Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Central Hudson Gas and Electric (Electric)- Commercial Lighting Rebate Program  

Broader source: Energy.gov [DOE]

Central Hudson Gas and Electric's (Central Hudson) Commercial Lighting Rebate Program is for businesses, retailers, institutional customers and non-profit customers of Central Hudson. The progam...

2

Alliant Energy Interstate Power and Light (Gas and Electric)...  

Broader source: Energy.gov (indexed) [DOE]

Replacement: 20 Freezer: 25 Room Air Conditioner: 25 Water Heater: 50 Electric Heat Pump Water Heaters: 100 Circulating Fans: 25 - 75 Milkers and Heat Reclaimers: 5...

3

Alliant Energy Interstate Power and Light (Gas and Electric)...  

Broader source: Energy.gov (indexed) [DOE]

or natural gas on a retail rate basis for the applicable technology. Interest rates for financing range from 0% - 6.9%. The maximum loan amount under this program is...

4

Memphis Light, Gas and Water (Electric)- Commercial Efficiency Advice and Incentives Program  

Broader source: Energy.gov [DOE]

Memphis Light, Gas and Water (MLGW), in partnership with the Tennessee Valley Authority (TVA), offers a variety of energy efficient incentives to non-residential customers. The program provides...

5

The Gas/Electric Partnership  

E-Print Network [OSTI]

The electric and gas industries are each in the process of restructuring and "converging" toward one mission: providing energy. Use of natural gas in generating electric power and use of electricity in transporting natural gas will increase...

Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

6

Louisville Gas and Electric- Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Louisville Gas and Electric (LGE) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps...

7

Gas and Electric Utilities Regulation (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the Public Utilities Commission a document regarding...

8

Pedernales Electric Cooperative- Commercial Lighting Rebate Program  

Broader source: Energy.gov [DOE]

For existing and new commercial construction, Pedernales Electric Cooperative provides incentives for kW saved through efficient lighting. Rebates vary based upon whether construction is new or...

9

Flathead Electric Cooperative- Commercial Lighting Rebate Program  

Broader source: Energy.gov [DOE]

Flathead Electric Cooperative, in conjunction with Bonneville Power Administration, encourages energy efficiency in the commercial sector by providing a commercial lighting retro-fit rebate program...

10

Danish Energy Authority Poland -Electricity and gas  

E-Print Network [OSTI]

Danish Energy Authority Poland - Electricity and gas market development study and practical guidelines for using EU Funds Electricity sector analyses December 2004 #12;Danish Energy Authority Poland - Electricity and gas market development study and practical guidelines for using EU Funds Electricity sector

11

ELECTRICITY AND NATURAL GAS DATA COLLECTION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION HISTORICAL ELECTRICITY AND NATURAL GAS DATA COLLECTION Formsand of Power Plants Semi-Annual Report ..................................... 44 CEC-1306D UDC Natural Gas Tolling Agreement Quarterly Report.......................... 46 i #12;Natural Gas Utilities and Retailers

12

Affording Gas and Electricity: Self Disconnection and  

E-Print Network [OSTI]

Affording Gas and Electricity: Self Disconnection and Rationing by Prepayment and Low Income Credit interview schedule................................... liv #12;2 Fuel Usage and Consumption Patterns of Low electricity, but this seems to be because gas prepayers have lower average income than electricity prepayers

Feigon, Brooke

13

Baltimore Gas and Electric Company (Electric)- Commercial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Baltimore Gas and Electric (BGE) provides incentives for technical assistance, retrofitting inefficient equipment, starting a new construction project, launching a major renovation, purchasing new...

14

Chicopee Electric Light- Residential Solar Rebate Program  

Broader source: Energy.gov [DOE]

Chicopee Electric Light offered rebates to residential customers who install solar photovoltaic systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per installation.

15

Economics of Electric Compressors for Gas Transmission  

E-Print Network [OSTI]

) option. Outside of these regions, new electric drives as well as gas fueled reciprocating engines and turbines are being considered for replacement of older reciprocating gas engines and compressor units, based on improved operating efficiency. We review...

Schmeal, W. R.; Hibbs, J. J.

16

NIPSCO (Gas and Electric)- Residential Natural Gas Efficiency Rebates  

Broader source: Energy.gov [DOE]

Northern Indiana Public Service Corporation (NIPSCO) offers rebates to residential customers that install energy efficient gas and electric measures in homes through the NIPSCO Energy Efficiency...

17

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...  

Broader source: Energy.gov (indexed) [DOE]

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Webinar slides from the U.S. Department of Energy...

18

Light Company Vigilante Electric Cooperative, Inc. Raft River...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inland Power & Light Company Vigilante Electric Cooperative, Inc. Raft River Rural Electric Cooperative, Inc. Northern Lights, Inc. Lower Valley Energy, Inc. Clearwater Power...

19

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

20

Mid-South Metallurgical Makes Electrical and Natural Gas System...  

Broader source: Energy.gov (indexed) [DOE]

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Mid-South Metallurgical Makes Electrical and Natural Gas...

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DRAFT DRAFT Electricity and Natural Gas Sector Description  

E-Print Network [OSTI]

DRAFT DRAFT Electricity and Natural Gas Sector Description For Public Distribution AB 32 Scoping of electricity and natural gas; including electricity generation, combined heat and power, and electricity and natural gas end uses for residential and commercial purposes. Use of electricity and/or gas for industrial

22

Electric and Gas Fired Radiant Tubes 'ERT'  

E-Print Network [OSTI]

The paper covers a unique development by the Surface Division of Midland Ross of a radiant tube heating element which will heat an industrial furnace with either gas or electric without any down time or physical conversion required...

Nilsen, E. K.

1981-01-01T23:59:59.000Z

23

Gas Model of Gravitons with Light Speed  

E-Print Network [OSTI]

We first review some aspects of gravitational wave and the thermodynamic expression of Einstein field equations, these achieved conclusions allow people to think of Einstein's gravitational wave as a kind of sound wave in ordinary gas which propagates as an adiabatic compression wave. In the following, using the properties of photon gas in "white wall box", we find an analogous relationship between ordinary gas and photon gas through sound velocity formula. At last, by taking the ordinary gas as an intermediary, we find that gravitational wave is analogous to photon gas, or equally, gravitons are analogous to photons although they are different in some ways such as spins and coupling strengths, and these different properties don't affect their propagation speeds. Utilizing this analogous relationship, we achieve the gas model of gravitons and this model naturally gives out the light speed of gravitons

Ming Chen; Yong-Chang Huang

2014-06-17T23:59:59.000Z

24

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect (OSTI)

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

25

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

by natural gas. Electricity consumption by a furnace blowerto the annual electricity consumption of a major appliance.not account for the electricity consumption of the appliance

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

26

Gas separation using ultrasound and light absorption  

DOE Patents [OSTI]

An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.

Sinha, Dipen N. (Los Alamos, NM)

2012-07-31T23:59:59.000Z

27

A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY  

E-Print Network [OSTI]

A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY AND POWER REPORT (FAR) A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY://www.energy.ca.gov/research/index.html. #12;Page 1 A New Gas Turbine Engine Concept For Electricity Generation With Increased

28

Thermo-electrically pumped semiconductor light emitting diodes  

E-Print Network [OSTI]

Thermo-electric heat exchange in semiconductor light emitting diodes (LEDs) allows these devices to emit optical power in excess of the electrical power used to drive them, with the remaining power drawn from ambient heat. ...

Santhanam, Parthiban

2014-01-01T23:59:59.000Z

29

MidAmerican Energy (Electric) - Municipal Solid-State Lighting...  

Open Energy Info (EERE)

must be an Iowa electric governmental customer of MidAmerican Energy Company. Light-emitting diode and induction types of solid state lighting (SSL) qualify under this program....

30

Chicopee Electric Light- Commercial Energy Efficiency Rebate Program (Massachusetts)  

Broader source: Energy.gov [DOE]

Chicopee Electric Light (CEL) offers a Pilot Energy Efficiency Program to encourage non-residential, commercial, and industrial facilities to pursue energy saving measures and install energy...

31

Impact of Natural Gas Infrastructure on Electric Power Systems  

E-Print Network [OSTI]

Impact of Natural Gas Infrastructure on Electric Power Systems MOHAMMAD SHAHIDEHPOUR, FELLOW, IEEE of electricity has introduced new risks associated with the security of natural gas infrastructure on a sig the essence of the natural gas infrastructure for sup- plying the ever-increasing number of gas-powered units

Fu, Yong

32

Propagation of light in low pressure gas  

E-Print Network [OSTI]

The criticism by W. E. Lamb, W. Schleich, M. Scully, C. Townes of a simplified quantum electrodynamics which represents the photon as a true particle is illustrated. Collisions being absent in low-pressure gas, exchanges of energy are radiative and coherent. Thin shells of plasma containing atoms in a model introduced by Str\\"omgren are superradiant, seen as circles possibly dotted. Spectral radiance of novae has magnitude of laser radiance, and column densities are large in nebulae: Superradiance, multiphoton effects, etc., work in astrophysics. The superradiant beams induce multiphotonic scatterings of light emitted by the stars, brightening the limbs of plasma bubbles and darkening the stars. In excited atomic hydrogen, impulsive Raman scatterings shift frequencies of light. Microwaves exchanged with the Pioneer probes are blueshifted, simulating anomalous accelerations. Substituting coherence for wrong calculations in astrophysical papers, improves results, avoids "new physics".

Jacques Moret-Bailly

2012-04-13T23:59:59.000Z

33

Electrical swing adsorption gas storage and delivery system  

DOE Patents [OSTI]

Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.

Judkins, R.R.; Burchell, T.D.

1999-06-15T23:59:59.000Z

34

Electrical swing adsorption gas storage and delivery system  

DOE Patents [OSTI]

Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

Judkins, Roddie R. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

1999-01-01T23:59:59.000Z

35

Dissolved gas supersaturation associated with the thermal effluent of an electric generating station and some effects on fishes  

E-Print Network [OSTI]

saturations of total dissolved gas were determined with a Weiss Gas Saturometer and ranged from 100. 5 to 115. 04 in the discharge water. Saturation levels were directly related to the power plant AT and the gas content of the intake water. Percent... hours. Red shiners were more susceptible to gas supersaturation than bluegiils or bass. ACKNOWLEDGMENTS I would like to thank the Texas Utilities System including Dallas Power E Light Company, Texas Electric Service Company, and Texas Power C Light...

Ciesluk, Alexander Frank

1974-01-01T23:59:59.000Z

36

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network [OSTI]

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K 73019 Received October 11, 2002 In this study, synthesis gas production in an AC electric gas discharge of methane and air mixtures at room temperature and ambient pressure was investigated. The objective

Mallinson, Richard

37

Electrical apparatus for explosive gas atmospheres, Part 0: General introduction   

E-Print Network [OSTI]

This Recommendation has been prepared by IEC Technical Committee No. 31, Electrical Apparatus for Explosive Atmospheres; It forms one of a series of publications dealing with electrical apparatus for use in explosive gas atmospheres. This particular...

IEC Technical Committee

1971-01-01T23:59:59.000Z

38

Electric and gas utility marketing of residential energy conservation case studies  

SciTech Connect (OSTI)

The objective of this research was to obtain information about utility conservation marketing techniques from companies actively engaged in performing residential conservation services. Many utilities currently are offering comprehensive services (audits, listing of contractors and lenders, post-installation inspection, advertising, and performing consumer research). Activities are reported for the following utilities: Niagara Mohawk Power Corporation; Tampa Electric Company; Memphis Light, Gas, and Water Division; Northern States Power-Wisconsin; Public Service Company of Colorado; Arizona Public Service Company; Pacific Gas and Electric Company; Sacramento Municipal Utility District; and Pacific Power and Light Company.

None

1980-05-01T23:59:59.000Z

39

,"New Mexico Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"3292015 10:05:26 PM" "Back to Contents","Data 1: New Mexico Natural Gas Deliveries to Electric Power Consumers (MMcf)"...

40

Regulation of Gas, Electric, and Water Companies (Maryland)  

Broader source: Energy.gov [DOE]

The Public Service Commission is responsible for regulating gas, electric, and water companies in the state. This legislation contains provisions for such companies, addressing planning and siting...

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Electricity production levelized costs for nuclear, gas and coal  

Office of Scientific and Technical Information (OSTI)

Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramn Ramrez, Armando Gmez, Javier Ortiz, Luis C....

42

Louisville Gas and Electric- Residential Energy Efficiency Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Louisville Gas and Electric's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

43

Gas storage and separation by electric field swing adsorption  

DOE Patents [OSTI]

Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

2013-05-28T23:59:59.000Z

44

Central Electric Cooperative- Non-Residential Lighting Rebate  

Broader source: Energy.gov [DOE]

The Central Electric Cooperative offers a commercial lighting system improvement incentive for any customer not on a residential utility rate. To use the program and learn how much the rebates can...

45

NYSEG (Electric)- Small Business Lighting Retrofit Program  

Broader source: Energy.gov [DOE]

NYSEG offers a lighting incentive program designed to serve small business customers with a demand of 100 kilowatts (kW) or less. These small business customers may schedule a free energy...

46

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP  

E-Print Network [OSTI]

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP R. C. Meier, Program Manager, Gas Heat Pump Program General Electric Company P. 0. Box 8555 Philadelphia, Pennsylvania 19101 FILE COPY DO NOT REMOVE SUMMARY The Stirling/Rankine Heat Activated Heat Pump is a high performance product for space

Oak Ridge National Laboratory

47

Baltimore Gas and Electric Company (Electric)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Baltimore Gas and Electric Company (BGE) offers rebates for residential customers to improve the energy efficiency of eligible homes. Rebates are available for Energy Star clothes washers,...

48

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for November 2008. Monthly Electric Utility Sales...

49

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for December 2008. Monthly Electric Utility Sales...

50

Simulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors  

E-Print Network [OSTI]

. In this paper, using the example of the thermal processing of ceramic gas sensors, an integrated compu- tationalSimulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors Yunzhi Wang in ceramic gas sensors has been proposed. First, the particle-flow model and the continuum-phase-field method

Ciobanu, Cristian

51

Backscatter absorption gas imaging systems and light sources therefore  

DOE Patents [OSTI]

The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

Kulp, Thomas Jan (Livermore, CA); Kliner, Dahv A. V. (San Ramon, CA); Sommers, Ricky (Oakley, CA); Goers, Uta-Barbara (Campbell, NY); Armstrong, Karla M. (Livermore, CA)

2006-12-19T23:59:59.000Z

52

Applications for Certificates for Electric, Gas, or Natural Gas Transmission Facilities (Ohio)  

Broader source: Energy.gov [DOE]

An applicant for a certificate to site a major electric power, gas, or natural gas transmission facility shall provide a project summary and overview of the proposed project. In general, the...

53

Baltimore Gas and Electric Company (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Baltimore Gas and Electric Company (BGE) offers the Smart Energy Savers Program for residential natural gas customers to improve the energy efficiency of eligible homes. Rebates are available...

54

Solar Electric Light Fund | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:upGuidebookSolSolution JumpJumpLight

55

Light gas gun with reduced timing jitter  

DOE Patents [OSTI]

Gas gun with reduced timing jitter is disclosed. A gas gun having a prepressurized projectile held in place with a glass rod in compression is described. The glass rod is destroyed with an explosive at a precise time which allows a restraining pin to be moved and free the projectile. 4 figs.

Laabs, G.W.; Funk, D.J.; Asay, B.W.

1998-06-09T23:59:59.000Z

56

EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air...  

Broader source: Energy.gov (indexed) [DOE]

52: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California EA-1752: Pacific Gas & Electric...

57

Method for minimizing contaminant particle effects in gas-insulated electrical apparatus  

DOE Patents [OSTI]

Electrical breakdown of a gas insulator in high voltage apparatus is prevented by placing an electrical insulative coating on contaminant particles in the gas insulator.

Pace, M.O.; Adcock, J.L.; Christophorou, L.G.

1984-01-01T23:59:59.000Z

58

Method for minimizing contaminant particle effects in gas-insulated electrical apparatus  

DOE Patents [OSTI]

Electrical breakdown of a gas insulator in high voltage apparatus is preved by placing an electrical insulative coating on contaminant particles in the gas insulator.

Pace, Marshall O. (Knoxville, TN); Adcock, James L. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

59

,"New Mexico Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"3292015 10:05:26 PM" "Back to Contents","Data 1: New Mexico Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

60

,"New York Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:52 PM" "Back to Contents","Data 1: New York Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045NY2"...

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Certificate of Public Good--Gas and Electric (Vermont)  

Broader source: Energy.gov [DOE]

This Public Service Board rule limits the construction of electric and natural gas facilities and restricts the amounts that companies can buy from non-Vermont sources. No company, as defined in...

62

,"Colorado Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1302015 12:54:29 PM" "Back to Contents","Data 1: Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

63

Hybrid Membranes for Light Gas Separations  

E-Print Network [OSTI]

Membrane separations provide a potentially attractive technology over conventional processes due to their advantages, such as low capital cost and energy consumption. The goal of this thesis is to design hybrid membranes that facilitate specific gas...

Liu, Ting

2012-07-16T23:59:59.000Z

64

Comparing the Risk Profiles of Renewable and Natural Gas Electricity Contracts  

E-Print Network [OSTI]

Comparing the Risk Profiles of Renewable and Natural Gas Electricity Contracts: A Summary.............................................................................20 B. Natural Gas Tolling Contracts.............................................................................24 B. Natural Gas Tolling Contracts

Kammen, Daniel M.

65

Central Hudson Gas and Electric (Gas)- Commercial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

The Business Energy SavingsCentral program is for non-residential gas customers of Central Hudson. This includes businesses, local governments, not-for-profits, private institutions, public and...

66

WHAT IS A NETWORK? (Gas and Electricity) A complex, interconnected group or  

E-Print Network [OSTI]

WHAT IS A NETWORK? (Gas and Electricity) A complex, interconnected group or system Electricity and Gas: A system used to distribute electricity and gas around the world/certain area, by compromising to minimise costs and generate the most electricity and gas as possible, which maximises profits

Wright, Francis

67

GAS COOLED ELECTRICAL LEADS FOR USE ON FORCED COOLED SUPERCONDUCTING MAGNETS  

E-Print Network [OSTI]

11-14, 1981 GAS COOLED ELECTRICAL LEADS FOR USE ON FORCEDim mumii P mm GAS COOLED ELECTRICAL LEADS FOR USE ON FORCEDD. Henning, "Cryogenic Electrical Leads," Proceedings of the

Smits, R.G.

2010-01-01T23:59:59.000Z

68

Market Opportunities for Electric Drive Compressors for Gas Transmission, Storage, and Processing  

E-Print Network [OSTI]

There is great interest in the large potential market for electric drives in the gas transmission, gas storage, and gas processing industries. Progressive electric utilities and astute vendors are moving to meet the needs of these industries...

Parent, L. V.; Ralph, H. D.; Schmeal, W. R.

69

Optimization of a two stage light-gas gun  

E-Print Network [OSTI]

. DISCUSSION OF EXPERIMENTS 4. 1 General 4. 2 Description of the Texas A8M Light-Gas Gun. 4. 3 Parametric Tests. 4. 4 Optimization Tests. 4. 5 Experimental Error. V. CONCLUSION REFERENCES. APPENDIX A The Texas A&M Light-Gas Gun Facility. APPENDIX B... to accelerate down the launch tube. Figures (1) and (2) illustrate the components of the gun and the steps in a typical launch cycle. Many factors influence gun performance but these may be grouped into two main categories. First are those dealing with gun...

Rynearson, Richard James

1972-01-01T23:59:59.000Z

70

Semiconductor light source with electrically tunable emission wavelength  

DOE Patents [OSTI]

A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

Belenky, Gregory (Port Jefferson, NY); Bruno, John D. (Bowie, MD); Kisin, Mikhail V. (Centereach, NY); Luryi, Serge (Setauket, NY); Shterengas, Leon (Centereach, NY); Suchalkin, Sergey (Centereach, NY); Tober, Richard L. (Elkridge, MD)

2011-01-25T23:59:59.000Z

71

Electric Power Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming ElectricityCapacity ConductorA.

72

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility...

73

Electric Power Consumption of Natural Gas (Summary)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471 2,1146,872,533 7,387,184 7,573,863

74

Improving Grid Performance with Electric Vehicle Charging 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved.  

E-Print Network [OSTI]

Improving Grid Performance with Electric Vehicle Charging © 2011San Diego Gas & Electric Company · Education SDG&E Goal ­ Grid Integrated Charging · More plug-in electric vehicles · More electric grid to a hairdryer) per PEV in the population · Instantaneous demand, 40 all-electric vehicles for one day (8

California at Davis, University of

75

Geothermal Developments at San Diego Gas & Electric  

SciTech Connect (OSTI)

In 1972, the first well flow tests were conducted by NARCO and Magma Power to determine reservoir characteristics such as mass flow, temperature, stability, and mineral content of geothermal brine from the exploration wells. The results of these tests were encouraging. Brine temperatures were relatively hot, and salinity was less than previously experienced. Results were sufficient to justify further testing of the process design to determine an appropriate energy conversion cycle for a power plant. Both the flash cycle and binary cycle were considered. In the binary cycle, geothermal heat is transferred from hot brine to a secondary working fluid by means of heat exchangers. The heated secondary fluid expands to drive a turbine-generator. The flash cycle was rejected because the high measured noncondensible gas content of the brines seriously reduced the cycle efficiency. The reduced salinity was expected to result in reduced scaling characteristics. For these reasons the binary cycle was selected for initial design and field testing. In 1973, a series of field tests was conducted to support the design of the binary conversion cycle. Unfortunately, a rapid decline in heat exchanger performance resulting from scaling demonstrated a need to reevaluate the cycle design. A flash/binary process was chosen as the basis for facility design modifications and additional field testing. Design modifications were to use as much of the original design as possible in order to minimize cost. In March of 1974, SDG&E resumed field testing at Niland using reduced size models of the new flash/binary design. The 1974 test program confirmed the decision to modify the design, construction, and operation of the GLEF in a four-stage, flash/binary cycle configuration. In May of 1975, the design was completed and construction of the GLEF began. Startup operations were initiated and in June 1976 the facility was dedicated. In the fall of 1976 while debugging and initial operation was being accomplished, a test program was developed to provide additional basic information necessary for the design of a commercial flash/binary geothermal plant. The primary objective of the program was to develop binary heat exchanger heat design data under a variety of conditions.

Anastas, George; Hoaglin, Gregory J.

1980-12-01T23:59:59.000Z

76

E-Print Network 3.0 - american gas-light journal Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gas-light journal Search Powered by Explorit Topic List Advanced Search Sample search results for: american gas-light journal Page: << < 1 2 3 4 5 > >> 1 WILDLIFE TECHNIQUES NRM...

77

Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes  

SciTech Connect (OSTI)

The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

2014-06-09T23:59:59.000Z

78

Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply  

Reports and Publications (EIA)

This report addresses the potential impact of rotating electrical outages on petroleum product and natural gas supply in California.

2001-01-01T23:59:59.000Z

79

Coupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting diodes  

E-Print Network [OSTI]

trade-offs in electrically pumped photonic-crystal-based light-emitting diodes. A finite- toelectronic devices, such as light-emitting diodes LEDs and lasers. It has been suggested that a thin slabCoupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting

Dutton, Robert W.

80

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

August 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-08 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-08-01 End Date...

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

Alaska) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for July 2008. Monthly...

82

Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint  

SciTech Connect (OSTI)

Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

Melaina, M.; Sun, Y.; Bush, B.

2014-08-01T23:59:59.000Z

83

Electric Boosting System for Light Truck/SUV Application  

SciTech Connect (OSTI)

Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assisted turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.

Steve Arnold, Craig Balis, Pierre Barthelet, Etienne Poix, Tariq Samad, Greg Hampson, S.M. Shahed

2005-06-22T23:59:59.000Z

84

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwestInformationOildale,Gas & Electric Co

85

Sixth Northwest Conservation and Electric Power Plan Chapter 8: Direct Use of Natural Gas  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Chapter 8: Direct Use of Natural Gas....................................................................... 1 Analysis of the Direct Use of Natural Gas for the Sixth Power Plan electricity to natural gas for residential space and water heating a lower-cost and lower-risk alternative

86

EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

87

"Self-Regulating Electricity Markets?" Nodir Adilov, Thomas Light, Richard Schuler, William Schulze, David Toomey &  

E-Print Network [OSTI]

"Self-Regulating Electricity Markets?" by Nodir Adilov, Thomas Light, Richard Schuler, William in electricity markets who can substitute part of their usage between day and night. Each customer's demand electricity markets be more self-regulating if we encourage customers to enter the game as active participants

88

Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics  

E-Print Network [OSTI]

Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics of frequency), termed electric field induced second harmonic-generation (EFISH), has been studied for a long Wei Ding, Liangcheng Zhou, and Stephen Y. Chou* NanoStructure Laboratory, Department of Electrical

89

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network [OSTI]

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

90

Impact Studies Using a One Stage Light Gas Gun  

E-Print Network [OSTI]

The Center for Astrophysics,Space Physics, and Engineering Research (CASPER) has completed construction and calibration of a Light Gas Gun (LGG), which is used for low velocity impact studies. At geosynchronous orbit, space debris can impact commercial satellites at velocities of 500 m/s [1] reducing their useful lifetime. Additionally, there is an ever-increasing population of abandoned nonoperational satellites and related debris in these orbits [2]. Therefore, it is important to clearly understand the physics behind how such collisions can cause structural damage. This is most easily determined by measuring the damage incurred on representative material exposed to test collisions in the laboratory. Data collected in this manner will not only help illuminate the shock physics involved but can also aid in providing methods for designing advanced shielding for satellites.

Jorge Carmona; Mike Cook; Jimmy Schmoke; Katie Harper; Jerry Reay; Lorin Matthews; Truell Hyde

2004-01-29T23:59:59.000Z

91

Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program (Wyoming)  

Broader source: Energy.gov [DOE]

Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

92

Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications  

E-Print Network [OSTI]

for industrial applications where electric ovens have predominant use. Tests were performed to obtain the process efficiency and examine cost savings potential in converting electric ovens to natural gas. Preliminary results show that, for the plat studied, cost...

Kosanovic, D.; Ambs, L.

93

Understanding the use of natural gas storage for generators of electricity  

SciTech Connect (OSTI)

Underground natural gas storage is aggressively used by a handful of utility electric generators in the United States. While storage facilities are often utilized by the natural gas pipeline industry and the local distribution companies (LDCs), regional electric generators have taken advantgage of abundant storage and pipeline capacity to develop very cost efficient gas fired electric generating capacity, especially for peaking demand. Most types of natural gas storage facilities are located underground, with a few based above-ground. These facilities have served two basic types of natural gas storage service requirements: seasonal baseload and needle peakshaving. Baseload services are typically developed in depleted oil and gas reservoirs and aquifers while mined caverns and LNG facilities (also Propane-air facilities) typically provide needle peakshaving services. Reengineering of the natural gas infrastructure will alter the historical use patterns, and will provide the electric industry with new gas supply management tools. Electric generators, as consumers of natural gas, were among the first open access shippers and, as a result of FERC Order 636, are now attempting to reposition themselves in the {open_quotes}new{close_quotes} gas industry. Stated in terms of historical consumption, the five largest gas burning utilities consume 40% of all the gas burned for electric generation, and the top twenty accounted for approximately 70%. Slightly more than 100 utilities, including municipals, have any gas fired generating capacity, a rather limited number. These five are all active consumers of storage services.

Beckman, K.L. [International Gas Consulting, Inc., Houston, TX (United States)

1995-12-31T23:59:59.000Z

94

Gas production response to price signals: Implications for electric power generators  

SciTech Connect (OSTI)

Natural gas production response to price signals is outlined. The following topics are discussed: Structural changes in the U.S. gas exploration and production industry, industry outlook, industry response to price signals, and implications for electric power generators.

Ferrell, M.L.

1995-12-31T23:59:59.000Z

95

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

96

Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles  

SciTech Connect (OSTI)

Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

Dick Cirillo; Guenter Conzelmann

2013-03-20T23:59:59.000Z

97

Midwest Energy (Gas and Electric)- How$mart Energy Efficiency Finance Program  

Broader source: Energy.gov [DOE]

Midwest Energy offers its residential and small commercial electricity and natural gas customers in good standing a way to finance energy efficiency improvements on eligible properties. Under the...

98

Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles  

ScienceCinema (OSTI)

Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

Dick Cirillo; Guenter Conzelmann

2013-06-07T23:59:59.000Z

99

Alliant Energy Interstate Power and Light (Gas and Electric) - Farm  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s) All Other Edi~ims

100

Enhancement in light emission and electrical efficiencies of a silicon nanocrystal light-emitting diode by indium tin oxide nanowires  

SciTech Connect (OSTI)

We report an enhancement in light emission and electrical efficiencies of a Si nanocrystal (NC) light-emitting diode (LED) by employing indium tin oxide (ITO) nanowires (NWs). The formed ITO NWs (diameter?electrical characteristics of Si NC LED were significantly improved, which was attributed to an enhancement in the current spreading property due to densely interconnecting ITO NWs. In addition, light output power and wall-plug efficiency from the Si NC LED were enhanced by 45% and 38%, respectively. This was originated from an enhancement in the escape probability of the photons generated in the Si NCs due to multiple scatterings at the surface of ITO NWs acting as a light waveguide. We show here that the use of the ITO NWs can be very useful for realizing a highly efficient Si NC LED.

Huh, Chul, E-mail: chuh@etri.re.kr; Kim, Bong Kyu; Ahn, Chang-Geun; Kim, Sang-Hyeob [IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350 (Korea, Republic of); Choi, Chel-Jong [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

2014-07-21T23:59:59.000Z

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alliant Energy Interstate Power and Light (Electric) - Business...  

Broader source: Energy.gov (indexed) [DOE]

Multi-Family Residential Nonprofit State Government Savings Category Heat Pumps Lighting Maximum Rebate See program web site Program Info State Iowa Program Type Utility Rebate...

102

Alliant Energy Interstate Power and Light (Electric)- Residential...  

Broader source: Energy.gov (indexed) [DOE]

Construction Residential Savings Category Lighting Heat Pumps Maximum Rebate See program web site Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount...

103

Alliant Energy Interstate Power and Light (Electric) - Residential...  

Broader source: Energy.gov (indexed) [DOE]

Multi-Family Residential Residential Savings Category Heat Pumps Lighting Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Central Air Conditioners: 100 -...

104

Lighting and Electrical Team Leadership and Project Delivery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in public parking lots to foster significant reductions in participants' energy consumption. The project's primary goal for exterior lighting is to drive LEEP participation...

105

Alliant Energy Interstate Power and Light (Electric) - Business...  

Broader source: Energy.gov (indexed) [DOE]

State Government Savings Category Heat Pumps Lighting Maximum Rebate See program web site Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount New...

106

CoServ Electric Cooperative- Commercial Energy Efficient Lighting Rebate Program  

Broader source: Energy.gov [DOE]

CoServ Electric Cooperative provides rebates for commercial and industrial customers who upgrade to high efficiency lighting for the workplace. A rebate of $0.30/watt saved is available on custom...

107

Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska)  

Broader source: Energy.gov [DOE]

Irrigation districts, created in section 46-1xx, are encouraged to appropriate water in order to generate electric light and power. The Department of Natural Resources has the authority to approve...

108

Golden Valley Electric Association- Commercial Lighting Retrofit Rebate Program  

Broader source: Energy.gov [DOE]

BusBusiness $ense is a Golden Valley Electric Association (GVEA) program designed to increase the efficiency with which energy is used on GVEA's system. It provides rebates of up to $20,000 to...

109

RG&E (Electric)- Small Business Lighting Retrofit Program  

Broader source: Energy.gov [DOE]

RG&E offers a lighting incentive program designed to serve small business customers with a demand of 100 kilowatts (kW) or less. These small business customers may schedule a free energy...

110

Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2013-01-01T23:59:59.000Z

111

Joint Modelling of Gas and Electricity spot prices N. Frikha1 , V. Lemaire2  

E-Print Network [OSTI]

Joint Modelling of Gas and Electricity spot prices N. Frikha1 , V. Lemaire2 October 9, 2009 for developing a risk management framework as well as pricing of options. Many derivatives on both electricity and electricity prices is a relevant issue. Numerous diffusion-type and econometric models have been proposed

112

NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11 Natural Gas For Transportation or Electricity? Climate Change Implications  

E-Print Network [OSTI]

Projections of increased domestic supply, low prices, reduced reliance on foreign oil, and low environmental impacts are supporting the increased use of natural gas in the transportation and electricity sectors. For instance, a tax credit bill (H.R. 1380) introduced in the House earlier this year encourages natural gas use for transportation and anticipates reductions in greenhouse gases (GHGs) when it displaces gasoline and diesel. However, in reality, the amount of GHG emissions that can be reduced with natural gas is uncertain and depends on the end use. If natural gas displaces coal for electricity generation, GHG emissions are reduced by at least 45 % per kWh. But when natural gas is used as a transportation fuel there is up to a 35 % chance that emissions will increase and only a 3 % chance that it will even meet the emissions reductions mandated by the Energy Independence and Security Act (EISA) for corn ethanol. Given that future natural gas supply is limited, despite forecasts of increased domestic production, if one wants to be certain of reducing GHG emissions, then using natural gas to replace coalfired electricity is the best approach. Investigators at Carnegie Mellon University have conducted an analysis in the attached study (1) that highlights the following important findings. 1. High risk of policy failure: The use of compressed natural gas (CNG) instead of gasoline in cars and instead of diesel in buses does not lower GHG emissions significantly. In fact there is a 10-

Aranya Venkatesh; Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

113

Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

114

Easing the Natural Gas Crisis: Reducing Natural Gas Prices Through Electricity Supply Diversification -- Testimony  

E-Print Network [OSTI]

NANGAS (North American Natural Gas Analysis System), E2020 (Modeling Forum (EMF). 2003. Natural Gas, Fuel Diversity and2003. Increasing U.S. Natural Gas Supplies: A Discussion

Wiser, Ryan

2005-01-01T23:59:59.000Z

115

Electric lighting for the 1990s: The major issues  

SciTech Connect (OSTI)

The lighting community has grown from a simple business to a larger population with more diverse motives and needs. Here the author looks at the different facets of this industry. First is the conservation and environmental advocacy concerns, often pressed by groups adamantly committed to their objectives. The industry must keep abreast of technology, and know the facts as it moves in new directions. The user needs to have the tools available to design lighting systems which meet his and his clients needs for performance, productivity, and quality, when the system is being designed. Issues related to utility efforts through demand side management programs, governmental action through legislative and regulatory effort, and the application of new technology in new construction, and retrofitting, are discussed. The need now is to move to an integrated approach rather than a unilateral one that will reconcile the issues; this will leverage the strengths of all participants.

Gough, A.

1996-01-01T23:59:59.000Z

116

Cheyenne Light, Fuel and Power (Gas)- Residential Energy Efficiency Rebate Program (Wyoming)  

Broader source: Energy.gov [DOE]

Cheyenne Light, Fuel and Power offers incentives to gas customers who construct new energy efficient homes or install energy efficient equipment in existing homes. Incentives are available for home...

117

Implications of changing natural gas prices in the United States electricity sector for SO and life cycle GHG emissions  

E-Print Network [OSTI]

to the choice of coal over natural gas. External incentives such as low natural gas prices compared to coalImplications of changing natural gas prices in the United States electricity sector for SO 2 , NO X of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG

Jaramillo, Paulina

118

Alaska Electric Light&Power Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir EnergyTayyarAlaska Electric

119

Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2012-11-01T23:59:59.000Z

120

Lighting and Electrical Team Leadership and Project Delivery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDIPrinciples

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Lighting and Electrical Team Leadership and Project Delivery - 2014 BTO  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslie Pezzullo:Lighting Control TypesPeer Review |

122

Comparison of Gas Catalytic and Electric Infrared Performance for Industrial Applications  

E-Print Network [OSTI]

A study was conducted to evaluate the performance of gas catalytic and electric infrared for industrial applications. The project focused on fabric drying, paper drying, metal heating, and plastic forming as target industrial applications. Tests...

Eshraghi, R. R.; Welch, D. E.

123

Regulating electricity and natural gas in Peru : solutions for a sustainable energy sector  

E-Print Network [OSTI]

Peru is one of the fastest growing countries in Latin America, thanks in part to industry fueled by generous endowments of hydro power capacity and natural gas reserves. However, investment in electricity generation capacity ...

Breckel, Alex Cade

2014-01-01T23:59:59.000Z

124

Baltimore Gas and Electric Company- Home Performance with Energy Star Rebates  

Broader source: Energy.gov [DOE]

The Baltimore Gas and Electric Company (BG&E) offers the Home Performance with Energy Star Program that provides incentives for residential customers who have audits performed by participating...

125

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams  

E-Print Network [OSTI]

An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

126

Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York)  

Broader source: Energy.gov [DOE]

Any person who wishes to construct an electric or gas transmission line that is more than ten miles long must file documents describing the construction plans and potential land use and...

127

Adapting On-site Electrical Generation Platforms for Producer Gas  

Broader source: Energy.gov [DOE]

Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

128

Xcel Energy (Gas and Electric)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

In addition to home energy audits, Xcel Energy offers rebates to Minnesota residential customers for the purchase of energy efficient HVAC systems, insulation, appliances and lighting equipment....

129

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS  

E-Print Network [OSTI]

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS Dr for Energy Efficiency and Renewable Energy Department of Mechanical and Industrial Engineering University of Massachusetts, Amherst, Massachusetts ABSTRACT The study was conducted to evaluate the energy use of natural gas

Massachusetts at Amherst, University of

130

EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

131

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network [OSTI]

CEC). 2000. California Natural Gas Analysis and Issues.2002. Average Price of Natural Gas Sold to Electric Utilityfor investments in natural gas and renewables to complement

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

132

Unraveling models of CP violation through electric dipole moments of light nuclei  

E-Print Network [OSTI]

We show that the proposed measurements of the electric dipole moments of light nuclei in storage rings would put strong constraints on models of flavor-diagonal CP violation. Our analysis is exemplified by a comparison of the Standard Model including the QCD theta term, the minimal left-right symmetric model, a specific version of the so-called aligned two-Higgs doublet model, and briefly the minimal supersymmetric extension of the Standard Model. By using effective field theory techniques we demonstrate to what extend measurements of the electric dipole moments of the nucleons, the deuteron, and helion could discriminate between these scenarios. We discuss how measurements of electric dipole moments of other systems relate to the light-nuclear measurements.

W. Dekens; J. de Vries; J. Bsaisou; W. Bernreuther; C. Hanhart; Ulf-G. Meißner; A. Nogga; A. Wirzba

2014-07-21T23:59:59.000Z

133

Proper Use of Electric/Gas UtilityType Vehicles (FS4) Form FS-4 8/24/2011  

E-Print Network [OSTI]

Proper Use of Electric/Gas UtilityType Vehicles (FS4) Form FS-4 8/24/2011 Regulation Governing Use of Electric/Gas Utility­Type Vehicles (EGUV): Individual operators will use their judgment on whether. · Electric vehicles will be recharged at a location appropriate for such use. Use of extension cords from

Beex, A. A. "Louis"

134

International Natural Gas Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity Generation forElectricity

135

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

Not Available

2013-01-01T23:59:59.000Z

136

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

E-Print Network [OSTI]

) Note: PSAT included after-treatment thermal efficiency penalty to the diesel fuel economy · CD ElectricWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad engine vehicles (ICEVs) Regular hybrid electric vehicles (HEVs) Plug-in hybrid electric vehicles (PHEVs

137

New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing  

E-Print Network [OSTI]

New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing light within a specific wavelength. Today's thin-film solar cells could not function light to pass through to the cell's active layers. Until recently, TCOs were seen as a necessary

138

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCo JumpElectric Co Jump to: navigation,

139

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCo JumpElectric Co Jump to:

140

Oklahoma Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCo JumpElectric Co Jump

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

SciTech Connect (OSTI)

The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

2002-08-01T23:59:59.000Z

142

Gas separation device based on electrical swing adsorption  

DOE Patents [OSTI]

A method and apparatus for separating one constituent, especially carbon dioxide, from a fluid mixture, such as natural gas. The fluid mixture flows through an adsorbent member having an affinity for molecules of the one constituent, the molecules being adsorbed on the adsorbent member. A voltage is applied to the adsorbent member, the voltage imparting a current flow which causes the molecules of the one constituent to be desorbed from the adsorbent member.

Judkins, Roddie R. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

1999-10-26T23:59:59.000Z

143

The electric and gas industries are converging: What does it mean?  

SciTech Connect (OSTI)

Three broad views define deregulation in retail gas and electric markets. One sees the future as but a lengthened shadow of the present. Change is glacial. The second predicts a significant but mannerly shift-a leisurely transition from monopoly to competition. The third posits revolution. It awaits a future marked by epochal, discontinuous, and abrupt changes. This third future is the most interesting. It raises the stakes. This article examines the industrial organization of gas and electric enterprises as they will be reinvented by those who embrace the third view. Not a prediction; rather, a thought experiment.

Dar, V.K.

1995-04-01T23:59:59.000Z

144

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect (OSTI)

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

145

Central Hudson Gas and Electric (Electric)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Home Energy SavingsCentral Program offers customers rebates of between $25 and $600 for energy efficient equipment and measures. This is for residential electric customers who upgrade heating,...

146

Energy Efficiency Fund (Electric)- Commercial and Industrial Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

All Connecticut Utilities implement electric and gas efficiency rebate programs funded by Connecticut's public benefits charge through the Energy Efficiency Fund. The Connecticut Light and Power...

147

International Natural Gas Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity Generation

148

International Natural Gas Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity GenerationIndustry for

149

Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil  

E-Print Network [OSTI]

Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production for the Minas light crude oil (34?API). The studies on steam-propane were specifically...

Yudishtira, Wan Dedi

2003-01-01T23:59:59.000Z

150

San Diego Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType JumpJersey)Carbon DevelopmentCorpSamSan Diego Gas

151

Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342Increases4 16 18 19

152

Alabama Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342Increases4

153

Iowa Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan

154

Kansas Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0Extensions (Billion2009 20106 50 0

155

Kentucky Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0MonthIncreases (BillionFeet) Decade

156

Louisiana Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0 0Feet)2009Year0 0 0

157

Maine Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-14 Oct-14 Nov-140 1 1 0 0

158

Maryland Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0Sep-14Year

159

Massachusetts Natural Gas Deliveries to Electric Power Consumers (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89Sep-1423,448Cubic

160

Massachusetts Natural Gas Price Sold to Electric Power Consumers (Dollars  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170Feet) (Millionper

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Michigan Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3 1979-2013 Adjustments

162

Minnesota Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15continues, with theMay65Feet)

163

Mississippi Natural Gas Deliveries to Electric Power Consumers (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb Mar Apr May Jun Jul

164

Missouri Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0 0

165

Montana Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388 413NewSep-14

166

Baltimore Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Jump to:Ayuda:PalabrasBadema JumpBallardGas and

167

Colorado Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYear Jan Feb Mar Apr0

168

Connecticut Natural Gas Deliveries to Electric Power Consumers (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number

169

Delaware Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan FebFeet) Decade

170

District of Columbia Natural Gas Deliveries to Electric Power Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and Commercial

171

Florida Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 Adjustments 0 1 -1Feet)

172

Georgia Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1 54.8 49.4Year Jan FebFeet)

173

Hawaii Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,4351998

174

Idaho Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0Feet) Decade Year-0 Year-1

175

Illinois Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (MillionSep-14 Oct-1444,805Feet)

176

Indiana Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0 1996-2005. 61,707Year

177

Comments of Baltimore Gas & Electric Company | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4CenterPointChristinaClayCoalofFrontierfrom theBaltimore Gas

178

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network [OSTI]

62440 Appliances, Lighting, Electronics, and Miscellaneousof California. Appliances, Lighting, Electronics, anduses (appliances, lighting, electronics, and miscellaneous

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

179

Abstract--South America has emerged in recent years as one of the most dynamic regions for natural gas and electricity  

E-Print Network [OSTI]

and the security of supply. Index Terms-- Power system economics, electricity-gas integration, natural gas. The largest use still is for industrial heating. The second largest use is for electric power generation for natural gas and electricity development. The continent boasts natural gas reserves and high- growth energy

Catholic University of Chile (Universidad Católica de Chile)

180

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge  

E-Print Network [OSTI]

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical production from simultaneous steam reforming and partial oxidation of methane using an ac corona discharge production has been steam reforming, shown in reaction 4. It is very useful to use low-cost materials

Mallinson, Richard

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

San Diego Gas & Electric Company v. Sellers of Energy and Ancillary Services  

E-Print Network [OSTI]

Fact Sheet San Diego Gas & Electric Company v. Sellers of Energy and Ancillary Services Docket No. EL00-95-000 July 6, 2007 The Federal Energy Regulatory Commission today approved an $18 million uncontested settlement that resolves matters and claims related to BP Energy Company (BP) and California

Laughlin, Robert B.

182

Joint Modelling of Gas and Electricity spot prices N. Frikha1 , V. Lemaire2  

E-Print Network [OSTI]

The recent deregulation of energy markets has led to the development in several countries of market places for developing a risk management framework as well as pricing of options. Many derivatives on both electricity to price projects in energy (see [12] for an introduction). Thus, modelling jointly the evolution of gas

Boyer, Edmond

183

Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review  

SciTech Connect (OSTI)

Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

Lesh, Pamela G.

2009-10-15T23:59:59.000Z

184

NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11  

E-Print Network [OSTI]

for electricity generation, GHG emissions are reduced by at least 45% per kWh. But when natural gas is used that it will even meet the emissions reductions mandated by the Energy Independence and Security Act (EISA) for corn non-GHG emissions such as particulate matter, carbon monoxide and nitrous oxide. The trade-off between

McGaughey, Alan

185

Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen gas  

E-Print Network [OSTI]

MSNBC.com Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen method for generating hydrogen fuel from wastewater is now operating at a California winery material in the wastewater into hydrogen gas. There is a lot more energy locked in the wastewater than

186

Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint  

SciTech Connect (OSTI)

Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

Maguire, J.; Burch, J.

2013-08-01T23:59:59.000Z

187

2008 San Diego Gas & Electric Company. All copyright and trademark rights reserved. Smart Meters, Rates and the Customer  

E-Print Network [OSTI]

© 2008 San Diego Gas & Electric Company. All copyright and trademark rights reserved. Smart Meters, OR #12;2 SDG&E Smart Meter Goals · Install AMI/smart metering for all SDG&E electric and gas business're starting to recreate our relationship with customers and transform our company #12;Smart Meter Business

188

Semi-flexible gas-insulated transmission line using electric field stress shields  

DOE Patents [OSTI]

A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

Cookson, A.H.; Dale, S.J.; Bolin, P.C.

1982-12-28T23:59:59.000Z

189

Central Hudson Gas and Electric (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Home Energy SavingsCentral Program offers customers rebates of up to $1,000 on energy efficient equipment and measures for residential gas customers who upgrade heating, cooling or ventilation...

190

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

191

Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

Warner, E. S.; Heath, G. A.

2012-04-01T23:59:59.000Z

192

Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle  

SciTech Connect (OSTI)

This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

Nelson, S.C.

2002-11-14T23:59:59.000Z

193

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas  

E-Print Network [OSTI]

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse reliance on fossil fuels. Plug-In Hybrid Electric Vehicles (PHEVs) and wind power represent two practical Electric Vehicles for Greenhouse Gas Mitigation in Canada by Brett Kerrigan B.Eng., Carleton University

Victoria, University of

194

Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature of the switch mode boost converter is its simplicity. Its inductor must handle the entire current, which is responsible for its main cost. The new Z-source inverter technology [2,3] boosts voltage directly by actively using the zero state time to boost the voltage. In the traditional pulse width modulated (PWM) inverter, this time is used only to control the average voltage by disconnecting the supply voltage from the motor. The purpose of this study is to examine the Z-source's potential for reducing the cost and improving the reliability of HEVs.

McKeever, JW

2005-06-16T23:59:59.000Z

195

Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation  

E-Print Network [OSTI]

1 Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity from the LNG life-cycle. Notice that local distribution of natural gas falls outside our analysis boundary. Figure 1S: Domestic Natural Gas Life-cycle. Figure 2S: LNG Life-cycle. Processing Transmission

Jaramillo, Paulina

196

A spin light emitting diode incorporating ability of electrical helicity switching  

SciTech Connect (OSTI)

Fabrication and optical characteristics of a spin light-emitting-diode (spin-LED) having dual spin-injection electrodes with anti-parallel magnetization configuration are reported. Alternating a current between the two electrodes using a computer-driven current source has led us to the observation of helicity switching of circular polarization at the frequency of 1 kHz. Neither external magnetic fields nor optical delay modulators were used. Sending dc-currents to both electrodes with appropriate ratio has resulted in continuous variation of circular polarization between the two opposite helicity, including the null polarization. These results suggest that the tested spin-LED has the feasibility of a monolithic light source whose circular polarization can be switched or continuously tuned all electrically.

Nishizawa, N., E-mail: nishizawa@isl.titech.ac.jp; Nishibayashi, K.; Munekata, H. [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, 4259-J3-15 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

2014-03-17T23:59:59.000Z

197

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

SciTech Connect (OSTI)

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

198

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)  

Reports and Publications (EIA)

In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

2005-01-01T23:59:59.000Z

199

Electrical and gas sensing properties of polyaniline functionalized single-walled carbon This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes.1088/0957-4484/21/7/075502 Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes Jae Online at stacks.iop.org/Nano/21/075502 Abstract Electrical and gas sensing properties of single

200

Appliances, Lighting, Electronics, and Miscellaneous EquipmentElectricity Use in New Homes  

SciTech Connect (OSTI)

The "Other" end-uses (appliances, lighting, electronics, andmiscellaneous equipment) continue to grow. This is particularly true innew homes, where increasing floor area and amenities are leading tohigher saturation of these types of devices. This paper combines thefindings of several field studies to assess the current state ofknowledge about the "Other" end-uses in new homes. The field studiesinclude sub-metered measurements of occupied houses in Arizona, Florida,and Colorado, as well as device-level surveys and power measurements inunoccupied new homes. We find that appliances, lighting, electronics, andmiscellaneous equipment can consume from 46 percent to 88 percent ofwhole-house electricity use in current low-energy homes. Moreover, theannual consumption for the "Other" end-uses is not significantly lower innew homes (even those designed for low energy use) compared to existinghomes. The device-level surveys show that builder-installed equipment isa significant contributor to annual electricity consumption, and certaindevices that are becoming more common in new homes, such as structuredwiring systems, contribute significantly to this power consumption. Thesefindings suggest that energy consumption by these "Other" end uses isstill too large to allow cost-effective zero-energy homes.

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan,Gregory

2007-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers  

E-Print Network [OSTI]

1 Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers Presented by: CL&P?s Conservation and Load Management Department 2 ? Connecticut Energy Efficiency... watts/sq.ft. calculations relative to ASHRAE 90.1-2004 baselines 7 Energy Conscious Blueprint Program ? Provides prescriptive rebates for: ? CT Cool Choice for HVAC Equipment ($ per ton) ? Utility prescriptive caps apply to the following: ? VFDs...

Sermakekian, E.

2011-01-01T23:59:59.000Z

202

Transmission access: The new factor in electric utility mergers  

SciTech Connect (OSTI)

This article deals with the effect of consideration of transmission access in whether a merger of electric utility is in the public interest. Cases examined are Southern California Edison and San Diego Gas and Electric, Utah Power and Light and Pacific Power and Light, Public Service Company of New Hampshire and Northeast Utilities Service Company, Kansas Gas and Electric and Kansas Power and Light, plus some holding company mergers.

Boiler, D.S.

1991-04-01T23:59:59.000Z

203

Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery  

SciTech Connect (OSTI)

This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.

Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

2006-09-30T23:59:59.000Z

204

Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants  

SciTech Connect (OSTI)

Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

2008-07-15T23:59:59.000Z

205

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

1992-07-01T23:59:59.000Z

206

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

1992-07-01T23:59:59.000Z

207

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

208

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network [OSTI]

contributor to annual electricity consumption, and certainplay in “Other” electricity consumption in new homes, andor range. “Other” electricity consumption was derived by

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

209

Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes  

E-Print Network [OSTI]

Kao, K.C. , Hwang, W. Electrical Transport in Solids: withPress, 2009. Stallinga, P. Electrical Characterization offrom electrical model . 100

Fina, Michael Dane

2012-01-01T23:59:59.000Z

210

The marginal costs and pricing of gas system upgrades to accommodate new electric generators  

SciTech Connect (OSTI)

In the coming years, competitive forces and restructuring in the electric industry can be expected to increase substantially the demand for gas delivery service to new electric generating units by local distribution companies (LDCs) and pipeline companies across the United States. In meeting this demand, it is important that the prices paid by electric generators for gas delivery service properly reflect the costs of the resources utilized in providing service to them in order that their decisions regarding what to build and where as well as the manner in which their units are dispatched are as efficient as possible from a societal standpoint. This will assure that society`s resources will be neither squandered nor underutilized in providing service to these generators and aid in assuring that, once built, the units are run in an efficient manner. While the most efficient solution to this problem is a secondary market in tradeable pipeline capacity rights, we do not have such a system in place at this time. Further, tradeable rights for LDC capacity may be difficult to establish. An interim solution that will work in the confines of the present system and not create problems for the transition to tradeable rights is required. This purpose of this paper is to set out the important first principals involved in applying marginal costing to the provision of gas delivery service to new electric generating units rather than to present empirical data on the marginal costs of such service. Experience has shown that marginal costs are usually unique to the particular situation being costed.

Ambrose, B.

1995-12-31T23:59:59.000Z

211

Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

Burkhardt, J. J.; Heath, G.; Cohen, E.

2012-04-01T23:59:59.000Z

212

Memphis Light, Gas and Water Division Smart Grid Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanosElectric Co LtdJacksonLakeInformation Gas

213

Adaptation of gas tagging for failed fuel identification in light water reactors  

SciTech Connect (OSTI)

This paper discusses experience with noble gas tagging and its adaptation to commercial reactors. It reviews the recent incidence of fuel failures in light water reactors, and methods used to identify failures, and concludes that the on-line technique of gas tagging could significantly augment present flux tilting, sipping and ultrasonic testing of assemblies. The paper describes calculations on tag gas stability in-reactor, and tag injection tests that were carried out collaboratively with Commonwealth Edison Company in the Byron-2 pressurized water reactor (P%a) and with Duke Power Company and Babcock and Wilcox Fuel Company in the Oconee-2 PWM. The tests gave information on: (a) noble gas concentration dynamics as the tag gases were dissolved in and eventually removed from subsystems of the RCS; and (b) the suitability of candidate Ar, Ne, Kr and Xe isotopes for tagging PWR fuel. It was found that the activity of Xe{sup 125} (the activation product of the tag isotope Xe{sup 124}) acted as a ``tag of a tag`` and tracked gas through the reactor; measured activities are being used to model gas movement in the RCS. Several interference molecules (trace contaminants normally present at sub-ppM concentrations in RCS samples) and entrained air in the RCS were found to affect mass spectrometer sensitivity for tag isotopes. In all instances the contaminants could be differentiated from the tag isotopes by operating the mass spectrometer at high resolution (2500). Similarly, it was possible to distinguish all the candidate tag gases against a high background of air. The test results suggested, however, that for routine analysis a high resolution static mass spectrometer will be preferable to the dynamic instrument used for the present analyses.

Lambert, J.D.B.; Gross, K.C.; Depiante, E.V. [Argonne National Lab., IL (United States); Callis, E.L. [Los Alamos National Lab., NM (United States); Egebrecht, P.M. [Commonwealth Edison Company, Downers Grove, IL (United States)

1996-03-01T23:59:59.000Z

214

if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material!  

E-Print Network [OSTI]

gas leak gas leak if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material! 1. If you discover a Gas Leak, shout and check that the nearest gas isolator switch is off. 4. Evacuate the building immediately, avoiding

Hickman, Mark

215

Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins  

SciTech Connect (OSTI)

Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text briefly discusses the nature of these questions. Section I.2 briefly discusses the objective of the study with respect to the problems reviewed.

Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

2008-06-30T23:59:59.000Z

216

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production  

SciTech Connect (OSTI)

The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

2002-01-01T23:59:59.000Z

217

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network [OSTI]

LIGHT-DUTY VEHICLES, AND AUTOMOBILES Mark A. Miller Victorand The analysis involves automobiles in California arePowered Electric Automobiles -a---- Range of Estimated

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

218

Central Electric Coop. Oregon Trail Electric Coop. Douglas Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Central Electric Coop. Oregon Trail Electric Coop. Douglas Electric Coop. Blachly- Lane Co. Coop Umatilla Electric Coop. Hermiston Milton- Freewater Idaho Co Light & Power Coop....

219

Toward a new, integrated interactive electric power and natural gas industry  

SciTech Connect (OSTI)

The movement toward a new, integrated interactive electric power and natural gas industry is discussed. This movement envisions more competition and fewer competitors. The key capabilities of the new market are described. It is concluded that what will make an energy business succeed is the ability to aggregate supply and markets, to optimize routing, to improve load factors, and to provide added levels of reliability through diversity. The strong organization that is able to deal in all forms of energy is a necessary part of this new paradigm of the integrated energy market.

NONE

1995-12-31T23:59:59.000Z

220

,"North Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPrice Sold to Electric PowerNetGas, WetDeliveries

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty,Portal,105.Electric FuelGas Wells

222

Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows  

SciTech Connect (OSTI)

Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)

2014-04-11T23:59:59.000Z

223

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

224

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network [OSTI]

online: www.eia.doe.gov/cneaf/electricity/esr/esr_sum.html.Miscellaneous Equipment Electricity Use in New Homes RichardMiscellaneous Equipment Electricity Use in New Homes Richard

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

225

Electric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University No. 5501 Rev.: 0  

E-Print Network [OSTI]

-licensed gas- or electric-powered utility-type vehicles) that are operated on the main campus in Blacksburg, VAElectric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University __________________________________________________________________________________ Subject: Electric/Gas Utility-type Vehicle

Beex, A. A. "Louis"

226

Development of methodologies for calculating greenhouse gas emissions from electricity generation for the California climate action registry  

SciTech Connect (OSTI)

The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We fi nd that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

Price, Lynn; Marnay, Chris; Sathaye, Jayant; Murtishaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

2002-04-01T23:59:59.000Z

227

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network [OSTI]

Scheibel (1997) “Current Gas Turbine Developments and Futurefor Heavy-Duty Gas Turbines,” October 2000. Available onlineNext Evolution of the F Gas Turbine,” April 2001. Available

Ishii, Jun

2004-01-01T23:59:59.000Z

228

CO{sub 2} Allowance Allocation in the Regional Greenhouse Gas Initiative and the Effect on Electricity Investors  

SciTech Connect (OSTI)

The Regional Greenhouse Gas Initiative among Northeastern states is expected to lead to an increase in the price of electricity in the region and beyond. In the RGGI region, changes in the value of electricity-generating assets may be positive or negative, while changes outside the Northeast are virtually always positive. For stakeholders in the industry, the change depends on the portfolio of assets held by affected firms. (author)

Burtraw, Dallas; Kahn, Danny; Palmer, Karen

2006-03-01T23:59:59.000Z

229

EIS-0002: Allocation of Petroleum Feedstock, Baltimore Gas & Electric Co., Sollers Point SNG Plant, Sollers Point, Baltimore County, MD  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration (ERA) developed this EIS to evaluate the social, economic and environmental impacts which may occur within the Baltimore Gas and Electric Company (BG&E) service area as a result of the ERA' s proposed decision to allocate up to 2,186,000 barrels per year of naphtha feedstock to BG&E to operate BG&E's existing synthetic natural gas facility located on Sollers Point in Baltimore County, Maryland.

230

Has the Supreme Court pulled the rug from under the FERC's electric and natural gas regulation  

SciTech Connect (OSTI)

The Supreme Court overruled a prior decision in the Attleboro Gap case, which had identified an area where state regulation would be a burden on interstate commerce and opened the way for federal regulation in Parts II and III of the Federal Power Act and the Natural Gas Act of 1938. In Arkansas Electric Cooperative Corporation (AECC) v. Arkansas Public Service Commission, the Court decided that there is a ''bright line'' between the point where state regulation of wholesale rates will be a burden on interstate commerce and where it will be tolerable. In shifting the emphasis from whether there is to whether there could be an interference with interstate commerce, the decision raises the question of who must make that determination and how it will affect administrative proceedings. There is not likely to be a major impact, but this will depend on state legislatures, commissions, regulated industries, and consumers. 19 references.

Flax, L.

1983-01-01T23:59:59.000Z

231

RIS-M-2245 A LIGHT-GAS GUN FOR ACCELERATION OF PELLETS OF SOLID D2  

E-Print Network [OSTI]

RIS�-M-2245 A LIGHT-GAS GUN FOR ACCELERATION OF PELLETS OF SOLID D2 A. Nordskov, H. Skovgård, H designed and built to be used for in- jecting solid D2 pellets into a small tokamak for pellet-plasma interaction studies. The pellets are formed and accelerated at temperatures close to those of liquid helium

232

Discrete Symmetries on the Light Front and a General Relation Connecting Nucleon Electric Dipole and Anomalous Magnetic Moments  

E-Print Network [OSTI]

We consider the electric dipole form factor, F_3(q^2), as well as the Dirac and Pauli form factors, F_1(q^2) and F_2(q^2), of the nucleon in the light-front formalism. We derive an exact formula for F_3(q^2) to complement those known for F_1(q^2) and F_2(q^2). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F_2(q^2) and F_3(q^2), Fock state by Fock state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo the isospin structure of the anomalous magnetic moments, kappa^n ~ - kappa^p.

S. J. Brodsky; S. Gardner; D. S. Hwang

2006-02-27T23:59:59.000Z

233

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

Kenneth E. Baldrey

2003-01-01T23:59:59.000Z

234

DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY  

SciTech Connect (OSTI)

This report describes the progress of the project ''Development And Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the thirteenth project quarter (Oct 1, 2005 to Dec 30, 2005). There are three main tasks in this research project. Task 1 is a scaled physical model study of the GAGD process. Task 2 is further development of a vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. Section I reports experimental work designed to investigate wettability effects of porous medium, on secondary and tertiary mode GAGD performance. The experiments showed a significant improvement of oil recovery in the oil-wet experiments versus the water-wet runs, both in secondary as well as tertiary mode. When comparing experiments conducted in secondary mode to those run in tertiary mode an improvement in oil recovery was also evident. Additionally, this section summarizes progress made with regard to the scaled physical model construction and experimentation. The purpose of building a scaled physical model, which attempts to include various multiphase mechanics and fluid dynamic parameters operational in the field scale, was to incorporate visual verification of the gas front for viscous instabilities, capillary fingering, and stable displacement. Preliminary experimentation suggested that construction of the 2-D model from sintered glass beads was a feasible alternative. During this reporting quarter, several sintered glass mini-models were prepared and some preliminary experiments designed to visualize gas bubble development were completed. In Section II, the gas-oil interfacial tensions measured in decane-CO{sub 2} system at 100 F and live decane consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane against CO{sub 2} gas at 160 F have been modeled using the Parachor and newly proposed mechanistic Parachor models. In the decane-CO{sub 2} binary system, Parachor model was found to be sufficient for interfacial tension calculations. The predicted miscibility from the Parachor model deviated only by about 2.5% from the measured VIT miscibility. However, in multicomponent live decane-CO{sub 2} system, the performance of the Parachor model was poor, while good match of interfacial tension predictions has been obtained experimentally using the proposed mechanistic Parachor model. The predicted miscibility from the mechanistic Parachor model accurately matched with the measured VIT miscibility in live decane-CO2 system, which indicates the suitability of this model to predict miscibility in complex multicomponent hydrocarbon systems. In the previous reports to the DOE (15323R07, Oct 2004; 15323R08, Jan 2005; 15323R09, Apr 2005; 15323R10, July 2005 and 154323, Oct 2005), the 1-D experimental results from dimensionally scaled GAGD and WAG corefloods were reported for Section III. Additionally, since Section I reports the experimental results from 2-D physical model experiments; this section attempts to extend this 2-D GAGD study to 3-D (4-phase) flow through porous media and evaluate the performance of these processes using reservoir simulation. Section IV includes the technology transfer efforts undertaken during the quarter. This research work resulted in one international paper presentation in Tulsa, OK; one journal publication; three pending abstracts for SCA 2006 Annual Conference and an invitation to present at the Independents Day session at the IOR Symposium 2006.

Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Thaer N.N. Mahmoud; Wagirin Ruiz Paidin

2006-01-01T23:59:59.000Z

235

The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity  

E-Print Network [OSTI]

modeling of California’s electricity sector to 2020: UpdatedFig. 3B). In the electricity sector, three forms of de-options. Residual electricity-sector carbon emis- sions in

Williams, J.H.

2013-01-01T23:59:59.000Z

236

Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

2012-04-01T23:59:59.000Z

237

Evaluation of Public Service Electric & Gas Company`s standard offer program, Volume I  

SciTech Connect (OSTI)

In May 1993, Public Service Electric and Gas (PSE&G), the largest investor-owned utility in New Jersey, initiated the Standard Offer program, an innovative approach to acquiring demand-side management (DSM) resources. In this program, PSE&G offers longterm contracts with standard terms and conditions to project sponsors, either customers or third-party energy service companies (ESCOs), on a first-come, first-serve basis to fill a resource block. The design includes posted, time-differentiated prices which are paid for energy savings that will be verified over the contract term (5, 10, or 15 years) based on a statewide measurement and verification (M&V) protocol. The design of the Standard Offer differs significantly from DSM bidding programs in several respects. The eligibility requirements and posted prices allow ESCOs and other energy service providers to market and develop projects among customers with few constraints on acceptable end use efficiency technologies. In contrast, in DSM bidding, ESCOs typically submit bids without final commitments from customers and the utility selects a limited number of winning bidders who often agree to deliver a pre-specified mix of savings from various end uses in targeted markets. The major objectives of the LBNL evaluation were to assess market response and customer satisfaction; analyze program costs and cost-effectiveness; review and evaluate the utility`s administration and delivery of the program; examine the role of PSE&G`s energy services subsidiary (PSCRC) in the program and the effect of its involvement on the development of the energy services industry in New Jersey; and discuss the potential applicability of the Standard Offer concept given current trends in the electricity industry (i.e., increasing competition and the prospect of industry restructuring).

Goldman, C.A.; Kito, M.S.; Moezzi, M.M.

1995-07-01T23:59:59.000Z

238

DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY  

SciTech Connect (OSTI)

This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid phases. IFT measurements were carried out in a standard ternary liquid system of benzene, ethanol and water using drop shape analysis and capillary rise techniques. The experimental results indicate strong correlation among the three thermodynamic properties solubility, miscibility and IFT. The miscibility determined from IFT measurements for this ternary liquid system is in good agreement with phase diagram and solubility data, which clearly indicates the sound conceptual basis of VIT technique to determine fluid-fluid miscibility. Model fluid systems have been identified for VIT experimentation at elevated pressures and temperatures. Section III comprises of the experimental study aimed at evaluating the multiphase displacement characteristics of the various gas injection EOR process performances using Berea sandstone cores. During this reporting period, extensive literature review was completed to: (1) study the gravity drainage concepts, (2) identify the various factors influencing gravity stable gas injection processes, (3) identify various multiphase mechanisms and fluid dynamics operative during the GAGD process, and (4) identify important dimensionless groups governing the GAGD process performance. Furthermore, the dimensional analysis of the GAGD process, using Buckingham-Pi theorem to isolate the various dimensionless groups, as well as experimental design based on these dimensionless quantities have been completed in this reporting period. On the experimental front, recommendations from previous WAG and CGI have been used to modify the experimental protocol. This report also includes results from scaled preliminary GAGD displacements as well as the details of the planned GAGD corefloods for the next quarter. The technology transfer activities have mainly consisted of preparing technical papers, progress reports and discussions with industry personnel for possible GAGD field tests.

Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

2004-10-01T23:59:59.000Z

239

Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s) All Other Edi~imsEnergy Efficiency Loan Program |

240

Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s) All Other Edi~imsEnergy Efficiency Loan Program

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Feasibility Study of Supercritical Light Water Cooled Reactors for Electrical Power Production, 5th Quarterly Report, October - December 2002  

SciTech Connect (OSTI)

The overall objective of this project is to evaluate the feasibility of supercritical light water cooled reactors for electric power production. The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies for the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR that can also burn actinides. The project is organized into three tasks:

Philip MacDonald; Jacopo Buongiorno; Cliff Davis; J. Stephen Herring; Kevan Weaver; Ron Latanision; Bryce Mitton; Gary Was; Luca Oriani; Mario Carelli; Dmitry Paramonov; Lawrence Conway

2003-01-01T23:59:59.000Z

242

Review of experiments to evaluate the ability of electrical heater rods to simulate nuclear fuel rod behavior during postulated loss-of-coolant accidents in light water reactors  

SciTech Connect (OSTI)

Issues related to using electrical fuel rod simulators to simulate nuclear fuel rod behavior during postulated loss-of-coolant accident (LOCA) conditions in light water reactors are summarized. Experimental programs which will provide a data base for comparing electrical heater rod and nuclear fuel rod LOCA responses are reviewed.

McPherson, G D; Tolman, E L

1980-01-01T23:59:59.000Z

243

Electric powertrains : opportunities and challenges in the US light-duty vehicle fleet  

E-Print Network [OSTI]

Managing impending environmental and energy challenges in the transport sector requires a dramatic reduction in both the petroleum consumption and greenhouse gas (GHG) emissions of in-use vehicles. This study quantifies ...

Kromer, Matthew A

2007-01-01T23:59:59.000Z

244

MidAmerican Energy (Electric) – Municipal Solid-State Lighting Grant Program  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers grants to munipalities which implement solid-state roadway street lighting upgrades. Grants of up to $5,000 are available to participating entities who install eligible...

245

Electrical spin injection using GaCrN in a GaN based spin light emitting diode  

SciTech Connect (OSTI)

We have demonstrated electrical spin-injection from GaCrN dilute magnetic semiconductor (DMS) in a GaN-based spin light emitting diode (spin-LED). The remanent in-plane magnetization of the thin-film semiconducting ferromagnet has been used for introducing the spin polarized electrons into the non-magnetic InGaN quantum well. The output circular polarization obtained from the spin-LED closely follows the normalized in-plane magnetization curve of the DMS. A saturation circular polarization of ?2.5% is obtained at 200?K.

Banerjee, D.; Ganguly, S.; Saha, D., E-mail: dipankarsaha@iitb.ac.in [Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India); IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076 (India); Adari, R.; Sankaranarayan, S.; Kumar, A. [Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)] [Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India); Aldhaheri, R. W.; Hussain, M. A.; Balamesh, A. S. [Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)] [Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

2013-12-09T23:59:59.000Z

246

OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS  

SciTech Connect (OSTI)

Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-10-01T23:59:59.000Z

247

Meeting the challenges of the new energy industry: The driving forces facing electric power generators and the natural gas industry  

SciTech Connect (OSTI)

The proceedings of the IGT national conference on meeting the challenges of the New Energy Industry: The driving forces facing Electric Power Generators and the Natural Gas Industry are presented. The conference was held June 19-21, 1995 at the Ambassador West Hotel in Downtown Chicago, Illinois. A separate abstract and indexing for each of the 18 papers presented for inclusion in the Energy Science and Technology Database.

NONE

1995-12-31T23:59:59.000Z

248

Transportation and Greenhouse Gas Mitigation  

E-Print Network [OSTI]

fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

249

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

250

Interdependency of electricity and natural gas markets in the United States : a dynamic computational model  

E-Print Network [OSTI]

Due to high storage costs and limited storage availability, natural gas is generally used as a just-in- time resource that needs to be delivered as it is consumed. With the shale gas revolution, coal retirements and ...

Jenkins, Sandra Elizabeth

2014-01-01T23:59:59.000Z

251

Security analysis of the interaction between the UK gas and electricity transmission systems   

E-Print Network [OSTI]

Natural gas has become the UK’s foremost primary energy source, providing some 39% of our energy needs. The National Transmission System (NTS) has developed from its humble beginnings when natural gas was first discovered ...

Whiteford, James Raymond George

2012-06-25T23:59:59.000Z

252

Development of an electrical resistivity cone for the detection of gas hydrates in marine sediments  

E-Print Network [OSTI]

Natural gas hydrates are formed when, under certain pressure and temperature conditions, gas molecules become encaged by hydrogenbonded oxygen atoms, forming a solid, ice-like crystalline substance. They have been found all over the world in both...

McClelland, Martha Ann

1994-01-01T23:59:59.000Z

253

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network [OSTI]

Clean Air Amendments helped lower the cost of natural gas turbines vis-a-vis coal based technologies.

Ishii, Jun

2004-01-01T23:59:59.000Z

254

Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil.  

E-Print Network [OSTI]

??Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production… (more)

Yudishtira, Wan Dedi

2012-01-01T23:59:59.000Z

255

The new economics of the electric power industry and some implication for the natural gas industry  

SciTech Connect (OSTI)

The current restructuring of the natural gas industry and its regulation have important implications for the natural gas industry. Some of these implications are positive, some negative. As in all situations of change and uncertainty, look before you leap, is good advice to those in the natural gas industry seeking to take advantage of the opportunities created by the startling changes that are occurring.

Hall, G.R. [Putnam, Hayes & Bartlett, Washington, DC (United States)

1995-12-31T23:59:59.000Z

256

The USDOE Forrestal Building Lighting Retrofit: Preliminary Analysis of Electricity Savings  

E-Print Network [OSTI]

In September of 1993 a 36,832 fixture lighting retrofit was completed at the United States Department of Energy Forrestal complex in Washington, D.C. This retrofit represents DOE's largest project to date that utilizes a Shared Energy Savings (SES...

Haberl, J. S.; Bou-Saada, T. E.; Vajda, E. J.; Shincovich, M.; D'Angelo III, L.; Harris, L.

1994-01-01T23:59:59.000Z

257

Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Interstate Power and Light (Alliant Energy) offers a number of rebates for energy efficiency for Minnesota residential customers a variety of high efficiency heating and cooling measures, including...

258

Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Interstate Power and Light (Alliant Energy) offers residential energy efficiency rebates to Iowa customers for a variety of home upgrades. Rebates are available for certain heating, insulation,...

259

Alliant Energy Interstate Power and Light (Gas)- Business Energy Efficiency Rebate Programs (Minnesota)  

Broader source: Energy.gov [DOE]

Alliant Energy - Interstate Power and Light (IPL) offers rebates for high efficiency equipment for commercial customers. Rebates are available for windows/sashes, programmable thermostats, water...

260

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network [OSTI]

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network [OSTI]

of natural gas prices, renewable resources in general have aSince the use of renewable resources decreases fuel priceof its electricity from renewable resources under long-term

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

262

Interdependence of Electricity System Infrastructure and Natural...  

Broader source: Energy.gov (indexed) [DOE]

Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure -...

263

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production  

SciTech Connect (OSTI)

The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

2005-02-13T23:59:59.000Z

264

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

265

Lighting Electricity Rates on OpenEI | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy Co Ltd JumpLightSource Renewables Jump

266

Modelling of an integrated gas and electricity network with significant wind capacity.  

E-Print Network [OSTI]

??The large scale integration of wind generation capacity into an electricity network poses technical as well as economic challenges. In this research, three major challenges… (more)

Qadrdan, Meysam

2012-01-01T23:59:59.000Z

267

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was completed at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. The product was effective as a flue gas conditioner. However, ongoing problems with in-duct deposition resulting from the flue gas conditioning were not entirely resolved. Primarily these problems were the result of difficulties encountered with retrofit of an existing spray humidification system. Eventually it proved necessary to replace all of the original injection lances and to manually bypass the PLC-based air/liquid feed control. This yielded substantial improvement in spray atomization and system reliability. However, the plant opted not to install a permanent system. Also in this quarter, preparations continued for a test of the cohesivity additives at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-07-01T23:59:59.000Z

268

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

269

CO{sub 2} allowance allocation in the Regional Greenhouse Gas Initiative and the effect on electricity investors  

SciTech Connect (OSTI)

The Regional Greenhouse Gas Initiative (RGGI) is an effort by nine Northeast and Mid-Atlantic states to develop a regional, mandatory, market-based cap-and-trade program to reduce greenhouse gas (GHG) emissions from the electricity sector. The initiative is expected to lead to an increase in the price of electricity in the RGGI region and beyond. The implications of these changes for the value of electricity-generating assets and the market value of the firms that own them depends on the initial allocation of carbon dioxide allowances, the composition of generating assets owned by the firm, and the locations of those assets. Changes in asset values inside the RGGI region may be positive or negative, whereas changes outside of the RGGI region are almost always positive but nonetheless vary greatly. Viewing changes at the firm level aggregates and moderates both positive and negative effects on market value compared with what would be observed by looking at changes at individual facilities. Nonetheless, a particular firm's portfolio of assets is unlikely to reflect the overall composition of assets in the industry as a whole, and some firms are likely to do substantially better or worse than the industry average. 16 refs., 4 figs.

Dallas Burtraw; Danny Kahn; Karen Palmerook

2005-12-15T23:59:59.000Z

270

Austin Utilities (Gas and Electric)- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Austin Utilities offers incentives to its commercial and industrial customers for the installation of energy-efficient equipment in eligible facilities. Rebates are available for lighting equipment...

271

The Physics of the Gas Attenuator for the Linac Coherent Light Source (LCLS)  

SciTech Connect (OSTI)

A systematic assessment of a variety of physics issues affecting the performance of the LCLS X-ray beam attenuator is presented. Detailed analysis of the gas flow in the gas attenuator and in the apertures is performed. A lot of attention is directed towards the gas ionization and heating by intense X-ray pulses. The role of these phenomena in possible deviations of the attenuation coefficient from its 'dialed in' value is evaluated and found small in most cases. Other sources of systematic and statistical errors are also discussed. The regimes where the errors may reach a few percent correspond to the lower X-ray energies (less than 2 keV) and highest beam intensities. Other effects discussed include chemical interaction of the gas with apertures, shock formation in the transonic flow in the apertures of the attenuator, generation of electromagnetic wakes in the gas, and head-to-tail variation of the attenuation caused by the ionization of gas or solid. Possible experimental tests of the consistency of the physics assumptions used in the concept of the gas attenuator are discussed. Interaction of X-rays with the solid attenuator (that will be used at higher X-ray energies, from 2.5 to 8 keV) is considered and thermo-mechanical effects caused by the beam heating are evaluated. Wave-front distortions induced by non-uniform heating of both the solid and the gas are found to be small. An overall conclusion drawn from the analysis presented is that the attenuator will be a reliable and highly versatile device, provided that some caution is exercised in its use for highest beam intensities at lowest X-ray energies.

Ryutov, D.D.; Bionta, R.M.; Hau-Riege, S.P.; Kishiyama, K.I.; McMahon, D.; Roeben, M.D.; Shen, S.; /LLNL, Livermore; Stefan, P.M.; /SLAC; ,

2011-02-07T23:59:59.000Z

272

Alliant Energy Interstate Power and Light (Gas)- Business Energy Efficiency Rebate Program (Iowa)  

Broader source: Energy.gov [DOE]

Interstate Power and Light (IPL) offers a wide variety of incentives for commercial customers to save energy in eligible facilities, whether they are upgrading existing facilities or building new...

273

Interdependencies of Electricity Markets with Gas Markets A Case Study of Transmission System Operators  

E-Print Network [OSTI]

and the Natural Gas markets and the conditions and influences on both markets. Load-growth influences the need) and supply (availability of resources). In the case of natural gas the fuel may be indigenous to an area American countries is to ensure sufficient capacity and investment to reliably serve their growing

Dixon, Juan

274

,"North Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPrice Sold to Electric PowerNetGas,PricePrice Sold

275

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-05-01T23:59:59.000Z

276

Dynamics of the electric current in an ideal electron gas: a sound mode inside the quasi-particles  

E-Print Network [OSTI]

We study the equation of motion for the Noether current in an electron gas within the framework of the Schwinger-Keldysh Closed-Time-Path formalism. The equation is shown to be highly non-linear and irreversible even for a non-interacting, ideal gas of electrons at non-zero density. We truncate the linearised equation of motion, written as the Laurent series in Fourier space, so that the resulting expressions are local in time, both at zero and at small finite temperatures. Furthermore, we show that the one-loop Coulomb interactions only alter the physical picture quantitatively, while preserving the characteristics of the dynamics that the electric current exhibits in the absence of interactions. As a result of the composite nature of the Noether current, composite sound waves are found to be the dominant IR collective excitations at length scales between the inverse Fermi momentum and the mean free path that would exist in an interacting electron gas. We also discuss the difference and the transition between the hydrodynamical regime of an ideal gas, defined in this work, and the hydrodynamical regime in phenomenological hydrodynamics, which is normally used for the description of interacting gases.

Sašo Grozdanov; Janos Polonyi

2015-01-26T23:59:59.000Z

277

VEE-0044- In the Matter of Public Service Electric and Gas Company (New Jersey)  

Broader source: Energy.gov [DOE]

On July 14, 1997, the Office of Hearings and Appeals received from the Energy Information Administration (EIA) a “letter of appeal” that had been filed with the EIA by the Public Service Electric...

278

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)  

Reports and Publications (EIA)

The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

2006-01-01T23:59:59.000Z

279

Hydrogen/Natural Gas Blends for Heavy and Light-Duty Applications  

E-Print Network [OSTI]

exhaust emissions that can be achieved relative to both diesel and natural gas alternatives. The design $ For applications that now use diesel engines $ Develop engine configurations that can replace existing diesel that minimizes the surface to volume ratio. However, care must be taken to avoid engine knock. This can require

280

Brookhaven National Laboratory/National Synchrotron Light Source Subject: Devalving of compressed gas cylinders  

E-Print Network [OSTI]

gas cylinders Number: LS-ESH-0052 Revision: 2 Effective: 08/05/2008 Page 1 of 1 Prepared By: Keith, retighten the valve, immediately stop the process, and contact NSLS ESH staff to investigate. The only official copy of this file is the one on-line in the NSLS ESH website. Before using a printed copy, verify

Ohta, Shigemi

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan  

E-Print Network [OSTI]

Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

Nishimura, Eriko

2011-01-01T23:59:59.000Z

282

Comparison of Monte-Carlo and Einstein methods in the light-gas interactions  

E-Print Network [OSTI]

To study the propagation of light in nebulae, many astrophysicists use a Monte-Carlo computation which does not take interferences into account. Replacing the wrong method by Einstein coefficients theory gives, on an example, a theoretical spectrum much closer to the observed one.

Jacques Moret-Bailly

2010-01-18T23:59:59.000Z

283

Evaluation of the LLNL Spectrometer for Possible use with the NSTec Optical Streak Camera as a Light Gas Gun Diagnostic  

SciTech Connect (OSTI)

In fiscal year 2012, it was desired to combine a visible spectrometer with a streak camera to form a diagnostic system for recording time-resolved spectra generated in light gas gun experiments. Acquiring a new spectrometer was an option, but it was possible to borrow an existing unit for a period of months, which would be sufficient to evaluate both “off-line” and in-gas gun shots. If it proved adequate for this application, it could be duplicated (with possible modifications); if not, such testing would help determine needed specifications for another model. This report describes the evaluation of the spectrometer (separately and combined with the NSTec LO streak camera) for this purpose. Spectral and temporal resolutions were of primary interest. The first was measured with a monochromatic laser input. The second was ascertained by the combination of the spectrometer’s spatial resolution in the time-dispersive direction and the streak camera’s intrinsic temporal resolution. System responsivity was also important, and this was investigated by measuring the response of the spectrometer/camera system to black body input—the gas gun experiments are expected to be similar to a 3000K black body—as well as measuring the throughput of the spectrometer separately over a range of visible light provided by a monochromator. The flat field (in wavelength) was also measured and the final part of the evaluation was actual fielding on two gas gun shots. No firm specifications for spectral or temporal resolution were defined precisely, but these were desired to be in the 1–2 nm and 1–2 ns ranges, respectively, if possible. As seen below, these values were met or nearly met, depending on wavelength. Other performance parameters were also not given (threshold requirements) but the evaluations performed with laser, black body, and successful gas gun shots taken in aggregate indicate that the spectrometer is adequate for this purpose. Even still, some (relatively minor) opportunities for improvement were noticed and these were documented for incorporation into any near-duplicate spectrometer that might be fabricated in the future.

O'Connor, J., Cradick, J.

2012-09-27T23:59:59.000Z

284

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

SciTech Connect (OSTI)

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

285

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, two cohesivity-specific additive formulations, ADA-44C and ADA-51, were evaluated in a full-scale trial at the American Electric Power Conesville plant. Ammonia conditioning was also evaluated for comparison. ADA-51 and ammonia conditioning significantly reduced rapping and non-rapped particulate re-entrainment based on stack opacity monitor data. Based on the successful tests to date, ADA-51 will be evaluated in a long-term test.

Kenneth E. Baldrey

2003-02-01T23:59:59.000Z

286

High voltage capability electrical coils insulated with materials containing SF.sub.6 gas  

DOE Patents [OSTI]

A coil is made having a plurality of layers of adjacent metal conductor windings subject to voltage stress, where the windings have insulation therebetween containing a small number of minute disposed throughout its cross-section, where the voids are voids filled with SF.sub.6 gas to substitute for air or other gaseous materials in from about 60% to about 95% of the cross-sectional void volume in the insulation, thus incorporating an amount of SF.sub.6 gas in the cross-section of the insulation effective to substantially increase corona inception voltages.

Lanoue, Thomas J. (Muncie, IN); Zeise, Clarence L. (Penn Township, Allegheny County, PA); Wagenaar, Loren (Muncie, IN); Westervelt, Dean C. (Acme, PA)

1988-01-01T23:59:59.000Z

287

Investigation of the statistical nature and structure of the electrical breakdown time delay in gas diodes filled with neon  

SciTech Connect (OSTI)

The electrical breakdown time delay in gas diodes filled by neon at the low pressures is investigated experimentally and theoretically. Experimental results are obtained measuring the characteristics of gas diodes filled by spectroscopically pure neon. In order to discard any systematic trend during the measurement procedure, checking of the measured values randomness preceded the statistical analysis of the experimental results. Novel theoretical model is established for interpretation of obtained experimental results on the breakdown time delay. The model is based on the assumptions of the exponential distribution of the statistical time delay and Gaussian distribution of the formative discharge time. Therefore, the density distribution of the breakdown time delay is assumed to be convolution of the statistical and formative time delay distributions. Parameters of the statistical and formative time delay, as stochastic variables, are modeled by the numerical Monte Carlo method. Numerical distributions are tested to the corresponding experimental distributions of the breakdown time delay by varying the distribution parameters. In addition, the asymmetry coefficient and skewness coefficient of the breakdown time delay distribution, and coefficients of the statistical and formative time delay distributions are analyzed. Numerically calculated time delay distributions fit well to the corresponding experimental distributions in gas diodes filled with neon at low pressures.

Maluckov, Cedomir A. [Technical Faculty in Bor, University of Belgrade, Vojske Jugoslavije 24, 19210 Bor (Serbia and Montenegro); Karamarkovic, Jugoslav P. [Faculty of Civil Eng. and Architecture, University of Nis, Beogradska 14, 18000 Nis (Serbia); Radovic, Miodrag K. [Faculty of Sciences and Mathematics, University of Nis, P.O.B.224, 18001 Nis (Serbia)

2006-12-01T23:59:59.000Z

288

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a flue gas conditioning system was completed at PacifiCorp Jim Bridger Power Plant. Performance testing was underway. Results will be detailed in the next quarterly and subsequent technical summary reports. Also in this quarter, discussions were initiated with a prospective long-term candidate plant. This plant fires a bituminous coal and has opacity performance issues related to fly ash re-entrainment. Ammonia conditioning has been proposed here, but there is interest in liquid additives as a safer alternative.

Kenneth E. Baldrey

2002-01-01T23:59:59.000Z

289

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

Kenneth E. Baldrey

2003-07-30T23:59:59.000Z

290

Dynamics of the electric current in an ideal electron gas: a sound mode inside the quasi-particles  

E-Print Network [OSTI]

We study the equation of motion for the Noether current in an electron gas within the framework of the Schwinger-Keldysh Closed-Time-Path formalism. The equation is shown to be highly non-linear and irreversible even for a non-interacting, ideal gas of electrons at non-zero density. We truncate the linearised equation of motion, written as the Laurent series in Fourier space, so that the resulting expressions are local in time, both at zero and at small finite temperatures. Furthermore, we show that the one-loop Coulomb interactions only alter the physical picture quantitatively, while preserving the characteristics of the dynamics that the electric current exhibits in the absence of interactions. As a result of the composite nature of the Noether current, composite sound waves are found to be the dominant IR collective excitations at length scales between the inverse Fermi momentum and the mean free path that would exist in an interacting electron gas. We also discuss the difference and the transition betwee...

Grozdanov, Sašo

2015-01-01T23:59:59.000Z

291

Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas  

Broader source: Energy.gov [DOE]

Project objectives: To validate and realize the potential for the production of low temperature resource geothermal production on oil & gas sites. Test and document the reliability of this new technology.; Gain a better understanding of operational costs associated with this equipment.

292

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

293

BC's Electricity Options: Multi-Attribute Trade-Off and Risk Analysis of the Natural Gas  

E-Print Network [OSTI]

losses) Cogeneration 628 1,255 1,883 Woodwaste 628 1,255 1,883 Small-Medium Hydro 628 1,255 1,883 Total 1 Jaccard and Murphy ii 05/01/02 Executive Summary BC Hydro's Integrated Electricity Plan (IEP) for 2000 overlooked in BC Hydro's latest planning process. By making this report available to the public, we hope

294

,"New Mexico Natural Gas Deliveries to Electric Power Consumers (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice Sold to Electric PowerCoalbed Methane

295

Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico  

SciTech Connect (OSTI)

Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

Dunbar, John

2012-12-31T23:59:59.000Z

296

A fast-switching light-writable and electric-erasable negative photoelectrochromic cell based on Prussian blue films  

E-Print Network [OSTI]

glazing in response to illumina- tion, with promising applications in smart windows, sunglasses and light

Demir, Hilmi Volkan

297

Limited Electricity Generation Supply and Limited Natural Gas Supply Cases (released in AEO2008)  

Reports and Publications (EIA)

Development of U.S. energy resources and the permitting and construction of large energy facilities have become increasingly difficult over the past 20 years, and they could become even more difficult in the future. Growing public concern about global warming and CO2 emissions also casts doubt on future consumption of fossil fuels -- particularly coal, which releases the largest amount of CO2 per unit of energy produced. Even without regulations to limit greenhouse gas emissions in the United States, the investment community may already be limiting the future use of some energy options. In addition, there is considerable uncertainty about the future availability of, and access to, both domestic and foreign natural gas resources.

2008-01-01T23:59:59.000Z

298

Industrial Potential for Substitution of Electricity for Oil and Natural Gas  

E-Print Network [OSTI]

been higher electric power costs. Unanticipated regulatory requirements and construction delays, caused in part by magnified concern over safety, along with runaway inflation, were also instrumental in increasing coal and nuclear plant construction... is then cast and formed into the desired shape and size. This process leading up to molten steel uses about 23.5 million Btu per net ton of product, or about two-thirds of the total 35 million Btu of energy required per ton of final product. By comparison...

Reynolds, S. D.; Gardner, J. R.

1983-01-01T23:59:59.000Z

299

Electric Power Generation from Coproduced Fluids from Oil and Gas Wells |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement Tuesday,DepartmentTheand ContactELECTRIC

300

Electric Power Generation from Coproduced Fluids from Oil and Gas Wells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summaryand Contact Information |Electric Power

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Main Canal, Maverick County Water Control and Improvement District above Central Power and Light hydro-electric plant, at Maverick and Kinney Counties, Texas  

E-Print Network [OSTI]

BAIN CANAL NA~ICK COUNTY WATW CONTROL AND INPROllZXBZ DISTRICT ABOVE C~ POWER AND LION HYDRO ELECTRIC PLANT& AT, SIAVERICK AND KINNEY COUNT'S, T~~S By John J. Ledbetter, Jr. Approved as to style and content by: (Che man Committee Heed of pa... ment or Student Advisor May l952 MAIN CANAL RIA~ICK C01E1TY EATER CONTROL AND INPROVZGiWZ DISTRICT ABOVE G~ F01' AND LIGHT HYDRO-ELECTRIC PLANT, AT MAVERICK AND KINNEY GGKJZIES ~ TEXAS By John J. Ledbetter, Jr, A Thesis Submitted...

Ledbetter, John J

2012-06-07T23:59:59.000Z

302

Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shale gas:: Crude:a.

303

Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shale gas::

304

Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727Feet)FuelLiquids,Thousand

305

Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year JanDecadeCommercialThousand

306

Kansas Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear JanFuelProvedThousand

307

Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial Consumers

308

Louisiana Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0FuelFuel2,208,920

309

Maine Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-14 Oct-14 (MillionThousand

310

Maryland Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0Thousand Cubic Feet)

311

Michigan Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb2008 2009 2010

312

Minnesota Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15Thousand Cubic Feet) Decade

313

Mississippi Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million2008 2009 2010

314

Missouri Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15YearThousand Cubic Feet) Decade

315

Montana Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384Fuel ConsumptionThousand Cubic

316

Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic

317

Connecticut Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 (Million Cubic

318

Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year (Million CubicThousand

319

District of Columbia Natural Gas Price Sold to Electric Power Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and CommercialCubicCubic

320

Florida Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013Fuel

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Georgia Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1 54.8IndustrialThousand Cubic

322

Hawaii Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219Thousand Cubic Feet) Decade

323

Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (Million Cubic Feet) IdahoThousand

324

Illinois Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawals (MillionPlant

325

Indiana Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0WithdrawalsPlant LiquidsThousand

326

,"West Virginia Natural Gas Deliveries to Electric Power Consumers (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves inDry Natural Gas Expected Future Production

327

San Diego Gas & Electric Video (Text Version) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram 2013:Safety2 DOESampleSan Diego Gas &

328

Gas-liquid-liquid equilibria in mixtures of water, light gases, and hydrocarbons  

SciTech Connect (OSTI)

Phase equilibrium in mixtures of water + light gases and water + heavy hydrocarbons has been investigated with the development of new local composition theory, new equations of state, and new experimental data. The preferential segregation and orientation of molecules due to different energies of molecular interaction has been simulated with square well molecules. Extensive simulation has been made for pure square well fluids and mixtures to find the local composition at wide ranges of states. A theory of local composition has been developed and an equation of state has been obtained for square well fluids. The new local composition theory has been embedded in several equations of state. The pressure of water is decoupled into a polar pressure and non-polar pressure according to the molecular model of water of Jorgensen et al. The polar pressure of water is combined with the BACK equation for the general description of polar fluids and their mixtures. Being derived from the steam table, the Augmented BACK equation is particularly suited for mixtures of water + non-polar substances such as the hydrocarbons. The hydrophobic character of the hydrocarbons had made their mixtures with water a special challenge. A new group contribution equation of state is developed to describe phase equilibrium and volumetric behavior of fluids while requiring only to know the molecular structure of the components. 15 refs., 1 fig.

Chao, K.C.

1990-01-01T23:59:59.000Z

329

Proceedings of the Right Light 4 Conference, November 19-21, 1997, Copenhagen, Denmark. This work was supported by the U.S. General Services Administration, Pacific Rim Region, the Pacific Gas &  

E-Print Network [OSTI]

Cyclotron Road Berkeley, California, USA, 94720 Steven Blanc Pacific Gas & Electric Co. Customer Energy, Denmark. This work was supported by the U.S. General Services Administration, Pacific Rim Region, the Pacific Gas & Electric Company, and the Assistant Secretary for Energy Efficiency and Renewable Energy

330

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

Kenneth E. Baldrey

2001-09-01T23:59:59.000Z

331

DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY  

SciTech Connect (OSTI)

This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflect mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been considered and formulated aiming to reveal the interplay of the viscous, interfacial and gravity forces and to predict the gravity drainage performance. Scaling criteria for the scaled physical model design have been proposed based on an inspectional analysis. In Section II, equation of state (EOS) calculations were extended to study the effect of different tuning parameters on MMP for two reservoir crude oils of Rainbow Keg River and Terra Nova. This study indicates that tuning of EOS may not always be advisable for miscibility determination. Comparison of IFT measurements for benzene in water, ethanol mixtures with the solubility data from the literature showed that a strong mutual relationship between these two thermodynamic properties exists. These preliminary experiments indicate applicability of the new vanishing interfacial tension (VIT) technique to determine miscibility of ternary liquid systems. The VIT experimental apparatus is under construction with considerations of expanded capacity of using equilibrated fluids and a new provision for low IFT measurement in gas-oil systems. In Section III, recommendations in the previous progress reports have been investigated in this reporting period. WAG coreflood experiments suggest the use of ''Hybrid''-WAG type floods for improved CO{sub 2} utilization factors and recoveries. The effect of saturating the injection water with CO{sub 2} for core-floods has been investigated further in this quarter. Miscible WAG floods using CO{sub 2} saturated brine showed higher recoveries (89.2% ROIP) compared to miscible WAG floods using normal brine (72.5%). Higher tertiary recovery factors (TRF) were also observed for WAG floods using CO{sub 2} saturated brine due to improved mobility ratio and availability of CO{sub 2}. Continued experimentation for evaluation of both, ''Hybrid''-WAG and gravity stable type displacements, in Berea sandstone cores using synthetic as well as real reservoir fluids are planned for the next quarter.

Dandina N. Rao

2003-10-01T23:59:59.000Z

332

Electrical, optical, and material characterizations of blue InGaN light emitting diodes submitted to reverse-bias stress in water vapor condition  

SciTech Connect (OSTI)

In this paper, we investigate degradation of InGaN/GaN light emitting diodes (LEDs) under reverse-bias operations in water vapor and dry air. To examine failure origins, electrical characterizations including current-voltage, breakdown current profiles, optical measurement, and multiple material analyses were performed. Our findings indicate that the diffusion of indium atoms in water vapor can expedite degradation. Investigation of reverse-bias stress can help provide insight into the effects of water vapor on LEDs.

Chen, Hsiang, E-mail: hchen@ncnu.edu.tw; Chu, Yu-Cheng; Chen, Yun-Ti; Chen, Chian-You [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, No. 1, University Road, Puli, Nantou County 54561, Taiwan (China); Shei, Shih-Chang [Department of Electrical Engineering, National University of Tainan, No.33, Sec. 2, Shulin St., West Central Dist., Tainan City 70005, Taiwan (China)

2014-09-07T23:59:59.000Z

333

Driving on the Interior of Campus An increased number of vehicles and small electric/gas carts on campus, both State and private,  

E-Print Network [OSTI]

Driving on the Interior of Campus An increased number of vehicles and small electric/gas carts on campus, both State and private, have created an increased risk to pedestrians and has damaged walkways Director or the designee. · Private and vendor vehicles are restricted at all times. Vehicles requiring

de Lijser, Peter

334

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric-and Nuclear Power: A Life-cycle  

E-Print Network [OSTI]

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric- and Nuclear, photovoltaic, nuclear, life cycle 1 #12;Introduction The production of energy by burning fossil fuels generates, it is envisioned that expanding generation technologies based on nuclear power and renewable energy sources would

335

Model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity  

SciTech Connect (OSTI)

This work investigates the two-dimensional flow of a shock wave over a circular light-gas inhomogeneity in a channel with finite width. The pressure gradient from the shock wave interacts with the density gradient at the edge of the inhomogeneity to deposit vorticity around the perimeter, and the structure rolls up into a pair of counter-rotating vortices. The aim of this study is to develop an understanding of the scaling laws for the flow field produced by this interaction at times long after the passage of the shock across the inhomogeneity. Numerical simulations are performed for various initial conditions and the results are used to guide the development of relatively simple algebraic models that characterize the dynamics of the vortex pair, and that allow extrapolation of the numerical results to conditions more nearly of interest in practical situations. The models are not derived directly from the equations of motion but depend on these equations and on intuition guided by the numerical results. Agreement between simulations and models is generally good except for a vortex-spacing model which is less satisfactory. A practical application of this shock-induced vortical flow is rapid and efficient mixing of fuel and oxidizer in a SCRAMJET combustion chamber. One possible injector design uses the interaction of an oblique shock wave with a jet of light fuel to generate vorticity which stirs and mixes the two fluids and lifts the burning jet away from the combustor wall. Marble proposed an analogy between this three-dimensional steady flow and the two-dimensional unsteady problem of the present investigation. Comparison is made between closely corresponding three-dimensional steady and two-dimensional unsteady flows, and a mathematical description of Marble`s analogy is proposed. 17 refs.

Yang, J.; Kubota, T.; Zukoski, E.E. [California Inst of Technology, Pasadena, CA (United States)

1994-01-01T23:59:59.000Z

336

Experimental verification of effects of barrier dopings on the internal electric fields and the band structure in InGaN/GaN light emitting diodes  

SciTech Connect (OSTI)

We experimentally clarify the effects of barrier dopings on the polarization induced electric fields and the band structure in InGaN/GaN blue light emitting diodes. Both effects were independently verified by using electric field modulated reflectance and capacitance-voltage measurement. It is shown that the Si barrier doping does reduce the polarization induced electric field in the quantum wells. But the benefit of Si-doping is nullified by modification of the band structure and depletion process. With increased number of doped barriers, smaller number of quantum wells remains in the depletion region at the onset of the diffusion process, which can reduce the effective active volume and enhance the electron overflow.

Song, Jung-Hoon; Kim, Tae-Soo; Park, Ki-Nam; Lee, Jin-Gyu [Department of Physics, Kongju National University, Kongju, Chungnam 314-701 (Korea, Republic of); Hong, Soon-Ku, E-mail: soonku@cnu.ac.kr [Department of Advanced Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Cho, Sung-Royng; Lee, Seogwoo; Whan Cho, Meoung [Wasvesquare Co., Inc., Yongin, Gyeonggi 449-863 (Korea, Republic of)

2014-03-24T23:59:59.000Z

337

Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions  

SciTech Connect (OSTI)

To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50?s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5?k? to 39?k?. Moreover, an additional 500?s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5?k? to 13.9?k?. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8?nm and 12.8?nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20?nm.

Jeong, J. H., E-mail: juno@fris.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, Sendai (Japan); Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai (Japan); Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai (Japan); Kim, Y.; Kim, W. K.; Park, S. O. [Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of)

2014-05-07T23:59:59.000Z

338

Investigation of plasma-dust structures in He-Ar gas mixture  

SciTech Connect (OSTI)

The paper reports on the first experiments with plasma-dust formations in dc gas discharge plasma for a He-Ar mixture. It is shown that the choice of light and heavy gases for the mixture suppresses ion heating in electric field under the conventional conditions of experiments and results in a supersonic jet with high Mach numbers. Distribution functions for drifting ions in the gas mixture are calculated for various mixture concentrations, electric field strengths, and gas pressures.

Maiorov, S. A. [A.M. Prokhorov General Physics Institute of Russian Academy of Sciences, Moscow (Russian Federation); Ramazanov, T. S.; Dzhumagulova, K. N.; Jumabekov, A. N.; Dosbolayev, M. K. [Al Farabi Kazakh National University, IETP, Tole bi 96a, Almaty, 050012 (Kazakhstan)

2008-09-15T23:59:59.000Z

339

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

340

Electric power generation using a phosphoric acid cell on a municipal solid waste landfill gas stream. Technology verification report, November 1997--July 1998  

SciTech Connect (OSTI)

The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phosphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Performance data were collected at two sites determined to be representative of the U.S. landfill market. The Penrose facility, in Los Angeles, CA, was the first test site. The landfill gas at this site represented waste gas recovery from four nearby landfills, consisting primarily of industrial waste material. It produced approximately 3000 scf of gas/minute, and had a higher heating value of 446 Btu/scf at about 44% methane concentration. The second test site, in Groton, CT, was a relatively small landfill, but with greater heat content gas (methane levels were about 57% and the average heating value was 585 Btu/scf). The verification test addressed contaminant removal efficiency, flare destruction efficiency, and the operational capability of the cleanup system, and the power production capability of the fuel cell system.

Masemore, S.; Piccot, S.

1998-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

all fuels including electricity and syngas will be used forGas Electricity Biomass Syngas Space Heating Coal Oil Gas

2006-01-01T23:59:59.000Z

342

Kinetic simulation of neutral/ionized gas and electrically charged dust in the coma of comet 67P/Churyumov-Gerasimenko  

SciTech Connect (OSTI)

The cometary coma is a unique phenomenon in the solar system being a planetary atmosphere influenced by little or no gravity. As a comet approaches the sun, the water vapor with some fraction of other gases sublimate, generating a cloud of gas, ice and other refractory materials (rocky and organic dust) ejected from the surface of the nucleus. Sublimating gas molecules undergo frequent collisions and photochemical processes in the near-nucleus region. Owing to its negligible gravity, comets produce a large and highly variable extensive dusty coma with a size much larger than the characteristic size of the cometary nucleus.The Rosetta spacecraft is en route to comet 67P/Churyumov-Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Both, interpretation of measurements and safety consideration of the spacecraft require modeling of the comet's dusty gas environment.In this work we present results of a numerical study of multispecies gaseous and electrically charged dust environment of comet Chyuryumov-Gerasimenko. Both, gas and dust phases of the coma are simulated kinetically. Photolytic reactions are taken into account. Parameters of the ambient plasma as well as the distribution of electric/magnetic fields are obtained from an MHD simulation of the coma connected to the solar wind. Trajectories of ions and electrically charged dust grains are simulated by accounting for the Lorentz force and the nucleus gravity.

Tenishev, Valeriy; Rubin, Martin; Combi, Michael R. [University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109 (United States)

2011-05-20T23:59:59.000Z

343

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Electrical Energy Conservation Opportunities for Plug Loads and Lighting in UBC  

E-Print Network [OSTI]

Conservation Opportunities for Plug Loads and Lighting in UBC Office Buildings Natalie Yao University for plug loads and lighting in UBC Office Buildings Natalie Yao University of British Columbia Clean Energy), Robert Padwick (IT group), David Rogers and Alvin Wai (BC Hydro's Power Smart), and all UBC staff who

344

Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences  

SciTech Connect (OSTI)

A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

Kulcinski, G.L.

2002-12-01T23:59:59.000Z

345

Mobile lighting apparatus  

DOE Patents [OSTI]

A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

2013-05-14T23:59:59.000Z

346

Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report  

SciTech Connect (OSTI)

A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

NONE

1996-03-01T23:59:59.000Z

347

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site  

E-Print Network [OSTI]

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

1994-01-01T23:59:59.000Z

348

NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669  

SciTech Connect (OSTI)

The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1994-08-01T23:59:59.000Z

349

NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669  

SciTech Connect (OSTI)

The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1994-08-01T23:59:59.000Z

350

Energy-Efficient Lighting The typical American family spends more  

E-Print Network [OSTI]

Energy-Efficient Lighting The typical American family spends more than $1,500 a year on household energy bills--and many households spend considerably more. Costs could climb even higher in the future, as electricity and natural gas prices continue to rise. Investing money in energy-saving products like compact

351

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

352

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

Williams, Brett D

2007-01-01T23:59:59.000Z

353

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

fuel-cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, EarlyFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early

Williams, Brett D

2010-01-01T23:59:59.000Z

354

Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network [OSTI]

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

355

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network [OSTI]

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

356

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

OF THE EMERGING HYBRID-ELECTRIC AND DIESEL TECHNOLOGIES TOof the Emerging Hybrid-Electric and Diesel Technologies tomodern clean diesel engines and hybrid-electric powertrains

Burke, Andy

2004-01-01T23:59:59.000Z

357

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report  

SciTech Connect (OSTI)

The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

Mac Donald, Philip Elsworth

2002-06-01T23:59:59.000Z

358

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect (OSTI)

The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

1991-02-01T23:59:59.000Z

359

Contaminant trap for gas-insulated apparatus  

DOE Patents [OSTI]

A resinous body is placed in gas-insulated electrical apparatus to remove particulate material from the insulating gas.

Adcock, J.L.; Pace, M.O.; Christophorou, L.G.

1984-01-01T23:59:59.000Z

360

Comparison of 60-Hz electric fields and incandescent light as aversive stimuli controlling the behavior of rats  

SciTech Connect (OSTI)

Rats were exposed to two procedures which enabled them to press a lever to turn off a 90 or 100 kV/m 60-Hz electric field or, later in the study, illumination from an incandescent lamp. Under one procedure, a response turned off the stimulus for a fixed duration, after which the stimulus was turned on again. A response during the off-period restarted the fixed duration. None of the rats turned the field off reliably. Next, under an alternative procedure, pressing one lever turned the field off; pressing the other lever turned it back on; responding under those conditions differed little from that seen at 0 kV/m. Under both procedures, when illumination from an incandescent lamp served as the stimulus, each rat did turn the stimulus off, and performances varied with stimulus intensity. The results show that a 100 kV/m 60-Hz electric field is not sufficient to function as an aversive stimulus under two procedures where illumination from a lamp does function as an aversive stimulus.

Stern, S.; Laties, V.G.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report  

SciTech Connect (OSTI)

The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

Philip E. MacDonald

2003-09-01T23:59:59.000Z

362

Electric vehicles  

SciTech Connect (OSTI)

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

363

2012 National Electricity Forum  

Broader source: Energy.gov (indexed) [DOE]

Project Development, Pacific Gas & Electric * Brad Nickell, Director of Planning, Western Electricity Coordinating Council 12:00 pm - 12:30 pm Audience comments 12:30 pm Adjourn 1...

364

How Green Will Electricity beHow Green Will Electricity be When Electric Vehicles Arrive?When Electric Vehicles Arrive?  

E-Print Network [OSTI]

How Green Will Electricity beHow Green Will Electricity be When Electric Vehicles Arrive?When Electric Vehicles Arrive? Edward S. Rubin Department of Engineering and Public Policy Department-carbon electricity and plug-in hybrid electric vehicles (PHEVs) ? · In light of the above, would adoption of PHEVs

365

Report: Natural Gas Infrastructure Implications of Increased...  

Energy Savers [EERE]

interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased electric power sector natural gas use. To perform...

366

2012 National Electricity Forum  

Broader source: Energy.gov (indexed) [DOE]

and Planning, Arizona Public Service * Jan Strack, Grid Planning, Regulatory & Economics Manager, San Diego Gas & Electric * Mario Villar, Vice President, Transmission, NV...

367

DOE Electricity Advisory Committee  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the impact and benefit of wide scale use of variable resources including wind and solar power generation on electric power system reliability and greenhouse gas reduction; 3...

368

Regulations For Gas Companies (Tennessee)  

Broader source: Energy.gov [DOE]

The Regulations for Gas Companies, implemented by the Tennessee Regulatory Authority (Authority) outline the standards for metering, distribution and electricity generation for utilities using gas....

369

A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels  

SciTech Connect (OSTI)

A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

Tao, Greg, G.

2007-03-31T23:59:59.000Z

370

,"Connecticut Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural GasMarketedCoalbedNetGas,Price Sold to

371

,"Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural GasMarketedCoalbedNetGas,PricePrice Sold

372

,"Oregon Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShaleVolumeGas, WetLNG

373

All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our environment from heavy  

E-Print Network [OSTI]

All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our the environment by recycling universal wastes, contact EH&S at (949) 824-6200 or visit: www.ehs.uci.edu Mercury

George, Steven C.

374

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

4 demonstration of a plug-in diesel-electric HUMVEE by thediesel max output (kW) continuous/Me- kW type efficiency electric

Williams, Brett D

2010-01-01T23:59:59.000Z

375

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network [OSTI]

Tracks Locomotives & Cars Fuel (Diesel, Electric) RoadwaysVehicles Fuel (Diesel, Electric) Design N K,L,N Production

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

376

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect (OSTI)

CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

Not Available

1990-07-01T23:59:59.000Z

377

Lighting and Daylight Harvesting  

E-Print Network [OSTI]

exposing us to the latest products and technologies. Daylight Harvesting A system of controlling the direction and the quantity of light both natural and artificial within a given space. This implies: Control of fenestration in terms of size..., transmission and direction. Control of reflected light within a space. Control of electric light in terms of delivery and amount Daylight harvesting systems are typically designed to maintain a minimum recommended light level. This light level...

Bos, J.

2011-01-01T23:59:59.000Z

378

The Specter of Fuel-Based Light  

SciTech Connect (OSTI)

Contemporary questions about sustainable energy and development converge in unexpected ways around a technology that is at once an echo of the past and yet very much a part of the present: fuel-based lighting in the developing world. An emerging opportunity for reducing the global costs and greenhouse-gas emissions associated with this highly inefficient form of lighting energy use is to replace fuel-based lamps with white solid-state (''LED'') lighting, described in this Policy Forum, which can be affordably solar-powered. Doing so would allow those without access to electricity in developing world to affordably leapfrog over the prevailing incandescent and fluorescent lighting technologies in use today through the electrified world.

Mills, Evan

2005-05-16T23:59:59.000Z

379

Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.  

SciTech Connect (OSTI)

The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

Plotkin, S.

1999-01-01T23:59:59.000Z

380

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report  

SciTech Connect (OSTI)

The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

Mac Donald, Philip Elsworth

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas  

SciTech Connect (OSTI)

Here, GaN/Al{sub x}Ga{sub 1-x}N heterostructures with a graded AlN composition, completely lacking external p-doping, are designed and grown using metal-organic-chemical-vapour deposition (MOCVD) system to realize three-dimensional hole gas (3DHG). The existence of the 3DHG is confirmed by capacitance-voltage measurements. Based on this design, a p-doping-free InGaN/GaN light-emitting diode (LED) driven by the 3DHG is proposed and grown using MOCVD. The electroluminescence, which is attributed to the radiative recombination of injected electrons and holes in InGaN/GaN quantum wells, is observed from the fabricated p-doping-free devices. These results suggest that the 3DHG can be an alternative hole source for InGaN/GaN LEDs besides common Mg dopants.

Zhang, Zi-Hui; Tiam Tan, Swee; Kyaw, Zabu; Liu, Wei; Ji, Yun; Ju, Zhengang; Zhang, Xueliang [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore) [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wei Sun, Xiao, E-mail: EXWSUN@ntu.edu.sg [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electronics and Electrical Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Volkan Demir, Hilmi, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey); Department of Physics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey)

2013-12-23T23:59:59.000Z

382

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I  

SciTech Connect (OSTI)

The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.

Raymond Hobbs

2007-05-31T23:59:59.000Z

383

Explosively pumped laser light  

DOE Patents [OSTI]

A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

384

Extension of the operating parameters of the two stage light gas gun to velocities below 2 km/sec.  

SciTech Connect (OSTI)

The Joint Actinide Shock Physics Experimental Facility (JASPER) located in area 27 at the Nevada Test Site Has been tasked with providing high accuracy information on the Equation Of State (EOS) and other dynamic properties of weapons grade plutonium and other actinides important to the stockpile stewardship program. In the past 5 years this facility has provided dozens of experimental data points for the accurate determination of pressure density relationship for these materials over a broad pressure range. In order to complete this survey it is necessary to extend the low pressure region to include projectile velocities below 2 km/s. For most gas gun facilities this would present not too great a difficulty, one could simply decrease the amount of propellant along with a decrease in the strength of the petal valve, However JASPER requires that the piston be securely embedded in the Acceleration Reservoir (AR) as part of the containment system. The projectile must remain flat and undistorted. This requirement makes the attainment of slow velocities problematic. This talk will discuss the JASPER Facility, A finite difference code developed to give predictive capability for two stage gas guns, and a set of experiments performed to demonstrate this capability.

Thoe, R S

2007-08-28T23:59:59.000Z

385

,"California Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural Gas Expected FutureTotal

386

Evaluating metalorganic frameworks for natural gas storage  

E-Print Network [OSTI]

suited for light-duty passenger vehicles. For instance, compressed natural gas (CNG) requires expensive

387

,"New Jersey Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice Sold to Electric Power Consumers (Dollars per Thousand

388

,"New York Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPrice Sold to Electric Power Consumers (Dollars

389

,"South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per Thousand CubicResidentialPrice Sold to Electric Power

390

,"South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPrice Sold to Electric Power Consumers

391

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

impacts of marginal electricity demand for CA hydrogenUS DOE, 2007. EIA. Electricity data. [cited 2007 March 2,F. Decarbonized hydrogen and electricity from natural gas.

Yang, Christopher

2008-01-01T23:59:59.000Z

392

Electricity Merger Policy in the Shadow of Regulation  

E-Print Network [OSTI]

For The Dutch Electricity Sector, NMa, June (available atanalysing horizontal electricity sector mergers, that is notfuel, gas into the electricity sector (exemplified by both

Gilbert, Richard J; Newberry, David M

2006-01-01T23:59:59.000Z

393

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals  

SciTech Connect (OSTI)

This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit ({degrees}F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625{degrees}F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO{sub 2}) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m{sup 2}) and a total culture volume between 10,000 to 15,000 liters (L); a CO{sub 2} on-demand feeding system; an on-line data collection system for temperature, pH, Photosynthetically Activate Radiation (PAR) and dissolved oxygen (DO); and a ~2 gallons per minute (gpm) algae culture dewatering system. Among the three algae strains, Scenedesmus showed the most tolerance to temperature and irradiance conditions in Phoenix and the best self-settling characteristics. Experimental findings and operational strategies determined through these tests guided the operation of the algae cultivation system for the scale-up study. Effect of power plant flue gas, especially heavy metals, on algae growth and biomass adsorption were evaluated as well.

Sun, Xiaolei; Rink, Nancy

2011-04-30T23:59:59.000Z

394

,"Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural GasMarketedCoalbed MethaneLiquidsPrice

395

,"Hawaii Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio"Associated-Dissolved Natural Gas, WetDryPrice (Dollars

396

,"Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio"Associated-DissolvedSummary"Gas,Plant Liquids,Price

397

,"Missouri Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion Cubic Feet)"ShaleCoalbed MethaneGas, Wet AfterPricePrice

398

,"Montana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion Cubic Feet)"ShaleCoalbed MethaneGas,Price (DollarsPlantPrice

399

,"Ohio Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet After LeasePrice (Dollars

400

,"Oklahoma Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPriceGas, Wet AfterShale ProvedPrice

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"Texas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPriceDry Natural GasCrude Oil +Price Sold to

402

,"West Virginia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves inDry Natural GasPlant Liquids, Expected Future

403

,"Wisconsin Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves inDry Natural GasPlant Liquids,Shale Provedf.LNG

404

,"Wyoming Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves inDry Natural GasPlant+ Lease CondensatePlant

405

OTEC- Commercial Lighting Retrofit Rebate Program  

Broader source: Energy.gov [DOE]

The Oregon Trail Electric Consumers Cooperative (OTEC) offers a commercial lighting retrofit program that provides rebates for commercial businesses that change existing lighting to more energy...

406

Fluctuations and Correlations of net baryon number, electric charge, and strangeness: A comparison of lattice QCD results with the hadron resonance gas model  

E-Print Network [OSTI]

We calculate the quadratic fluctuations of net baryon number, electric charge and strangeness as well as correlations among these conserved charges in (2+1)-flavor lattice QCD at zero chemical potential. Results are obtained using calculations with tree level improved gauge and the highly improved staggered quark (HISQ) actions with almost physical light and strange quark masses at three different values of the lattice cut-off. Our choice of parameters corresponds to a value of 160 MeV for the lightest pseudo scalar Goldstone mass and a physical value of the kaon mass. The three diagonal charge susceptibilities and the correlations among conserved charges have been extrapolated to the continuum limit in the temperature interval 150 MeV net baryon number fluctuations in QCD agree with HRG model calculations while, the net electric charge fluctuations in QCD are about 10% smaller and net strangeness fluctuations are about 20% larger. These findings are relevant to the discussion of freeze-out conditions in relativistic heavy ion collisions.

A. Bazavov; Tanmoy Bhattacharya; C. E. DeTar; H. -T. Ding; Steven Gottlieb; Rajan Gupta; P. Hegde; Urs Heller; F. Karsch; E. Laermann; L. Levkova; Swagato Mukherjee; P. Petreczky; Christian Schmidt; R. A. Soltz; W. Soeldner; R. Sugar; Pavlos M. Vranas

2012-08-11T23:59:59.000Z

407

Lifeline electric rates and alternative approaches to the problems of low-income ratepayers. Ten case studies of implemented programs  

SciTech Connect (OSTI)

Program summaries, issue developments, governmental processes, and impacts are discussed for 10 case studies dealing with lifeline electric rates and alternative approaches to the problems of low-income ratepayers, namely; the Boston Edison rate freeze; the California lifeline; Florida Power and Light conservation rate; the Iowa-Illinois Gas and Electric small-use rate; the Maine demonstration lifeline program; the Massachusetts Electric Company A-65 rate; the Michigan optional senior citizen rate; the Narragansett Electric Company A-65 SSI rate; the Northern States Power Company conservation rate break; and the Potomac Electric Power Company rate freeze. (MCW)

Not Available

1980-07-01T23:59:59.000Z

408

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

409

Inflationary generalized Chaplygin gas and dark energy in the light of the Planck and BICEP2 experiments  

E-Print Network [OSTI]

In this work, we study an inflationary scenario in the presence of Generalized Chaplygin Gas (GCG). We show that in Einstein gravity, GCG is not a suitable candidate for inflation; but in a five dimensional brane world scenario, it can work as a viable inflationary model. We calculate the relevant quantities such as $n_{s}$, $r$ and $A_{s}$ related to the primordial scalar and tensor fluctuations, and using their recent bounds from Planck and BICEP2, we constrain the model parameters as well as the five-dimensional Planck mass. But as a slow-roll inflationary model with a power-law type scalar primordial power spectrum, GCG as an inflationary model can not resolve the tension between results from BICEP2 and Planck with a concordance $\\Lambda$CDM Universe. We show that going beyond the concordance $\\Lambda$CDM model and incorporating more general dark energy behaviour, this tension may be eased. We also obtain the constraints on the $n_{s}$ and $r$ and the GCG model parameters using Planck+WP+BICEP2 data considering the CPL dark energy behaviour.

Bikash R Dinda; Sumit Kumar; Anjan A. Sen

2014-10-21T23:59:59.000Z

410

Reduces electric energy consumption  

E-Print Network [OSTI]

BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

411

Resilience of gas-phase anharmonicity in the vibrational response of adsorbed carbon monoxide and breakdown under electrical conditions  

E-Print Network [OSTI]

In surface catalysis, the adsorption of carbon monoxide on transition-metal electrodes represents the prototype of strong chemisorption. Notwithstanding significant changes in the molecular orbitals of adsorbed CO, spectroscopic experiments highlight a close correlation between the adsorbate stretching frequency and equilibrium bond length for a wide range of adsorption geometries and substrate compositions. In this work, we study the origins of this correlation, commonly known as Badger's rule, by deconvoluting and examining contributions from the adsorption environment to the intramolecular potential using first-principles calculations. Noting that intramolecular anharmonicity is preserved upon CO chemisorption, we show that Badger's rule for adsorbed CO can be expressed solely in terms of the tabulated Herzberg spectroscopic constants of isolated CO. Moreover, although it had been previously established using finite-cluster models that Badger's rule is not affected by electrical conditions, we find here th...

Dabo, Ismaila

2012-01-01T23:59:59.000Z

412

Transport coefficients of a massive pion gas  

E-Print Network [OSTI]

We review or main results concerning the transport coefficients of a light meson gas, in particular we focus on the case of a massive pion gas. Leading order results according to the chiral power-counting are presented for the DC electrical conductivity, thermal conductivity, shear viscosity, and bulk viscosity. We also comment on the possible correlation between the bulk viscosity and the trace anomaly in QCD, as well as the relation between unitarity and a minimum of the quotient $\\eta/s$ near the phase transition.

D. Fernandez-Fraile; A. Gomez Nicola

2009-12-20T23:59:59.000Z

413

MassSAVE (Electric)- Residential Retrofit Programs  

Broader source: Energy.gov [DOE]

MassSAVE organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities include Columbia Gas of...

414

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect (OSTI)

The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro's estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

1991-01-01T23:59:59.000Z

415

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

C. Jean Bustard

2003-12-01T23:59:59.000Z

416

Demand Responsive Lighting: A Scoping Study  

SciTech Connect (OSTI)

The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

Rubinstein, Francis; Kiliccote, Sila

2007-01-03T23:59:59.000Z

417

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network [OSTI]

A Life-Cycle Model of an Automobile, Environmental Science &Pollutant Inventories of Automobiles, Buses, Light Rail,Pollutant Inventories of Automobiles, Buses, Light Rail,

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

418

2/21/2014 Downsizing Wind Energyfor Your Phone | Glacial EnergyBlog -Commercial Electric Savings, Electric Provider, Electric Supplier http://blog.glacialenergy.com/2014/02/19/downsizing-wind-energy-for-your-phone/ 1/2  

E-Print Network [OSTI]

suppliers selling electricity and natural gas to residential, commercial, industrial, and institutional Energy Saving Tips Events General Electricity green roof Household Tips Life Tips Natural Gas New Announcements Community Electrical Safety Electricity Energy Energy Efficiency Energy Innovations Energy News

Chiao, Jung-Chih

419

Sixth Northwest Conservation and Electric Power Plan Chapter 1: Introduction  

E-Print Network [OSTI]

electricity can provide, such as heat for homes, lights for commercial buildings, or motors for industrial

420

ECE 466: LED Lighting Systems -Incandescent lightings rise and  

E-Print Network [OSTI]

versus cost - Power Electronic Drives for CFL and LED light sources to achieve dimmable operation - Basic electric AC and DC circuits at Sophomore level or equivalents Absolutes Lighting System Requirements index as a metric of a light source - Power Electronic Energy sources driving light sources in a compact

Schumacher, Russ

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

LED Lighting Off the Grid  

Energy Savers [EERE]

D. & Kammen, D. M. Decentralized energy systems for clean electricity access. Nature Climate Change accepted, in press, (2015). Off-Grid Status Quo : Fuel Based Lighting...

422

Excitation in low-current discharges and breakdown in He at low pressures and very high electric field to gas density ratios E/N  

SciTech Connect (OSTI)

We investigate optical emission from low-current discharges in He at very high electric field to gas density ratios E/N between parallel plate electrodes. We also determine the electrical breakdown and the voltage-current behavior at low currents. The E/N are 300 Td to 9 kTd (1 Td=10{sup -21} V m{sup 2}) at pressures times electrode separations p{sub 0}d from 3 to 0.9 Torr cm. Absolute optical emission probabilities versus distance are determined for the 501.6 nm line (3 {sup 1}P{yields}2 {sup 1}S) and for the 587.6 nm line (3 {sup 3}D{yields}2 {sup 3}P) by reference to Boltzmann calculations at our lowest E/N and to published pressure dependent electron beam experiments. At E/N below 1 kTd, the emission follows the exponential growth of the electron density, while at above 7 kTd heavy particle excitation is evident near the cathode. Collisional transfer of excitation from the singlet to the triplet system dominates the 587.6 nm excitation. Comparisons of models with experiments show the importance of excitation and of electron production at the cathode by fast He atoms produced by charge transfer collisions of He{sup +} with He. The breakdown voltage versus p{sub 0}d is multivalued for p{sub 0}d{approx}1.5 Torr cm. At currents below 100 {mu}A and our lower E/N, the discharge voltage decreases linearly with current as expected for an increasing electron yield with ion energy and E/N at the cathode.

Jelenkovic, B.M.; Phelps, A.V. [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440 (United States); Institute of Physics, P.O. Box 75, Belgrade (Serbia and Montenegro); JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440 (United States)

2005-01-01T23:59:59.000Z

423

Photodetector with enhanced light absorption  

DOE Patents [OSTI]

A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

Kane, James (Lawrenceville, NJ)

1985-01-01T23:59:59.000Z

424

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

2002. EPRI, "Advanced Batteries for Electric-Drive Vehicles:12 2.2.2.1 PHEV uncertainties: Batteries andwith big propulsion batteries. However, recent activities (

Williams, Brett D

2010-01-01T23:59:59.000Z

425

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Honda's More Powerful Fuel Cell Concept with Home Hydrogen

Williams, Brett D

2010-01-01T23:59:59.000Z

426

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

Williams, Brett D

2007-01-01T23:59:59.000Z

427

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report  

SciTech Connect (OSTI)

The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.

Philip E. MacDonald

2005-01-01T23:59:59.000Z

428

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

Technologies to Reduce CO2 Emissions of New Light- Dutyreduce their CO2 emissions. The emerging technologiessignificantly reduce their CO2 emissions. These technologies

Burke, Andy

2004-01-01T23:59:59.000Z

429

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Mobile Electricity” Technologies, Early California Household Markets, and Innovation ManagementMobile Electricity” Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

Williams, Brett D

2010-01-01T23:59:59.000Z

430

MassSAVE (Gas)- Residential Rebate Program  

Broader source: Energy.gov [DOE]

MassSAVE, through Gas Networks, organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities...

431

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network [OSTI]

South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

432

DIRECT USE OF NATURAL GAS: ANALYSIS AND POLICY OPTIONS  

E-Print Network [OSTI]

heating with various electric and gas systems. The gas requirements for the electric systems shows that forced-air electric heating systems require about twice as much gas as a gas-fired forced-air system. Zonal electric heating systems, where rooms are independently heated without central furnace

433

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

E-Print Network [OSTI]

utility electricity and natural gas purchases, amortized capital and maintenance costs for distributed generation (

Stadler, Michael

2010-01-01T23:59:59.000Z

434

Electrical Engineer (Litigation)  

Broader source: Energy.gov [DOE]

This position is located in the Office of Administrative Litigation (OAL). As the Commissions trial staff, OAL seeks to assist entities such as electric utilities, natural gas pipelines and...

435

Electrical and Computer Engineering  

E-Print Network [OSTI]

technologies such as solar power and solid state (LED) lighting; Design sensors that measure glucose, generating and transmitting power, and designing smart sensors for robots. Circuits Communications Optics Power Sensors Signal & Image Processing #12;Electrical Engineering Develop environmentally friendly

Weber, Rodney

436

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Mobile Electricity” Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

Williams, Brett D

2007-01-01T23:59:59.000Z

437

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

electricity rates on a cost per kWh basis only with someTable 2-5 presents the cost per kWh produced by variousHybrid battery module cost per kWh required for lifecycle

Williams, Brett D

2007-01-01T23:59:59.000Z

438

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network [OSTI]

An overview. Electric Power Systems Research 79(4), 511-520.research has shown that EDVs offer a number of potential complementarities to the conventional system of electric power

Greer, Mark R

2012-01-01T23:59:59.000Z

439

10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

that stretches from fossil fuel­powered conventional vehicles (CVs) through hybrid electric vehicles 1-in Hybrid Electric Vehicles Daniel M. Kammen1 , Samuel M. Arons, Derek M. Lemoine and Holmes Hummel Cars per year.2 Plug-in hybrid electric vehicles could alter these trends. On a vehicle technology spectrum

Kammen, Daniel M.

440

Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li, Center for Gravity, Electrical, and Magnetic Studies, Colorado School of Mines  

E-Print Network [OSTI]

Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li basins and have strong remanent magnetization. The appli- cation arises in exploration of natural gas identify the volcanic units at large depths. INTRODUCTION Exploration for natural gas hosted in volcanics

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas Electric Power Price  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010 | 2006 | 2002 |J.MonthlyU.S.O F4.34 4.23

442

Natural Gas Electric Power Price  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per6.48(Millionthroughthroughthrough4.93 5.27 4.89

443

Natural Gas Electric Power Price  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per6.48(Millionthroughthroughthrough4.93 5.27 4.89

444

Natural Gas Electric Power Price  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per6.48(Millionthroughthroughthrough4.93 5.27

445

The Implementation of California AB 32 and its Impact on Wholesale Electricity Markets  

E-Print Network [OSTI]

its Impact on Wholesale Electricity Markets James Bushnellits Impact on Wholesale Electricity Markets James Bushnell *gas emissions from electricity and perhaps other industries.

Bushnell, Jim B

2007-01-01T23:59:59.000Z

446

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network [OSTI]

Management (DSM) in the Electricity Sector: Urgent Need for¼rcan, 2007, Electricity and natural gas sectors in Korea: aand commercial sub-sectors, electricity use is distributed

McNeil, MIchael

2011-01-01T23:59:59.000Z

447

Abstract--It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of  

E-Print Network [OSTI]

system operator (DSO) optimizes the cost of EV charging while taking substation transformer capacity and mitigate its intermittency. However, EV charging may have negative impact on the power grid. This paper effort to reduce the carbon foot print of electrical power industry has resulted in significant increase

Mahat, Pukar

448

Photonic crystal light source  

DOE Patents [OSTI]

A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

2004-07-27T23:59:59.000Z

449

Potential of electric propulsion systems to reduce petroleum use and greenhouse gas emissions in the U.S. light-duty vehicle fleet  

E-Print Network [OSTI]

In the summer of 2008, the United States of America experienced an oil shock, first of a kind since 1970s. The American public became sensitized to the concerns about foreign oil supply and climate change and global warming, ...

Khusid, Michael

2010-01-01T23:59:59.000Z

450

Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort  

E-Print Network [OSTI]

Daylight Coefficients, Lighting Research and Technology,America, 1999, The IESNA lighting handbook: reference andcontrol of electric lighting and blinds, Solar Energy, 77(

Fernandes, Luis

2014-01-01T23:59:59.000Z

451

Natural Gas Ethanol Flex-Fuel  

E-Print Network [OSTI]

Natural Gas Propane Electric Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2012 . . . . . . . . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . . . . . . . . 5 Compressed Natural Gas and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane

452

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

storage, and initial cost barriers—enable hydrogen-fuel-cellHydrogen Economy. New York: Tarcher-Putnam, 2002. ) production, fuel-cell costfuel-cell vehicle fed hydrogen by a stationary reformer reforming natural gas to produce hydrogen at a cost

Williams, Brett D

2010-01-01T23:59:59.000Z

453

Poudre Valley REA- Commercial Lighting Rebate Program (Colorado)  

Broader source: Energy.gov [DOE]

Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

454

Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station  

SciTech Connect (OSTI)

A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

Not Available

1982-03-01T23:59:59.000Z

455

Environmental Assessment of Plug-In Hybrid Electric Vehicles...  

Energy Savers [EERE]

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:...

456

Fact #844: October 27, 2014 Electricity Generated from Coal has...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has...

457

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

458

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 1, Final report  

SciTech Connect (OSTI)

The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

1991-02-01T23:59:59.000Z

459

MassSAVE (Electric)- Residential Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

MassSAVE organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities include Columbia Gas of...

460

Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings  

E-Print Network [OSTI]

Performance of Occupancy-Based Lighting Control Systems: AReview. ” Lighting Residential Technology 42:415-431. Itron,Information Template – Indoor Lighting Controls. Pacific Gas

Williams, Alison

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint  

SciTech Connect (OSTI)

Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

2012-08-01T23:59:59.000Z

462

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network [OSTI]

Pomper, S.D. , Life Cycle Inventory of a Generic U.S. Family2007. [EEA 2006] Emission Inventory Guidebook, ActivitiesVolume I: National Lighting Inventory and Energy Consumption

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

463

Estimated Value of Service Reliability for Electric Utility Customers in the United States  

E-Print Network [OSTI]

Administration, Duke Energy, Mid America Power, Pacific Gas and Electric Company, Puget Sound Energy, Salt River

464

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

utility electricity and natural gas purchases, amortized capital and maintenance costs for distributed generation (

Stadler, Michael

2008-01-01T23:59:59.000Z

465

Distributional and Efficiency Impacts of Clean and Renewable Energy Standards for Electricity  

E-Print Network [OSTI]

We examine the efficiency and distributional impacts of greenhouse gas policies directed toward the electricity

Rausch, Sebastian

2012-07-17T23:59:59.000Z

466

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network [OSTI]

Profiles of Renewable and Natural Gas Electricity Contracts:Price Risk: Using Forward Natural Gas Prices Instead of Gas2001). “Which way the natural gas price: an attempt to

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

467

Product Quality Assurance for Off-Grid Lighting in Africa  

E-Print Network [OSTI]

presently lack modern energy, with rural electricity accessSilver, Energy Associates LLC Mark Hankins Rural Lighting

Mills, Evan; World Bank

2008-01-01T23:59:59.000Z

468

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network [OSTI]

Ferdowsi, M. (2007). Plug-hybrid vehicles – A vision for thepower: battery, hybrid and fuel cell vehicles as resources2010). Plug-in hybrid electric vehicles as regulating power

Greer, Mark R

2012-01-01T23:59:59.000Z

469

Abstract-Coal and hydro will be the main sources of electric energy in Chile for the near future, given that natural gas  

E-Print Network [OSTI]

Abstract- Coal and hydro will be the main sources of electric energy in Chile for the near future and the environmental dilemma faced by the country, where both coal and hydro produce some kind of impact. The role

Dixon, Juan

470

Light intensity compressor  

DOE Patents [OSTI]

In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

Rushford, Michael C. (Livermore, CA)

1990-01-01T23:59:59.000Z

471

Solid state lighting component  

DOE Patents [OSTI]

An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

2010-10-26T23:59:59.000Z

472

Solid state lighting component  

DOE Patents [OSTI]

An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

2012-07-10T23:59:59.000Z

473

Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing  

E-Print Network [OSTI]

Residential Market for Natural Gas,” 2008, working paper. [of Electricity and Natural Gas,” Journal of IndustrialPrices: Evidence from Natural Gas Distribution Utilities,”

Davis, Lucas; Muehlegger, Erich

2009-01-01T23:59:59.000Z

474

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased...  

Open Energy Info (EERE)

Purchased Electricity Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity AgencyCompany...

475

Design, modelling and control of a gas turbine air compressor .  

E-Print Network [OSTI]

??The production of compressed air constitutes a considerable portion of industrial electrical consumption. An alternative to electrically driven air compression systems is a gas turbine… (more)

WIESE, ASHLEY PETER

2014-01-01T23:59:59.000Z

476

SCENARIO ANALYSES OF CALIFORNIA'S ELECTRICITY SYSTEM: PRELIMINARY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION SCENARIO ANALYSES OF CALIFORNIA'S ELECTRICITY SYSTEM: PRELIMINARY Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B. Blevins Executive Director.................................................................................................... 22 CHAPTER 3 - Natural Gas Market Clearing Price Implications of Reduced Consumption from the Power

477

arctic gas pipeline: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 3 A moving horizon solution to the gas pipeline...

478

arctic gas pipelines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 3 A moving horizon solution to the gas pipeline...

479

Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas...  

Broader source: Energy.gov (indexed) [DOE]

Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia to Join National Clean Fleets Partnership Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas and...

480

Electricity Monthly Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

increased electric demand and wholesale and retail prices over last February. Coal consumption rose across the U.S. and out competed natural gas on price in the East. A gas...

Note: This page contains sample records for the topic "gas light electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Gas concentration cells for utilizing energy  

DOE Patents [OSTI]

An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

Salomon, R.E.

1987-06-30T23:59:59.000Z

482

Gas concentration cells for utilizing energy  

DOE Patents [OSTI]

An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

Salomon, Robert E. (Philadelphia, PA)

1987-01-01T23:59:59.000Z

483

DTE Energy (Electric)- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

DTE offers a combination of energy audit discounts and rebates for the installation of energy efficiency improvements in Detroit Edison Electric and Michigan Consolidated Gas Co. service areas....

484

Electricity Advisory Committee Meeting Presentations September...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Patricia Hoffman, Assistant Secretary, and William Parks, Senior Technical Advisor, DOE OE Panel - Gas-Electric Issues: Regulatory Mechanisms to Ensure Fuel Adequacy -...

485

MassSAVE (Electric)- Commercial Retrofit Program  

Broader source: Energy.gov [DOE]

MassSAVE organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

486

Roseville Electric- Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Roseville Electric offers incentives for its commercial customers to increase the efficiency of existing facilities. Rebates are offered for energy efficient lighting equipment, HVAC system...

487

Denton Municipal Electric- Standard Offer Rebate Program  

Broader source: Energy.gov [DOE]

Within the GreenSense program, Denton Municipal Electric's Standard Offer Program provides rebates to large commercial and industrial customers for lighting retrofits, HVAC upgrades and motor...

488

Dynamic Electric Power Supply Chains and Transportation Networks  

E-Print Network [OSTI]

Dynamic Electric Power Supply Chains and Transportation Networks: an Evolutionary Variational energy Electric power supply chains, provide the foundations for theElectric power supply chains, provide and societies. Communication, transportation, heating, lighting, cooling,Communication, transportation, heating

Nagurney, Anna

489

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

System Operator. WECC (2006) Information Summary, Westernx SDG&E SMR SMUD TID v VMT WECC San Diego Gas & ElectricCoordinating Council (WECC) differ somewhat from the CEC and

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

490

EIS-0105: Conversion to Coal, Baltimore Gas & Electric Company, Brandon Shores Generating Station Units 1 and 2, Anne Arundel County, Maryland  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s Economic Regulatory Administration Office of Fuels Program, Coal and Electricity Division prepared this statement to assess the potential environmental and socioeconomic impacts associated with prohibiting the use of petroleum products as a primary energy source for Units 1 and 2 of the Brandon Shores Generating Station, located in Anne Arundel County, Maryland.

491

Recent Graduate- Electrical Engineer (Litigation)  

Broader source: Energy.gov [DOE]

This position is located in the Office of Administrative Litigation (OAL). As the Commissions trial staff, OAL seeks to assist entities such as electric utilities, natural gas pipelines and...

492

Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications  

SciTech Connect (OSTI)

The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

NONE

1997-03-01T23:59:59.000Z

493

Electric Currents Electric Current  

E-Print Network [OSTI]

;Problem 3: At $0.095/kWh, what does it cost to leave a 25W porch light on day and night for a year = 219000 Watt- hour = 219kWh. So, total cost = 219 x$0.095 = $20.8 #12;Problem 4: A 100 W light bulb has of charge per unit time: = . Unit of current: Ampere (A). The purpose of a battery is to produce

Yu, Jaehoon

494

Commercial Lighting  

Broader source: Energy.gov [DOE]

Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

495

Automatic Mechetronic Wheel Light Device  

DOE Patents [OSTI]

A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

Khan, Mohammed John Fitzgerald (Silver Spring, MD)

2004-09-14T23:59:59.000Z

496

Electric Utility Industrial Conservation Programs  

E-Print Network [OSTI]

The Alliance to Save Energy conducted a study, funded by the John A. Hartford Foundation, of industrial and commercial electricity conservation opportunities in the service territory of Arkansas Power and Light Company (AP&L). The study determined...

Norland, D. L.

1983-01-01T23:59:59.000Z

497

Electromagnetic Radiation in Hot QCD Matter: Rates, Electric Conductivity, Flavor Susceptibility and Diffusion  

E-Print Network [OSTI]

We discuss the general features of the electromagnetic radiation from a thermal hadronic gas as constrained by chiral symmetry. The medium effects on the electromagnetic spectral functions and the partial restoration of chiral symmetry are quantified in terms of the pion densities. The results are compared with the electromagnetic radiation from a strongly interacting quark-gluon plasma in terms of the leading gluon condensate operators. We use the spectral functions as constrained by the emission rates to estimate the electric conductivity, the light flavor susceptibility and diffusion constant across the transition from the correlated hadronic gas to a strongly interacting quark-gluon plasma.

Chang-Hwan Lee; Ismail Zahed

2014-03-07T23:59:59.000Z

498

Electric turbocompound control system  

DOE Patents [OSTI]

Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

Algrain, Marcelo C. (Dunlap, IL)

2007-02-13T23:59:59.000Z

499

Optical remote monitoring of CH/sub 4/ gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1. 33-. mu. m region  

SciTech Connect (OSTI)

Purely optical remote monitoring of low-level CH/sub 4/ gas is realized for the first time by the method employing a 2-km long-distance, low-loss silica optical fiber link and a compact absorption cell in conjunction with a high radiant InGaAsP light-emitting diode (LED) at 1.33 ..mu..m. Based on the present experiment, the detection limit of CH/sub 4/ in air was confirmed to be approximately 2000 ppm, i.e., 4% of the lower explosion limit of CH/sub 4/. This result supports the conclusion that the fully optical remote sensing system incorporating ultralow loss optical fiber networks and near infrared LEDs or laser diodes can be extensively used for the detection and surveillance of various inflammable and/or explosive gases in industrial and mining complexes as well as in residential areas.

Chan, K.; Ito, H.; Inaba, H.

1983-10-01T23:59:59.000Z

500

Electric thermal storage demonstration program  

SciTech Connect (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-02-01T23:59:59.000Z