Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Federal Offshore--California Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Liquids Lease Condensate, Proved Reserves (Million Barrels) Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0...

2

Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

3

Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade...

4

California--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) California--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

5

,"Colorado Natural Gas Liquids Lease Condensate, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

6

Colorado Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

7

New Mexico Natural Gas Liquids Lease Condensate, Reserves in...  

U.S. Energy Information Administration (EIA) Indexed Site

in Nonproducing Reservoirs (Million Barrels) New Mexico Natural Gas Liquids Lease Condensate, Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2...

8

,"New York Natural Gas Liquids Lease Condensate, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",198...

9

Federal Offshore--Texas Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

10

,"Federal Offshore--California Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million...

11

,"Texas--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

12

,"Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

13

Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

14

,"Mississippi (with State Offshore) Natural Gas Liquids Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

15

,"Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

16

Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

17

,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

18

,"Texas (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

19

,"Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

20

,"Federal Offshore--Texas Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Proved Reserves (Million...

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

22

,"California--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

23

,"California (with State Offshore) Natural Gas Liquids Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

24

,"Alabama (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

25

California (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

in Nonproducing Reservoirs (Million Barrels) California (with State Offshore) Natural Gas Liquids Lease Condensate, Reserves in Nonproducing Reservoirs (Million Barrels) Decade...

26

California--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) California--State Offshore Natural Gas Liquids Lease Condensate, Reserves in Nonproducing Reservoirs (Million Barrels) Decade...

27

Colorado Natural Gas Liquids Lease Condensate, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Million Barrels) Colorado Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

28

Federal Offshore--Texas Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Million Barrels) Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

29

Texas--State Offshore Natural Gas Liquids Lease Condensate, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Million Barrels) Texas--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

30

Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Million Barrels) Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

31

Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 263 1980's 267 253 243 238 229 220 208 194 193 196 1990's 182 175 151 133 123 136 127 134 138 142 2000's 159 141 107 82 66 65 65 71 64 74 2010's 68 64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Lease Condensate Proved Reserves as of Dec. 31 LA, South Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production

32

Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34 28 27 29 32 1990's 33 34 35 35 37 40 49 59 57 61 2000's 76 60 60 53 49 39 37 40 28 28 2010's 28 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Lease Condensate Estimated Production Federal Offshore, Gulf of Mexico, Louisiana & Alabama Lease Condensate Proved Reserves, Reserve Changes, and Production Lease Condensate

33

Lower 48 States Natural Gas Liquids Lease Condensate, Reserves Based  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Reserves Based Production (Million Barrels) Lower 48 States Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 147 1980's 159 161 157 157 179 168 169 162 162 165 1990's 158 153 147 153 157 145 162 174 178 199 2000's 208 215 207 191 182 174 182 181 173 178 2010's 224 211 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Lease Condensate Estimated Production Lower 48 States Lease Condensate Proved Reserves, Reserve Changes, and Production Lease Condensate

34

Lower 48 States Natural Gas Liquids Lease Condensate, Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Lower 48 States Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,401 1980's 1,530 1,580 1,601 1,613 1,503 1,452 1,436 1,402 1,389 1,389 1990's 1,302 1,244 1,226 1,192 1,147 1,197 1,307 1,341 1,336 1,403 2000's 1,472 1,398 1,346 1,215 1,221 1,262 1,339 1,495 1,433 1,633 2010's 1,914 2,370 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Lease Condensate Proved Reserves as of Dec. 31 Lower 48 States Lease Condensate Proved Reserves, Reserve Changes,

35

Federal Offshore--California Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Date: 12312015 Referring Pages: Lease Condensate Estimated Production Federal Offshore California Lease Condensate Proved Reserves, Reserve Changes, and Production Lease...

36

California--State Offshore Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Date: 12312015 Referring Pages: Lease Condensate Estimated Production CA, State Offshore Lease Condensate Proved Reserves, Reserve Changes, and Production Lease Condensate...

37

U.S. Natural Gas Liquids Lease Condensate, Proved Reserves (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) U.S. Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,411 1980's 1,530 1,580 1,601 1,613 1,522 1,453 1,436 1,402 1,389 1,389 1990's 1,302 1,244 1,226 1,192 1,147 1,197 1,307 1,341 1,336 1,403 2000's 1,472 1,398 1,346 1,215 1,221 1,262 1,339 1,495 1,433 1,633 2010's 1,914 2,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Lease Condensate Proved Reserves as of Dec. 31 U.S. Lease Condensate Proved Reserves, Reserve Changes, and

38

Oil, Gas, and Mining Leases (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section contains rules on oil, gas, and mining leases, and grants authority to the State of Nebraska and local governments to issue leases for oil and gas mining and exploration on their lands.

39

Colorado Natural Gas, Wet After Lease Separation Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

40

Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation,...

42

Texas State Offshore Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

43

New Mexico Natural Gas Wet After Lease Separation, Reserves in...  

U.S. Energy Information Administration (EIA) Indexed Site

After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) New Mexico Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion...

44

California--State Offshore Natural Gas Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) California--State Offshore Natural Gas Wet After Lease Separation, Reserves in Nonproducing...

45

Oil and Gas- Leases to remove or recover (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

This act states that a lease or agreement conveying the right to remove or recover oil, natural gas or gas of any other designation from lessor to lessee shall not be valid if such lease does not...

46

EIAs Proposed Definitions for Natural Gas Liquids  

Gasoline and Diesel Fuel Update (EIA)

Definitions for Natural Gas Liquids 1 Definitions for Natural Gas Liquids 1 June 14, 2013 EIA's Proposed Definitions for Natural Gas Liquids Term Current Definition Proposed Definition Note Lease condensate Condensate (lease condensate): A natural gas liquid recovered from associated and non associated gas wells from lease separators or field facilities, reported in barrels of 42 U.S. gallons at atmospheric pressure and 60 degrees Fahrenheit. Lease condensate: Light liquid hydrocarbons recovered from lease separators or field facilities at associated and non-associated natural gas wells. Mostly pentanes and heavier hydrocarbons. Normally enters the crude oil stream after production. Includes lease condensate as part of the crude oil stream, not an NGL. Plant condensate Plant condensate: One of the

47

,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million...

48

,"Colorado Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

49

,"Colorado Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

50

,"Colorado Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

51

,"New York Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

52

,"New York Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

53

,"New York Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

54

,"California Federal Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

55

,"Louisiana State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

56

,"Texas State Offshore Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

57

,"California State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

58

,"Texas State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

59

,"New York Natural Gas Lease and Plant Fuel Consumption (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

60

,"New York Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","1031...

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

California State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 234 1980's 166 256 254 243 235 1990's 194 60 63 65 63 59 49 56 44 77 2000's 91 85 91 83 87 90 90 83 57 57 2010's 66 82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, State Offshore Natural Gas Reserves Summary as of Dec. 31 Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

62

Texas State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,112 1,073 739 634 564 610 1990's 461 477 350 337 230 313 293 290 350 419 2000's 400 468 436 456 321 265 305 261 220 164 2010's 131 118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 TX, State Offshore Natural Gas Reserves Summary as of Dec. 31 Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

63

Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 432 1980's 282 165 158 396 364 395 522 477 749 686 1990's 844 805 780 763 780 699 715 594 548 777 2000's 717 631 772 823 767 714 801 926 886 799 2010's 742 684 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Ohio Nonassociated Natural Gas Proved Reserves, Wet After Lease

64

Florida Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 26 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Florida Nonassociated Natural Gas Proved Reserves, Wet After Lease

65

U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report  

SciTech Connect

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

NONE

1998-12-01T23:59:59.000Z

66

Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After

67

Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,269 1,351 1,478 1,209 1,273 1990's 1,019 1,082 845 946 988 862 783 743 571 661 2000's 721 772 512 527 394 433 442 392 934 728 2010's 386 519 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Natural Gas Reserves Summary as of Dec. 31

68

Miscellaneous States Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Miscellaneous States Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 156 1980's 180 193 74 81 77 77 136 66 84 87 1990's 72 76 93 96 67 69 68 44 39 67 2000's 42 83 100 134 110 132 139 241 272 349 2010's 363 393 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Miscellaneous Natural Gas Reserves Summary as of Dec. 31

69

North Dakota Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) North Dakota Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 485 1980's 594 654 696 673 643 650 610 578 593 625 1990's 650 533 567 585 568 518 512 531 501 475 2000's 487 495 524 497 465 508 539 572 603 1,213 2010's 1,869 2,652 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 North Dakota Natural Gas Reserves Summary as of Dec. 31

70

Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 142 1980's 146 181 47 50 63 52 95 53 56 48 1990's 50 62 82 87 56 37 40 13 22 13 2000's 23 64 80 120 98 118 120 226 263 271 2010's 353 270 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Miscellaneous Nonassociated Natural Gas Proved Reserves, Wet After

71

California Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,881 1980's 1,792 1,424 1,230 1,120 1,006 1990's 911 901 799 817 808 736 610 570 453 355 2000's 754 842 796 759 767 799 780 686 621 612 2010's 503 510 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 California Nonassociated Natural Gas Proved Reserves, Wet After

72

Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 837 1980's 1,308 1,336 870 921 825 884 823 801 834 889 1990's 920 848 875 684 727 792 806 769 789 851 2000's 892 907 914 1,068 1,002 998 1,069 1,067 1,014 993 2010's 959 792 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Montana Natural Gas Reserves Summary as of Dec. 31

73

Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,820 1,100 1,218 1,002 1,042 1990's 812 875 691 789 820 714 626 613 473 541 2000's 592 627 428 448 333 370 386 327 248 215 2010's 279 468 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet

74

California - Los Angeles Basin Onshore Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 207 163 104 115 163 188 149 155 158 141 1990's 110 120 103 108 108 115 112 146 154 174 2000's 204 195 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Natural Gas Reserves Summary as of

75

California State Offshore Nonassociated Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8 1980's 6 12 22 22 29 1990's 6 5 4 2 4 3 2 2 5 19 2000's 5 5 6 7 2 1 5 4 3 4 2010's 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet

76

California - Coastal Region Onshore Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 395 1980's 330 325 384 405 284 277 275 255 232 238 1990's 232 231 215 201 205 163 168 176 118 233 2000's 244 185 197 174 196 277 214 212 151 169 2010's 180 173 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Coastal Region Onshore Natural Gas Reserves Summary as of Dec.

77

California Federal Offshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 73 1980's 107 227 217 258 267 1990's 240 179 149 147 110 94 115 58 52 48 2000's 76 50 56 55 47 49 55 53 3 9 2010's 3 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore California Nonassociated Natural Gas Proved

78

Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 733 1980's 883 758 719 824 774 689 577 569 491 432 1990's 408 437 352 328 357 326 347 281 228 227 2000's 214 159 214 269 193 153 192 179 148 77 2010's 72 77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

79

North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 284 1980's 355 401 448 416 376 319 317 302 327 312 1990's 316 290 301 311 293 255 257 274 240 225 2000's 223 225 209 181 145 165 182 155 119 143 2010's 152 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

80

Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 34 12 27 31 14 25 41 13 28 39 1990's 22 14 11 9 11 32 28 31 17 54 2000's 19 19 20 14 12 14 19 15 9 78 2010's 10 104 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

82

Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 1980's 194 184 174 194 189 157 150 145 157 145 1990's 67 136 133 93 85 104 89 56 38 41 2000's 39 30 38 37 40 46 44 37 12 20 2010's 29 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

83

Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 51 1980's 122 89 81 108 77 91 98 97 101 68 1990's 86 66 61 53 55 53 51 42 52 67 2000's 70 85 94 112 130 161 195 219 197 312 2010's 302 270 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

84

Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 765 1980's 916 1,040 832 775 690 632 567 488 249 237 1990's 241 192 160 120 134 133 255 287 183 260 2000's 186 168 159 139 107 98 90 73 78 53 2010's 73 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

85

New York Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New York Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 211 1980's 208 262 226 295 387 367 457 410 351 364 1990's 354 331 329 264 240 195 229 223 217 212 2000's 320 311 315 365 324 346 361 365 360 196 2010's 271 245 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

86

Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 786 1980's 1,186 1,247 789 813 748 793 725 704 733 821 1990's 834 782 814 631 672 739 755 727 737 784 2000's 822 822 820 956 872 837 874 848 817 681 2010's 657 522 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

87

Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

88

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Gasoline and Diesel Fuel Update (EIA)

(Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

89

Title 30 USC 226 Lease of Oil and Gas Lands | Open Energy Information  

Open Energy Info (EERE)

StatuteStatute: Title 30 USC 226 Lease of Oil and Gas LandsLegal Abstract Section 226 - Lease of Oil and Gas Lands in Subchapter IV: Oil and Gas under Title 30: Mineral Lands and...

90

Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Lease Fuel Consumption (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

91

Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) | Open  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Jump to: navigation, search Statute Name Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Year 1987 Url FederalOnshore1987.jpg Description Another amendment to the Mineral Leasing Act, The Federal Onshore Oil and Gas Leasing Reform Act of 1987 granted the USDA Forest Service the authority to make decisions and implement regulations concerning the leasing of public domain minerals on National Forest System lands containing oil and gas. References Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA)[1] Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) (30 U.S.C. § 181 et seq.) - Another amendment to the Mineral Leasing Act, The Federal

92

California Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,842 1980's 5,137 4,084 3,893 3,666 3,513 1990's 3,311 3,114 2,892 2,799 2,506 2,355 2,193 2,390 2,332 2,505 2000's 2,952 2,763 2,696 2,569 2,773 3,384 2,935 2,879 2,538 2,926 2010's 2,785 3,042 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 California Natural Gas Reserves Summary as of Dec. 31

93

Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,676 13,334 12,852 12,620 12,912 1990's 12,151 11,363 10,227 9,541 10,145 9,891 10,077 10,036 9,480 9,646 2000's 9,512 10,040 9,190 9,538 9,792 10,679 10,710 10,292 11,816 20,970 2010's 29,517 30,545 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Louisiana Natural Gas Reserves Summary as of Dec. 31

94

Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Kentucky Associated-Dissolved Natural Gas Proved Reserves, Wet After

95

Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 2,446 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Virginia Natural Gas Reserves Summary as of Dec. 31

96

Florida Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 108 1980's 122 99 86 64 90 81 69 62 69 57 1990's 53 45 55 59 117 110 119 112 106 100 2000's 93 96 102 92 88 87 50 110 1 7 2010's 30 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Florida Associated-Dissolved Natural Gas Proved Reserves, Wet After

97

Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46,803 46,620 44,319 42,192 41,404 41,554 1990's 41,411 39,288 38,141 37,847 39,020 39,736 41,592 41,108 40,793 43,350 2000's 45,419 46,462 47,491 48,717 53,275 60,178 65,805 76,357 81,843 85,034 2010's 94,287 104,454 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Texas Natural Gas Reserves Summary as of Dec. 31

98

Mississippi Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Mississippi Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,511 1980's 1,776 2,042 1,803 1,603 1,496 1,364 1,304 1,223 1,146 1,108 1990's 1,129 1,061 873 800 653 667 634 583 662 681 2000's 620 663 746 748 692 758 816 958 1,035 922 2010's 858 868 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Mississippi Natural Gas Reserves Summary as of Dec. 31

99

Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 504 1980's 536 561 592 600 647 806 883 940 957 1,015 1990's 1,047 1,187 1,126 1,036 1,025 1,102 1,046 1,429 1,295 1,530 2000's 1,837 1,950 1,999 1,971 1,982 2,240 2,369 2,588 2,846 2,919 2010's 2,785 2,128 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Kentucky Natural Gas Reserves Summary as of Dec. 31

100

California Federal Offshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 322 1980's 414 1,337 1,466 1,570 1,519 1990's 1,469 1,174 1,136 1,123 1,187 1,289 1,266 556 489 536 2000's 576 540 515 511 459 825 811 805 705 740 2010's 725 711 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore, Pacific (California) Natural Gas Reserves Summary

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 693 1980's 682 683 1990's 4,184 5,460 5,870 5,212 4,898 4,930 5,100 5,013 4,643 4,365 2000's 4,269 3,958 3,922 4,345 4,159 4,006 3,963 4,036 3,379 2,948 2010's 2,724 2,570 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Alabama Natural Gas Reserves Summary as of Dec. 31

102

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

103

Texas - RRC District 9 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 633 1980's 502 796 965 845 786 753 761 717 686 617 1990's 703 674 613 636 715 730 749 785 665 1,180 2000's 1,645 2,428 3,070 3,514 4,445 4,608 6,660 7,846 9,390 11,100 2010's 12,587 9,963 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

104

West Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,593 1980's 2,437 1,881 2,169 2,238 2,173 2,104 2,207 2,210 2,299 2,244 1990's 2,243 2,513 2,293 2,408 2,569 2,514 2,722 2,887 2,925 2,952 2000's 2,929 2,777 3,477 3,376 3,489 4,553 4,638 4,865 5,243 6,066 2010's 7,134 10,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

105

Michigan Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Michigan Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,334 1980's 1,551 1,252 1,200 1,353 1,193 1,064 1,242 1,571 1,434 1,443 1990's 1,330 1,404 1,290 1,218 1,379 1,344 2,125 2,256 2,386 2,313 2000's 2,772 3,032 3,311 3,488 3,154 2,961 3,117 3,691 3,253 2,805 2010's 2,975 2,549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

106

Michigan Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 601 1980's 668 494 481 529 419 375 665 1,002 943 1,011 1990's 922 967 938 890 1,022 1,018 1,778 1,975 2,158 2,086 2000's 2,558 2,873 3,097 3,219 2,961 2,808 2,925 3,512 3,105 2,728 2010's 2,903 2,472 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

107

Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 1,923 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

108

West Virginia Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) West Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,669 1980's 2,559 1,944 2,252 2,324 2,246 2,177 2,272 2,360 2,440 2,342 1990's 2,329 2,672 2,491 2,598 2,702 2,588 2,793 2,946 2,968 3,040 2000's 3,062 2,825 3,498 3,399 3,509 4,572 4,654 4,881 5,266 6,090 2010's 7,163 10,532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

109

Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,725 1980's 1,796 1,821 1,974 2,081 2,240 2,032 2,011 2,018 2,000 1,782 1990's 1,739 1,672 1,752 1,555 1,610 1,566 1,472 1,479 1,332 1,546 2000's 1,584 1,619 1,654 1,666 1,837 1,967 2,271 3,306 5,628 10,872 2010's 14,181 16,374 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

110

Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,824 1980's 10,065 10,443 10,128 10,183 9,981 9,844 11,093 11,089 10,530 10,509 1990's 10,004 9,946 10,302 9,872 9,705 9,093 8,145 7,328 6,862 6,248 2000's 5,682 5,460 5,329 5,143 5,003 4,598 4,197 4,248 3,795 3,500 2010's 3,937 3,747 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

111

Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,657 1980's 2,970 2,969 3,345 3,200 2,932 2,928 3,008 2,912 3,572 4,290 1990's 4,249 5,329 5,701 5,817 5,948 6,520 7,009 6,627 7,436 8,591 2000's 9,877 11,924 13,251 14,707 13,956 15,796 16,141 20,642 22,159 22,199 2010's 23,001 23,633 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

112

Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 1980's 200 259 206 173 208 167 190 219 177 236 1990's 510 682 762 1,162 1,088 1,072 1,055 533 772 781 2000's 960 1,025 1,097 1,186 1,293 1,326 1,541 1,838 2,010 1,882 2010's 2,371 2,518 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

113

Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,834 1980's 9,413 9,659 10,155 10,728 11,014 11,229 10,393 10,572 10,903 11,276 1990's 10,433 10,433 11,305 11,387 11,351 12,712 13,084 14,321 14,371 14,809 2000's 17,211 19,399 21,531 22,716 23,640 24,722 24,463 30,896 32,399 36,748 2010's 36,526 36,930 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

114

Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,559 1980's 1,602 1,637 1,800 1,887 2,051 1,875 1,861 1,873 1,843 1,637 1990's 1,672 1,536 1,619 1,462 1,525 1,462 1,383 1,423 1,294 1,505 2000's 1,545 1,589 1,616 1,629 1,797 1,921 2,227 3,269 5,616 10,852 2010's 14,152 16,328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

115

Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,971 35,867 34,584 32,852 32,309 32,349 1990's 32,412 30,729 29,474 29,967 31,071 31,949 33,432 33,322 33,429 35,470 2000's 38,585 40,376 41,104 42,280 46,728 53,175 58,736 68,827 74,284 76,272 2010's 84,157 90,947 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

116

California Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,961 1980's 3,345 2,660 2,663 2,546 2,507 1990's 2,400 2,213 2,093 1,982 1,698 1,619 1,583 1,820 1,879 2,150 2000's 2,198 1,922 1,900 1,810 2,006 2,585 2,155 2,193 1,917 2,314 2010's 2,282 2,532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

117

Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,516 1980's 951 1,265 1,430 1,882 1,576 1,618 1,562 1,650 2,074 1,644 1990's 1,722 1,631 1,533 1,722 1,806 1,488 1,702 1,861 1,848 1,780 2000's 1,740 1,782 2,225 2,497 2,371 2,793 3,064 3,377 3,594 7,018 2010's 14,068 26,719 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

118

Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 502 1980's 525 547 580 581 630 793 866 921 938 993 1990's 1,039 1,177 1,118 1,030 978 1,075 1,022 1,403 1,275 1,501 2000's 1,810 1,925 1,974 1,946 1,963 2,210 2,333 2,554 2,812 2,887 2010's 2,674 2,030 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

119

Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 16,316 10,943 10,724 10,826 11,171 1990's 10,597 9,969 9,060 8,615 9,165 8,890 9,038 9,020 8,569 8,667 2000's 8,704 9,245 8,520 8,952 9,235 10,091 10,149 9,651 10,581 19,898 2010's 28,838 29,906 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

120

Texas - RRC District 1 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 732 1980's 683 870 708 960 714 754 716 639 1,002 1,037 1990's 744 660 606 540 586 498 523 950 1,101 1,165 2000's 1,037 1,024 1,047 1,047 1,184 1,148 1,048 1,029 987 1,456 2010's 2,332 5,227 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 680 1980's 659 658 1990's 4,159 5,437 5,840 5,166 4,842 4,886 5,062 4,983 4,615 4,338 2000's 4,241 3,931 3,891 4,313 4,127 3,977 3,945 4,016 3,360 2,919 2010's 2,686 2,522 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

122

Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,058 1980's 4,828 4,373 4,188 3,883 4,120 3,131 2,462 2,983 2,910 2,821 1990's 2,466 2,924 3,002 3,492 3,326 3,310 3,216 2,957 2,768 2,646 2000's 2,564 2,309 2,157 2,081 2,004 1,875 1,447 1,270 1,139 1,090 2010's 1,021 976 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

123

California - San Joaquin Basin Onshore Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,037 1980's 4,434 4,230 4,058 3,964 3,808 3,716 3,404 3,229 3,033 2,899 1990's 2,775 2,703 2,511 2,425 2,130 2,018 1,864 2,012 2,016 2,021 2000's 2,413 2,298 2,190 2,116 2,306 2,831 2,470 2,430 2,249 2,609 2010's 2,447 2,685 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

124

Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,360 2,391 2,128 1,794 1,741 1990's 1,554 1,394 1,167 926 980 1,001 1,039 1,016 911 979 2000's 807 796 670 586 557 588 561 641 1,235 1,072 2010's 679 639 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

125

Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,580 1980's 13,407 13,049 12,153 11,553 10,650 10,120 9,416 9,024 8,969 8,934 1990's 8,492 7,846 7,019 6,219 6,558 6,166 6,105 6,137 5,966 5,858 2000's 5,447 5,341 4,395 3,874 3,557 3,478 3,473 3,463 2,916 2,969 2010's 2,995 2,615 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

126

Oil, Gas, and Minerals, Exploration and Production, Lease of Public Land (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

The state, counties and cities and other political subdivisions may lease publicly owned lands for the purpose of oil or gas or metallic minerals exploration and production. Any such leases shall...

127

U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report  

SciTech Connect

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

NONE

1996-11-01T23:59:59.000Z

128

US crude oil, natural gas, and natural gas liquids reserves 1996 annual report  

SciTech Connect

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

NONE

1997-12-01T23:59:59.000Z

129

Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,276 1980's 11,273 11,178 10,364 9,971 9,162 8,328 7,843 7,644 7,631 7,661 1990's 7,386 6,851 6,166 5,570 5,880 5,446 5,478 5,538 5,336 5,259 2000's 4,954 4,859 3,968 3,506 3,168 3,051 3,058 2,960 2,445 2,463 2010's 2,496 2,125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

130

Texas - RRC District 5 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

5 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 5 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,127 1980's 1,117 1,265 1,322 1,477 1,911 2,100 2,169 2,106 1,989 1,789 1990's 1,835 1,841 1,692 1,790 1,926 1,876 2,088 1,681 1,906 2,301 2000's 3,089 4,206 4,588 5,398 6,525 9,560 12,591 17,224 20,420 22,602 2010's 24,686 28,147 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

131

Texas - RRC District 8 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8,073 1980's 7,216 6,620 6,084 6,064 5,362 5,246 5,254 4,973 4,738 4,403 1990's 4,323 4,023 3,792 3,569 3,267 3,218 3,069 2,886 2,727 2,947 2000's 3,345 3,405 3,284 3,032 3,266 3,829 3,891 4,267 4,506 3,950 2010's 3,777 3,006 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

132

New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

- West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) - West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9,934 1980's 10,001 10,536 9,231 8,654 8,341 7,947 9,344 9,275 15,000 13,088 1990's 14,804 16,131 16,854 16,494 15,156 15,421 14,620 13,586 13,122 13,292 2000's 14,396 14,541 14,339 14,476 15,632 15,114 14,727 13,923 12,855 12,004 2010's 11,704 11,111 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

133

Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,270 1,530 1,924 1970's 2,251 2,419 2,847 2,725 1,649 1,760 3,043 3,210 2,134 2,889 1980's 1,320 1,580 3,278 3,543 5,236 4,575 4,715 5,799 4,983 4,767 1990's 6,031 3,502 3,381 4,145 3,252 3,069 3,299 2,275 1,706 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Pennsylvania Natural Gas Consumption by End Use Lease and Plant

134

Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,796 1980's 8,039 8,431 9,095 9,769 10,147 10,519 9,702 9,881 10,287 10,695 1990's 9,860 9,861 10,681 10,885 10,740 11,833 12,260 13,471 13,577 14,096 2000's 16,559 18,911 20,970 22,266 23,278 24,338 24,116 30,531 32,176 36,386 2010's 36,192 36,612 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

135

Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,603 109,333 62,341 71,104 112,404 151,280 189,702 1990's 166,155 187,106 197,975 202,199 200,809 253,695 255,500 230,578 242,271 224,355 2000's 226,659 229,206 241,469 255,701 237,530 259,829 218,153 227,374 211,878 219,161 2010's 211,918 208,531 214,335 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease Fuel Consumption Alaska Natural Gas Consumption by End Use Lease

136

Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,299 1980's 11,656 13,066 14,714 14,992 14,858 14,929 15,588 15,686 15,556 14,948 1990's 15,147 14,112 13,249 12,549 12,981 13,067 12,929 13,296 13,321 12,252 2000's 13,430 13,256 14,576 15,176 16,301 17,337 17,735 19,225 21,155 23,115 2010's 26,873 27,683 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

137

New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,634 1980's 2,266 2,377 2,331 2,214 2,117 2,001 1,750 1,901 2,030 2,131 1990's 2,290 2,073 1,948 1,860 1,791 1,648 1,612 1,694 1,694 1,880 2000's 2,526 2,571 2,632 2,205 2,477 2,569 2,605 2,633 2,737 2,658 2010's 2,612 2,475 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

138

New Mexico Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,568 1980's 12,267 12,913 11,562 10,868 10,458 9,948 11,094 11,176 17,030 15,219 1990's 17,094 18,204 18,802 18,354 16,947 17,069 16,232 15,280 14,816 15,172 2000's 16,922 17,112 16,971 16,681 18,109 17,683 17,332 16,556 15,592 14,662 2010's 14,316 13,586 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

139

Texas - RRC District 6 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

6 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 6 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,710 1980's 3,622 3,653 3,749 4,279 4,087 4,274 4,324 4,151 4,506 5,201 1990's 5,345 4,856 4,987 5,170 5,131 5,425 5,690 5,616 5,691 5,562 2000's 5,901 6,016 6,161 6,572 7,564 8,999 9,205 11,468 12,207 12,806 2010's 14,958 15,524 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

140

Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 183,870 204,390 193,822 189,173 229,053 200,239 163,218 1990's 228,485 125,198 123,111 130,916 139,427 178,827 177,508 144,787 176,262 136,708 2000's 141,785 135,786 114,919 123,585 129,825 134,434 138,558 154,323 166,500 169,631 2010's 157,751 147,268 163,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease Fuel Consumption Texas Natural Gas Consumption by End Use Lease

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,582 9,158 8,521 1970's 7,893 5,840 9,153 6,152 5,357 7,894 4,836 4,979 5,421 8,645 1980's 4,428 4,028 7,236 6,632 7,202 6,296 6,562 8,091 7,100 5,021 1990's 7,257 4,585 4,945 4,829 3,632 3,507 3,584 3,652 3,710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Mississippi Natural Gas Consumption by End Use Lease and Plant

142

Lower 48 States Nonassociated Natural Gas, Wet After Lease Separation,  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Lower 48 States Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 143,852 1980's 139,421 143,515 142,984 143,469 141,226 138,464 139,070 135,256 141,211 139,798 1990's 141,941 140,584 138,883 136,953 138,213 139,369 141,136 140,382 139,015 142,098 2000's 154,113 159,612 163,863 166,512 171,547 183,197 189,329 213,851 224,873 249,406 2010's 280,880 305,010 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013

143

,"U.S. Federal Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

144

,"U.S. Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

145

Municipal officials decisions to lease watershed lands for Marcellus shale gas exploration  

Science Journals Connector (OSTI)

This paper provides insight into municipalities decisions to lease watershed lands for Marcellus shale gas exploration in Pennsylvania. The focus was on...

Charles Abdalla; Renata Rimsaite

2014-03-01T23:59:59.000Z

146

FACTORS AFFECTING BONUS BIDS FOR OIL AND GAS LEASES IN THE WILLISTON BASIN .  

E-Print Network (OSTI)

??Governments receive several revenue streams from companies that hold and operate oil and gas leases on public lands. These revenues vary in their timing and (more)

[No author

2012-01-01T23:59:59.000Z

147

Table 19. Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Reported proved nonproducing reserves of crude oil, lease condensate, : Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011 a Lease Nonassociated Associated Total Crude Oil Condensate Gas Dissolved Gas Gas State and Subdivision (Million bbls) (Million bbls) (Bcf) (Bcf) (Bcf) Alaska 566 0 288 63 351 Lower 48 States 8,483 880 104,676 13,197 117,873 Alabama 1 0 101 1 102 Arkansas 0 0 5,919 0 5,919 California 542 2 267 128 395 Coastal Region Onshore 248 0 0 20 20 Los Angeles Basin Onshore 69 0 0 23 23 San Joaquin Basin Onshore 163 0 265 54 319 State Offshore 62 2 2 31 33 Colorado 208 30 5,316 1,478 6,794 Florida 4 0 4 0 4 Kansas 4 0 244 39 283 Kentucky 0 0 75 0 75 Louisiana 152 29 14,905 257 15,162 North 30 10 13,820 12 13,832 South Onshore 113 17 1,028 232 1,260 State Offshore 9 2 57 13 70 Michigan 0

148

,"Crude Oil and Lease Condensate","Wet Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Changes to proved reserves, 2011" Changes to proved reserves, 2011" ,"Crude Oil and Lease Condensate","Wet Natural Gas" ,"(billion barrels)","(trillion cubic feet)" "U.S. proved reserves at December 31, 2011",25.18,317.647 " Total discoveries",3.68,49.9 " Net revisions",1.41,-0.1 " Net Adjustments, Sales, Acquisitions",0.74,6 " Production",-2.06,-24.6 "Net additions to U.S. proved reserves",3.77,31.2 "Reserves at December 31, 2011",28.95,348.8 "Percentage change in proved reserves",0.15,0.098 "Notes: Wet natural gas includes natural gas plant liquids. Columns may not add to total due to independent rounding." "Percent change calculated from unrounded numbers."

149

RCW 79.14 Mineral, Coal, Oil and Gas Leases | Open Energy Information  

Open Energy Info (EERE)

RCW 79.14 Mineral, Coal, Oil and Gas Leases Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: RCW 79.14 Mineral, Coal, Oil and Gas...

150

New York Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New York Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 211 1980's 208 264 229 295 389 369 457 410 351 368 1990's 354 331 329 264 242 197 232 224 218 221 2000's 322 318 315 365 324 349 363 375 389 196 2010's 281 253 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 New York Natural Gas Reserves Summary as of Dec. 31

151

Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 449 251 260 207 231 1990's 207 207 154 157 168 148 157 130 98 120 2000's 129 145 84 79 61 63 56 65 686 513 2010's 107 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Associated-Dissolved Natural Gas Proved Reserves,

152

New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 151 1980's 156 150 146 180 194 181 214 213 259 178 1990's 184 156 127 107 97 119 108 106 98 92 2000's 115 99 103 89 90 98 82 87 86 82 2010's 105 143 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

153

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

154

Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 167 1980's 185 139 112 132 110 115 132 115 103 101 1990's 114 115 94 93 75 67 82 51 60 52 2000's 40 105 66 85 80 83 82 83 85 83 2010's 79 127 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

155

North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717 2,511 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

156

Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,047 1980's 1,417 800 984 1,635 1,178 938 898 594 480 589 1990's 371 376 381 343 315 355 399 391 342 402 2000's 469 340 346 304 208 184 174 101 99 97 2010's 90 74 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

157

California State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 226 1980's 160 244 232 221 206 1990's 188 55 59 63 59 56 47 54 39 58 2000's 86 80 85 76 85 89 85 79 54 53 2010's 63 79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

158

,"U.S. Natural Gas Proved Reserves, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2013,"6301979" ,"Release...

159

Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 209 1980's 172 180 216 175 170 260 241 205 204 251 1990's 333 401 361 191 151 248 446 68 51 67 2000's 69 43 47 48 45 57 61 72 60 67 2010's 267 900 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

160

West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 76 1980's 122 63 83 86 73 73 65 150 141 98 1990's 86 159 198 190 133 74 71 59 43 88 2000's 98 48 21 23 20 19 16 16 23 24 2010's 29 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Texas - RRC District 7B Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

B Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) B Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 608 1980's 530 655 733 872 645 574 589 546 576 364 1990's 413 379 380 393 332 263 378 299 306 275 2000's 242 203 237 314 288 859 1,589 2,350 2,682 2,322 2010's 2,504 3,754 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

162

Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Released: September 28, 2010 Next Release: Discontinued Excel Spreadsheet Model - 1994-2009 XLS (1,178 KB) Overview Oil and gas well equipment and operating costs, including coal bed methane costs, stopped their upward trend from the 1990s and fell sharply in 2009. The extremely high oil and gas prices during the first half of 2008 followed by an unprecedented drop to very low prices by the end of the year had a major impact on equipment demand. Operating costs tumbled also because fuel costs were reduced and well servicing rates fell in most areas. The exceptions were in California where electric rates continued to increase, causing a one (1) percent increase in annual operating costs for leases producing from 12,000 feet. Operating cost for coal bed methane wells in the Appalachian and Powder River areas increased because electric rates continued to climb. Due to the timing of the data collection, the cost reported here could be higher than the actual annual average for 2008. However, some production costs (labor and equipment) are not as volatile as drilling, pipe, and other well completion costs, so the effect of the oil and gas prices on collected data may be lessened. Annual average electric rates and natural gas prices are used, which also helps to dampen cost variances.

163

Ohio Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Ohio Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,479 1980's 1,699 965 1,142 2,031 1,542 1,333 1,420 1,071 1,229 1,275 1990's 1,215 1,181 1,161 1,106 1,095 1,054 1,114 985 890 1,179 2000's 1,186 971 1,118 1,127 975 898 975 1,027 985 896 2010's 832 758 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Ohio Natural Gas Reserves Summary as of Dec. 31

164

Texas - RRC District 7B Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 842 1980's 862 947 947 1,210 937 850 833 828 840 560 1990's 627 536 550 580 513 539 610 559 510 465 2000's 356 290 294 383 364 932 1,663 2,412 2,750 2,424 2010's 2,625 3,887 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 TX, RRC District 7B Natural Gas Reserves Summary as of Dec. 31

165

U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 31,849 29,914 28,186 27,586 28,813 29,518 29,419 29,011 27,426 26,598 2000's 27,467 27,640 25,862 23,033 19,747 18,252 15,750 14,813 13,892 12,856 2010's 12,120 10,820 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore U.S. Natural Gas Reserves Summary as of Dec. 31

166

U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,773 6,487 6,315 6,120 6,738 7,471 7,437 7,913 7,495 7,093 2000's 7,010 8,649 8,090 7,417 6,361 5,904 4,835 4,780 5,106 5,223 2010's 5,204 5,446 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

167

U.S. Federal Offshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 25,076 23,427 21,871 21,466 22,075 22,047 21,982 21,098 19,931 19,505 2000's 20,456 18,990 17,772 15,616 13,386 12,348 10,915 10,033 8,786 7,633 2010's 6,916 5,374 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

168

Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,034 1980's 2,566 2,726 2,565 2,637 2,626 2,465 2,277 2,373 2,131 1,849 1990's 1,825 1,479 1,484 1,425 1,468 1,371 1,430 1,732 1,720 1,974 2000's 2,045 1,863 1,867 1,849 1,934 2,175 2,166 2,386 2,364 1,909 2010's 2,235 3,690 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

169

Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,304 1980's 2,134 1,871 1,789 1,582 1,488 1,792 1,573 1,380 1,338 1,273 1990's 1,106 995 853 649 678 720 627 599 630 599 2000's 492 483 427 368 389 427 415 503 471 506 2010's 499 490 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

170

Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,832 10,753 9,735 9,340 9,095 9,205 1990's 8,999 8,559 8,667 7,880 7,949 7,787 8,160 7,786 7,364 7,880 2000's 6,833 6,089 6,387 6,437 6,547 7,003 7,069 7,530 7,559 8,762 2010's 10,130 13,507 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

171

New Mexico - West Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico - West Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,085 1980's 10,157 10,686 9,377 8,834 8,535 8,128 9,558 9,488 15,259 13,266 1990's 14,988 16,287 16,981 16,601 15,253 15,540 14,728 13,692 13,220 13,384 2000's 14,511 14,640 14,442 14,565 15,722 15,212 14,809 14,010 12,941 12,086 2010's 11,809 11,254 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

172

Texas - RRC District 8A Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,556 1980's 1,465 1,545 1,457 1,345 1,315 1,353 1,309 1,301 1,291 1,550 1990's 1,547 1,542 1,598 1,463 1,587 1,333 1,294 1,247 1,115 1,557 2000's 1,215 1,190 1,167 1,137 1,281 1,471 1,384 1,531 1,257 1,289 2010's 1,228 1,289 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

173

Texas - RRC District 7C Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 7C Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,080 1980's 2,543 2,750 2,928 2,855 3,169 3,255 3,039 3,032 3,101 3,497 1990's 3,829 3,592 3,621 3,578 3,660 3,468 4,063 3,843 3,496 3,593 2000's 4,132 3,757 4,167 4,791 5,190 5,702 5,727 6,028 5,529 5,430 2010's 5,432 5,236 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

174

Texas - RRC District 5 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,189 1980's 1,192 1,309 1,369 1,529 1,955 2,140 2,238 2,224 2,090 1,925 1990's 1,951 1,930 1,818 1,931 2,074 1,923 2,141 1,749 1,995 2,350 2000's 3,217 4,289 4,653 5,460 6,583 9,611 12,648 17,274 20,460 22,623 2010's 24,694 28,187 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

175

Texas - RRC District 9 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 808 1980's 751 1,070 1,264 1,100 1,060 1,043 1,024 984 927 829 1990's 917 874 797 814 863 868 870 932 864 1,360 2000's 1,854 2,552 3,210 3,639 4,555 4,734 6,765 7,985 9,548 11,522 2010's 13,172 10,920 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

176

Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8,559 1980's 8,366 8,256 8,692 8,612 8,796 8,509 8,560 7,768 7,284 7,380 1990's 7,774 7,339 7,041 7,351 7,870 8,021 8,123 8,483 8,824 9,351 2000's 10,118 10,345 9,861 9,055 9,067 9,104 8,474 8,327 7,930 7,057 2010's 7,392 10,054 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

177

Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,017 1980's 1,284 2,057 2,253 2,472 2,325 2,288 2,205 2,341 1,984 1,940 1990's 1,887 2,001 2,018 2,198 1,917 1,701 1,747 2,005 2,502 3,371 2000's 4,472 4,753 4,274 3,617 3,951 4,359 5,211 6,463 6,714 7,411 2010's 7,146 8,108 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

178

New Mexico Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,391 1980's 13,956 14,562 13,082 12,371 12,027 11,438 12,540 12,621 18,483 16,597 1990's 18,529 19,758 20,399 19,939 18,588 18,747 17,925 16,700 16,259 16,750 2000's 18,509 18,559 18,453 18,226 19,687 19,344 19,104 18,397 17,347 16,644 2010's 16,529 16,138 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

179

Texas - RRC District 8 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,718 1980's 9,785 9,250 8,992 9,078 8,294 8,250 8,330 7,871 7,810 7,531 1990's 7,391 6,793 6,534 6,131 6,018 6,052 6,050 6,030 5,547 6,122 2000's 6,136 6,007 6,056 5,835 6,002 6,800 6,855 7,303 7,586 7,440 2010's 8,105 8,088 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

180

Texas - RRC District 10 Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 10 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,289 1980's 6,927 6,720 6,731 6,485 6,060 6,044 5,857 5,512 5,300 5,213 1990's 4,919 5,061 4,859 4,478 4,669 4,910 4,845 4,613 4,744 4,688 2000's 4,433 4,263 4,299 4,510 5,383 5,430 5,950 6,932 7,601 7,594 2010's 8,484 8,373 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

U.S. Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Lease Fuel Consumption (Million Cubic Feet) Lease Fuel Consumption (Million Cubic Feet) U.S. Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 595,172 687,356 598,475 573,793 741,268 697,703 640,633 1990's 807,735 672,314 710,250 723,118 699,842 792,315 799,629 776,306 771,366 679,480 2000's 746,889 747,411 730,579 758,380 731,563 756,324 782,992 861,063 864,113 913,229 2010's 916,797 938,340 987,957 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease Fuel Consumption U.S. Natural Gas Consumption by End Use

182

U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New  

Gasoline and Diesel Fuel Update (EIA)

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 264 1980's 369 271 365 326 296 341 189 155 339 174 1990's 250 334 292 163 202 634 338 187 218 424 2000's 249 477 331 124 97 79 65 73 820 169 2010's 186 160 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas New Reservoir Discoveries in Old Fields, Wet After Lease Separation

183

Gas to Liquid Technologies  

Science Journals Connector (OSTI)

The liquefaction energy required in a LNG plant typically has been reported as 912% of the heat energy in the natural gas, and 910% energy shrinkage is ... energy. LNG projects have a very high capital cost, in...

Marianna Asaro; Ronald M. Smith

2013-01-01T23:59:59.000Z

184

Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,267 4,027 6,268 1970's 9,184 6,433 4,740 3,000 4,246 4,200 4,049 4,032 3,760 7,661 1980's 1,949 2,549 5,096 5,384 5,922 12,439 9,062 11,990 12,115 11,586 1990's 7,101 1,406 5,838 6,405 4,750 5,551 5,575 6,857 8,385 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Arkansas Natural Gas Consumption by End Use Lease and Plant

185

Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,079 1980's 1,645 1,920 1,785 1,890 1,965 1,895 1,760 1,861 1,703 1,419 1990's 1,418 1,127 1,176 1,137 1,169 1,126 1,178 1,497 1,516 1,772 2000's 1,930 1,798 1,797 1,768 1,858 2,066 2,048 2,249 2,292 1,837 2010's 2,101 2,766 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

186

Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,956 1,503 2,113 1970's 633 2,115 1,978 2,435 4,193 7,240 9,150 7,585 8,325 14,123 1980's 7,594 511 5,965 4,538 8,375 9,001 13,289 17,671 16,889 16,211 1990's 19,719 13,738 12,611 12,526 13,273 27,012 27,119 24,619 27,466 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Utah Natural Gas Consumption by End Use Lease and Plant

187

Lower 48 States Natural Gas, Wet After Lease Separation Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Lower 48 States Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176,060 1980's 172,864 176,385 174,252 174,755 171,508 167,979 167,754 162,713 167,820 166,409 1990's 168,183 165,672 163,584 160,504 162,126 163,901 165,851 165,048 162,400 166,304 2000's 177,179 182,842 187,028 188,797 192,727 205,071 210,083 235,767 247,269 274,696 2010's 308,730 339,298 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

188

Texas - RRC District 7C Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

7C Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 7C Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7C Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,427 1980's 2,023 2,065 2,224 2,150 2,393 2,475 2,373 2,295 2,374 2,776 1990's 3,061 2,833 2,873 2,945 3,029 2,828 3,371 3,247 2,939 2,977 2000's 3,439 3,123 3,430 3,864 4,196 4,665 4,531 4,714 4,147 3,724 2010's 3,502 2,857 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

189

West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,052 2,276 0 1970's 2,551 3,043 3,808 2,160 1,909 1,791 1,490 1,527 1,233 1,218 1980's 2,482 2,515 6,426 5,826 7,232 7,190 6,658 8,835 8,343 7,882 1990's 9,631 7,744 8,097 7,065 8,087 8,045 6,554 7,210 6,893 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption West Virginia Natural Gas Consumption by End Use Lease and Plant

190

Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 27,217 1980's 28,567 28,676 30,814 30,408 30,356 31,092 30,893 30,732 6,269 6,198 1990's 6,927 6,729 6,723 6,494 6,487 6,265 6,080 7,716 7,275 7,209 2000's 6,768 6,592 6,376 6,267 6,469 6,362 8,886 10,752 6,627 8,093 2010's 7,896 8,535 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

191

Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,828 1,992 2,277 1970's 2,317 2,212 1,509 1,238 1,206 1,218 1,040 1,107 1,160 1,214 1980's 989 1,040 9,772 8,361 9,038 9,095 6,335 3,254 2,942 2,345 1990's 3,149 2,432 2,812 3,262 2,773 2,647 2,426 2,457 2,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Kentucky Natural Gas Consumption by End Use Lease and Plant

192

New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,823 1980's 1,689 1,649 1,520 1,503 1,569 1,490 1,446 1,445 1,453 1,378 1990's 1,435 1,554 1,597 1,585 1,641 1,678 1,693 1,420 1,443 1,578 2000's 1,588 1,447 1,482 1,545 1,578 1,661 1,772 1,841 1,755 1,982 2010's 2,213 2,552 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

193

Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,798 2,012 2,074 1970's 3,440 2,145 2,143 2,551 3,194 8,420 7,647 8,022 11,076 14,695 1980's 6,494 3,461 9,699 8,130 8,710 8,195 7,609 9,616 8,250 8,003 1990's 9,094 9,595 7,274 8,171 9,766 9,535 8,489 12,060 9,233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Michigan Natural Gas Consumption by End Use Lease and Plant

194

Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,143 1980's 7,074 7,251 7,802 7,847 8,094 7,825 7,964 7,317 6,891 7,009 1990's 7,473 7,096 6,813 7,136 7,679 7,812 7,877 8,115 8,430 9,169 2000's 9,942 10,206 9,711 8,919 8,902 8,956 8,364 8,210 7,803 6,961 2010's 7,301 9,993 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

195

New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,672 1980's 1,533 1,499 1,374 1,323 1,375 1,309 1,232 1,232 1,194 1,200 1990's 1,251 1,398 1,470 1,478 1,544 1,559 1,585 1,314 1,345 1,486 2000's 1,473 1,348 1,379 1,456 1,488 1,563 1,690 1,754 1,669 1,900 2010's 2,108 2,409 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

196

Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,904 5,188 6,183 1970's 5,091 6,148 5,924 4,281 3,683 2,315 2,754 2,972 2,792 4,796 1980's 3,425 1,832 2,012 1,970 2,069 2,138 1,808 2,088 1,994 1,766 1990's 2,262 1,680 1,871 2,379 2,243 2,238 2,401 2,277 2,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Montana Natural Gas Consumption by End Use Lease and Plant

197

Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32,208 1980's 33,443 32,870 31,268 31,286 30,282 29,515 28,684 27,457 26,609 26,611 1990's 26,242 25,088 24,701 23,551 23,913 24,532 24,715 24,666 23,385 24,206 2000's 23,065 23,232 23,165 22,285 21,180 21,874 20,754 21,916 22,396 25,290 2010's 27,850 34,288 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

198

Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,656 3,505 2,879 1970's 3,140 4,302 3,397 3,548 2,957 2,925 2,742 2,814 3,477 22,094 1980's 1,941 1,776 3,671 4,377 5,741 5,442 5,243 5,802 4,869 3,876 1990's 5,129 1,476 1,450 1,366 1,332 1,283 1,230 1,201 1,125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Ohio Natural Gas Consumption by End Use Lease and Plant

199

Deep gas plays are persuading companies like Getty and Mesa petroleum to invest in lease acquisitions  

SciTech Connect

Much of the big money being spent in the Permian Basin may be going to elaborate tertiary projects for improved oil recovery, but the deep natural gas reserves in the Delaware Basin continue to draw the big drilling and leasing dollars. According to the petroleum information's Rotary Report of late April 1981, Texas Railroad Commission district No. 8 in west Texas had 148 rigs running. Of those, 60 were in a 4-county area of Loving, Pecos, Ward, and Reeves Counties. Thirty-four of those rigs in that area were drilling to objectives below 15,000 ft. In the March University Lands Lease Auction, high dollars were directed to portions of west Texas that include the Delaware Basin.

Mickey, V.

1981-06-01T23:59:59.000Z

200

Annual report of the origin of natural gas liquids production form EIA-64A  

SciTech Connect

The collection of basic, verifiable information on the Nation`s reserves and production of natural gas liquids (NGL) is mandated by the Federal Energy Administration Act of 1974 (FEAA) (Public Law 93-275) and the Department of Energy Organization Act of 1977 (Public Law 95-91). Gas shrinkage volumes reported on Form EIA-64A by natural gas processing plant operators are used with natural gas data collected on a {open_quotes}wet after lease separation{close_quotes} basis on Form EIA-23, Annual Survey of Domestic Oil and Gas Reserves, to estimate {open_quotes}dry{close_quotes} natural gas reserves and production volumes regionally and nationally. The shrinkage data are also used, along with the plant liquids production data reported on Form EIA-64A, and lease condensate data reported on Form EIA-23, to estimate regional and national gas liquids reserves and production volumes. This information is the only comprehensive source of credible natural gas liquids data, and is required by DOE to assist in the formulation of national energy policies.

NONE

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"South Dakota Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1840_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1840_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:44 PM"

202

,"Kentucky Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1840_sky_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1840_sky_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:39 PM"

203

Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,659 2,240 6,864 1970's 4,748 8,459 16,056 15,217 14,402 17,842 15,972 17,336 15,895 12,153 1980's 30,250 15,249 94,232 97,828 111,069 64,148 72,686 116,682 153,670 192,239 1990's 193,875 223,194 234,716 237,702 238,156 292,811 295,834 271,284 281,872 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Alaska Natural Gas Consumption by End Use

204

New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,793 46,331 45,309 1970's 47,998 46,114 48,803 52,553 43,452 38,604 49,160 43,751 37,880 50,798 1980's 36,859 22,685 55,722 47,630 50,662 46,709 35,615 48,138 41,706 42,224 1990's 65,889 44,766 53,697 49,658 54,786 52,589 81,751 64,458 59,654 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption New Mexico Natural Gas Consumption by End Use

205

Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,668 2,361 2,604 1970's 2,726 3,231 4,676 7,202 5,822 7,673 7,739 9,124 10,619 21,610 1980's 7,041 7,093 13,673 10,000 10,560 10,829 9,397 12,095 11,622 12,221 1990's 17,343 23,883 21,169 24,832 24,347 25,130 27,492 29,585 31,074 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Colorado Natural Gas Consumption by End Use

206

North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,133 16,163 14,691 1970's 14,067 13,990 12,773 12,462 11,483 12,008 15,998 13,697 12,218 3,950 1980's 1,017 13,759 3,514 4,100 4,563 4,710 3,974 5,194 4,014 3,388 1990's 6,939 11,583 8,462 8,256 11,306 11,342 11,603 8,572 8,309 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption North Dakota Natural Gas Consumption by End Use

207

Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,842 15,867 17,587 1970's 20,841 27,972 28,183 32,663 35,350 27,212 31,044 29,142 30,491 48,663 1980's 24,521 19,665 41,392 37,901 40,105 42,457 38,885 44,505 45,928 43,630 1990's 40,914 44,614 43,736 56,657 44,611 47,282 49,196 46,846 33,989 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Kansas Natural Gas Consumption by End Use

208

Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 65,167 84,259 103,361 1970's 98,417 101,126 98,784 80,233 80,780 79,728 84,025 77,631 82,046 128,475 1980's 59,934 56,785 91,465 79,230 91,707 88,185 84,200 104,415 100,926 90,225 1990's 111,567 88,366 92,978 99,869 91,039 80,846 73,039 81,412 61,543 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Oklahoma Natural Gas Consumption by End Use

209

Definition: Liquid natural gas | Open Energy Information  

Open Energy Info (EERE)

Liquid natural gas Liquid natural gas Jump to: navigation, search Dictionary.png Liquid natural gas Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure.[1] View on Wikipedia Wikipedia Definition Liquefied natural gas or LNG is natural gas that has been converted to liquid form for ease of storage or transport. Liquefied natural gas takes up about 1/600th the volume of natural gas in the gaseous state. It is odorless, colorless, non-toxic and non-corrosive. Hazards include flammability after vaporization into a gaseous state, freezing and asphyxia. The liquefaction process involves removal of certain components, such as dust, acid gases, helium, water, and heavy hydrocarbons, which could cause difficulty downstream. The natural gas is then condensed into a

210

Table 15. Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old FieldsProduction Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 97,449 1,584 25,993 23,455 22,694 27,038 32,764 232 699 7,994 131,616 Alabama 0 0 0 0 0 0 0 0 0 0 0 Arkansas 12,526 655 502 141 6,087 6,220 2,073 0 0 940 14,808 California 0 1 912 0 0 0 43 0 0 101 855 Colorado 4 0 4 0 0 0 5 0 0 3 10 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 0 0 0 0 0 0 0 0 0 0 0 Kentucky 10 0 44 11 45 45 2 0 0 4 41 Louisiana 20,070 -172 2,002 3,882 3,782 4,291 5,367 0 140 2,084 21,950 North Onshore 20,070 -172 2,002 3,882 3,782 4,291 5,367

211

Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 645,058 711,720 741,902 1970's 769,500 784,773 802,112 828,139 817,194 763,107 729,946 732,428 757,853 717,462 1980's 536,766 505,322 347,846 307,717 326,662 307,759 302,266 355,765 318,922 291,977 1990's 394,605 297,233 293,845 296,423 298,253 333,548 330,547 301,800 330,228 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption

212

Table 10. Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 8,917 -2 938 207 36 222 4 0 3 328 9,511 Lower 48 States 308,730 2,717 55,077 55,920 44,539 47,651 47,631 987 1,257 24,293 339,298 Alabama 2,724 -45 472 163 595 398 3 2 0 226 2,570 Arkansas 14,181 729 631 324 6,762 6,882 2,094 0 23 1,080 16,374 California 2,785 917 1,542 1,959 49 55 75 0 0 324 3,042 Coastal Region Onshore 180 15 21 32 0 0 1 0 0 12 173 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 2,447 895 1,498

213

Table 12. Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases SalesAcquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 1,021 -1 95 128 34 171 1 0 3 152 976 Lower 48 States 280,880 2,326 47,832 50,046 43,203 45,818 41,677 376 1,097 21,747 305,010 Alabama 2,686 -48 470 163 586 378 3 0 0 218 2,522 Arkansas 14,152 705 581 311 6,724 6,882 2,094 0 23 1,074 16,328 California 503 -12 118 32 48 44 1 0 0 64 510 Coastal Region Onshore 2 0 0 1 0 0 0 0 0 0 1 Los Angeles Basin Onshore 0 0 0 0 0 0 0 0 0 0 0 San Joaquin Basin Onshore 498 -12 116 31 47 44 1 0 0 63 506 State Offshore

214

Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 195,990 212,134 273,213 1970's 287,222 292,589 312,145 336,832 347,098 301,816 556,772 591,292 558,877 305,181 1980's 196,033 180,687 337,398 275,698 303,284 258,069 243,283 301,279 272,455 256,123 1990's 258,267 195,526 220,711 222,813 207,171 209,670 213,721 227,542 194,963 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption

215

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2012,"6301979" ,"Release...

216

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2013,"6301979" ,"Release...

217

Polarity Programmed Gas-Liquid Chromatography  

Science Journals Connector (OSTI)

......component on the carrier gas, is investigated...component of the carrier gas. Introduction One...strength, i.e., the solubility of the solute in...temperature programming in gas-liquid chromatography...of carrier gas for nitrogen, helium, methane...of other solutes. Water vapor or steam are......

Jon F. Parcher; Theodore N. Westlake

1976-07-01T23:59:59.000Z

218

Gas well operation with liquid production  

SciTech Connect

Prediction of liquid loading in gas wells is discussed in terms of intersecting tubing or system performance curves with IPR curves and by using a more simplified critical velocity relationship. Different methods of liquid removal are discussed including such methods as intermittent lift, plunger lift, use of foam, gas lift, and rod, jet, and electric submersible pumps. Advantages, disadvantages, and techniques for design and application of the methods of liquid removal are discussed.

Lea, J.F.; Tighe, R.E.

1983-02-01T23:59:59.000Z

219

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

220

California Federal Offshore Natural Gas Plant Liquids, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Louisiana Offshore Natural Gas Plant Liquids Production Extracted...  

U.S. Energy Information Administration (EIA) Indexed Site

Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million...

222

California State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

223

SEAPORT LIQUID NATURAL GAS STUDY  

SciTech Connect

The Seaport Liquid Natural Gas Study has attempted to evaluate the potential for using LNG in a variety of heavy-duty vehicle and equipment applications at the Ports of Los Angeles and Oakland. Specifically, this analysis has focused on the handling and transport of containerized cargo to, from and within these two facilities. In terms of containerized cargo throughput, Los Angeles and Oakland are the second and sixth busiest ports in the US, respectively, and together handle nearly 4.5 million TEUs per year. At present, the landside handling and transportation of containerized cargo is heavily dependent on diesel-powered, heavy-duty vehicles and equipment, the utilization of which contributes significantly to the overall emissions impact of port-related activities. Emissions from diesel units have been the subject of increasing scrutiny and regulatory action, particularly in California. In the past two years alone, particulate matter from diesel exhaust has been listed as a toxic air contaminant by CAM, and major lawsuits have been filed against several of California's largest supermarket chains, alleging violation of Proposition 65 statutes in connection with diesel emissions from their distribution facilities. CARE3 has also indicated that it may take further regulatory action relating to the TAC listing. In spite of these developments and the very large diesel emissions associated with port operations, there has been little AFV penetration in these applications. Nearly all port operators interviewed by CALSTART expressed an awareness of the issues surrounding diesel use; however, none appeared to be taking proactive steps to address them. Furthermore, while a less controversial issue than emissions, the dominance of diesel fuel use in heavy-duty vehicles contributes to a continued reliance on imported fuels. The increasing concern regarding diesel use, and the concurrent lack of alternative fuel use and vigorous emissions reduction activity at the Ports provide both the backdrop and the impetus for this study.

COOK,Z.

1999-02-01T23:59:59.000Z

224

U.S. Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir  

Gasoline and Diesel Fuel Update (EIA)

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,373 1980's 2,279 2,809 3,155 2,745 2,482 2,712 1,666 1,401 1,640 2,139 1990's 2,242 1,321 1,481 1,767 3,404 1,884 2,871 2,268 2,022 1,841 2000's 2,211 2,420 1,421 1,529 1,147 1,164 1,132 1,171 858 2,487 2010's 1,515 1,100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas New Reservoir Discoveries in Old Fields,

225

U.S. Natural Gas, Wet After Lease Separation New Reservoir Discoveries in  

Gasoline and Diesel Fuel Update (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,637 1980's 2,648 3,080 3,520 3,071 2,778 3,053 1,855 1,556 1,979 2,313 1990's 2,492 1,655 1,773 1,930 3,606 2,518 3,209 2,455 2,240 2,265 2000's 2,463 2,898 1,752 1,653 1,244 1,243 1,197 1,244 1,678 2,656 2010's 1,701 1,260 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: New Reservoir Discoveries in Old Fields of Natural Gas, Wet After

226

Gas-liquid separator and method of operation  

DOE Patents (OSTI)

A system for gas-liquid separation in electrolysis processes is provided. The system includes a first compartment having a liquid carrier including a first gas therein and a second compartment having the liquid carrier including a second gas therein. The system also includes a gas-liquid separator fluidically coupled to the first and second compartments for separating the liquid carrier from the first and second gases.

Soloveichik, Grigorii Lev (Latham, NY); Whitt, David Brandon (Albany, NY)

2009-07-14T23:59:59.000Z

227

Oklahoma Natural Gas Plant Liquids, Expected Future Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Liquids, Expected Future Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

228

California--State Offshore Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2012 (EIA)

Plant Liquids, Expected Future Production (Million Barrels) California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1...

229

Alabama Offshore Natural Gas Plant Liquids Production Extracted...  

Gasoline and Diesel Fuel Update (EIA)

Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0...

230

California Onshore Natural Gas Plant Liquids Production Extracted...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production Extracted in California (Million Cubic Feet) California Onshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade...

231

California Onshore Natural Gas Total Liquids Extracted in California...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Liquids Extracted in California (Thousand Barrels) California Onshore Natural Gas Total Liquids Extracted in California (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3...

232

Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Expected Future Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1...

233

Alabama (with State Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Expected Future Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0...

234

California (with State Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Expected Future Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0...

235

Water-saving liquid-gas conditioning system  

DOE Patents (OSTI)

A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

Martin, Christopher; Zhuang, Ye

2014-01-14T23:59:59.000Z

236

Effects of increasing filing fees for noncompetitive onshore oil and gas leases  

SciTech Connect

The Government Accounting Office (GAO) examined the impact of increasing the fee charged to applicants for noncompetitive onshore oil and gas leases from $25.00 to $75.00. Interior believes the increased filing fee will: (1) reduce casual speculation and multiple filings, thereby reducing fraud potential, development delays caused by assignments, and administrative burden; and (2) generate significant additional revenue. Interior's analysis is, of necessity, based largely on conjecture, but the possibility that the positive results foreseen may not materialize to the degree projected cannot be ruled out. For example, while it is likely that the $75 fee will generate additional revenue over what was obtainable under either the $10 or $25 rate, Interior's projections of at least a million filings annually and $150 million in revenues are far from certain. GAO was also unable in the time available to determine the degree to which the problems the Department desires to overcome exist, or that they will be resolved through a fee increase. Results suggest that: reducing the number of filings is not necessarily the total or only solution to reducing the administrative burden; the casual speculator is not having that great an adverse effect on development, and in fact has certain positive aspects; and the true extent of fraud in the SOG may not be as great as initially supposed. In addition, there are possible adverse effects that may not have been fully considered. For example, the increased filing fee, when coupled with the increased rental, could adversely affect industry's exploration activities, particularly that of the smaller independent. GAO suggests, now that the increase is in effect, that the Interior Department and the Congress closely watch the results, and be prepared to take remedial action if deemed necessary.

Not Available

1982-03-19T23:59:59.000Z

237

Catalyst-Assisted Production of Olefins from Natural Gas Liquids...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalyst-Assisted Production of Olefins from Natural Gas Liquids: Prototype Development and Full-Scale Testing, April 2013 Catalyst-Assisted Production of Olefins from Natural Gas...

238

Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

239

Texas State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

240

Providing for adjustments of royalty payments under certain Federal onshore and Indian oil and gas leases, and for other purposes. House of Representatives, One Hundredth Congress, First Session, October 15, 1987  

SciTech Connect

The House report on H.R. 3479 adjusting royalty payments on oil and gas leases recommends passage with certain amendments. The recommended title for the Act is The Notice to Lessees No. 5 (NTL-5) Gas Royalty Act of 1987. The Act addresses problems involving some onshore and Indian leases, and redefines the procedures for determining the value of the lease. The report summarizes the purpose and need for the legislation, analyzes it by section, and concludes with communications between the committee and the Interior Department. A minority view argues in favor of placing the highest possible value on leases in order to be fair to taxpayers.

Not Available

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Attachment 1: Green Lease Policies and Procedures for Lease Acquisitio...  

Office of Environmental Management (EM)

1: Green Lease Policies and Procedures for Lease Acquisition Attachment 1: Green Lease Policies and Procedures for Lease Acquisition Green Lease Policies and Procedures for Lease...

242

Table 13. Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 7,896 -1 843 79 2 51 3 0 0 176 8,535 Lower 48 States 27,850 391 7,245 5,874 1,336 1,833 5,954 611 160 2,546 34,288 Alabama 38 3 2 0 9 20 0 2 0 8 48 Arkansas 29 24 50 13 38 0 0 0 0 6 46 California 2,282 929 1,424 1,927 1 11 74 0 0 260 2,532 Coastal Region Onshore 178 15 21 31 0 0 1 0 0 12 172 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 1,949 907 1,382 1,892 0 0 70 0 0 237 2,179 State Offshore 63 1 9 0 1 8 3 0 0 4 79

243

Federal Onshore Oil and Gas Leasing Program. Oversight hearing before the Subcommittee on Mining and Natural Resources of the Committee on Interior and Insular Affairs, House of Representatives, Ninety-Ninth Congress, First Session, May 7, 1985  

SciTech Connect

A hearing on the management of the Department of Interior's (DOI) Onshore Oil and Gas Leasing Program examined the question of geology versus market forces in determining lease boundaries and lease offerings. At issue was the question of possible fraud and the loss of revenue to states when leases are sold over the counter or by lottery, as described by Senator Dale Bumpers of Arkansas and the Governor of Wyoming, and the potential environmental damage that could result from an accelerated federal leasing program. Representatives of DOI described leasing procedures and efforts to balance the need for orderly exploration while also meeting economic and environmental goals. The witnesses also included representatives of environmental groups, geologists, and the oil and gas industry. An appendix with additional correspondence, statements, and other material submitted for the record follows the testimony of the 13 witnesses.

Not Available

1986-01-01T23:59:59.000Z

244

Green Leases | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Leases Green Leases Green Lease Policies and Procedures for Lease Acquisition Green Lease Policies and Procedures Policy Memorandum Attachment 1: Green Lease Policies and...

245

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Crude Oil and Natural Gas Proved Reserves U.S. Crude Oil and Natural Gas Proved Reserves With Data for 2011 | Release Date: August 1, 2013 | Next Release Date: Early 2014 | full report Previous Issues: Year: 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 Go Summary In 2011, oil and gas exploration and production companies operating in the United States added almost 3.8 billion barrels of crude oil and lease condensate proved reserves, an increase of 15 percent, and the greatest volume increase since the U.S. Energy Information Administration (EIA) began publishing proved reserves estimates in 1977 (Table 1). Proved reserves of crude oil and lease condensate increased by 2.9 billion barrels in 2010, the previous record. Proved reserves of U.S. wet natural gas1 rose

246

Evaluation of gas-liquid separation performance of natural gas filters  

Science Journals Connector (OSTI)

Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filte...

Baisong Li; Zhongli Ji; Xue Yang

2009-12-01T23:59:59.000Z

247

Gulf Of Mexico Natural Gas Plant Liquids Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Plant Liquids Production (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

248

California Natural Gas Total Liquids Extracted (Thousand Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Extracted (Thousand Barrels) California Natural Gas Total Liquids Extracted (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

249

Louisiana Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) Louisiana Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

250

Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

251

Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

252

California Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) California Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

253

California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 77 1980's 81 57 124 117 105 120 109 107 101 95 1990's 86 75 83 85 75 80 80 82 58 60 2000's 64 52 68 78 95 112 100 103 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 CA, San Joaquin Basin Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

254

Colorado Natural Gas Plant Liquids, Expected Future Production...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

255

Catalyst-Assisted Production of Olefins from Natural Gas Liquids...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalyst-Assisted Production of Olefins from Natural Gas Liquids: Prototype Development and Full-Scale Testing New Process Produces Ethylene More Efficiently and Reduces Coke...

256

Biomass and Natural Gas to Liquid Transportation Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Josephine Elia, Graduate Student, Princeton University

257

Federal Offshore--California Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

258

Louisiana--State Offshore Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

259

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

260

,"Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2...

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

262

Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

263

,"Louisiana (with State Offshore) Natural Gas Plant Liquids,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

264

,"Texas--State Offshore Natural Gas Plant Liquids, Expected Future...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2...

265

Federal Offshore--California Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

266

,"Mississippi (with State Offshore) Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

267

,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

268

,"Federal Offshore--California Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Plant Liquids, Expected Future Production (Million...

269

,"California--State Offshore Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2...

270

,"Texas (with State Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

271

,"Louisiana--State Offshore Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2...

272

,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million...

273

,"California (with State Offshore) Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

274

,"Alabama (with State Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

275

,"Federal Offshore--Texas Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future Production (Million...

276

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1...

277

California--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Available; W Withheld to avoid disclosure of individual company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Natural Gas Plant Liquids Production...

278

Texas (with State Offshore) Natural Gas Plant Liquids, Expected...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

279

Louisiana (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

280

Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

California (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

282

Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2...

283

Mississippi (with State Offshore) Natural Gas Plant Liquids,...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2...

284

Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

285

Mississippi (with State Offshore) Natural Gas Plant Liquids,...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

286

Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

287

Texas (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

288

Lower 48 Federal Offshore Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

289

Natural Gas Plant Field Production: Natural Gas Liquids  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 PADD 1 1,525 1,439 2,394 2,918 2,821 2,687 1981-2013 East Coast 1993-2008 Appalachian No. 1 1,525 1,439 2,394 2,918 2,821 2,687 1993-2013 PADD 2 12,892 13,208 13,331 13,524 15,204 15,230 1981-2013 Ind., Ill. and Ky. 1,975 1,690 2,171 1,877 2,630 2,746 1993-2013

290

Natural Gas Plant Stocks of Natural Gas Liquids  

Gasoline and Diesel Fuel Update (EIA)

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5,419 6,722 6,801 5,826 6,210 6,249 1993-2013 PADD 1 122 121 115 189 246 248 1993-2013 East Coast 1993-2010 Appalachian No. 1 122 121 115 189 246 248 1993-2013 PADD 2 959 891 880 1,129 1,104 1,041 1993-2013 Ind., Ill. and Ky. 311 300 298 308 262 260 1993-2013 Minn., Wis., N. Dak., S. Dak. 56 64 58 60 51 64 1993-2013 Okla., Kans., Mo. 592 527 524 761 791 717 1993-2013 PADD 3 3,810 5,007 5,032 3,817 4,246 4,272 1993-2013

291

Stability of an overheated liquid containing vapor-gas bubbles  

Science Journals Connector (OSTI)

The problem of the stability of an overheated liquid containing bubbles of an insoluble gas is considered. The critical conditions for the masses of gas bubbles, their radii, and volume concentrations are ... sys...

V. Sh. Shagapov; V. V. Koledin

2013-09-01T23:59:59.000Z

292

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids...  

Annual Energy Outlook 2012 (EIA)

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply...

293

Liquid and liquidgas flows at all speeds  

SciTech Connect

All speed flows and in particular low Mach number flow algorithms are addressed for the numerical approximation of the Kapila et al. [1] multiphase flow model. This model is valid for fluid mixtures evolving in mechanical equilibrium but out of temperature equilibrium and is efficient for material interfaces computation separating miscible and non-miscible fluids. In this context, the interface is considered as a numerically diffused zone, captured as well as all present waves (shocks, expansion waves). The same flow model can be used to solve cavitating and boiling flows [2]. Many applications occurring with liquidgas interfaces and cavitating flows involve a very wide range of Mach number, from 10{sup ?3} to supersonic (and even hypersonic) conditions with respect to the mixture sound speed. It is thus important to address numerical methods free of restrictions regarding the Mach number. To do this, a preconditioned Riemann solver is built and embedded into the Godunov explicit scheme. It is shown that this method converges to exact solutions but needs too small time steps to be efficient. An implicit version is then derived, first in one dimension and second in the frame of 2D unstructured meshes. Two-phase flow preconditioning is then addressed in the frame of the Saurel et al. [3] algorithm. Modifications of the preconditioned Riemann solver are needed and detailed. Convergence of both single phase and two-phase numerical solutions are demonstrated with the help of single phase and two-phase steady nozzle flow solutions. Last, the method is illustrated by the computation of real cavitating flows in Venturi nozzles. Vapour pocket size and instability frequencies are reproduced by the model and method without using any adjustable parameter.

LeMartelot, S., E-mail: sebastien.lemartelot@polytech.univ-mrs.fr [Polytech'Marseille, Aix-Marseille University, UMR CNRS 7343 IUSTI, 5 rue E. Fermi, 13453 Marseille Cedex 13 (France); Nkonga, B., E-mail: boniface.nkonga@unice.fr [RS2N, Bastidon de la Caou, 13360 Roquevaire (France); University of Nice, LJAD UMR CNRS 7351, Parc Valrose, 06108 Nice Cedex (France); Saurel, R., E-mail: richard.saurel@polytech.univ-mrs.fr [Polytech'Marseille, Aix-Marseille University, UMR CNRS 7343 IUSTI, 5 rue E. Fermi, 13453 Marseille Cedex 13 (France); RS2N, Bastidon de la Caou, 13360 Roquevaire (France); University Institute of France, 5 rue E. Fermi, 13453 Marseille Cedex 13 (France)

2013-12-15T23:59:59.000Z

294

EIA - Natural Gas Production Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Production Production Gross Withdrawals and Production Components of natural gas production for the U.S., States and the Gulf of Mexico (monthly, annual). Number of Producing Gas Wells U.S. and State level data (annual). Wellhead Value & Marketed Production U.S. and State level natural gas wellhead values and prices of marketed production (annual). Offshore Gross Withdrawals U.S., State, and Gulf of Mexico gross withdrawals from oil and gas wells(annual). Gulf of Mexico Federal Offshore Production Production of crude oil, natural gas wet after lease separation, natural gas liquids, dry natural gas, and lease condensate (annual). Natural Gas Plant Liquids Production Production by U.S., region, and State (annual). Lease Condensate Production Production by U.S., region, and State (annual).

295

Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

storage of natural gas, liquid hydrocarbons, and carbon storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the storage of natural gas and prior to the exercise of eminent domain by any person, firm, or corporation having such right under laws of the state of Louisiana, the commissioner, shall have found all of the following:

296

On the stability of gas bubbles in liquid-gas solutions  

Science Journals Connector (OSTI)

It was shown some time ago by use of diffusion theory that a gas bubble in a liquid-gas solution was unstable. ... papers both of which propose to develop a stability analysis solely from thermodynamic considerat...

Milton S. Plesset; Satwindar S. Sadhal

1982-01-01T23:59:59.000Z

297

"U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil, Natural Gas, and Natural Gas Liquids Reserves Summary Data Tables, 2013" "Contents" "Table 1: U.S. proved reserves, and reserves changes, 2012-2013" "Table 2: Principal...

298

Lease Boilerplate  

NLE Websites -- All DOE Office Websites (Extended Search)

09) 09) Title: Standard Terms & Conditions for Commercial Leases Owner: Procurement Policy & Quality Dept Initial Release Date: 12/02/09 Page 1 of 14 PPQD-TMPLT-008R01 Template Release Date: 12/01/09 Printed copies of this document are uncontrolled. Before using a printed copy to perform work, verify the version against the electronic document to ensure you are using the correct version. SANDIA CORPORATION SF 6432-CL (11-09) SECTION II STANDARD TERMS AND CONDITIONS FOR COMMERCIAL LEASES THE FOLLOWING CLAUSES APPLY TO THIS LEASE AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE COVER PAGE OR SECTION I OF THIS LEASE. CL01 - ACCEPTANCE OF TERMS AND CONDITIONS (Ts&Cs) Lessor, by

299

Lease Boilerplate  

NLE Websites -- All DOE Office Websites (Extended Search)

-03-10) Title: Standard Terms & Conditions for -03-10) Title: Standard Terms & Conditions for Commercial Leases Owner: Procurement Policy & Quality Dept Initial Release Date: 11/3/10 Page 1 of 14 PPQD-TMPLT-008R01 Template Release Date: 12/01/09 Printed copies of this document are uncontrolled. Before using a printed copy to perform work, verify the version against the electronic document to ensure you are using the correct version. SANDIA CORPORATION SF 6432-CL (11-03-2010) SECTION II STANDARD TERMS AND CONDITIONS FOR COMMERCIAL LEASES THE FOLLOWING CLAUSES APPLY TO THIS LEASE AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE COVER PAGE OR SECTION I OF THIS LEASE. CL01 - ACCEPTANCE OF TERMS AND CONDITIONS (Ts&Cs) Lessor, by

300

Effect of Natural Gas Composition on the Design of Natural Gas Liquid Demethanizers  

Science Journals Connector (OSTI)

Effect of Natural Gas Composition on the Design of Natural Gas Liquid Demethanizers ... The hydrocarbon composition of natural gas varies fairly significantly from location to location. ... The relative amounts of methane (C1) and ethane (C2) have a profound effect on the cryogenic high-pressure distillation column used to recover the C2 and heavier components as a bottoms product called natural gas liquid (NGL). ...

William L. Luyben

2013-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Colorado Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Million Barrels) Colorado Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

302

Colorado Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

303

Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

(Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

304

Texas--State Offshore Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

305

Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

306

Texas--State Offshore Natural Gas Plant Liquids, Expected Future...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

307

Alaska--State Offshore Natural Gas Plant Liquids Production,...  

Gasoline and Diesel Fuel Update (EIA)

Alaska--State Offshore Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

308

California Offshore Natural Gas Plant Liquids Production Extracted...  

U.S. Energy Information Administration (EIA) Indexed Site

Offshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's NA -...

309

Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Million Barrels) Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

310

Michigan Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Million Barrels) Michigan Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

311

Arkansas Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Million Barrels) Arkansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

312

Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Million Barrels) Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

313

Wyoming Natural Gas Liquids Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Million Barrels) Wyoming Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's...

314

Pennsylvania Natural Gas Liquids Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Million Barrels) Pennsylvania Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

315

Utah Natural Gas Liquids Proved Reserves (Million Barrels)  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Million Barrels) Utah Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59...

316

Ohio Natural Gas Liquids Proved Reserves (Million Barrels)  

Annual Energy Outlook 2012 (EIA)

Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 - No Data Reported; -- ...

317

Texas--State Offshore Natural Gas Plant Liquids Production, Gaseous...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's NA - No Data...

318

Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues  

Reports and Publications (EIA)

Over the past five years, rapid growth in U.S. onshore natural gas and oil production has led to increased volumes of natural gas plant liquids (NGPL) and liquefied refinery gases (LRG). The increasing economic importance of these volumes, as a result of their significant growth in production, has revealed the need for better data accuracy and transparency to improve the quality of historical data and projections for supply, demand, and prices of these liquids, co-products, and competing products. To reduce confusion in terminology and improve its presentation of data, EIA has worked with industry and federal and state governments to clarify gas liquid terminology and has developed the term Hydrocarbon Gas Liquids, or HGL.

2014-01-01T23:59:59.000Z

319

Green Lease Policies and Procedures for Lease Acquisition | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Green Lease Policies and Procedures for Lease Acquisition Green Lease Policies and Procedures for Lease Acquisition RSL-2007-12 More Documents & Publications Attachment 1: Green...

320

,"Natural Gas Plant Field Production: Natural Gas Liquids "  

U.S. Energy Information Administration (EIA) Indexed Site

Field Production: Natural Gas Liquids " Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Field Production: Natural Gas Liquids ",16,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_gp_a_epl0_fpf_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_a_epl0_fpf_mbbl_m.htm" ,"Source:","Energy Information Administration"

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Coupling of a two phase gas liquid compositional 3D Darcy flow with a 1D compositional free gas  

E-Print Network (OSTI)

Coupling of a two phase gas liquid compositional 3D Darcy flow with a 1D compositional free gas. Masson1 , L. Trenty2 , Y. Zhang1 Coupling of a two phase gas liquid compositional 3D Darcy flow #12 analysis K, Brenner1 , R. Masson1 , L. Trenty2 , Y. Zhang1 Coupling of a two phase gas liquid compositional

Ribot, Magali

322

Analysis of Isocyanates by Gas Liquid Chromatography  

Science Journals Connector (OSTI)

......Liquid Chromatography Gary W. Ruth Marathon Oil Company, Denver Research Center...Chromatography by Gary W. Ruth, Marathon Oil Company, Denver Research Center...at the Denver Research Center, Marathon Oil Company, Littleton, Colorado......

Gary W. Ruth

1968-10-01T23:59:59.000Z

323

Mineral Leasing Act of 1920 | Open Energy Information  

Open Energy Info (EERE)

Leasing Act of 1920 Leasing Act of 1920 Jump to: navigation, search Statute Name Mineral Leasing Act of 1920 Year 1920 Url MineralLeasingAct.jpg Description The Mineral Leasing Act established the authority of the Secretary of the Interior to oversee oil and gas operations on federal land. References Federal Oil and Gas Statutes[1] Mineral Leasing Act of 1920 (30 U.S.C. § 181 et seq.) - The Mineral Leasing Act established the authority of the Secretary of the Interior to oversee oil and gas operations on federal land. "The Secretary of the Interior is authorized to prescribe necessary and proper rules and regulations and to do any and all things necessary to carry out and accomplish the purposes of this Act." 30 U.S.C. § 189 References ↑ "Federal Oil and Gas Statutes"

324

States' authority to veto offshore leasing limited  

Science Journals Connector (OSTI)

States' authority to veto offshore leasing limited ... In a controversial, 5-to-4 decision, the U.S. Supreme Court has ruled that coastal states do not have the authority to veto most of the leases granted by the federal government for offshore drilling and oil and natural gas explorations. ...

1984-01-23T23:59:59.000Z

325

,"Texas--RRC District 7C Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:39:30 PM" "Back to Contents","Data 1:...

326

Catalyst optimization in gas-to-liquid technology : an operations view / Israel Olalekan Jolaolu.  

E-Print Network (OSTI)

??Gas to Liquids (GTL) technology is a general term used for a group of technologies that has the capability to create liquid hydrocarbon fuels from (more)

Jolaolu, Israel Olalekan

2008-01-01T23:59:59.000Z

327

Natural Gas Plant Liquids Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Proved Reserves Liquids Proved Reserves (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2006 2007 2008 2009 2010 2011 View History U.S. 7,133 7,648 7,842 8,557 9,809 10,825 1979-2011 Alabama 41 32 92 55 68 68 1979-2011 Alaska 338 325 312 299 288 288 1979-2011 Arkansas 2 2 1 2 2 3 1979-2011 California 130 126 113 129 114 94 1979-2011 Coastal Region Onshore 22 14 10 10 11 12 1979-2011 Los Angeles Basin Onshore 8 9 6 6 5 4 1979-2011 San Joaquin Basin Onshore 100 103 97 113 98 78 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 382 452 612 722 879 925 1979-2011 Florida 3 2 0 0 0 0 1979-2011 Kansas 204 194 175 162 195 192 1979-2011

328

Position sensitive radioactivity detection for gas and liquid chromatography  

DOE Patents (OSTI)

A method and apparatus are provided for the position sensitive detection of radioactivity in a fluid stream, particularly in the effluent fluid stream from a gas or liquid chromatographic instrument. The invention represents a significant advance in efficiency and cost reduction compared with current efforts.

Cochran, Joseph L. (Knoxville, TN); McCarthy, John F. (Loudon, TN); Palumbo, Anthony V. (Oak Ridge, TN); Phelps, Tommy J. (Knoxville, TN)

2001-01-01T23:59:59.000Z

329

No loss fueling station for liquid natural gas vehicles  

SciTech Connect

A no loss liquid natural gas (LNG) delivery system is described comprising: (a) means for storing LNG and natural gas at low pressure; (b) means for delivering LNG from the means for storing to a use device including means for sub-cooling the LNG; (c) means for pre-cooling the means for sub-cooling before the LNG is delivered to the use device to substantially reduce vaporization of the initial LNG delivered to the use device; and (d) means for delivering a selectable quantity of the natural gas in said storing means to said use device with the LNG.

Gustafson, K.

1993-07-20T23:59:59.000Z

330

No loss fueling station for liquid natural gas vehicles  

SciTech Connect

This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

Cieslukowski, R.E.

1992-06-16T23:59:59.000Z

331

Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 121 116 93 1970's 79 55 70 71 75 68 61 45 64 49 1980's 41 29 40 55 61 145 234 318 272 254 1990's 300 395 604 513 513 582 603 734 732 879 2000's 586 691 566 647 634 700 794 859 1,008 1,295 2010's 4,578 8,931 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent Pennsylvania Natural Gas Plant Processing

332

Efficiency of Gas-to-Liquids Technology with Different Synthesis Gas Production Methods  

Science Journals Connector (OSTI)

The design and optimization of a gas-to-liquids technology (GTL) is considered, mostly from the view of an optimal choice of a synthesis gas (syngas) production method. ... If the tail gas is not enough, an additional portion of the natural gas is burned. ... The temperature of the flue gases passing from the radiation chamber of the tubular furnace to the convection chamber is taken as equal to 1150 C, which allows proper calculation of required amount of gas supplied to the burner. ...

Ilya S. Ermolaev; Vadim S. Ermolaev; Vladimir Z. Mordkovich

2014-02-05T23:59:59.000Z

333

Optimizing the efficiency of cylindrical cyclone gas/liquid separators for field applications  

E-Print Network (OSTI)

Problems associated with the use of compact cylindrical cyclone gas/liquid (CCGL) separators can be attributed to two physical phenomena: gas carry-under and liquid carryover (LCO). Inadequate understanding of the complex multiphase hydrodynamic...

Adebare, Adedeji

2006-10-30T23:59:59.000Z

334

Shell Gas to Liquids in the context of a Future Fuel Strategy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing...

335

U.S. Federal Offshore Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) U.S. Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

336

Hot Gas Filtration of Fine and Ultra fine Particles with Liquid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Gas Filtration of Fine and Ultra fine Particles with Liquid Phase Sintered SiC Ceramic DPF Hot Gas Filtration of Fine and Ultra fine Particles with Liquid Phase Sintered SiC...

337

On the stability of gas bubbles oscillating non-spherically in a compressible liquid  

Science Journals Connector (OSTI)

This paper describes the non-spherical free and forced oscillations of a gas bubble in a compressible liquid. Generally two different ... compressibility of the liquid and the gas. Stability and threshold conditi...

H. J. Rath

1981-07-01T23:59:59.000Z

338

Gas-Liquid Coexistence in the Primitive Model for Water  

E-Print Network (OSTI)

We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda [J. Kolafa and I. Nezbeda, Mol. Phys. 61, 161 (1987)]. Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized directional short-range attractions. We show that the gas-liquid phase separation is metastable, i.e. it takes place in the region of the phase diagram where the crystal phase is thermodynamically favored, as in the case of articles interacting via short-range attractive spherical potentials. Differently from spherical potentials, we do not observe crystallization close to the critical point. The region of gas-liquid instability of this patchy model is significantly reduced as compared to equivalent models of spherically interacting particles, confirming the possibility of observing kinetic arrest in an homogeneous sample driven by bonding as opposed to packing.

F. Romano; P. Tartaglia; F. Sciortino

2007-05-08T23:59:59.000Z

339

Gas-liquid critical point in ionic fluids  

E-Print Network (OSTI)

Based on the method of collective variables we develop the statistical field theory for the study of a simple charge-asymmetric $1:z$ primitive model (SPM). It is shown that the well-known approximations for the free energy, in particular DHLL and ORPA, can be obtained within the framework of this theory. In order to study the gas-liquid critical point of SPM we propose the method for the calculation of chemical potential conjugate to the total number density which allows us to take into account the higher order fluctuation effects. As a result, the gas-liquid phase diagrams are calculated for $z=2-4$. The results demonstrate the qualitative agreement with MC simulation data: critical temperature decreases when $z$ increases and critical density increases rapidly with $z$.

O. Patsahan; I. Mryglod; T. Patsahan

2006-06-27T23:59:59.000Z

340

Texas State Offshore Associated-Dissolved Natural Gas, Wet After...  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Catalyst for converting synthesis gas to liquid motor fuels  

DOE Patents (OSTI)

The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

Coughlin, Peter K. (Yorktown Heights, NY)

1986-01-01T23:59:59.000Z

342

Oil and gas leases: should they be considered securities. Sheppard v. Boettcher and Company, Inc. , 613 F. Supp. 287 (D. Wyo. 1985), appeal docketed, No. 85-2235 (Aug. 16, 1985)  

SciTech Connect

Analysis of the Sheppard v. Boettcher and Co. suit over whether oil and gas leases should be considered securities concludes that Wyoming adopted the Uniform Securities Act to protect citizens against fraud. The reading given the Wyoming statute by the district court disregards the general purpose of the regulation and ignores the counsel of the US Supreme Court that courts should construe the details of an act in conformity with its dominating general purpose. By determining that interests in oil, gas, and mining leases are not securities, the district court leaves Wyoming standing alone against all other states and the federal government. Securities legislation is remedial in nature, and calls for a liberal interpretation.

Luthi, J.N.

1986-01-01T23:59:59.000Z

343

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

344

Selection of Controlled Variables for a Natural Gas to Liquids Process Mehdi Panahi and Sigurd Skogestad*  

E-Print Network (OSTI)

Selection of Controlled Variables for a Natural Gas to Liquids Process Mehdi Panahi and Sigurd variables (CVs) for a natural gas to hydrocarbon liquids (GTL) process based on the idea of self of operation are studied. In mode I, where the natural gas flow rate is given, there are three unconstrained

Skogestad, Sigurd

345

Liquid Phases Used in Packed Gas Chromatographic Columns. Part II. Use of Liquid Phases Which Are Not Polysiloxanes  

Science Journals Connector (OSTI)

......as well as trace water, be removed from the carrier gas by using suitable...in the carrier gas lines. There is...bottles out with nitrogen and seal the filled...liquid phases in gas chromatography...Superoxes show low solubility in the common organic......

Joel A. Yancey

1985-08-01T23:59:59.000Z

346

Rules and Regulations Governing Leasing for Production or Extraction of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leasing for Production or Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands (Mississippi) Rules and Regulations Governing Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands (Mississippi) < Back Eligibility Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Retail Supplier Utility Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Mississippi Development Authority The Rules and Regulations Governing Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands is applicable to the natural gas sector. This law delegates the power to lease, for mineral

347

Reservoir-Wellbore Coupled Simulation of Liquid Loaded Gas Well Performance  

E-Print Network (OSTI)

Liquid loading of gas wells causes production difficulty and reduces ultimate recovery from these wells. In 1969, Turner proposed that existence of annular two-phase flow at the wellhead is necessary for the well to avoid liquid loading...

Riza, Muhammad Feldy

2013-11-12T23:59:59.000Z

348

Options for Gas-to-Liquids Technology in Alaska  

SciTech Connect

The purposes of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10 percent. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinquish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

Robertson, Eric Partridge

1999-10-01T23:59:59.000Z

349

Options for gas-to-liquids technology in Alaska  

SciTech Connect

The purpose of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10%. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinguish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

Robertson, E.P.

1999-12-01T23:59:59.000Z

350

Texas - RRC District 3 Onshore Natural Gas Plant Liquids, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 3 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 231 1980's 216 230 265 285 270 260 237 241 208 213 1990's 181 208 211 253 254 272 289 286 246 226 2000's 209 226 241 207 221 226 234 271 196 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 TX, RRC District 3 Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

351

Texas - RRC District 4 Onshore Natural Gas Plant Liquids, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 4 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 248 1980's 252 260 289 292 295 269 281 277 260 260 1990's 279 273 272 278 290 287 323 347 363 422 2000's 406 378 370 287 326 309 333 327 310 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 TX, RRC District 4 Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

352

Gas Bubbles and Gas Pancakes at Liquid/Solid Interface: A Continuum Theory Incorporated with Molecular Interactions  

E-Print Network (OSTI)

The states of gas accumulated at the liquid-solid interface are analyzed based on the continuum theory where the Hamaker constant is used to describe the long-range interaction at the microscopic scale. The Hamaker constant is always negative, whereas the gas spreading coefficient can be either sign. Despite the complexity of gas, including that the density profile may not be uniform due to absorption on both solid and liquid surfaces, we predict three possible gas states at the liquid-solid interface, i.e. complete wetting, partial wetting and pseudopartial wetting. These possible gas states correspond respectively to a gas pancake (or film) surrounded by a wet solid, a gas bubble with a finite contact angle, and a gas bubble(s) coexisting with a gas pancake. Typical thickness of the gas pancakes is at the nanoscale within the force range of the long-range interaction, whereas the radius of the gas bubbles can be large. The state of gas bubble(s) coexisting with a gas film is predicted theoretically for the first time. Our theoretical results can contribute to the development of a unified picture of gas nucleation at the liquid-solid interface.

Zhaoxia Li; Xuehua Zhang; Lijuan Zhang; Xiaocheng Zeng; Jun Hu; Haiping Fang

2007-10-27T23:59:59.000Z

353

Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 115,177 140,290 179,117 1970's 193,209 195,072 197,967 206,833 194,329 189,541 172,584 166,392 161,511 165,515 1980's 142,171 142,423 128,858 124,193 132,501 117,736 115,604 124,890 120,092 121,425 1990's 119,405 129,154 132,656 130,336 128,583 146,048 139,841 150,008 144,609 164,794 2000's 164,908 152,862 152,724 124,955 133,434 103,381 105,236 110,745 94,785 95,359 2010's 102,448 95,630 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

354

Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,351 3,244 2,705 1970's 2,330 2,013 1,912 1,581 1,921 2,879 6,665 11,494 14,641 15,686 1980's 15,933 14,540 14,182 13,537 12,829 11,129 11,644 10,876 10,483 9,886 1990's 8,317 8,103 8,093 7,012 6,371 6,328 6,399 6,147 5,938 5,945 2000's 5,322 4,502 4,230 3,838 4,199 3,708 3,277 3,094 3,921 2,334 2010's 2,943 2,465 2,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013

355

California Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) California Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,803 32,639 30,334 1970's 29,901 27,585 24,156 17,498 17,201 15,221 14,125 13,567 13,288 10,720 1980's 8,583 7,278 14,113 14,943 15,442 16,973 16,203 15,002 14,892 13,376 1990's 12,424 11,786 12,385 12,053 11,250 11,509 12,169 11,600 10,242 10,762 2000's 11,063 11,060 12,982 13,971 14,061 13,748 14,056 13,521 13,972 13,722 2010's 13,244 12,095 12,755 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

356

Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,500 8,573 8,579 1970's 6,574 6,133 6,063 5,441 5,557 5,454 5,231 4,764 6,192 3,923 1980's 6,845 5,638 6,854 6,213 6,516 6,334 4,466 2,003 2,142 1,444 1990's 1,899 2,181 2,342 2,252 2,024 2,303 2,385 2,404 2,263 2,287 2000's 1,416 1,558 1,836 1,463 2,413 1,716 2,252 1,957 2,401 3,270 2010's 4,576 4,684 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

357

New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,149 48,635 50,484 1970's 52,647 53,810 54,157 55,782 54,986 56,109 61,778 72,484 77,653 62,107 1980's 59,457 60,544 56,857 56,304 58,580 53,953 51,295 65,156 63,355 61,594 1990's 66,626 70,463 75,520 83,193 86,607 85,668 108,341 109,046 106,665 107,850 2000's 110,411 108,958 110,036 111,292 105,412 101,064 99,971 96,250 92,579 94,840 2010's 91,963 90,291 84,562 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

358

Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 4,126 4,546 4,058 1970's 3,405 4,152 4,114 4,674 6,210 9,620 11,944 13,507 13,094 12,606 1980's 12,651 13,427 12,962 11,314 10,771 11,913 10,441 10,195 11,589 13,340 1990's 13,178 15,822 18,149 18,658 19,612 25,225 23,362 28,851 24,365 26,423 2000's 29,105 29,195 31,952 33,650 35,821 34,782 36,317 38,180 53,590 67,607 2010's 82,637 90,801 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

359

Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 236 1970's 225 281 243 199 501 694 661 933 1,967 4,845 1980's 4,371 4,484 4,727 4,709 5,123 5,236 4,836 4,887 4,774 5,022 1990's 4,939 4,997 5,490 5,589 5,647 5,273 5,361 4,637 4,263 18,079 2000's 24,086 13,754 14,826 11,293 15,133 13,759 21,065 19,831 17,222 17,232 2010's 19,059 17,271 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

360

North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,150 5,428 4,707 1970's 4,490 3,592 3,199 2,969 2,571 2,404 2,421 2,257 2,394 2,986 1980's 3,677 5,008 5,602 7,171 7,860 8,420 6,956 7,859 6,945 6,133 1990's 6,444 6,342 6,055 5,924 5,671 5,327 4,937 5,076 5,481 5,804 2000's 6,021 6,168 5,996 5,818 6,233 6,858 7,254 7,438 7,878 10,140 2010's 11,381 14,182 26,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 433,684 457,117 447,325 1970's 466,016 448,288 470,105 466,143 448,993 435,571 428,635 421,110 393,819 352,650 1980's 350,312 345,262 356,406 375,849 393,873 383,719 384,693 364,477 357,756 343,233 1990's 342,186 353,737 374,126 385,063 381,020 381,712 398,442 391,174 388,011 372,566 2000's 380,535 355,860 360,535 332,405 360,110 355,589 373,350 387,349 401,503 424,042 2010's 433,622 481,308 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

362

Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,127 971 1,334 1970's 1,270 1,217 1,058 878 679 567 520 367 485 1,146 1980's 553 830 831 633 618 458 463 437 811 380 1990's 445 511 416 395 425 377 340 300 495 5,462 2000's 11,377 15,454 16,477 11,430 13,697 14,308 14,662 13,097 10,846 18,354 2010's 18,405 11,221 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent

363

Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,499 3,667 3,475 1970's 3,235 2,563 1,197 1,118 952 899 823 674 883 1,308 1980's 1,351 1,327 1,287 1,258 1,200 1,141 1,318 1,275 1,061 849 1990's 800 290 413 507 553 488 479 554 451 431 2000's 377 408 395 320 254 231 212 162 139 168 2010's 213 268 424 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent

364

Lease Operations Environmental Guidance Document  

SciTech Connect

This report contains discussions in nine different areas as follows: (1) Good Lease Operating Practices; (2) Site Assessment and Sampling; (3) Spills/Accidents; (4) Containment and Disposal of Produced Waters; (5) Restoration of Hydrocarbon Impacted Soils; (6) Restoration of Salt Impacted Soils; (7) Pit Closures; (8) Identification, Removal and Disposal of Naturally Occurring Radioactive Materials (NORM); and (9) Site Closure and Construction Methods for Abandonment Wells/Locations. This report is primary directed towards the operation of oil and gas producing wells.

Bureau of Land Management

2001-02-14T23:59:59.000Z

365

Nuclear symmetry energy effects on liquid-gas phase transition in hot asymmetric nuclear matter  

E-Print Network (OSTI)

The liquid-gas phase transition in hot asymmetric nuclear matter is investigated within relativistic mean-field model using the density dependence of nuclear symmetry energy constrained from the measured neutron skin thickness of finite nuclei. We find symmetry energy has a significant influence on several features of liquid-gas phase transition. The boundary and area of the liquid-gas coexistence region, the maximal isospin asymmetry and the critical values of pressure and isospin asymmetry all of which systematically increase with increasing softness in the density dependence of symmetry energy. The critical temperature below which the liquid-gas mixed phase exists is found higher for a softer symmetry energy.

Bharat K. Sharma; Subrata Pal

2010-01-14T23:59:59.000Z

366

Bubble Evolution in Liquid-Gas Solutions, Viewed as an Elementary Catastrophe  

Science Journals Connector (OSTI)

The stability of gas micro-bubbles in liquid-gas solutions is of importance ... which include propagation and damping of sound, bubble removal during glassmaking, fermentation, initiation of ... the role of nucle...

J. L. Achard; E. Canot

1993-01-01T23:59:59.000Z

367

DOE Uranium Leasing Program - Lease Tract Metrics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Leasing Program -- Lease Tract Metrics Uranium Leasing Program -- Lease Tract Metrics Lease Tract Lessee Lease Date Bid (%) Reclamation Bond a Total Acres Acres Excluded b Comment C-JD-5 Gold Eagle Mining, Inc. 04/30/08 12.00 37,000 150.71 C-JD-5A Golden Eagle Uranium, LLC 06/27/08 20.10 5,000 24.54 C-JD-6 Cotter Corporation 04/30/08 14.20 19,000 530.08 C-JD-7 c Cotter Corporation 04/30/08 27.30 1,206,000 493.01 C-JD-8 Cotter Corporation 04/30/08 36.20 4,000 954.62 C-JD-8A No bids received - remains inactive N/A N/A N/A 77.91 C-JD-9 Cotter Corporation 04/30/08 24.30 72,000 1,036.50 C-SR-10 Golden Eagle Uranium, LLC 06/27/08 13.10 5,000 637.64 C-SR-11 Cotter Corporation 04/30/08 11.67 43,000 1,303.22 200.25 Summit Canyon area excluded from lease tract C-SR-11A Golden Eagle Uranium, LLC 06/27/08 14.30 5,000 1,296.81 C-SR-12 Colorado Plateau Partners 06/27/08

368

H.R. 817: A Bill to authorize the Secretary of Energy to lease lands within the naval oil shale reserves to private entities for the development and production of oil and natural gas. Introduced in the House of Representatives, One Hundred Fourth Congress, First session  

SciTech Connect

This bill would give the Secretary of Energy authority to lease lands within the Naval oil shale reserves to private entities for the purpose of surveying for and developing oil and gas resources from the land (other than oil shale). It also allows the Bureau of Land Management to be used as a leasing agent, establishes rules on royalties, and the sharing of royalties with the state, and covers the transfer of existing equipment.

NONE

1995-12-31T23:59:59.000Z

369

Liquid piston gas compression James D. Van de Ven a,*, Perry Y. Li b,1  

E-Print Network (OSTI)

. As the compressed gas cools at constant pressure in a storage reservoir, the potential energy of the gas de- creases process and enables efficient energy storage through gas compression. Current applications involving piston Gas compression Air compressor Compression efficiency a b s t r a c t A liquid piston concept

Li, Perry Y.

370

Leasing vs. Buying Farm Machinery  

E-Print Network (OSTI)

Equipment leasing has gained favor with farmers and ranchers in recent years. This publication discusses how to determine lease cost and analyzes lease vs. purchase options. An example of such an analysis is included....

Klinefelter, Danny A.; McCorkle, Dean

2009-06-01T23:59:59.000Z

371

Deformation of a liquid surface due to an impinging gas jet: A conformal mapping approach  

E-Print Network (OSTI)

on it. The problem of a gas jet impinging on a liquid surface arises in several important industrialDeformation of a liquid surface due to an impinging gas jet: A conformal mapping approach Andong He to convert it to steel known as the basic oxygen conversion process1 . In the arc welding process, a high

372

Natural Gas Liquids Proved Reserves as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

Million Barrels) Million Barrels) Data Series: Dry Natural Gas Wet NG Wet Nonassociated NG Wet Associated-Dissolved NG Natural Gas Liquids Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2003 2004 2005 2006 2007 2008 View History U.S. 7,459 7,928 8,165 8,472 9,143 9,275 1979-2008 Federal Offshore U.S. 725 721 696 653 624 548 1981-2008 Pacific (California) 8 8 8 4 4 1 1979-2008 Gulf of Mexico 717 713 688 649 620 1992-2007 Louisiana & Alabama 598 615 603 575 528 464 1981-2008 Texas 119 98 85 74 92 83 1981-2008 Alaska 387 369 352 338 325 312 1979-2008 Lower 48 States 7,072 7,559 7,813 8,134 8,818 8,963 1979-2008

373

Detachment of Liquid-Water Droplets from Gas-Diffusion Layers  

SciTech Connect

A critical issue for optimal water management in proton-exchange-membrane fuel cells at lower temperatures is the removal of liquid water from the cell. This pathway is intimately linked with the phenomena of liquid-water droplet removal from surface of the gas-diffusion layer and into the flow channel. Thus, a good understanding of liquid-water transport and droplet growth and detachment from the gas-diffusion layer is critical. In this study, liquid-water droplet growth and detachment on the gas-diffusion layer surfaces are investigated experimentally to improve the understating of water transport through and removal from gas-diffusion layers. An experiment using a sliding-angle measurement is designed and used to quantify and directly measure the adhesion force for liquid-water droplets, and to understand the droplets? growth and detachment from the gas-diffusion layers.

Das, Prodip K.; Grippin, Adam; Weber, Adam Z.

2011-07-01T23:59:59.000Z

374

A field example of a gas orifice meter with debris-ridden liquid in mist flow  

SciTech Connect

A field example of debris-ridden liquids in an orifice meter is presented in this paper. Flow conditions in gas pipelines containing hydrocarbon liquids and particulate matter are discussed. Known effects on measurement of the presence of these materials in orifice meters is presented. By definition, gas measurement is accurate if performed on a clean and dry flow stream. This paper demonstrates the importance of removing as much liquid and debris as possible prior to measurement.

Chisholm, J.L.; Mooney, C.V. [Texas A and M Univ., Kingsville, TX (United States); Datta-Barua, L.; Feldmann, R.J.

1995-12-31T23:59:59.000Z

375

NASA Enhanced Use Lease  

Energy.gov (U.S. Department of Energy (DOE))

Document describes a sample template of an enhanced used lease administered by NASA as part of a power purchase agreement (PPA).

376

Gas-Liquid Contact Area of Random and Structured Packing Ian David Wilson, B.S.  

E-Print Network (OSTI)

of the gas or to avoid catalyst poisoning. It is becoming apparent that CO2 emissions may also play a mayor the flue gas and the liquid solvent. The gas exits from the top with a low concentration of CO2 while 1.1 CO2 removal by absorption/stripping Absorber Stripper Sweet Gas CO2 + H2O Sour Gas Rich Amine

Rochelle, Gary T.

377

Catalyst-Assisted Production of Olefins from Natural Gas Liquids: Prototype Development and Full-Scale Testing, April 2013  

Energy.gov (U.S. Department of Energy (DOE))

Catalyst-Assisted Production of Olefins from Natural Gas Liquids: Prototype Development and Full-Scale Testing

378

Removing an impediment to oil and gas leasing of certain federal lands in Corpus Christi, TX, and Port Hueneme, CA, and for other purposes. House of Representatives, Ninety-Eight Congress, Second Session  

SciTech Connect

With the addition of three technical ammendments, the Committee on Interior and Insular Affairs favors passage of H.R. 5787, a bill that removes a restriction to oil and gas leasing on naval air station lands within the city limits of Corpus Christi, Texas and Port Hueneme, California. Recognizing the controversial nature of competitive versus noncompetitive bidding, the committee stipulates that the land must be within a known geologic structure to use noncompetitive bidding. Additional views of three committee members follow the formal report and transmittal letter.

Not Available

1984-01-01T23:59:59.000Z

379

Ab initio simulations of dense liquid deuterium: Comparison with gas gun shock wave experiments  

E-Print Network (OSTI)

Ab initio simulations of dense liquid deuterium: Comparison with gas gun shock wave experiments functional calculations leading to excellent agreement with gas gun shock wave measurements, which have As a result of this discrep- ancy, considerable attention is now being paid to older gas gun shock wave

Militzer, Burkhard

380

Third-order gas-liquid phase transition and the nature of Andrews critical Tian Ma and Shouhong Wang  

E-Print Network (OSTI)

Third-order gas-liquid phase transition and the nature of Andrews critical point Tian Ma-order gas-liquid phase transition and the nature of Andrews critical point Tian Ma1 and Shouhong Wang2 1 is to study the nature of the Andrews critical point in the gas-liquid transition in a physical

Wang, Shouhong

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Compact design improves efficiency and CAPEX -- combining plate heat exchangers and gas-liquid separators for gas processing savings  

SciTech Connect

This paper presents the unique combination of two well proven technologies: a compact large scale welded plate heat exchanger with a gas-liquid separator within the same pressure vessel. Explained are the benefits for raw gas processing on production sites where cost, weight and efficiency are of particular importance. Application of this Combined Heat Exchanger-Separator is presented for various gas processing schemes: Turbo Expander, Mechanical Refrigeration and Joule-Thompson.

Waintraub, L.; Sourp, T. [Proser (France)

1998-12-31T23:59:59.000Z

382

The elimination of liquid loading problems in low productivity gas wells  

E-Print Network (OSTI)

investigated. The Beggs and Brill multiphase pressure drop correlation was programmed and used as a basis to generate tubing performance curves and to study the effects of various parameters on long term gas production. Turner's method for predicting... the known methods of analyzing liquid loading problems in gas wells. A computer program will be developed to aid in generating tubing performance curves along with calculated gas velocity profiles. The calculated gas velocity profile...

Neves, Toby Roy

1987-01-01T23:59:59.000Z

383

Modular Gas-to-Liquid: Converting a Liability into Economic Value  

Science Journals Connector (OSTI)

Modular Gas-to-Liquid: Converting a Liability into Economic Value ... In the 1950s, several plants started again using the FT process, one in Brownsville, TX, with a capacity of 10800 bbl/day based on methane and one in Sasolburg, South Africa, based on coal-derived gas. ... Commercial-scale technologies do not apply to associated gas because the technologies benefit from economies of scale based on high feed rates and sustained gas flow rates. ...

Johannes G. Koortzen; Sabjinder Bains; Lary L. Kocher; Iain K. Baxter; Ross A. Morgan

2013-09-19T23:59:59.000Z

384

Lattice Boltzmann simulations of contact line motion in a liquid-gas system  

Science Journals Connector (OSTI)

...V. Coveney and S. Succi Lattice Boltzmann simulations of contact line...tphys.ox.ac.uk ) We use a lattice Boltzmann algorithm for liquid-gas coexistence...zero. mesoscale modelling|lattice Boltzmann|wetting|droplet dynamics...

2002-01-01T23:59:59.000Z

385

A Management Tool for Analyzing CHP Natural Gas Liquids Recovery System  

E-Print Network (OSTI)

The objective of this research is to develop a management tool for analyzing combined heat and power (CHP) natural gas liquids (NGL) recovery systems. The methodology is developed around the central ideas of product recovery, possible recovery...

Olsen, C.; Kozman, T. A.; Lee, J.

2008-01-01T23:59:59.000Z

386

Selection of Controlled Variables for a Natural Gas to Liquids Process  

Science Journals Connector (OSTI)

Selection of Controlled Variables for a Natural Gas to Liquids Process ... Also, dynamic issues, such as inverse response, may cause problems for control, and it may be necessary to use cascade control. ...

Mehdi Panahi; Sigurd Skogestad

2012-06-20T23:59:59.000Z

387

Upward Gas-Liquid Flow in Concentric and Eccentric Annular Spaces  

E-Print Network (OSTI)

UPWARD GAS-LIQUID FLOW IN CONCENTRIC AND ECCENTRIC ANNULAR SPACES A Thesis by PEDRO CAVALCANTI DE SOUSA Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment... Copyright 2013 Pedro Cavalcanti de Sousa ii ABSTRACT A limited amount of work exists on upward gas-liquid flow in annular spaces. This is a common scenario in drilling operations, especially in underbalanced drilling, and in high-production wells...

Cavalcanti de Sousa, Pedro

2013-12-09T23:59:59.000Z

388

Method of purifying a gas stream using 1,2,3-triazolium ionic liquids  

DOE Patents (OSTI)

A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.

Luebke, David; Nulwala, Hunald; Tang, Chau

2014-12-09T23:59:59.000Z

389

U.S. Natural Gas Liquids Proved Reserves  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquids Proved Reserves (Million Barrels) Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf...

390

Production of Liquid Cluster Ions by Nozzle Beam Source with and without He Gas  

SciTech Connect

We developed a new type of cluster ion source which could produce various kinds of liquid clusters such as water, methanol, ethanol and octane clusters. When the vapor pressure was larger than one atm, the water and ethanol clusters could be produced by an adiabatic expansion phenomenon without adding He gas. The peak size of the cluster ions increased with the increase of the vapor pressures. When the source temperature was at room temperature, the water and ethanol clusters were also produced by adding He gas. In another case of producing liquid clusters such as methanol and octane clusters, He gas was added to mix up with vapors of liquid materials. When the He gas pressure was larger than a few atms, the methanol and octane clusters were produced at a vapor pressure of two atm. The peak size increased with increase of the vapor pressure as well as the He gas pressure.

Takaoka, G. H.; Ryuto, H.; Okada, T.; Sugiyama, K. [Photonics and Electronics Science and Engineering Center, Kyoto University, Nishikyo, Kyoto 615-8510 (Japan)

2008-11-03T23:59:59.000Z

391

Geothermal/Leasing | Open Energy Information  

Open Energy Info (EERE)

Leasing Leasing < Geothermal(Redirected from Leasing) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Geothermal Leasing General List of Geothermal Leases Regulatory Roadmap NEPA (1) The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Leasing ... Geothermal Leasing NEPA Documents Fluid Mineral Leasing within Six Areas on the Carson City District (January 2009) Geothermal Resources Leasing in Churchill, Mineral, & Nye Counties,

392

NASA Enhanced Use Lease  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KCA-4204 KCA-4204 NASA JOHN F. KENNEDY SPACE CENTER ENHANCED USE LEASE This Enhanced Use Lease (the "Lease") is made as of the date set forth below by the signatories, by and between the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, an Agency of the United States, John F. Kennedy Space Center, Florida, as the lessor (hereinafter "NASA-KSC"), and Florida Power & Light Company, a corporation organized and existing under the laws of the State of Florida, as the lessee (hereinafter "FPL"). This Lease is made under the authority of section 315 of the National Aeronautics and Space Act of 1958, as amended (42 U.S.C. §2459j) with reference to the following facts: R E C I T A L S A. NASA-KSC is committed to using its real property assets to efficiently

393

NASA Enhanced Use Lease  

NLE Websites -- All DOE Office Websites (Extended Search)

KCA-4204 KCA-4204 NASA JOHN F. KENNEDY SPACE CENTER ENHANCED USE LEASE This Enhanced Use Lease (the "Lease") is made as of the date set forth below by the signatories, by and between the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, an Agency of the United States, John F. Kennedy Space Center, Florida, as the lessor (hereinafter "NASA-KSC"), and Florida Power & Light Company, a corporation organized and existing under the laws of the State of Florida, as the lessee (hereinafter "FPL"). This Lease is made under the authority of section 315 of the National Aeronautics and Space Act of 1958, as amended (42 U.S.C. §2459j) with reference to the following facts: R E C I T A L S A. NASA-KSC is committed to using its real property assets to efficiently

394

Review of Liquid Phases in Gas Chromatography, Part II: Applications  

Science Journals Connector (OSTI)

......in the carrier gas; this sharpens...oxygen) and water (20,22,23...in the carrier gas, from leaks in...tochromic (12) and solubility parameter (36...Eon. Expanded solubility param eter treatment...for capillary gas chromatography...capillaries and a nitrogen selective detector......

J.A. Yancey

1994-09-01T23:59:59.000Z

395

Natural Gas Lease Fuel Consumption  

Gasoline and Diesel Fuel Update (EIA)

861,063 864,113 913,229 916,797 938,340 987,957 1983-2012 861,063 864,113 913,229 916,797 938,340 987,957 1983-2012 Alabama 11,345 11,136 10,460 10,163 10,367 12,389 1983-2012 Alaska 227,374 211,878 219,161 211,918 208,531 214,335 1983-2012 Arizona 20 20 17 19 17 12 1983-2012 Arkansas 1,502 2,521 4,091 5,340 6,173 6,599 1983-2012 California 56,936 64,689 63,127 64,931 44,379 51,154 1983-2012 Colorado 39,347 44,231 64,873 66,083 78,800 76,462 1983-2012 Florida 654 897 94 4,512 4,896 6,080 1983-2012 Gulf of Mexico 115,528 102,389 103,976 108,490 101,217 93,985 1999-2012 Illinois 39 41 62 50 101 122 1983-2012 Indiana 101 161 211 283 433 506 1983-2012 Kansas 10,232 12,803 15,169 13,461 12,781 17,017 1983-2012 Kentucky 2,676 3,914 4,862 5,626 5,925 6,095 1983-2012

396

Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Compressed Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL to someone by E-mail Share Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Facebook Tweet about Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Twitter Bookmark Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Google Bookmark Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Delicious Rank Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Digg Find More places to share Alternative Fuels Data Center: Reduced

397

Energy Recovery By Direct Contact Gas-Liquid Heat Exchange  

E-Print Network (OSTI)

liquid s sensible T total LITERATURE CITED Bharathan, D., Parsons, B. K., Althof, J. A., "Direct-Contac Condensers for Open-Cycle OTEC Applications", Solar Energy Research Institute Report SERlfTR-252 3108, Golden, Colorado, May 1988. 268 ESL... liquid s sensible T total LITERATURE CITED Bharathan, D., Parsons, B. K., Althof, J. A., "Direct-Contac Condensers for Open-Cycle OTEC Applications", Solar Energy Research Institute Report SERlfTR-252 3108, Golden, Colorado, May 1988. 268 ESL...

Fair, J. R.; Bravo, J. L.

398

Federal Offshore California Natural Gas Plant Liquids Production...  

Gasoline and Diesel Fuel Update (EIA)

Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants Federal Offshore California Natural Gas Gross Withdrawals and Production...

399

California--State Offshore Natural Gas Plant Liquids Production...  

Gasoline and Diesel Fuel Update (EIA)

2014 Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants California State Offshore Natural Gas Gross Withdrawals and Production...

400

Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products  

DOE Patents (OSTI)

Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.

Nataraj, Shankar (Allentown, PA); Russek, Steven Lee (Allentown, PA); Dyer, Paul Nigel (Allentown, PA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geothermal/Leasing | Open Energy Information  

Open Energy Info (EERE)

Leasing Leasing < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Geothermal Leasing General List of Geothermal Leases Regulatory Roadmap NEPA (1) The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Leasing ... Geothermal Leasing NEPA Documents Fluid Mineral Leasing within Six Areas on the Carson City District (January 2009) Geothermal Resources Leasing in Churchill, Mineral, & Nye Counties, Nevada (May 2008)

402

Ultrasound in gasliquid systems: Effects on solubility and mass transfer  

Science Journals Connector (OSTI)

The effect of ultrasound on the pseudo-solubility of nitrogen in water and on gasliquid mass transfer kinetics has been investigated in an autoclave reactor equipped with a gas induced impeller. In order to use organic liquids and to investigate the effect of pressure, gasliquid mass transfer coefficient was calculated from the evolution of autoclave pressure during gas absorption to avoid any side-effects of ultrasound on the concentrations measurements. Ultrasound effect on the apparent solubility is very low (below 12%). Conversely ultrasound greatly improves gasliquid mass transfer, especially below gas induction speed, this improvement being boosted by pressure. In typical conditions of organic synthesis: 323K, 1100rpm, 10bar, kLa is multiplied by 11 with ultrasound (20kHz/62.6W). The impact of sonication is much higher on gassing out than on gassing in. In the same conditions, this enhancement is at least five times higher for degassing.

F. Laugier; C. Andriantsiferana; A.M. Wilhelm; H. Delmas

2008-01-01T23:59:59.000Z

403

Liquid absorbent solutions for separating nitrogen from natural gas  

DOE Patents (OSTI)

Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Redmond, OR); Lyon, David K. (Bend, OR); Miller, Warren K. (Bend, OR)

2000-01-01T23:59:59.000Z

404

Gas, liquids flow rates hefty at Galveston Bay discovery  

SciTech Connect

Extended flow tests indicate a large Vicksburg (Oligocene) gas, condensate, and oil field is about to be developed in western Galveston Bay. Internal estimates indicates that ultimate recovery from the fault block in which the discovery well was drilled could exceed 1 tcf of gas equivalent of proved, possible, and probable reserves. The paper discusses the test program for this field and other prospects in the Galveston Bay area.

Petzet, G.A.

1998-01-19T23:59:59.000Z

405

Modeling of ultrasound transmission through a solid-liquid interface comprising a network of gas pockets  

SciTech Connect

Ultrasonic inspection of sodium-cooled fast reactor requires a good acoustic coupling between the transducer and the liquid sodium. Ultrasonic transmission through a solid surface in contact with liquid sodium can be complex due to the presence of microscopic gas pockets entrapped by the surface roughness. Experiments are run using substrates with controlled roughness consisting of a network of holes and a modeling approach is then developed. In this model, a gas pocket stiffness at a partially solid-liquid interface is defined. This stiffness is then used to calculate the transmission coefficient of ultrasound at the entire interface. The gas pocket stiffness has a static, as well as an inertial component, which depends on the ultrasonic frequency and the radiative mass.

Paumel, K.; Baque, F. [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance (France); Moysan, J.; Corneloup, G. [Laboratoire de Caracterisation Non Destructive, Universite de la Mediterranee, IUT Aix-en-Provence, Avenue Gaston Berger, 13625 Aix-en-Provence (France); Chatain, D. [CNRS, Aix-Marseille Universite, CINAM-UPR3118, Campus de Luminy, Case 913, 13288 Marseille cedex 09 (France)

2011-08-15T23:59:59.000Z

406

Non-congruence of liquid-gas phase transition of asymmetric nuclear matter  

E-Print Network (OSTI)

We first explore the liquid-gas mixed phase in a bulk calculation, where two phases coexist without the geometrical structures. In the case of symmetric nuclear matter, the system behaves congruently, and the Maxwell construction becomes relevant. For asymmetric nuclear matter, on the other hand, the phase equilibrium is no more attained by the Maxwell construction since the liquid and gas phases are non-congruent; the particle fractions become completely different with each other. One of the origins of such non-congruence is attributed to the large symmetry energy. Subsequently we explore the charge-neutral nuclear matter with electrons by fully applying the Gibbs conditions to figure out the geometrical (pasta) structures in the liquid-gas mixed phase. We emphasize the effects of the surface tension and the Coulomb interaction on the pasta structures. We also discuss the thermal effects on the pasta structures.

Maruyama, Toshiki

2012-01-01T23:59:59.000Z

407

Experimental investigation of the thermal-hydraulics of gas jet expansion In a two-dimensional liquid pool  

E-Print Network (OSTI)

Gas jet blowdown in a two-dimensional liquid pool has been experimentally investigated. Two sets of experiments were performed: a set of hydrodynamic experiments, where a non-condensible gas is injected into a subcooled ...

Rothrock, Ray Alan

1978-01-01T23:59:59.000Z

408

Development of a silicon-based passive gas-liquid separation system for microscale direct methanol fuel cells  

Science Journals Connector (OSTI)

The design, fabrication and performance characterisation of a passive gas-liquid separation system is presented in this paper. The gas-liquid separation system is silicon-based and its fabrication is compatible with the existing CMU design of the microscale direct methanol fuel cell (DMFC). Both gas and liquid separators consist of staggered arrays of etched-through holes fabricated by deep reactive ion etching (DRIE). The gas separator is coated with a thin layer of hydrophobic polymer to substantiate the gas-liquid separation. To visually characterise the system performance, the gas-liquid separation system is made on a single wafer with a glass plate bonded on the top to form a separation chamber with a narrow gap in between. Benzocyclobutene (BCB) is applied for the low-temperature bonding. The maximum pressure for the liquid leakage of the gas separators is experimentally determined and compared with the values predicted theoretically. Several successful gas-liquid separations are observed at liquid pressures between 14.2 cmH2O and 22.7 cmH2O, liquid flow rates between 0.705 cc/min and 1.786 cc/min, and CO2 flow rates between 0.15160 cc/min to 0.20435 cc/min.

C.C. Hsieh; S.C. Yao; Yousef Alyousef

2009-01-01T23:59:59.000Z

409

,"Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_smt_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_smt_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

410

,"Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sks_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sks_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

411

,"Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sal_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sal_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

412

,"California Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sca_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sca_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

413

,"Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sok_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sok_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

414

,"Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_soh_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_soh_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

415

,"Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sut_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sut_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

416

,"Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sak_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sak_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

417

,"Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (MMcf)" Plant Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sin_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sin_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

418

,"Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

419

,"Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sne_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sne_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

420

,"Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_spa_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_spa_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

,"South Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (MMcf)" Plant Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

422

,"Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

423

,"Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_smi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_smi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

424

,"Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

425

,"Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sms_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sms_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

426

,"Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_stx_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_stx_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

427

DOE Signs Advanced Enrichment Technology License and Facility Lease |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Enrichment Technology License and Facility Lease Advanced Enrichment Technology License and Facility Lease DOE Signs Advanced Enrichment Technology License and Facility Lease December 8, 2006 - 9:34am Addthis Announces Agreements with USEC Enabling Deployment of Advanced Domestic Technology for Uranium Enrichment WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today announced the signing of a lease agreement with the United States Enrichment Corporation, Inc. (USEC) for their use of the Department's gas centrifuge enrichment plant (GCEP) facilities in Piketon, OH for their American Centrifuge Plant. The Department of Energy (DOE) also granted a non-exclusive patent license to USEC for use of DOE's centrifuge technology for uranium enrichment at the plant, which will initiate the first successful deployment of advanced domestic enrichment technology in the

428

Template:BLM Lease | Open Energy Information  

Open Energy Info (EERE)

Lease Lease Jump to: navigation, search This is the 'BLM_Lease' template. To present BLM Leases related to Geothermal Resource Areas, please use the BLM Lease Form. Parameters Location Information GeothermalArea - Geothermal Resource Area (category=Geothermal_Resource_Areas) Meridian - Longitude line from which the PLSS is measured (number) State - State within the Geothermal Area (pages) Township - For example: T3N (string) Range - For example: R34W (string) Section - For example: 26 (number) Aliquot - For example: SW1/4 or all (string) SurveyType - For example: Unsurveyed - uprotracted, Aliquot Part (40 Acres) (string) Lease Data LeaseStatus - Status of lease at most recent import from LR2000 (BLM_LeaseStatus) LeaseType - Type of lease (category=BLM_Lease_Types) TotalAcreage - Total acreage of the lease (number)

429

Determination of Organophosphorus Pesticides in Soil by Dispersive LiquidLiquid Microextraction and Gas Chromatography  

Science Journals Connector (OSTI)

......and 60 mL/min of nitrogen (99.999%) as the auxiliary gas. Nitrogen was used as the carrier gas at a flow rate of 1...aliquot of deionized water was placed into a 10-mL...density than water, a low solubility in water, a high extraction......

Zhonghua Yang; Yu Liu; Donghui Liu; Zhiqiang Zhou

2012-01-01T23:59:59.000Z

430

Montana Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

14 993 959 792 616 590 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 817 681 657 522 327 286 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease...

431

Mississippi Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

35 922 858 868 612 600 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 990 884 822 806 550 557 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease...

432

Miscellaneous Natural Gas Reserves Summary as of Dec. 31  

Annual Energy Outlook 2012 (EIA)

72 349 363 393 233 188 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 263 271 353 270 219 169 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease...

433

Florida Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

1 7 56 6 16 15 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 0 0 26 4 16 14 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease Separation 1 7 30 2 0 1...

434

CA, Coastal Region Onshore Natural Gas Reserves Summary as of...  

U.S. Energy Information Administration (EIA) Indexed Site

151 169 180 173 305 284 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 1 1 2 1 2 2 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease Separation 150 168...

435

CA, Los Angeles Basin Onshore Natural Gas Reserves Summary as...  

Annual Energy Outlook 2012 (EIA)

81 91 92 102 98 90 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 0 0 0 0 0 0 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease Separation 81 91 92 102...

436

Telecommunications Radio Lease  

E-Print Network (OSTI)

Telecommunications Radio Lease 1. Fax completed form to 979.847.1111. 2. If you do not receive to any of the radios, chargers and accessories until signed back over to the Telecommunications office Telecommunications Office Use Only Service Due Date Installation Cost (NRC) Billed To Telephone/Circuit Number

437

Mineral Leasing Act for Acquired Lands of 1947 | Open Energy Information  

Open Energy Info (EERE)

Acquired Lands of 1947 Acquired Lands of 1947 Jump to: navigation, search Statute Name Mineral Leasing Act for Acquired Lands of 1947 Year 1947 Url Acquiredlands.jpg Description (30 U.S.C. § 351 et seq.) - Extends the provisions of the Mineral Leasing Act and the authority of the Secretary of the Interior over oil and gas operations to federal "acquired lands." References Mineral Leasing Act for Acquired Lands of 1947 [1] The Mineral Leasing Act for Acquired Lands of 1947 (30 U.S.C. § 351 et seq.) - Extends the provisions of the Mineral Leasing Act and the authority of the Secretary of the Interior over oil and gas operations to federal "acquired lands." "To promote the mining of coal, phosphate, sodium, potassium, oil, oil shale, gas, and sulfur on lands acquired by the United States."

438

GRR/Section 3-WA-a - State Geothermal Lease | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-WA-a - State Geothermal Lease GRR/Section 3-WA-a - State Geothermal Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-WA-a - State Geothermal Lease 3-WA-a State Geothermal Lease.pdf Click to View Fullscreen Contact Agencies Washington State Department of Natural Resources Regulations & Policies Chapter 79.14 RCW Chapter 344-12 WAC Triggers None specified The State of Washington is still in the process of developing and finalizing the rules and regulations related to geothermal leases on state lands; however, the Washington State Department of Natural Resources (WSDNR) expects the process to be similar to the process for leasing state lands for oil and natural gas development. The rules and regulations for

439

File:BOEMRE lease.platforms.santa.barb.map.5.2010.pdf | Open Energy  

Open Energy Info (EERE)

lease.platforms.santa.barb.map.5.2010.pdf lease.platforms.santa.barb.map.5.2010.pdf Jump to: navigation, search File File history File usage Federal Leases in Pacific Ocean, near Santa Maria Basin Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 1.41 MB, MIME type: application/pdf) Description Federal Leases in Pacific Ocean, near Santa Maria Basin Sources Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) Related Technologies Oil, Natural Gas Creation Date 2010-05-18 Extent Santa Maria Basin Countries United States UN Region Northern America States California Developed federal leases, platforms and undeveloped federal leases in the santa maria basin (Pacific Ocean). File history Click on a date/time to view the file as it appeared at that time.

440

Federal offshore statistics: 1995 - leasing, exploration, production, and revenue as of December 31, 1995  

SciTech Connect

This report provides data on federal offshore operations for 1995. Information is included for leasing activities, development, petroleum and natural gas production, sales and royalties, revenue from federal offshore leasing, disbursement of federal revenues, reserves and resource estimates, and oil pollution in U.S. and international waters.

Gaechter, R.A.

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Third-Order Gas-Liquid Phase Transition and the Nature of Andrews Critical Point  

E-Print Network (OSTI)

The main objective of this article is to study the nature of the Andrews critical point in the gas-liquid transition in a physical-vapor transport (PVT) system. A dynamical model, consistent with the van der Waals equation near the Andrews critical point, is derived. With this model, we deduce two physical parameters, which interact exactly at the Andrews critical point, and which dictate the dynamic transition behavior near the Andrews critical point. In particular, it is shown that 1) the Andrews critical point is a switching point where the phase transition changes from the first order to the third order, 2) the gas-liquid co-existence curve can be extended beyond the Andrews critical point, and 3) the liquid-gas phase transition going beyond Andrews point is of the third order. This clearly explains why it is hard to observe the gas-liquid phase transition beyond the Andrews critical point. Furthermore, the analysis leads naturally the introduction of a general asymmetry principle of fluctuations and the preferred transition mechanism for a thermodynamic system.

Tian Ma; Shouhong Wang

2010-07-13T23:59:59.000Z

442

ARTICLE IN PRESS Modeling hydrogen sulfide emissions across the gas liquid interface  

E-Print Network (OSTI)

production methods in the US have led to the emergence of large- scale commeARTICLE IN PRESS Modeling hydrogen sulfide emissions across the gas­ liquid interface-film theory Hydrogen sulfide Process-based model Lagoon flux Mass transfer a b s t r a c t Hydrogen sulfide (H

Aneja, Viney P.

443

Steam generators two phase flows numerical simulation with liquid and gas momentum equations  

E-Print Network (OSTI)

Steam generators two phase flows numerical simulation with liquid and gas momentum equations M Abstract This work takes place in steam generators flow studies and we consider here steady state three words: Steam Generator, Two-phase Flow, Finite element Email address: Marc.Grandotto@cea.fr (M

Paris-Sud XI, Université de

444

Characterization of Gas?Liquid Flows in Stirred Vessels Using Pressure and Torque Fluctuations  

Science Journals Connector (OSTI)

Gas?liquid flows in a stirred vessel exhibit different flow regimes and demonstrate complex interaction of transport processes with varying spatio-temporal scales. The knowledge of key space and time scales of fluid dynamics is important for designing and ...

A. R. Khopkar; S. S. Panaskar; A. B. Pandit; V. V. Ranade

2005-03-18T23:59:59.000Z

445

Federal Offshore Statistics, 1993. Leasing, exploration, production, and revenue as of December 31, 1993  

SciTech Connect

This document contains statistical data on the following: federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; federal offshore oil and natural gas sales volume and royalties; revenue from federal offshore leases; disbursement of federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. A glossary is included.

Francois, D.K.

1994-12-31T23:59:59.000Z

446

DOE/BNL Liquid Natural Gas Heavy Vehicle Program  

SciTech Connect

As a means of lowering greenhouse gas emissions, increasing economic growth, and reducing the dependency on imported oil, the Department of Energy and Brookhaven National Laboratory (DOE/ BNL) is promoting the substitution of liquefied natural gas (LNG) in heavy-vehicles that are currently being fueled by diesel. Heavy vehicles are defined as Class 7 and 8 trucks (> 118,000 pounds GVVV), and transit buses that have a fuel usage greater than 10,000 gallons per year and driving range of more than 300 miles. The key in making LNG market-competitive with all types of diesel fuels is in improving energy efficiency and reducing costs of LNG technologies through systems integration. This paper integrates together the three LNG technologies of: (1) production from landfills and remote well sites; (2) cryogenic fuel delivery systems; and (3) state-of-the-art storage tank and refueling facilities, with market end-use strategies. The program's goal is to develop these technologies and strategies under a ''green'' and ''clean'' strategy. This ''green'' approach reduces the net contribution of global warming gases by reducing levels of methane and carbon dioxide released by heavy vehicles usage to below recoverable amounts of natural gas from landfills and other natural resources. Clean technology refers to efficient use of energy with low environmental emissions. The objective of the program is to promote fuel competition by having LNG priced between $0.40 - $0.50 per gallon with a combined production, fuel delivery and engine systems efficiency approaching 45%. This can make LNG a viable alternative to diesel.

James E. Wegrzyn; Wai-Lin Litzke; Michael Gurevich

1998-08-11T23:59:59.000Z

447

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves  

Annual Energy Outlook 2012 (EIA)

Crude Oil and Natural Gas Proved Reserves With Data for 2013 | Release Date: December 4, 2014 | Revision: December 19, 2014 Next Release Date: December 2015 | full report Previous...

448

CA Surface Leasing Application | Open Energy Information  

Open Energy Info (EERE)

CA Surface Leasing Application Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: CA Surface Leasing Application Published California State Lands...

449

1M. Panahi, S. Skogestad ' Controlled Variables Selection for a Natural Gas to Liquids (GTL) process' Controlled Variables Selection for a  

E-Print Network (OSTI)

1M. Panahi, S. Skogestad ' Controlled Variables Selection for a Natural Gas to Liquids (GTL) process' Controlled Variables Selection for a Natural Gas to Liquids (GTL) process Mehdi Panahi Sigurd for a Natural Gas to Liquids (GTL) process' Skogestad plantwide control procedure* I Top Down · Step 1: Identify

Skogestad, Sigurd

450

DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW  

SciTech Connect

The U.S. Department of Energy (DOE) has awarded a five-year (1997-2002) grant (Mohan and Shoham, DE-FG26-97BC15024, 1997) to The University of Tulsa, to develop compact multiphase separation components for 3-phase flow. The research activities of this project have been conducted through cost sharing by the member companies of the Tulsa University Separation Technology Projects (TUSTP) research consortium and the Oklahoma Center for the Advancement of Science and Technology (OCAST). As part of this project, several individual compact separation components have been developed for onshore and offshore applications. These include gas-liquid cylindrical cyclones (GLCC{copyright}), liquid-liquid cylindrical cyclones (LLCC{copyright}), and the gas-liquid-liquid cylindrical cyclones (GLLCC{copyright}). A detailed study has also been completed for the liquid-liquid hydrocyclones (LLHC). Appropriate control strategies have been developed for proper operation of the GLCC{copyright} and LLCC{copyright}. Testing of GLCC{copyright} at high pressure and real crude conditions for field applications is also completed. Limited studies have been conducted on flow conditioning devices to be used upstream of the compact separators for performance improvement. This report presents a brief overview of the activities and tasks accomplished during the 5-year project period, October 1, 1997-March 31, 2003 (including the no-cost extended period of 6 months). An executive summary is presented initially followed by the tasks of the 5-year budget periods. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section, followed by relevant references. The publications resulting from this study in the form of MS Theses, Ph.D. Dissertation, Journal Papers and Conference Presentations are provided at the end of this report.

Dr. Ram S. Mohan; Dr. Ovadia Shoham

2003-06-25T23:59:59.000Z

451

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil and Natural Gas Crude Oil and Natural Gas Proved Reserves, 2011 August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil and Natural Gas Proved Reserves, 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other federal agencies. August 2013 U.S. Energy Information Administration | U.S. Crude Oil and Natural Gas Proved Reserves, 2011 ii

452

Gas holdup in a gas-liquid-fiber semi-batch bubble column.  

E-Print Network (OSTI)

??A 4-m high, 15.24-cm diameter semi-batch bubble column connected to one of three perforated plate gas distributors with open area ratios A = 0.57%, 0.99%, (more)

Su, Xuefeng

2005-01-01T23:59:59.000Z

453

Green Lease Policies and Procedures for Lease Acquisition  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Lease Policies and Procedures for Lease Acquisition 1. Solicitation for Offers (SFO). GSA realty professionals and support contractors must include the SFO paragraphs listed below when developing SFOs for any new leasing activity, including all lease construction projects. a. Language for new and modified SFO paragraphs is included as Attachment 2 to this RSL. Paragraphs modified with new subparagraphs are noted below with an asterisk (*). Other green lease paragraphs not revised in accordance with this RSL continue in effect, including the SFO hidden text instructions. Their titles are found below listed with a double-asterisk (**) and their text is found in the standard SFO and reissued in Attachment 4. i. Location: City Center

454

Increasing liquid hydrocarbon recovery from natural gas: Evaluation of the vortex-tube device  

SciTech Connect

The vortex-tube device provides a useful addition to the range of equipment available to the gas industry. It has been shown that the use of vortex-tube equipment permits improved separation in comparison with a Joule-Thomson system, without entering into the cost and complexity of a true isentropic system such as a turbo-expander unit. The comparative advantage of the vortex tube depends upon the inlet conditions of the gas and the pressure drop that is available. An optimum pressure drop of 25--35% of the inlet gas pressure has been confirmed in practice. Although not yet tested on operating plant, it is expected that a loss of performance of vortex-tube units will occur for inlet liquid-to-gas ratios of greater than 20%. Units with up to 5% liquid at the inlet have been successfully operated showing that a single phase gas at the unit inlet is not essential. It is expected that future application of vortex tube units will be concentrated where performance improvements over Joule-Thomson units, at low capital cost, are required.

Hajdik, B. [CBS Engineering, Houston, TX (United States); Steinle, J. [BEB Erdoel and Erdgas GmbH, Hannover (Germany); Lorey, M. [Filtan Analgenbau GmbH, Langenselbold (Germany); Thomas, K. [Falk and Thomas Engineering GmbH, Wettenberg (Germany)

1997-12-31T23:59:59.000Z

455

31 TAC, Part 1, Chapter 9 Exploration and Leasing of State Oil...  

Open Energy Info (EERE)

Exploration and Leasing of State Oil and Gas Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 31 TAC, Part 1, Chapter 9...

456

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

457

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

458

Interfacial Friction in Gas-Liquid Annular Flow: Analogies to Full and Transition Roughness  

SciTech Connect

New film thickness and pressure gradient data were obtained in a 5.08 by 101.6 mm duct for nitrogen and water in annular flow. Pressures of 3.4 and 17 atm and temperatures of 38 and 93 C were used to vary the gas density and liquid viscosity. These data are used to compute interfacial shear stresses and interfacial friction factors for comparison with several accepted literature correlations. These comparisons are reasonable for small values of the relative film thickness. However, the new data cover conditions not approached by the data used to construct those correlations. By combining the current data with the results of two other comprehensive modern experimental studies, a new correlation for the interfacial friction factor has been developed. This correlation adds elements of transition roughness to Wallis' fully-rough analogy to better predict interfacial friction factors over a wide range of gas Reynolds numbers and liquid film thicknesses.

Bauer, R.C.; Beus, S.G.; Fore, L.B.

1999-03-01T23:59:59.000Z

459

Mixed refrigerants proven efficient in natural-gas-liquids recovery process  

SciTech Connect

Lower processing temperatures for higher recoveries of natural gas liquids (NGL) leads to increasingly complex and expensive refrigeration techniques. This paper describes the mixed component refrigeration technique and that it has been proven as a viable alternative to the turboexpander plant. Mixed component refrigeration systems have been primarily used in applications such as LNG terminals and peak-shaving plants, where overall compression horse-power requirements are of primary concern due to operating cost. Recently, development of high pressure, brazed aluminum plate/fin exchangers and increasing compression costs have made economic potential of the mixed refrigerant alternative apparent. If the residue gas must be compressed to the same pressure as the plant inlet using the turbo-expander design, the mixed refrigerant system will require approximately 15% less horsepower for the same liquids production.

Mac Kenzie, D.H.

1985-03-04T23:59:59.000Z

460

Lox breathing system with gas permeable-liquid impermeable heat exchange and delivery hose  

DOE Patents (OSTI)

Life support apparatus composed of: a garment (2): for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment (2); a portable receptacle (6) holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous; state when at standard temperature and pressure; a fluid flow member (16) secured within the garment (2) and coupled to the receptacle (6) for conducting the fluid in liquid state from the receptacle (6) to the interior of the garment (2); and a fluid flow control device (14) connected for causing fluid to flow from the receptacle (6) to the fluid flow member (16) at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment (2) at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer.

Hall, Mark N. (Richland, WA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

LOx breathing system with gas permeable-liquid impermeable heat exchange and delivery hose  

DOE Patents (OSTI)

Life support apparatus is composed of: a garment for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment; a portable receptacle holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous state when at standard temperature and pressure; a fluid flow member secured within the garment and coupled to the receptacle for conducting the fluid in liquid state from the receptacle to the interior of the garment; and a fluid flow control device connected for causing fluid to flow from the receptacle to the fluid flow member at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer. 6 figs.

Hall, M.N.

1996-04-30T23:59:59.000Z

462

Catalyst and process for converting synthesis gas to liquid motor fuels  

DOE Patents (OSTI)

The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

Coughlin, Peter K. (Yorktown Heights, NY)

1987-01-01T23:59:59.000Z

463

Spin states of para-water and ortho-water molecule in gas and liquid phases  

E-Print Network (OSTI)

Spin degrees of freedom of water molecule in gas and liquid state were investigated in order to provide a reasonable answer about the unsolved problem of a long-term behavior of water spin isomers. The approach used involves an assumption that molecules change their spin state from a pure state to a mixed one when they interact with some sorts of adsorbent surface. Some models and conceptions of the quantum information processing were used.

V. K. Konyukhov

2009-09-23T23:59:59.000Z

464

leasing | OpenEI Community  

Open Energy Info (EERE)

leasing leasing Home Alevine's picture Submitted by Alevine(5) Member 29 July, 2013 - 14:46 Texas Legal Review BHFS flora and fauna leasing Legal review permitting roadmap Texas The NREL roadmap team recently met with our legal team Brownstein Hyatt Farber and Schreck (www.bhfs.com) for a review of the Texas portion of the Geothermal Regulatory Roadmap (GRR). BHFS provided excellent suggestions to the Section 3 flowcharts for geothermal leases on Texas state lands. The Texas portion of the GRR now encompasses a flowchart for Texas state land leasing on Permanent School Fund Lands, Texas Parks and Wildlife Department Lands, Land Trade Lands, and Relinquishment Act Lands. Additionally, BHFS provided many other helpful tips for clarifying other issue Syndicate content 429 Throttled (bot load)

465

Leasing Program | Open Energy Information  

Open Energy Info (EERE)

Program Program Jump to: navigation, search A few electric utilities offer leasing programs for prospective customers in remote areas, especially if the cost of extending electric distribution lines to the customer’s home or facility would be expensive. Through these programs, customers may lease from the utility a system that generates electricity, such as a photovoltaic (PV) system. In some cases, the customer may choose to purchase the system after a specified period of time.cases, the customer may choose to purchase the system after a specified period of time. [1] Leasing Program Incentives CSV (rows 1 - 15) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Big Country Electric Coop - PV Water Pump Sales & Lease Program (Texas) Leasing Program Texas Commercial

466

Expanding the operational envelope of compact cylindrical cyclone gas/liquid separators using a variable inlet-slot configuration  

E-Print Network (OSTI)

Despite the numerous advantages associated with using compact cylindrical cyclone gas/liquid separators, particularly for upstream production operations, the lack of a full understanding of the complex hydrodynamic process taking place in it and its...

Uvwo, Ighofasan

2006-04-12T23:59:59.000Z

467

Decision Matrix Screening Tool to Identify the Best Artificial Lift Method for Liquid-loaded Gas Wells  

E-Print Network (OSTI)

the additional gas production resulted from simulation to calculate economic yardsticks (the third round), NPV and IRR. Moreover, we made the decision matrix more complete by adding three more liquid unloading techniques to the decision matrix: velocity string...

Soponsakulkaew, Nitsupon

2010-10-12T23:59:59.000Z

468

Unloading using auger tool and foam and experimental identification of liquid loading of low rate natural gas wells  

E-Print Network (OSTI)

Low-pressure, low-producing natural gas wells commonly encounter liquid loading during production. Because of the decline in the reservoir pressure and the flow capacity, wells can fall below terminal velocity. Identifying and predicting the onset...

Bose, Rana

2007-09-17T23:59:59.000Z

469

Gasliquid flow stability and bubble formation in non-Newtonian fluids in microfluidic flow-focusing devices  

Science Journals Connector (OSTI)

This communication describes the gasliquid two-phase flow patterns and the formation of bubbles in non-Newtonian fluids in microfluidic flow-focusing devices. Experiments were conducted in two different polym...

Taotao Fu; Youguang Ma; Denis Funfschilling; Huai Z. Li

2011-05-01T23:59:59.000Z

470

CA, State Offshore Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

57 57 66 82 66 75 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 3 4 3 3 1 0 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease Separation 54 53 63 79 65...

471

Growth Dynamics and Gas Transport Mechanism of Nanobubbles in Graphene Liquid Cells  

E-Print Network (OSTI)

Formation, evolution, and vanishing of bubbles are common phenomena in our nature, which can be easily observed in boiling or falling waters, carbonated drinks, gas-forming electrochemical reactions, etc. However, the morphology and the growth dynamics of the bubbles at nanoscale have not been fully investigated owing to the lack of proper imaging tools that can visualize nanoscale objects in liquid phase. Here we demonstrate, for the first time, that the nanobubbles in water encapsulated by graphene membrane can be visualized by in situ ultrahigh vacuum transmission electron microscopy (UHV-TEM), showing the critical radius of nanobubbles determining its unusual long-term stability as well as two distinct growth mechanisms of merging nanobubbles (Ostwald ripening and coalescing) depending on their relative sizes. Interestingly, the gas transport through ultrathin water membranes at nanobubble interface is free from dissolution, which is clearly different from conventional gas transport that includes condensa...

Shin, Dongha; Kim, Yong-Jin; Kim, Sang Jin; Kang, Jin Hyoun; Lee, Bora; Cho, Sung-Pyo; Hong, Byung Hee; Novoselov, Konstantin S

2014-01-01T23:59:59.000Z

472

DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS  

SciTech Connect

In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.

X. Wang; X. Sun; H. Zhao

2011-09-01T23:59:59.000Z

473

Disappearance of the Gas-Liquid Phase Transition for Highly Charged Colloids A.-P. Hynninen and A. Z. Panagiotopoulos  

E-Print Network (OSTI)

Disappearance of the Gas-Liquid Phase Transition for Highly Charged Colloids A.-P. Hynninen and A swelling of lyotropic liquid lamel- lar phases when monovalent ions are substituted by diva- lent ions [3 08544, USA (Received 23 January 2007; published 7 May 2007) We calculate the full phase diagram

474

GRR/Section 3-FD-b - Tribal Land Leasing | Open Energy Information  

Open Energy Info (EERE)

3-FD-b - Tribal Land Leasing 3-FD-b - Tribal Land Leasing < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-FD-b - Tribal Land Leasing 03FDBTribalLandLeasing.pdf Click to View Fullscreen Contact Agencies Bureau of Indian Affairs Division of Energy and Mineral Development Division of Indian Energy Policy Development Bureau of Land Management Office of Natural Resources Revenue Regulations & Policies Indian Mineral Development Act of 1982 (IMDA) Bureau of Indian Affairs Regulations: 25 C.F.R. 1 to 293 Rights-of-Way over Indian Lands - 25 CFR 169 Leasing of Tribal Lands for Mineral Development - 25 CFR 211 Tribal Energy Resource Agreements - 25 CFR Part 224 Oil and Gas, Geothermal, and Solid Minerals Agreements - 25 CFR 225

475

File:BOEMRE platforms.leases.longbeach.map.5.2010.pdf | Open Energy  

Open Energy Info (EERE)

platforms.leases.longbeach.map.5.2010.pdf platforms.leases.longbeach.map.5.2010.pdf Jump to: navigation, search File File history File usage Federal Leases in Pacific Ocean, near Long Beach Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 57 KB, MIME type: application/pdf) Description Federal Leases in Pacific Ocean, near Long Beach Sources Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) Related Technologies Oil, Natural Gas Creation Date 2010-05 Extent San Pedro Bay Countries United States UN Region Northern America States California Locations of developed federal leases and platforms near Long Beach. File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

476

GRR/Section 3-AK-a - State Competitive Mineral Leasing Process | Open  

Open Energy Info (EERE)

GRR/Section 3-AK-a - State Competitive Mineral Leasing Process GRR/Section 3-AK-a - State Competitive Mineral Leasing Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-a - State Competitive Mineral Leasing Process 03AKAStateCompetitiveMineralLeasingProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Regulations & Policies Alaska Land Act: AS 38.05 Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 03AKAStateCompetitiveMineralLeasingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

477

GRR/Section 3-CA-a - State Geothermal Resource Leasing | Open Energy  

Open Energy Info (EERE)

3-CA-a - State Geothermal Resource Leasing 3-CA-a - State Geothermal Resource Leasing < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-CA-a - State Geothermal Resource Leasing 03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Click to View Fullscreen Contact Agencies California State Lands Commission California Division of Oil, Gas, and Geothermal Resources Regulations & Policies Geothermal Resources Act - Cal. Pub. Res. Code. § 6901-6925.2 CCR Title 2, 1900-2980.9 Triggers None specified Click "Edit With Form" above to add content 03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

478

GRR/Section 3-AK-d - State Noncompetitive Mineral Leasing Process | Open  

Open Energy Info (EERE)

GRR/Section 3-AK-d - State Noncompetitive Mineral Leasing Process GRR/Section 3-AK-d - State Noncompetitive Mineral Leasing Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-d - State Noncompetitive Mineral Leasing Process 03AKDStateNoncompetitiveMineralLeasingProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Regulations & Policies Alaska Land Act: AS 38.05 Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 03AKDStateNoncompetitiveMineralLeasingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

479

GRR/Section 3-NV-a - State Land Leasing Process and Land Access | Open  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 3-NV-a - State Land Leasing Process and Land Access < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-NV-a - State Land Leasing Process and Land Access 03NVAStateLandLeasingProcess.pdf Click to View Fullscreen Contact Agencies Nevada Division of State Lands Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) NRS 322.010-322.040 Leases for Extraction of Oil, Coal, Gas or Geothermal Resources Triggers None specified Click "Edit With Form" above to add content 03NVAStateLandLeasingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

480

EIA - Natural Gas Exploration & Reserves Data and Analysis  

Gasoline and Diesel Fuel Update (EIA)

natural gas, and lease condensate (annual). Crude Oil and Natural Gas Drilling Activity Rotary rigs in operation, footage drilled, and active well service rig counts (monthly,...

Note: This page contains sample records for the topic "gas liquids lease" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report  

SciTech Connect

The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

1993-05-01T23:59:59.000Z

482

Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report  

SciTech Connect

The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

Mills, G. [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

1993-05-01T23:59:59.000Z

483

Uranium Leasing Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

» Uranium Leasing Program » Uranium Leasing Program Uranium Leasing Program Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado LM currently manages the Uranium Leasing Program and continues to administer 31 lease tracts, all located within the Uravan Mineral Belt in southwestern Colorado. Twenty-nine of these lease tracts are actively held under lease and two lease tracts have been placed in inactive status indefinitely. Administrative duties include the ongoing monitoring and oversight of leaseholders' activities and the annual inspection of these lease tracts to identify and correct safety hazards or other environmental compliance issues. Program Summary Current Status The U.S. Department of Energy (DOE) has extended the public comment

484

NUCLEAR ISLANDS International Leasing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ISLANDS ISLANDS International Leasing of Nuclear Fuel Cycle Sites to Provide Enduring Assurance of Peaceful Use Christopher E. Paine and Thomas B. Cochran Current International Atomic Energy Agency safeguards do not provide adequate protection against the diversion to military use of materials or technology from certain types of sensitive nuclear fuel cycle facilities. In view of highly enriched uranium's relatively greater ease of use as a nuclear explosive material than plutonium and the significant diseconomies of commercial spent fuel reprocessing, this article focuses on the need for improved international controls over uranium enrichment facilities as the proximate justification for creation of an International Nuclear Fuel Cycle Association (INFCA). In principle, the proposal is equally applicable to alleviating the proliferation concerns provoked by nuclear fuel

485

Solar Leasing for Residential Photovoltaic Systems (Fact Sheet)  

SciTech Connect

This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place.

Not Available

2009-02-01T23:59:59.000Z

486

CO2 mass transfer and conversion to biomass in a horizontal gasliquid photobioreactor  

Science Journals Connector (OSTI)

Abstract This study deals with CO2 mass transfers and biomass conversion in an industrial horizontal tubular photobioreactor. An analytical approach is used to determine an expression modeling the influence of CO2 mass transfers on the overall biomass conversion efficiency for a given culture broth, heat and light conditions. Fluid mechanics and mass transfer are predicted with a classical two-phase flow approach (Taitel and Dukler, 1976) combined with a dissolution correlation developed and tested in the laboratory (Valiorgue et al., 2011). The influence of the stripping gas, removing the excess of oxygen in the liquid, on the conversion to biomass efficiency is shown to be not negligible. The expression is used to evaluate how the photobioreactor's design and process parameters can be tuned in order to improve biomass conversion efficiency. The biomass conversion efficiency evolution with the photobioreactor's length was found to behave asymptotically and it was explained by the relative orders of magnitude of gas dissolution and gas stripping. It has been shown that the gas flow rate for stripping and therefore the oxygen removal will be limited when further increasing the industrial photobioreactor's length for a given objective of CO2 conversion to biomass efficiency.

P. Valiorgue; H. Ben Hadid; M. El Hajem; L. Rimbaud; A. Muller-Feuga; J.Y. Champagne

2014-01-01T23:59:59.000Z

487

Oil and Gas General Provisions (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter describes general provisions for the exploration and development of oil and gas resources in Montana. The chapter addresses royalty interests, regulations for the lease of local...

488

,"California Federal Offshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

489

Experimental and analytical results of a liquid-gas separator in microgravity  

Science Journals Connector (OSTI)

The microgravity phase separator designed and fabricated at Texas A&M University relies on centripetally driven buoyancy forces to form a gas-liquid vortex within a fixed right-circular cylinder. Two phase flow is injected tangentially along the inner wall of this cylinder. Centripetal acceleration is produced from the intrinsic momentum of the resulting rotating flow and drives the buoyancy process. Gas travels under density gradients through the rotating liquid eventually forming a gaseous core along the centerline of the cylinder. Gas core stability the presence of liquid in the air line and the presence of air in the liquid line determine whether a successful core results. To predict separation failure these three factors were examined both analytically and empirically with the goal of determining what operating circumstances would generate them. The centripetal acceleration profile was determined from angular velocity measurements taken using a paddle wheel assembly. To aid in understanding the nature of the rotating flow these results were compared to analytical results provided by solving simplified Navier-Stokes equations. The theoretical velocity profile indicated a linear dependence on radius which with the experimental data agreed although two distinctly different slopes were observed. As injection nozzle width increased the difference between the slopes lessened. For all three nozzles tested the discontinuity between the linear sections occurred at a radius of approximately 3.8 cm. The maximum centripetal acceleration generated by the flow was greatest for the 0.0635 cm wide 0.516 cm tall injection nozzle and least for the 0.102 cm wide 1.02 cm tall injection nozzle. The circumstances leading to carry-under are dictated by the relationship between axial and radial bubble transit times. To determine the radial and axial transit times the radial velocity profile was solved analytically by relating the buoyancy and drag forces for a 0.0635 cm radius bubble. This velocity profile was then used to produce a numerical solution for the radial transit time. Volumetric flowrate analysis provided the axial velocity and bubble transit time. 33.4 50.1 66.8 and 83.5 cm3/s flowrates were tested and only the 33.4 cm3/s flowrate resulted in conditions which would lead to carry under.

Frederick Best; Michael Ellis

1999-01-01T23:59:59.000Z

490

National Lease Financing Services | Open Energy Information  

Open Energy Info (EERE)

National Lease Financing Services National Lease Financing Services Jump to: navigation, search Name National Lease Financing Services Place San Diego, California Zip 92122 Sector Solar, Wind energy Product NLFS arrange tax oriented, tax exempt, capital and operationg lease and loans for commercial and municipal state energy projects. Mandate covers solar, cogeneration and wind projects. References National Lease Financing Services[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. National Lease Financing Services is a company located in San Diego, California . References ↑ "National Lease Financing Services" Retrieved from "http://en.openei.org/w/index.php?title=National_Lease_Financing_Services&oldid=349071"

491

Energy Disclosure and Leasing Standards: Best Practices  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Energy Disclosure and Leasing Standards: Best Practices.

492

Vertical composition gradient effects on original hydrocarbon in place volumes and liquid recovery for volatile oil and gas condensate reservoirs  

E-Print Network (OSTI)

in Place Volumes and Liquid Recovery for Volatile Oil and Gas Condensate Reservoirs. (December 2000) Juan Manual Jaramillo Arias, B. S. , Universidad de America; B. S. , Universidad Nacional de Colombia Chair of Advisory Committee: Dr. Maria A. Barrufet... Reservoir Performance 2. 2 Equation of State Review. . 2. 3 Peng Robinson Equation of State (PR EOS). 2. 4 Vapor Liquid Equilibria. . 2. 5 Volume Translation. 2. 6 Pseudoization or Lumping. 2. 7 Heavy Fraction Characterization. . 2. 8 Compositional...

Jaramillo Arias, Juan Manuel

2012-06-07T23:59:59.000Z

493

Gas Utility Pipeline Tax (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

494

Evaluating the phase equilibria of liquid water+natural gas mixtures using cubic equations of state with asymmetric mixing rules  

Science Journals Connector (OSTI)

Based on a previously developed liquidliquid mixing rule we present a modified and robust mixing rule for accurate prediction of water content of natural gas mixtures and the natural gas solubility in liquid water phase. The non-density dependent mixing rule (NDD) and the new mixing rule are incorporated into the PengRobinson (PR), SoaveRedlichKwong (SRK), and NasrifarBolland (NB) equations of state to investigate their accuracies in estimating the water content of the gas phase as well as the gas solubility in the aqueous phase. For each binary system water+hydrocarbon, water+carbon dioxide, water+hydrogen sulfide, and water+nitrogen, three binary interaction parameters are required to describe the gasliquid water equilibria. In this work, experimental data from literature were used to tune the parameters. The results are in good agreement with experimental data, demonstrating the reliability of the new mixing rule and the thermodynamic approach used in this work.

P. Reshadi; Kh. Nasrifar; M. Moshfeghian

2011-01-01T23:59:59.000Z

495

Process and apparatus for obtaining samples of liquid and gas from soil  

DOE Patents (OSTI)

An apparatus and process for obtaining samples of liquid and gas from subsurface soil is provided having filter zone adjacent an external expander ring. The expander ring creates a void within the soil substrate which encourages the accumulation of soil-borne fluids. The fluids migrate along a pressure gradient through a plurality of filters before entering a first chamber. A one-way valve regulates the flow of fluid into a second chamber in further communication with a collection tube through which samples are collected at the surface. A second one-way valve having a reverse flow provides additional communication between the chambers for the pressurized cleaning and back-flushing of the apparatus.

Rossabi, Joseph (105 Michael Ct., Aiken, SC 29801); May, Christopher P. (5002 Hesperus Dr., Columbia, MD 21044); Pemberton, Bradley E. (131 Glencarin Dr., Aiken, SC 29803); Shinn, Jim (Box 65, RFD. #1, South Royalton, VT 05068); Sprague, Keith (Box 234 Rte. 14, Brookfield, VT 05036)

1999-01-01T23:59:59.000Z

496

Commonwealth's Energy Leasing Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth's Energy Leasing Program Commonwealth&#039;s Energy Leasing Program Commonwealth's Energy Leasing Program < Back Eligibility Institutional State Government Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Other Design & Remodeling Windows, Doors, & Skylights Ventilation Construction Commercial Heating & Cooling Manufacturing Appliances & Electronics Commercial Lighting Lighting Insulation Bioenergy Buying & Making Electricity Energy Sources Solar Heating & Cooling Water Heating Wind Program Info State Virginia Program Type Leasing Program Provider Virginia Department of the Treasury Lease financing administered by the Department of Treasury provides funding for energy efficiency projects in state facilities operated by state agencies, authorities and institutions of the Commonwealth of Virginia. The

497

Solar Leasing for Residential Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place. As a result of the $2,000 cap on the residential ITC being lifted in 2009, the expansion of the solar lease model across the United States may be slower than anticipated. The lease model, though, still offers homeowners some distinct advantages. This publication helps homeowners revisit the comparison between the solar lease and home-equity financing in light of the change to the ITC.

498

Gas Pipelines (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter applies to any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as any...

499

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

on August 21. For Sale 184, MMS has introduced an incentive that applies to shallow-water deep gas production. A lease in less than 200 meters of water that begins production from...

500

Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process  

SciTech Connect

Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

2011-10-16T23:59:59.000Z