Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Proper design hikes gas-lift system efficiency  

SciTech Connect

Proper design of gas-lift pumping systems, used for pumping corrosive or erosive fluids, involves the correct selection of submergence ratio, flow regime, pipe diameter, and physical properties of the fluid. Correlations for maximum lifting efficiency on a friction-free basis vs. submergence ratio have been developed based on experimental data. The Oshinowo and Charles flow map for vertical upward flow has been chosen for determining the two-phase flow regimes. For large-diameter gas-lifting systems, the effects of fluid physical properties on the maximum lifting efficiency become diminished. Gas-lift pumping systems are widely used in the process industry as well as in oil and gas production. In an ethylene dichloride/vinyl chloride monomer (EDC/VCM) plant, quench column bottoms are recirculated back to the column by gas lift of the EDC/VCM stream from the EDC pyrolysis furnace. Gas lift is utilized instead of pumps to alleviate the plugging and erosion problems caused by the presence of coke/tar particulates. Other process applications include those where pumps suffer severe corrosion from the fluids pumped.

Tsai, T.C.

1986-06-30T23:59:59.000Z

2

Control structure design for stabilizing unstable gas-lift oil wells  

E-Print Network (OSTI)

Control structure design for stabilizing unstable gas-lift oil wells Esmaeil Jahanshahi, Sigurd valve is the recommended solution to prevent casing-heading instability in gas-lifted oil wells. Focus to be effective to stabilize this system. Keywords: Oil production, two-phase flow, gas-lift, controllability, H

Skogestad, Sigurd

3

Rod Pumping, Gas Well Dewatering and Gas Lift  

NLE Websites -- All DOE Office Websites (Extended Search)

new in artificial new in artificial lift? Production technology Part 1: In this first of two monthly reports, new innovations that improve operations and/or reduced expenses are described in the categories of Beam/ Rod Pumping, Gas Well Dewatering and Gas Lift ŝ ŝ JAMES F. LEA, PL Tech LLC; and HERALD W. WINKLER, Texas Tech University It has been another banner year for ar- tificial lift innovations. The offerings have been prolific enough, that we have split this year's report into two halves. This first-half report will cover eight develop- ments in Beam/Rod Pumping, Gas Lift and Gas Well Dewatering. In beam/rod pumping, a "three-in- one" solution is discussed, whereby coiled tubing is not only used as a pumping string, but as a means for the operator to preventively treat the well. Another item

4

Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan, and Bjarne Foss  

E-Print Network (OSTI)

Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan flow systems is an area of increasing interest for the oil and gas industry. Oil wells with highly related to oil and gas wells exist, and in this study, unstable gas lifted wells will be the area

Foss, Bjarne A.

5

An artificial intelligence approach to model-based gas lift troubleshooting  

E-Print Network (OSTI)

. Gas lift injection pressure is too high, I have not seen this pressure in the system before. . . . . something is wrong! Gas lift injection pressure is greater than the value given by the computerized gas lift design model C 3 O O 0 0 O... porous medium is proportional to the pressure or hydraulic gradient and to the cross-sectional area normal to the direction of flow and inversely proportional to the viscosity of the fluid. CO C 3 FLUID THROUGH POROUS MEDIUM 0 0 r)( r Fig. 2. 3...

Ortiz-Volcan, Jose Luis

1990-01-01T23:59:59.000Z

6

New model adds precision to gas-lift design  

SciTech Connect

Conoco Inc.'s new analytical technique for lift-gas allocation identifies, in one-pass, injection rates and the achievable mandrel location for injection. Current gas-lift allocation techniques do not determine production rates for discrete mandrel locations. Allocation rates for particular wells are made on the basis of a fixed differential pressure. When actual mandrel locations are superimposed on these solutions, gas often must be reallocated. The advantages of the new technique include: determining the transfer capability of the gas-lift valve in each mandrel; finding valve pressure drop as a function of injection gas rate; obtaining a more realistic response curve. Another potential benefit is that the response curve can be adjusted to reflect the water cut and/or multizone completion effects at different injection depths. Because the node is at the mandrel, the inflow performance relationship (IPR) at that depth can easily be adjusted to include such effects. The paper describes gas-lift applications; response curves; injection depth; field-wide curves; the mandrel curve; and valve design.

Kendrick, R.A. (Hampton Resources Inc., Houston, TX (United States)); Woodyard, A.H.; Hall, J.W. (Conoco Inc., Houston, TX (United States))

1993-05-03T23:59:59.000Z

7

E-Print Network 3.0 - artificial lift system Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Technologies and Information Sciences 23 STABILIZATION OF GAS LIFTED WELLS BASED ON STATE ESTIMATION Summary: for stabilization of gas lifted well, by...

8

Gas-lift technology applied to dewatering of coalbed methane wells in the black warrior basin  

SciTech Connect

Coalbed methane (CBM) wells are usually dewatered with sucker rod or progressive cavity pumps to reduce wellbore water levels, although not without problems. This paper describes high-volume artificial-lift technology that incorporates specifically designed gas-lift methods to dewater Black Warrior CBM wells. Gas lift provides improved well maintenance and production optimization by the use of conventional wireline service methods.

Johnson, K.J.; Coats, A. (Otis Engineering Corp., Dallas, TX (United States)); Marinello, S.A. (Colorado School of Mines, Golden, CO (United States))

1992-11-01T23:59:59.000Z

9

High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems  

Energy.gov (U.S. Department of Energy (DOE))

High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

10

High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems  

Open Energy Info (EERE)

Temperature-High-Volume Lifting For Enhanced Geothermal Systems Temperature-High-Volume Lifting For Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature-High-Volume Lifting Project Description The proposed scope of work is divided into three Phases. Overall system requirements will be established in Phase 1, along with an evaluation of existing lifting system capability, identification of technology limitations, and a conceptual design of an overall lifting system. In developing the system components in Phase 2, component-level tests will be conducted using GE facilities. Areas of development will include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall lab-scale lifting system will be demonstrated in a flow loop that will be constructed at GE Global Research.

11

Effectiveness of solar water-lift system with parabolic cylindrical solar energy collector and jet pump  

Science Journals Connector (OSTI)

Formulas are presented and a computer calculation program is implemented for determining the energy efficiency of a solar water-lift system module with a parabolic...

S. F. Ergashev

2007-03-01T23:59:59.000Z

12

Designing sustainable heavy lift launch vehicle architectures adaptability, lock-in, and system evolution  

E-Print Network (OSTI)

Long term human space exploration depends on the development of a sustainable heavy lift launch vehicle (HLLV). But what exactly is sustainability in the context of launch systems and how can it addressed in the design ...

Silver, Matthew Robin

2005-01-01T23:59:59.000Z

13

Free Trade in Oil and Natural Gas, The Case for Lifting the Ban on U.S. Energy Exports  

E-Print Network (OSTI)

Not only should the US lift its ban on exporting oil and natural gas in light of todays economic and political climate, but it was wrong to ever ban such exports in the first place. The US should cease to view its energy resources as a purely...

Griffin, James M.; Gause, F. Gregory

14

Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems  

Science Journals Connector (OSTI)

...1510kg shell were fired vertically it...of the very hot gases, at a cost of...missiles or a new generation of high performance...in the lifting gas between 20km altitude...on fan size and power. A similar problem...away the carrier gases (either H2 or...pipe the pumping power is given by 500...

2012-01-01T23:59:59.000Z

15

Decision matrix for liquid loading in gas wells for cost/benefit analyses of lifting options  

E-Print Network (OSTI)

rotation using an electric motor at the surface. Fig. 2.9 PCP system (Schlumberger, 2007). Applications PCP can be applied to the wells producing sand-laden heavy oil and bitumen, high water-cut wells, and in the gas wells that require...

Park, Han-Young

2008-10-10T23:59:59.000Z

16

Case Study- The Challenge: Saving Energy at a Sewage Lift Station Through Pump System Modifications  

Energy.gov (U.S. Department of Energy (DOE))

This case study explores how the City of Milford, Connecticut saved energy at the Welches Point sewage lift station. By adding a small booster pump to the sewage pumping system, the city reduced the station's annual energy consumption by 36,096 kWh, or more than 15 percent, which resulted in annual savings of $2,960. With a total implementation cost of $16,000, the project yielded a simple payback of 5.4 years.

17

GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS  

E-Print Network (OSTI)

1 GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS MSc. Hans in an oil production system is developed. Each well may be manipulated by injecting lift gas and adjusting in the maximum oil flow rate, water flow rate, liquid flow rate, and gas flow rate. The wells may also

Johansen, Tor Arne

18

Structure and Dynamics of Anaerobic Bacterial Aggregates in a Gas-Lift Reactor  

Science Journals Connector (OSTI)

...Consequently, the mechanical strength of aggregates is affected...Such mechanical effects by gas bubbles arising within biofilms...shearing forces, cell lysis, gas production, etc.) may...W. F. Kossen. 1980. Gas production by immobilized...

H. H. Beeftink; P. Staugaard

1986-11-01T23:59:59.000Z

19

Gas turbine cooling system  

DOE Patents (OSTI)

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

20

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NETL: Gasification Systems - Gas Cleaning  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleaning Cleaning Chemicals from Coal Complex Chemicals from Coal Complex (Eastman Company) Novel gas cleaning and conditioning are crucial technologies for achieving near-zero emissions, while meeting gasification system performance and cost targets. DOE's Gasification Systems program supports technology development in the area of gas cleaning and conditioning, including advanced sorbents and solvents, particulate filters, and other novel gas-cleaning approaches that remove and convert gas contaminants into benign and marketable by-products. To avoid the cost and efficiency penalties associated with cooling the gas stream to temperatures at which conventional gas clean-up systems operate, novel processes are being developed that operate at mild to high temperatures and incorporate multi-contaminant control to

22

Gas well operation with liquid production  

SciTech Connect

Prediction of liquid loading in gas wells is discussed in terms of intersecting tubing or system performance curves with IPR curves and by using a more simplified critical velocity relationship. Different methods of liquid removal are discussed including such methods as intermittent lift, plunger lift, use of foam, gas lift, and rod, jet, and electric submersible pumps. Advantages, disadvantages, and techniques for design and application of the methods of liquid removal are discussed.

Lea, J.F.; Tighe, R.E.

1983-02-01T23:59:59.000Z

23

Precision Gas System (PGS) Handbook  

SciTech Connect

This precision gas system (PGS) makes high-accuracy, high-precision measurements of CO2 mixing ratio (ppmv dry air) in air sampled at 2, 4, 25, and 60 m above the ground.

Torn, M

2004-12-01T23:59:59.000Z

24

NETL: Gasification Systems - Gas Separation  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation Separation Ion-Transport Membrane Oxygen Separation Modules Ion-Transport Membrane Oxygen Separation Modules Gas separation unit operations represent major cost elements in gasification plants. The gas separation technology being supported in the DOE program promises significant reduction in cost of electricity, improved thermal efficiency, and superior environmental performance. Gasification-based energy conversion systems rely on two gas separation processes: (1) separation of oxygen from air for feed to oxygen-blown gasifiers; and (2) post-gasification separation of hydrogen from carbon dioxide following (or along with) the shifting of gas composition when carbon dioxide capture is required or hydrogen is the desired product. Research efforts include development of advanced gas separation

25

Decision Matrix Screening Tool to Identify the Best Artificial Lift Method for Liquid-loaded Gas Wells  

E-Print Network (OSTI)

the additional gas production resulted from simulation to calculate economic yardsticks (the third round), NPV and IRR. Moreover, we made the decision matrix more complete by adding three more liquid unloading techniques to the decision matrix: velocity string...

Soponsakulkaew, Nitsupon

2010-10-12T23:59:59.000Z

26

Backscatter absorption gas imaging system  

DOE Patents (OSTI)

A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

McRae, Jr., Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

27

Fuel cell gas management system  

DOE Patents (OSTI)

A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2000-01-11T23:59:59.000Z

28

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

29

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

30

Gas fired Advanced Turbine System  

SciTech Connect

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

31

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

32

Mercury sorbent delivery system for flue gas  

DOE Patents (OSTI)

The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

Klunder; ,Edgar B. (Bethel Park, PA)

2009-02-24T23:59:59.000Z

33

Flammable Gas Detection for the D-Zero Gas System  

SciTech Connect

The use of flammable gas and high voltage in detector systems is common in many experiments at Fermilab. To mitigate the hazards associated with these systems, Fermilab Engineering Standard SD-45B (Ref. 1) was adopted. Since this note is meant to be a guide and not a mandatory standard, each experiment is reviewed for compliance with SD-45B by the flammable gas safety subcommittee. Currently, there are only two types of flammable gas in use, ethane (Appendix A) and methane (Appendix B). The worst flammable-gas case is C2H6 (ethane), which has an estimated flow rate that is 73% of the CH4 (methane) flow but a heat of combustion (in kcal/g-mole) that is 173% of that of methane. In the worst case, if ethane were to spew through its restricting orifice into its gas line at 0 psig and then through a catastrophic leak into Room 215 (TRD) or Room 511 (CDC/FDCNTX), the time that would be required to build up a greater than Class 1 inventory (0.4kg H2 equivalent) would be 5.2 hours (Ref. 2). Therefore a worst-case flammable gas leak would have to go undetected for over 5 hours in order to transform a either mixing room to an environment with a Risk Class greater than Class 1. The mixing systems, gas lines, and detectors themselves will be thoroughly leak checked prior to active service. All vessels that are part of the mixing systems will be protected from overpressure by safety valves vented outside the building. Both the input and output of all detector volumes are protected from overpressure in the same way. The volume immediately outside the central tracking detectors is continuously purged by nitrogen from boiloff from the main nitrogen dewar at the site. However, if flammable gas were to build up in the mixing rooms or particular detector areas, no matter how unlikely, flammable gas detectors that are part of the interlock chain of each gas mixing system will shut down the appropriate system. This includes shutting off the output of flammable gas manifolds within the gas shed. Similarly, if a fire were to break out anywhere in the D-ZERO Hall, fire sensors would stop the output of all flammable gas manifolds within the gas shed, by unpowering electrically controlled solenoid valves that are normally closed in the event of a power failure. Fire sensor contacts have not yet been installed.

Spires, L.D.; Foglesong, J.; /Fermilab

1991-02-11T23:59:59.000Z

34

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

35

FREIGHT CONTAINER LIFTING STANDARD  

SciTech Connect

This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

POWERS DJ; SCOTT MA; MACKEY TC

2010-01-13T23:59:59.000Z

36

Lifting by Convergence Lines  

Science Journals Connector (OSTI)

The lifting depth of a convergence line in an unstratified boundary layer beneath a stably stratified atmosphere is examined with both analytical and numerical models. Cases are considered with and without flow in the layer above the convergence ...

N. Andrew Crook; Joseph B. Klemp

2000-03-01T23:59:59.000Z

37

5 - Combustors in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: This chapter discusses combustion systems in gas turbines. It begins by reviewing basic design principles before discussing developments in technology such as advanced fuel staging and reheat combustion systems. The chapter also covers the impact of different natural gas types on combustor operations, including combustor design for low calorific gases and fuel oils.

P. Flohr; P. Stuttaford

2013-01-01T23:59:59.000Z

38

EIA - Natural Gas Pipeline System - Central Region  

U.S. Energy Information Administration (EIA) Indexed Site

Central Region Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve interstate natural gas pipeline systems enter the region from the south and east while four enter from the north carrying Canadian supplies. The average utilization rates on those shipping Canadian natural gas tend to be higher than those carrying domestic supplies.

39

Natural Gas Annual Respondent Query System  

Gasoline and Diesel Fuel Update (EIA)

loading new table loading new table Home > Natural Gas > Natural Gas Annual Respondent Query System Natural Gas Annual Respondent Query System (EIA-176 Data through 2012) Report: 176 Natural Gas Deliveries 176 Natural Gas Supply Items 176 Natural Gas Other Disposition Items 176 Type of Operations and Sector Items 176 Continuation Text Lines 176 Company List 191 Field Level Storage Data 757 Processing Capacity 176 Custom Report (User-defined) Years: 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 to 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Sort by: Area, Company, Item Company, Area, Item Item, Area, Company Company: Show only Company ID Show only Company Name Show both Company ID, Name 2012 Total

40

EIA - Natural Gas Pipeline System - Southwest Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southwest Region Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily exporters of the region's natural gas production to other parts of the country and Mexico, while an extensive Gulf of Mexico and intrastate natural gas pipeline network is the main conduit for deliveries within the region. More than 56,000 miles of natural gas pipeline on more than 66 intrastate natural gas pipeline systems (including offshore-to-onshore and offshore Gulf of Mexico pipelines) deliver natural gas to the region's local natural gas distribution companies and municipalities and to the many large industrial and electric power facilities located in the region.

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Feature extraction and classification of load dynamic characteristics based on lifting wavelet packet transform in power system load modeling  

Science Journals Connector (OSTI)

Abstract Load dynamic characteristics classification and synthesis is the main approach to solve the problem of load time-variation. The basis and prerequisite of load dynamic characteristics classification is load dynamic characteristics feature extraction. Load model parameter space or the model response space gained by a standard voltage excitation is usually selected as the feature vector space in current practice of load dynamic characteristics feature extraction. However, both methods need to determine the load model structure and identify the model parameters. It would increase not only calculation error but also calculation time in the process of load model structure determination and parameter identification. Then the accuracy of the final classification results would be affected. It is reasonable and scientific to extract feature vector space of load dynamic characteristics directly from the measured response space. In this paper, a feature extraction method based on lifting wavelet packet transform is proposed for load dynamic characteristics classification. The load measured current response data is decomposed and reconstructed, then the wavelet packet coefficients can be extracted to construct energy moment based feature vector. On this basis, the load dynamic characteristics classification can be realized using fuzzy c-means (FCM) method. Finally, the validity and practicality of the proposed method have been proved by feature extraction and classification of dynamic simulation data acquired using Matlab/Simulink and field measurement data. Compared with traditional wavelet packet transform, the lifting wavelet packet transform has shown advantages both in computational speed and reconstruction error and can improve the accuracy of load dynamic characteristics classification.

Zhenshu Wang; Shaorun Bian; Ming Lei; Chuangang Zhao; Yan Liu; Zhifan Zhao

2014-01-01T23:59:59.000Z

42

Hot gas filter and system assembly  

DOE Patents (OSTI)

A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

Lippert, Thomas Edwin (Murrysville, PA); Palmer, Kathryn Miles (Monroeville, PA); Bruck, Gerald Joseph (Murrysville, PA); Alvin, Mary Anne (Pittsburgh, PA); Smeltzer, Eugene E. (Export, PA); Bachovchin, Dennis Michael (Murrysville, PA)

1999-01-01T23:59:59.000Z

43

Reduce Natural Gas Use in Your Industrial Process Heating Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Use in Your Industrial Process Heating Systems Reduce Natural Gas Use in Your Industrial Process Heating Systems This fact sheet describes ten effective ways to save...

44

Air-Lift design theory  

Science Journals Connector (OSTI)

1. Employing graphical relationships between height of lift of the emulsion, depth of shaft, and specific air ra...

P. R. Khlopenkov

1970-10-01T23:59:59.000Z

45

Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CNG Refuse Haulers Do CNG Refuse Haulers Do Heavy Lifting in New York to someone by E-mail Share Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Facebook Tweet about Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Twitter Bookmark Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Google Bookmark Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Delicious Rank Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Digg Find More places to share Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on AddThis.com... Nov. 13, 2010 CNG Refuse Haulers Do Heavy Lifting in New York W atch how Smithtown uses compressed natural gas trash haulers to combat the

46

Heavy lift crane/derrick barge stability analysis  

E-Print Network (OSTI)

Curve DB17 2. Righting Arm Curve Corrected for Vertical Lift 3. Righting Arm Curve Corrected for Beam Lift 4. Righting Arm Curve Corrected for Vertical Lift 5. Righting Arru Curve Corrected for Beam Lift 6. Assumed Coordinate System . 7.... Rawston and Graham J. Blight, Brown and Root, Inc. , state that the crane/derrick barge's ability to conduct a heavy lii't operation safely can be reduced "to a single value represented by the vertical motion of the crane boom tip". [6] The ability...

Loesch, Robert Morrison

2012-06-07T23:59:59.000Z

47

Frequency response of lift control in Drosophila  

Science Journals Connector (OSTI)

...immobilizing the fly in a refrigerator (4C) and transferring it...LED). For details on the modular display system refer to Reiser...arena was constructed from 60 modular LED panels. Lift forces were...and M. H. Dickinson 2008 A modular display system for insect...

2010-01-01T23:59:59.000Z

48

Fuel effects on flame lift-off under diesel conditions  

SciTech Connect

An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlation with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)

Persson, Helena; Andersson, Oeivind; Egnell, Rolf [Lund University (Sweden). Dept. of Energy Sciences

2011-01-15T23:59:59.000Z

49

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

50

Mid-South Metallurgical Makes Electrical and Natural Gas System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Mid-South Metallurgical Makes Electrical and Natural Gas...

51

NSTX High Field Side Gas Fueling System  

SciTech Connect

Fueling National Spherical Torus Experiment (NSTX) plasmas with gas injected from the high field side (HFS) has produced earlier, more reliable transitions to the H-mode, longer H-mode durations, higher toroidal rotation, and higher edge electron temperature compared with similar discharges using the low field side (LFS) gas fueling injectors. The HFS gas fueling system consists of a Center Stack midplane injector, and an injector at the inner, upper corner of the Center Stack. The challenging design and installation constraints for the HFS gas system involved placing the control components as close as possible to the machine-vacuum interface, devising a special feed-through flange, traversing through vessel regions whose temperatures during bake-out range from 150 to 350 degrees Centigrade, adapting the gas transport tubing size and route to the small instrumentation wire channels behind the existing graphite plasma facing component tiles on the Center Stack, and providing output orifices shielded from excessive plasma power depositions while concentrating the output flow to facilitate fast camera viewing and analysis. Design, recent performance, and future upgrades will be presented.

H.W. Kugel; M. Anderson; G. Barnes; M. Bell; W. Blanchard; L. Dudek; D. Gates; R. Gernhardt; R. Maingi; D. Mueller; T. Provost; R. Raman; V. Soukhanovskii; J. Winston

2003-10-09T23:59:59.000Z

52

Hoisting & Rigging Lift Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoisting & Rigging Lift Plan Hoisting & Rigging Lift Plan Stanford Synchrotron Radiation Laboratory May 16, 2005 SSRL-HRLP-000-R0 Page 1 of 3 General Information Lift Plan Document # Plan prepared by: Describe the load or items to be lifted: Could the load, if dropped, release hazardous materials or radioactivity? No Yes (describe) Is the load irreplaceable or would it be very costly to replace if damaged? No Yes (describe) Brief description of lift activities (specify if rolling or flipping involved) Equipment Information Equipment ID: Equipment custodian: Rated capacity: Operator capacity : Personnel Protective Equipment (PPE) Steel-toed shoes Required for all personnel involved with lift activity to protect from crushing of feet/toes

53

Lifting 2-integer knapsack inequalities  

E-Print Network (OSTI)

Oct 1, 2003 ... superadditivity, the papers of Marchand & Wolsey (1999) and Marchand & Wolsey (2001) based on the lifting of the well known MIR...

54

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

55

EIA - Natural Gas Pipeline System - Midwest Region  

Gasoline and Diesel Fuel Update (EIA)

Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Pipelines in the Midwest Region...

56

Water-saving liquid-gas conditioning system  

DOE Patents (OSTI)

A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

Martin, Christopher; Zhuang, Ye

2014-01-14T23:59:59.000Z

57

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bynatural gas and simulated landfill gas as a fuel source.

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

58

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2002-07-01T23:59:59.000Z

59

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

60

Neural net controlled tag gas sampling system for nuclear reactors  

DOE Patents (OSTI)

A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

Gross, Kenneth C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Fall, ID); Lambert, John D. B. (Wheaton, IL); Herzog, James P. (Downers Grove, IL)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Power control system for a hot gas engine  

DOE Patents (OSTI)

A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

Berntell, John O. (Staffanstorp, SE)

1986-01-01T23:59:59.000Z

62

Exhaust gas recirculation system for an internal combustion engine  

DOE Patents (OSTI)

An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

Wu, Ko-Jen

2013-05-21T23:59:59.000Z

63

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network (OSTI)

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes by groundwater (or oil) degassing. Other natural gas fields may have been produced in-situ or migrated as a free expert academics from across the CDT and also experienced oil and gas industry professionals

Henderson, Gideon

64

Uniform System of Accounts for Gas Utilities (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

This rule establishes a uniform system of accounts and annual report filing requirements for natural gas utilities operating in Maine.

65

NETL: Gasification Systems - Warm Gas Multi-Contaminant Removal System  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Multi-Contaminant Removal System Warm Gas Multi-Contaminant Removal System Project Number: DE-SC00008243 TDA Research, Inc. is developing a high-capacity, low-cost sorbent that removes anhydrous ammonia (NH3), mercury (Hg), and trace contaminants from coal- and coal/biomass-derived syngas. The clean-up system will be used after the bulk warm gas sulfur removal step, and remove NH3 and Hg in a regenerable manner while irreversibly capturing all other trace metals (e.g., Arsenic, Selenium) reducing their concentrations to sub parts per million (ppm) levels. Current project plans include identifying optimum chemical composition and structure that provide the best sorbent performance for removing trace contaminants, determining the effect of operating parameters, conducting multiple-cycle experiments to test the life of the sorbent for NH3 and Hg removal, and conducting a preliminary design of the sorbent reactor.

66

Gas Main Sensor and Communications Network System  

SciTech Connect

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetooth PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.

Hagen Schempf

2006-05-31T23:59:59.000Z

67

Impact of Natural Gas Infrastructure on Electric Power Systems  

E-Print Network (OSTI)

Impact of Natural Gas Infrastructure on Electric Power Systems MOHAMMAD SHAHIDEHPOUR, FELLOW, IEEE of electricity has introduced new risks associated with the security of natural gas infrastructure on a sig the essence of the natural gas infrastructure for sup- plying the ever-increasing number of gas-powered units

Fu, Yong

68

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

69

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

70

GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM  

SciTech Connect

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. A prototype system was built for low-pressure cast-iron mains and tested in a spider- and serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The prototype unit combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-slave architecture to collect data from a distributed spider-arrangement, and in a master-repeater-slave configuration in serial or ladder-network arrangements. It was found that the system was capable of performing all data-sampling and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and valuable data was collected in order to determine how to improve on range and data-quality in the future.

Hagen Schempf, Ph.D.

2003-02-27T23:59:59.000Z

71

GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM  

SciTech Connect

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. In Phase II of this three-phase program, an improved prototype system was built for low-pressure cast-iron and high-pressure steel (including a no-blow installation system) mains and tested in a serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The experiment was carried out in several open-hole excavations over a multi-day period. The prototype units (3 total) combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-repeater-slave configuration in serial or ladder-network arrangements. It was verified that the system was capable of performing all data-sampling, data-storage and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and the system was demonstrated to run off in-ground battery- and above-ground solar power. The remote datalogger access and storage-card features were demonstrated and used to log and post-process system data. Real-time data-display on an updated Phase-I GUI was used for in-field demonstration and troubleshooting.

Hagen Schempf

2004-09-30T23:59:59.000Z

72

Hot gas path component cooling system  

DOE Patents (OSTI)

A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

2014-02-18T23:59:59.000Z

73

Relationship between ignition processes and the lift-off length of diesel fuel jets.  

SciTech Connect

The reaction zone of a diesel fuel jet stabilizes at a location downstream of the fuel injector once the initial autoignition phase is over. This distance is referred to as flame lift-off length. Recent investigations have examined the effects of a wide range of parameters (injection pressure, orifice diameter, and ambient gas temperature, density and oxygen concentration) on lift-off length under quiescent diesel conditions. Many of the experimental trends in lift-off length were in agreement with scaling laws developed for turbulent, premixed flame propagation in gas-jet lifted flames at atmospheric conditions. However, several effects did not correlate with the gas-jet scaling laws, suggesting that other mechanisms could be important to lift-off stabilization at diesel conditions. This paper shows experimental evidence that ignition processes affect diesel lift-off stabilization. Experiments were performed in the same optically-accessible combustion vessel as the previous lift-off research. The experimental results show that the ignition quality of a fuel affects lift-off. Fuels with shorter ignition delays generally produce shorter lift-off lengths. In addition, a cool flame is found upstream of, or near the same axial location as, the quasi-steady lift-off length, indicating that first-stage ignition processes affect lift-off. High-speed chemiluminescence imaging also shows that high-temperature self-ignition occasionally occurs in kernels that are upstream of, and detached from, the high-temperature reaction zone downstream, suggesting that the lift-off stabilization is not by flame propagation into upstream reactants in this instance. Finally, analysis of the previous lift-off length database shows that the time-scale for jet mixing from injector-tip orifice to lift-off length collapses to an Arrhenius-type expression, a common method for describing ignition delay in diesel sprays. This Arrhenius-based lift-off length correlation shows comparable accuracy as a previous power-law fit of the No.2 diesel lift-off length database.

Siebers, Dennis L.; Idicheria, Cherian A.; Pickett, Lyle M.

2005-06-01T23:59:59.000Z

74

EIA - Natural Gas Pipeline Network - Network Configuration & System Design  

U.S. Energy Information Administration (EIA) Indexed Site

Network Configuration & System Design Network Configuration & System Design About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Network Configuration and System Design Overview | Transmission/Storage | Design Criteria | Importance of Storage| Overall Pipeline System Configuration Overview A principal requirement of the natural gas transmission system is that it be capable of meeting the peak demand of its shippers who have contracts for firm service. To meet this requirement, the facilities developed by the natural gas transmission industry are a combination of transmission pipelines to bring the gas to the market areas and of underground natural gas storage sites and liquefied natural gas (LNG) peaking facilities located in the market areas.

75

EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Links Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co Interstate Northeast Alliance Pipeline Co Interstate Central, Midwest Anaconda Pipeline System Gathering Gulf of Mexico ANR Pipeline Co Interstate Midwest ANR Storage Co Interstate Midwest Arkansas Oklahoma Gas Co Intrastate Southwest Arkansas Western Pipeline Co Intrastate

76

Rock-physics Models for Gas-hydrate Systems Associated  

E-Print Network (OSTI)

Rock-physics Models for Gas-hydrate Systems Associated with Unconsolidated Marine Sediments Diana associated with unconsolidated marine sediments. The goals are to predict gas-hydrate concentration from intercalated with unconsolidated sediments. We show that the geometrical details of how gas hy- drates

Texas at Austin, University of

77

System and method for producing substitute natural gas from coal  

DOE Patents (OSTI)

The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

Hobbs, Raymond (Avondale, AZ)

2012-08-07T23:59:59.000Z

78

Chapter 7 - Gas Turbine Fuel Systems and Fuels  

Science Journals Connector (OSTI)

Abstract The basics of a gas turbine fuel system are similar for all turbines. The most common fuels are natural gas, LNG (liquid natural gas), and light diesel. With appropriate design changes, the gas turbine has proved to be capable of handling residual oil, pulverized coal, syngas from coal and various low BTU fluids, both liquid and gas, that may be waste streams of petrochemical processes or, for instance, gas from a steel (or other industry) blast furnace. Handling low BTU fuel can be a tricky operation, requiring long test periods and a willingness to trade the savings in fuel costs with the loss of turbine availability during initial prototype full load tests. This chapter covers gas turbine fuel systems and includes a case study (Case 5) on blast furnace gas in a combined cycle power plant (CCPP). All truths are easy to understand once they are discovered, the point is to discover them. Plato

Claire Soares

2015-01-01T23:59:59.000Z

79

Safety of Gas Transmission and Distribution Systems (Maine) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission These regulations describe requirements for the participation of natural gas utilities in the Underground Utility Damage Prevention Program,

80

Selective Catalytic Reduction and Exhaust Gas Recirculation Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalytic Reduction and Exhaust Gas Recirculation Systems Optimization A patented EGR-SCR approach was shown to readily meet the 2010 EPA requirments for NOx and PM emisisons...

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Evaluation of a Cyclone and Hot Gas Filter System  

NLE Websites -- All DOE Office Websites (Extended Search)

a Cyclone and a Cyclone and Hot Gas Filter System Description The Wabash River Coal Gasification Plant uses an oxygen-blown E-Gas gasifier technology, owned by ConocoPhillips, which produces fuel gas containing significant amounts of fine particulates. Currently, particulates are cleaned from the fuel gas with metal candle filters. These filters require two costly plant shut-downs per year for cleaning or replacement. During the U.S Department of Energy-supported project

82

Electric, Gas, and Electric/Gas Energy Options for Cold-Air HVAC Systems  

E-Print Network (OSTI)

An important aspect of the design of cost-effective HVAC systems today is (a) sensitivity to the cost impact of the interplay of utility demand charges, time-of-day rates, gas rates, and gas/electric utility incentive programs vis--vis HVAC system...

Meckler, G.

1989-01-01T23:59:59.000Z

83

The National Energy Modeling System: An Overview 2000 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market-clearing prices for natural gas supplies and for end-use consumption, given the information passed from other NEMS modules. A transmission and distribution network (Figure 15), composed of nodes and arcs, is used to simulate the interregional flow and pricing of gas in the contiguous United States and Canada in both the peak (December through March) and offpeak (April through November) period. This network is a simplified representation of the physical natural gas pipeline system and establishes the possible interregional flows and associated prices as gas moves from supply sources to end users. natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market-clearing prices for natural gas supplies and for end-use consumption, given the information passed from other NEMS modules. A transmission and distribution network (Figure 15), composed of nodes and arcs, is used to simulate the interregional flow and pricing of gas in the contiguous United States and Canada in both the peak (December through March) and offpeak (April through November) period. This network is a simplified representation of the physical natural gas pipeline system and establishes the possible interregional flows and associated prices as gas moves from supply sources to end users. Figure 15. Natural Gas Transmission and Distribution Module Network

84

Hoisting and Rigging: Lift Planning and Control for Ordinary Lifts  

E-Print Network (OSTI)

operator Follow specific instructions/procedures for attachment of the rigging gear to the load. Use. Repeat as necessary until the load is evenly balanced. Follow "Conduct of Operator" requirements2 Stop at the work site and follow the plan Assign a designated leader Ensure all personnel involved in the lift

Wechsler, Risa H.

85

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Natural Gas Nitric Oxide/Nitrogen Dioxide Neal Road LandfillThe methane, nitrogen and carbon dioxide concentrations ofmethane, 30% nitrogen and 30% carbon dioxide. The recorded

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

86

Glass melter off-gas system  

DOE Patents (OSTI)

Apparatus and method for melting glass in a glass melter in such a way as to reduce deposition of particulates in the off-gas duct. Deposit accumulation is reduced by achieving an off-gas velocity above approximately 15 meters/second and an off-gas temperature as close as possible to, but not higher than, the glass softening point. Because the deposits are largely water-soluble, those that do form on the interior surface of the duct can be readily removed by injecting water or steam directly into the off-gas duct from its entrance or exit.

Jantzen, Carol M. (Aiken, SC)

1997-01-01T23:59:59.000Z

87

Development of a Low-Lift Chiller Controller and Simplified Precooling Control Algorithm - Final Report  

SciTech Connect

KGS Buildings LLC (KGS) and Pacific Northwest National Laboratory (PNNL) have developed a simplified control algorithm and prototype low-lift chiller controller suitable for model-predictive control in a demonstration project of low-lift cooling. Low-lift cooling is a highly efficient cooling strategy conceived to enable low or net-zero energy buildings. A low-lift cooling system consists of a high efficiency low-lift chiller, radiant cooling, thermal storage, and model-predictive control to pre-cool thermal storage overnight on an optimal cooling rate trajectory. We call the properly integrated and controlled combination of these elements a low-lift cooling system (LLCS). This document is the final report for that project.

Gayeski, N.; Armstrong, Peter; Alvira, M.; Gagne, J.; Katipamula, Srinivas

2011-11-30T23:59:59.000Z

88

Two-tank working gas storage system for heat engine  

DOE Patents (OSTI)

A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

Hindes, Clyde J. (Troy, NY)

1987-01-01T23:59:59.000Z

89

Process and system for removing impurities from a gas  

DOE Patents (OSTI)

A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

2014-04-15T23:59:59.000Z

90

Aerofoils: Lift, Drag, and Circulation  

Science Journals Connector (OSTI)

The extreme forward point on the aerofoil is the leading edge, which is on the left for the four aerofoils in Fig.4.1...; the airflow is from left to right and the lift, l, acts upwards. Virtually all aerofoils ...

David Wood

2011-01-01T23:59:59.000Z

91

EIA - Natural Gas Pipeline System - Southeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southeast Region Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee). Fifteen of the twenty-one interstate natural gas pipelines originate in the Southwest Region and receive most of their supplies from the Gulf of Mexico or from the States of Texas and/or Louisiana.

92

The Energy Transformation Limit Theorem for Gas Flow Systems  

E-Print Network (OSTI)

The limit energy theorem which determines the possibility of transformation the energy flow in power systems in the absence of technical work is investigated and proved for such systems as gas lasers and plasmatrons, chemical gas reactors, vortex tubes, gas-acoustic and other systems, as well as a system of close stars. In the case of the same name ideal gas in the system the maximum ratio of energy conversion effectiveness is linked to the Carnot theorem, which in its turn is connected with the Nernst theorem. However, numerical analyses show that the class of flow energy systems is non-carnot one. The ratio of energy conversion effectiveness depends on the properties of the working medium; a conventional cycle in open-circuit is essentially irreversible. The proved theorem gives a more strongly worded II law of thermodynamics for the selected class of flow energy systems. Implications for astrophysical thermodynamic systems and the theory of a strong shock wave are discussed.

Volov, V T

2011-01-01T23:59:59.000Z

93

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

SciTech Connect

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

94

Integrated Energy and Greenhouse Gas Management System  

E-Print Network (OSTI)

With Climate Change legislation on the horizon, the need to integrate energy reduction initiatives with greenhouse gas reduction efforts is critical to manufactures competitiveness and financial strength going forward. MPC has developed...

Spates, C. N.

2010-01-01T23:59:59.000Z

95

Spark gap switch system with condensable dielectric gas  

DOE Patents (OSTI)

A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

Thayer, III, William J. (Kent, WA)

1991-01-01T23:59:59.000Z

96

Generalised Eisenhart lift of the Toda chain  

SciTech Connect

The Toda chain of nearest neighbour interacting particles on a line can be described both in terms of geodesic motion on a manifold with one extra dimension, the Eisenhart lift, or in terms of geodesic motion in a symmetric space with several extra dimensions. We examine the relationship between these two realisations and discover that the symmetric space is a generalised, multi-particle Eisenhart lift of the original problem that reduces to the standard Eisenhart lift. Such generalised Eisenhart lift acts as an inverse Kaluza-Klein reduction, promoting coupling constants to momenta in higher dimension. In particular, isometries of the generalised lift metric correspond to energy preserving transformations that mix coordinates and coupling constants. A by-product of the analysis is that the lift of the Toda Lax pair can be used to construct higher rank Killing tensors for both the standard and generalised lift metrics.

Cariglia, Marco, E-mail: marco@iceb.ufop.br [DEFIS, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, 35400-000 Ouro Preto, MG (Brazil)] [DEFIS, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, 35400-000 Ouro Preto, MG (Brazil); Gibbons, Gary, E-mail: g.w.gibbons@damtp.cam.ac.uk [DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)] [DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

2014-02-15T23:59:59.000Z

97

Starter systems designed for efficient air/gas comsumption  

SciTech Connect

This paper examines engine starting systems designed by Pow-R-Quik. Pow-R-Quik's most recent product line includes several models that are designed to start most diesel and natural gas engines. Pow-R-Quick also offers air starting systems for a wide range of gas turbine applications. The model DS16, air or gas starter, is designed for engines with a displacement up to 500 cid diesel and up to 1000 cid natural gas. The DS60 model is also an air or gas operated starter with specially designed heavy duty bearings for maximum performance. To prove out starter durability and performance, Pow-R-Quik has installed three fully instrumented diesel engine test cells. The number of starts that can be achieved ranges from zero to 99,000. The system can be set to regulate the air for low or high pressure starts, control the lubricant, etc.

Not Available

1985-05-01T23:59:59.000Z

98

8 - Turbogenerators in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: The functioning of turbogenerators is explained as the final link between the turbine and the grid. Basic physical laws are given, and principles to calculate the performance and application of generators to gas turbines are derived. It is shown how generators developed with the progress of gas turbines. Modern designs are described and latest test results of generators are reported. Finally, an outlook is given about the future trends in technology and products. The chapter utilizes the authors in-house experience, and describes also achievements of other manufacturers.

B. Gellert

2013-01-01T23:59:59.000Z

99

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems  

Science Journals Connector (OSTI)

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems ... An evaluation of the energy, greenhouse gas, and costs savings associated with logistics and infrastructure improvements to a curbside recycling program is presented. ... MSW recycling has been found to be costly for most municipalities compared to landfill disposal. ...

Mikhail Chester; Elliot Martin; Nakul Sathaye

2008-02-08T23:59:59.000Z

100

Operating the LCLS Gas Attenuator and Gas Detector System with Apertures of 6mm Diameter  

SciTech Connect

The possibility of increasing the apertures of the LCLS gas attenuator/gas detector system is considered. It is shown that increase of the apertures from 3 to 6 mm, together with 4-fold reduction of the operation pressure does not adversely affect the vacuum conditions upstream or downstream. No change of the pump speed and the lengths of the differential pumping cells is required. One minor modification is the use of 1.5 cm long tubular apertures in the end cells of the differential pumping system. Reduction of the pressure does not affect performance of the gas attenuator/gas detector system at the FEL energies below, roughly, 2 keV. Some minor performance degradation occurs at higher energies.

Ryutov, D.D.; Bionta, R.M.; Hau-Riege, S.P.; Kishiyama, K.I.; Roeben, M.D.; Shen, S.; /LLNL, Livermore; Stefan, P.M.; /SLAC; ,

2010-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

102

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

103

Method for nonlinear optimization for gas tagging and other systems  

DOE Patents (OSTI)

A method and system are disclosed for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established. 6 figs.

Chen, T.; Gross, K.C.; Wegerich, S.

1998-01-06T23:59:59.000Z

104

Method for nonlinear optimization for gas tagging and other systems  

DOE Patents (OSTI)

A method and system for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established.

Chen, Ting (Chicago, IL); Gross, Kenny C. (Bolingbrook, IL); Wegerich, Stephan (Glendale Heights, IL)

1998-01-01T23:59:59.000Z

105

Gas-Insulated Substation Performance in Brazilian System  

Science Journals Connector (OSTI)

This work is based on a report developed in the Working Group 2303 of CIGR-Brazil [1], about gas-insulated substations performance in the Brazilian electric system from...

H. J. A. Martins; V. R. Fernandes; R. S. Jacobsen

1991-01-01T23:59:59.000Z

106

New Applications of an Expanded Gas Chromatography/Computer System  

Science Journals Connector (OSTI)

......in routine gas analyses. Instrument modifications...Applications include analyses of reactor feed, product...detectors. System reliability bas also been good...catalyst life study reactor for almost two...sample injection/analysis/cal- culation......

J. G. W. Price; J. C. Scott; L. O. Wheeler

1971-12-01T23:59:59.000Z

107

A Natural-Gas-Fired Thermoelectric Power Generation System  

Science Journals Connector (OSTI)

This paper presents a combustion-driven thermoelectric power generation system that uses PbSnTe-based thermoelectric modules. The modules were integrated into a gas-fired furnace with a special burner design. The...

K. Qiu; A.C.S. Hayden

2009-07-01T23:59:59.000Z

108

Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System  

SciTech Connect

The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

2005-06-01T23:59:59.000Z

109

Chapter 7 - Test Cell Cooling Water and Exhaust Gas Systems  

Science Journals Connector (OSTI)

Part 1 considers the thermodynamics of water cooling systems, water quality, typical cooling water circuits, and engine coolant control units. Also covered are the commissioning cooling circuits, thermal shock, and chilled water systems. Part 2 covers the design of test cell exhaust systems, exhaust silencers, exhaust gas volume flow, exhaust silencers, and exhaust cowls. Part 3 briefly covers the testing of turbochargers.

A.J. Martyr; M.A. Plint

2012-01-01T23:59:59.000Z

110

Effects of Injector Conditions on the Flame Lift-Off Length of DI Diesel Sprays  

SciTech Connect

The effects of injection pressure and orifice diameter on the lift-off length of a direct-injection (DI) diesel spray (defined as the farthest upstream location of high temperature combustion) were investigated using a natural light emission imaging technique. The lift-off length experiments were conducted in a constant-volume combustion vessel under quiescent, heavy-duty DI diesel engine conditions using a Phillips research grade No.2 diesel fuel. The results show that natural light emission at 310 nm provides an excellent marker of the lift-off length. At this location, natural light emission at 310 nm is dominated by OH chemiluminescence generated by high-temperature combustion chemistry. Lift-off lengths determined from images of natural light emission at 310 nm show that as either injection pressure (i.e., injection velocity) or orifice diameter increase, the lift-off length increases. The observed lift-off length increase was linearly dependent on injection velocity, the same dependency as previously noted for gas jets. The lift-off length increase with increasing orifice diameter, however, is different than the independence of lift-off length on orifice diameter noted for gas jets An important overall observation was made by considering the lift-off length data in conjunction with data from recent investigations of liquid-phase fuel penetration and spray development. The combined data suggests that a systematic evolution of the relationship and interaction between various processes in a DI diesel spray has been occurring over time, as injection pressures have been increased and orifice diameters reduced as part of efforts to meet emissions regulations. The trends observed may eventually help explain effects of parameters such as injection pressure and orifice diameter on emissions.

D. L. Siebers; B. S. Higgins

2000-07-01T23:59:59.000Z

111

EBR-II cover-gas cleanup system upgrade  

SciTech Connect

Technology advances in the past few years have prompted an effort at Argonne National Laboratory to replace existing equipment with high-performance digital computers and color-graphic displays. Improved operation of process systems can be achieved by utilizing state-of-the-art computer technology in the areas of process control and process monitoring. The cover-gas cleanup system (CGCS) at the Experimental Breeder Reactor II (EBR-II) is the first system to be upgraded with high-performance digital equipment. The upgrade consisted of a main control computer, a distributed control computer, a front-end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper describes the main control computer and the operator interface control software. Argonne National Laboratory's EBR-II is a pool-type nuclear reactor demonstration facility that uses liquid sodium as the primary system and secondary system coolant. The primary system tank contains [approximately]330000 [ell] of liquid sodium blanketed with an argon cover gas. Despite this inert atmosphere, the primary system requires a cover-gas monitoring and cleanup system, the CGCS. The CGCS maintains low levels of impurities in the cover gas so that even small levels of impurities can be detected to flag a failed fuel element and to support mass spectrometer analysis to identify a failed fuel element. Impurities can be introduced to the argon cover gas by the failure of fuel element cladding and the subsequent release of gaseous fission products or xenon [open quotes]tag gas[close quotes] placed in the fuel elements for the purpose of signaling a fuel element breach. The CGCS consists of a main cleanup loop and a gas analysis system.

Staffon, J.D.; Carlson, R.B. (Argonne National Lab., Idaho Falls (United States))

1993-01-01T23:59:59.000Z

112

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Natural Gas Systems Manufacturing R&D Initiative Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative The following fact sheet outlines one of the...

113

PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM  

SciTech Connect

Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

2000-02-01T23:59:59.000Z

114

On-Board Hydrogen Gas Production System For Stirling Engines  

DOE Patents (OSTI)

A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

Johansson, Lennart N. (Ann Arbor, MI)

2004-06-29T23:59:59.000Z

115

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas and Oil Heating Systems Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the equipment is off. Consider a sealed-combustion furnace -- they are safer and more efficient. Long-Term Savings Tip Install a new energy-efficient furnace to save money over the long term. Look for the ENERGY STAR® and EnergyGuide labels to compare efficiency and

116

Slag processing system for direct coal-fired gas turbines  

DOE Patents (OSTI)

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

117

Opto-Electronics in Large Array Gas Detector Systems  

E-Print Network (OSTI)

Large array gas detector systems are used in particle and nuclear physics experiments involving high-energy nucleon-nucleon and heavy-ion collisions. We have observed that in large array gas detector systems the momentary discharges inside the detector cells result in slowdown of High Voltage conditioning and possible hindrances in signal processing. We have explored the opto-electronic devices like the opto-coupler, optical fibre and signal processing circuit, which provide successful monitoring procedures and preventive measures to overcome the challenges produced in such complex detector systems.

Majumdar, M R D; Nayak, T K; Das, Debasish; Nayak, Tapan K.

2005-01-01T23:59:59.000Z

118

Odorization system upgrades gas utility`s pipelines  

SciTech Connect

Mountain Fuel Supply Co., a subsidiary of Questar Corp., salt Lake City, is a natural gas holding company with $1.6 billion in assets. From 1929 to 1984, Mountain Fuel Supply Co. owned and operated many natural gas wells, gathering systems, and transmission pipelines to serve its Utah and Wyoming customers. Gas is odorized at convenient points on the transmission lines and at each downstream location where unodorized gas entered the system. Since 40 to 60% of the gas delivered to the company`s customers passes through Coalville Station, it was vital that a reliable, state-of-the-art odorant station be constructed at this site. Construction began during the summer of 1994 and the system came on line Sept. 1, 1994. The station odorized 435 MMcfd with 330 lbs. of odorant during last winter`s peak day, a mild winter. Mountain Fuel is subject to Department of Transportation (DOT) codes which mandate that gas be readily detectable at one fifth the lower explosive limit (LEL), or about 1% gas in air. However, the company strives to maintain a readily detectable odor at 0.25% of gas in air as measured by odormeter tests throughout the distribution system. Experience has shown that maintaining an odorant injection rate of 0.75 lbs/MMcf provides adequate odor levels. A blend of odorant consisting of 50% tertiary butyl mercaptan (TBM) and 50% tetrahydrothiophene (THT) was used for many years by Questar Pipeline. Presently, it is used at all Mountain Fuel stations. This paper reviews the design and operation of this odorization station.

Niebergall, B. [Mountain Fuel Supply, Salt Lake City, UT (United States)

1995-07-01T23:59:59.000Z

119

Development of a Natural Gas-to-Hydrogen Fueling System  

E-Print Network (OSTI)

compressors Reliable & cost effective hydrogen fueling system #12;9 Accomplishments > Comprehensive subsystem> Development of a Natural Gas-to- Hydrogen Fueling System DOE Hydrogen & Fuel Cell Merit Review integrator, fuel processing subsystem ­ FuelMaker Corporation > Maker of high-quality high

120

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network (OSTI)

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Lifting from to GSpin(1,4)  

Science Journals Connector (OSTI)

......Saito-Kurokawa lift of . We want to point out that Definition...Saito-Kurokawa lift, Int. Math. Res...hyperbolic lattice point theorem, Proc...Sarnak, Heegner points, cycles and Maa...Eisenstein-series on the four-dimensional hyperbolic......

Ameya Pitale

2005-01-01T23:59:59.000Z

122

Constructing and Forbidding Automorphisms in Lifted Maps  

E-Print Network (OSTI)

Constructing and Forbidding Automorphisms in Lifted Maps Dan Archdeacon Department of Mathematics an algebraic description of surfaces with boundary to study covering maps. The focus is on the relationship between automor­ phisms in the base and lifted maps. We show how to introduce and/or prohibit additional

Archdeacon, Dan

123

Solid fuel combustion system for gas turbine engine  

DOE Patents (OSTI)

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

124

Feed gas contaminant control in ion transport membrane systems  

DOE Patents (OSTI)

Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

Carolan, Michael Francis (Allentown, PA); Minford, Eric (Laurys Station, PA); Waldron, William Emil (Whitehall, PA)

2009-07-07T23:59:59.000Z

125

Compact, electro-hydraulic, variable valve actuation system providing variable lift, timing and duration to enable high efficiency engine combustion control  

Energy.gov (U.S. Department of Energy (DOE))

Discusses development of advanced variable valve actuation system to enable high efficiency combustion highlighting advances to improving system packaging while reducing cost

126

New Applications of an Expanded Gas Chromatography/Computer System  

Science Journals Connector (OSTI)

......System by J. G. W. Price, J. C. Scott and L...Farrar, Gerald F., Oil Gas J. 68, 83 (1970...Wilson, W. 0., and Price, J. G. W. P., J...a 300 watt nichrome heating element and a two inch...to 20% of the purchase price. Conclusions It bas been......

J. G. W. Price; J. C. Scott; L. O. Wheeler

1971-12-01T23:59:59.000Z

127

Copyright 1997 Carnegie Mellon University Gas Identification System using  

E-Print Network (OSTI)

Copyright © 1997 Carnegie Mellon University Gas Identification System using Graded Temperature are observed. Emphasis is on identification, since quantitation of identified mixtures is straightforward by the sensor bulk is decreased. Thus if an SnO2 sensor is ramped through an appropriate temperature range

Siegel, Mel

128

FRW Cosmological model with Modified Chaplygin Gas and Dynamical System  

E-Print Network (OSTI)

The Friedmann-Robertson-Walker(FRW) model with dynamical Dark Energy(DE) in the form of modified Chaplygin gas(MCG) has been investigated. The evolution equations are reduced to an autonomous system on the two dimensional phase plane and it can be interpreted as the motion of the particle in an one dimensional potential.

Nairwita Mazumder; Ritabrata Biswas; Subenoy Chakraborty

2011-06-23T23:59:59.000Z

129

Slag processing system for direct coal-fired gas turbines  

DOE Patents (OSTI)

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

130

Structure and Parameters Optimization of Organic Rankine Cycle System for Natural Gas Compressor Exhaust Gas Energy Recovery  

Science Journals Connector (OSTI)

In the paper, the structure and working principle of free piston based organic rankine cycle (ORC) exhaust gas energy recovery system...

Yongqiang Han; Zhongchang Liu; Yun Xu

2013-01-01T23:59:59.000Z

131

Solar gas turbine systems: Design, cost and perspectives  

Science Journals Connector (OSTI)

The combination of high solar shares with high conversion efficiencies is one of the major advantages of solar gas turbine systems compared to other solar-fossil hybrid power plants. Pressurized air receivers are used in solar tower plants to heat the compressed air in the gas turbine to temperatures up to 1000C. Therefore solar shares in the design case of 40% up to 90% can be realized and annual solar shares up to 30% can be achieved in base load. Using modern gas turbine systems in recuperation or combined cycle mode leads to conversion efficiencies of the solar heat from around 40% up to more than 50%. This is an important step towards cost reduction of solar thermal power. Together with the advantages of hybrid power plantsvariable solar share, fully dispatchable power, 24h operation without storagesolar gas turbine systems are expected to have a high potential for market introduction in the mid term view. In this paper the design and performance assessment of several prototype plants in the power levels of 1MW, 5MW and 15MW are presented. Advanced software tools are used for design optimization and performance prediction of the solar tower gas turbine power plants. Detailed cost assumptions for the solarized gas turbine, the solar tower plant and further equipment as well as for operation and maintenance are presented. Intensive performance and economic analysis of the prototype plants for different locations and capacity factors are shown. The cost reduction potential through automation and remote operation is revealed.

Peter Schwarzbzl; Reiner Buck; Chemi Sugarmen; Arik Ring; Ma Jess Marcos Crespo; Peter Altwegg; Juan Enrile

2006-01-01T23:59:59.000Z

132

Gas Composition and Oxygen Supply in the Root Environment of Substrates in Closed Hydroponic Systems  

E-Print Network (OSTI)

299 Gas Composition and Oxygen Supply in the Root Environment of Substrates in Closed Hydroponic Abstract The objective of this study was to get more information about the root zone, mainly the gas and ethylene, a gas sampling system was used to get gas samples from the root zone. CO2 gas samples of 20 ml

Lieth, J. Heinrich

133

Systems for delivering liquified natural gas to an engine  

DOE Patents (OSTI)

A fuel delivery system includes a fuel tank configured to receive liquid natural gas. A first conduit extends from a vapor holding portion of the fuel tank to an economizer valve. A second conduit extends from a liquid holding portion of the fuel tank to the economizer valve. Fluid coupled to the economizer valve is a vaporizer which is heated by coolant from the engine and is positioned below the fuel tank. The economizer valve selectively withdraws either liquid natural gas or vaporized natural gas from the fuel tank depending on the pressure within the vapor holding portion of the fuel tank. A delivery conduit extends from the vaporizer to the engine. A return conduit having a check valve formed therein extends from the delivery conduit to the vapor holding portion of the fuel tank for pressurizing the fuel tank.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); O'Brien, James E. (Idaho Falls, ID); Siahpush, Ali S. (Idaho Falls, ID); Brown, Kevin B. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

134

Test and evaluation of a solar powered gas turbine system  

Science Journals Connector (OSTI)

This paper describes the test and the results of a first prototype solar powered gas turbine system, installed during 2002 in the CESA-1 tower facility at Plataforma Solar de Almera (PSA) in Spain. The main goals of the project were to develop a solar receiver cluster able to provide pressurized air of 1000C and solve the problems arising from the coupling of the receivers with a conventional gas turbine to demonstrate the operability of the system. The test set-up consists of the heliostat field of the CESA-1 facility providing the concentrated solar power, a pressurized solar receiver cluster of three modules of 400kWth each which convert the solar power into heat, and a modified helicopter engine (OST3) with a generator coupled to the grid. The first test phase at PSA started in December 2002 with the goal to reach a temperature level of 800C at the combustor air inlet by the integration of solar energy. This objective was achieved by the end of this test phase in March 2003, and the system could be operated at 230kWe power to grid without major problems. In the second test phase from June 2003 to August 2003 the temperature level was increased to almost 1000C. The paper describes the system configuration, the component efficiencies and the operation experiences of the first 100h of solar operation of this very successful first test of a solar operated Brayton gas turbine system.

Peter Heller; Markus Pfnder; Thorsten Denk; Felix Tellez; Antonio Valverde; Jess Fernandez; Arik Ring

2006-01-01T23:59:59.000Z

135

NETL: Gasification Systems - Integrated Warm Gas Multicontaminant Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project Number: DE-FC26-05NT42459 Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project ID: DE-FC26-05NT42459 Objective: The objective is to develop a warm multi-contaminant syngas cleaning system for operation between 300 and 700° F. This project will continue development of the RTI warm syngas cleanup technology suite. Based on the field testing results with real syngas from Eastman Chemical Company's gasifier under DOE Contract DE-AC26-99FT40675, additional technical issues need to be addressed to move the technologies used in warm syngas cleaning further towards commercial deployment especially for chemical/fuels production. These issues range from evaluation of startup and standby options for the more developed desulfurization processes to integration and actual pilot plant testing with real coal-derived syngas for the technologies that were tested at bench scale during Phase I. Development shall continue of the warm gas syngas cleaning technology platform through a combination of lab-scale R&D and larger integrated pilot plant testing with real coal-derived syngas as well as process/systems analysis and simulation for optimization of integration and intensification.

136

A new finite element lifting surface technique  

E-Print Network (OSTI)

Element Lifting Surface Technique. (May 1973) James David Kocurek, B. S. , Texas ASM University 1 Directed by: Dr. Balusu M. Rao A numerical lifting surface technique based on discrete vortex loading elements is developed for calculating the steady..., incompress- ; ible, aerodynamic load distribution on a general, nonplanar, ideal- 1 ized body. The method, described as the "Vortex Box" technique, has been applied to general planar wings of arbitrary straight line ' geometry and to annular wings...

Kocurek, James David

2012-06-07T23:59:59.000Z

137

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents (OSTI)

A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

Yang, W.C.; Newby, R.A.; Bannister, R.L.

1999-04-27T23:59:59.000Z

138

Effect of lift force on the aerodynamics of dust grains in the protoplanetary disk  

E-Print Network (OSTI)

We newly introduce lift force into the aerodynamics of dust grains in the protoplanetary disk. Although many authors have so far investigated the effects of the drag force, gravitational force and electric force on the dust grains, the lift force has never been considered as a force exerted on the dust grains in the gas disk. If the grains are spinning and moving in the fluid, then the lift force is exerted on them. We show in this paper that the dust grains can be continuously spinning due to the frequent collisions so that the lift force continues to be exerted on them, which is valid in a certain parameter space where the grain size is larger than ~ 1 m and where the distance from the central star is larger than 1 AU for the minimum mass solar nebula. In addition, we estimate the effects of the force on the grain motion and obtain the result that the mean relative velocity between the grains due to the lift force is comparable to the gas velocity in the Kepler rotational frame when the Stokes number and li...

Yamaguchi, Masaki S

2014-01-01T23:59:59.000Z

139

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents (OSTI)

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

Singh, Prabhakar (Export, PA); George, Raymond A. (Pittsburgh, PA)

1999-01-01T23:59:59.000Z

140

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents (OSTI)

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

Singh, P.; George, R.A.

1999-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

3rd Generation SCR System Using Solid Ammonia Storage and Direct Gas Dosing  

Energy.gov (U.S. Department of Energy (DOE))

SCR system provides direct ammonia gas dosing for optimal SCR performance with simplified and flexible exhaust layout.

142

A Glove Box Enclosed Gas-Tungsten Arc Welding System  

SciTech Connect

This report describes an inert atmosphere enclosed gas-tungsten arc welding system which has been assembled in support of the MC2730, MC2730A and MC 3500 Radioisotope Thermoelectric Generator (RTG) Enhanced Surveillance Program. One goal of this program is to fabricate welds with microstructures and impurity levels which are similar to production heat source welds previously produced at Los Alamos National Laboratory and the Mound Facility. These welds will subsequently be used for high temperature creep testing as part of the overall component lifetime assessment. In order to maximize the utility of the welding system, means for local control of the arc atmosphere have been incorporated and a wide range of welding environments can easily be evaluated. The gas-tungsten arc welding system used in the assembly is computer controlled, includes two-axis and rotary motion, and can be operated in either continuous or pulsed modes. The system can therefore be used for detailed research studies of welding impurity effects, development of prototype weld schedules, or to mimic a significant range of production-like welding conditions. Fixturing for fabrication of high temperature creep test samples have been designed and constructed, and weld schedules for grip-tab and test welds have been developed. The microstructure of these welds have been evaluated and are consistent with those used during RTG production.

Reevr, E, M; Robino, C.V.

1999-07-01T23:59:59.000Z

143

Dewatering of coalbed methane wells with hydraulic gas pump  

SciTech Connect

The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

Amani, M.; Juvkam-Wold, H.C. [Texas A& M Univ., College Station, TX (United States)

1995-12-31T23:59:59.000Z

144

The best use of biomass? Greenhouse gas lifecycle analysis of predicted pyrolysis biochar systems.  

E-Print Network (OSTI)

??Life cycle analysis is carried out for 11 predicted configurations of pyrolysis biochar systems to determine greenhouse gas balance, using an original spreadsheet model. System (more)

Hammond, James A R

2009-01-01T23:59:59.000Z

145

Systems acceptance and operability testing for rotary mode core sampling in flammable gas tanks  

SciTech Connect

This document provides instructions for the system acceptance and operability testing of the rotary mode core sampling system, modified for use in flammable gas tanks.

Corbett, J.E., Westinghouse Hanford

1996-07-29T23:59:59.000Z

146

ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS  

SciTech Connect

The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report.

Unknown

2001-06-01T23:59:59.000Z

147

Requirements for boom lift operations is to tether an adjustable 6' lanyard to 3ft while operating a boom lift  

NLE Websites -- All DOE Office Websites (Extended Search)

Fall Protection Requirements for Boom Lift Fall Protection Requirements for Boom Lift 2010 Requirements for boom lift operations is to tether an adjustable 6' lanyard to 3ft while operating a boom lift. While operating a JLG Aerial lift. LBNL best practices requirements for boom lift Operations is to tether an adjustable 6' lanyard to 3ft while operating a boom lift. January 14, 2009 OSHA Letter # 20070823-7896 - Whether a manufacturer stipulated minimum anchor point elevation of 18½ feet precludes the use of a shock absorbing lanyard in an aerial lift. (See attached Letter) An adjustable 6' lanyard to 3ft will keep the operator from protected from being ejected out of the lift. If a non-adjustable 6ft lanyard is used for fall restraint it is required that fall distance from the anchor point must be at a height not under

148

Comparative controller design for a marine gas turbine propulsion system  

SciTech Connect

Controller design for marine gas turbine systems should consider three measures of performance: transient control, steady-state accuracy, and disturbance rejection. This paper presents and compares two common types of controller design in terms of these measures. The goal of the controllers was shaft speed control. To meet this goal, a classical proportional-plus-integral controller was designed and compared to a modern linear quadratic regulator design. The controllers' performances were evaluated with respect to the three measures mentioned above, with disturbances being input as oscillations in shaft torque due to seaway cycling.

Smith, D.L.; Stammetti, V.A. (Naval Postgraduate School, Monterey, CA (USA). Dept. of Mechanical Engineering)

1990-04-01T23:59:59.000Z

149

A Path to Reduce Methane Emissions from Gas Systems | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ernest Moniz Secretary of Energy The United States is now the world's largest producer of natural gas. This natural gas revolution is driving economic growth across the country,...

150

A gas-cooled reactor surface power system  

Science Journals Connector (OSTI)

A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed depending on the number of astronauts level of scientific activity and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

Ronald J. Lipinski; Steven A. Wright; Roger X. Lenard; Gary A. Harms

1999-01-01T23:59:59.000Z

151

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

152

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents (OSTI)

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

153

NETL: Gasification Systems - Advanced Acid Gas Separation Technology for  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Advanced Acid Gas Separation Technology for the Utilization of Low-Rank Coals Project Number: DE-FE0007759 Refinery offgas PSA at Air Products' facility in Baytown, TX Refinery offgas PSA at Air Products' facility in Baytown, TX. Air Products, in collaboration with the University of North Dakota Energy and Environmental Research Center (EERC), is testing its Sour Pressure Swing Adsorption (Sour PSA) process that separates syngas into an hydrogen-rich stream and second stream comprising of sulfur compounds(primarily hydrogen sulfide)carbon dioxide (CO2), and other impurities. The adsorbent technology testing that has been performed to date utilized syngas streams derived from higher rank coals and petcoke. Using data from experiments based on petcoke-derived syngas, replacing the

154

Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network (OSTI)

. These challenges have impeded efficient economic development of shale resources. New fundamental insights and tools are needed to improve the state of shale gas development. Few attempts have been made to model the compositional behavior of fluids in shale gas...

Freeman, Craig Matthew

2013-11-25T23:59:59.000Z

155

Security analysis of the interaction between the UK gas and electricity transmission systems  

E-Print Network (OSTI)

Natural gas has become the UKs foremost primary energy source, providing some 39% of our energy needs. The National Transmission System (NTS) has developed from its humble beginnings when natural gas was first discovered ...

Whiteford, James Raymond George

2012-06-25T23:59:59.000Z

156

New Crystal Structures Lift Fog around Protein Folding  

NLE Websites -- All DOE Office Websites (Extended Search)

New Crystal Structures Lift Fog around Protein Folding New Crystal Structures Lift Fog around Protein Folding Print Wednesday, 25 July 2012 00:00 Nature's proteins set a high bar...

157

System definition and analysis gas-fired industrial advanced turbine systems  

SciTech Connect

The objective is to define and analyze an engine system based on the gas fuel Advanced Turbine from Task 3. Using the cycle results of Task 3, a technical effort was started for Task 6 which would establish the definition of the engine flowpath and the key engine component systems. The key engine systems are: gas turbine engine overall flowpath; booster (low pressure compressor); intercooler; high pressure compressor; combustor; high pressure turbine; low pressure turbine and materials; engine system packaging; and power plant configurations. The design objective is to use the GE90 engine as the platform for the GE Industrial Advanced Turbine System. This objective sets the bounds for the engine flowpath and component systems.

Holloway, G.M.

1997-05-01T23:59:59.000Z

158

Prospects of using caissonless water-wedge ship lifts  

Science Journals Connector (OSTI)

1. Caissonless water-wedge lifts are an effective type of navigation structure for overcoming large differences ...

G. V. Simakov; A. B. Moshkov; P. A. Garibin

1981-12-01T23:59:59.000Z

159

Advanced Materials for Mercury 50 Gas Turbine Combustion System  

SciTech Connect

Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

Price, Jeffrey

2008-09-30T23:59:59.000Z

160

EIA - The National Energy Modeling System: An Overview 2003-Oil and Gas  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The National Energy Modeling System: An Overview 2003 Oil and Gas Supply Module The oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline–quality gas from Mexico and Canada Imported liquefied natural gas. Figure 12. Oil and Gas Supply Module Regions. Need help, contact the National Energy Information Center at 202-202-586-8800. Figure 13. Oil and Gas Suppply Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Oil and Gas Supply Module Table. Need help, contact the National Energy Information Center at 202-586-8800.

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Real and global lifts from PGL3 to G2  

Science Journals Connector (OSTI)

......of the global theta lift in (i) is not difficult...How- ever, as we point out in Remark 7...an oversight at one point of the proof, which...is a global theta lift if and only if its...Real and Global Lifts from PGL3 to G2 2723...and there are up to four generic representations......

Wee Teck Gan; Gordan Savin

2003-01-01T23:59:59.000Z

162

Stable base change lift from unitary groups to GLN  

Science Journals Connector (OSTI)

......Stable Base Change Lift from Unitary Groups...need the following four things. (1) For...Stable Base Change Lift from Unitary Groups...of its F-rational points. There are two main...irreducible at all other points. The result of Shahidi...be the base change lift of . By Proposition......

Henry H. Kim; Muthukrishnan Krishnamurthy

2005-01-01T23:59:59.000Z

163

Fuel Cell/Gas Turbine System Performance Studies  

Office of Scientific and Technical Information (OSTI)

METC/C-97/7278 METC/C-97/7278 Title: Fuel Cell/Gas Turbine System Performance STudies Authors: George T. Lee (METC) Frederick A. Sudhoff (METC) Conference: Fuel Cells '96 Review Meeting Conference Location: Morgantown, West Virginia Conference Dates: August 20-21, 1996 Conference Sponsor: U.S. DOE, Morgantown Energy Technology Center Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

164

Backscatter absorption gas imaging systems and light sources therefore  

DOE Patents (OSTI)

The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

Kulp, Thomas Jan (Livermore, CA); Kliner, Dahv A. V. (San Ramon, CA); Sommers, Ricky (Oakley, CA); Goers, Uta-Barbara (Campbell, NY); Armstrong, Karla M. (Livermore, CA)

2006-12-19T23:59:59.000Z

165

[Gas cooled fuel cell systems technology development program  

SciTech Connect

Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm[sup 2]; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

Not Available

1988-03-01T23:59:59.000Z

166

ABSORBING GAS AROUND THE WASP-12 PLANETARY SYSTEM  

SciTech Connect

Near-UV observations of the planet host star WASP-12 uncovered the apparent absence of the normally conspicuous core emission of the Mg II h and k resonance lines. This anomaly could be due either to (1) a lack of stellar activity, which would be unprecedented for a solar-like star of the imputed age of WASP-12 or (2) extrinsic absorption, from the intervening interstellar medium (ISM) or from material within the WASP-12 system itself, presumably ablated from the extreme hot Jupiter WASP-12 b. HIRES archival spectra of the Ca II H and K lines of WASP-12 show broad depressions in the line cores, deeper than those of other inactive and similarly distant stars and similar to WASP-12's Mg II h and k line profiles. We took high-resolution ESPaDOnS and FIES spectra of three early-type stars within 20' of WASP-12 and at similar distances, which show the ISM column is insufficient to produce the broad Ca II depression observed in WASP-12. The EBHIS H I column density map supports and strengthens this conclusion. Extrinsic absorption by material local to the WASP-12 system is therefore the most likely cause of the line core anomalies. Gas escaping from the heavily irradiated planet could form a stable and thick circumstellar disk/cloud. The anomalously low stellar activity index ( log R{sup '}{sub HK}) of WASP-12 is evidently a direct consequence of the extra core absorption, so similar HK index deficiencies might signal the presence of translucent circumstellar gas around other stars hosting evaporating planets.

Fossati, L.; Floeer, L. [Argelander-Institut fuer Astronomie der Universitaet Bonn, Auf dem Huegel 71, D-53121, Bonn (Germany); Ayres, T. R. [Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB, Boulder, CO 80309-0593 (United States); Haswell, C. A. [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bohlender, D. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Kochukhov, O., E-mail: lfossati@astro.uni-bonn.de, E-mail: lfloeer@astro.uni-bonn.de, E-mail: Thomas.Ayres@colorado.edu, E-mail: C.A.Haswell@open.ac.uk, E-mail: david.bohlender@nrc-cnrc.gc.ca, E-mail: oleg.kochukhov@physics.uu.se [Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala (Sweden)

2013-04-01T23:59:59.000Z

167

It's a Gas Robert D. Pike Literate Software Systems  

E-Print Network (OSTI)

It's a Gas Robert D. Pike 1 16 19 22 27 33 41 46 49 67 71 76 79 2 34 52 59 3 35 60 4 31 61 5 28 53. Cholesterol drugs 8. Acidic gas 11. Roundabouts 16. Fertilizer gas 17. Just like 18. It's called a "tall" at Starbucks 19. Excited 20. Caught 21. Hues 22. Deep sleep cycles 23. Law suit goal sometimes 26. Unfixed gas

Pike, Robert D.

168

Auxiliary ECR heating system for the gas dynamic trap  

SciTech Connect

Physics aspects of a new system for electron cyclotron resonance heating (ECRH) at the magnetic mirror device Gas Dynamic Trap (GDT, Budker Institute, Novosibirsk) are discussed. This system based on two 400 kW/54.5 GHz gyrotrons is aimed at increasing the electron temperature up to the range 250-350 eV for improved energy confinement of hot ions. The key physical issue of the GDT magnetic field topology is that conventional ECRH geometries are not accessible. The proposed solution is based on a peculiar effect of radiation trapping in inhomogeneous magnetized plasma. Under specific conditions, oblique launch of gyrotron radiation results in generation of right-hand-polarized (R) electromagnetic waves propagating with high N{sub Double-Vertical-Line Double-Vertical-Line} in the vicinity of the cyclotron resonance layer, which leads to effective single-pass absorption of the injected microwave power. In the present paper, we investigate numerically an optimized ECRH scenario based on the proposed mechanism of wave propagation and discuss the design of the ECRH system, which is currently under construction at the Budker Institute.

Shalashov, A. G.; Gospodchikov, E. D.; Smolyakova, O. B.; Malygin, V. I. [Institute of Applied Physics of the Russian Academy of Sciences, Ulyanova St. 46, 603950 Nizhny Novgorod (Russian Federation); Bagryansky, P. A. [Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Prospect 11, 630090 Novosibirsk (Russian Federation); Thumm, M. [Institut fuer Hochfrequenztechnik und Elektronik, Karlsruhe Institut fuer Technologie, Engesserstrasse 5, 76131 Karlsruhe (Germany)

2012-05-15T23:59:59.000Z

169

EIA - The National Energy Modeling System: An Overview 2003-Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module The National Energy Modeling System: An Overview 2003 Natural Gas Transmission and Distribution Module Figure 15. Natural Gas Transmission and Distribution Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Figure 16. Natural Gas Transmission and distribution Module Network. Need help, contact the National Energy Information Center at 202-586-8800. Natural Gas Transmission and distribution Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market–clearing prices for natural gas supplies and for end–use consumption, given the

170

The National Energy Modeling System: An Overview 1998 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

NATURAL GAS TRANSMISSION AND DISTRIBUTION MODULE NATURAL GAS TRANSMISSION AND DISTRIBUTION MODULE blueball.gif (205 bytes) Annual Flow Submodule blueball.gif (205 bytes) Capacity Expansion Submodule blueball.gif (205 bytes) Pipeline Tariff Submodule blueball.gif (205 bytes) Distributor Tariff Submodule The natural gas transmission and distribution module (NGTDM) is the component of NEMS that represents the natural gas market. The NGTDM models the natural gas transmission and distribution network in the lower 48 States, which links suppliers (including importers) and consumers of natural gas. The module determines regional market-clearing prices for natural gas supplies (including border prices) and end-use consumption. The NGTDM has four primary submodules: the annual flow submodule, the capacity expansion submodule, the pipeline tariff submodule, and the

171

Investigation of greenhouse gas reduction strategies by industries : an enterprise systems architecting approach  

E-Print Network (OSTI)

This thesis explores an enterprise systems architecting approach to investigate the greenhouse gas reduction strategies followed by industries, especially for automotive industry and Information Technology industry. The ...

Tanthullu Athmaram, Kumaresh Babu

2012-01-01T23:59:59.000Z

172

E-Print Network 3.0 - application systems gas Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Institute of Technology Collection: Engineering 39 Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using Summary:...

173

Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems  

Energy.gov (U.S. Department of Energy (DOE))

Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

174

Computer-based gas accounting system at the TETs-26 Mosenergo cogeneration station  

Science Journals Connector (OSTI)

Experience gained from the introduction and operation of microprocessor systems for metering gas consumption and its heating value at Mosenergos cogeneration stations is considered.

A. V. Zakharenkov; V. N. Degterev; V. V. Usanov; A. A. Shkurin

2006-10-01T23:59:59.000Z

175

,"U.S. Intrastate Natural Gas Pipeline Systems"  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Systems" Intrastate Natural Gas Pipeline Systems" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Intratstate Natural Gas Pipelines By Region",1,"Periodic",2007 ,"Release Date:","application/vnd.ms-excel" ,"Next Release Date:","application/vnd.ms-excel" ,"Source:","Energy Information Administration" ,"Excel File Name:","PipeIntra.xls" ,"Available from Web Page:","http://www.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/intrastate.html" ,"For Help, Contact:","infoctr@eia.doe.gov"

176

HERA-B Gas Systems The gas mixture, the gas volume of the corresponding detector and the required gas flow are given. All detectors are operating at nominal  

E-Print Network (OSTI)

stations in external gas hut 6 nonflammable pressure reducer stations CF4, Xe, CO2, Ar/CF4, reserve, reserve 3 flammable pressure reducer stations C2H6O, CH4, Ar/CH4 2 stations for cool liquids Ar, N2 4 gas stations without recyling ITR, high pt inner, high pt outer, Muon pixel 4 gas stations with gas recyling

177

[Advanced Gas Turbine Systems Research]. Technical Quarterly Progress Report  

SciTech Connect

Major Accomplishments by Advanced Gas Turbine Systems Research (AGTSR) during this reporting period are highlighted below and amplified in later sections of this report: AGTSR distributed 50 proposals from the 98RFP to the IRB for review, evaluation and rank-ordering during the summer; AGTSR conducted a detailed program review at DOE-FETC on July 24; AGTSR organized the 1998 IRB proposal review meeting at SCIES on September 15-16; AGTSR consolidated all the IRB proposal scores and rank-orderings to facilitate the 98RFP proposal deliberations; AGTSR submitted meeting minutes and proposal short-list recommendation to the IRB and DOE for the 98RFP solicitation; AGTSR reviewed two gas turbine related proposals as part of the CU RFP State Project for renovating the central energy facility; AGTSR reviewed and cleared research papers with the IRB from the University of Pittsburgh, Wisconsin, and Minnesota; AGTSR assisted GTA in obtaining university stakeholder support of the ATS program from California, Pennsylvania, and Colorado; AGTSR assisted GTA in distributing alert notices on potential ATS budget cuts to over 150 AGTSR performing university members; AGTSR submitted proceedings booklet and organizational information pertaining to the OAI hybrid gas turbine workshop to DOE-FETC; For DOE-FETC, AGTSR updated the university consortium poster to include new members and research highlights; For DOE-FETC, the general AGTSR Fact Sheet was updated to include new awards, workshops, educational activity and select accomplishments from the research projects; For DOE-FETC, AGTSR prepared three fact sheets highlighting university research supported in combustion, aero-heat transfer, and materials; For DOE-FETC, AGTSR submitted pictures on materials research for inclusion in the ATS technology brochure; For DOE-FETC, AGTSR submitted a post-2000 roadmap showing potential technology paths AGTSR could pursue in the next decade; AGTSR distributed the ninth newsletter UPDATE to DOE, the IRB: and two interested partners involved in ATS; AGTSR submitted information on its RFP's, workshops, and educational activities for the 1999 ASMWIGTI technology report for worldwide distribution; AGTSR coordinated university poster session titles and format with Conference Management Associates (CMA) for the 98 ATS Annual; and AGTSR submitted 2-page abstract to CMA for the 98 ATS Review titled: ''AGTSR: A Virtual National Lab''.

NONE

1998-09-30T23:59:59.000Z

178

9 - Hybrid fuel cell gas turbine (FC/GT) combined cycle systems  

Science Journals Connector (OSTI)

Abstract: Hybrid fuel cell gas turbine systems consisting of high-temperature fuel cells (HTFCs) integrated into cycles with gas turbines can significantly increase fuel-to-electricity conversion efficiency and lower emissions of greenhouse gases and criteria pollutants from the electric power sector. In addition, the separated anode and cathode compartments of the fuel cell can enable CO2 separation and sequestration for some cycle configurations. Hybrid fuel cell gas turbine technology has the potential to operate on natural gas, digester gas, landfill gas, and coal and biomass syngas. HTFC technologies are emerging with high reliability and durability, which should enable them to be integrated with gas turbine technology to produce modern hybrid power systems. Advanced thermodynamic and dynamic simulation capabilities have been developed and demonstrated to enable future system integration and control.

J. Brouwer

2012-01-01T23:59:59.000Z

179

Development of a Colony Lift Immunoassay To Facilitate Rapid Detection and Quantification of Escherichia coli O157:H7 from Agar Plates and Filter Monitor Membranes  

Science Journals Connector (OSTI)

...damp, were used to lift colonies from nutrient...colonies of one of four different strains...exposure) as a starting point for determining the...coli isolates (four O169:H40 strains...and critical control point systems in meat...plants. A colony lift immunoassay was developed...

David T. Ingram; Chinta M. Lamichhane; David M. Rollins; Lewis E. Carr; Edward T. Mallinson; Sam W. Joseph

1998-07-01T23:59:59.000Z

180

System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems  

DOE Patents (OSTI)

A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.

Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James

2014-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Feed gas contaminant removal in ion transport membrane systems  

DOE Patents (OSTI)

Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

2008-09-16T23:59:59.000Z

182

The Use of Compensated Aerological No-Lift Balloons to Determine Relatively Long-Term Dry-Air Parcel Trajectories  

Science Journals Connector (OSTI)

A method to compensate the loss of buoyancy due to gas leakage from aerological no-lift balloons is presented. The method is implemented by means of a double vessel device that supplies a constant liquid outflow at constant temperature. It is ...

Benjamin Terliuc; Ephraim Asculai; Eli Doron

1983-10-01T23:59:59.000Z

183

Influence of steam injection and hot gas bypass on the performance and operation of a combined heat and power system using a recuperative cycle gas turbine  

Science Journals Connector (OSTI)

The influence of steam injection and hot gas bypass on the performance and operation of ... power (CHP) system using a recuperative cycle gas turbine was investigated. A full off-design analysis ... in steam gene...

Soo Young Kang; Jeong Ho Kim; Tong Seop Kim

2013-08-01T23:59:59.000Z

184

Formation of ordered gas-solid structures via solidification in metal-hydrogen systems  

SciTech Connect

This work contains theoretical discussions concerning the large amount of previously published experimental data related to gas eutectic transformations in metal-hydrogen systems. Theories of pore nucleation and growth in these gas-solid materials will be presented and related to observed morphologies and structures. This work is intended to be helpful to theorists that work with metal-hydrogen systems, and experimentalists engaged in manufacturing technology development of these ordered gas-solid structures.

Shapovalov, V.I. [State Metallurgical Academy of Ukraine (Ukraine); [Sandia National Labs., Albuquerque, NM (United States)

1998-12-31T23:59:59.000Z

185

Design and Experimental Study of the Steam Mining System for Natural Gas Hydrates  

Science Journals Connector (OSTI)

Figure 3. Schematic diagram of the SMSGH: (1) water tank, (2) water pump, (3) water treatment system, (4) soft water tank, (5) small pump, (6) electricity steam generator, (7) steam control valve, (8) orifice device, (9) dual-wall drill pipe, (10) non-productive layer bushing, (11) floral tube in the mined bed, (12) submersible pump, (13) air pump, (14) water tank, (15) gasliquid separator, (16) cartridge gas filter, (17) gas flow meter, (18) gas storage tank, and (19) ignition device. ... The working principle of the gas collection system is as follows: The obtained natural gas spills from the layer of earth through the floral tube in the mined bed (11) and will generate a high flow rate with the vapor and water mixture using the pump function of the air pump (13). ... Hydrates continuously generated natural gas. ...

You-hong Sun; Rui Jia; Wei Guo; Yong-qin Zhang; You-hai Zhu; Bing Li; Kuan Li

2012-11-06T23:59:59.000Z

186

Natural Gas Weekly Update, Printer-Friendly Version  

Annual Energy Outlook 2012 (EIA)

if they delivered more than 110 percent of their gas usage on the OFO day. Natural Gas Pipeline Company of America lifted the force majeure on Monday, October 9, which had been...

187

Innovative coke oven gas cleaning system for retrofit applications  

SciTech Connect

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

Not Available

1992-10-16T23:59:59.000Z

188

Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems  

E-Print Network (OSTI)

Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems J. Sharda1 ; C of multilayer composite fabrics used in a gas turbine engine containment system is developed. Specifically: Tensile strength; Stress analysis; Stress strain relations; Fabrics; Composite materials; Finite element

Mobasher, Barzin

189

Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas  

E-Print Network (OSTI)

Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas Justin A. Hogan,1 sequestration sites for possible leaks of the CO2 gas from underground reservoirs, a low-cost multispectral are then flagged for closer inspection with in-situ CO2 sensors. The system is entirely self

Shaw, Joseph A.

190

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

191

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

192

Lifting -- A Nonreversible Markov Chain Monte Carlo Algorithm  

E-Print Network (OSTI)

Markov Chain Monte Carlo algorithms are invaluable numerical tools for exploring stationary properties of physical systems -- in particular when direct sampling is not feasible. They are widely used in many areas of physics and other sciences. Most common implementations are done with reversible Markov chains -- Markov chains that obey detailed balance. Reversible Markov chains are sufficient in order for the physical system to relax to equilibrium, but it is not necessary. Here we review several works that use "lifted" or nonreversible Markov chains, which violate detailed balance, yet still converge to the correct stationary distribution (they obey the global balance condition). In certain cases, the acceleration is a square root improvement at most, to the conventional reversible Markov chains. We introduce the problem in a way that makes it accessible to non-specialists. We illustrate the method on several representative examples (sampling on a ring, sampling on a torus, an Ising model on a complete graph...

Vucelja, Marija

2015-01-01T23:59:59.000Z

193

Method of lift-off patterning thin films in situ employing phase change resists  

DOE Patents (OSTI)

Method for making a patterned thin film of an organic semiconductor. The method includes condensing a resist gas into a solid film onto a substrate cooled to a temperature below the condensation point of the resist gas. The condensed solid film is heated selectively with a patterned stamp to cause local direct sublimation from solid to vapor of selected portions of the solid film thereby creating a patterned resist film. An organic semiconductor film is coated on the patterned resist film and the patterned resist film is heated to cause it to sublime away and to lift off because of the phase change.

Bahlke, Matthias Erhard; Baldo, Marc A; Mendoza, Hiroshi Antonio

2014-09-23T23:59:59.000Z

194

Feed gas contaminant removal in ion transport membrane systems  

SciTech Connect

An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

Underwood, Richard Paul (Allentown, PA); Makitka, III, Alexander (Hatfield, PA); Carolan, Michael Francis (Allentown, PA)

2012-04-03T23:59:59.000Z

195

System design and performance of a spiral groove gas seal for hydrogen service  

SciTech Connect

In the past, typical seal designs for low molecular weight gases, such as hydrogen, incorporated high pressure oil seal systems. Technology of the seventies and eighties produced a new concept - the spiral groove gas seal. This paper discusses the problems related to oil seal systems, as well as the design, application and performance of a dry gas seal. It also discusses the limitations encountered with the start-up and operation of a dry gas seal in a high pressure, oil-soluble mixture of light hydrocarbons. Results show how the spiral groove gas seal can handle adverse demands without seal failure.

Pecht, G.G.; Carter, D. (John Crane, Inc., Morton Grove, IL (USA) Marathon Petroleum Co., Robinson, IL (USA))

1990-09-01T23:59:59.000Z

196

Glass melter off-gas system pluggages: Cause, significance, and remediation  

SciTech Connect

Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF) where the glass will be poured into stainless steel canisters for eventual disposal in a geologic repository. Experimental glass melters used to develop the vitrification process for immobilization of the waste have experienced problems with pluggage of the off-gas line with solid deposits. Off-gas deposits from the DWPF 1/2 Scale Glass Melter (SGM) and the 1/10th scale Integrated DWPF Melter System (IDMS) were determined to be mixtures of alkali rich chlorides, sulfates, borates, and fluorides with entrained Fe{sub 2}O{sub 3}, spinel, and frit particles. The distribution and location of the alkali deposits throughout the off-gas system indicate that the deposits form by vapor-phase transport and condensation. Condensation of the alkali-rich phases cement the entrained particulates causing off-gas system pluggages. The identification of vapor phase transport as the operational mechanism causing off-gas system pluggage indicates that deposition can be effectively eliminated by increasing the off-gas velocity. Scale glass melter operating experience indicates that a velocity of >50 fps is necessary in order to transport the volatile species to the quencher to prevent having condensation occur in the off-gas line. Hotter off-gas line temperatures would retain the alkali compounds as vapors so that they would remain volatile until they reach the quencher. However, hotter off-gas temperatures can only be achieved by using less air/steam flow at the off-gas entrance, e.g. at the off-gas film cooler (OGFC). This would result in lower off-gas velocities. Maintaining a high velocity is, therefore, considered to be a more important criterion for controlling off-gas pluggage than temperature control. 40 refs., 16 figs., 5 tabs.

Jantzen, C.M.

1991-03-01T23:59:59.000Z

197

Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas  

Open Energy Info (EERE)

Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Details Activities (6) Areas (1) Regions (0) Abstract: Hidden geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the

198

A Portable Expert System for Gas Turbine Maintenance  

E-Print Network (OSTI)

Combustion turbines for electric power generation and industrial applications have steadily increased in size, efficiency and prominence. The newest class of gas turbine-generators coming into service will deliver 150 megawatts, with turbine inlet...

Quentin, G. H.

199

Performance Assessment of a Recuperative Helium Gas Turbine System  

Science Journals Connector (OSTI)

Helium is considered an ideal working fluid for closed cycle gas turbines powered by the heat of nuclear reactors or solar concentrators. Energetic and exergetic based thermodynamic analyses ... applied to an act...

Rami Salah El-Emam; Ibrahim Dincer

2014-01-01T23:59:59.000Z

200

Method for eliminating gas blocking in electrokinetic pumping systems  

DOE Patents (OSTI)

A method for eliminating gas bubble blockage of current flow during operation of an electrokinetic pump. By making use of the ability to modify the surface charge on the porous dielectric medium used in electrokinetic pumps, it becomes possible to place electrodes away from the pressurized region of the electrokinetic pump. While gas is still generated at the electrodes they are situated such that the generated gas can escape into a larger buffer reservoir and not into the high pressure region of the pump where the gas bubbles can interrupt current flow. Various combinations of porous dielectric materials and ionic conductors can be used to create pumps that have desirable electrical, material handling, and flow attributes.

Arnold, Don W. (Livermore, CA); Paul, Phillip H. (Livermore, CA); Schoeniger, Joseph S. (Oakland, CA)

2001-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Gas mixing system for imaging of nanomaterials under dynamic environments by environmental transmission electron microscopy  

SciTech Connect

A gas mixing manifold system that is capable of delivering a stable pressure stream of a desired composition of gases into an environmental transmission electron microscope has been developed. The system is designed to provide a stable imaging environment upon changes of either the composition of the gas mixture or upon switching from one gas to another. The design of the system is described and the response of the pressure inside the microscope, the sample temperature, and sample drift in response to flow and composition changes of the system are reported.

Akatay, M. Cem [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)] [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Zvinevich, Yury; Ribeiro, Fabio H., E-mail: fabio@purdue.edu, E-mail: estach@bnl.gov [Forney Hall of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Baumann, Philipp [Computer Sciences, University of Applied Sciences of Northeastern Switzerland, 4132 Muttenz, Switzerland and Department of Physics, Yeshiva University, New York, New York 10016 (United States)] [Computer Sciences, University of Applied Sciences of Northeastern Switzerland, 4132 Muttenz, Switzerland and Department of Physics, Yeshiva University, New York, New York 10016 (United States); Stach, Eric A., E-mail: fabio@purdue.edu, E-mail: estach@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States)

2014-03-15T23:59:59.000Z

202

Accident Investigation of the February 7, 2013, Scissor Lift...  

Office of Environmental Management (EM)

Lift Accident in the West Hackberry Brine Tank-14 Resulting in Injury, Strategic Petroleum Reserve West Hackberry, LA Accident Investigation of the February 7, 2013, Scissor...

203

New Crystal Structures Lift Fog around Protein Folding  

NLE Websites -- All DOE Office Websites (Extended Search)

New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these...

204

Improved design of a deep vertical-lift gate  

Science Journals Connector (OSTI)

1. Redesigning of the framework of a deep vertical-lift gate by replacing the multibeam framework by a two-beam ...

P. R. Khlopenkov

1986-04-01T23:59:59.000Z

205

Energy Department Expands Gas Gouging Reporting System to Include 1-800  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expands Gas Gouging Reporting System to Include Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 Energy Department Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 September 6, 2005 - 9:50am Addthis Washington, DC - Energy Secretary Samuel W. Bodman announced today that the Department of Energy has expanded its gas gouging reporting system to include a toll-free telephone hotline. The hotline is available to American consumers starting today. "While we've largely seen the best of American generosity and unity throughout the recovery effort, we recognize that there are some bad actors that may try to take advantage of the situation. Consumers are our first line of defense in guarding against gas price gouging. I can assure you, our Administration - from the President down - takes this issue very

206

Anode shroud for off-gas capture and removal from electrolytic oxide reduction system  

DOE Patents (OSTI)

An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

2014-07-08T23:59:59.000Z

207

Stack Characterization System for Inspection of Contaminated Off-Gas Stacks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stack Characterization System for Inspection of Contaminated Stack Characterization System for Inspection of Contaminated Off-Gas Stacks Stack Characterization System for Inspection of Contaminated Off-Gas Stacks The stack characterization system (SCS) is a tele-operated remote system that collects samples and data to characterize the quantitative and qualitative levels of contamination inside off-gas stacks protecting workers from the physical, radiological and chemical hazards of deteriorating contaminated stacks. Stack Characterization System for Inspection of Contaminated Off-Gas Stacks More Documents & Publications Uranium Downblending and Disposition Project Technology Readiness Assessment Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - November 2013 EA-1488: Environmental Assessment for the U-233 Disposition, Medical

208

Stack Characterization System for Inspection of Contaminated Off-Gas Stacks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stack Characterization System for Inspection of Contaminated Stack Characterization System for Inspection of Contaminated Off-Gas Stacks Stack Characterization System for Inspection of Contaminated Off-Gas Stacks The stack characterization system (SCS) is a tele-operated remote system that collects samples and data to characterize the quantitative and qualitative levels of contamination inside off-gas stacks protecting workers from the physical, radiological and chemical hazards of deteriorating contaminated stacks. Stack Characterization System for Inspection of Contaminated Off-Gas Stacks More Documents & Publications Uranium Downblending and Disposition Project Technology Readiness Assessment EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge

209

Autonomous gas chromatograph system for Thermal Enhanced Vapor Extraction System (TEVES) proof of concept demonstration  

SciTech Connect

An autonomous gas chromatograph system was designed and built to support the Thermal Enhanced Vapor Extraction System (TEVES) demonstration. TEVES is a remediation demonstration that seeks to enhance an existing technology (vacuum extraction) by adding a new technology (soil heating). A pilot scale unit was set up at one of the organic waste disposal pits at the Sandia National Laboratories Chemical Waste Landfill (CWL) in Tech Area 3. The responsibility for engineering a major part of the process instrumentation for TEVES belonged to the Manufacturing Control Subsystems Department. The primary mission of the one-of-a-kind hardware/software system is to perform on-site gas sampling and analysis to quantify a variety of volatile organic compounds (VOCs) from various sources during TEVES operations. The secondary mission is to monitor a variety of TEVES process physical parameters such as extraction manifold temperature, pressure, humidity, and flow rate, and various subsurface pressures. The system began operation in September 1994 and was still in use on follow-on projects when this report was published.

Peter, F.J.; Laguna, G.R. [Sandia National Labs., Albuquerque, NM (United States). Manufacturing Control Subsystems Dept.

1996-09-01T23:59:59.000Z

210

Flight Testing of an Advanced Airborne Natural Gas Leak Detection System  

SciTech Connect

ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

2005-10-01T23:59:59.000Z

211

An Advanced Diagnostic and Prognostic System for Gas Turbine Generator Sets with Experimental Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostic and Prognostic System for Gas Diagnostic and Prognostic System for Gas Turbine Generator Sets with Experimental Validation Clemson University John R. Wagner, Ph.D., P.E. SCIES Project 03-01-SR108 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (07/01/2003, 36 Month Duration) $319,479 Total Contract Value ($319,479 DOE) Clemson Presentation 10-19-2005 J.W. Gas Turbine Need * The Reliability, Availability, and Maintainability (RAM) technical area within High Efficiency Engines and Turbines (HEET) Program encompasses the design of gas turbine health management systems * The introduction of real-time diagnostic and prognostic capabilities on gas turbines can provide increased reliability, safety, and efficiency

212

Innovative Telemetry System Will Help Tap Hard-to-Reach Natural Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Telemetry System Will Help Tap Hard-to-Reach Natural Gas Innovative Telemetry System Will Help Tap Hard-to-Reach Natural Gas Resources Innovative Telemetry System Will Help Tap Hard-to-Reach Natural Gas Resources November 2, 2010 - 1:00pm Addthis Washington, DC - The commercialization of an innovative telemetry communications system developed through a U.S. Department of Energy research program will help U.S. producers tap previously hard-to-reach natural gas resources deep underground, resulting in access to additional supplies that will help enhance national energy security. The patented, proprietary Sharewell L.P. EM-MWD electromagnetic (EM) telemetry system was initially developed by the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and E-Spectrum Technologies of San Antonio, Texas, under a four-year, cost-shared

213

EIS-0139: Trans-Alaska Gas System Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes the Yukon Pacific Corporation (YPC) proposed construction of the Trans-Alaska Gas System (TAGS) a 796.5 mile long 36-inch diameter pipeline to transport High Pressured Natural Gas between Prudhoe Bay and a Tidewater terminal and LNG Plant near Anderson Bay, AK.

214

Ion transport membrane module and vessel system with directed internal gas flow  

DOE Patents (OSTI)

An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

2010-02-09T23:59:59.000Z

215

q-Lifts of Tangential k-Blocks  

Science Journals Connector (OSTI)

......clp(C). Let i be a point of clp({p,x...preceding theorem, ^-lifts of nasty tangential...taking successive ^-lifts of M*(P10) one obtains...GF(2) is the three point line U2 3, and in [6...over GF(3) are the four point line U2 4 and the......

Geoff Whittle

1989-02-01T23:59:59.000Z

216

Department of Geoscience Safe Work Instructions SAFE LIFTING PROCEDURES  

E-Print Network (OSTI)

Injury Preserve your back health by using the following lifting strategies: 1. Before lifting a load) whenever they are available. 14. Reduce the size of load whenever possible. 15. Remember to follow the same, think of other means of moving it using a device that can help you to pull, push or roll the load. 2

Habib, Ayman

217

UF{sub 6} cylinder lifting equipment enhancements  

SciTech Connect

This paper presents numerous enhancements that have been made to the Portsmouth lifting equipment to ensure the safe handling of cylinders containing liquid uranium hexafluoride (UF{sub 6}). The basic approach has been to provide redundancy to all components of the lift path so that any one component failure would not cause the load to drop or cause any undesirable movement.

Hortel, J.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

1991-12-31T23:59:59.000Z

218

Techno-Economic Evaluation of Using Different Air Inlet Cooling Systems in Gas Compressor Station  

Science Journals Connector (OSTI)

Abstract The purpose of this paper is to review the state of the art in applications for reducing the gas turbine intake air temperature and examine the merits from integration of the different air-cooling methods for 25 MW gas turbine based pipeline gas station . Four different intake air cooling methods have been applied in two pipeline gas stations. The calculations were performed on a yearly basis of operation. The case study is related to Dehshir and Kashan pipeline gas stations in Iran Gas Trunk line 8. The simulation has been performed in Thermoflex Software. Also, the Matlab code has been developed for thermodynamic simulation and exergoeconomic analysis of different scenarios. Finally, the thermodynamic, economics and exergoeconomic parameters for integration of the different cooling systems were calculated and compared.

V. Mazhari; S. Khamis Abadi; H. Ghalami; M.H. Khoshgoftar Manesh; M. Amidpour

2012-01-01T23:59:59.000Z

219

ADVANCED EXERGY ANALYSIS APPLIED TO THE GAS-TURBINE BASED CO-GENERATION SYSTEM.  

E-Print Network (OSTI)

??The thesis focuses on the evaluation and improvement of a gas-turbine based co-generation system, from an exergetic point of view. A conventional exergy analysis has (more)

AZZARELLI, GIUSEPPE

2008-01-01T23:59:59.000Z

220

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative  

Energy Savers (EERE)

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact...

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reliability analysis of urban gas transmission and distribution system based on FMEA and correlation operator  

Science Journals Connector (OSTI)

In order to improve the safety management of urban gas transmission and distribution system, failure mode and effects analysis (FMEA) was used to construct the reliability analysis ... the risk priority number (R...

Su Li; Weiguo Zhou

2014-12-01T23:59:59.000Z

222

Demonstration Systems of Cooking Gas Produced by Crop Straw Gasifier for Villages  

Science Journals Connector (OSTI)

Several demonstration systems were designed, built, tested and put into use in order to develop a new way of producing cooking gas from crop straw for villages by biomass gasification technology. A type of crop s...

L. Sun; Z. Z. Gu; D. Y. Guo; M. Xu

1997-01-01T23:59:59.000Z

223

Effect of Cooling Flow on the Operation of a Hot Rotor-Gas Foil Bearing System  

E-Print Network (OSTI)

Gas foil bearings (GFBs) operating at high temperature rely on thermal management procedures that supply needed cooling flow streams to keep the bearing and rotor from overheating. Poor thermal management not only makes systems inefficient...

Ryu, Keun

2012-02-14T23:59:59.000Z

224

Methane adsorption comparison of different thermal maturity kerogens in shale gas system  

Science Journals Connector (OSTI)

To determine the effect of thermal maturity on the methane sorption in shale gas system, two different thermal maturity kerogens of type II isolated from Barnett shale of Fort Worth Basin were used to...

Haiyan Hu

2014-12-01T23:59:59.000Z

225

A Management Tool for Analyzing CHP Natural Gas Liquids Recovery System  

E-Print Network (OSTI)

The objective of this research is to develop a management tool for analyzing combined heat and power (CHP) natural gas liquids (NGL) recovery systems. The methodology is developed around the central ideas of product recovery, possible recovery...

Olsen, C.; Kozman, T. A.; Lee, J.

2008-01-01T23:59:59.000Z

226

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

None

1981-01-01T23:59:59.000Z

227

DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems  

Energy.gov (U.S. Department of Energy (DOE))

DOE announced a series of actions, partnerships, and stakeholder commitments to help modernize the nations natural gas transmission and distribution systems and reduce methane emissions. As part of these DOE actions, AMO will lead a collaborative effort with industry to evaluate and scope high-impact manufacturing R&D to improve natural gas systems efficiency and leak reduction. The goal of this effort is to establish an advanced manufacturing initiative.

228

Simulating the Effect of Water on the Fracture System of Shale Gas Wells  

E-Print Network (OSTI)

SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2010 Major Subject: Petroleum Engineering SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate...

Hamam, Hassan Hasan H.

2011-10-21T23:59:59.000Z

229

Operating Experience Review of the INL HTE Gas Monitoring System  

SciTech Connect

This paper describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored at hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and unwanted alarms are described. The calibration session time durations are described. Some simple statistics are given for the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

L. C. Cadwallader; K. G. DeWall

2010-06-01T23:59:59.000Z

230

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-01-01T23:59:59.000Z

231

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-12-01T23:59:59.000Z

232

Microfabricated BTU monitoring device for system-wide natural gas monitoring.  

SciTech Connect

The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will expedite accurate financial accounting. Industrial endusers will benefit through continuous feedback of physical gas properties to improve combustion efficiency during use. To meet this need, Sandia has developed a natural gas heating value monitoring instrument using existing and modified microfabricated components. The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor provides diagnostics and surety. This combination allows for continuous calorimetric determination with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This system will find application at remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. Microfabrication techniques will allow the analytical components to be manufactured in production quantities at a low per-unit cost.

Einfeld, Wayne; Manginell, Ronald Paul; Robinson, Alex Lockwood; Moorman, Matthew Wallace

2005-11-01T23:59:59.000Z

233

Upper limit on the gas density in the Beta-Pictoris system: On the effect of gas drag on the dust dynamics  

E-Print Network (OSTI)

We investigate in this paper the effect of gas drag on the dynamics of the dust particles in the edge-on Beta-Pictoris disc in order to derive an upper limit on the mass of gas in this system. Our study is motivated by the large uncertainties on the amount of gas in the Beta-Pictoris disc currently found in the literature. The dust particles are assumed to originate from a colliding annulus of planetesimals peaked around 100AU from the central star as proposed by Augereau et al.(2001). We consider the various gas densities that have been inferred from independent observing techniques and we discuss their impact on the dust dynamics and on the disc profile in scattered light along the midplane. We show that the observed scattered light profile of the disc cannot be properly reproduced if hydrogen gas number density at 117AU exceeds 10**4 cm**-3. This corresponds to an upper limit on the total gas mass of about 0.4 Mearth assuming the gas density profile inferred by Brandeker et al.(2004) and thus to a gas to dust mass ratio smaller than 1. Our approach therefore provides an independent diagnostic for a gas depletion in the Beta-Pictoris system relative to the dust disc. Such an approach could also be used to constrain the gas content of recently identified systems like the edge-on disc around AUmic.

P. Thebault; J. -C Augereau

2005-02-22T23:59:59.000Z

234

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine cycle  

E-Print Network (OSTI)

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine steam process for exhaust gas heat recovery from a spark-ignition (SI) engine, from a prototyping of a practical supervi- sion and control system for a pilot Rankine steam process for exhaust gas heat recovery

Paris-Sud XI, Université de

235

Engineering task plan for flammable gas atmosphere mobile color video camera systems  

SciTech Connect

This Engineering Task Plan (ETP) describes the design, fabrication, assembly, and testing of the mobile video camera systems. The color video camera systems will be used to observe and record the activities within the vapor space of a tank on a limited exposure basis. The units will be fully mobile and designed for operation in the single-shell flammable gas producing tanks. The objective of this tank is to provide two mobile camera systems for use in flammable gas producing single-shell tanks (SSTs) for the Flammable Gas Tank Safety Program. The camera systems will provide observation, video recording, and monitoring of the activities that occur in the vapor space of applied tanks. The camera systems will be designed to be totally mobile, capable of deployment up to 6.1 meters into a 4 inch (minimum) riser.

Kohlman, E.H.

1995-01-25T23:59:59.000Z

236

Injection of solids to lift coastal areas  

Science Journals Connector (OSTI)

...used to inject sand into oil or gas reservoirs because the...in sandstone (Western Missouri) at depths ranging from...Delavaud2006Use of vegetable oil and silica powder for scale...seismicity near the Lacq gas field southwestern FranceJ...

2010-01-01T23:59:59.000Z

237

Experimental studies on the P-T stability conditions and influencing factors of gas hydrate in different systems  

Science Journals Connector (OSTI)

The P-T stability conditions of gas hydrate in different systems (i.e., solution, silica sand, and marine sediment) were studied using...P-T stability conditions of gas hydrate were investigated. The results show...

ChangLing Liu; YuGuang Ye; ShiCai Sun; Qiang Chen

2013-04-01T23:59:59.000Z

238

Development of a dry low-NOx gas turbine combustor for a natural-gas fueled 2MW co-generation system  

SciTech Connect

A dry low-NOx gas turbine combustor has been developed for natural-gas fueled co-generation systems in the power range of 1--4MW. The combustor. called the Double Swirler Combustor, uses the lean premixed combustion to reduce NOx emission. The combustor is characterized by two staged lean premixed combustion with two coaxial annular burners and a simple fuel control system without the complex variable geometry. Substantially low NOx level has been achieved to meet the strict NOx regulation to co-generation systems in Japan. High combustion efficiency has been obtained for a wide operating range. In 1994, Tokyo Gas and Ishikawajima-Harima Heavy Industries initiated a collaborative program to develop a natural-gas fueled low NOx gas turbine engine for new 2MW class co-generation system, named IM270. The Double Swirler Combustor, originally developed by Tokyo Gas, was introduced into the natural gas fueled version of the IM270. Engine test of the first production unit was successfully conducted to confirm substantially low NOx level of less than 15 ppm (O{sub 2} = 16%) with the output power of more than 2MW. Test for the durability and the reliability of the system is being conducted at Tokyo Gas Negishi LNG Terminal in Kanagawa, Japan and successful results have been so far obtained.

Mori, Masaaki; Sato, Hiroshi

1998-07-01T23:59:59.000Z

239

Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report  

SciTech Connect

The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

None

1980-11-01T23:59:59.000Z

240

Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorption MechaniSMS for Mercury Sorption MechaniSMS for Mercury capture in WarM poSt-GaSification GaS clean-up SySteMS Background Power generation systems employing gasification technology must remove a variety of potential air pollutants, including mercury, from the synthetic gas steam prior to combustion. In general, efforts to remove mercury have focused on removal at lower temperatures (under 300 °F). The ability to remove mercury at warm-gas cleanup conditions (300 °F to 700 °F) or in the hot-gas cleanup range (above 1200 °F) would provide plant operators with greater flexibility to choose the treatment method best suited to conditions at their plant. The University of Arizona is investigating the use of paper waste-derived sorbents (PWDS) for the removal of mercury and other trace metals at temperatures in and

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1  

SciTech Connect

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

NONE

1998-01-01T23:59:59.000Z

242

Cogeneration system with low NO sub x combustion of fuel gas  

SciTech Connect

This patent describes a cogeneration system for the production of electricity and refrigeration with low NO{sub x} combustion of fuel gas supplied at a high pressure. It comprises a heat exchanger to heat the fuel gas at high pressure; a turbo-expander connected to receive and expand the heated fuel gas from the heat exchanger; a centrifugal compressor driven by the turbo-expander the compressor being the refrigerant compressor of a refrigeration system; a porous fiber burner connected to receive the expanded fuel gas from the turbo-expander together with the requisite combustion air; a high-pressure steam boiler heated by the combustion of the expanded fuel gas on the outer surface of the porous fiber burner, the boiler being connected to pass the resulting flue gas with low NO{sub x} content through the heat exchanger to heat the fuel gas at high pressure; a steam turbine connected to receive and expand highpressure steam from the boiler and to return expanded and condensed steam to the boiler; and an electric generator driven by the steam turbine.

Garbo, P.W.

1991-06-25T23:59:59.000Z

243

Systems approach used in the Gas Centrifuge Enrichment Plant  

SciTech Connect

A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.

Rooks, W.A. Jr.

1982-01-01T23:59:59.000Z

244

Natural Gas EIA-176 Query System Readme(1999)  

Gasoline and Diesel Fuel Update (EIA)

176 Query System Readme 176 Query System Readme 1.0 INTRODUCTION TO THE EIA-176 FRONT END QUERY FACILITY This system provides a method of extracting and using the EIA-176 data, and saving the query results in various mediums and formats. There are pre-set data extractions available, which allow the user to select and run the most often-used queries. 1.1 Hardware Requirements The minimum hardware requirements are: - An IBM-compatible personal computer (PC) 386SX 16 MHZ with 2 megabytes RAM. (A 486DX 33MHZ with 4 megabytes RAM is recommended). - MS-DOS operating system (version 3.x or greater), or compatible, or Network operating system capable of emulating MS-DOS. - MS-DOS file handles should be set to at least 50 in the CONFIG.SYS. In Windows NT, this file is called CONFIG.NT.

245

New Crystal Structures Lift Fog around Protein Folding  

NLE Websites -- All DOE Office Websites (Extended Search)

New Crystal Structures Lift Fog New Crystal Structures Lift Fog around Protein Folding New Crystal Structures Lift Fog around Protein Folding Print Wednesday, 25 July 2012 00:00 Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab, Stanford University, and the Massachusetts Institute of Technology has deciphered the crystal structure of a critical control element within chaperonin, the protein complex responsible for the correct folding of other proteins.

246

Ban On Foreign Scientists' Visits To Weapon Labs Lifted  

Science Journals Connector (OSTI)

Ban On Foreign Scientists' Visits To Weapon Labs Lifted ... Once again, foreign scientists from "sensitive" countries may be able to work with U.S. scientists at Department of Energy nuclear weapons laboratories. ...

JEFF JOHNSON

2000-09-04T23:59:59.000Z

247

Japan lifts bars slightly on foreign capital investment  

Science Journals Connector (OSTI)

Japan lifts bars slightly on foreign capital investment ... Last week, after months (actually years) of debate, Japan took its first tentative steps toward liberalizing the rules that govern foreign capital investment when the cabinet approved the government's decontrol plan. ...

1967-06-12T23:59:59.000Z

248

Fuel Properties to Enable Lifted-Flame Combustion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Page 1 E.Kurtz File Name.pptx Fuel Properties to Enable Lifted Flame Combustion Eric Kurtz Ford Motor Company June 19, 2014 FT017 This presentation does not contain any...

249

Hot gas defrosting method for air-source transcritical CO2 heat pump systems  

Science Journals Connector (OSTI)

Abstract When the air-source heat pump systems operate at low ambient temperatures in winter, frost forms on the coil surface of the outdoor evaporators. The frost substantially affects the operating performance and energy efficiency of heat pump systems, and hence periodic defrosting is essential. In this study, several defrost methods are presented to look for a candidate for air-source transcritical CO2 heat pump systems. The hot gas method proves to be more suitable among other defrosting methods for transcritical CO2 heat pump systems. To validate its reliability and rationality, an air-source transcritical CO2 heat pump water heater was built in a climatic laboratory. Through the experiments, the dynamic process of temperature and pressure were obtained to demonstrate the hot gas defrosting characteristics and system cycle. The hot gas defrosting cycle in the ph diagram was also validated by experiment results. Meanwhile, instant defrosting images were captured to record the dynamic defrosting process. The defrosting process lasted 10min and defrosting efficiency was 34.8% for hot gas defrosting method. The effectiveness and applicability of hot gas defrosting method for CO2 heat pump water heater is validated by experiments.

Bin Hu; Dongfang Yang; Feng Cao; Ziwen Xing; Jiyou Fei

2015-01-01T23:59:59.000Z

250

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network (OSTI)

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes (EARTH-15-CB1) Host institution biodegradation of oil can remove its value ­ but what controls the biodegradation? The deep biosphere plays a key

Henderson, Gideon

251

Interaction of particles with carrier gas in HVOF spraying systems  

Science Journals Connector (OSTI)

Several designs of high-velocity oxygen fuel (HVOF) thermal spray systems have been created during the last ... coatings comparable in quality to detonation (D-gun) coatings. This paper presents numerical analysi...

E. Kadyrov; Y. Evdokimenko; V. Kisel; V. Kadyrov

1994-12-01T23:59:59.000Z

252

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

SciTech Connect

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

253

Strangeness Enhancement and System Size in the Hadronic Gas Model  

E-Print Network (OSTI)

Strange particle enhancement in relativistic ion collisions is discussed with particular attention to the dependence on the size of the volume and/or the baryon number of the system.

Azwinndini Muronga; Jean Cleymans

1997-09-23T23:59:59.000Z

254

Efficiency Analysis of Natural Gas Residential Micro-cogeneration Systems  

Science Journals Connector (OSTI)

The systems feature different energy conversion technologies: Stirling engine (WhisperGen), spark-ignition internal combustion (IC) engine (FreeWatt), and polymer electrolyte fuel cell (PEFC) (EBARA Ballard). ... The Stirling engine is the least expensive that requires the least maintenance. ... Experimental Determination of the Efficiency and Emissions of a Residential Microcogeneration System Based on a Stirling Engine and Fueled by Diesel and Ethanol ...

Amir A. Aliabadi; Murray J. Thomson; James S. Wallace

2010-01-22T23:59:59.000Z

255

Method for controlling exhaust gas heat recovery systems in vehicles  

DOE Patents (OSTI)

A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

Spohn, Brian L.; Claypole, George M.; Starr, Richard D

2013-06-11T23:59:59.000Z

256

Natural gas transmission and distribution model of the National Energy Modeling System  

SciTech Connect

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

NONE

1997-02-01T23:59:59.000Z

257

Low pressure cooling seal system for a gas turbine engine  

DOE Patents (OSTI)

A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

Marra, John J

2014-04-01T23:59:59.000Z

258

Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources  

Science Journals Connector (OSTI)

Molten carbonate fuel cell (MCFC)/gas turbine (GT) hybrid system has attracted a great deal of research effort due to its higher electricity efficiency. However, its technology has remained at the conceptual level due to incomplete examination of the related issues, challenges and variables. To contribute to the development of system technology, the MCFC/GT hybrid system is analyzed and discussed herein. A qualitative comparison of the two kinds of MCFC/GT hybrid system, indirect and direct, is hindered by the many variables involved. However, the indirect system may be preferred for relatively small-scale systems with the micro-GT. The direct system can be more competitive in terms of system efficiency and GT selection due to the optionality of system layouts as well as even higher GT inlet temperature. System layout is an important factor influencing the system efficiency. The other issues such as GT selection, system pressurization and part-load operation are also significant.

Jung-Ho Wee

2011-01-01T23:59:59.000Z

259

Hot-gas cleanup system model development. Volume I. Final report  

SciTech Connect

This two-volume report summarizes the state of the art in performance modeling of advanced high-temperature, high-pressure (HTHP) gas cleanup devices. Volume I contains the culmination of the research effort carried over the past 12 months and is a summary of research achievements. Volume II is the user's manual for the computer programs developed under the present research project. In this volume, Section 2 presents background information on pressurized, fluidized-bed combustion concepts, a description of the role of the advanced gas cleanup systems, and a list of advanced gas cleanup systems that are currently in development under DOE sponsorship. Section 3 describes the methodology for the software architecture that forms the basis of the well-disciplined and structured computer programs developed under the present project. Section 4 reviews the fundamental theories that are important in analyzing the cleanup performance of HTHP gas filters. Section 5 discusses the effect of alkali agents in HTHP gas cleanup. Section 6 evaluates the advanced HTHP gas cleanup models based on their mathematical integrity, availability of supporting data, and the likelihood of commercialization. As a result of the evaluation procedure detailed in Section 6, five performance models were chosen to be incorporated into the overall system simulation code, ASPEN. These five models (the electrocyclone, ceramic bag filter, moving granular bed filter, electrostatic granular bed filter, and electrostatic precipitator) are described in Section 7. The method of cost projection for these five models is discussed in Section 8. The supporting data and validation of the computer codes are presented in Section 9, and finally the conclusions and recommendations for the HTHP gas cleanup system model development are given in Section 10. 72 references, 19 figures, 25 tables.

Ushimaru, K.; Bennett, A.; Bekowies, P.J.

1982-11-01T23:59:59.000Z

260

AN ADVISORY SYSTEM FOR THE DEVELOPMENT OF UNCONVENTIONAL GAS RESERVOIRS  

E-Print Network (OSTI)

, GDK, UFD, and Holditch ................... 104 4.6 D&C Advisor Help and Explanation System ................................................ 120 5 PROGRAMMING.......................................................139 Fig. 6.15?UFD model recommends a 640-ft fracture half-length. ...............................140 Fig. 6.16?Holditch rule of thumb half-length lies between those of more complicated methods...

Wei, Yunan

2010-01-16T23:59:59.000Z

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

An integrated solar thermal power system using intercooled gas turbine and Kalina cycle  

Science Journals Connector (OSTI)

A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energyutilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammoniawater mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000C under the designed solar direct normal irradiance of 800W/m2. Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area.

Shuo Peng; Hui Hong; Hongguang Jin; Zhifeng Wang

2012-01-01T23:59:59.000Z

262

Preliminary Failure Modes and Effects Analysis of the US Massive Gas Injection Disruption Mitigation System Design  

SciTech Connect

This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a candidate design for the ITER Disruption Mitigation System. This candidate is the Massive Gas Injection System that provides machine protection in a plasma disruption event. The FMEA was quantified with generic component failure rate data as well as some data calculated from operating facilities, and the failure events were ranked for their criticality to system operation.

Lee C. Cadwallader

2013-10-01T23:59:59.000Z

263

Application of PV panels into electricity generation system of compression stations in gas transporting systems.  

E-Print Network (OSTI)

?? This thesis deals with problems of electricity generation and saving at compression stations of magistral gas transporting pipelines in Russia. Russia is a biggest (more)

Belyaev, Alexey

2013-01-01T23:59:59.000Z

264

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

265

IEEE TRANSACTION ON CONTROL SYSTEM TECHNOLOGY, VOL. XX, NO. Y, MONTH 2003 1 Control of Natural Gas Catalytic Partial  

E-Print Network (OSTI)

IEEE TRANSACTION ON CONTROL SYSTEM TECHNOLOGY, VOL. XX, NO. Y, MONTH 2003 1 Control of Natural Gas that reforms natural gas to hydrogen-rich mixture to feed the anode field of fuel cell stack is considered partial oxidation of the methane in the natural gas. We present a model-based control analysis and design

Peng, Huei

266

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data  

E-Print Network (OSTI)

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data Jin Yu produces textual summaries of archived time- series data from gas turbines. These summaries should help evaluated. 1 Introduction In order to get the most out of gas turbines, TIGER [2] has been developed

Reiter, Ehud

267

A NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL APPLICATIONS  

E-Print Network (OSTI)

A NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL instrumentation. 1. INTRODUCTION CO2 is an important industrial gas for many different uses that include electrolytes [10;11]. The most popular sensors used for CO2 gas sensing in biotechnological applications

Lee, Hyowon

268

Simulated coal gas MCFC power plant system verification. Final report  

SciTech Connect

The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

NONE

1998-07-30T23:59:59.000Z

269

Improved Basin Analog System to Characterize Unconventional Gas Resource  

E-Print Network (OSTI)

identification method. ..................... 31 Fig. 3.4?Probability distribution at petroleum system level. ......................................... 34 Fig. 3.5?Example of generating probability distribution of qualitative parameter. ....... 34 Fig. 3....6?Example of generating probability distribution of quantitative parameter. ..... 35 Fig. 3.7?Probability distributions of kerogen type in San Juan and Piceance basin. ..... 38 Fig. 3.8?Probability distributions of porosity in San Juan and Piceance basin...

Wu, Wenyan 1983-

2012-10-02T23:59:59.000Z

270

Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems  

Science Journals Connector (OSTI)

The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The \\{LCAs\\} of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

Jamie Ally; Trevor Pryor

2007-01-01T23:59:59.000Z

271

Multidisciplinary Modeling, Control, and Optimization of a Solid Oxide Fuel Cell/Gas Turbine Hybrid Power System.  

E-Print Network (OSTI)

??This thesis describes a systematical study, including multidisciplinary modeling, simulation, control, and optimization, of a fuel cell - gas turbine hybrid power system that aims (more)

Abbassi Baharanchi, Atid

2009-01-01T23:59:59.000Z

272

Performance and emission characteristics of natural gas combined cycle power generation system with steam injection and oxyfuel combustion.  

E-Print Network (OSTI)

??Natural gas combined cycle power generation systems are gaining popularity due to their high power generation efficiency and reduced emission. In the present work, combined (more)

Varia, Nitin

2014-01-01T23:59:59.000Z

273

Tracer method to measure landfill gas emissions from leachate collection systems  

Science Journals Connector (OSTI)

This paper describes a method developed for quantification of gas emissions from the leachate collection system at landfills and present emission data measured at two Danish landfills with no landfill gas collection systems in place: Fakse landfill and AV Milj. Landfill top covers are often designed to prevent infiltration of water and thus are made from low permeable materials. At such sites a large part of the gas will often emit through other pathways such as the leachate collection system. These point releases of gaseous constituents from these locations cannot be measured using traditional flux chambers, which are often used to measure gas emissions from landfills. Comparing tracer measurements of methane (CH4) emissions from leachate systems at Fakse landfill and AV Milj to measurements of total CH4 emissions, it was found that approximately 47% (351kg CH4 d?1) and 27% (211kg CH4 d?1), respectively, of the CH4 emitting from the sites occurred from the leachate collection systems. Emission rates observed from individual leachate collection wells at the two landfills ranged from 0.1 to 76kg CH4 d?1. A strong influence on emission rates caused by rise and fall in atmospheric pressure was observed when continuously measuring emission from a leachate well over a week. Emission of CH4 was one to two orders of magnitude higher during periods of decreasing pressure compared to periods of increasing pressure.

Anders M. Fredenslund; Charlotte Scheutz; Peter Kjeldsen

2010-01-01T23:59:59.000Z

274

Advanced coal-fueled gas turbine systems. Final report  

SciTech Connect

The configuration of the subscale combustor has evolved during the six years of this program from a system using only an impact separator to remove particulates to a system which also included a slagging cyclone separator before the lean-quench combustor. The system also now includes active slag tapping after the impact separator rather than a bucket to collect the slag. The subscale 12 MM Btu/hr (higher heating value, HHV) slagging combustor has demonstrated excellent coal-fired operation at 6 atm. The combustor has fired both coal-water mixtures (CWM) and pulverized coal (PC). Three Wyoming subbituminous coals and two bituminous coals have been successfully fired in the TVC. As a result of this active testing, the following conclusions may be drawn: (1) it was possible to achieve the full design thermal capacity of 12 MM Btu/hr with the subscale slagging combustor, while burning 100% pulverized coal and operating at the design pressure of 6 atm; (2) because of the separate-chamber, rich-lean design of the subscale slagging combustor, NO{sub x} emissions that easily meet the New Source Performance Standards (NSPS) limits were achieved; (3) carbon burnout efficiency was in excess of 99% when 100% coal-fired; (4) ninety percent of the ash can be separated as slag in the impact separator, and a total 98 to 99% removed with the addition of the slagging cyclone separator; (5) Objectives for third-stage exit temperature (1850{degrees}F), and exit temperature pattern factor (14%) were readily achieved; (6) overall pressure loss is currently an acceptable 5 to 6% without cyclone separator and 7 to 9% with the cyclone; and (7) feeding pulverized coal or sorbent into the combustor against 6 atm pressure is achievable.

Not Available

1993-08-01T23:59:59.000Z

275

System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump  

SciTech Connect

To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

276

From food to feed: Assessment of the stationary lift net fishery of East Hainan, Northern South China Sea  

Science Journals Connector (OSTI)

In the Asia-Pacific region, the increasing demand for low value/trash fish as feed for mariculture drives unsustainable fisheries on already overexploited marine resources. The mariculture demand may also affect artisanal nearshore fisheries operating in shallow nursery grounds, e.g., lift net fisheries, but little is known about how they work. We describe the stationary lift net artisanal fishery on the East coast of Hainan Island (northern South China Sea). A trapezoidal blanket net (mean surface area: 478m2), stretched between four upright poles at the corners, is lowered and lifted via a rope system from a tower by a single fisher. In 2009 ?200 households depended on 288 lift nets, 82% of which were located in the Wenchang/Wenjiao estuary. The number of lift nets decreased by 15% from 2007 to 2009. Presently, it is mainly an early retirement activity of fishers with a median age of 52 years and younger men rarely enter the fishery due to low catch rates. However, not one fisher would stop fishing even at 50% hypothetical decline in catch due to lack of alternatives. Mean catch weight per fishing day is 12kg (range: 01.7t). In the past, the entire catch was used as food. Presently, an average of 52% of the catch is sold as feed to local pond and floating net cage mariculturists who, subsequently, supply the live food trade to markets as far as Hong Kong. Larger dead fishes are sold at village markets or at Qinglan harbor and are locally or regionally consumed. The density of lift-net operation is highest around the Wenchang/Wenjiao lagoon due to the presence of an extensive sheltered, shallow subtidal area in proximity to mariculture and export markets in Qinglan. Thus, the modern mariculture demand for low value/trash fish supports the continuation of an ancient artisanal fishery despite severe resource depletion. The existence of similar lift nets in Vietnam points to an exchange in the artisanal fishing knowledge between Vietnam and Hainan. Additionally, interviews with lift-net fishers provided valuable information on historical changes in the lagoon system (e.g., mangrove loss, sedimentation, pollution, interaction with other fishing activities), and suggest that the summer fishing moratorium of the offshore fleet leads to increased fishing pressure on inshore resources by artisanal fisheries. In conclusion, we provide suggestions for management of the inshore water resources and their artisanal fisheries.

Uwe Krumme; Tian C. Wang; Dao R. Wang

2013-01-01T23:59:59.000Z

277

Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2  

SciTech Connect

On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

1987-08-01T23:59:59.000Z

278

DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems  

Energy.gov (U.S. Department of Energy (DOE))

DOE will launch a collaborative effort with industry to evaluate and scope high-impact manufacturing R&D to improve natural gas systems efficiency and leak reduction. The goal of this effort is to establish an advanced manufacturing initiative. AMO will lead this effort.

279

Gas chromatographic studies of the solvent extraction systemsIII: Tris-butoxyethyl phosphate  

Science Journals Connector (OSTI)

Thermodynamic data at infinite dilution is evaluated from gas chromatography measurements using the theories of the athermal, thermal and associated solutions. A number of binary tris-butoxyethyl phosphate-diluent systems are analysed. The diluents include hexane, cyclohexane, benzene, toluene, carbon tetrachloride, chloroform, acetone, dioxane, methanol, ethanol and water.

A. Apelblat

1973-01-01T23:59:59.000Z

280

Collocation method for the modeling of membrane gas permeation systems A. Feichtingera  

E-Print Network (OSTI)

) or hydrogen recovery from biomass gasification gases (Mayer et al., 2010; Makaruk et al., 2012). CorrespondingCollocation method for the modeling of membrane gas permeation systems A. Feichtingera , A simulation, collocation method, error estimate, grid adaptation, multicomponent separation 1. Introduction

Weinmüller, Ewa B.

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Overview of Avista GHG Modeling NPCC Greenhouse Gas and the Regional Power System Conference  

E-Print Network (OSTI)

6/5/2013 1 Overview of Avista GHG Modeling NPCC Greenhouse Gas and the Regional Power System Pricing $70 $80 Weighted Average Expected Case 2020 Hi h GHG P i i C $20 $30 $40 $50 $60 dollarspermetricton 2020 High GHG Pricing Case 2020 Low GHG Pricing Case 2025 High GHG Pricing Case 2025 Low GHG

282

Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report Site Visit Report Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System INTRODUCTION AND OVERVIEW This report documents the results of the Office of Health, Safety and Security's (HSS) review of a safety system oversight (SSO) assessment of the Los Alamos National Laboratory (LANL) Weapons Engineering Tritium Facility (WETF) tritium gas handling system (TGHS). The assessment evaluated the TGHS's ability to perform as required by safety bases and other applicable requirements. The assessment was sponsored by the U.S. Department of Energy (DOE) Los Alamos Site Office (LASO) and was conducted October 25 - November 5, 2010. LASO was the overall lead organization for the evaluation, which included independent

283

Stack Characterization System for Inspection of Contaminated Off-Gas Stacks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory Tennessee Florida Stack Characterization System for Inspection of Contaminated Off-Gas Stacks Challenge As part of the Oak Ridge National Laboratory (ORNL) Central Campus Closure Project, the Department of Energy (DOE) Environmental Management (EM) Program must demolish the central gaseous waste system and associated facilities including the off-gas stacks and systems. These stacks range from 75 feet to 250 feet tall. Stacks are made of steel reinforced concrete with brick liners or unreinforced radial brick masonry with varying brick sizes and an acid-proof lining. Since being built in the 1950s, the central gaseous waste collection system has received no upgrades and minimal repair with some stacks now unsafe to access even for routine inspection.

284

Development status of coal-fired gas heaters for Brayton-cycle cogeneration systems  

SciTech Connect

Under contract from the Department of Energy, Rocketdyne is developing the technology of coal-fired gas heaters for utilization in Brayton-cycle cogeneration systems. The program encompasses both atmospheric fluidized bed and pulverized coal combustion systems; and it is directed toward the development of gas heater systems capable of delivering high pressure air or helium at 1550 F, when employing metallic heat exchangers, and 1750 F, when employing ceramic heat exchangers. This paper reports on the development status of the program, with discussions of the completed ''screening'' corrosion/erosion tests of candidate heat exchanger materials, a description and summary of the operating experience with the 6- by 6-foot AFB test facility and a projection of the potential for relatively near term commercialization of such heater systems.

Gunn, S.V.; McCarthy, J.R.

1983-01-01T23:59:59.000Z

285

Exactly solvable three-level quantum dissipative systems via bosonisation of fermion gas-impurity models  

E-Print Network (OSTI)

We study the relationship between one-dimensional fermion gas-impurity models and quantum dissipative systems, via the method of constructive bosonisation and unitary transformation. Starting from an anisotropic Coqblin-Schrieffer model, a new, exactly solvable, three-level quantum dissipative system is derived as a generalisation of the standard spin-half spin-boson model. The new system has two environmental oscillator baths with ohmic coupling, and admits arbitrary detuning between the three levels. All tunnelling matrix elements are equal, up to one complex phase which is itself a function of the longitudinal and transverse couplings in the integrable limit. Our work underlines the importance of re-examining the detailed structure of fermion-gas impurity models and spin chains, in the light of connections to models for quantum dissipative systems.

Sol H. Jacobsen; P. D. Jarvis

2010-02-09T23:59:59.000Z

286

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

287

System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134  

SciTech Connect

The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

Annen, K.D.

1981-08-01T23:59:59.000Z

288

Proceedings of the Department of Energy advanced gas turbine central power systems workshop  

SciTech Connect

The basic objective of the DOE Central Power Systems group is the development of technology for increasing the use of coal in central station electric power generation in an economical and environmentally acceptable manner. The two major research and development areas of this program are the Open Cycle Gas Turbine System and the Closed Cycle Gas Turbine System. Recognizing that the ultimate success of the DOE program is measured by end-user acceptance of the technology developed, the workshop was held to obtain utility industry comments and suggestions on the development of these systems and their potential use by electric power utilities. Representatives of equipment manufacturers, architect and engineering firms, and universities were also invited as participants to provide a comprehensive review of the technology development and implementation process. The 65 participants and observers examined the following topics: technical considerations of the Open Cycle and of the Closed Cycle Gas Turbine program; commercialization of both systems; and regulatory impacts on the development of both systems. Each group evaluated the existing program, indicating R and D objectives that they supported and cited recommendations for modifications and expansion of future R and D work.

D'Angelo, S. (ed.)

1980-04-01T23:59:59.000Z

289

Cooling system having reduced mass pin fins for components in a gas turbine engine  

DOE Patents (OSTI)

A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

Lee, Ching-Pang; Jiang, Nan; Marra, John J

2014-03-11T23:59:59.000Z

290

Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas  

SciTech Connect

In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 (China); Zhang, M. M.; Xu, D. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China)

2014-01-29T23:59:59.000Z

291

Application of convolution theory for solving non-linear flow problems: gas flow systems  

E-Print Network (OSTI)

. . . . . . . . . . . . 15 3. 2. 1 Generalized Analytical Solution for Real Gas Systems . . . . . . . . 15 3. 2. 2 Dry Gas Material Balance Relations: P(tn) - g(u) Identity. . . . . . 16 3. 3 Functional and Numerical Data Models for the Non-Linear CHAPTER IV Component... 5 4. 6 4. 7 4. 8 4. 9 Numerical Model for the (/igcg);/(/tgcg) Data Function Based on Roumboutsos and Stewart Algorithm for Transforming Data into the Laplace Domain. . (p;cg, )/(peg) Versus (p/zj/(p, /z;) (y?= 0. 7 (air = 1. 0), T = 50 'F...

Mireles, Thomas Joseph

2012-06-07T23:59:59.000Z

292

Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 1  

SciTech Connect

On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster displays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume I covers information presented at sessions 1 through 4 on systems for the production of Co-products and industrial fuel gas, environmental projects, and components and materials. Individual papers have been processed for the Energy Data Base.

Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

1987-08-01T23:59:59.000Z

293

Synthesis Gas Production by Combined Reforming of CO2-Containing Natural Gas with Steam and Partial Oxidation in a Multistage Gliding Arc Discharge System  

Science Journals Connector (OSTI)

Synthesis Gas Production by Combined Reforming of CO2-Containing Natural Gas with Steam and Partial Oxidation in a Multistage Gliding Arc Discharge System ... with low-current arcs available in the literature. ... Larkin, D. W.; Caldwell, T. A.; Lobban, L. L.; Mallinson, R. G.Oxygen pathways and carbon dioxide utilization in methane partial oxidation in ambient temperature electric discharges Energy Fuels 1998, 12, 740 ...

Krittiya Pornmai; Narissara Arthiwet; Nongnuch Rueangjitt; Hidetoshi Sekiguchi; Sumaeth Chavadej

2014-07-08T23:59:59.000Z

294

Radiochemistry as a (rho)R Diagnostic with the RAGS Gas Collection System  

SciTech Connect

Radiochemical diagnostic techniques such as gas-phase capsule debris analysis may prove to be successful methods for establishing the success or failure of ignition experiments at the National Ignition Facility (NIF). Samples in the gas phase offer the most direct method of collection by simply pumping out the large target chamber following a NIF shot. The target capsules will be prepared with dopants which will produce radioactive noble gas isotopes upon activation with neutrons. We have designed and constructed the Radchem Apparatus for Gas Sampling (RAGS) in order to collect post-shot gaseous samples for NIF capsule diagnostics. The design of RAGS incorporates multiple stages intended to purify, transfer, and count the radioactive decays from gaseous products synthesized in NIF experiments. At the moment the dopant of choice is {sup 124}Xe, which will undergo (n,{gamma}) and (n, 2n) reactions to produce {sup 125}Xe and {sup 123}Xe. The half-lives of each are on the order of multiple hours and are suitable for long-term gamma-counting. These isotopes and the rest of the gases evolved in a NIF shot will be drawn through the NIF turbo pumps, past the temporarily shuttered cryo pumps (to aid our collection efficiency), and towards the first main portion of the RAGS system: the pre-cleaner. The pre-cleaner will consist of a water removal system, a series of heated getter cartridges to remove most other impurities such as N{sub 2}, O{sub 2}, CO{sub 2}, etc., and a residual gas analyzer (RGA) to monitor vacuum quality. The noble gases will flow through the precleaner and into the second stage of the system: the cryo collector. This cryo collector consists of a main cryo head for noble gas collection which will operate for approximately five minutes post-shot. Afterwards a valve will close and isolate the pre-cleaner, while the cryo head warms to release the Xe gas to one of two locations - either a second cryo station for in-situ gamma counting, or to a small cooled gas bottle for removal and counting. Additional capabilities of the RAGS system include a noble gas calibration apparatus attached to the NIF target chamber, which will be operated hours pre-shot to determine collection efficiency through the whole RAGS system via the signal detected from the RGA. Also it is possible there will be the addition of a helium puff system to drive the Xe through the pre-cleaner and collection stations. It is also likely that multiple cryo collection stations will be built into the system in the future to fractionate and collect other noble gases such as Kr, Ar, and possibly Ne. A prototype pre-cleaner has been built at Lawrence Berkeley National Laboratory (LBNL) and is in the testing phases. The information learned in this testing will help collaborators at Sandia National Laboratory that are building and delivering the systems that will be deployed at NIF. The LBNL testing so far has demonstrated that radioactive fission gases can be flowed through the system with and without carrier gases of air and/or He, and the activity can be collected on an activated charcoal sample. Further testing in the upcoming months will hopefully yield more information about any presence of Xe in the water removed from the system, and commissioning of a small cryo cooler as well.

Nelson, S L; Shaughnessy, D A; Schneider, D H; Stoeffl, W; Moody, K J; Cerjan, C; Stoyer, M A; Bernstein, L A; Bleuel, D L; Hoffman, R

2010-05-21T23:59:59.000Z

295

Expert system for identification of simultaneous and sequential reactor fuel failures with gas tagging  

DOE Patents (OSTI)

Failure of a fuel element in a nuclear reactor core is determined by a gas tagging failure detection system and method. Failures are catalogued and characterized after the event so that samples of the reactor's cover gas are taken at regular intervals and analyzed by mass spectroscopy. Employing a first set of systematic heuristic rules which are applied in a transformed node space allows the number of node combinations which must be processed within a barycentric algorithm to be substantially reduced. A second set of heuristic rules treats the tag nodes of the most recent one or two leakers as "background" gases, further reducing the number of trial node combinations. Lastly, a "fuzzy" set theory formalism minimizes experimental uncertainties in the identification of the most likely volumes of tag gases. This approach allows for the identification of virtually any number of sequential leaks and up to five simultaneous gas leaks from fuel elements.

Gross, Kenny C. (Bolingbrook, IL)

1994-01-01T23:59:59.000Z

296

Expert system for identification of simultaneous and sequential reactor fuel failures with gas tagging  

DOE Patents (OSTI)

Failure of a fuel element in a nuclear reactor core is determined by a gas tagging failure detection system and method. Failures are catalogued and characterized after the event so that samples of the reactor's cover gas are taken at regular intervals and analyzed by mass spectroscopy. Employing a first set of systematic heuristic rules which are applied in a transformed node space allows the number of node combinations which must be processed within a barycentric algorithm to be substantially reduced. A second set of heuristic rules treats the tag nodes of the most recent one or two leakers as background'' gases, further reducing the number of trial node combinations. Lastly, a fuzzy'' set theory formalism minimizes experimental uncertainties in the identification of the most likely volumes of tag gases. This approach allows for the identification of virtually any number of sequential leaks and up to five simultaneous gas leaks from fuel elements. 14 figs.

Gross, K.C.

1994-07-26T23:59:59.000Z

297

The development of control strategy for solid oxide fuel cell and micro gas turbine hybrid power system in ship application  

Science Journals Connector (OSTI)

A solid oxide fuel cell (SOFC) and micro gas turbine (MGT) hybrid power system is a newly developed and promising power technology for ship power systems. Compared to conventional power plants on commercial sh...

Jiqing He; Peilin Zhou; David Clelland

2014-12-01T23:59:59.000Z

298

Issues surrounding continuation of the noncompetitive oil and gas lottery system  

SciTech Connect

The Bureau of Land Management is responsible for the leasing of oil and gas mineral rights on over 300 million acres of public lands. Under the Mineral Leasing Act of 1920, lands with known oil and gas deposits are leased competitively. However, much more federal land is leased through a noncompetitive lottery system, which generates substantial receipts for the federal Treasury - about $250 million in filing fees for the 5-year period 1980-1984. The lottery system has been criticized since its 1959 inception for encouraging fraud, misleading the public, and generating insufficient revenues. On October 12, 1983, the program was suspended for 10 months because of recognized weaknesses in the system. This report highlights major issues surrounding the lottery program.

Not Available

1985-04-04T23:59:59.000Z

299

High-Temperature-High-Volume Lifting | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » High-Temperature-High-Volume Lifting Jump to: navigation, search Geothermal ARRA Funded Projects for High-Temperature-High-Volume Lifting Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

300

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Experiments and thermal modeling on hybrid energy supply system of gas engine heat pumps and organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract This paper presents a hybrid energy supply system, which is composed of two subsystems (gas engine-driven heat pump system (GEHP) and organic Rankine cycle system (ORC)) and three major thermodynamic cycles (the vapor compression refrigeration cycle, the internal combustion gas engine cycle and ORC). In order to convert the low-grade gas engine waste heat into high-grade electricity, the ORC system is built up using R245fa, \\{R152a\\} and R123 as working fluids, and the ORC thermal model is also developed. Meanwhile, experiments of \\{GHEPs\\} in cooling mode are conducted, and several factors which influence the cooling performance are also discussed. The results indicate that the cooling capacity, gas engine energy consumption, gas engine waste heat increase with increasing of gas engine speed and decrease with decreasing of evaporator water inlet temperature. The waste heat recovered from gas engine is more than 55% of gas engine energy consumption. F6urthermore, R123 in ORC system yields the highest thermal and exergy efficiency of 11.84% and 54.24%, respectively. Although, thermal and exergy efficiency of \\{R245fa\\} is 11.42% and 52.25% lower than that of R123, its environmental performance exhibits favorable utilization for ORC using gas engine waste heat as low-grade heat source.

Huanwei Liu; Qiushu Zhou; Haibo Zhao; Peifeng Wang

2015-01-01T23:59:59.000Z

302

A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis  

Science Journals Connector (OSTI)

Abstract The existing biomass gasifier systems have several technical challenges, which need to be addressed. They are reduction of impurities in the gas, increasing the reliability of the system, easy in operation and maintenance. It is also essential to have a simple design of gasifier system for power generation, which can work even in remote locations. A dual fired downdraft gasifier system was designed to produce clean gas from biomass fuel, used for electricity generation. This system is proposed to overcome a number of technical challenges. The system is equipped with dry gas cleaning and indirect gas cooling equipment. The dry gas cleaning system completely eliminates wet scrubbers that require large quantities of water. It also helps to do away with the disposal issues with the polluted water. With the improved gasifier system, the tar level in the raw gas is less than 100mgNm?3.Cold gas efficiency has improved to 89% by complete gasification of biomass and recycling of waste heat into the reactor. Several parameters, which are considered in the design and development of the reactors, are presented in detail with their performance indicators.

P. Raman; N.K. Ram; Ruchi Gupta

2013-01-01T23:59:59.000Z

303

Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process  

SciTech Connect

The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.

Rizzo, Jeffrey J. [Phillips66 Company, West Terre Haute, IN (United States)

2010-04-30T23:59:59.000Z

304

Evaluation of liquid lift approach to dual gradient  

E-Print Network (OSTI)

the mudline to the rig floor so as to maintain the bottom hole pressure. Several methods have been developed to achieve the dual gradient drilling principle. For this research project, we paid more attention to the liquid lift, dual gradient drilling (riser...

Okafor, Ugochukwu Nnamdi

2009-05-15T23:59:59.000Z

305

Evaluation of liquid lift approach to dual gradient drilling  

E-Print Network (OSTI)

the mudline to the rig floor so as to maintain the bottom hole pressure. Several methods have been developed to achieve the dual gradient drilling principle. For this research project, we paid more attention to the liquid lift, dual gradient drilling (riser...

Okafor, Ugochukwu Nnamdi

2008-10-10T23:59:59.000Z

306

Display Advertising Impact: Search Lift and Social P. Papadimitriou1  

E-Print Network (OSTI)

Display Advertising Impact: Search Lift and Social Influence P. Papadimitriou1 P. Krishnamurthy2 R study the impact of display advertising on user search behav- ior using a field experiment. In such an experiment, the treatment group users are exposed to some display advertising campaign, while the control

Chang, Edward Y.

307

Lift, drag and thrust at high flight Mach number  

Science Journals Connector (OSTI)

...interference lift vehicles of Roe (1964) can achieve a higher...It has also been shown by Roe (1964) and Pike (1970a) that...M2 1/2 1/2 M CL 0 wedges Roe (1964) Pike (1970a) 1 1 2...question: is it more efficient to burn the fuel externally than to use...

1999-01-01T23:59:59.000Z

308

Development of a natural gas systems analysis model (GSAM). Annual report, July 1996--July 1997  

SciTech Connect

The objective of GSAM development is to create a comprehensive, non-proprietary, microcomputer model of the North American natural gas system. GSAM explicitly evaluates the key components of the system, including the resource base, exploration and development practices, extraction technology performance and costs, project economics, transportation costs and restrictions, storage, and end-use. The primary focus is the detailed characterization of the resource base at the reservoir and subreservoir level. This disaggregation allows direct evaluation of alternative extraction technologies based on discretely estimated, individual well productivity, required investments, and associated operating costs. GSAM`s design allows users to evaluate complex interactions of current and alternative future technology and policy initiatives as they directly impact the gas market. GSAM development has been ongoing for the past five years. Key activities completed during the past year are described.

NONE

1997-12-31T23:59:59.000Z

309

Economic analysis of using above ground gas storage devices for compressed air energy storage system  

Science Journals Connector (OSTI)

Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on...

Jinchao Liu; Xinjing Zhang; Yujie Xu; Zongyan Chen

2014-12-01T23:59:59.000Z

310

UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE  

SciTech Connect

This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.

Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

2011-10-01T23:59:59.000Z

311

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks.

312

A review of basic types of and the search for rational designs of navigation lifts  

Science Journals Connector (OSTI)

1. The problem of constructing economic high-head navigation lifts capable of reliable operation during signific...

P. R. Khlopenkov

1980-08-01T23:59:59.000Z

313

Lensing by Lyman Limit Systems: Determining the Mass to Gas Ratio  

E-Print Network (OSTI)

We present a new method to determine the total mass-to-neutral gas ratio in Lyman-limits systems. The method exploits the relation between the neutral hydrogen column density and the magnification of background sources due to the weak gravitational lensing that these systems induce. Because weak lensing does not provide a direct measure of mass, one must use this relation in a statistical sense to solve for the average mass-to-gas ratio and its distribution. We use a detailed mock catalog of quasars (sources) and Lyman-limit systems (lenses) to demonstrate the applicability of this approach through our ability to recover the parameter. This mock catalog also allows us to check for systematics in the method and to sketch its limitations. For a universal constant mass-to-gas ratio and a sample of N quasars, we obtain an unbiased estimate of its value with 95% confidence limits (independent of its actual value) of +/- 140 {10^5/N)^0.5.

Ariyeh Maller; Tsafrir Kolatt; Matthias Bartelmann; George R. Blumenthal

2001-01-11T23:59:59.000Z

314

Selective Trapping of Volatile Fission Products with an Off-Gas Treatment System  

SciTech Connect

A head-end processing step, termed DEOX for its emphasis on decladding via oxidation, is being developed for the treatment of spent oxide fuel by pyroprocessing techniques. The head-end step employs high temperatures to oxidize UO2 to U3O8 resulting in the separation of fuel from cladding and the removal of volatile fission products. Development of the head-end step is being performed in collaboration with the Korean Atomic Energy Research Institute (KAERI) through an International Nuclear Energy Research Initiative. Following the initial experimentation for the removal of volatile fission products, an off-gas treatment system was designed in conjunction with KAERI to collect specific fission gases. The primary volatile species targeted for trapping were iodine, technetium, and cesium. Each species is intended to be collected in distinct zones of the off-gas system and within those zones, on individual filters. Separation of the volatile off-gases is achieved thermally as well as chemically given the composition of the filter media. A description of the filter media and a basis for its selection will be given along with the collection mechanisms and design considerations. In addition, results from testing with the off-gas treatment system will be presented.

B.R. Westphal; J.J. Park; J.M. Shin; G.I. Park; K.J. Bateman; D.L. Wahlquist

2008-07-01T23:59:59.000Z

315

Fuel cellgas turbine hybrid system design part II: Dynamics and control  

Science Journals Connector (OSTI)

Abstract Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, PI and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

Dustin McLarty; Jack Brouwer; Scott Samuelsen

2014-01-01T23:59:59.000Z

316

Method and apparatus for removing non-condensible gas from a working fluid in a binary power system  

DOE Patents (OSTI)

Apparatus for removing non-condensible gas from a working fluid utilized in a thermodynamic system comprises a membrane having an upstream side operatively connected to the thermodynamic system so that the upstream side of the membrane receives a portion of the working fluid. The first membrane separates the non-condensible gas from the working fluid. A pump operatively associated with the membrane causes the portion of the working fluid to contact the membrane and to be returned to the thermodynamic system.

Mohr, Charles M. (Idaho Falls, ID); Mines, Gregory L. (Idaho Falls, ID); Bloomfield, K. Kit (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

317

Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application  

SciTech Connect

This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

Ashok K. Anand

2005-12-16T23:59:59.000Z

318

Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems  

SciTech Connect

Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed.

RA Wolf

2006-07-19T23:59:59.000Z

319

Wavelet Transforms by Nearest Neighbor Lifting Wei ZHU and M. Victor WICKERHAUSER  

E-Print Network (OSTI)

for n-point time series. The lifting implementation of Daubechies and Sweldens [4] offers an alternative by Nearest Neighbor Lifting 3 u h g hh gh hhh ghh ghhh hhhh gh Fig. 1 Four-level discrete wavelet transformWavelet Transforms by Nearest Neighbor Lifting Wei ZHU and M. Victor WICKERHAUSER Abstract We show

Wickerhauser, M. Victor

320

Preliminary design of dust lifting and transport in the martian General Circulation Model.  

E-Print Network (OSTI)

by the GCM When wind blows accross a surface covered by loose particles, kinetic energy is transferred Package 4 1 #12; Contents 1 Introduction 2 2 Dust lifting 3 2.1 Lifting by the general circulation winds . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.4 Implementation in the GCM. . . . . . . . . . . . . . . . . 6 2.2 Lifting by dust devils

Forget, François

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network (OSTI)

.3 Desorption parameters for the Billi coalbed methane reservoir correspond to within an acceptable range with those of the Barnett shale. For the initial reservoir pressure used in this study these values correspond to an initial methane storage of 344 scf... media has been studied extensively in coalbed methane reservoirs , where adsorption can be the primary mode of gas storage. Many analytic and semi-analytic models have been developed from the study of gas desorption from coalbed methane reservoirs...

Freeman, Craig M.

2010-07-14T23:59:59.000Z

322

Polygeneration system based on low temperature solid oxide fuel cell/micro gas turbine hybrid system.  

E-Print Network (OSTI)

?? Polygeneration systems attract attention recently because of their high efficiency and low emission compare to the conventional power generation technology. Three different polygeneration systems (more)

Samavati, Mahrokh

2012-01-01T23:59:59.000Z

323

Application of systems engineering techniques (reliability, availability, maintainability, and dollars) to the Gas Centrifuge Enrichment Plant  

SciTech Connect

The systems engineering function for the Gas Centrifuge Enrichment Plant (GCEP) covers system requirements definition, analyses, verification, technical reviews, and other system efforts necessary to assure good balance of performance, safety, cost, and scheduling. The systems engineering function will support the design, installation, start-up, and operational phases of GCEP. The principal objectives of the systems engineering function are to: assure that the system requirements of the GCEP process are adequately specified and documented and that due consideration and emphasis are given to all aspects of the project; provide system analyses of the designs as they progress to assure that system requirements are met and that GCEP interfaces are compatible; assist in the definition of programs for the necessary and sufficient verification of GCEP systems; and integrate reliability, maintainability, logistics, safety, producibility, and other related specialties into a total system effort. This paper addresses the GCEP reliability, availability, maintainability, and dollars (RAM dollars) analyses which are the primary systems engineering tools for the development and implementation of trade-off studies. These studies are basic to reaching cost-effective project decisions. The steps necessary to achieve optimum cost-effective design are shown.

Boylan, J.G.; DeLozier, R.C.

1982-01-01T23:59:59.000Z

324

Development of a silicon-based passive gas-liquid separation system for microscale direct methanol fuel cells  

Science Journals Connector (OSTI)

The design, fabrication and performance characterisation of a passive gas-liquid separation system is presented in this paper. The gas-liquid separation system is silicon-based and its fabrication is compatible with the existing CMU design of the microscale direct methanol fuel cell (DMFC). Both gas and liquid separators consist of staggered arrays of etched-through holes fabricated by deep reactive ion etching (DRIE). The gas separator is coated with a thin layer of hydrophobic polymer to substantiate the gas-liquid separation. To visually characterise the system performance, the gas-liquid separation system is made on a single wafer with a glass plate bonded on the top to form a separation chamber with a narrow gap in between. Benzocyclobutene (BCB) is applied for the low-temperature bonding. The maximum pressure for the liquid leakage of the gas separators is experimentally determined and compared with the values predicted theoretically. Several successful gas-liquid separations are observed at liquid pressures between 14.2 cmH2O and 22.7 cmH2O, liquid flow rates between 0.705 cc/min and 1.786 cc/min, and CO2 flow rates between 0.15160 cc/min to 0.20435 cc/min.

C.C. Hsieh; S.C. Yao; Yousef Alyousef

2009-01-01T23:59:59.000Z

325

High Temperature Gas-Cooled Reactor Program. Modular HTGR systems design and cost summary. [Methane reforming; steam cycle-cogeneration  

SciTech Connect

This report provides a summary description of the preconceptual design and energy product costs of the modular High Temperature Gas-Cooled Reactor (HTGR). The reactor system was studied for two applications: (1) reforming of methane to produce synthesis gas and (2) steam cycle/cogeneration to produce process steam and electricity.

Not Available

1983-09-01T23:59:59.000Z

326

Feasibility of accompanying uncontrolled linear heater with solar system innatural gas pressure drop stations  

Science Journals Connector (OSTI)

Natural gas (NG) must be preheated before pressure reduction takes places at City Gate Stations (CGS). Indirect Water Bath Gas Heaters are employed in the CGS for preheating. The heaters consume a considerable amount of NG for preheating. As low temperature is required, a solar system has been proposed to provide part of heat demand. The system consists of a collector array and a storage tank. The tank stores solar heat during the day and releases it during the night. To show the capabilities of the proposed system, the Akand CGS has been chosen as a case study. The results show that as the number of collector increases, the fuel cost decreases but the capital cost increases. An optimum number of collectors and the storage tank capacity have been found based on economic analysis. The fuel saving occurs throughout the year with the maximum at June. The economic feasibility study of the proposed system has been carried out using two methods. These methods are Simple Payback Ratio (SPR) and (Net Present Value) NPV. The first one unveils that the payback ratio is only 6.9 years. The NPV method shows that the system will give net benefit after 11 years.

M. Farzaneh-Gord; A. Arabkoohsar; M. Deymi Dasht-bayaz; V. Farzaneh-Kord

2012-01-01T23:59:59.000Z

327

Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1  

SciTech Connect

This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

Not Available

1993-05-01T23:59:59.000Z

328

Thermophotovoltaic power generation systems using natural gas-fired radiant burners  

Science Journals Connector (OSTI)

Thermophotovoltaic (TPV) power generation in gas-fired furnaces is attracting technical attention. Considerable work has been done in the area of low bandgap GaSb cell-based TPV systems as well as silicon solar cell-based TPV systems. Previous investigations have shown that a radiant burner with a high conversion level of fuel to radiation energy must be developed to realize an efficient TPV system. In our work, we investigated different natural gas-fired radiant burners in order to raise the conversion of fuel energy to thermal radiation. These burners were used as radiation sources to establish and test two TPV prototype systems. It was found that for a non-surface combustion radiant burner, the radiation output can be enhanced using a thermal radiator with a porous structure. Also, we developed a cascaded radiant burner that generates two streams of radiation output. One stream illuminates silicon concentrator solar cells while the other drives low bandgap GaSb cells. In this way, useful radiation output and thus TPV system efficiency are significantly increased due to the cascaded utilization of combustion heat and optimized thermal management.

K. Qiu; A.C.S. Hayden

2007-01-01T23:59:59.000Z

329

Assessment of Hydrogen Production Systems based on Natural Gas Conversion with Carbon Capture and Storage  

Science Journals Connector (OSTI)

Abstract Introduction of hydrogen in the energy system, as a new energy carrier complementary to electricity, is exciting much interest not only for heat and power generation applications, but also for transport and petro-chemical sectors. In transition to a low carbon economy, Carbon Capture and Storage (CCS) technologies represent another way to reduce CO2 emissions. Hydrogen can be produced from various feedstocks, the most important being based on fossil fuels (natural gas and coal). This paper investigates the techno-economic and environmental aspects of hydrogen production based on natural gas reforming conversion with and without carbon capture. As CO2 capture options, gas - liquid absorption and chemical looping were evaluated. The evaluated plant concepts generate 300MWth hydrogen (based on hydrogen LHV) with purity higher than 99.95 % (vol.), suitable to be used both in petro-chemical applications as well as for Proton Exchange Membrane (PEM) fuel cells for mobile applications. For the designs with CCS, the carbon capture rate is about 70 % for absorption-based scheme while for chemical looping-based system is >99 %. Special emphasis is put in the paper on the assessment of various plant configurations and process integration issues using CAPE techniques. The mass and energy balances have been used furthermore for techno-economic and environmental impact assessments.

Calin-Cristian Cormos; Letitia Petrescu; Ana-Maria Cormos

2014-01-01T23:59:59.000Z

330

Experimental study of unsteady state filtration of gas condensate system at the pressure above the dew point  

SciTech Connect

The experimental study investigates the unsteady filtration of a gas condensate system at pressure above the dew point. It is assumed that the motion of a gas condensate mixture in a porous medium at a pressure 1.5--1.7 times higher than the dew point pressure does not comply with gas filtration rules. The results explain the process of forming microembryonics of the new phase, which can be used in project planning as well as during exploitation of gas condensate fields at reservoir pressure.

Babaev, R.D.; Suleymanov, A.A.; Shahiduzzaman, M. [Azerbaijan State Oil Academy, Baku (Azerbaijan). Dept. of Development and Production of Oil Fields

1997-04-01T23:59:59.000Z

331

A wind turbine blade is ready to be lifted into place at the Windy Point Wind Farm in the Columbia River Gorge. Photo: C. Bruce Forster  

E-Print Network (OSTI)

A wind turbine blade is ready to be lifted into place at the Windy Point Wind Farm in the Columbia and wildlife recovery. At a conceptual level, the Act aimed for a power system that would meet energy demands pressure off Columbia River fish and wildlife. For the power system, moving ahead would require modified

332

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network (OSTI)

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

333

Demand Matrix for Information, Measuring, and Control System for the Diagnostics and Safety of Gazprom Gas Distribution Stations  

Science Journals Connector (OSTI)

We consider the salient aspects of unification of the diagnostic parameters necessary for optimally managing the development of the OAO Gazprom system of gas distribution stations now functioning or being overhau...

Yu. I. Esin; V. M. Klishchevskaya; N. G. Petrov; G. A. Sarychev

2004-05-01T23:59:59.000Z

334

Architecture, implementation, and testing of a multiple-shell gas injection system for high current implosions on the Z accelerator  

SciTech Connect

Tests are ongoing to conduct {approx}20 MA z-pinch implosions on the Z accelerator at Sandia National Laboratory using Ar, Kr, and D{sub 2} gas puffs as the imploding loads. The relatively high cost of operations on a machine of this scale imposes stringent requirements on the functionality, reliability, and safety of gas puff hardware. Here we describe the development of a prototype gas puff system including the multiple-shell nozzles, electromagnetic drivers for each nozzle's valve, a UV pre-ionizer, and an inductive isolator to isolate the {approx}2.4 MV machine voltage pulse present at the gas load from the necessary electrical and fluid connections made to the puff system from outside the Z vacuum chamber. This paper shows how the assembly couples to the overall Z system and presents data taken to validate the functionality of the overall system.

Krishnan, Mahadevan; Elliott, Kristi Wilson; Madden, Robert E. [Alameda Applied Sciences Corporation, San Leandro, California 94577 (United States); Coleman, P. L. [Evergreen Hill Sciences, Philomath, Oregon 97370 (United States); Thompson, John R. [812 Temple Street, San Diego, California 92106 (United States); Bixler, Alex [Space Sciences Laboratory, University of California, Berkeley, Berkeley, California 94720 (United States); Lamppa, D. C.; McKenney, J. L.; Strizic, T.; Johnson, D.; Johns, O.; Vigil, M. P.; Jones, B.; Ampleford, D. J.; Savage, M. E.; Cuneo, M. E.; Jones, M. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

2013-06-15T23:59:59.000Z

335

Analysis of design and part load performance of micro gas turbine/organic Rankine cycle combined systems  

Science Journals Connector (OSTI)

This study analyzes the design and part load performance of a power generation system combining a micro gas turbine (MGT) and an organic Rankine cycle (ORC). Design performances of cycles adopting several differe...

Joon Hee Lee; Tong Seop Kim

2006-09-01T23:59:59.000Z

336

Life cycle considerations of the flue gas desulphurization system at a lignite-fired power plant in Thailand  

Science Journals Connector (OSTI)

The Flue Gas Desulphurization (FGD) system has been installed at the biggest lignite-fired power generation plant in Thailand to reduce the large...2...emission. In order to understand the costs and benefits, bot...

Sate Sampattagul; Seizo Kato

2004-11-01T23:59:59.000Z

337

Short-term supply chain management in upstream natural gas systems  

E-Print Network (OSTI)

Natural gas supply chain planning and optimization is important to ensure security and reliability of natural gas supply. However, it is challenging due to the distinctive features of natural gas supply chains. These ...

Selot, Ajay

2009-01-01T23:59:59.000Z

338

An Off-Line System for Handling Gas Chromatographic Fatty Acid Data  

Science Journals Connector (OSTI)

......and improve- ments in gas chromatographic instrumentation...changes in the practice of gas ehromatography. First...microprocessors has led to the production of micro- processor controlled gas chromatographs (1...reasons. First, its cost is about 1/3 that......

Elaine Lanza; Bruce M. Golden; John Zyren; Hal T. Slover

1980-03-01T23:59:59.000Z

339

Development of fiberglass composite systems for natural gas pipeline service. Final report, January 1987-March 1994  

SciTech Connect

Fiberglass composites suitable for use in the repair and reinforcement of natural gas transmission line pipe were developed and evaluated. Three types of composite systems were studied: (1) a nonintrusive system for on-line field of corrosion and mechanical damage, (2) line pipe reinforced with filament wound composite, and (3) low-cost systems suitable for over-the-ditch rehabilitation of long pipeline sections. Effort during this program concentrated on the first two areas. A unique fiberglass/polyester device, called Clock Spring, was developed and successfully tested both as a means of terminating rapidly propagating cracks and for on-line repair of metal loss defects. Composite reinforced pipe was produced and hydrotested, and subsequently installed in an operating pipeline to evaluate its long-term behavior in pipeline service.

Fawley, N.C.

1994-03-01T23:59:59.000Z

340

New Crystal Structures Lift Fog around Protein Folding  

NLE Websites -- All DOE Office Websites (Extended Search)

New Crystal Structures Lift Fog around Protein Folding Print New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab, Stanford University, and the Massachusetts Institute of Technology has deciphered the crystal structure of a critical control element within chaperonin, the protein complex responsible for the correct folding of other proteins. Chaperonins promote the proper folding of newly translated proteins and proteins that have been stress-denatured-meaning they've lost their structure-by encapsulating them inside a protective chamber formed from two rings of molecular complexes stacked back-to-back. There are two classes of chaperonins, group I found in prokaryotes and group II found in eukaryotes and archaea (organisms with no cell membrane or internal membrane-bound organelles). Much of the basic architecture has been evolutionarily preserved (conserved) across these two classes but they do differ in how the protective chamber is opened to accept proteins and closed to fold them. Whereas group I chaperonins require a detachable ring-shaped molecular lid to open and close the chamber, group II chaperonins have a built-in lid.

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced wind turbine with lift cancelling aileron for shutdown  

DOE Patents (OSTI)

An advanced aileron configuration for wind turbine rotors featuring an independent, lift generating aileron connected to the rotor blade. The aileron has an airfoil profile which is inverted relative to the airfoil profile of the main section of the rotor blade. The inverted airfoil profile of the aileron allows the aileron to be used for strong positive control of the rotation of the rotor while deflected to angles within a control range of angles. The aileron functions as a separate, lift generating body when deflected to angles within a shutdown range of angles, generating lift with a component acting in the direction opposite the direction of rotation of the rotor. Thus, the aileron can be used to shut down rotation of the rotor. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

Coleman, Clint (Warren, VT); Juengst, Theresa M. (Warren, VT); Zuteck, Michael D. (Kemah, TX)

1996-06-18T23:59:59.000Z

342

Dynamic system identification and model-based fault diagnosis of an industrial gas turbine prototype  

Science Journals Connector (OSTI)

In this paper, a model-based procedure exploiting analytical redundancy for the detection and isolation of faults on a gas turbine process is presented. The main point of the present work consists of exploiting system identification schemes in connection with observer and filter design procedures for diagnostic purpose. Linear model identification (black-box modelling) and output estimation (dynamic observers and Kalman filters) integrated approaches to fault diagnosis are in particular advantageous in terms of solution complexity and performance. This scheme is especially useful when robust solutions are considered for minimise the effects of modelling errors and noise, while maximising fault sensitivity. A model of the process under investigation is obtained by identification procedures, whilst the residual generation task is achieved by means of output observers and Kalman filters designed in both noise-free and noisy assumptions. The proposed tools have been tested on a single-shaft industrial gas turbine prototype model and they have been evaluated using non-linear simulations, based on the gas turbine data.

Silvio Simani; Cesare Fantuzzi

2006-01-01T23:59:59.000Z

343

Cooperative Server Clustering for a Scalable GAS Model on petascale cray XT5 Systems  

SciTech Connect

Global Address Space (GAS) programming models are attractive because they retain the easy-to-use addressing model that is the characteristic of shared-memory style load and store operations. The scalability of GAS models depends directly on the design and implementation of runtime libraries on the targeted platforms. In this paper, we examine the memory requirement of a popular GAS runtime library, Aggregate Remote Memory Copy Interface (ARMCI) on petascale Cray XT 5 systems. Then we describe a new technique cooperative server clustering that enhances the memory scalability of ARMCI communication servers. In cooperative server clustering, ARMCI servers are organized into clusters, and cooperatively process incoming communication requests among them. A request intervention scheme is also designed to expedite the return of responses to the initiating processes. Our experimental results demonstrate that, with very little impact on ARMCI communication latency and bandwidth, cooperative server clustering is able to significantly reduce the memory requirement of ARMCI communication servers, thereby enabling highly scalable scientific applications. In particular, it dramatically reduces the total execution time of a scientific application, NWChem, by 45% on 2400 processes.

Yu, Weikuan [ORNL; Que, Xinyu [ORNL; Graham, Richard L [ORNL; Vetter, Jeffrey S [ORNL

2010-01-01T23:59:59.000Z

344

Cooperative Server Clustering for a Scalable GAS Model on Petascale Cray XT5 Systems  

SciTech Connect

Global Address Space (GAS) programming models are attractive because they retain the easy-to-use addressing model that is the characteristic of shared-memory style load and store operations. The scalability of GAS models depends directly on the design and implementation of runtime libraries on the targeted platforms. In this paper, we examine the memory requirement of a popular GAS run-time library, Aggregate Remote Memory Copy Interface (ARMCI) on petascale Cray XT 5 systems. Then we describe a new technique, cooperative server clustering, that enhances the memory scalability of ARMCI communication servers. In cooperative server clustering, ARMCI servers are organized into clusters, and cooperatively process incoming communication requests among them. A request intervention scheme is also designed to expedite the return of responses to the initiating processes. Our experimental results demonstrate that, with very little impact on ARMCI communication latency and bandwidth, cooperative server clustering is able to significantly reduce the memory requirement of ARMCI communication servers, thereby enabling highly scalable scientific applications. In particular, it dramatically reduces the total execution time of a scientific application, NWChem, by 45% on 2400 processes.

Yu, Weikuan [ORNL; Que, Xinyu [ORNL; Tipparaju, Vinod [ORNL; Graham, Richard L [ORNL; Vetter, Jeffrey S [ORNL

2010-05-01T23:59:59.000Z

345

Analysis of the Reactor Cavity Cooling System for Very High Temperature Gas-cooled Reactors Using Computational Fluid Dynamics Tools  

E-Print Network (OSTI)

The design of passive heat removal systems is one of the main concerns for the modular Very High Temperature Gas-Cooled Reactors (VHTR) vessel cavity. The Reactor Cavity Cooling System (RCCS) is an important heat removal system in case of accidents...

Frisani, Angelo

2011-08-08T23:59:59.000Z

346

Cooling system for a gas turbine using a cylindrical insert having V-shaped notch weirs  

DOE Patents (OSTI)

An improved cooling system for a gas turbine is disclosed. A plurality of V-shaped notch weirs are utilized to meter a coolant liquid from a pool of coolant into a plurality of platform and airfoil coolant channels formed in the buckets of the turbine. The V-shaped notch weirs are formed in a separately machined cylindrical insert and serve to desensitize the flow of coolant into the individual platform and airfoil coolant channels to design tolerances and non-uniform flow distribution.

Grondahl, Clayton M. (Clifton Park, NY); Germain, Malcolm R. (Ballston Lake, NY)

1981-01-01T23:59:59.000Z

347

Optimal Use of Power-to-Gas Energy Storage Systems in an 85% Renewable Energy Scenario  

Science Journals Connector (OSTI)

Abstract In future energy systems with high shares of fluctuating renewable energy generation, electricity storage will become increasingly important for the utilization of surplus energy. The Power-to-Gas (PtG) technology is one promising option for solving the challenge of long-term electricity storage and is theoretically able to ease situations of grid congestion at the same time. This article presents the perspectives of PtG in an 85% renewable energy scenario for Germany, quantifying an economic optimum for the PtG capacity as well as an optimized spatial PtG deployment.

Mareike Jentsch; Tobias Trost; Michael Sterner

2014-01-01T23:59:59.000Z

348

Energy Conversion in Lifting Mass Vertically using a DC Electric Motor by Observing Required Time to Lift Object for a Certain Height  

E-Print Network (OSTI)

In lifting mass vertically using a DC electric motor energy conversion from electric energy, through intermediate kinetic energy, to gravitation potential energy shows that time required {\\Delta}t to lift load mass m for height h is dependent quadratically to m. Several approaches to explain the experiment observation are discussed in this work, from ideal energy conversion to numerical solution from differential equation.

Viridi, Sparisoma; Permana, Sidik; Srigutomo, Wahyu; Susilawati, Anggie; Nuryadin, Bebeh Wahid; Nurhasan,

2014-01-01T23:59:59.000Z

349

Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cellgas turbine systems  

Science Journals Connector (OSTI)

Design performances of the hybrid solid oxide fuel cell (SOFC)gas turbine (GT) system have been investigated. A pressurized system and an indirectly heated ambient pressure system were analyzed and their performances were compared. In the baseline layout, the basic performance characteristics of the two system configurations were analyzed, with the cell operation temperature and the pressure ratio as the main design parameters. The pressurized system exhibits a better efficiency owing to not only the higher cell voltage but also more effective utilization of gas turbine, i.e., a larger GT power contribution due to a higher turbine inlet temperature. Independent setting of the turbine inlet temperature was simulated by using the additional fuel supply as well as the air bypass. Increasing the pressure ratio of the gas turbine hardly improves the system efficiency, but the efficiency becomes less sensitive to the turbine inlet temperature. In the ambient pressure system, the available design parameter range is much reduced due to the limit on the recuperator temperature. In particular, design of the ambient pressure hybrid system with a gas turbine of a high pressure ratio does not seem quite feasible because the system efficiency that can be achieved at the possible design conditions is even lower than the efficiency of the SOFC only system.

S.K. Park; T.S. Kim

2006-01-01T23:59:59.000Z

350

Study on a gas-steam combined cycle system with CO2 capture by integrating molten carbonate fuel cell  

Science Journals Connector (OSTI)

Abstract This paper studies a gas-steam combined cycle system with CO2 capture by integrating the MCFC (molten carbonate fuel cell). With the Aspen plus software, this paper builds the model of the overall MCFC-GT hybrid system with CO2 capture and analyzes the effects of the key parameters on the performances of the overall system. The result shows that compared with the gas-steam combined cycle system without CO2 capture, the efficiency of the new system with CO2 capture does not decrease obviously and keeps the same efficiency with the original gas steam combined cycle system when the carbon capture percentage is 45%. When the carbon capture percentage reaches up to 85%, the efficiency of the new system is about 54.96%, only 0.67 percent points lower than that of the original gas-steam combined cycle system. The results show that the new system has an obvious superiority of thermal performance. However, its technical economic performance needs be improved with the technical development of MCFC and ITM (oxygen ion transfer membrane). Achievements from this paper will provide the useful reference for CO2 capture with lower energy consumption from the traditional power generation system.

Liqiang Duan; Jingnan Zhu; Long Yue; Yongping Yang

2014-01-01T23:59:59.000Z

351

Orifice-meter measurement errors caused by gas-system pulsations can be controlled  

SciTech Connect

Pulsation-induced inaccuracies in orifice meter gas-flow measurement can be eliminated or at least better controlled. In today's increasingly competitive gas-supply marketplace, such errors can no longer be ignored. In some instances, pulsations have caused errors of 30-50% in volumes. Policies and procedures of Arkla Energy Resources, Shreveport, La., reflect current efforts to combat the problem. Orifice-meter pulsation error can be divided into three categories: those associated with the primary element itself (across the flange taps); those in the gauge line/manifold/transducer system;; and those within the recording and analysis system. Each category is significant in that total meter error contains all three types (box). While it would be desirable to segregate the problems and solve them independently, it is very difficult to do. It becomes apparent quickly that all three occur in many cases. The focus of this discussion is on primary-element errors; if these are reduced, other errors tend to be minimal.

Gegg, D. (Arkla Energy Resources, Shreveport, LA (US))

1989-10-16T23:59:59.000Z

352

Experimental Investigation into a Packed Bed Thermal Storage Solution for Solar Gas Turbine Systems  

Science Journals Connector (OSTI)

Abstract High temperature thermal storage in randomly packed beds of ceramic particles is proposed as an effective storage solution for Solar Gas Turbine (SGT) cycles in the near term. Numerical modelling of these systems allows for optimised thermal storage designs, but such models must be validated against experimental data. In this work an experimental test programme was conducted to generate high temperature heat transfer data for a packed bed operating over the temperature ranges 350-900C and 600-900C. These are representative of two potential SGT cycles. Flue gas from a 45kW LPG burner was used to heat a packed bed of Denstone ceramic pebbles and the testing procedure involved preheating the system to achieve the desired temperature ranges. The fluid and solid temperature profiles in the packed bed were measured in the axial and radial dimensions and are compared to a numerical model with reasonable agreement. Potential modifications to the test facility are described and future testing plans outlined.

P. Klein; T.H. Roos; T.J. Sheer

2014-01-01T23:59:59.000Z

353

GLASS: gas-phase metallicity and radial gradients in an interacting system at z~2  

E-Print Network (OSTI)

We present spatially resolved gas-phase metallicity for a system of three galaxies at z=1.85 detected in the Grism Lensed-Amplified Survey from Space (GLASS). The combination of HST's diffraction limit and strong gravitational lensing by the cluster MACS J0717+3745 results in a spatial resolution of ~200-300 pc, enabling good spatial sampling despite the intrinsically small galaxy sizes. The galaxies in this system are separated by 50-200 kpc in projection and are likely in an early stage of interaction, evidenced by relatively high specific star formation rates. Their gas-phase metallicities are consistent with larger samples at similar redshift, star formation rate, and stellar mass. We obtain a precise measurement of the metallicity gradient for one galaxy and find a shallow slope compared to isolated galaxies at high redshift, consistent with a flattening of the gradient due to gravitational interaction. An alternative explanation for the shallow metallicity gradient and elevated star formation rate is ra...

Jones, Tucker; Schmidt, Kasper; Treu, Tommaso; Brammer, Gabriel; Bradac, Marusa; Dressler, Alan; Henry, Alaina; Malkan, Matthew; Pentericci, Laura; Trenti, Michele

2014-01-01T23:59:59.000Z

354

Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions  

E-Print Network (OSTI)

#12;Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump use of buildings Gas Heat Pump Solution #12;Gas Heat Pump - deserves special attention due to its source in addition to the outside air ·A further essential component of Gas Heat Pump air conditioning

Oak Ridge National Laboratory

355

Operator Trainer System for the Petrobras P-26 Semi-Submersible Oil and Gas Production Unit  

Science Journals Connector (OSTI)

Abstract Operator trainer systems aim to improve operator performance, by simulating scenarios such as emergency conditions, thus reducing accidents and increasing processes economical results. In this paper, we present PETROBRAS' Oil & Gas Production Process and Utilities Simulator Environment called AMBTREI (Training Environment) that mimics the actual Control Room of an E&P semi-submersible Platform at a very high fidelity level. This training environment was created utilizing Soteica's Operator Training System solution (S-OTS). The dynamic process model will be described as well as the Process Control Interface that was implemented. The software used will be explained in detail and the conclusions that have been reached in almost 2 years of use will be presented.

A.C. Pereira; A. Riera; G. Padilla; E. Musulin; N.J. Nakamura

2009-01-01T23:59:59.000Z

356

Spatiotemporal patterns in a dc semiconductor-gas-discharge system: Stability analysis and full numerical solutions  

Science Journals Connector (OSTI)

A system very similar to a dielectric barrier discharge, but with a simple stationary dc voltage, can be realized by sandwiching a gas discharge and a high-ohmic semiconductor layer between two planar electrodes. In experiments this system forms spatiotemporal and temporal patterns spontaneously, quite similarly to, e.g., Rayleigh-Bnard convection. Here it is modeled with a simple discharge model with space charge effects, and the semiconductor is approximated as a linear conductor. In previous work, this model has reproduced the phase transition from homogeneous stationary to homogeneous oscillating states semiquantitatively. In the present work, the formation of spatial patterns is investigated through linear stability analysis and through numerical simulations of the initial value problem; the methods agree well. They show the onset of spatiotemporal patterns for high semiconductor resistance. The parameter dependence of temporal or spatiotemporal pattern formation is discussed in detail.

Ismail R. Rafatov, Danijela D. ija?i?, and Ute Ebert

2007-09-12T23:59:59.000Z

357

Thermal-destruction products of coal in the blast-furnace gas-purification system  

SciTech Connect

The lean, poorly clinkering coal and anthracite used to replace coke in blast furnaces has a considerable content of volatile components (low-molecular thermaldestruction products), which enter the water and sludge of the blast-furnace gas-purification system as petroleum products. Therefore, it is important to study the influence of coal on the petroleum-product content in the water and sludge within this system. The liberation of primary thermal-destruction products is investigated for anthracite with around 4 wt % volatiles, using a STA 449C Jupiter thermoanalyzer equipped with a QMC 230 mass spectrometer. The thermoanalyzer determines small changes in mass and thermal effects with high accuracy (weighing accuracy 10{sup -8} g; error in measuring thermal effects 1 mV). This permits experiments with single layers of coal particles, eliminating secondary reactions of its thermal-destruction products.

A.M. Amdur; M.V. Shibanova; E.V. Ental'tsev [Russian Academy of Sciences, Yekaterinburg (Russian Federation). Russia Institute of Metallurgy

2008-10-15T23:59:59.000Z

358

INTEGRATED CRYOGENIC SYSTEM FOR CO 2 SEPARATION AND LNG PRODUCTION FROM LANDFILL GAS  

Science Journals Connector (OSTI)

An integrated cryogenic system to separate carbon dioxide ( CO 2 ) and produce LNG from landfill gas is investigated and designed. The main objective of this design is to eliminate the requirement of a standard CO 2 removal process in the liquefaction system such distillation or (temperature or pressure) swing adsorption and to directly separate carbon dioxide as frost at the liquefying channel of methane. Two identical sets of heat exchangers are installed in parallel and switched alternatively with a time period so that one is in separation?liquefaction mode while the other is in CO 2 clean?up mode. A thermal regeneration scheme is presented for the purpose of saving energy and avoiding the stoppage of LNG production followed by the flow switching. The switching period is determined from results of a combined heat and mass transfer analysis on the CO 2 freeze?out process.

H. M. Chang; M. J. Chung; S. B. Park

2010-01-01T23:59:59.000Z

359

Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere  

DOE Patents (OSTI)

An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

Wamsley, Paula R. (Littleton, CO); Weimer, Carl S. (Littleton, CO); Nelson, Loren D. (Evergreen, CO); O'Brien, Martin J. (Pine, CO)

2003-01-01T23:59:59.000Z

360

LASER STABILIZATION FOR NEAR ZERO NO{sub x} GAS TURBINE COMBUSTION SYSTEMS  

SciTech Connect

Historically, the development of new industrial gas turbines has been primarily driven by the intent to achieve higher efficiency, lower operating costs and lower emissions. Higher efficiency and lower cost is obtained through higher turbine operating temperatures, while reduction in emissions is obtained by extending the lean operating limit of the combustor. However reduction in the lean stability limit of operation is limited greatly by the chemistry of the combustion process and by the occurrence of thermo-acoustic instabilities. Solar Turbines, CFD Research Corporation, and Los Alamos National Laboratory have teamed to advance the technology associated with laser-assisted ignition and flame stabilization, to a level where it could be incorporated onto a gas turbine combustor. The system being developed is expected to enhance the lean stability limit of the swirl stabilized combustion process and assist in reducing combustion oscillations. Such a system has the potential to allow operation at the ultra-lean conditions needed to achieve NO{sub x} emissions below 5 ppm without the need of exhaust treatment or catalytic technologies. The research effort was focused on analytically modeling laser-assisted flame stabilization using advanced CFD techniques, and experimentally demonstrating the technology, using a solid-state laser and low-cost durable optics. A pulsed laser beam was used to generate a plasma pool at strategic locations within the combustor flow field such that the energy from the plasma became an ignition source and helped maintain a flame at ultra lean operating conditions. The periodic plasma generation and decay was used to nullify the fluctuations in the heat release from the flame itself, thus decoupling the heat release from the combustor acoustics and effectively reducing the combustion oscillations. The program was built on an existing technology base and includes: extending LANL's existing laser stabilization experience to a sub-scale combustor rig, performing and validating CFD predictions, and ultimately conducting a full system demonstration in a multi-injector combustion system at Solar Turbines.

Vivek Khanna

2002-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Atomic and Molecular Gas in Colliding Galaxy Systems. I. The Data  

Science Journals Connector (OSTI)

We present H I and CO(1-0) interferometric observations of 10 comparable-mass interacting systems obtained at the Very Large Array (VLA) and the Owens Valley Radio Observatory (OVRO) millimeter array. The primary intent of this study is to investigate the response of cold gas during the early stages of collision of massive disk galaxies. The sample sources are selected based on their luminosity (MB ? -19), projected separation (5-40 kpc), and single-dish CO(1-0) content (SCO ? 20 Jy km s-1). These selection criteria result in a sample that primarily consists of systems in the early stages of an interaction or a merger. Despite this sample selection, 50% of the systems show long H I tidal tails indicative of a tidal disruption in a prograde orbit. In addition, all (4/4) of the infrared luminous pairs (LIRGs) in the sample show long H I tails, suggesting that the presence of a long H I tail can be a possible signature of enhanced star formation activity in a collision of gas-rich galaxies. More than half of the groups show a displacement of H I peaks from the stellar disks. The CO(1-0) distribution is generally clumpy and widely distributed, unlike in most IR-selected late stage mergersin fact, CO peaks are displaced from the stellar nucleus in 20% (4/18) of the galaxies with robust CO detection.H I and CO(1-0) position-velocity diagrams (PVDs) and rotation curves are also presented, and their comparison with the numerical simulation analyzed in Paper I show evidence for radial inflow and wide occurrences of nuclear molecular rings. These results are further quantified by examining physical and structural parameters derived in comparison with isolated systems in the BIMA SONG sample in our forthcoming paper.

Daisuke Iono; Min S. Yun; Paul T. P. Ho

2005-01-01T23:59:59.000Z

362

Process system evaluation-consolidated letters. Volume 1. Alternatives for the off-gas treatment system for the low-level waste vitrification process  

SciTech Connect

This report provides an evaluation of alternatives for treating off-gas from the low-level waste (LLW) melter. The study used expertise obtained from the commercial nonradioactive off-gas treatment industry. It was assumed that contact maintenance is possible, although the subsequent risk to maintenance personnel was qualitatively considered in selecting equipment. Some adaptations to the alternatives described may be required, depending on the extent of contact maintenance that can be achieved. This evaluation identified key issues for the off-gas system design. To provide background information, technology reviews were assembled for various classifications of off-gas treatment equipment, including off-gas cooling, particulate control, acid gas control, mist elimination, NO{sub x} reduction, and SO{sub 2} removal. An order-of-magnitude cost estimate for one of the off-gas systems considered is provided using both the off-gas characteristics associated with the Joule-heated and combustion-fired melters. The key issues identified and a description of the preferred off-gas system options are provided below. Five candidate treatment systems were evaluated. All of the systems are appropriate for the different melting/feed preparations currently being considered. The lowest technical risk is achieved using option 1, which is similar to designs for high-level waste (HLW) vitrification in the Hanford Waste Vitrification Project (HWVP) and the West Valley. Demonstration Project. Option 1 uses a film cooler, submerged bed scrubber (SBS), and high-efficiency mist eliminator (HEME) prior to NO{sub x} reduction and high-efficiency particulate air (HEPA) filtration. However, several advantages were identified for option 2, which uses high-temperature filtration. Based on the evaluation, option 2 was identified as the preferred alternative. The characteristics of this option are described below.

Peurrung, L.M.; Deforest, T.J; Richards, J.R.

1996-03-01T23:59:59.000Z

363

A Greenhouse-Gas Information System: Monitoring and Validating Emissions Reporting and Mitigation  

SciTech Connect

This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS.

Jonietz, Karl K. [Los Alamos National Laboratory; Dimotakis, Paul E. [JPL/CAL Tech; Rotman, Douglas A. [Lawrence Livermore National Laboratory; Walker, Bruce C. [Sandia National Laboratory

2011-09-26T23:59:59.000Z

364

Long-Range Untethered Real-Time Live Gas Main Robotic Inspection System  

SciTech Connect

Under funding from the Department of Energy (DOE) and the Northeast Gas Association (NGA), Carnegie Mellon University (CMU) developed an untethered, wireless remote controlled inspection robot dubbed Explorer. The project entailed the design and prototyping of a wireless self-powered video-inspection robot capable of accessing live 6- and 8-inch diameter cast-iron and steel mains, while traversing turns and Ts and elbows under real-time control with live video feedback to an operator. The design is that of a segmented actively articulated and wheel-leg powered robot design, with fisheye imaging capability and self-powered battery storage and wireless real-time communication link. The prototype was functionally tested in an above ground pipe-network, in order to debug all mechanical, electrical and software subsystems, and develop the necessary deployment and retrieval, as well as obstacle-handling scripts. A pressurized natural gas test-section was used to certify it for operation in natural gas at up to 60 psig. Two subsequent live-main field-trials in both cast-iron and steel pipe, demonstrated its ability to be safely launched, operated and retrieved under real-world conditions. The system's ability to safely and repeatably exidrecover from angled and vertical launchers, traverse multi-thousand foot long pipe-sections, make T and varied-angle elbow-turns while wirelessly sending live video and handling command and control messages, was clearly demonstrated. Video-inspection was clearly shown to be a viable tool to understand the state of this critical buried infrastructure, irrespective of low- (cast-iron) or high-pressure (steel) conditions. This report covers the different aspects of specifications, requirements, design, prototyping, integration and testing and field-trialing of the Explorer platform.

Hagen Schempf; Daphne D'Zurko

2004-10-31T23:59:59.000Z

365

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system with gas  

E-Print Network (OSTI)

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system. Landfill technology, as it is the most widely employed and is regarded as the most suitable and simple and externalities are examined. A cost-benefit analysis of a landfill system with gas recovery (LFSGR) has been

Columbia University

366

Fuel Cell Lift Trucks: A Grocer's Best Friend | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend December 1, 2011 - 3:21pm Addthis Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What are the key facts? Fuel Cell Lift Trucks can operate twice as long as their battery powered counterparts. They also avoid deep discharges, which effectively extends their

367

The National Energy Modeling System: An Overview 1998 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

OIL AND GAS SUPPLY MODULE OIL AND GAS SUPPLY MODULE blueball.gif (205 bytes) Lower 48 Onshore and Shallow Offshore Supply Submodule blueball.gif (205 bytes) Deep Water Offshore Supply Submodule blueball.gif (205 bytes) Alaska Oil and Gas Submodule blueball.gif (205 bytes) Enhanced Oil Recovery Submodule blueball.gif (205 bytes) Foreign Natural Gas Supply Submodule The oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline-quality gas from Mexico and Canada Imported liquefied natural gas. The OGSM regions are shown in Figure 12. The driving assumption of the OGSM is that domestic oil and gas exploration and development are undertaken if the discounted present value of the

368

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Overview - May 21, 2001 Somewhat warmer temperatures early in the week, especially in the South, provided a lift to natural gas spot and futures prices. (See Temperature Map) (See Deviation from Normal Temperatures Map) However, a report of another large stock build and a revised forecast for normal to below-normal temperatures over a larger area of the country turned the week's gains into losses. On a week-to-week basis, the spot price of natural gas at the Henry Hub dropped $0.10 to end Friday, May 18 at $4.15 per MMBtu, while the NYMEX price of natural gas for June delivery at the Henry Hub declined $0.013 to $4.291 per MMBtu. At 119 Bcf, net injections to storage for the week ended May 11, 2001, were the highest value for the 8-year period of weekly AGA data.

369

Dynamical Behavior of Multi-Robot Systems Using Lattice Gas Automata  

SciTech Connect

Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems. Our group has been studying the collective behavior of autonomous, multi-agent systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi-robotic and multi-agents architectures. Our goal is to coordinate a constellation of point sensors that optimizes spatial coverage and multivariate signal analysis using unmanned robotic vehicles (e.g., RATLERs, Robotic All-ten-sin Lunar Exploration Rover-class vehicles). Overall design methodology is to evolve complex collective behaviors realized through simple interaction (kinetic) physics and artificial intelligence to enable real-time operational responses to emerging threats. This paper focuses on our recent work understanding the dynamics of many-body systems using the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's deformation rate, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent non-linearity of the dynamical equations describing large ensembles, development of stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots that maneuvers past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with knowledge, the swarm adapts by changing state in order to avoid the obstacle. Simulation results are qualitatively similar to lattice gas.

Cameron, S.M.; Robinett, R.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

1999-03-11T23:59:59.000Z

370

Lift-Off Dynamics in a Simple Jumping Robot  

Science Journals Connector (OSTI)

We study vertical jumping in a simple robot comprising an actuated mass-spring arrangement. The actuator frequency and phase are systematically varied to find optimal performance. Optimal jumps occur above and below (but not at) the robots resonant frequency f0. Two distinct jumping modes emerge: a simple jump, which is optimal above f0, is achievable with a squat maneuver, and a peculiar stutter jump, which is optimal below f0, is generated with a countermovement. A simple dynamical model reveals how optimal lift-off results from nonresonant transient dynamics.

Jeffrey Aguilar, Alex Lesov, Kurt Wiesenfeld, and Daniel I. Goldman

2012-10-26T23:59:59.000Z

371

Lift-off dynamics in a simple jumping robot  

E-Print Network (OSTI)

We study vertical jumping in a simple robot comprising an actuated mass-spring arrangement. The actuator frequency and phase are systematically varied to find optimal performance. Optimal jumps occur above and below (but not at) the robot's resonant frequency $f_0$. Two distinct jumping modes emerge: a simple jump which is optimal above $f_0$ is achievable with a squat maneuver, and a peculiar stutter jump which is optimal below $f_0$ is generated with a counter-movement. A simple dynamical model reveals how optimal lift-off results from non-resonant transient dynamics.

Jeffrey Aguilar; Alex Lesov; Kurt Wiesenfeld; Daniel I. Goldman

2012-08-30T23:59:59.000Z

372

Dynamical System Analysis of Modified Chaplygin Gas in Einstein-Aether Gravity  

E-Print Network (OSTI)

In this work we investigate the background dynamics when dark energy is coupled to dark matter with a suitable interaction in the universe described by Einstein-Aether gravity. Dark energy in the form of Modified Chaplygin gas is considered. A suitable interaction between dark energy and dark matter is considered in order to at least alleviate (if not solve) the cosmic coincidence problem. The dynamical system of equations is solved numerically and a stable scaling solution is obtained. A significant attempt towards the solution of the cosmic coincidence problem is taken. The statefinder parameters are also calculated to classify the dark energy models. Graphs and phase diagrams are drawn to study the variations of these parameters. It is also seen that the background dynamics of modified Chaplygin gas in Einstein-Aether gravity is completely consistent with the notion of an accelerated expansion in the late universe. Finally, it has been shown that the universe follows the power law form of expansion around the critical point.

Chayan Ranjit; Prabir Rudra; Sujata Kundu

2014-08-19T23:59:59.000Z

373

Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions  

SciTech Connect

Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

2010-04-30T23:59:59.000Z

374

Adaptive Detached Eddy Simulation of a High-Lift Wing with Active...  

NLE Websites -- All DOE Office Websites (Extended Search)

Detached Eddy Simulation of a High-Lift Wing with Active Flow Control PI Name: Kenneth Jansen PI Email: jansenke@colorado.edu Institution: University of Colorado Allocation...

375

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell powered lift trucks deployed by industry.

376

Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014  

SciTech Connect

The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

Klingler, James J [GENCO Infrastructure Solutions, Inc.] [GENCO Infrastructure Solutions, Inc.

2014-05-06T23:59:59.000Z

377

An investigation of the performance of a hybrid turboexpander-fuel cell system for power recovery at natural gas pressure reduction stations  

Science Journals Connector (OSTI)

Natural gas is transported in pipelines at high pressures. To distribute the gas locally at locations along the pipeline the pressure must be reduced before the gas enters the local distribution system. Most pressure reduction stations in North America use expansion valves for this purpose. The expansion process produces a temperature decrease which can cause problems so the gas must be preheated before entering the expansion valve. Usually this is done using a natural gas-fired boiler. To reduce the energy consumption the pressure drop can be achieved by passing the gas through a turboexpander which generates electrical power. With a turboexpander system the gas must also be preheated, a gas-fired boiler again used. A new approach which uses a hybrid turboexpander-fuel cell system has been considered here. In such a system, a Molten Carbonate Fuel Cell (MCFC) utilizing natural gas is used to preheat the gas before it flows through the turboexpander and to provide low emission electrical power. The main objective of the present work was to investigate the factors affecting the performance of such a system. Data on natural gas usage in typical smaller Canadian city was used as an input to a simulation of a hybrid gas expansion station in the city.

Clifford Howard; Patrick Oosthuizen; Brant Peppley

2011-01-01T23:59:59.000Z

378

A New Gas Loading System for Diamond Anvil Cells at GSECARS  

NLE Websites -- All DOE Office Websites (Extended Search)

Sidorowicz Named "Supervisor of the Year" Sidorowicz Named "Supervisor of the Year" SESS 2007: The School for Environmental Sciences with Synchrotrons Art and Science A Breakthrough in Interface Science APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed A New Gas Loading System for Diamond Anvil Cells at GSECARS MARCH 11, 2008 Bookmark and Share The diamond anvil cell (DAC) is the most commonly used device for obtaining static high pressures above 3 GPa. Experiments in the DAC are frequently performed at the APS, in particular at GSECARS (Sector 13), HP-CAT (Sector 16), and at XOR sectors 1 and 3. In order to have the sample in the DAC be subject to a quasi-hydrostatic pressure it is necessary to surround the

379

Bose-Einstein condensation in finite noninteracting systems: A relativistic gas with pair production. II  

Science Journals Connector (OSTI)

An asymptotic evaluation of the specific heat of an ideal relativistic Bose gas confined to a cuboidal enclosure (L1L2L3) is carried out, under periodic boundary conditions, taking into account the possibility of particle-antiparticle pair production in the system. Finite-size corrections to the standard bulk behavior are calculated explicitly in the regions t>0 and t0 finite-size corrections turn out to be exponential for all geometries, for t<0 this is true only in the case of a film; for other geometries, such as a cuboid or a rectangular channel, these corrections conform to a power law instead. Finally, we consider the situation in the core region, where | Lit |=O(1), and examine the location t* and the height c?* of the specific-heat maximum; finite-size corrections in this region turn out to be O(L<-1), where L< denotes the shortest side of the enclosure.

Surjit Singh and R. K. Pathria

1984-12-01T23:59:59.000Z

380

Multi-Scale Thermal Measurement and Design of Cooling Systems in Gas Turbine  

Science Journals Connector (OSTI)

The present gas turbine technology increases the turbine inlet temperature to a limitation which is very high gas temperature accomplished by recently developed material and cooling technology. In order to overco...

Hyung Hee Cho; Kyung Min Kim; Sangwoo Shin

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

New packing in absorption systems for trapping benzene from coke-oven gas  

SciTech Connect

The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

382

The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline com-  

E-Print Network (OSTI)

gas hydrates. Gas hydrates are crystalline com- pounds that are often encountered in oil and gas briefly present the hydrate crystalline structure and the role of hydrates in oil-and gas industry the industrial contexts where they appear, we shall cite : hydrate plugs obstructing oil- or gas

Boyer, Edmond

383

The Beckett System Recovery and Utilization of Low Grade Waste Heat From Flue Gas  

E-Print Network (OSTI)

. During low demand periods, the unit is gas-fired and produces 150 psi steam at high efficiency. In the fall, the heat exchanger is converted to accept flue gas from the large original water tube boilers. The flue gas heats water, which preheats make...

Henderson, W. R.; DeBiase, J. F.

1983-01-01T23:59:59.000Z

384

GAS ANALYSIS SYSTEM COMPOSED OF A SOLID-STATE SENSOR ARRAY AND HYBRID NEURAL NETWORK  

E-Print Network (OSTI)

was exposed to various mixtures of air with these four pollutants. The paper deals with the calibration to control a chemical process or to monitor the safety of gas environment in an underground mine means of estimating the flammable gas in the air. One of the main problems with this type of gas sensors

Osowski, Stanislaw

385

Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream  

DOE Patents (OSTI)

The present invention provides a system for capturing CO.sub.2 and/or SO.sub.2, comprising: (a) a CO.sub.2 and/or SO.sub.2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO.sub.2 and/or SO.sub.2 to produce a CO.sub.2- and/or SO.sub.2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO.sub.2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO.sub.2 gas. The present invention also provides for a system for capturing SO.sub.2, comprising: (a) a SO.sub.2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO.sub.2 to produce an alkali metal sulfite/sulfate precipitate and CO.sub.2.

Chang, Shih-Ger; Li, Yang; Zhao, Xinglei

2014-07-08T23:59:59.000Z

386

Performance of the Gas Gain Monitoring system of the CMS RPC muon detector and effective working point fine tuning  

E-Print Network (OSTI)

The Gas Gain Monitoring (GGM) system of the Resistive Plate Chamber (RPC) muon detector in the Compact Muon Solenoid (CMS) experiment provides fast and accurate determination of the stability in the working point conditions due to gas mixture changes in the closed loop recirculation system. In 2011 the GGM began to operate using a feedback algorithm to control the applied voltage, in order to keep the GGM response insensitive to environmental temperature and atmospheric pressure variations. Recent results are presented on the feedback method used and on alternative algorithms.

S. Colafranceschi; L. Benussi; S. Bianco; L. Passamonti; D. Piccolo; D. Pierluigi; A. Russo; G. Saviano; C. Vendittozzi; M. Abbrescia; A. Aleksandrov; U. Berzano; C. Calabria; C. Carrillo; A. Colaleo; V. Genchev; P. Iaydjiev; M. Kang; K. S. Lee; F. Loddo; S. K. Park; G. Pugliese; M. Maggi; S. Shin; M. Rodozov; M. Shopova; G. Sultanov; P. Verwillingen

2012-09-18T23:59:59.000Z

387

DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions  

Energy.gov (U.S. Department of Energy (DOE))

Following the White House and the Department of Energy Capstone Methane Stakeholder Roundtable on July 29th, DOE announced a series of actions, partnerships, and stakeholder commitments to help modernize the nations natural gas transmission and distribution systems and reduce methane emissions. Through common-sense standards, smart investments, and innovative research, DOE seeks to advance the state of the art in natural gas system performance. DOEs effort is part of the larger Administrations Climate Action Plan Interagency Strategy to Reduce Methane Emissions.

388

ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT  

SciTech Connect

AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a lEnergie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. A simulant of the DWPF SB4 feed was successfully fed and melted in a small pilot-scale CCIM system during two test series. The OGSE tests provide initial results that (a) provide melter operating conditions while feeding a DWPF SB4 simulant feed, (b) determine the fate of feed organic and metal feed constituents and metals partitioning, and (c) characterize the melter off-gas source term to a downstream off-gas system. The INL CCIM test system was operated continuously for about 30 hours during the parametric test series, and for about 58 hours during the OGSE test. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter. The glass drain was operated periodically on-demand. A cold cap of unmelted feed was controlled by adjusting the feedrate and melter power levels to obtain the target molten glass temperatures with varying cold cap levels. Three test conditions were performed per the test plan, during which the melter was operated with a target melt temperature of either 1,250oC or 1,300oC, and with either a partial or complete cold cap of unmelted feed on top of the molten glass. Samples of all input and output streams including the starting glass, the simulant feed, the off-gas particulate matter, product glass, and deposits removed from the crucible and off-gas pipe after the test were collected for analysis.

Nick Soelberg

2009-04-01T23:59:59.000Z

389

Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems: Part 2: The evaporative gas turbine based system and some discussions  

Science Journals Connector (OSTI)

This is Part 2 of the paper Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems Part 1: The desalination unit and its combination with a steam-injected gas turbine power system. A combined power and water system based on the evaporative gas turbine (EvGT) is studied, and major features such as the fuel saving, power-to-water ratio, energy and exergy utilization, and approaches to performance improvement, are presented and discussed in comparison with STIG- and EvGT- based systems, to further reveal the characteristics of these two types of combined systems. Some of the main results of the paper are: the fuel consumption of water production in STIG-based combined system is, based on reference-cycle method, about 45% of a water-only unit, and that in an EvGT-based system, it is 3154%; compared with the individual power-only and water-only units, the fuel savings of the two combined systems are 12%28% and 10%21%, respectively; a water production gain of more than 15% can be obtained by using a direct-contact gas-saline water heat exchanger to recover the stack heat; and the combined system are more flexible in its power-to-water ratio than currently used dual-purpose systems. Further studies on aspects such as operation, hardware cost, control complexity, and environmental impact, are needed to determine which configuration is more favorable in practice.

Yongqing Wang; Noam Lior

2007-01-01T23:59:59.000Z

390

Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K. Steiglitz; D. J. Kleitman  

E-Print Network (OSTI)

Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K@jstor.org. http://www.jstor.org Mon Oct 22 13:48:01 2007 #12;OPTIMAL DESIGN OF OFFSHORE NATURAL-GAS PIPELINEAnolog,tj, Cambridge, Massachusetts (Received January 28, 1969) The exploitation of offshore natural gas reserves

Steiglitz, Kenneth

391

U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)  

SciTech Connect

Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurements - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.

Heath, G.

2014-04-01T23:59:59.000Z

392

Thermodynamic analysis of an HCCI engine based system running on natural gas  

Science Journals Connector (OSTI)

Abstract This paper attempts to carry out a thermodynamic analysis of a system composed of a turbocharged HCCI engine, a mixer, a regenerator and a catalytic converter within the meaning of the first and the second law of thermodynamics. For this purpose, a thermodynamic model has been developed taking into account the gas composition resulting from the combustion process and the specific heat temperature dependency of the working fluid. The analysis aims in particular to examine the influence of the compressor pressure ratio, ambient temperature, equivalence ratio, engine speed and the compressor isentropic efficiency on the performance of the HCCI engine. Results show that thermal and exergetic efficiencies increase with increasing the compressor pressure ratio. However, the increase of the ambient temperature involves a decrease of the engine efficiencies. Furthermore, the variation of the equivalence ratio improves considerably both thermal and exergetic efficiencies. As expected, the increase of the engine speed enhances the engine performances. Finally, an exergy losses mapping of the system show that the maximum exergy losses occurs in the HCCI engine.

Mohamed Djermouni; Ahmed Ouadha

2014-01-01T23:59:59.000Z

393

Effect of Inert Cover Gas on Performance of Radioisotope Stirling Space Power System  

SciTech Connect

This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al. 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission.

Carpenter, Robert; Kumar, V; Ore, C; Schock, Alfred

2001-01-01T23:59:59.000Z

394

Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains  

SciTech Connect

Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design of the next-generation Explorer-II (X-II) live gas main NDE and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules and their arrangement, still allow the robot to configure itself to perform any-angle (up to 90 deg) turns in any orientation (incl. vertical), and enable the live launching and recovery of the system using custom fittings and a (to be developed) launch-chamber/-tube. The battery modules are used to power the system, by providing power to the robot's bus. The support modules perform the functions of centration for the rest of the train as well as odometry pickups using incremental encoding schemes. The electronics architecture is based on a distributed (8-bit) microprocessor architecture (at least 1 in ea. module) communicating to a (one of two) 32-bit SBC, which manages all video-processing, posture and motion control as well as CAN and wireless communications. The operator controls the entire system from an off-board (laptop) controller, which is in constant wireless communication with the robot train in the pipe. The sensor modules collect data and forward it to the robot operator computer (via the CAN-wireless communications chain), who then transfers it to a dedicated NDE data-storage and post-processing computer for further (real-time or off-line) analysis. CMU has fully designed every module in terms of the mechanical, electrical and software elements (architecture only). Substantial effort has gone into pre-prototyping to uncover mechanical, electrical and software issues for critical elements of the design. Design requirements for sensor-providers were also detailed and finalized and provided to them for inclusion in their designs. CMU is expecting to start 2006 with a detailed design effort for both mechanical and electrical components, followed by procurement and fabrication efforts in late winter/spring 2006. The assembly and integration efforts will occupy all of the spring and summer of 2006. Software development will also be a major effort in 2006, and will result in porting and debugging of code on the module- and train-levels in late summer and Fall of 2006. Final pipe mock-up testing is expected in late fall and early winter 2006 with an acceptance demonstration of the robot train (with a sensor-module mock-up) planned to DoE/NGA towards the end of 2006.

Susan Burkett; Hagen Schempf

2006-01-31T23:59:59.000Z

395

Engineering safety evaluation for 22 ton steel disposal box lifting bail design  

SciTech Connect

The objective of this analysis is to design and analyze the lifting bail of the 22 Ton Steel Waste Disposal Box (SWDB). The new design takes the original lifting bail and adds a hinge allowing the top portion of the bail to fold over towards the lid.

BOEHNKE, W.M.

1999-11-23T23:59:59.000Z

396

Vehicle Dispatching Problem at the Container Terminal with Tandem Lift Quay Cranes  

E-Print Network (OSTI)

, the tandem lift operations bring new challenges to the vehicle dispatching at terminals and this has become a big issue in the application of tandem lift QCs. The vehicle dispatching at terminals is to enhance the QCs productivities by coordinating the QCs...

Xing, Yao

2013-07-09T23:59:59.000Z

397

Safety First Safety Last Safety Always Aerial lifts include the following types of vehicle-mounted  

E-Print Network (OSTI)

Safety First Safety Last Safety Always Aerial lifts include the following types of vehicle, if they can be installed safely. Aerial Lifts Safety Tip #11 A spill, a slip, a hospital trip #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip sheet

Minnesota, University of

398

Lift Response of a Stalled Wing to Pulsatile Disturbances David R. Williams  

E-Print Network (OSTI)

. Nomenclature C = calibration constant for convolution CL = lift coefficient Cn = force coefficient normal to the plate surface C = momentum coefficient, U2 jeth=0:5U2 c c = chord at midspan of wing, m f = frequency lift, N ton = time actuator valve is open, s t on = time actuator valve is open and normalized

Dabiri, John O.

399

INDUCTION AND RESTRICTION OF LIFTS OF BRAUER CHARACTERS IN GROUPS OF ODD ORDER  

E-Print Network (OSTI)

of the associated Navarro vertices (defined below). We will prove results that guarantee that lifts of Brauer, and show that under relatively strong "local" assumptions on the Navarro vertex, there exists a particularly well behaved lift of a given Brauer charac- ter with the given Navarro vertex. We begin

Cossey, James P.

400

Energy efficiency improvements for refrigerator/freezers using prototype doors containing gas-filled panel insulating systems  

SciTech Connect

Energy efficiency improvements in domestic refrigerator/freezers, are directly influenced by the overall thermal performance of the cabinet and doors. An advanced system for reducing heat gain is Gas-Filled Panel thermal insulation technology. Gas-Filled Panels contain a low-conductivity, inert gas at atmospheric pressure and employ a reflective baffle to suppress radiation and convection within the gas. This paper presents energy use test results for a 1993 model 500 liter top mount refrigerator/freezer operated with its original doors and with a series of alternative prototype doors. Gas-Filled Panel technology was used in two types of prototype refrigerator/freezer doors. In one design, panels were used in composite with foam in standard metal door pans; this design yielded no measurable energy savings. In the other design, special polymer door pans were fitted with panels that fill nearly all of the available insulation volume; this design yielded a 6.5% increase in energy efficiency for the entire refrigerator/freezer. The EPA Refrigerator Analysis computer program has been used to predict the change in daily energy consumption with the alternative doors. The computer model also projects a 25% energy efficiency improvement for a refrigerator/freezer that would use Gas-Filled Panel insulation throughout the cabinet as well as the doors.

Griffith, B.; Arasteh, D.; Tuerler, D.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Collection of Samples Under Pressure for Chromatographic Analysis and a System for Handling Gas-Condensate Type Fluids  

Science Journals Connector (OSTI)

......only two principal handling precautions emerged...analysis of the C7+ material. Yarborough and Vogel...our knowledge. A flow diagram of the two systems is...Figure 3. Schematic diagram of gas liquid chromatograph...4-B is a schematic diagram of one possible solution......

R. H. Jacoby; J. H. Tracht

1975-01-01T23:59:59.000Z

402

Gas Solubility Measurement and Modeling for the Nitrogen + Water System from 274.18 K to 363.02 K  

Science Journals Connector (OSTI)

Gas Solubility Measurement and Modeling for the Nitrogen + Water System from 274.18 K to 363.02 K ... (4)?Frolich, P. K.; Tauch, E. J.; Hogan, J. J.; Peer, A. A. Solubilities of Gases in Liquids at High Pressure. ...

Antonin Chapoy; Amir H. Mohammadi; Bahman Tohidi; Dominique Richon

2004-06-04T23:59:59.000Z

403

Flexible CHP System with Low NOx, CO, and VOC Emissions- Presentation by the Gas Technology Institute (GTI), June 2011  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Flexible CHP System with Low NOx, CO, and VOC Emissions, given by David Cygan of the Gas Technology Institute, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

404

Cracked lifting lug welds on ten-ton UF{sub 6} cylinders  

SciTech Connect

Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

Dorning, R.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

1991-12-31T23:59:59.000Z

405

The RealGas and RealGasH2O options of the TOUGH+ code for the simulation of coupled fluid and heat flow in tight/shale gas systems  

Science Journals Connector (OSTI)

We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas. The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight ... Keywords: Coupled flow and heat flow, Fractured media, Multicomponent flow, Numerical simulation, Real gas mixture, Shale gas

George J. Moridis, Craig M. Freeman

2014-04-01T23:59:59.000Z

406

Advanced Gas Turbine Systems Research, Technical Quarterly Progress Report. October 1, 1998--December 31, 1998  

SciTech Connect

Major accomplishments during this reporting period by the Advanced Gas Turbine Systems Research (AGTSR) are: AGTSR submitted FY99 program continuation request to DOE-FETC for $4M; AGTSR submitted program and workshop Formation to the Collaborative Advanced Gas Turbine (CAGT) initiative; AGTSR distributed research accomplishment summaries to DOE-FETC in the areas of combustion, aero-heat transfer, and materials; AGTSR reviewed and cleared research papers with the IRB from Arizona State, Cornell, Wisconsin, Minnesota, Pittsburgh, Clemson, Texas and Georgia Tech; AGTSR prepared background material for DOE-FETC on three technology workshops for distribution at the DOE-ATS conference in Washington, DC; AGTSR coordinated two recommendations for reputable firms to conduct an economic impact analysis in support of new DOE gas turbine initiatives; AGTSR released letters announcing the short-list winners/non-winners from the 98RFP solicitation AGTSR updated fact sheet for 1999 and announced four upcoming workshops via the SCIES web page AGTSR distributed formation to EPRI on research successes, active university projects, and workshop offerings in 1999 AGTSR continued to conduct telephone debriefings to non-winning PI's born the 98RFP solicitation AGTSR distributed completed quarterly progress report assessments to the IRB experts in the various technology areas AGTSR provided Formation to GE-Evandale on the active combustion control research at Georgia Tech AGTSR provided information to AlliedSignal and Wright-Pat Air Force Base on Connecticut's latest short-listed proposal pertaining to NDE of thermal barrier coatings AGTSR submitted final technical reports from Georgia Tech - one on coatings and the other on active combustion control - to the HU3 for review and evaluation AGTSR coordinated the format, presentation and review of 28 university research posters for the ATS Annual Review Meeting in November, 1998 AGTSR published a research summary paper at the ATS Annual Review pertaining to the university consortium's activities AGTSR published and presented a paper on the status of ATS catalytic combustion R&D at the RTA/NATO Gas Turbine Combustion Symposium, October 12-16,1998 in Lisbon, Portugal IRE approved a 12-month add-on request from Penn State University to conduct an added research task in their multistage unsteady aerodynamics project AGTSR reviewed a research extension white paper from Clemson University with the IRB to conduct an added task pertaining to their mist/steam cooling research project AGTSR coordinated new research topics with the IR.Band select universities to facilitate R&D roadmapping needs at the Aero-Heat Transfer III workshop in Austin, TX AGTSR distributed FY97 research progress reports to DOE and the XRB; and AGTSR solicited new R&D topics from the IRB experts for the 1999 RFP.

NONE

1999-01-19T23:59:59.000Z

407

Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems  

Science Journals Connector (OSTI)

Abstract Aerobic CH4 oxidation plays an important role in mitigating CH4 release from landfills to the atmosphere. Therefore, in this study, oxidation activity and community of methanotrophs were investigated in a subtropical landfill. Among the three sites investigated, the highest CH4 concentration was detected in the landfill cover soil of the site (A) without a landfill gas (LFG) recovery system, although the refuse in the site had been deposited for a longer time (?1415 years) compared to the other two sites (?611 years) where a LFG recovery system was applied. In April and September, the higher CH4 flux was detected in site A with 72.4 and 51.7gm?2d?1, respectively, compared to the other sites. The abundance of methanotrophs assessed by quantification of pmoA varied with location and season. A linear relationship was observed between the abundance of methanotrophs and CH4 concentrations in the landfill cover soils (R=0.827, P<0.001). The key factors influencing the methanotrophic diversity in the landfill cover soils were pH, the water content and the CH4 concentration in the soil, of which pH was the most important factor. Type I methanotrophs, including Methylococcus, Methylosarcina, Methylomicrobium and Methylobacter, and type II methanotrophs (Methylocystis) were all detected in the landfill cover soils, with Methylocystis and Methylosarcina being the dominant genera. Methylocystis was abundant in the slightly acidic landfill cover soil, especially in September, and represented more than 89% of the total terminal-restriction fragment abundance. These findings indicated that the LFG recovery system, as well as physical and chemical parameters, affected the diversity and activity of methanotrophs in landfill cover soils.

Yao Su; Xuan Zhang; Fang-Fang Xia; Qi-Qi Zhang; Jiao-Yan Kong; Jing Wang; Ruo He

2014-01-01T23:59:59.000Z

408

The National Energy Modeling System: An Overview 2000 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline-quality gas from Mexico and Canada Imported liquefied natural gas. The OGSM regions are shown in Figure 12. Figure 12. Oil and Gas Supply Module Regions The driving assumption of OGSM is that domestic oil and gas exploration and development are undertaken if the discounted present value of the recovered resources at least covers the present value of taxes and the cost of capital, exploration, development, and production. In contrast, international gas trade is determined in part by scenario-dependent, noneconomic factors. Crude oil is transported to refineries, which are simulated in the petroleum market module, for conversion and blending into refined petroleum products. The individual submodules of the oil and gas supply module are solved independently, with feedbacks achieved through NEMS solution iterations (Figure 13).

409

Heat waste recovery system from exhaust gas of diesel engine to a reciprocal steam engine.  

E-Print Network (OSTI)

??This research project was about the combined organic Rankine cycle which extracted energy from the exhaust gas of a diesel engine. There was a study (more)

Duong, Tai Anh

2011-01-01T23:59:59.000Z

410

Analysis of a pilot-scale constructed wetland treatment system for flue gas desulfurization wastewater.  

E-Print Network (OSTI)

??Coal-fired generation accounts for 45% of the United States electricity and generates harmful emissions, such as sulfur dioxide. With the implementation of Flue Gas Desulfurization (more)

Talley, Mary Katherine

2012-01-01T23:59:59.000Z

411

AMER. ZOOL.,36:628-641 (1996) Transitions from Drag-based to Lift-based Propulsion in  

E-Print Network (OSTI)

aquatic mammals use lift-based propulsion with oscillating hydrofoils. Aerobic efficiencies are low- ficiency are maximized by swimming modes that use a lift-based oscillating hy- drofoil (i.e., cetacean

Fish, Frank

412

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

SciTech Connect

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

413

A multi-level simulation platform of natural gas internal reforming solid oxide fuel cellgas turbine hybrid generation system Part II. Balancing units model library and system simulation  

Science Journals Connector (OSTI)

Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of SiemensWestinghouse demonstration system, the in-house multi-level SOFCgas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

Cheng Bao; Ningsheng Cai; Eric Croiset

2011-01-01T23:59:59.000Z

414

Performance characteristics of a MW-class SOFC/GT hybrid system based on a commercially available gas turbine  

Science Journals Connector (OSTI)

The ultimate purpose of a SOFC/GT hybrid system is for distributed power generation applications. Therefore, this study investigates the possible extension of a SOFC/GT hybrid system to multi-MW power cases. Because of the matured technology of gas turbines and their commercial availability, it was reasonable to construct a hybrid system with an off-the-shelf gas turbine. Based on a commercially available gas turbine, performance analysis was conducted to find the total appropriate power for the hybrid system with consideration of the maximum allowable cell temperature. In order to maintain high performance characteristics of the hybrid system during part-load operations, it was necessary to find the optimal control strategy for the system according to the change in power required. The results of the performance analysis for part-load conditions showed that supplied fuel and air must be changed simultaneously. Furthermore, in order to prevent performance degradation, it was found that both cell temperature and turbine inlet temperature must be maintained as close as possible to design-point conditions.

Tae Won Song; Jeong Lak Sohn; Tong Seop Kim; Sung Tack Ro

2006-01-01T23:59:59.000Z

415

Computational Fluid Dynamics Analysis of Very High Temperature Gas-Cooled Reactor Cavity Cooling System  

SciTech Connect

The design of passive heat removal systems is one of the main concerns for the modular very high temperature gas-cooled reactors (VHTR) vessel cavity. The reactor cavity cooling system (RCCS) is a key heat removal system during normal and off-normal conditions. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The computational fluid dynamics (CFD) STAR-CCM+/V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. A CFD model was developed to analyze heat exchange in the RCCS. The model incorporates a 180-deg section resembling the VHTR RCCS experimentally reproduced in a laboratory-scale test facility at Texas A&M University. All the key features of the experimental facility were taken into account during the numerical simulations. The objective of the present work was to benchmark CFD tools against experimental data addressing the behavior of the RCCS following accident conditions. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls' temperature below design limits. Different temperature profiles at the reactor pressure vessel (RPV) wall obtained from the experimental facility were used as boundary conditions in the numerical analyses to simulate VHTR transient evolution during accident scenarios. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The comparison among the different turbulence models analyzed showed satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. For such a complicated geometry and flow conditions, the tested turbulence models demonstrated that the realizable k-epsilon model with two-layer all y+ wall treatment performs better than the other k-epsilon and k-omega turbulence models when compared to the experimental results and the Reynolds stress transport turbulence model results. A scaling analysis was developed to address the distortions introduced by the CFD model in simulating the physical phenomena inside the RCCS system with respect to the full plant configuration. The scaling analysis demonstrated that both the experimental facility and the CFD model achieve a satisfactory resemblance of the main flow characteristics inside the RCCS cavity region, and convection and radiation heat exchange phenomena are properly scaled from the actual plant.

Angelo Frisani; Yassin A. Hassan; Victor M. Ugaz

2010-11-02T23:59:59.000Z

416

Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine  

Science Journals Connector (OSTI)

Abstract A small-scale combined cooling and power (CCP) system usually serves district air conditioning apart from power generation purposes. The typical system consists of a gas turbine and an exhaust gas-fired absorption refrigerator. The surplus heat of the gas turbine is recovered to generate cooling energy. In this way, the CCP system has a high overall efficiency at the design point. However, the CCP system usually runs under off-design conditions because the users demand varies frequently. The operating strategy of the gas turbine will affect the thermodynamic performance of itself and the entire CCP system. The operating strategies for gas turbines include the reducing turbine inlet temperature (TIT) and the compressor inlet air throttling (IAT). A CCP system, consisting of an OPRA gas turbine and a double effects absorption refrigerator, is investigated to identify the effects of different operating strategies. The CCP system is simulated based on the partial-load model of gas turbine and absorption refrigerator. The off-design performance of the CCP system is compared under different operating strategies. The results show that the IAT strategy is the better one. At 50% rated power output of the gas turbine, the IAT operating strategy can increase overall system efficiency by 10% compared with the TIT strategy. In general, the IAT operating strategy is suited for other gas turbines. However, the benefits of IAT should be investigated in the future, when different gas turbine is adopted. This study may provide a new operating strategy of small scale gas turbine to improve the off-design performance of CCP system.

Wei Han; Qiang Chen; Ru-mou Lin; Hong-guang Jin

2015-01-01T23:59:59.000Z

417

Apparatus for adjusting and maintaining the humidity of gas at a constant value within a closed system  

DOE Patents (OSTI)

The humidity of a gas within a closed system is maintained at constant level by providing a saturated salt solution within a lower chamber in communication with an upper chamber conjointly defined by upper and lower container sections in sealing contact with each other to establish a closed container. A partition wall separates the salt solution from the test region in the upper chamber. A tube extending through the partition plate allows humidified gas to pass from the lower to the upper chamber. A glass wool plug or membranous material within the tube prevents migration of salt into the test region.

Abernathy, B.R.; Walters, R.R.

1985-08-05T23:59:59.000Z

418

Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process  

SciTech Connect

Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

2011-10-16T23:59:59.000Z

419

Energy use and greenhouse gas emissions in organic and conventional farming systems in the Netherlands  

Science Journals Connector (OSTI)

Abstract Organic agriculture is often considered to contribute to reducing energy use and greenhouse gas (GHG) emissions, also on a per unit product basis. For energy, this is supported by a large number of studies, but the body of evidence for \\{GHGs\\} is smaller. Dutch agriculture is characterized by relatively intensive land use in both organic and conventional farming, which may affect their performance in terms of energy use and GHG emissions. This paper presents results of a model study on energy use and GHG emissions in Dutch organic and conventional farming systems. Energy use per unit milk in organic dairy is approximately 25% lower than in conventional dairy, while GHG emissions are 5-10% lower. Contrary to dairy farming, energy use and GHG emissions in organic crop production are higher than in conventional crop production. Energy use in organic arable farming is 10-30% and in organic vegetable farming 40-50% higher than in their respective conventional counterparts. GHG emissions in organic arable and vegetable farming are 0-15% and 35-40% higher, respectively. Our results correspond with other studies for dairy farming, but not for crop production. The most likely cause for higher energy use and GHG emissions in Dutch organic crop production is its high intensity level, which is expressed in crop rotations with a large share of high-value crops, relatively high fertiliser inputs and frequent field operations related to weeding.

Jules F.F.P. Bos; Janjo de Haan; Wijnand Sukkel; Ren L.M. Schils

2014-01-01T23:59:59.000Z

420

384 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 19, NO. 2, APRIL 2010 Monolithically Integrated Gas Distribution  

E-Print Network (OSTI)

Gas Distribution Chamber for Silicon MEMS Fuel Cells Antonio Luque, Senior Member, IEEE, José M polymer-electrolyte-membrane fuel cell. The silicon struc- ture contains the mechanical support, gas of the membrane. Experimental results of the usage of the chamber as part of a fuel cell are shown, comparing

Wilamowski, Bogdan Maciej

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990  

SciTech Connect

Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

Mahrle, P.

1990-12-01T23:59:59.000Z

422

A greenhouse-gas information system monitoring and validating emissions reporting and mitigation  

SciTech Connect

Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS. Present monitoring systems would be heavily relied on in any GHGIS implementation at the outset and would likely continue to provide valuable future contributions to GHGIS. However, present monitoring systems were developed to serve science/research purposes. This study concludes that no component or capability presently available is at the level of technological maturity and readiness required for implementation in an operational GHGIS today. However, purpose-designed and -built components could be developed and implemented in support of a future GHGIS. The study concludes that it is possible to develop and provide a capability-driven prototype GHGIS, as part of a Phase-1 effort, within three years from project-funding start, that would make use of and integrate existing sensing and system capabilities. As part of a Phase-2 effort, a requirem

Jonietz, Karl K [Los Alamos National Laboratory; Dimotakis, Paul E [JPL/CAL TECH; Roman, Douglas A [LLNL; Walker, Bruce C [SNL

2011-09-26T23:59:59.000Z

423

What Damped Ly-alpha Systems Tell Us About the Radial Distribution of Cold Gas at High Redshift  

E-Print Network (OSTI)

We investigate the properties of damped Lyman-alpha systems (DLAS) in semi-analytic models, focusing on whether the models can reproduce the kinematic properties of low-ionization metal lines described by Prochaska & Wolfe (1997b, 1998). We explore a variety of approaches for modelling the radial distribution of the cold neutral gas associated with the galaxies in our models, and find that our results are very sensitive to this ingredient. If we use an approach based on Fall & Efstathiou (1980), in which the sizes of the discs are determined by conservation of angular momentum, we find that the majority of the DLAS correspond to a single galactic disc. These models generically fail to reproduce the observed distribution of velocity widths. In alternative models in which the gas discs are considerably more extended, a significant fraction of DLAS arise from lines of sight intersecting multiple gas discs in a common halo. These models produce kinematics that fit the observational data, and also seem to agree well with the results of recent hydrodynamical simulations. Thus we conclude that Cold Dark Matter based models of galaxy formation can be reconciled with the kinematic data, but only at the expense of the standard assumption that DLAS are produced by rotationally supported gas discs whose sizes are determined by conservation of angular momentum. We suggest that the distribution of cold gas at high redshift may be dominated by another process, such as tidal streaming due to mergers.

Ariyeh H. Maller; Jason X. Prochaska; Rachel S. Somerville; Joel R. Primack

2000-02-24T23:59:59.000Z

424

High-Temperature-High-Volume Lifting For Enhanced Geothermal...  

Open Energy Info (EERE)

GE Global Research Awardee Website http:www.ge.comresearch Partner 1 GE Energy Partner 2 GE Oil & Gas Partner 3 GE Aviation Funding Opportunity Announcement...

425

A high-pressure and high-temperature gas-loading system for the study of conventional to real industrial sized samples in catalysed gas/solid and liquid/solid reactions  

Science Journals Connector (OSTI)

A high-pressure-high-temperature gas-loading system has been developed for combined in situ high-energy X-ray diffraction and mass spectrometry investigations during catalysed gas/solid or liquid/solid reactions. The benefits of such a system are the combination of different gases, the flexibility of the cell design, the rotation of the cell, and the temperature, pressure and gas-flow ranges accessible. This opens up new opportunities for studying catalysts or compounds not just from a fundamental point of view but also for industrial applications, in both cases in operando conditions.

Andrieux, J.

2014-01-18T23:59:59.000Z

426

Lattice Boltzmann simulations of contact line motion in a liquid-gas system  

Science Journals Connector (OSTI)

...V. Coveney and S. Succi Lattice Boltzmann simulations of contact line...tphys.ox.ac.uk ) We use a lattice Boltzmann algorithm for liquid-gas coexistence...zero. mesoscale modelling|lattice Boltzmann|wetting|droplet dynamics...

2002-01-01T23:59:59.000Z

427

Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure- EAC 2011  

Energy.gov (U.S. Department of Energy (DOE))

Recommendations from the Electricity Advisory Committee on actions to be taken by the Department of Energy given the interdependence of the Nations electric infrastructure and natural gas...

428

Monitoring System of Networked Gas Stations Based on Embedded Dynamic Web  

Science Journals Connector (OSTI)

The oil is a sort of strategic material, and therefore strengthening the management of oil material has very important significance. Aimed at the difference in communication protocol among dispensers of gas stations

Wei Huang; Kai-wen Chen; Chao Xiao

2014-01-01T23:59:59.000Z

429

Minimizing Water Production from Unconventional Gas Wells Using a Novel Environmentally Benign Polymer Gel System  

E-Print Network (OSTI)

Excess water production is a major economic and environmental problem for the oil and gas industry. The cost of processing excess water runs into billions of dollars. Polymer gel technology has been successfully used in controlling water influx...

Gakhar, Kush

2012-02-14T23:59:59.000Z

430

Caloric Curves for small systems in the Nuclear Lattice Gas Model  

E-Print Network (OSTI)

For pedagogical reasons we compute the caloric curve for 11 particles in a $3^3$ lattice. Monte-Carlo simulation can be avoided and exact results are obtained. There is no back-bending in the caloric curve and negative specific heat does not appear. We point out that the introduction of kinetic energy in the nuclear Lattice Gas Model modifies the results of the standard Lattice Gas Model in a profound way.

C. B. Das; S. Das Gupta

2000-09-27T23:59:59.000Z

431

Trace Analysis in the Food and Beverage Industry by Capillary Gas Chromatography: System Performance and Maintenance  

Science Journals Connector (OSTI)

......gas is of g o o d quality a n d that all gas...w o directions: increase the n u m b e r of...particular the limit for wines was set at 30 p p...t of a r o m a in wines a n d spirits. The...technique will either increase the confidence level...urethane) in wine. GC-N/TEA chromatograms......

M.A. Hayes

1988-04-01T23:59:59.000Z

432

Study of integrated metal hydrides heat pump and cascade utilization of liquefied natural gas cold energy recovery system  

Science Journals Connector (OSTI)

The traditional cold energy utilization of the liquefied natural gas system needs a higher temperature heat source to improve exergy efficiency, which barricades the application of the common low quality thermal energy. The adoption of a metal hydride heat pump system powered by low quality energy could provide the necessary high temperature heat and reduce the overall energy consumption. Thus, an LNG cold energy recovery system integrating metal hydride heat pump was proposed, and the exergy analysis method was applied to study the case. The performance of the proposed integration system was evaluated. Moreover, some key factors were also theoretically investigated about their influences on the system performance. According to the results of the analysis, some optimization directions of the integrated system were also pointed out.

Xiangyu Meng; Feifei Bai; Fusheng Yang; Zewei Bao; Zaoxiao Zhang

2010-01-01T23:59:59.000Z

433

Ultrasound in gasliquid systems: Effects on solubility and mass transfer  

Science Journals Connector (OSTI)

The effect of ultrasound on the pseudo-solubility of nitrogen in water and on gasliquid mass transfer kinetics has been investigated in an autoclave reactor equipped with a gas induced impeller. In order to use organic liquids and to investigate the effect of pressure, gasliquid mass transfer coefficient was calculated from the evolution of autoclave pressure during gas absorption to avoid any side-effects of ultrasound on the concentrations measurements. Ultrasound effect on the apparent solubility is very low (below 12%). Conversely ultrasound greatly improves gasliquid mass transfer, especially below gas induction speed, this improvement being boosted by pressure. In typical conditions of organic synthesis: 323K, 1100rpm, 10bar, kLa is multiplied by 11 with ultrasound (20kHz/62.6W). The impact of sonication is much higher on gassing out than on gassing in. In the same conditions, this enhancement is at least five times higher for degassing.

F. Laugier; C. Andriantsiferana; A.M. Wilhelm; H. Delmas

2008-01-01T23:59:59.000Z

434

Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System  

SciTech Connect

The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

Nexant, Inc., San Francisco, California

2011-05-01T23:59:59.000Z

435

Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system  

SciTech Connect

Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO{sub 2}) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO{sub 2} will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO{sub 2} is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs.

Bolinsky, F.T. (Pure Air, Allentown, PA (United States)); Ross, J. (Northern Indiana Public Service Co., Hammond, IN (United States)); Dennis, D.S. (United Engineers and Constructors, Inc., Denver, CO (United States). Stearns-Roger Div.); Huston, J.S. (Environmental Alternatives, Inc., Warren NJ (USA))

1991-01-01T23:59:59.000Z

436

Development, Application and Performance of Venturi Register L. E. A. Burner System for Firing Oil and Gas Fuels  

E-Print Network (OSTI)

DEVELOPMENT, APPLICATION AND PERFORMANCE OF VENTURI REGISTER L. E. A. BURNER SYSTEM FOR FIRING OIL AND GAS FUELS A. D. Cawte CEA Combustion, Inc. Stamford, Connecticut INTRODUCTION The effect of reducing excess air as a means of curtailing..., extensive investigation work was undertaken us ing the water analog model techniques developed by Associated British Combustion for burner design. The development work resulted in the burner design known today as the Venturi Register, LEA (low excess air...

Cawte, A. D.

1979-01-01T23:59:59.000Z

437

Gas delivery system and beamline studies for the test beam facility of the Collider Detector at Fermilab  

E-Print Network (OSTI)

, resolution improves. F. Muon Detectors Muon detectors include the Central Muon Detector and the Forward Muon De- tector. The Central Muon Detector lies outside the central hadron calorimeter and provides muon detection over the range 55' & 6 & 125... at Fermilab B. Small Angle Counters C. The Magnet D. Tracking E. . Calorimetry F. Muon Detectors G. What the Particles Produced See H. Data Acquisition System I. Trigger J. Initial Runs at CDF 10 15 15 16 17 18 III CDF GAS CALORIMETRY...

Franke, Henry Gerhart

1987-01-01T23:59:59.000Z

438

Separation of Fine Particles from Gases in Wet Flue Gas Desulfurization System Using a Cascade of Double Towers  

Science Journals Connector (OSTI)

Separation of Fine Particles from Gases in Wet Flue Gas Desulfurization System Using a Cascade of Double Towers ... The authors thank the High-Tech Research and Development Program of China (No. 2008AA05Z306), the Natural Science Foundation of Jiangsu Province (No. BK2008283), and the Scientific Research Foundation of Graduate School of Southeast University for their financial support. ... with high performance by cascading packed columns. ...

Jingjing Bao; Linjun Yang; Shijuan Song; Guilong Xiong

2012-02-15T23:59:59.000Z

439

Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Containment Vital Safety System, January 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review of the Independent Oversight Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Containment Vital Safety System January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose............................................................................................................................................. 1 2.0 Background...................................................................................................................................... 1 3.0 Scope................................................................................................................................................ 1

440

A Gas Lift Bioreactor for Removal of Contaminants from the Vapor Phase  

Science Journals Connector (OSTI)

...conditions, and the reactor was again allowed...of samplings and analysis took place. The...while maintaining reliability of the degradative...was fed into the reactor inlet at different...phenol found in the reactor contents unless...be detected by GC analysis under the conditions...

B. D. Ensley; P. R. Kurisko

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Advanced wind turbine with lift-destroying aileron for shutdown  

DOE Patents (OSTI)

An advanced aileron configuration for wind turbine rotors featuring an aileron with a bottom surface that slopes upwardly at an angle toward the nose region of the aileron. The aileron rotates about a center of rotation which is located within the envelope of the aileron, but does not protrude substantially into the air flowing past the aileron while the aileron is deflected to angles within a control range of angles. This allows for strong positive control of the rotation of the rotor. When the aileron is rotated to angles within a shutdown range of deflection angles, lift-destroying, turbulence-producing cross-flow of air through a flow gap, and turbulence created by the aileron, create sufficient drag to stop rotation of the rotor assembly. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

Coleman, Clint (Warren, VT); Juengst, Theresa M. (Warren, VT); Zuteck, Michael D. (Kemah, TX)

1996-06-18T23:59:59.000Z

442

Petrophysical Analysis and Geographic Information System for San Juan Basin Tight Gas Reservoirs  

SciTech Connect

The primary goal of this project is to increase the availability and ease of access to critical data on the Mesaverde and Dakota tight gas reservoirs of the San Juan Basin. Secondary goals include tuning well log interpretations through integration of core, water chemistry and production analysis data to help identify bypassed pay zones; increased knowledge of permeability ratios and how they affect well drainage and thus infill drilling plans; improved time-depth correlations through regional mapping of sonic logs; and improved understanding of the variability of formation waters within the basin through spatial analysis of water chemistry data. The project will collect, integrate, and analyze a variety of petrophysical and well data concerning the Mesaverde and Dakota reservoirs of the San Juan Basin, with particular emphasis on data available in the areas defined as tight gas areas for purpose of FERC. A relational, geo-referenced database (a geographic information system, or GIS) will be created to archive this data. The information will be analyzed using neural networks, kriging, and other statistical interpolation/extrapolation techniques to fine-tune regional well log interpretations, improve pay zone recognition from old logs or cased-hole logs, determine permeability ratios, and also to analyze water chemistries and compatibilities within the study area. This single-phase project will be accomplished through four major tasks: Data Collection, Data Integration, Data Analysis, and User Interface Design. Data will be extracted from existing databases as well as paper records, then cleaned and integrated into a single GIS database. Once the data warehouse is built, several methods of data analysis will be used both to improve pay zone recognition in single wells, and to extrapolate a variety of petrophysical properties on a regional basis. A user interface will provide tools to make the data and results of the study accessible and useful. The final deliverable for this project will be a web-based GIS providing data, interpretations, and user tools that will be accessible to anyone with Internet access. During this project, the following work has been performed: (1) Assimilation of most special core analysis data into a GIS database; (2) Inventorying of additional data, such as log images or LAS files that may exist for this area; (3) Analysis of geographic distribution of that data to pinpoint regional gaps in coverage; (4) Assessment of the data within both public and proprietary data sets to begin tuning of regional well logging analyses and improve payzone recognition; (5) Development of an integrated web and GIS interface for all the information collected in this effort, including data from northwest New Mexico; (6) Acquisition and digitization of logs to create LAS files for a subset of the wells in the special core analysis data set; and (7) Petrophysical analysis of the final set of well logs.

Martha Cather; Robert Lee; Robert Balch; Tom Engler; Roger Ruan; Shaojie Ma

2008-10-01T23:59:59.000Z

443

Solitary lift : redesigning the base and tilter modules to meet customer needs  

E-Print Network (OSTI)

A theoretical investigation towards the redesign of the base and the tilting module of the Solitary Lift prototype improved the machine with a weight reduction of 5.731bs. Besides lighter weight, the other criteria used ...

Vasquez, Elliot B. (Elliot Benjamin), 1982-

2004-01-01T23:59:59.000Z

444

An investigation of symmetry in upper extremity strength during sagittal plane lifting tasks  

E-Print Network (OSTI)

438. 76 461. 61 S. D. 26. 73 29. 60 18. 40 25. 03 103. 42 86. 07 Note: Data collected at a rate of 50 Hz. 52 APPENDIX I LIFTING TESTS DATA 53 LIFTING TESTS DATA (N) STOOP LIFT Left Ri ht SQUAT LIFT Left Ri ht Sub'ect Trial Av . S. D. Av . S.... D. Av . S. D. Av . S. D 2 137. 89 1. 97 118. 05 5. 30 162. 09 7. 77 148. 83 10. 75 3 113. 11 5. 56 97. 01 5. 14 120. 05 3. 83 130. 33 3. 72 4 143. 98 11. 16 134. 55 5. 78 119. 56 5. 77 129. 57 4. 50 2 134. 06 13. 08 88. 69 10. 18 135. 31 9. 04...

Key, Wendy Ross

2012-06-07T23:59:59.000Z

445

Investigation into the discrepancies between computational fluid dynamics lift predictions and experimental results  

E-Print Network (OSTI)

An analysis of current computational fluid dynamics capabilities in predicting mean lift forces for two dimensional foils is conducted. It is shown that both integral boundary layer theory and Reynolds Averaged Navier ...

Fairman, Randall S. (Randall Scott), 1967-

2002-01-01T23:59:59.000Z

446

Systematic review of efficacy of LIFT procedure in crpytoglandular fistula-in-ano  

Science Journals Connector (OSTI)

AbstractBackground fistula-in-ano is a common problem. Ligation of intersphincteric fistula tract (LIFT) is a new addition to the list of operations available to deal with complex fistula-in-ano. Objective we sought to qualitatively analyze studies describing LIFT for crpytoglandular fistula-in-ano and determine its efficacy. Data sources MEDLINE (Pubmed, Ovid), Embase, Scopus and Cochrane Library were searched. Study selection all clinical trials which studied LIFT or compared LIFT with other methods of treatment for anal fistulae, prospective observational studies, clinical registry data and retrospective case series which reported clinical healing of the fistula as the outcome were included. Case reports, studies reporting a combination with other technique, modified technique, abstracts, letters and comments were excluded. Intervention the intervention was ligation of intersphincteric fistula tract in crpytoglandular fistula-in-ano. Main outcome measure primary outcome measured was success rate (fistula healing rate) and length of follow-up.

Jothi Murugesan; Isabella Mor; Stephen Fulham; Kerry Hitos

2014-01-01T23:59:59.000Z

447

Pion condensation in a dense neutrino gas  

E-Print Network (OSTI)

We argue that using an equilibrated gas of neutrinos it is possible to probe the phase diagram of QCD for finite isospin and small baryon chemical potentials. We discuss this region of the phase diagram in detail and demonstrate that for large enough neutrino densities a Bose-Einstein condensate of positively charged pions arises. Moreover, we show that for nonzero neutrino density the degeneracy in the lifetimes and masses of the charged pions is lifted.

Hiroaki Abuki; Tomas Brauner; Harmen J. Warringa

2009-08-26T23:59:59.000Z

448

Development of a gas backup heater for solar domestic hot-water systems. Final report, April 1978-April 1980  

SciTech Connect

A comprehensive program was undertaken to develop a unique gas fired backup for solar domestic hot water systems. Detailed computer design tools were written. A series of heat transfer experiments were performed to characterize the performance of individual components. A full scale engineering prototype, including the solar preheat tank and solar heat exchanger, was designed, fabricated and subjected to limited testing. Firing efficiency for the backup system was found to be 81.4% at a firing rate of 50,000 Btu/h. Long term standby losses should be negligible.

Morrison, D.J.; Grunes, H.E.; de Winter, F.; Armstrong, P.R.

1980-06-01T23:59:59.000Z

449

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS  

SciTech Connect

This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

Glenn England; Oliver Chang; Stephanie Wien

2002-02-14T23:59:59.000Z

450

Shale Gas Development: A Smart Regulation Framework  

Science Journals Connector (OSTI)

Shale Gas Development: A Smart Regulation Framework ... Mandatory reporting of greenhouse gases: Petroleum and natural gas systems; Final rule. ...

Katherine E. Konschnik; Mark K. Boling

2014-02-24T23:59:59.000Z

451

Metal/ceria water-gas shift catalysts for automotive polymer electrolyte fuel cell system.  

SciTech Connect

Polymer electrolyte fuel cell (PEFC) systems are a leading candidate for replacing the internal combustion engine in light duty vehicles. One method of generating the hydrogen necessary for the PEFC is reforming a liquid fuel, such as methanol or gasoline, via partial oxidation, steam reforming, or autothermal reforming (a combination of partial oxidation and steam reforming). The H{sub 2}-rich reformate can contain as much as 10% carbon monoxide. Carbon monoxide has been shown to poison the platinum-based anode catalyst at concentrations as low as 10 ppm,1 necessitating removal of CO to this level before passing the reformate to the fuel cell stack. The water-gas shift (WGS) reaction, CO + H{sub 2}O {rightleftharpoons} CO{sub 2} + H{sub 2}, is used to convert the bulk of the reformate CO to CO{sub 2}. Industrially, the WGS reaction is conducted over two catalysts, which operate in different temperature regimes. One catalyst is a FeCr mixed oxide, which operates at 350-450 C and is termed the high-temperature shift (HTS) catalyst. The second catalyst is a CuZn mixed oxide, which operates at 200-250 C and is termed the low-temperature shift (LTS) catalyst. Although these two catalysts are used industrially in the production of H{sub 2} for ammonia synthesis, they have major drawbacks that make them unsuitable for transportation applications. Both the LTS and the HTS catalysts must first be ''activated'' before being used. For example, the copper in the copper oxide/zinc oxide LTS catalyst must first be reduced to elemental copper in situ before it becomes active for the WGS reaction. This reduction reaction is exothermic and must be carried out under well- controlled conditions using a dilute hydrogen stream (1 vol% H{sub 2}) to prevent high catalyst temperatures, which can result in sintering (agglomeration) of the copper particles and loss of active surface area for the WGS reaction. Also, once the catalyst has been activated by reduction, it must be protected from exposure to ambient air to prevent re-oxidation of the copper. The activated catalyst must also be protected from the condensation of liquids, for example, during start-up or transient operation. For these reasons, a more thermally rugged catalyst is needed which has sufficient activity to operate at the low temperatures that are thermodynamically necessary to achieve low CO concentrations.

Myers, D. J.; Krebs, J. F.; Carter, J. D.; Kumar, R.; Krumpelt, M.

2002-01-11T23:59:59.000Z

452

Vicksburg, Frio successes lift Galveston Bay area prospects  

SciTech Connect

Tertiary plays are yielding gas and condensate reserves in Galveston and Trinity bays and adjacent Galveston and Chambers counties along the Upper Texas Gulf Coast. The area south and southeast of Houston has long been productive of gas mainly from Upper Frio sands. Operators armed with modern geophysical techniques are now targeting reserves in deeper Frio and Vicksburg horizons. Interpretation of 3D seismic data is being used on some projects, and 2D data and AVO analysis have also been helpful. TransTexas Gas Corp., Houston, believes it has encountered large potential reserves of high pressure gas in Vicksburg in Galveston Bay just north of Texas City. Several operators are drilling exploratory wells within 5--10 miles west of TransTexas` indicated discovery. Enserch Exploration Inc., Dallas, and Vintage Petroleum Corp., Tulsa, are successfully exploring Trinity Bay and northeastern Galveston Bay in Chambers County southwest of Anahuac. Elsewhere in Chambers County, Columbus Energy Corp., Denver, completed a Frio F-16 deeper pool gas/condensate discovery beneath giant Anahuac oil field. Several operators are reporting success at gas/condensate tests across the county. Exploration activities are discussed in these deposits.

Petzet, G.A.

1997-08-11T23:59:59.000Z

453

Micro gas turbine cogeneration system with latent heat storage at the University: Part III: Temperature control schedule  

Science Journals Connector (OSTI)

Abstract The latent heat storage system is a novel heat storage system. At the University under service conditions, it was demonstrated with a micro gas turbine (MGT) cogeneration system (CGS). Expanding the latent heat storage system into new applications is expected to save energy economically with high density energy storage and reduce exhaust emissions and reduce operational costs. This is the first demonstration of using a latent heat storage system with CGS under service condition and its characteristics are very important. In Part I, a fixed operating schedule of the system was planned and demonstrated at the University. The charge/discharge cycles of the latent heat storage system were repeated for 407 times. The energy flow test of the system shows the importance of the heat release source and total system design. In Part II, an irregular charge case of the latent heat storage system was discussed when the prime mover of the system was operated at a part load and thermal priority mode. A highly sophisticated system design that solves these problems was necessary for extending the applications of the latent heat storage system. In Part III, a temperature control schedule of the system was demonstrated during winter mornings using a new programmable logic controller (PLC). Using a fixed schedule, the MGT-CGS with latent heat storage reduced the CO2 emission when the energy utilization factor was above 50%. The temperature control schedule was considered to be better than the fixed schedule, both in terms of the operational efficiency of the overall system and CO2 reduction. The temperature control schedule was executed using an empirical formula for the temperature rise in a classroom. The restriction on the operation time by the contract with the gas supplier and the low heating capacity of the CGS affected the heating time and temperature rise. The temperature rise in the classroom was almost proportional to the integrated temperature difference across the hot water header of the heating system. On cold days, the rate of temperature rise produced by the CGS was very slow, therefore, additional heat supplied by the original boiler was used to increase the temperature rise. If larger latent heat storage systems will be developed in future, it will be expected that the temperature of the classrooms are kept more comfortable with less energy consumptions and lower CO2 emission.

Osamu Kurata; Norihiko Iki; Takayuki Matsunuma; Tetsuhiko Maeda; Satoshi Hirano; Katsuhiko Kadoguchi; Hiromi Takeuchi; Hiro Yoshida

2014-01-01T23:59:59.000Z

454

Optimizing artificial lift operations through the use of wireless conveyed real time bottom hole data  

SciTech Connect

The use of an innovative wireless bottom hole pressure/temperature telemetry acquisition system in artificial lift operations can dramatically improve efficiency and optimize fluid producing rates in those wells. The tool is installed into the producing well in the vicinity of the perforations, measuring and transmitting the producing bottom hole pressures and temperatures to the surface for instantaneous control of the surface pumping motor speed. This insures the lowest possible fluid level back pressures, thus allowing for the highest possible fluid entry into the wellbore from that reservoir`s capacity. Operating costs per barrel are lowered since the maximum oil production can now be realized from existing wells. The telemetry tool is deployed with standard slickline equipment and is installed inside a well in a manner similar to ordinary pressure recorder tools. Several unique advantages of the tool are: (1) no moving parts; (2) no wireline to the surface; (3) real time measurement of bottom hole data; and (4) slickline retrievable. Future versions of the acquisition system tool will improve operating efficiency in the following ways: (1) Temperature monitoring and control of perforation scaling, tubular waxing, and tubular hydrating plugs. (2) Provide data necessary to create diagnostically predictive IPR curves through monitoring of reservoir in-flow rates. (3) Enabling early warning of water encroachment or lensing through fluid resistivity monitoring.

Campbell, B.; MacKinnon, J.; Bandy, T.R.; Hampton, T.

1996-12-31T23:59:59.000Z

455

Enrichment of the dust-to-gas mass ratio in Bondi/Jeans accretion/cloud systems due to unequal changes in dust and gas incoming velocities  

E-Print Network (OSTI)

The ratio of the Bondi and Jeans lengths is used to develop a cloud-accretion model that describes both an inner Bondi-type regime where gas pressure is balanced by the gravity of a central star and an outer Jeans-type regime where gas pressure is balanced by gas self-gravity. The gas density profile provided by this model makes a smooth transition from a wind-type inner solution to a Bonnor-Ebert type outer solution. It is shown that high-velocity dust impinging on this cloud will tend to pile-up due to having a different velocity profile than gas so that the dust-to-gas ratio is substantially enriched above the 1% ISM level.

P. M. Bellan

2008-01-27T23:59:59.000Z

456

Bayesian Networks and Geographical Information Systems for Environmental Risk Assessment for Oil and Gas Site Development  

E-Print Network (OSTI)

The objective of this work is to develop a Bayesian Network (BN) model to produce environmental risk maps for oil and gas site developments and to demonstrate the models scalability from a point to a collection of points. To reach this objective...

Varela Gonzalez, Patricia Ysolda

2013-04-03T23:59:59.000Z

457

Development of a control algorithm for a dynamic gas mixing system  

E-Print Network (OSTI)

An algorithm was developed to control the partial pressures of N2, O2, and CO2 in a gas mixing tank. The gases were premixed before being introduced into the low pressure Mars Dome. As an attempt to reduce the effects of pressure, the number...

Lovelady, April

2006-08-16T23:59:59.000Z

458

Advanced gas turbine systems research. Technical quarterly progress report, October 1--December 31, 1997  

SciTech Connect

Major accomplishments by AGTSR during this reporting period are highlighted and then amplified in later sections of this report. Main areas of research are combustion, heat transfer, and materials. Gas turbines are used for power generation by utilities and industry and for propulsion.

NONE

1997-12-31T23:59:59.000Z

459

A Static Dilution System to Produce Trace Level Gas Standards for Chromatography  

Science Journals Connector (OSTI)

......trace chromatographic analysis of extraneous gases...standards for quantitative analysis of O2, N 2 , and other...its versatility and reliability. Introduction High-purity...atmosphere), and in analysis (as a carrier gas for...dried in a silica gel reactor before being admitted......

N.P. Neves; Jr.; C.A. Gasparoto; C.H. Collins

1995-10-01T23:59:59.000Z

460

Advanced gas turbine systems research. Quarterly technical progress report, April 1, 1994--June 30, 1994  

SciTech Connect

A cooperative development of gas turbines for electric power generation in USA is underway. Since the first AGTSR program manager has retired, a search for a new manager has begun. Reports during this period include membership, combustion instability white paper, and a summary paper for the ASME IGTI conference.

Not Available

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas lift system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.