytical study involving the economics and preliminary design of an industrial scale gelation system. The safety-related criterion for successful application of gelled LNG is the substantial reduction of the Maximum Distance to the Lower Flammability Limit, MDLFL. This will be achieved by first, gel-inhibition of the hydrodynamic pooling and spreading of the spill, and second, the suppressed thermal transport properties of the GELNG relative to those of LNG. The industrial scale gelation study evaluated a design capable of producing 11,000 gallons (LNG tank truck) of gel in two hours. The increased cost of gelation using this equipment was estimated at $0.23/10/sup 6/ Btu for plants with liquefaction facilities. The technical results of this study are supportive of the conclusion that gelation of LNG will reduce, relative to ungelled LNG, the hazard associated with a given size spill. Parameters of interest to the LNG facility operator (such as pumpability) are not significantly affected by gelation, and the impact on LNG delivery cost appears to be small, about 5%. Thus, the initial assumption that gelation would provide a practical means to enhance safety is supported by the results of this study. Larger scale, comparative spill tests of LNG and GELNG are now required to confirm the safety aspects of use of the gelled material.

  18. FLORIDIAN NATURAL GAS STORAGE COMPANY, LLC- FE DKT. NO. 15-38-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 24, 2015, by Floridian Natural Gas Storage Company, LLC (Floridian) requesting long-term, multi-contract...

  19. 2014 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i sEnergyEnergy The intentNatural Gas

  20. Cost reduction ideas for LNG terminals

    SciTech Connect (OSTI)

    Habibullah, A.; Weldin, F.

    1999-07-01

    LNG projects are highly capital intensive and this has long been regarded as being inevitable. However, recent developments are forcing the LNG industry to aggressively seek cost reductions. For example, the gas-to-liquids (GTL) process is increasingly seen as a potential rival technology and is often being touted as an economically superior alternative fuel source. Another strong driving force behind needed cost reductions is the low crude oil price which seems to have settled in the $10--13/bb. range. LNG is well positioned as the fuel of choice for environmentally friendly new power projects. As a result of the projected demand for power especially in the Pacific Rim countries several LNG terminal projects are under consideration. Such projects will require a new generation of LNG terminal designs emphasizing low cost, small scale and safe and fully integrated designs from LNG supply to power generation. The integration of the LNG terminal with the combined cycle gas turbine (CCGT) power plant offers substantial cost savings opportunities for both plants. Various cost reduction strategies and their impact on the terminal design are discussed including cost reduction due to integration.

  1. Energy Department Authorizes Dominion's Proposed Cove Point Facility...

    Office of Environmental Management (EM)

    Department announced today that it has conditionally authorized Dominion Cove Point LNG, LP to export domestically produced liquefied natural gas (LNG) to countries that do...

  2. U.S. LNG Imports - The Next Wave

    Reports and Publications (EIA)

    2007-01-01

    U.S. LNG imports - The Next Wave, is now available as a special supplement to the January 2007 issue of the Short-Term Energy Outlook (STEO). Although liquefied natural gas (LNG) imports still account for less than 3% of total U.S. natural gas supplies, the global market is growing and the Energy Information Administration (EIA) foresees another wave of U.S. LNG import growth over the next two years. The supplement focuses on recent trends in global and U.S. LNG trade, and presents factors expected to influence LNG imports through 2008. EIA expects year-over-year increases in LNG imports of 34.5% and 38.5% in 2007 and 2008, respectively.

  3. Price of Northeast Gateway Natural Gas LNG Imports (Dollars per Thousand

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProved ReservesCubicper Thousand Cubic Feet)Thousand Cubic Feet)Montana

  4. Price of Northeast Gateway Natural Gas LNG Imports from Trinidad and Tobago

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProved ReservesCubicper Thousand Cubic Feet)Thousand Cubic

  5. How to Obtain Authorization to Import and/or Export Natural Gas and LNG |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11,SecurityHome solarEnergy |SimpleEnergy

  6. New Hampshire Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (nextNet WithdrawalsThousandYear Jan

  7. New Jersey Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (nextNetper Thousand CubicYear Jan FebNet

  8. New Mexico Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (nextNetperProductionNet Withdrawals (Million

  9. New York Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8YearNet

  10. North Carolina Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5Net Withdrawals (Million Cubic

  11. Rhode Island Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010CubicYear Jan FebNet

  12. South Carolina Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7, 2013Wind Industry:%InputNet

  13. South Dakota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7, 2013WindperDecadeDecadeYearNet

  14. Everett, MA Natural Gas LNG Imports (Price) From Yemen (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun2003 Detailed

  15. Everett, MA Natural Gas LNG Imports (Price) From Yemen (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun2003 DetailedThousand Cubic Feet) Year Jan

  16. Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar AprCubic Feet)

  17. Freeport, TX Natural Gas LNG Imports (Price) From Peru (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar AprCubic Feet)Thousand Cubic

  18. Freeport, TX Natural Gas LNG Imports (Price) From Peru (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar AprCubic Feet)Thousand

  19. Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand343 342 328 37056 57 61 12 9per

  20. 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof1 of 8 2 of 8 3 ofRuleWe We We el lc lc

  1. U.S. Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan Feb Mar AprYear JanYear Jan

  2. U.S. Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan Feb Mar AprYear JanYear JanNet

  3. U.S. Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan Feb Mar AprYear JanYear

  4. Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160 OctoberFeet) Year Jan

  5. Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160 OctoberFeet) Year JanYear Jan Feb

  6. Portal, ND Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the Price (Percent) YearThousandCubicNatural Gas

  7. Price of Calmeron, LA Natural Gas LNG Imports from Trinidad and Tobago

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural Gas Exports(Nominal Dollars

  8. Price of Calmeron, LA Natural Gas LNG Imports from Trinidad and Tobago

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural Gas Exports(Nominal

  9. Price of Cameron, LA Natural Gas LNG Imports (Nominal Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural Gas Exports(NominalCubic

  10. Price of Cameron, LA Natural Gas LNG Imports from Qatar (Nominal Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural Gas Exports(NominalCubicper

  11. Price of Champlain, NY Natural Gas LNG Imports (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural Gas

  12. Price of Champlain, NY Natural Gas LNG Imports (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural GasFeet) Year Jan Feb Mar

  13. Price of Champlain, NY Natural Gas LNG Imports from Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural GasFeet) Year Jan Feb

  14. Price of Champlain, NY Natural Gas LNG Imports from Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural GasFeet) Year Jan

  15. Price of Cove Point, MD Natural Gas LNG Imports from Algeria (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural GasFeet) Year

  16. Price of Cove Point, MD Natural Gas LNG Imports from Egypt (Nominal Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural GasFeet) Yearper Thousand

  17. Price of Cove Point, MD Natural Gas LNG Imports from Nigeria (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural GasFeet) Yearper

  18. Price of Cove Point, MD Natural Gas LNG Imports from Nigeria (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural GasFeet) YearperThousand

  19. Price of Cove Point, MD Natural Gas LNG Imports from Norway (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural GasFeet)

  20. Price of Cove Point, MD Natural Gas LNG Imports from Norway (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural GasFeet)Thousand Cubic

  1. Price of Cove Point, MD Natural Gas LNG Imports from Trinidad and Tobago

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural GasFeet)Thousand

  2. Price of Cove Point, MD Natural Gas LNG Imports from Trinidad and Tobago

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the PriceAlaska Natural GasFeet)Thousand(Dollars

  3. Price of Northeast Gateway Natural Gas LNG Imports (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars perMichigan Natural Gas

  4. Price of Northeast Gateway Natural Gas LNG Imports from Egypt (Nominal

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars perMichigan Natural GasDollars per

  5. Price of Northeast Gateway Natural Gas LNG Imports from Trinidad and Tobago

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars perMichigan Natural GasDollars

  6. SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT...

    Office of Environmental Management (EM)

    TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 October 2014 April 2015 More...

  7. Potential for long-term LNG supplies to the United States

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Liquefied natural gas (LNG) has been a component of the US gas supply mix since 1970. Between 1970 and 1981 LNG terminals were constructed that have the current capability of receiving annual LNG shipments equivalent to about 700 Bcf. Additional terminal capacity was proposed and sites were under consideration in 1985 when reduced demand for natural gas and softening of gas prices resulted in the termination of plans for new capacity and suspension of contracts for imports. In the 1990s, however, shipments of LNG are again being received, and it is expected that imports of LNG by seaborne trade will play a significant role in meeting the growing US requirements for natural gas supply. It is expected that all existing US terminals will be operational by the mid-1990s, and the existing terminal capacity would be fully utilized by the year 2000. The report summarizes the analysis of the LNG terminal capacity aimed at identifying future LNG liquefaction and transportation needs.

  8. Technical efforts focus on cutting LNG plant costs

    SciTech Connect (OSTI)

    Aoki, Ichizo; Kikkawa, Yoshitsugi

    1995-07-03

    LNG demand is growing due to the nuclear setback and environmental issues spurred by concern about the greenhouse effect and acid rain, especially in the Far East. However, LNG is expensive compared with other energy sources. Efforts continue to minimize capital and operating costs and to increase LNG plant availability and safety. Technical trends in the LNG industry aim at reducing plant costs in pursuit of a competitive LNG price on an energy value basis against the oil price. This article reviews key areas of technical development. Discussed are train size, liquefaction processes, acid gas removal, heavy end removal, nitrogen rejection, refrigeration compressor and drivers, expander application, cooling media selection, LNG storage and loading system, and plant availability.

  9. LPG-recovery processes for baseload LNG plants examined

    SciTech Connect (OSTI)

    Chiu, C.H.

    1997-11-24

    With demand on the rise, LPG produced from a baseload LNG plant becomes more attractive as a revenue-earning product similar to LNG. Efficient use of gas expanders in baseload LNG plants for LPG production therefore becomes more important. Several process variations for LPG recovery in baseload LNG plants are reviewed here. Exergy analysis (based on the Second Law of Thermodynamics) is applied to three cases to compare energy efficiency resulting from integration with the main liquefaction process. The paper discusses extraction in a baseload plant, extraction requirements, process recovery parameters, extraction process variations, and exergy analysis.

  10. EIS-0508: Downeast LNG Import-Export Project, Robbinston, Maine...

    Broader source: Energy.gov (indexed) [DOE]

    the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it...

  11. Comparative safety analysis of LNG storage tanks

    SciTech Connect (OSTI)

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  12. Union Pacific Railroad`s LNG locomotive test program

    SciTech Connect (OSTI)

    Grimaila, B.

    1995-12-31

    Union Pacific Railroad is testing LNG in six locomotives through 1997 to determine if the liquefied natural gas technology is right for them. Two of the six LNG test locomotives are switch, or yard, locomotives. These 1,350 horsepower locomotives are the industry`s first locomotives totally fueled by natural gas. They`re being tested in the yard in the Los Angeles area. The other four locomotives are long-haul locomotives fueled by two tenders. These units are duel-fueled, operating on a mixture of LNG and diesel and are being tested primarily on the Los Angeles to North Platte, Nebraska corridor. All the information concerning locomotive emissions, locomotive performance, maintenance requirements, the overall LNG system design and the economic feasibility of the project will be analyzed to determine if UPR should expand, or abandon, the LNG technology.

  13. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy ResourcesMaui Area (DOEMaui Area (DOEOpen EnergyGas

  14. LNG Safety Assessment Evaluation Methods

    SciTech Connect (OSTI)

    Muna, Alice Baca; LaFleur, Angela Christine

    2015-05-01

    Sandia National Laboratories evaluated published safety assessment methods across a variety of industries including Liquefied Natural Gas (LNG), hydrogen, land and marine transportation, as well as the US Department of Defense (DOD). All the methods were evaluated for their potential applicability for use in the LNG railroad application. After reviewing the documents included in this report, as well as others not included because of repetition, the Department of Energy (DOE) Hydrogen Safety Plan Checklist is most suitable to be adapted to the LNG railroad application. This report was developed to survey industries related to rail transportation for methodologies and tools that can be used by the FRA to review and evaluate safety assessments submitted by the railroad industry as a part of their implementation plans for liquefied or compressed natural gas storage ( on-board or tender) and engine fueling delivery systems. The main sections of this report provide an overview of various methods found during this survey. In most cases, the reference document is quoted directly. The final section provides discussion and a recommendation for the most appropriate methodology that will allow efficient and consistent evaluations to be made. The DOE Hydrogen Safety Plan Checklist was then revised to adapt it as a methodology for the Federal Railroad Administration’s use in evaluating safety plans submitted by the railroad industry.

  15. How to Obtain Authorization to Import and/or Export Natural Gas...

    Energy Savers [EERE]

    How to Obtain Authorization to Import andor Export Natural Gas and LNG How to Obtain Authorization to Import andor Export Natural Gas and LNG LNG Exports | Long Terms | Blanket...

  16. Lng vehicle technology, economics, and safety assessment. Final report, April 1991-June 1993

    SciTech Connect (OSTI)

    Powars, C.A.; Moyer, C.B.; Lowell, D.D.

    1994-02-01

    Liquid natural gas (LNG) is an attractive transportation fuel because of its high heating value and energy density (i.e. Btu/lb and Btu/gal), clean burning characteristics, relatively low cost ($/Btu), and domestic availability. This research evaluated LNG vehicle and refueling system technology, economics, and safety. Prior and current LNG vehicle projects were studied to identify needed technology improvements. Life-cycle cost analyses considered various LNG vehicle and fuel supply options. Safety records, standards, and analysis methods were reviewed. The LNG market niche is centrally fueled heavy-duty fleet vehicles with high fuel consumption. For these applications, fuel cost savings can amortize equipment capital costs.

  17. U.S. Natural Gas Supply to 2030 Larry Hughes

    E-Print Network [OSTI]

    Hughes, Larry

    LNG Total Figure 1: U.S. natural gas supply (reference case) It should be noted that this is the reference case; the "side cases", based upon the volume of projected LNG (liquefied natural gas) imports gas supply projections for 2030 (TCF) Production Low LNG Reference High LNG Dry gas 21.99 20.83 19

  18. LNG as a fuel for railroads: Assessment of technology status and economics. Topical report, June-September 1992

    SciTech Connect (OSTI)

    Pera, C.J.; Moyer, C.B.

    1993-01-06

    The objective of the research was to investigate the feasibility of liquefied natural gas (LNG) as a fuel for railroads. The investigation included assessment of the status of relevant technologies (i.e., LNG-fueled locomotive engines, tender cars, refueling equipment), a review of current demonstration projects, and an analytical evaluation of LNG railroad economics.

  19. International LNG trade : the emergence of a short-term market

    E-Print Network [OSTI]

    Athanasopoulos, Panagiotis G

    2006-01-01

    Natural gas is estimated to be the fastest growing component of world primary energy consumption. Liquefied natural gas (LNG) supply chain is a way of transporting natural gas over seas, by following a procedure of gas ...

  20. Chevron U.S.A. Inc.- 14-119-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed August 27, 2014 by Chevron U.S.A. Inc. (Chevron), requesting blanket authorization to export liquefied natural gas (LNG)...

  1. EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest. Public Comment Opportunities No events...

  2. Norcal Prototype LNG Truck Fleet: Final Data Report

    SciTech Connect (OSTI)

    Chandler, K.; Proc, K.

    2005-02-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

  3. A Proposed Change to the Energy Department's LNG Export Decision...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procedures May 29, 2014 - 2:22pm Addthis A tanker carries liquified natural gas (LNG) off the coast of Homer, Alaska. | Photo courtesy of the Federal Energy Regulatory...

  4. Interim qualitative risk assessment for an LNG refueling station and review of relevant safety issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, S.; Cadwallader, L.; Reece, W.; Byers, J.

    1997-07-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tanker truck delivers and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects analysis and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of best practice information throughout the LNG community.

  5. NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    Heater.  Gas Quality and LNG Research Study.  Southern device performance impacts of LNG use in California.    5.02005): FVIR  Water Heater.  LNG Gas Acceptability Research 

  6. LNG demand, shipping will expand through 2010

    SciTech Connect (OSTI)

    True, W.R.

    1998-02-09

    The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

  7. LNG shipments in 1994 set records

    SciTech Connect (OSTI)

    1996-01-15

    Worldwide LNG shipments by ocean-going vessels in 1994 increased to 1,619 voyages, according to an LNG shipping industry statistical annual. LNG Log 20 published the recently compiled 1994 data in the last quarter of 1995. The publication is from the Society of International Gas Tanker and Terminal Operators Ltd., London. The year`s total was 8.8% more than for 1993 and the most in 35 years of records. The trips were made and the vessels loaded and discharged without report of serious safety or environmental incident, says the publication. Of the voyages completed during the year, 596 were to European receiving terminals (up 2.8% over 1993), and 1,003 went to the Far East (an increase of 10.7%); shipments to the US, however, dropped to 20, from 32 in 1993. This paper shows that the 1,619 voyages represent 3.6 million nautical miles logged by 78 vessels active during the year. These ships pumped ashore record annual volumes of approximately 144.3 million cu m of LNG, 110.1 million cu m (76.3%) of which went to Far Eastern customers. The paper also summarizes containment systems in use in 1994 and since LNG began to be shipped in 1959.

  8. High efficiency Brayton cycles using LNG

    DOE Patents [OSTI]

    Morrow, Charles W. (Albuquerque, NM)

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  9. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    SciTech Connect (OSTI)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  10. Raley's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2000-05-03

    Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  11. LNG scene; Qatar's export plans intensify; sale of Columbia's U. S. terminal in doubt

    SciTech Connect (OSTI)

    Not Available

    1992-07-20

    This paper reports that Activity continues to percolate in Qatar's massive liquefied natural gas export program. In the latest development, France's Ste. Nationale Elf Aquitaine and Japan's Sumitomo Corp. agreed to promote development of Qatar's LNG export project based on supergiant North Offshore gas field and step up discussions with potential buyers in coming months. Target markets lie in Japan and the Far East. Among other LNG operations, Columbia Gas System Inc. last week the it was told by Shell LNG Co. it is unlikely that presale conditions will be met prior to Shell LNG's scheduled purchase July 29 of 40.8% of the stock in Columbia LNG. Columbia LNG owns and LNG receiving terminal at Cove Point, Md., with a design sendout capacity of 1 bcfd of regasified LNG. That makes it the biggest in type U.S. Columbia the it had not received work on what action Shell LNG will take on the purchase agreement. However, failure to meet the undisclosed conditions will allow Shell LNG to end the agreement.

  12. Dimethyl ether fuel proposed as an alternative to LNG

    SciTech Connect (OSTI)

    Kikkawa, Yoshitsugi; Aoki, Ichizo

    1998-04-06

    To cope with the emerging energy demand in Asia, alternative fuels to LNG must be considered. Alternative measures, which convert the natural gas to liquid fuel, include the Fischer-Tropsch conversion, methanol synthesis, and dimethyl ether (DME) synthesis. Comparisons are evaluated based on both transportation cost and feed-gas cost. The analysis will show that DME, one alternative to LNG as transportation fuel, will be more economical for longer distances between the natural-gas source and the consumer. LNG requires a costly tanker and receiving terminal. The break-even distance will be around 5,000--7,000 km and vary depending on the transported volume. There will be risk, however, since there has never been a DME plant the size of an LNG-equivalent plant [6 million metric tons/year (mty)].

  13. DIAGNOSING VULNERABILITY, EMERGENT PHENOMENA, and VOLATILITY in MANMADE NETWORKS

    E-Print Network [OSTI]

    Arrowsmith, David

    , transmission lines, power plants Gas: compressor stations , pipelines, gas facilities, storage facilities, LNG Power Plants (coal, nuclear, ...) Electricity Consumption LNG terminal LNG storage and extraction GAS

  14. Report on issues regarding the existing New York liquefied natural gas moratorium

    SciTech Connect (OSTI)

    1998-11-01

    The New York Energy Planning Board has prepared this study to provide the Governor and the Legislature with information necessary to determine the need for further extension or modification of the existing State moratorium on the siting of new liquefied natural gas (LNG) facilities and intrastate transportation routes as required by Chapter 385 of the laws of 1997. The report examines existing laws and regulations that would affect new LNG facilities in New York and government initiatives in other states. It reviews existing use of LNG in New York, including safety issues and potential public concerns that may arise with lifting the moratorium. It also discusses the economic and environmental effects of increased LNG usage for New York State. The study concludes that there are economic and environmental advantages for allowing the construction of new LNG facilities as well as the intrastate transportation of LNG over new routes. Additionally, it concludes that safety concerns associated with these facilities are adequately addressed by existing Federal, State and local statutes and regulations.

  15. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01

    Liquefied natural gas (LNG), Wind power (sails) Aviationand Policies the use of LNG will result in a small 2 percentbe a much greater potential to use LNG aboard most ships if

  16. Opportunities for LNG supply infrastructure and demand growth in US and International markets

    E-Print Network [OSTI]

    Connell, Richard Perry

    2004-01-01

    Countries are looking beyond their borders for options to satiate a forecasted increase in natural gas consumption. A strong option for importing natural gas is by way of a liquefied natural gas (LNG) supply chain where ...

  17. Aussie LNG players target NE Asia in expansion bid

    SciTech Connect (OSTI)

    Not Available

    1994-02-28

    Australia's natural gas players, keen to increase their presence in world liquefied natural gas trade, see Asia as their major LNG market in the decades to come. That's despite the fact that two spot cargoes of Australian Northwest Shelf LNG were shipped to Europe during the last 12 months and more are likely in 1994. Opportunities for growth are foreseen within the confines of the existing Northwest Shelf gas project for the rest of the 1990s. But the main focus for potential new grassroots project developers and expansions of the existing LNG plant in Australia is the expected shortfall in contract volumes of LNG to Japan, South Korea, and Taiwan during 2000--2010. Traditionally the price of crude oil has been used as a basis for calculating LNG prices. This means the economics of any new 21st century supply arrangements are delicately poised because of the current low world oil prices, a trend the market believes is likely to continue. In a bid to lessen the effect of high initial capital outlays and still meet projected demand using LNG from new projects and expansion of the existing plant, Australia's gas producers are working toward greater cooperation with prospective Asian buyers.

  18. Topsides equipment, operating flexibility key floating LNG design

    SciTech Connect (OSTI)

    Yost, K.; Lopez, R.; Mok, J.

    1998-03-09

    Use of a large-scale floating liquefied natural gas (LNG) plant is an economical alternative to an onshore plant for producing from an offshore field. Mobil Technology Co., Dallas, has advanced a design for such a plant that is technically feasible, economical, safe, and reliable. Presented were descriptions of the general design basis, hull modeling and testing, topsides and storage layouts, and LNG offloading. But such a design also presents challenges for designing topsides equipment in an offshore environment and for including flexibility and safety. These are covered in this second article. Mobil`s floating LNG plant design calls for a square concrete barge with a moon-pool in the center. It is designed to produce 6 million tons/year of LNG with up to 55,000 b/d of condensate from 1 bcfd of raw feed gas.

  19. Future world LNG trade looks good - part 2

    SciTech Connect (OSTI)

    Anderson, P.J.

    1982-12-01

    Projects to deliver gas to Japan will increase Japan's volume of LNG by two-thirds while the share of projects directed toward Europe and the U.S. will decrease proportionately. Tables showing base-load LNG import projects under construction and possible projects are presented (e.g. Australia-Japan; Canada-Japan; Nigeria-Europe/US; Cameroons-Europe; Canadian Arctic-Europe), each of which is briefly discussed.

  20. Integration of oxygen plants and gas turbines in IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Sorensen, J.C.; Woodward, D.W.

    1996-10-01

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NO{sub x} emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper reviews basic integration principles, highlights the integration scheme used at Polk County, and describes some advanced concepts based on emerging gas turbines. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  1. Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01

    Macroeconomic Impacts of LNG Exports from the United States.of liquefied natural gas (“LNG”). At the same time, with thewill be a net exporter of LNG by 2016, and a net exporter of

  2. ConocoPhillips Alaska Natural Gas Corp. (ConocoPhillips)- EXPORT TO CANADA- FE DKT. 15-149-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an Application filed September 28, 2015, by ConocoPhillips Alaska Natural Gas Corp. (ConocoPhillips), seeking a long-term multi-contract...

  3. Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

  4. Development of a simple 5-15 litre per hour LNG refueling system

    SciTech Connect (OSTI)

    Corless, A.J.; Sarangi, S.; Hall, J.L.; Barclay, J.A.

    1994-12-31

    A variable capacity, small-scale liquefied natural gas (LNG) refueling system has been designed, built, and tested at the Cryofuel Systems` Laboratory, University of Victoria, Canada. The system, designed to continuously liquefy between 5 and 15 litres of NG, utilizes liquid nitrogen (LN{sub 2}) as its cold source and contains most of the components found in a typical commercial refueling system; i.e. purification system, liquefier, LNG storage, automatic control and monitoring system. This paper describes the design of the system as well as the results of a set of LNG production trials. The performance of the system exceeded expected LNG production rates, but at levels of efficiency somewhat less than predicted. Cryofuel Systems expects to use this system to implement an LNG vehicle demonstration program and to gain experience in the integration of LNG refueling systems which exploit advanced liquefaction technology such as magnetic refrigeration.

  5. A review of large-scale LNG spills : experiment and modeling.

    SciTech Connect (OSTI)

    Luketa-Hanlin, Anay Josephine

    2005-04-01

    The prediction of the possible hazards associated with the storage and transportation of liquefied natural gas (LNG) by ship has motivated a substantial number of experimental and analytical studies. This paper reviews the experimental and analytical work performed to date on large-scale spills of LNG. Specifically, experiments on the dispersion of LNG, as well as experiments of LNG fires from spills on water and land are reviewed. Explosion, pool boiling, and rapid phase transition (RPT) explosion studies are described and discussed, as well as models used to predict dispersion and thermal hazard distances. Although there have been significant advances in understanding the behavior of LNG spills, technical knowledge gaps to improve hazard prediction are identified. Some of these gaps can be addressed with current modeling and testing capabilities. A discussion of the state of knowledge and recommendations to further improve the understanding of the behavior of LNG spills on water is provided.

  6. No loss fueling station for liquid natural gas vehicles

    SciTech Connect (OSTI)

    Gustafson, K.

    1993-07-20

    A no loss liquid natural gas (LNG) delivery system is described comprising: (a) means for storing LNG and natural gas at low pressure; (b) means for delivering LNG from the means for storing to a use device including means for sub-cooling the LNG; (c) means for pre-cooling the means for sub-cooling before the LNG is delivered to the use device to substantially reduce vaporization of the initial LNG delivered to the use device; and (d) means for delivering a selectable quantity of the natural gas in said storing means to said use device with the LNG.

  7. Technology advances keeping LNG cost-competitive

    SciTech Connect (OSTI)

    Bellow, E.J. Jr.; Ghazal, F.P.; Silverman, A.J.; Myers, S.D.

    1997-06-02

    LNG plants, often very expensive in the past, will in the future need to cost less to build and operate and yet maintain high safety and reliability standards, both during construction and operation. Technical advancements, both in the process and in equipment scaling, manufacturing, and metallurgy, will provide much of the impetus for the improved economics. Although world energy demand is predicted to grow on average of about 2% annually over the next decade, LNG is expected to contribute an increasing portion of this growth with annual growth rates averaging about 7%. This steep growth increase will be propelled mainly by the environmentally friendlier burning characteristics of natural gas and the strong industrial growth in Asian and pacific Rim countries. While LNG is emerging as the fuel of choice for developing economies, its delivered cost to consumers will need to stay competitive with alternate energy supplies if it is to remain in front. The paper discusses LNG process development, treating process, equipment developments (man heat exchanger, compressors, drivers, and pressure vessels), and economy of scale.

  8. Price discrimination and limits to arbitrage: An analysis of global LNG markets

    E-Print Network [OSTI]

    Ritz, Robert A.

    2014-07-31

    Gas prices around the world vary widely despite being connected by international trade of liquefied natural gas (LNG). Some industry observers argue that major exporters have acted irrationally by not arbitraging prices. This is also difficult...

  9. The diseconomics of long-haul LNG trading

    SciTech Connect (OSTI)

    Stauffer, T.R.

    1995-12-31

    Long-haul liquefied natural gas (LNG) exports yield little or no economic rent. Trades, such as Borneo to Japan, are economical, but government takes otherwise are minimal. Today, the price of LNG is capped by the technical option of modifying gas turbines to bum liquid fuels. The maximum premium for LNG is less than 50 cents per thousand cubic feet (/Mcf), and buyers are resisting any price above oil parity. Costs of LNG are high and increase with distance. The netback value is zero or even negative for the longer-distance trades. The value of extracted co-products (natural gas liquids) is 50 cents to $1/Mcf. These credits are the principal source of profit, especially for foreign partners because natural gas liquids are taxed at low {open_quotes}industrial{close_quotes} rates. Returns are even less when the gas supply is nonassociated so that the project must {open_quotes}pay{close_quotes} the production costs as well. Some exporting countries profit; but the Organization of the Petroleum Exporting Countries as a whole looses because low-revenue LNG energy displaces at the margin fully taxed oil.

  10. Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2000-11-07

    In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

  11. Computational fluid dynamics for LNG vapor dispersion modeling: a key parameters study 

    E-Print Network [OSTI]

    Cormier, Benjamin Rodolphe

    2009-05-15

    The increased demand for liquefied natural gas (LNG) has led to the construction of several new LNG terminals in the United States (US) and around the world. To ensure the safety of the public, consequence modeling is used to estimate the exclusion...

  12. U.S. LNG Imports from Canada

    Gasoline and Diesel Fuel Update (EIA)

    LNG Imports from Canada Champlain, NY Highgate Springs, VT Sumas, WA LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

  13. Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I

    SciTech Connect (OSTI)

    1997-12-01

    This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

  14. Annova LNG, LLC- 14-004-CIC

    Office of Energy Efficiency and Renewable Energy (EERE)

    Application of Annova LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement Nations and Request for Expedited Treatment.

  15. LNG infrastructure and equipment

    SciTech Connect (OSTI)

    Forgash, D.J.

    1995-12-31

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  16. LNG annotated bibliography

    SciTech Connect (OSTI)

    Bomelburg, H.J.; Counts, C.A.; Cowan, C.E.; Davis, W.E.; DeSteese, J.G.; Pelto, P.J.

    1982-09-01

    This document updates the bibliography published in Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: third status report (PNL-4172) and is a complete listing of literature reviewed and reported under the LNG Technical Surveillance Task. The bibliography is organized alphabetically by author.

  17. LNG to the year 2000

    SciTech Connect (OSTI)

    Davenport, S.T.

    1984-04-01

    By 2000, about 190 MM metric-tpy of LNG will be moving in world trade, with Asia-Pacific as the dominant producer By the year 2000, approximately 190 million metric tons per year of LNG will be moving in worldwide trade. Production of LNG will be spread throughout most of the world, with Asia-Pacific as the dominant producer. LNG will be delivered only to the heavily industrialized areas of North America, Europe and Asia-Pacific. The success of any LNG project will be dependent on its individual economics, market needs, financial planning, and governmental permit processes. We hope industry will be able to put together the LNG projects required to meet the quanitities of production forecast here for the year 2000.

  18. Natural Gas Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    must be stored onboard a vehicle in either a compressed gaseous (compressed natural gas, CNG) or liquefied (liquefied natural gas, LNG) state. Compressed Natural Gas To provide...

  19. Comparison of CNG and LNG technologies for transportation applications

    SciTech Connect (OSTI)

    Sinor, J.E. Consultants, Inc., Niwot, CO )

    1992-01-01

    This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

  20. Complete LNG Terminal Status Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complete LNG Terminal Status Maps Complete LNG Terminal Status Maps A series of slides showing the status of various LNG terminals (existing, under construction, proposed, etc.) in...

  1. Global Liquefied Natural Gas Market: Status and Outlook, The

    Reports and Publications (EIA)

    2003-01-01

    The Global Liquefied Natural Gas Market: Status & Outlook was undertaken to characterize the global liquefied natural gas (LNG) market and to examine recent trends and future prospects in the LNG market.

  2. Floating LNG plant will stress reliability and safety

    SciTech Connect (OSTI)

    Kinney, C.D.; Schulz, H.R.; Spring, W.

    1997-07-01

    Mobil has developed a unique floating LNG plant design after extensive studies that set safety as the highest priority. The result is a production, storage and offloading platform designed to produce 6 million tons per year of LNG and up to 55,000 bpd of condensate from 1 Bcfd of feed gas. All production and off-loading equipment is supported by a square donut-shaped concrete hull, which is spread-moored. The hull contains storage tanks for 250,000 m{sup 3} of LNG, 6540,000 bbl of condensate and ballast water. Both LNG and condensate can be directly offloaded to shuttle tankers. Since the plant may be moved to produce from several different gas fields during its life, the plant and barge were designed to be generic. It can be used at any location in the Pacific Rim, with up to 15% CO{sub 2}, 100 ppm H{sub 2}S, 55 bbl/MMcf condensate and 650 ft water depth. It can be modified to handle other water depths, depending upon the environment. In addition, it is much more economical than an onshore grassroots LNG plant, with potential capital savings of 25% or more. The paper describes the machinery, meteorology and oceanography, and safety engineering.

  3. Best available practices for LNG fueling of fleet vehicles

    SciTech Connect (OSTI)

    Midgett, D.E. II; Echterhoff, L.W. [M.W. Kellogg Co., Houston, TX (United States); Oppenheimer, A.J. [Gas Research Inst., Chicago, IL (United States)

    1996-12-31

    For many years, natural gas has been promoted as a preferred alternative vehicle fuel. There are a variety of incentives to use natural gas including: improving national security by reducing reliance on foreign oil imports, meeting stringent air emissions guidelines, and utilizing a lower-cost fuel which is in ample domestic supply. Although liquefied natural gas (LNG) was first demonstrated as a vehicle fuel in 1965, compressed natural gas (CNG) has been the fuel with the widest use to date. However, LNG is now gaining popularity as a vehicle fuel because of its higher energy density and transportability. Known LNG projects were polled to determine a list of representative sites. These were studied in depth. Data gathered from the representative sites were summarized to describe current industry practices, and a consensus was formed of best available practices for the industry. A summary of the results of the industry assessment is presented here. Problems and successes of the industry are candidly discussed. The full results of this work and other related studies will be made available to the industry as part of GRI`s ``Best Practices for Natural Gas Transit and Fleet Operations``. The purpose of these documents is to provide the LNG vehicle industry with design and operating information, which, in turn, will improve the safety and benefits of using natural gas vehicles (NGV).

  4. Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01

    2009. American Gas Assocation. Natural Gas Glossary. http://River, NJ. White Paper on Natural Gas Interchangeability Andof Vaporized LNG and Natural Gas. Des Plaines, IL, Gas

  5. SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG...

    Broader source: Energy.gov (indexed) [DOE]

    4 April 2015 October 2015 More Documents & Publications SEMI ANNUAL REPORTS - CAMERON LNG, LLC - FE DKT. NO. 14-204-LNG - ORDER NO. 3620 Semi-annual Reports for Cameron LNG LLC -...

  6. The potential for LNG as a railroad fuel in the U.S.

    SciTech Connect (OSTI)

    Fritz, S.G.

    2000-01-01

    Freight railroad operations in the US represent a substantial opportunity for liquefied natural gas (LNG) to displace diesel fuel. With the promise of achieving an overwhelming economic advantage over diesel fuel, this paper presents some discussion to the question, ``Why is the application of LNG for railroad use in the US moving so slowly?'' A brief overview of the freight railroad operations in the US is given, along with a summary of several railroad LNG demonstration projects. US Environmental Protection Agency and California Air Resources Board exhaust emission regulations may cause the railroad industry to move from small-scale LNG demonstration projects to using LNG as a primary freight railroad transportation fuel in selected regions or route-specific applications.

  7. LNG cascading damage study. Volume I, fracture testing report.

    SciTech Connect (OSTI)

    Petti, Jason P.; Kalan, Robert J.

    2011-12-01

    As part of the liquefied natural gas (LNG) Cascading Damage Study, a series of structural tests were conducted to investigate the thermal induced fracture of steel plate structures. The thermal stresses were achieved by applying liquid nitrogen (LN{sub 2}) onto sections of each steel plate. In addition to inducing large thermal stresses, the lowering of the steel temperature simultaneously reduced the fracture toughness. Liquid nitrogen was used as a surrogate for LNG due to safety concerns and since the temperature of LN{sub 2} is similar (-190 C) to LNG (-161 C). The use of LN{sub 2} ensured that the tests could achieve cryogenic temperatures in the range an actual vessel would encounter during a LNG spill. There were four phases to this test series. Phase I was the initial exploratory stage, which was used to develop the testing process. In the Phase II series of tests, larger plates were used and tested until fracture. The plate sizes ranged from 4 ft square pieces to 6 ft square sections with thicknesses from 1/4 inches to 3/4 inches. This phase investigated the cooling rates on larger plates and the effect of different notch geometries (stress concentrations used to initiate brittle fracture). Phase II was divided into two sections, Phase II-A and Phase II-B. Phase II-A used standard A36 steel, while Phase II-B used marine grade steels. In Phase III, the test structures were significantly larger, in the range of 12 ft by 12 ft by 3 ft high. These structures were designed with more complex geometries to include features similar to those on LNG vessels. The final test phase, Phase IV, investigated differences in the heat transfer (cooling rates) between LNG and LN{sub 2}. All of the tests conducted in this study are used in subsequent parts of the LNG Cascading Damage Study, specifically the computational analyses.

  8. Best available practices for lng fueling of fleet vehicles. Topical report, March-November 1995, tasks 85 and 86

    SciTech Connect (OSTI)

    Midgett, D.E.

    1996-02-01

    The report provides essential information on the design and operation of liquefied natural gas (LNG) fueling stations for fleet vehicles. The report serves to evaluate current practices in LNG fleet vehicle fueling station designs, and provide fleet operators with a tool for use in discussions with permitting agencies, engineering firms, fabricators, and contractors who permit, design, or construct LNG fueling stations. Representative sites (i.e., LNG fueling stations) were evaluated for technical feasibility, customer satisfaction, economics, operating and maintenance history, problems encountered/overcome, and regulatory environment. The compiled information in this report reveals that LNG fueling stations have advanced to the point where LNG is a viable alternative to gasoline and/or diesel fuel.

  9. International LNG report/Developments proceed slowly in world LNG industry

    SciTech Connect (OSTI)

    Hale, D.

    1980-03-01

    A discussion of developments in the world LNG industry covers U.S. developments, including the Pipeline Safety Act of 1979, the National Fire Protection Association's 1979 edition of Standard 59A for the production, storage, and handling of LNG, and progress in the permitting of major LNG import projects changes in U.S. rules on LNG pricing; LNG accidents, including the grounding of the LNG carrier Vertical BarEl Paso Paul Kaise.

  10. Strom Inc, FE Dkt. No. 14-57-LNG | Department of Energy

    Energy Savers [EERE]

    (LNG) up to the equivalent of 7 billion cubic feet of natural gas per year to Non-Free Trade Agreement countries. Authorization is for a 25-year period commencing on the earlier...

  11. Supply Chain Management and Economic Valuation of Real Options in the Natural Gas

    E-Print Network [OSTI]

    Sadeh, Norman M.

    options in the natural gas and liquefied natural gas (LNG) industry, including gas pipeline transportation, ocean LNG shipping logistics, and downstream stor- age. Chapter 1 briefly introduces the natural gas and LNG industries, and the topics studied in this thesis. Chapter 2 studies how to value U.S. natural gas

  12. Renewable, Green LNG: Update on the World's Largest Landill Gass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Green LNG: Update on the World's Largest Landill Gass to LNG Plant Renewable, Green LNG: Update on the World's Largest Landill Gass to LNG Plant Presentation at the...

  13. LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization

    SciTech Connect (OSTI)

    powers,Charles A.; Derbidge, T. Craig

    2001-03-27

    A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

  14. Experiments for the Measurement of LNG Mass Burning Rates 

    E-Print Network [OSTI]

    Herrera Gomez, Lady Carolina

    2012-07-16

    Liquefied Natural Gas (LNG) is a commonly used flammable fuel that has safety concerns associated with vapor dispersion and radiation emitted from pool fires. The main objective of this effort is to advance the knowledge of pool fires and to expand...

  15. The effects of refueling system operating pressure on LNG and CNG economics

    SciTech Connect (OSTI)

    Corless, A.J.; Barclay, J.A.

    1996-12-31

    Natural gas (NG) liquefaction and compression are energy intensive processes which make up a significant portion of the overall delivered price of liquefied NG (LNG) and compressed NG (CNG). Increases in system efficiency and/or process changes which reduce the required amount of work will improve the overall economics of NG as a vehicle fuel. This paper describes a method of reducing the delivered cost of LNG by liquefying the gas above ambient pressures. Higher pressure LNG is desirable because OEM NG engine manufacturers would like NG delivered to the engine intake manifold at elevated pressures to avoid compromising engine performance. Producing LNG at higher pressures reduces the amount of work required for liquefaction but it is only practical when the LNG is liquefied on-site. Using a thermo-economic approach, it is shown that NG fuel costs can be reduced by as much as 10% when producing LNG at higher pressures. A reduction in the delivered cost is also demonstrated for CNG produced on-site from high pressure LNG.

  16. Texas LNG Brownsville LLC- FE Dkt. 15-62-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed April 15, 2015, by Texas Brownsville LNG LLC (TBLNG), seeking a long-term multi-contract authorization to export...

  17. Alaska LNG Project LLC- 14-96-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an application filed on July 18, 2014, by, Alaska LNG Project LLC submits this application requesting long-term authorization to export 20...

  18. Downeast LNG, Inc.- FE Dkt. No. 14-172-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed October 15, 2014, by Downeast LNG, Inc. (Downeast), seeking a long-term multi-contract authorization to export...

  19. Cameron LNG, LLC- FE Dkt. No. 15-67-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed on April 3, 2015, by Cameron LNG, LLC seeking long-term, multi-contract authorization to export domestically produced...

  20. Cameron LNG, LLC- FE Dkt. No. 15-90-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an Application filed May 28, 2015, by Cameron LNG, LLC (Cameron), seeking a long-term multi-contract authorization to export domestically...

  1. Texas Brownsville LNG LLC- FE Dkt. 15-62-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed April 15, 2015, by Texas Brownsville LNG LLC (TBLNG), seeking a long-term multi-contract authorization to export...

  2. Performance Evaluation / Downtime Analysis of an Floating Liquefied Natural Gas Facility 

    E-Print Network [OSTI]

    Cho, Yong Suk

    2015-07-31

    ................................................................................................................. 112 APPENDIX 3 ................................................................................................................. 125 viii LIST OF FIGURES Page Figure 1. LNG value chain (Conventional vs. FLNG), revised from McDonald, L.... (IBC Energy), 2013, 7th Annual FLNG Conference, Seoul, Korea. ................... 1 Figure 2. Schematic process flow of FLNGs (Background image source: Pek, B. and Velder, H.v.d., 2013, LNG 17, Houston, U...

  3. DOE/BNL Liquid Natural Gas Heavy Vehicle Program

    SciTech Connect (OSTI)

    James E. Wegrzyn; Wai-Lin Litzke; Michael Gurevich

    1998-08-11

    As a means of lowering greenhouse gas emissions, increasing economic growth, and reducing the dependency on imported oil, the Department of Energy and Brookhaven National Laboratory (DOE/ BNL) is promoting the substitution of liquefied natural gas (LNG) in heavy-vehicles that are currently being fueled by diesel. Heavy vehicles are defined as Class 7 and 8 trucks (> 118,000 pounds GVVV), and transit buses that have a fuel usage greater than 10,000 gallons per year and driving range of more than 300 miles. The key in making LNG market-competitive with all types of diesel fuels is in improving energy efficiency and reducing costs of LNG technologies through systems integration. This paper integrates together the three LNG technologies of: (1) production from landfills and remote well sites; (2) cryogenic fuel delivery systems; and (3) state-of-the-art storage tank and refueling facilities, with market end-use strategies. The program's goal is to develop these technologies and strategies under a ''green'' and ''clean'' strategy. This ''green'' approach reduces the net contribution of global warming gases by reducing levels of methane and carbon dioxide released by heavy vehicles usage to below recoverable amounts of natural gas from landfills and other natural resources. Clean technology refers to efficient use of energy with low environmental emissions. The objective of the program is to promote fuel competition by having LNG priced between $0.40 - $0.50 per gallon with a combined production, fuel delivery and engine systems efficiency approaching 45%. This can make LNG a viable alternative to diesel.

  4. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    Lower Heating Value Liquefied Natural Gas Powertrain Systemsoptions included liquefied natural gas (LNG) used in SI andliquefied from pressure drop between CNG transmission lines and distribution lines ‡ Natural gas

  5. Can Deployment of Renewable Energy and Energy Efficiency Put Downward Pressure on Natural Gas Prices

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark

    2005-01-01

    LNG)] – the wealth redistribution would increase aggregate domestic welfare. 6 Finally, lower natural gas pricesLNG. Such trade may make natural gas a less-national and more-worldwide market, with prices

  6. North American LNG Project Sourcebook

    SciTech Connect (OSTI)

    2007-06-15

    The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

  7. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect (OSTI)

    Jerry Havens; Iraj A. Salehi

    2005-02-21

    This quarterly report for DE-FG26-04NT42030 covers a period from October 1, 2004 to December 31, 2004. On December 9, 2004 a meeting was held in Morgantown to rescope the LNG safety modeling project such that the work would complement the DOE's efforts relative to the development of the intended LNG-Fluent model. It was noted and discussed at the December 9th meeting that the fundamental research being performed on surface to cloud heat transfer and low wind speed issues will be relevant to the development of the DOE LNG/Fluent Model. In general, it was decided that all research to be performed from December 9th through the remainder of the contract is to be focused on the development of the DOE LNG/Fluent model. In addition, all GTI activities for dissemination and transfer of FEM3A will cease and dissemination activities will focus on the new DOE LNG/Fluent model. The proposed new scope of work is presented in section 4 of this report. The work reported in the present document relates to the original scope of work which was in effect during the reporting period. The future work will be re-scoped to meet the requirements of the new scope of work. During the report period work was underway to address numerical problems present during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, the University of Arkansas has been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A.

  8. Federal Register Notice for Life Cycle Greenhouse Gas Perspective...

    Office of Environmental Management (EM)

    of comments. LifecycleGreenhouseGas.pdf More Documents & Publications Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG Federal Register...

  9. Assessing reliability in energy supply systems

    E-Print Network [OSTI]

    McCarthy, Ryan W.; Ogden, Joan M.; Sperling, Daniel

    2007-01-01

    liquefied natural gas (LNG) trading expected to increase insteam reformation production facility using imported LNG.The LNG supplies come primarily from Trinidad and Tobago,

  10. Assessing Reliability in Energy Supply Systems

    E-Print Network [OSTI]

    McCarthy, Ryan; Ogden, Joan M.; Sperling, Dan

    2008-01-01

    liquefied natural gas (LNG) trading expected to increase insteam reformation production facility using imported LNG.The LNG supplies come primarily from Trinidad and Tobago,

  11. Freeport LNG Development, L.P. (Freeport LNG)- Blanket Authorization to Export Previously Imported LNG- FE Dkt. No. 15-103-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an Application filed June 25, 2015 by Freeport LNG Development, L.P. (Freeport LNG), requesting blanket authorization to export liquefied...

  12. Stochastic Programming Approaches for the Placement of Gas Detectors in Process Facilities 

    E-Print Network [OSTI]

    Legg, Sean W

    2013-05-21

    The release of flammable and toxic chemicals in petrochemical facilities is a major concern when designing modern process safety systems. While the proper selection of the necessary types of gas detectors needed is important, appropriate placement...

  13. LNG: new driving force

    SciTech Connect (OSTI)

    Adkins, R.E.

    1981-11-01

    Spurred by recent legislation promoting the use of methane as a motor fuel, Beech Aircraft is gearing up for market production of a complete vehicular conversion kit and ground support equipment for a liquefied-methane fuel system that is suitable for the use of conventional LNG or methane collected from coalbeds, sewage plants, or landfills and liquefied on site. As demonstrated in field tests of prototype fuel systems, liquefied methane stores conveniently and is safe in motor vehicles. Compared with compressed methane, the liquefied form provides more horsepower and longer mileage between fuelings. Fully fueled, the Beech system weighs less than a gasoline or diesel tank of the same size. The system features electronic-capacitance gaging for direct dashboard quantity reading, a standby time of 14 days (from filling time until the time it reaches the maximum allowable vapor pressure of 60 psi), and the choice of vapor or liquid withdrawal.

  14. Comparison of LNG, CNG, and diesel transit bus economics. Topical report, July 1992-September 1993

    SciTech Connect (OSTI)

    Powars, C.A.; Moyer, C.B.; Luscher, D.R.; Lowell, D.D.; Pera, C.J.

    1993-10-20

    The purpose of the report is to compare the expected costs of operating a transit bus fleet on liquefied natural gas (LNG), compressed natural gas (CNG), and diesel fuel. The special report is being published prior to the overall project final report in response to the current high level of interest in LNG transit buses. It focuses exclusively on the economics of LNG buses as compared with CNG and diesel buses. The reader is referred to the anticipated final report, or to a previously published 'White Paper' report (Reference 1), for information regarding LNG vehicle and refueling system technology and/or the economics of other LNG vehicles. The LNG/CNG/diesel transit bus economics comparison is based on total life-cycle costs considering all applicable capital and operating costs. The costs considered are those normally borne by the transit property, i.e., the entity facing the bus purchase decision. These costs account for the portion normally paid by the U.S. Department of Transportation (DOT) Federal Transit Administration (FTA). Transit property net costs also recognize the sale of emissions reduction credits generated by using natural gas (NG) engines which are certified to levels below standards (particularly for NOX).

  15. Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

  16. Analyses in support of risk-informed natural gas vehicle maintenance facility codes and standards :

    SciTech Connect (OSTI)

    Ekoto, Isaac W.; Blaylock, Myra L.; LaFleur, Angela Christine; LaChance, Jeffrey L.; Horne, Douglas B.

    2014-03-01

    Safety standards development for maintenance facilities of liquid and compressed gas fueled large-scale vehicles is required to ensure proper facility design and operation envelopes. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase I work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest. Finally, scenario analyses were performed using detailed simulations and modeling to estimate the overpressure hazards from HAZOP defined scenarios. The results from Phase I will be used to identify significant risk contributors at NGV maintenance facilities, and are expected to form the basis for follow-on quantitative risk analysis work to address specific code requirements and identify effective accident prevention and mitigation strategies.

  17. Future use of BI-GAS facility. Final report, Part II. [Other possible uses

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    The 120 tpd BI-GAS pilot plant, intended to produce SNG at high pressure, was completed in 1976. For the next three and a half years, the operator, Stearns-Roger Inc., was engaged in operating the plant while overcoming a series of mechanical problems that have prevented the plant from running at design capacity and pressure. Since July 1980, these problems have apparently been corrected and considerable progress was made. In late 1979, the Yates Congressional Committee directed DOE to investigate the possibility of establishing an entrained-bed gasifier test facility at the site. In January 1981, the DOE established a study group composed of DOE and UOP/SDC personnel to determine how best to use the BI-GAS facility. The group considered four possibilities: Continue operation of the facility in accordance with the technical program plan developed by DOE and Stearns-Roger; modify the plant into an entrained-bed facility for testing components and processes; mothball the facility, or dismantle the facility. The group took the view that modifying the plant into a test facility would increase substantially the amount of engineering data available to the designers of commercial gasification plants. Since it appears that syngas plants will be of commercial interest sooner than SNG plants will, it was decided that the facility should test syngas production components and processes at high pressure. Consequently, it was recommended that: Operation of the plant be continued, both to collect data and to prove the BI-GAS process, as long as the schedule of the technical program plan is met; Begin at once to prepare a detailed design for modifying the BI-GAS plant to a high-pressure, entrained flow syngas test facility; and Implement the modification plan as soon as the BI-GAS process is proven or it becomes apparent that progress is unsatisfactory.

  18. Energy Department Authorizes Third Proposed Facility to Export...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exports, LLC (Lake Charles) to export domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States from...

  19. LNG to CNG refueling stations

    SciTech Connect (OSTI)

    Branson, J.D. [ECOGAS Corp., Austin, TX (United States)

    1995-12-31

    While the fleet operator is concerned about the environment, he or she is going to make the choice based primarily on economics. Which fuel provides the lowest total operating cost? The calculation of this costing must include the price-per-gallon of the fuel delivered, as well as the tangible and intangible components of fuel delivery, such as downtime for vehicles during the refueling process, idle time for drivers during refueling, emissions costings resulting from compressor oil blow-by, inclusion of non-combustible constituents in the CNG, and energy consumption during the refueling process. Also, the upfront capital requirement of similar delivery capabilities must be compared. The use of LNG as the base resource for the delivered CNG, in conjunction with the utilization of a fully temperature-compressed LNG/CNG refueling system, eliminates many of the perceived shortfalls of CNG. An LNG/CNG refueling center designed to match the capabilities of the compressor-based station will have approximately the same initial capital requirement. However, because it derives its CNG sales product from the {minus}260 F LNG base product, thus availing itself of the natural physical properties of the cryogenic product, all other economic elements of the system favor the LNG/CNG product.

  20. Natural Gas Procurement Challenges for a Project Financed Cogeneration Facility 

    E-Print Network [OSTI]

    Good, R. L.; Calvert, T. B.; Pavlish, B. A.

    1988-01-01

    stream_source_info ESL-IE-88-09-21.pdf.txt stream_content_type text/plain stream_size 11627 Content-Encoding ISO-8859-1 stream_name ESL-IE-88-09-21.pdf.txt Content-Type text/plain; charset=ISO-8859-1 NATURAL GAS... competitive fuel cost g~eetly conce~ed Union Ca~bide. In addition, the natu~al gas contract had to be in place prio~ to construction financing finalization. This pape~ will eKplo~e the thought p~ocess that went into evaluating the various natural gas...

  1. Dominion Cove Point LNG, LP - FE Dkt. No 11-128-LNG | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i Framing DocumentUnits at Eight-<Dominion Cove LNG Terminal

  2. Using LNG as a Fuel in Heavy-Duty Tractors

    SciTech Connect (OSTI)

    Liquid Carbonic, Inc. and Trucking Research Institute

    1999-08-09

    Recognizing the lack of operational data on alternative fuel heavy-truck trucks, NREL contracted with the Trucking Research Institute (TRI) in 1994 to obtain a cooperative agreement with Liquid Carbonic. The purpose of this agreement was to (1) purchase and operate liquid natural gas- (LNG-) powered heavy-duty tractor-trailers with prototype Detroit Diesel Corporation (DDC) Series 60 natural gas (S60G) engines in over-the-road commercial service applications; and (2) collect and provide operational data to DDC to facilitate the on-road prototype development of the engine and to NREL for the Alternative Fuels Data Center. The vehicles operated from August 1994 through April of 1997 and led to a commercially available, emissions-certified S60G in 1998. This report briefly documents the engine development, the operational characteristics of LNG, and the lessons learned during the project.

  3. cleanenergyfuels.com Natural Gas Solutions

    E-Print Network [OSTI]

    Minnesota, University of

    1 cleanenergyfuels.com Natural Gas Solutions for Transportation December 7, 2012 #12 Gas As a Transportation Fuel About Clean Energy Liquefied Natural Gas (LNG) Port Trucking LNG Station;2 cleanenergyfuels.com Compressed Natural Gas (CNG) Taxis Airport Vehicles Transit Buses Leading Provider of Natural

  4. Gas turbine based cogeneration facilities: Key issues to be addressed at an early design stage

    SciTech Connect (OSTI)

    Vandesteene, J.L.; De Backer, J.

    1998-07-01

    The basic design of a cogeneration facility implies much more than looking for a gas turbine generating set that matches the steam host heat demand, and making an economical evaluation of the project. Tractebel Energy Engineering (TEE) has designed, built and commissioned since the early nineties 350 MW of cogeneration facilities, mainly producing electricity and steam with natural gas fired gas turbines, which is the present most common option for industrial combined heat and power production. A standardized cogeneration design does not exist. Each facility has to be carefully adapted to the steam host's particular situation, and important technical issues have to be addressed at an early stage of plant design. Unexpected problems, expensive modifications, delays during execution of the project and possible long term operational limitations or drawbacks may result if these questions are left unanswered. This paper comments the most frequent questions on design values, required flexibility of the HRSG, reliability and backup, control system, connection to the grid

  5. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt No. 15-14-NG

    Broader source: Energy.gov [DOE]

    On January 23, 2015, Bear Head LNG Corporation and Bear Head LNG (USA), LLC (together, “Bear Head LNG”), filed an application for long-term, multi-contract authorization to engage in imports from,...

  6. Floating LNG terminal and LNG carrier interaction analysis for side-by-side offloading operation 

    E-Print Network [OSTI]

    Kuriakose, Vinu P.

    2005-11-01

    Floating LNG terminals are a relatively new concept with the first such terminal in the world installed this year. The hydrodynamic interaction effects between the terminal and a LNG carrier in a side-by-side offloading arrangement is investigated...

  7. Port Arthur LNG, (LLC)- FE Dkt.No. 15-96-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an Application filed March 20, 2015, by Port Arthur LNG, (LLC) (Port Arthur LNG), seeking a long-term multi-contract authorization to export...

  8. Port Arthur LNG, (LLC)- FE Dkt.No. 15-53-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an Application filed March 20, 2015, by Port Arthur LNG, (LLC) (Port Arthur LNG), seeking a long-term multi-contract authorization to export...

  9. Sempra LNG Marketing, LLC- FE Dkt. No. 14-177-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an Application filed October 24, 2014 by Sempra LNG Marketing, LLC (Sempra LNG Marketing), requesting blanket authorization to export...

  10. AMERICAN LNG MARKETING LLC- FE Dkt. No. 14-209-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on December 31, 2014, by American LNG Marketing LLC (American LNG) requests long-term, multi-contract authorization to...

  11. EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Oregon LNG Export Project (Warrenton, OR) and Washington Expansion Project (between Sumas and Woodland, WA) EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington...

  12. An Update on Proposed Changes to the Energy Department's LNG...

    Office of Environmental Management (EM)

    Proposed Changes to the Energy Department's LNG Export Decision-Making Procedures An Update on Proposed Changes to the Energy Department's LNG Export Decision-Making Procedures...

  13. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01

    vehicles used liquefied natural gas, liquefied petroleum1,793 -100 to -84% Other Fuels Liquefied Natural Gas (LNG)Compressed Natural Gas (CNG) Liquefied Petroleum Gases (LPG)

  14. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas:PottawattamiePowerSatMontana: EnergyView Gas Recovery

  15. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information Olinda Landfill Gas Recovery Plant Biomass

  16. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources JumpCIA-The World Factbook Jump to:CID Gas

  17. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|LineMaine:Ayuda:NavegacionBARC ElectricBGTBJ Gas

  18. Optimizing PT Arun LNG main heat exchanger

    SciTech Connect (OSTI)

    Irawan, B.

    1995-12-01

    The capacity of a LNG liquefaction unit has been increased by upgrading the refrigeration system, without making changes to the main heat exchanger (MHE). It is interesting, that after all modifications were completed, a higher refrigerant circulation alone could not increase LNG production. However, by optimizing the refrigerant component ratio, the UA of the MHE increased and LNG production improved. This technical evaluation will provide recommendations and show how the evaluation of the internal temperature profile helped optimize the MHE operating conditions.

  19. Advanced integration concepts for oxygen plants and gas turbines in gasification/IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Klosek, J.; Woodward, D.W.

    1996-12-31

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. Other processes, such as coal-based ironmaking and combined power and industrial gas production facilities, can benefit from the integration of these two units. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NOx emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper will review basic integration principles and describe advanced concepts based on emerging high compression ratio gas turbines. Humid Air Turbine (HAT) cycles, and integration of compression heat and refrigeration sources from the ASU. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  20. Large Neighborhood Search for LNG Inventory Routing

    E-Print Network [OSTI]

    2011-12-15

    We consider an LNG IRP from the perspective of an vertically integrated oil ...... Maritime inventory routing with multiple products: A case study from the cement.

  1. Comparison of CNG and LNG technologies for transportation applications. Final subcontract report, June 1991--December 1991

    SciTech Connect (OSTI)

    Sinor, J.E.

    1992-01-01

    This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

  2. Preliminary design for hot dirty-gas control-valve test facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  3. Puerto Rico`s EcoElectrica LNG/power project marks a project financing first

    SciTech Connect (OSTI)

    Lammers, R.; Taylor, S.

    1998-02-23

    On Dec. 15, 1997, Enron International and Kenetech Energy Services achieved financial close on the $670 million EcoElectrica liquefied natural gas terminal and cogeneration project proposed for Puerto Rico. The project involves construction of a liquefied natural gas terminal, cogeneration plant, and desalination unit on the southern coast of Puerto Rico, in the Penuelas/Guayanilla area. EcoElectrica will include a 500-mw, combined-cycle cogeneration power plant fueled mainly by LNG imported from the 400 MMcfd Atlantic LNG project on the island of Trinidad. Achieving financial close on a project of this size is always a time-consuming matter and one with a number of challenges. These challenges were increased by the unique nature of both the project and its financing--no project financing had ever before been completed that combined an LNG terminal and power plant. The paper discusses the project, financing details and challenges, key investment considerations, and integrated project prospects.

  4. Applications of human factors engineering to LNG release prevention and control

    SciTech Connect (OSTI)

    Shikiar, R.; Rankin, W.L.; Rideout, T.B.

    1982-06-01

    The results of an investigation of human factors engineering and human reliability applications to LNG release prevention and control are reported. The report includes a discussion of possible human error contributions to previous LNG accidents and incidents, and a discussion of generic HF considerations for peakshaving plants. More specific recommendations for improving HF practices at peakshaving plants are offered based on visits to six facilities. The HF aspects of the recently promulgated DOT regulations are reviewed, and recommendations are made concerning how these regulations can be implemented utilizing standard HF practices. Finally, the integration of HF considerations into overall system safety is illustrated by a presentation of human error probabilities applicable to LNG operations and by an expanded fault tree analysis which explicitly recognizes man-machine interfaces.

  5. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  6. Design advanced for large-scale, economic, floating LNG plant

    SciTech Connect (OSTI)

    Naklie, M.M.

    1997-06-30

    A floating LNG plant design has been developed which is technically feasible, economical, safe, and reliable. This technology will allow monetization of small marginal fields and improve the economics of large fields. Mobil`s world-scale plant design has a capacity of 6 million tons/year of LNG and up to 55,000 b/d condensate produced from 1 bcfd of feed gas. The plant would be located on a large, secure, concrete barge with a central moonpool. LNG storage is provided for 250,000 cu m and condensate storage for 650,000 bbl. And both products are off-loaded from the barge. Model tests have verified the stability of the barge structure: barge motions are low enough to permit the plant to continue operation in a 100-year storm in the Pacific Rim. Moreover, the barge is spread-moored, eliminating the need for a turret and swivel. Because the design is generic, the plant can process a wide variety of feed gases and operate in different environments, should the plant be relocated. This capability potentially gives the plant investment a much longer project life because its use is not limited to the life of only one producing area.

  7. SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36...

    Energy Savers [EERE]

    Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER 3680 SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER 3680 NO REPORTS RECEIVED More Documents &...

  8. SEMI-ANNUAL REPORTS FOR TRUNKLINE LNG EXPORT, LLC - DK. NO. 13...

    Office of Environmental Management (EM)

    TRUNKLINE LNG EXPORT, LLC - DK. NO. 13-04-LNG - ORDER 3252 SEMI-ANNUAL REPORTS FOR TRUNKLINE LNG EXPORT, LLC - DK. NO. 13-04-LNG - ORDER 3252 April 2013 October 2013 April 2014...

  9. SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO....

    Energy Savers [EERE]

    ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) October 2015 More...

  10. SEMI-ANNUAL REPORTS FOR - BEAR HEAD LNG CORPORATION AND BEAR...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 CAMERON LNG, LLC - FE DKT. NO. 15-36-LNG (FTA) SEMI-ANNUAL REPORTS FOR LNG...

  11. Determining the Cause of a Header Failure in a Natural Gas Production Facility

    SciTech Connect (OSTI)

    Matthes, S.A.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.

    2007-03-01

    An investigation was made into the premature failure of a gas-header at the Rocky Mountain Oilfield Testing Center (RMOTC) natural gas production facility. A wide variety of possible failure mechanisms were considered: design of the header, deviation from normal pipe alloy composition, physical orientation of the header, gas composition and flow rate, type of corrosion, protectiveness of the interior oxide film, time of wetness, and erosion-corrosion. The failed header was examined using metallographic techniques, scanning electron microscopy, and microanalysis. A comparison of the failure site and an analogous site that had not failed, but exhibited similar metal thinning was also performed. From these studies it was concluded that failure resulted from erosion-corrosion, and that design elements of the header and orientation with respect to gas flow contributed to the mass loss at the failure point.

  12. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquefied Natural Gas (LNG) Facility and Transportation Regulations The New York Department of Environmental Conservation (DEC) is responsible for LNG fueling facility siting,...

  13. Energy Department Authorizes Additional Volume at Proposed Freeport...

    Energy Savers [EERE]

    Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export...

  14. Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01

    gas prices are projected to be high enough such that LNGnatural gas (“LNG”). At the same time, with the price of

  15. LNG Reports | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTION REPORT LED8-14 LM 28-14Trade |ofTruckLNG

  16. Raley's LNG Truck Site Final Data Report

    SciTech Connect (OSTI)

    Battelle

    1999-07-01

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  17. A new methodology for analyzing and predicting U.S. liquefied natural gas imports using neural networks 

    E-Print Network [OSTI]

    Bolen, Matthew Scott

    2005-11-01

    applications being filed in Canada and Mexico for LNG import terminals. The EIA (Energy Information Agency) estimates by 2025 that LNG will make up 21% of the total U.S. Natural Gas Supply. This study developed a neural network approach to forecast LNG imports...

  18. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt. No.- 15-33-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an application filed on February 25, 2015, by Bear Head LNG, requesting long-term multi-contract authority as further described in their...

  19. EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA, CO,Department of Energy Oregon LNG Export

  20. Cameron LNG LLC Final Order | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA) LLCAdministrationAward-LNG - Order 3391-A The

  1. Annova LNG, LLC - 14-004-CIC | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t yWaste | Department of Energy TheAnneliseAnnova LNG,

  2. CB ENCIi TEC APPL SCI Stuctual Dynamic Systems Computational Techniques

    E-Print Network [OSTI]

    Nagarajaiah, Satish

    Airport Terminal, Liquefied Natural Gas (LNG) Facility in Greece, C-1 Computer Center Building in Japan

  3. No loss fueling station for liquid natural gas vehicles

    SciTech Connect (OSTI)

    Cieslukowski, R.E.

    1992-06-16

    This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

  4. Monte Carlo validation experiments for the gas Cherenkov detectors at the National Ignition Facility and Omega

    SciTech Connect (OSTI)

    Rubery, M. S.; Horsfield, C. J. [Plasma Physics Department, AWE plc, Reading RG7 4PR (United Kingdom)] [Plasma Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Herrmann, H.; Kim, Y.; Mack, J. M.; Young, C.; Evans, S.; Sedillo, T.; McEvoy, A.; Caldwell, S. E. [Plasma Physics Department, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Plasma Physics Department, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Grafil, E.; Stoeffl, W. [Physics, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)] [Physics, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Milnes, J. S. [Photek Limited UK, 26 Castleham Road, St. Leonards-on-sea TN38 9NS (United Kingdom)] [Photek Limited UK, 26 Castleham Road, St. Leonards-on-sea TN38 9NS (United Kingdom)

    2013-07-15

    The gas Cherenkov detectors at NIF and Omega measure several ICF burn characteristics by detecting multi-MeV nuclear ? emissions from the implosion. Of primary interest are ? bang-time (GBT) and burn width defined as the time between initial laser-plasma interaction and peak in the fusion reaction history and the FWHM of the reaction history respectively. To accurately calculate such parameters the collaboration relies on Monte Carlo codes, such as GEANT4 and ACCEPT, for diagnostic properties that cannot be measured directly. This paper describes a series of experiments performed at the High Intensity ? Source (HI?S) facility at Duke University to validate the geometries and material data used in the Monte Carlo simulations. Results published here show that model-driven parameters such as intensity and temporal response can be used with less than 50% uncertainty for all diagnostics and facilities.

  5. Modeling of LNG Pool Spreading and Vaporization 

    E-Print Network [OSTI]

    Basha, Omar 1988-

    2012-11-20

    In this work, a source term model for estimating the rate of spreading and vaporization of LNG on land and sea is introduced. The model takes into account the composition changes of the boiling mixture, the varying thermodynamic properties due...

  6. Clean air program: Design guidelines for bus transit systems using liquefied petroleum gas (LPG) as an alternative fuel. Final report, July 1995-April 1996

    SciTech Connect (OSTI)

    Raj, P.K.; Hathaway, W.T.; Kangas, R.

    1996-09-01

    The Federal Transit Administration (FTA) has initiated the development of `Design Guidelines for Bus Transit Systems Using Alternative Fuels.` This report provides design guidelines for the safe uses of Liquefied Petroleum Gas (LPG). It forms a part of the series of individual monographs being published by the FTA on (the guidelines for the safe use of) Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes for the subject fuel the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

  7. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect (OSTI)

    O`Brien, J.E.; Siahpush, A.

    1998-02-01

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  8. 64 Oil and Gas Facilities December 2014 Elaborated models, such as those used for simulation purposes [e.g.,

    E-Print Network [OSTI]

    Skogestad, Sigurd

    in which the reservoir pressure is relatively low. Therefore, a solution that guarantees stable flow64 Oil and Gas Facilities · December 2014 Summary Elaborated models, such as those used that transport a mixture of oil and gas from the seabed to the surface (Taitel 1986). Such flow regimes, also

  9. Who knew? looks like we're in for an LNG glut

    SciTech Connect (OSTI)

    2009-04-15

    U.S. domestic production of natural gas has grown considerably in the recent past, especially from unconventional domestic resources. Recession has reduced demand. Further, the U.S. may end up on the receiving end of much of the excess global production and transportation capacity because of its massive storage capacity. Charts of U.S. natural gas production and LNG imports are given.

  10. Annotated bibliography: LNG safety and environmental control research

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This bibliography provides brief summaries of literature related to LNG safety and environmental control, organized alphabetically by author.

  11. U.S. LNG Markets and Uses: June 2004 Update

    Reports and Publications (EIA)

    2004-01-01

    This article is an update of the Energy Information Administration's January 2003 report U.S. LNG Markets and Uses.

  12. Analysis of liquid natural gas as a truck fuel: a system dynamics approach

    SciTech Connect (OSTI)

    Bray, M.A.; Sebo, D.E.; Mason, T.L.; Mills, J.I.; Rice, R.E.

    1996-10-01

    The purpose of this analysis is to evaluate the potential for growth in use of liquid natural gas (LNG) fueled trucks. . A system dynamics model was constructed for the analysis and a variety of scenarios were investigated. The analysis considers the economics of LNG fuel in the context of the trucking industry to identify barriers to the increased use of LNG trucks and potential interventions or leverage points which may overcome these barriers. The study showed that today, LNG use in trucks is not yet economically viable. A large change in the savings from fuel cost or capital cost is needed for the technology to take off. Fleet owners have no way now to benefit from the environmental benefits of LNG fuel nor do they benefit from the clean burning nature of the fuel. Changes in the fuel cost differential between diesel and LNG are not a research issue. However, quantifying the improvements in reliability and wear from the use of clean fuel could support increased maintenance and warranty periods. Many people involved in the use of LNG for trucks believe that LNG has the potential to occupy a niche within the larger diesel truck business. But if LNG in trucks can become economic, the spread of fuel stations and technology improvements could lead to LNG trucks becoming the dominant technology. An assumption in our simulation work is that LNG trucks will be purchased when economically attractive. None of the simulation results show LNG becoming economic but then only to the level of a niche market.

  13. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect (OSTI)

    Jerry Havens; Iraj A. Salehi

    2005-05-10

    The objective of this report is to develop the FEM3A model for application to general scenarios involving dispersion problems with obstacles and terrain features of realistic complexity, and for very low wind speed, stable weather conditions as required for LNG vapor dispersion application specified in 49 CFR 193. The dispersion model DEGADIS specified in 49 CFR 193 is limited to application for dispersion over smooth, level terrain free of obstacles (such as buildings, tanks, or dikes). There is a need for a dispersion model that allows consideration of the effects of terrain features and obstacles on the dispersion of LNG vapor clouds. Project milestones are: (1) Simulation of Low-Wind-Speed Stable Atmospheric Milestones Conditions; (2) Verification for Dispersion over Rough Surfaces, With And Without Obstacles; and (3) Adapting the FEM3A Model for General Application. Results for this quarter are work continues to underway to address numerical problems during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, we have been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A. The present effort is directed to describing the ground surface temperature decrease as a function of time.

  14. The role of natural gas as a vehicle transportation fuel

    E-Print Network [OSTI]

    Murphy, Paul Jarod

    2010-01-01

    This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

  15. LNG imports make strong recovery in 1996; exports increase also

    SciTech Connect (OSTI)

    Swain, E.J.

    1998-01-19

    LNG imports to the US jumped in 1996 as Algerian base-load plants resumed operations following major revamps. Exports from Alaska to Japan grew by nearly 4% over 1995. Total LNG imports to the US in 1996 were 40.27 bcf compared to 17.92 bcf in 1995, an increase of 124.8%. Algeria supplied 35.32 bcf; Abu Dhabi, 4.95 bcf. About 82.3% of the imported LNG was received at Distrigas Corp.`s terminal north of Boston. The remaining LNG was received at the Pan National terminal in Lake Charles, LA. LNG imports during 1995 fell to such a low level not because of depressed US demand but because of limited supply. The paper discusses LNG-receiving terminals, base-load producers, LNG pricing, and exports.

  16. ENERGY IN THE PACIFIC COASTAL ZONE DOES D.O.E. HAVE A ROLE?

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01

    i ocs. ed natural gas (LNG) facilities. and on several "neWProduct barge terminals LNG Off-shore terminal {if selected12 voting members. liqui gas (LNG) terminals, thermal power

  17. A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

    E-Print Network [OSTI]

    Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

    2001-01-01

    A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

  18. Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems

    SciTech Connect (OSTI)

    Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

    2009-05-31

    This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

  19. Rotor dynamic analysis of GCEP (Gas Centrifuge Enrichment Plant) Tails Withdrawal Test Facility AC-12 compressor

    SciTech Connect (OSTI)

    Spencer, J.W.

    1982-01-22

    The reliable operation of the centrifugal compressors utilized in the gaseous diffusion process is of great importance due to the critical function of these machines in product and tails withdrawal, cascade purge and evacuation processes, the purge cascade and product booster applications. The same compressors will be used in equally important applications within the Gas Centrifuge Enrichment Plant (GCEP). In response to concern over the excessive vibration exhibited by the AC-12 compressor in the No. 3 position of the GCEP Tails Withdrawal Test Facility, a rotor-bearing dynamic analysis was performed on the compressor. This analysis included the acquisition and reduction of compressor vibration data, characterization and modeling of the rotorbearing system, a computer dynamic study, and recommendations for machine modification. The compressor dynamic analysis was performed for rotor speeds of 9000 rpm and 7200 to 7800 rpm, which includes all possible opreating speeds of the compressor in the GCEP Test Facility. While the analysis was performed on this particular AC-12 compressor, the results should be pertinent to other AC-12 applications as well. Similar diagnostic and analytical techniques can be used to evaluate operation of other types of centrifugal compressors.

  20. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  1. Cost estimate for a proposed GDF Suez LNG testing program

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Brady, Patrick Dennis; Jernigan, Dann A.; Luketa, Anay Josephine; Nissen, Mark R.; Lopez, Carlos; Vermillion, Nancy; Hightower, Marion Michael

    2014-02-01

    At the request of GDF Suez, a Rough Order of Magnitude (ROM) cost estimate was prepared for the design, construction, testing, and data analysis for an experimental series of large-scale (Liquefied Natural Gas) LNG spills on land and water that would result in the largest pool fires and vapor dispersion events ever conducted. Due to the expected cost of this large, multi-year program, the authors utilized Sandia's structured cost estimating methodology. This methodology insures that the efforts identified can be performed for the cost proposed at a plus or minus 30 percent confidence. The scale of the LNG spill, fire, and vapor dispersion tests proposed by GDF could produce hazard distances and testing safety issues that need to be fully explored. Based on our evaluations, Sandia can utilize much of our existing fire testing infrastructure for the large fire tests and some small dispersion tests (with some modifications) in Albuquerque, but we propose to develop a new dispersion testing site at our remote test area in Nevada because of the large hazard distances. While this might impact some testing logistics, the safety aspects warrant this approach. In addition, we have included a proposal to study cryogenic liquid spills on water and subsequent vaporization in the presence of waves. Sandia is working with DOE on applications that provide infrastructure pertinent to wave production. We present an approach to conduct repeatable wave/spill interaction testing that could utilize such infrastructure.

  2. Advanced Modeling and Evaluation of the Response of Base-Isolated Nuclear Facility Structures to Vertical Earthquake Excitation

    E-Print Network [OSTI]

    Keldrauk, Eric Scott

    2012-01-01

    2.5.3 Liquefied Natural Gas Tanks . . . . 2.5.4 Nuclearruin precision parts or experiments. Liquefied Natural GasTanks Liquefied natural gas (LNG) is stored in aboveground

  3. Energy Department Authorizes Second Proposed Facility to Export...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas May 17, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department announced today that it has conditionally authorized Freeport LNG...

  4. 23rd World Gas Conference, Amsterdam 2006 DEVELOPMENT OF THE WORLD'S LARGEST ABOVE-GROUND

    E-Print Network [OSTI]

    Laughlin, Robert B.

    CONTAINMENT LNG STORAGE TANK Young-myung Yang Ji-hoon Kim, Heung-seok Seo, Kangwon Lee, Ihn-soo Yoon Korea Gas-ground full containment LNG storage tank with a gross capacity of 200,000m 3 . The main objective of the development of the large capacity LNG storage tank is to reduce the construction cost and the boil-off gas

  5. LNG Annual Report - 2006 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. DepartmentJeanKeyLANLLG: Order4 LMReleasesTrade |5 LNG6 LNG

  6. LNG Annual Report - 2007 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. DepartmentJeanKeyLANLLG: Order4 LMReleasesTrade |5 LNG6 LNG7

  7. LNG Annual Report - 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. DepartmentJeanKeyLANLLG: Order4 LMReleasesTrade |5 LNG69 LNG

  8. Parallax Enterprises (NOLA) LLC- (Formerly Louisiana LNG Energy LLC) – FE Dkt. No. 14-19-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 5, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term multi-contract authorization to export...

  9. Parallax Enterprises (NOLA) LLC (Formerly Louisiana LNG Energy LLC) – FE Dkt. No. 14-29-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 18, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term authorization to export two million metric...

  10. SCT&E LNG, LLC- FE Dkt. No. 14-72-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed May 23, 2014, by SCT&E LNG, LLC (SCT&E), seeking a long-term multi-contract authorization to export domestically...

  11. G2 LNG LLC- FE Dkt. No. 15-45-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed March 19, 2015, by G2 LNG LLC (G2), seeking a long-term multi-contract authorization to export domestically produced...

  12. G2 LNG LLC- FE Dkt. No. 15-44-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed March 19, 2015, by G2 LNG LLC (G2), seeking a long-term, multi-contract authorization to export domestically produced...

  13. SCT&E LNG, LLC- FE Dkt. No. 14-89-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed July 9, 2014, by SCT&E LNG, LLC (SCT&E), seeking a long-term multi-contract authorization to export domestically...

  14. Venture Global Calcasieu Pass, LLC- (Formerly Venture Global LNG, LLC)- 14-88-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an application filed on May 13, 2014, by Venture Global LNG, LLC (VGP) requesting long-term, multi-contract authority to export (in addition...

  15. SCT&E LNG, LLC- FE DKT. NO. 14-98-LNG NFTA

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an Application filed July 24, 2014, by SCT&E LNG, LLC (SCT&E), seeking a long-term multi-contract authorization to export domestically...

  16. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG On May 17, 2013, the Office of Fossil Energy of the Department of Energy (DOEFE) issued...

  17. SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION...

    Broader source: Energy.gov (indexed) [DOE]

    SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG - ORDER 3066 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG...

  18. Feasibility of methods and systems for reducng LNG tanker fire hazards

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    In this program concepts for reducing fire hazards that may result from LNG tanker collisions are identified and their technical feasibility evaluated. Concepts considered include modifications to the shipborne LNG containers so that in the event of a container rupture less of the contents would spill and/or the contents would spill at a reduced rate. Changes in the cargo itself, including making the LNG into a gel, solidifying it, converting it to methanol, and adding flame suppressants are also evaluated. The relative effectiveness and the costs of implementing these methods in terms of increased cost of gas at the receiving terminal, are explained. The vulnerability of an LNG tanker and its crew to the thermal effects of a large pool fire caused by a collision spill is estimated and methods of protecting the crew are considered. It is shown that the protection of ship and crew so that further deterioration of a damaged ship might be ameliorated, would require the design and installation of extraordinary insulation systems and life support assistance for the crew. Methods of salvaging or disposing of cargo from a damaged and disabled ship are evaluated, and it is concluded that if the cargo cannot be transferred to another (empty) LNG tanker because of lack of availability, then the burning of the cargo at a location somewhat distant from the disabled tanker appears to be a promising approach. Finally, the likelihood of the vapors from a spill being ignited due to the frictional impact of the colliding ships was examined. It is found that the heating of metal sufficient to ignite flammable vapors would occur during a collision, but it is questionable whether flammable vapor and air will, in fact, come in contact with the hot metal surfaces.

  19. Pipeline transportation of natural gas from the Gulf Coast to the Northeast

    SciTech Connect (OSTI)

    Boehm, J.C.

    1980-01-01

    Transcontinental Gas Pipe Line Corp.'s national gas pipeline system from the Gulf Coast producing area (where 75% of its supply lies offshore) extends for 1832 mi along the Gulf Coast through the southeastern Piedmont and north to terminate in New York City. It serves high-priority markets in 11 southern and Atlantic seaboard states with a daily flowing capacity of 3.0 billion cu ft/day and an additional 1.5 billion cu ft/day available from storage. Also discussed are gas conditioning for the removal of hydrogen sulfide, carbon dioxide, water vapor and entrained salt water and solids, and measurement of gas volume with a meter and gravitometer and of heating value with a calorimeter; gas transmission through 9,295 mi of pipeline, made up mostly of four, 30-42 in. dia parallel pipelines with 1,062,452 hp of compression capacity; LNG storage, including unique facilities at the Eminence, Miss., Salt Dome Storage facility and the Carlstadt, N.J., LNG plant; odorization; operations; and pipeline protection against third-party damage and against corrosion.

  20. LNG fleet increases in size and capabilities

    SciTech Connect (OSTI)

    Linser, H.J. Jr.; Drudy, M.J.; Endrizzi, F.; Urbanelli, A.A.

    1997-06-02

    The LNG fleet as of early 1997 consisted of 99 vessels with total cargo capacity of 10.7 million cu m, equivalent to approximately 4.5 million tons. One of the newest additions to the fleet, the 137,000-cu m tanker Al Zubarah, is five times the size of the original commercial vessel Methane Princess. Al Zubarah`s first loading of more than 60,000 tons occurred in December 1996 for deliver to Japanese buyers from the newly commissioned Qatargas LNG plant at Ras Laffan. That size cargo contains enough clean-burning energy to heat 60,000 homes in Japan for 1 month. Measuring nearly 1,000 ft long, the tanker is among the largest in the industry fleet and joined 70 other vessels of more than 100,000 cu m. Most LNG tankers built since 1975 have been larger-capacity vessels. The paper discusses LNG shipping requirements, containment systems, vessel design, propulsion, construction, operations and maintenance, and the future for larger vessels.

  1. World Gas Conference Tokyo, June 1-5, 2003

    E-Print Network [OSTI]

    Gudmundsson, Jon Steinar

    than LNG technology, based on mid-1995 and mid-2002 cost studies for large-scale natural gas chains and transport distances. Pipelines are readily used for distances less than 1000 km and large volumes, while LNG represents a new non-pipeline technology that is suitable for the transport of small-to-medium annual volumes

  2. On the application of computational fluid dynamics codes for liquefied natural gas dispersion.

    SciTech Connect (OSTI)

    Luketa-Hanlin, Anay Josephine; Koopman, Ronald P.; Ermak, Donald

    2006-02-01

    Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-{var_epsilon} model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.

  3. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01

    fossil fuels (e.g. , liquefied natural gas and marine dieseldiesel oil (MDO), Liquefied natural gas (LNG), Wind power (marine diesel oil or liquefied natural gas for heavy fuel

  4. Constraint Programming for LNG Ship Scheduling and Inventory ...

    E-Print Network [OSTI]

    2013-10-29

    LNG supply chain is negotiated on an annual basis. The supply and demand ...... In Table 5 we report the % gap in solution objective for each of the CP.

  5. Optimization Online - Bound Improvement for LNG Inventory Routing

    E-Print Network [OSTI]

    Feb 14, 2014 ... Bound Improvement for LNG Inventory Routing. Yufen Shao (yufen.shao ***at*** exxonmobil.com) Kevin Furman (kevin.c.furman ***at*** ...

  6. Parallel Large-Neighborhood Search Techniques for LNG Inventory ...

    E-Print Network [OSTI]

    Apr 17, 2014 ... Parallel Large-Neighborhood Search Techniques for LNG Inventory Routing. Badrinarayanan Velamur Asokan(badri.velamur.asokan ***at*** ...

  7. Potential for long-term LNG supply. Final report

    SciTech Connect (OSTI)

    Moncrieff, T.I.; Goldman, D.P.; Jeffries, E.F.; Sherff, J.L.; Wood-Collins, J.C.

    1991-08-01

    Limited foreign liquefaction and U.S. LNG terminal capacity exists before 1993, after which time re-opening of the Cove Point and, later, Elba Island terminals, together with the refurbishment of inefficient Algerian liquefaction plant, permits a major expansion in U.S.-North African LNG trade. Towards 2000 expansion of all four U.S. LNG receiving terminals is technically possible, providing appropriate market, regulatory and environmental signals are received. These expansions will be necessary in order to absorb LNG supply from new sources such as Venezuela and Nigeria.

  8. Second Stage Intercooling Using LNG for Turbocharged Heavy Duty Road Vehicles Phase I Final Report

    SciTech Connect (OSTI)

    1999-09-21

    It is well documented in engine performance literature that reduced engine inlet air temperature increases power output and reduces NO, emissions for both diesel and spark ignited (SI) engines. In addition, reduced inlet temperature increases the knock resistance of SI engines. In that most HD natural gas engines are SI derivatives of diesel engines it is appropriate to evaluate the benefits of reduced engine air temperature through LNG fuel. This project investigated the ''real world'' possibilities of a patented process for utilizing the ''cold'' in LNG to chill engine inlet air. The results support the conclusion that doing so is a practical means to increase engine power and reduce engine-out NO{sub x}.

  9. RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY

    SciTech Connect (OSTI)

    LANCE HAYS

    2007-02-27

    A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

  10. Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review

    SciTech Connect (OSTI)

    Lekov, Alex; Sturges, Andy; Wong-Parodi, Gabrielle

    2009-12-09

    An increasing share of natural gas supplies distributed to residential appliances in the U.S. may come from liquefied natural gas (LNG) imports. The imported gas will be of a higher Wobbe number than domestic gas, and there is concern that it could produce more pollutant emissions at the point of use. This report will review recently undertaken studies, some of which have observed substantial effects on various appliances when operated on different mixtures of imported LNG. While we will summarize findings of major studies, we will not try to characterize broad effects of LNG, but describe how different components of the appliance itself will be affected by imported LNG. This paper considers how the operation of each major component of the gas appliances may be impacted by a switch to LNG, and how this local impact may affect overall safety, performance and pollutant emissions.

  11. Single-cycle mixed-fluid LNG process Part II: Optimal operation

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Single-cycle mixed-fluid LNG process Part II: Optimal operation Jørgen Bauck Jensen and Sigurd of work that goes into the design of LNG processes, there is surprisingly little attention simple LNG process, namely the PRICO process. Keywords: PRICO, LNG, operation 1 Introduction The process

  12. From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities...

    Broader source: Energy.gov (indexed) [DOE]

    pilot scale heat- and pressure-based conversion technologies like gasification and pyrolysis. These testing facilities are enabling comprehensive assessment, testing, and...

  13. The effects of LNG-sloshing on the global responses of LNG-carriers 

    E-Print Network [OSTI]

    Lee, Seung Jae

    2008-10-10

    stream_source_info Lee.pdf.txt stream_content_type text/plain stream_size 245950 Content-Encoding UTF-8 stream_name Lee.pdf.txt Content-Type text/plain; charset=UTF-8 THE EFFECTS OF LNG-SLOSHING ON THE GLOBAL... RESPONSES OF LNG-CARRIERS A Dissertation by SEUNG JAE LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2008 Major Subject...

  14. An investigation of the use of odorants in liquefied natural gas used as a vehicle fuel

    SciTech Connect (OSTI)

    Green, T.; Williams, T.

    1994-12-31

    Interest in liquefied natural gas (LNG) as an alternative vehicle fuel has increased significantly. Its greater storage density relative to compressed natural gas makes it an attractive option for both volume and weight constrained vehicle applications. The public transportation market, specifically transit bus properties, have been very aggressive in pursuing LNG as an alternative vehicle fuel. Naturally, when dealing with the general public and a new transportation fuel, the issue of safety must be addressed. With this in mind, the Gas Research Institute has initiated a number of safety related studies including an investigation of the use of odorants in LNG. This paper presents the preliminary results of an investigation performed by the Institute of Gas Technology to determine both the applicability and effectiveness of odorizing LNG. This includes an overview of the current state-of-the-art in LNG vehicle fueling and safety systems as well as a discussion of an LNG odorization program conducted by San Diego Gas & Electric in the mid 70`s. Finally, the paper discusses the results of the modeling effort to determine whether conventional odorants used in natural gas can be injected and remain soluble in LNG at temperatures and pressures encountered in LNG fueling and on-board storage systems.

  15. Procedures for LNG Export Decisions

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy will act on applications to export liquefied natural gas from the lower-48 states to countries with which the United States does not have a free trade agreement...

  16. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    Electric Drivetrain Electric Drivetrain Conv. DieselDiesel Hyb. Conv. LNG-SI LNG-SI Hyb. Conv. LNG-CI LNG-CICompression Ignition Carbon Dioxide Diesel Gallon Equivalent

  17. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    Electric Drivetrain Conv. Diesel Diesel Hyb. Conv. LNG-SI LNG-SI Hyb.Conv. LNG-CI LNG-CI Hyb. Battery EV Fuel Cell Short Haul

  18. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  19. Breach and safety analysis of spills over water from large liquefied natural gas carriers.

    SciTech Connect (OSTI)

    Hightower, Marion Michael; Luketa-Hanlin, Anay Josephine; Attaway, Stephen W.

    2008-05-01

    In 2004, at the request of the Department of Energy, Sandia National Laboratories (Sandia) prepared a report, ''Guidance on the Risk and Safety Analysis of Large Liquefied Natural Gas (LNG) Spills Over Water''. That report provided framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. The report also presented the general scale of possible hazards from a spill from 125,000 m3 o 150,000 m3 class LNG carriers, at the time the most common LNG carrier capacity.

  20. Pangea LNG (North America) Holdings, LLC- 14-002-CIC (FE Dkt. No. 12-184-LNG New Company Name: NextDecade Partnerss, LLC)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Amendment of Application to Export LNG to Non-free Trade Agreement Countries to Reflect a Change in Ownership of Pangea LNG (North America) Holdings, LLC and a Revision of the Point from which the...