Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Exergy Analysis of Exhaust-Gas of Burning Liquefied-Gas in a Chinese Kitchen  

Science Journals Connector (OSTI)

The research analyzes distribution laws of exhaust-gas of burning liquefied-gas in closed kitchen without any kitchen hood or fan with the exergy indicator; and compares the distribution results from the exergy analysis with those from the concentration ... Keywords: Exhaust-gas, exergy distribution, CFD simulation, tecplot fitting

Ao Yong-an; Gao Xing-quan; Shen Lin; Wang Yue-ren; Feng Guo-hui

2009-10-01T23:59:59.000Z

2

Kitchen Botany  

NLE Websites -- All DOE Office Websites (Extended Search)

Kitchen Botany Kitchen Botany Nature Bulletin No. 684 September 8, 1962 Forest Preserve District of Cook County Seymour Simon, President David H. Thompson, Senior Naturalist KITCHEN BOTANY The corner grocery store and the local fruit stand offer a variety of plant materials that can be grown and studied in the schoolroom or laboratory. At any time of year, fruit seeds and root vegetables of many kinds can be made to germinate, take root and thrive indoors. In addition to those from the orchards, home gardens and truck farms of this region, it is possible to grow seedlings of a number of tropical fruits. Most of the contents of this bulletin are taken from a recent article by Blair Coursen, published in Turtox News. A few simple supplies including flower pots, boxes or trays of garden soil are the only equipment needed. A school terrarium or leaky aquarium can be used to advantage. A good hand lens or microscope, though not essential, can show some of the finer details of roots, stems, leaves and developing seeds not visible to the naked eye.

3

Looking for Hazardous Pollutants in Your Kitchen  

ScienceCinema (OSTI)

For decades, teams of Berkeley Lab scientists have investigated the ways that indoor air quality affects human health. In Berkeley Lab's test kitchen scientist Brett Singer and his team are measuring the pollutants emitted by cooking foods and evaluating how effective various range hoods are in capturing the pollutants. In an unprecedented recent study, the scientists estimated that 60 percent of homes in California that cook at least once a week with a gas stove can reach pollutant levels that would be illegal if found outdoors.

Singer, Brett

2014-05-13T23:59:59.000Z

4

Kitchen Knife Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Kitchen Knife Safety 1) Use a good quality cutting board (flat and stable). 2) Use a kitchen towel underneath a cutting board so that it won't slip. Observe above: Warped and unbalanced cutting board vs. flat and well-anchored board. 3) Sharp knives are safer knives. Dull knives can skip, slide, snag, or get stuck while cutting, leaving you off balance. 4) Use the right knife for the job. a. Serrated knives are long and lean that help grip and saw through the crust of rustic breads without using too much strength. b. Paring knives are used for smaller foods, such as limes, cherry tomatoes or shallots, for better control and lighter weight (less chance of skipping off of a smaller cutting surface). c. Chef's knives (one of the most used in the kitchen) can be used for

5

Commercial Kitchen & Food Service Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Commercial Commercial Industrial Lighting Energy Smart Grocer Program HVAC Program Shell Measures Commercial Kitchen & Food Service Equipment Plug Load New...

6

Best Management Practice #11: Commercial Kitchen Equipment  

Energy.gov (U.S. Department of Energy (DOE))

Commercial kitchen equipment represents a large set of water users in the non-residential sector. Water efficiency for commercial kitchen equipment is especially important because high volume...

7

Best Management Practice #11: Commercial Kitchen Equipment |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

savings. Water-using commercial kitchen equipment include pre-rinse spray valves, wash tanks and sinks, commercial dishwashers, food steamers, steam kettles, commercial ice...

8

Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study 11: Commercial Kitchen Equipment (Brochure), Federal Energy...

9

Tips: Kitchen Appliances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Kitchen Appliances Tips: Kitchen Appliances Tips: Kitchen Appliances April 24, 2012 - 8:34pm Addthis ENERGY STAR® Refrigerators Are Cool! ENERGY STAR-qualified refrigerators are 20% more energy efficient than non-qualified models. Models with top-mounted freezers use 10-25% less energy than side-by-side or bottom-mount units. ENERGY STAR® Refrigerators Are Cool! ENERGY STAR-qualified refrigerators are 20% more energy efficient than non-qualified models. Models with top-mounted freezers use 10-25% less energy than side-by-side or bottom-mount units. You can save energy in your kitchen through more efficient use of your dishwasher, refrigerator and freezer, and other common appliances. Dishwashers Most of the energy used by a dishwasher is for water heating.

10

Comparison of Two Ventilation Systems in a Chinese Commercial Kitchen  

E-Print Network (OSTI)

A numerical simulation of an indoor thermal environment in a Chinese commercial kitchen has been carried out using indoor zero-equation turbulence model. Two different ventilation systems in a Chinese commercial kitchen have been simulated...

Wan, X.; Yu, L.; Hou, H.

2006-01-01T23:59:59.000Z

11

Best Management Practice: Commercial Kitchen Equipment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Commercial Kitchen Equipment Best Management Practice: Commercial Kitchen Equipment Best Management Practice: Commercial Kitchen Equipment October 8, 2013 - 9:42am Addthis Commercial kitchen equipment represents a large set of water users in the non-residential sector. Water efficiency for commercial kitchen equipment is especially important because high volume applications typically use mostly hot water. Ensuring commercial kitchen equipment uses water efficiently affords both significant water and energy savings. Water-using commercial kitchen equipment include pre-rinse spray valves, wash tanks and sinks, commercial dishwashers, food steamers, steam kettles, commercial ice makers, and combination ovens (combination oven/steamer). Operation and Maintenance To maintain water efficiency in operations and maintenance, Federal

12

TECHNICAL REPORTS The greenhouse gas (GHG) impact of composting a range  

E-Print Network (OSTI)

TECHNICAL REPORTS 1396 The greenhouse gas (GHG) impact of composting a range of potential by composting and GHG emissions during composting. The primary carbon credits associated with composting storage lagoons and landfills with no gas collection mechanisms. The composting process is a source of GHG

Brown, Sally

13

Ameren Illinois (Electric) - Commercial Kitchen and Grocery Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Illinois (Electric) - Commercial Kitchen and Grocery Ameren Illinois (Electric) - Commercial Kitchen and Grocery Incentives Program Ameren Illinois (Electric) - Commercial Kitchen and Grocery Incentives Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Retail Supplier State Government Savings Category Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Construction Commercial Heating & Cooling Appliances & Electronics Commercial Lighting Lighting Manufacturing Other Maximum Rebate $600,000/year/facility. Incentives $1-$200,000: paid at 100% Incentives $200,000-$600,000: paid at 50% Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Steamers: $300-$450 Hot Holding Cabinet: $200-$500

14

Kitchen Ventilation Should be High Performance (Not Optional)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kitchen Ventilation Kitchen Ventilation Should be High Performance (not Optional) Brett C. Singer Residential Building Systems & Indoor Environment Groups Lawrence Berkeley National Laboratory Building America Technical Update Denver, CO April 30, 2013 Acknowledgements PROGRAM SUPPORT *U.S. Department of Energy - Building America Program *U.S. Environmental Protection Agency - Indoor Environments Division *U.S. Department of Housing and Urban Development - Office of Healthy Homes & Lead Hazard Control *California Energy Commission - Public Interest Energy Research Program TECHNICAL CONTRIBUTIONS *Woody Delp, Tosh Hotchi, Melissa Lunden, Nasim Mullen, Chris Stratton, Doug Sullivan, Iain Walker Kitchen Ventilation Simplified PROBLEM: * Cooking burners & cooking produce odors, moisture

15

A Smart Kitchen for Nutrition-Aware Cooking  

E-Print Network (OSTI)

The paper discusses a kitchen that intelligently senses cooking activities and provides realtime nutritional information helps facilitate healthy cooking by letting family cooks make informed decisions. It creates opportunities ...

Chen, Jen-Hao

16

Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Case study details the Exchange (formerly the Army and Air Force Exchange Service), which took a leadership role in kitchen appliance upgrades to improve water efficiency by integrating water efficiency concepts into the organization's overall sustainability plan and objectives.

17

Energy Saving Holiday Kitchen Trivia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Holiday Kitchen Trivia Saving Holiday Kitchen Trivia Energy Saving Holiday Kitchen Trivia November 20, 2012 - 4:08pm Addthis Did you know that your dishwasher can be used as an oven in emergencies? | Photo courtesy of Chris Gunn, NREL. Did you know that your dishwasher can be used as an oven in emergencies? | Photo courtesy of Chris Gunn, NREL. Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy What does this mean for me? Knowing which kitchen appliances are most efficient can save you money this holiday season. Cooking is an important part of the holiday season. Food brings people together in ways many material gifts cannot. But with winter temperatures creeping in, electricity savings are something to keep in mind, especially

18

Bioenergy crop greenhouse gas mitigation potential under a range of management practices  

E-Print Network (OSTI)

Bioenergy crop greenhouse gas mitigation potential under a range of management practices T A R A W been proposed as viable bioenergy crops because of their potential to yield harvest- able biomass-senescence harvests are a more effective means than maximizing yield potential. Keywords: bioenergy, feedstocks, GHG

DeLucia, Evan H.

19

High order lattice Boltzmann models for gas flow on a wide range of Knudsen number  

E-Print Network (OSTI)

High order lattice Boltzmann models for gas flow on a wide range of Knudsen number L´eonard de, 2011) The lattice Boltzmann methods (LBM) have successfully been applied to micro-scale flows], which are micro-metric system flows driven by macroscopic pumps. The Lattice Boltzmann Method (LBM) has

Paris-Sud XI, Université de

20

Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)  

SciTech Connect

This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy`s (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, {open_quotes}Corrective Action Strategy{close_quotes} (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles.

NONE

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Addressing Kitchen Contaminants for Healthy, Low-Energy Homes  

E-Print Network (OSTI)

pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants Development, Office of Healthy Homes and Lead Hazard Control through Interagency Agreement I-PHI-01070

22

Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study #11: Commercial Kitchen Equipment (Brochure)  

SciTech Connect

The Exchange, formerly the Army and Air Force Exchange Service (AAFES), is a joint military activity and the U.S. Department of Defense?s (DOD) oldest and largest retailer. The Exchange is taking a leadership role in water efficiency improvements in their commercial kitchens by integrating water efficiency concepts into the organization?s overall sustainability plan and objectives.

Not Available

2011-09-01T23:59:59.000Z

23

Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study #11: Commercial Kitchen Equipment (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kitchens are often forgotten when people kitchens are often forgotten when people begin to think about performing water audits. Kitchens can be out of sight, out of mind; a commercial kitchen, however, can consume large amounts of water and energy if inefficient appliances are installed. The Exchange, formerly the Army and Air Force Exchange Service (AAFES), is taking a leadership role in water efficiency improvements in their commercial kitchens by integrating water efficiency concepts into the organization's overall sustainability plan and objectives. The Exchange is a joint military activity, the U.S. Department of Defense's (DOD) oldest and largest retailer. The Exchange provides merchandise and services to military personnel, operating more than 3,100 facilities FEDERAL ENERGY MANAGEMENT PROGRAM

24

Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study #11: Commercial Kitchen Equipment (Brochure), Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

kitchens are often forgotten when people kitchens are often forgotten when people begin to think about performing water audits. Kitchens can be out of sight, out of mind; a commercial kitchen, however, can consume large amounts of water and energy if inefficient appliances are installed. The Exchange, formerly the Army and Air Force Exchange Service (AAFES), is taking a leadership role in water efficiency improvements in their commercial kitchens by integrating water efficiency concepts into the organization's overall sustainability plan and objectives. The Exchange is a joint military activity, the U.S. Department of Defense's (DOD) oldest and largest retailer. The Exchange provides merchandise and services to military personnel, operating more than 3,100 facilities FEDERAL ENERGY MANAGEMENT PROGRAM

25

Using Less Energy in the Kitchen on Thanksgiving | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Using Less Energy in the Kitchen on Thanksgiving Using Less Energy in the Kitchen on Thanksgiving Using Less Energy in the Kitchen on Thanksgiving November 16, 2012 - 1:36pm Addthis You can use less energy in your kitchen and still prepare the perfect Thanksgiving feast. | Photo courtesy of ©iStockphoto.com/YinYang You can use less energy in your kitchen and still prepare the perfect Thanksgiving feast. | Photo courtesy of ©iStockphoto.com/YinYang Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy What does this mean for me? You can save energy (and money) while doing your Thanksgiving cooking with these tips. Thanksgiving is a great time of year to bring friends and families together. It also means spending time in the kitchen to prepare the traditional Thanksgiving feast. If you're like me, you're always looking

26

How Do You Save Energy in the Kitchen? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in the Kitchen? in the Kitchen? How Do You Save Energy in the Kitchen? October 28, 2010 - 7:30am Addthis On Monday, Amy pointed you to a video Q&A session in which Energy Secretary Steven Chu answered some reader-submitted questions. One of the questions that Secretary Chu answered was about dishwashing. He confirmed that using a dishwasher does, in fact, save energy and water over washing dishes by hand. If you have a dishwasher, this is one simple way you can save energy in the kitchen. (And as Amy pointed out, it could be a reason to consider installing a dishwasher if you don't have one!) We all spend time in the kitchen, and the appliances and water we use there can drive up our utility bills, but smart choices can help keep your costs down. How do you save energy in the kitchen?

27

Long-range adsorbate interactions mediated by a two-dimensional electron gas N. Knorr,1,2  

E-Print Network (OSTI)

Long-range adsorbate interactions mediated by a two-dimensional electron gas N. Knorr,1,2 H. Brune 8 March 2002 We report on long-range interactions between adsorbates on metal surfaces with a surface state. A compari- son of three adsorbate/substrate systems Cu/Cu 111 , Co/Cu 111 , and Co/Ag 111

Brune, Harald

28

How Do You Save Energy in the Kitchen? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Do You Save Energy in the Kitchen? How Do You Save Energy in the Kitchen? How Do You Save Energy in the Kitchen? October 28, 2010 - 7:30am Addthis On Monday, Amy pointed you to a video Q&A session in which Energy Secretary Steven Chu answered some reader-submitted questions. One of the questions that Secretary Chu answered was about dishwashing. He confirmed that using a dishwasher does, in fact, save energy and water over washing dishes by hand. If you have a dishwasher, this is one simple way you can save energy in the kitchen. (And as Amy pointed out, it could be a reason to consider installing a dishwasher if you don't have one!) We all spend time in the kitchen, and the appliances and water we use there can drive up our utility bills, but smart choices can help keep your costs down.

29

Long-range 1D gravitational-like interaction in a neutral atomic cold gas M. Chalony,1  

E-Print Network (OSTI)

Long-range 1D gravitational-like interaction in a neutral atomic cold gas M. Chalony,1 J. Barr´e,2 of this force to build in the lab a systems of particles with a 1D gravitational-like interaction, at a fluid; canonical (fixed temperature) and microcanonical (fixed energy) ensembles are not equivalent. These special

30

Property:Building/SPElectrtyUsePercSmallKitchensCoffeeRms | Open Energy  

Open Energy Info (EERE)

SPElectrtyUsePercSmallKitchensCoffeeRms SPElectrtyUsePercSmallKitchensCoffeeRms Jump to: navigation, search This is a property of type String. Small kitchens / coffee rooms Pages using the property "Building/SPElectrtyUsePercSmallKitchensCoffeeRms" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 1.08790487679 + Sweden Building 05K0003 + 2.00386372221 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 3.87651698157 + Sweden Building 05K0007 + 1.65760139145 + Sweden Building 05K0008 + 2.18690390846 + Sweden Building 05K0009 + 3.6502647334 + Sweden Building 05K0010 + 2.19286348568 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 2.23856397763 +

31

Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeKitchens | Open Energy  

Open Energy Info (EERE)

LargeKitchens LargeKitchens Jump to: navigation, search This is a property of type String. Large kitchens Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2LargeKitchens" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.763086941039 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.409356725146 + Sweden Building 05K0005 + 2.13953488372 + Sweden Building 05K0006 + 0.383200490497 + Sweden Building 05K0007 + 3.38701556508 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.294507436313 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.177556818182 + Sweden Building 05K0012 + 0.0953379731147 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 +

32

Property:Building/SPBreakdownOfElctrcityUseKwhM2SmallKitchensCoffeeRms |  

Open Energy Info (EERE)

SmallKitchensCoffeeRms SmallKitchensCoffeeRms Jump to: navigation, search This is a property of type String. Small kitchens / coffee rooms Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2SmallKitchensCoffeeRms" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 1.20677966102 + Sweden Building 05K0003 + 1.46100917431 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 2.53105456775 + Sweden Building 05K0007 + 1.08639747349 + Sweden Building 05K0008 + 0.910666666667 + Sweden Building 05K0009 + 2.06390811368 + Sweden Building 05K0010 + 3.29519450801 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 1.54234902764 +

33

A Web-based user-oriented tool for universal kitchen design  

E-Print Network (OSTI)

Economic constraints to the professional design practice limit customized solutions to the very wealthy, and thus most of the kitchens in current development housing projects are still generic. With aging baby boomers and ...

Ma, Xiaoyi, 1975-

2002-01-01T23:59:59.000Z

34

Property:Building/SPElectrtyUsePercLargeKitchens | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercLargeKitchens SPElectrtyUsePercLargeKitchens Jump to: navigation, search This is a property of type String. Large kitchens Pages using the property "Building/SPElectrtyUsePercLargeKitchens" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1.06788610412 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.620003623604 + Sweden Building 05K0005 + 3.89960107186 + Sweden Building 05K0006 + 0.586902877434 + Sweden Building 05K0007 + 5.16783391945 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.520871109218 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.645617768363 + Sweden Building 05K0012 + 0.25093035055 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 +

35

Conversion of Mixed Oxygenates Generated from Synthesis Gas to Fuel Range Hydrocarbon  

SciTech Connect

The growing dependence in the U.S. on foreign crude oil supplies and increased concerns regarding greenhouse gas emission has generated considerable interest in research to develop renewable and environmentally friendly liquid hydrocarbon transportation fuels. One of the strategies for achieving this is to produce intermediate compounds such as alcohols and other simple oxygenates from biomass generated synthesis gas (mixture of carbon monoxide and hydrogen) and further convert them into liquid hydrocarbons. The focus of this research is to investigate the effects of mixed oxygenates intermediate product compositions on the conversion step to produce hydrocarbon liquids. A typical mixed oxygenate stream is expected to contain water (around 50%), alcohols, such as methanol and ethanol (around 35%), and smaller quantities of oxygenates such as acetaldehyde, acetic acid and ethyl acetate. However the ratio and the composition of the mixed oxygenate stream generated from synthesis gas vary significantly depending on the catalyst used and the process conditions. Zeolite catalyzed deoxygenation of methanol accompanied by chain growth is well understood under Methanol-to-Gasoline (MTG) like reaction conditions using an H-ZSM-5 zeolite as the catalyst6-8. Research has also been conducted to a limited extent in the past with higher alcohols, but not with other oxygenates present9-11. Also there has been little experimental investigation into mixtures containing substantial amounts of water. The latter is of particular interest because water separation from the hydrocarbon product would be less energy intensive than first removing it from the oxygenate intermediate stream prior to hydrocarbon synthesis, potentially reducing overall processing costs.

Ramasamy, Karthikeyan K.; Gerber, Mark A.; Lilga, Michael A.; Flake, Matthew D.

2012-08-19T23:59:59.000Z

36

Long-Range Untethered Real-Time Live Gas Main Robotic Inspection System  

SciTech Connect

Under funding from the Department of Energy (DOE) and the Northeast Gas Association (NGA), Carnegie Mellon University (CMU) developed an untethered, wireless remote controlled inspection robot dubbed Explorer. The project entailed the design and prototyping of a wireless self-powered video-inspection robot capable of accessing live 6- and 8-inch diameter cast-iron and steel mains, while traversing turns and Ts and elbows under real-time control with live video feedback to an operator. The design is that of a segmented actively articulated and wheel-leg powered robot design, with fisheye imaging capability and self-powered battery storage and wireless real-time communication link. The prototype was functionally tested in an above ground pipe-network, in order to debug all mechanical, electrical and software subsystems, and develop the necessary deployment and retrieval, as well as obstacle-handling scripts. A pressurized natural gas test-section was used to certify it for operation in natural gas at up to 60 psig. Two subsequent live-main field-trials in both cast-iron and steel pipe, demonstrated its ability to be safely launched, operated and retrieved under real-world conditions. The system's ability to safely and repeatably exidrecover from angled and vertical launchers, traverse multi-thousand foot long pipe-sections, make T and varied-angle elbow-turns while wirelessly sending live video and handling command and control messages, was clearly demonstrated. Video-inspection was clearly shown to be a viable tool to understand the state of this critical buried infrastructure, irrespective of low- (cast-iron) or high-pressure (steel) conditions. This report covers the different aspects of specifications, requirements, design, prototyping, integration and testing and field-trialing of the Explorer platform.

Hagen Schempf; Daphne D'Zurko

2004-10-31T23:59:59.000Z

37

How to Be Energy Efficient in Your Kitchen this Thanksgiving | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How to Be Energy Efficient in Your Kitchen this Thanksgiving How to Be Energy Efficient in Your Kitchen this Thanksgiving How to Be Energy Efficient in Your Kitchen this Thanksgiving November 23, 2011 - 11:41am Addthis This holiday season, we wanted to share some easy ways to reduce unnecessary energy use while still enjoying all of your family’s favorite dishes. | Image courtesy of Flickr user Jennuine Captures. This holiday season, we wanted to share some easy ways to reduce unnecessary energy use while still enjoying all of your family's favorite dishes. | Image courtesy of Flickr user Jennuine Captures. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Many of us will be thankful for a delicious home cooked dinner this Thursday. But did you know that cooking accounts for 4.5% of total energy

38

How to Be Energy Efficient in Your Kitchen this Thanksgiving | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Be Energy Efficient in Your Kitchen this Thanksgiving to Be Energy Efficient in Your Kitchen this Thanksgiving How to Be Energy Efficient in Your Kitchen this Thanksgiving November 23, 2011 - 11:41am Addthis This holiday season, we wanted to share some easy ways to reduce unnecessary energy use while still enjoying all of your family’s favorite dishes. | Image courtesy of Flickr user Jennuine Captures. This holiday season, we wanted to share some easy ways to reduce unnecessary energy use while still enjoying all of your family's favorite dishes. | Image courtesy of Flickr user Jennuine Captures. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Many of us will be thankful for a delicious home cooked dinner this Thursday. But did you know that cooking accounts for 4.5% of total energy

39

Beyond Salad: How to Save Energy in the Kitchen During the Summer |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Beyond Salad: How to Save Energy in the Kitchen During the Summer Beyond Salad: How to Save Energy in the Kitchen During the Summer Beyond Salad: How to Save Energy in the Kitchen During the Summer August 16, 2010 - 10:51am Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory One day I ordered pizza delivery. Another day, I went out to eat (well, several days actually). Yet another day found me trolling the produce and canned veggie & fruit aisles of the supermarket to assemble an interesting salad. But sooner or later, I want to cook food: real food, in my home, made from scratch, using natural ingredients the way I prefer. Even when it's blistering hot outside, sometimes I still crave a good hot meal. But what's a home cook to do when you finally get tired of grilling but loathe the idea of turning on the oven? Well, there are some simple,

40

Addressing Kitchen Contaminants for Healthy, Low-Energy Homes  

E-Print Network (OSTI)

induction instead of electric resistance or natural gasthan natural gas or electric resistance cooktops; however,et al. 1998). Electric coil resistance burners produce UFP (

Stratton, J. Chris

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Proceedings of Healthy Buildings 2009 Paper 206 Risk assessment of biogas exposure in kitchens  

E-Print Network (OSTI)

Proceedings of Healthy Buildings 2009 Paper 206 Risk assessment of biogas exposure in kitchens C to pollutants while using biogas for cooking was assessed following the methodology described by the US - National Research Council. Information of hazardous compounds and compositions of several biogas types were

Paris-Sud XI, Université de

42

HVAC EFFICIENCY BUSINESS CASE DEMAND CONTROL KITCHEN VENTILATION  

E-Print Network (OSTI)

and natural gas, total annual savings can be estimated. This can then be coupled with the expected system cost factor with respect to air flow. This means that even a relatively modest reduction in air flow can fans through variable frequency drives (VFDs) based on input signals from temperature probes placed

California at Davis, University of

43

Addendum to the Closure Report for Corrective Action Unit 403: Second Gas Station, Tonopah Test Range, Nevada, Revision 0  

SciTech Connect

This document constitutes an addendum to the Closure Report for Corrective Action Unit 403: Second Gas Station, Tonopah Test Range, Nevada, September 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: This page that refers the reader to the SIR document for additional information The cover, title, and signature pages of the SIR document The NDEP approval letter The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 03-02-004-0360, Underground Storage Tanks. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

Grant Evenson

2009-05-01T23:59:59.000Z

44

Speciation of Nitrogen Compounds in Gasoline and Diesel Range Process Streams by Capillary Column Gas Chromatography with Chemiluminescence Detection  

Science Journals Connector (OSTI)

......Compounds in Gasoline and Diesel Range Process Streams...compounds in gasoline and diesel range process streams...compounds. Gasoline and diesel range streams containing...qualitative analyses of light cycle oil and crude oil (12...HP-5890 series II) and the general location of each flow-related......

Birbal Chawla

1997-03-01T23:59:59.000Z

45

Natural Gas Variability In California: Environmental Impacts And Device Performance Combustion Modeling of Pollutant Emissions From a Residential Cooking Range  

SciTech Connect

As part of a larger study of liquefied natural gas impacts on device performance and pollutant emissions for existing equipment in California, this report describes a cmoputer modeling study of a partially premixed flame issueing from a single cooktop burner port. The model consisted of a reactive computational fluid dynamics three-dimensional spatial grid and a 71-species chemical mechanism with propane combustion capability. Simulations were conducted with a simplified fuel mixture containing methane, ethane, and propane in proportions that yield properties similar to fuels distributed throughout much of California now and in recent years (baseline fuel), as well as with two variations of simulated liquefied natural gas blends. A variety of simulations were conducted with baseline fuel to explore the effect of several key parameters on pollutant formation and other flame characteristics. Simulations started with fuel and air issuing through the burner port, igniting, and continuing until the flame was steady with time. Conditions at this point were analyzed to understand fuel, secondary air and reaction product flows, regions of pollutant formation, and exhaust concentrations of carbon monoxide, nitric oxide and formaldehyde. A sensitivity study was conducted, varying the inflow parameters of this baseline gs about real-world operating conditions. Flame properties responded as expected from reactive flow theory. In the simulation, carbon monoxide levels were influenced more by the mixture's inflow velocity than by the gas-to-air ratio in the mixture issuing from the inflow port. Additional simulations were executed at two inflow conditions - high heat release and medium heat release - to examine the impact of replacing the baseline gas with two mixtures representative of liquefied natural gas. Flame properties and pollutant generation rates were very similar among the three fuel mixtures.

Tonse, S. R.; Singer, B. C.

2011-07-01T23:59:59.000Z

46

FINEST: a high performance branch-line for VUV photon energy range gas phase studies at MAX-lab  

SciTech Connect

We present a dedicated beamline branch for high flux and ultra-high resolution (R>100000) gas and vapor phase studies in the vacuum-ultra-violet (VUV) region of light on the undulator beamline I3, located on the 700 MeV MAX-III storage ring. The mechanical and optical design of the branch-line, the differential pumping setup as well as performance characteristics are presented.

Urpelainen, S. [Department of Physics, P.O. Box 3000, 90014 University of Oulu (Finland); MAX-laboratory, Lunds University (Sweden); Huttula, M.; Kovala, P.; Aksela, S.; Aksela, H. [Department of Physics, P.O. Box 3000, 90014 University of Oulu (Finland); Balasubramanian, T.; Sankari, R.; Nyholm, R. [MAX-laboratory, Lunds University (Sweden); Kukk, E. [Department of Physics and Astronomy, University of Turku, FIN-20014 Turku (Finland); Nommiste, E. [Institute of Physics, University of Tartu, Tartu (Estonia)

2010-06-23T23:59:59.000Z

47

Seismic inversion and attributes analysis for porosity evaluation of the tight gas sandstones of the Whicher Range field in the Perth Basin, Western Australia  

Science Journals Connector (OSTI)

Abstract A comprehensive understanding of porosity variations in tight gas sandstones plays an important role in reservoir management and provision of plans for developing of the field. This is especially important when we encounter with some degree of complexity in reservoir characteristics of these sandstones. Reservoir properties of tight gas sandstones of the Whicher Range field, the target reservoir of this study, were affected by internal reservoir heterogeneity mostly related to depositional and diagenetic features of the reservoir sandstones. In this study, 2D seismic data in combination with well log data were used for prediction of porosity based on seismic inversion technique and multi-attribute regression analysis. The results show that acoustic impedance from model based inversion is the main seismic attribute in reservoir characterization of tight sandstones of the field. Wide variations in this parameter can be effectively used to differentiate the reservoir sandstones based on their tightness degree. Investigation of porosity by this method resulted in 2D-view of porosity variations in sandstone reservoir which is in accordance with variations in geological characteristics of tight gas sandstones in the field. This view can be extended to a 3D-view in the framework of reservoir model to follow the variations throughout the field.

Rahim Kadkhodaie-Ilkhchi; Reza Moussavi-Harami; Reza Rezaee; Majid Nabi-Bidhendi; Ali Kadkhodaie-Ilkhchi

2014-01-01T23:59:59.000Z

48

An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors  

SciTech Connect

This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

Townsend, Aaron K., E-mail: aarontownsend@utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States); Webber, Michael E. [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

2012-07-15T23:59:59.000Z

49

Kitchen Table Strategy: Home Inspectors Driving Demand for Home Energy Upgrades  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20/2012 20/2012 1 Benjamin Gromicko, InterNACHI "Kitchen Table" Strategy: Home Inspectors Driving Demand for Home Energy Upgrades 3/20/2012 2 Benjamin Gromicko, InterNACHI "Although the home performance industry's delivery of comprehensive energy and comfort improvements has been growing across the country, it continues to struggle in creating consumer attention and demand. Our industry's delivery timing is off. We are not yet engaging the homeowner at their sweet spot of making improvements -- right after they purchase a home! This is when they move most aggressively with all sorts of home improvement projects -- and, unfortunately, seldom with any concerns of energy use. I strongly believe the home inspection industry is in a prime position to educate new homeowners on the long-term

50

Flash photolysis resonance fluorescence investigation of the gas-phase reactions of OH radicals with a series of aliphatic ketones over the temperature range 240-440 K  

SciTech Connect

Absolute rate constants have been determined for the gas-phase reactions of OH radicals with a series of aliphatic ketones by the flash photolysis resonance fluorescence measurement technique. Experiments were performed over the temperature range 240-440 K at total pressures (using Ar diluent gas) between 25 and 50 Torr. The rate constant data for acetone (k/sub 1/), 2-butanone (k/sub 2/), and 3-pentanone (k/sub 3/) were used to derive the Arrhenius expressions k/sub 1/ = (1.7 +/- 0.4) x 10/sup -12/ exp(-(600 +/- 75)/T) cm/sup 3/ molecule/sup -1/ s/sup -1/, k/sub 2/ = (2.3 +/- 1.1) x 10/sup -12/ exp(-170 +/- 120)/T) cm/sup 3/ molecule/sup -1/ s/sup -1/, and k/sub 3/ = (2.8 +/- 0.3) x 10/sup -12/ exp(10 +/- 35)/T) cm/sup 3/ molecule/sup -1/ s/sup -1/. At 296 K, the measured rate constants (in units of 10/sup -13/ cm/sup 3/ molecule/sup -1/ s/sup -1/) were k/sub 1/ = 2.16 +/- 0.16, k/sub 2/ = 11.5 +/- 1.0, and k/sub 3/ = 27.4 +/- 1.3. Room temperature rate constants for the reaction of OH radicals with a number of other 2-ketones were also determined. These were (in the above units) 3,3-dimethyl-2-butanone (12.1 +/- 0.5), 2-pentanone (40.0 +/- 2.9), 2-hexanone (66.4 +/- 5.6), 2-heptanone (86.7 +/- 8.4reverse arrow, 2-octanone (110 +/- 9), 2-nonanone (122 +/- 13), and 2-decanone (132 +/- 12). The error limits represent 2 standard deviations (from the least-squares analysis); the authors estimate that an additional 5% uncertainty should be added to account for possible systematic error in the measurements. These results are discussed in terms of reactivity trends for C-H bonds located in the ..cap alpha.., ..beta.., and ..gamma.. positions with respect to the carbonyl group.

Wallington, T.J.; Kurylo, M.J.

1987-09-10T23:59:59.000Z

51

NATURAL GAS FROM SHALE: Questions and Answers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Representation of common equipment at a natural gas hydraulic fracturing drill pad. Representation of common equipment at a natural gas hydraulic fracturing drill pad. How is Shale Gas Produced? Shale gas formations are "unconventional" reservoirs - i.e., reservoirs of low "permeability." Permeability refers to the capacity of a porous, sediment, soil - or rock in this case - to transmit a fluid. This contrasts with a "conventional" gas reservoir produced from sands and carbonates (such as limestone). The bottom line is that in a conventional reservoir, the gas is in interconnected pore spaces, much like a kitchen sponge, that allow easier flow to a well; but in an unconventional reservoir, like shale, the reservoir must be mechanically "stimulated" to

52

Reconnaissance electrical surveys in the Coso Range, California | Open  

Open Energy Info (EERE)

electrical surveys in the Coso Range, California electrical surveys in the Coso Range, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance electrical surveys in the Coso Range, California Details Activities (3) Areas (1) Regions (0) Abstract: Telluric current, audiomagnetotelluric (AMT), and direct current (dc) methods were used to study the electrical structure of the Coso Range and Coso geothermal area. Telluric current mapping outlined major resistivity lows associated with conductive valley fill of the Rose Valley basin, the Coso Basin, and the northern extension of the Coso Basin east of Coso Hot Springs. A secondary resistivity low with a north-south trend runs through the Coso Hot Springs--Devil's Kitchen geothermal area. The secondary low in the geothermal area, best defined by the 7.5-Hz AMT map

53

Flash photolysis kinetic absorption spectroscopy study of the gas-phase reaction HO/sub 2/ + C/sub 2/H/sub 5/O/sub 2/ over the temperature range 228-380 K  

SciTech Connect

Flash photolysis kinetic absorption spectroscopy was used to investigate the gas-phase reaction between hydroperoxy and ethylperoxy radicals between 228 and 380 K in the pressure range 25-400 Torr: HO/sub 2/ + C/sub 2/H/sub 5/O/sub 2/ ..-->.. products (1). Due to the large difference between the self-reactivities of the two radicals, first- or second-order kinetic conditions could not be maintained for either species. Thus, the rate constant for reaction 1 was determined from computer-modeled fits of the radical absorption decay curves recorded at wavelengths between 230 and 280 nm. This procedure yielded a value for k/sub 1/ at 298 K of (5.3 +/- 1.0) x 10/sup -12/ cm/sup 3/ molecule/sup -1/ s/sup -1/ independent of total pressure (using N/sub 2/) between 25 and 400 Torr. The Arrhenius expression derived from the present study over the temperature range 248-380 K is k/sub 1/ = (5.6 +/- 2.4) x 10/sup -13/ exp((650 +/- 125)/T) cm/sup 3/ molecule/sup -1/ s/sup -1/, where the quoted errors are 2 sigma from linear least-squares analyses. A reanalysis of the authors earlier measurements of the C/sub 2/H/sub 5/O/sub 2/ self-reaction, C/sub 2/H/sub 5/O/sub 2/ + C/sub 2/H/sub 5/O/sub 2/ ..-->.. products (2), using this expression for k/sub 1/ results in the revised Arrhenius equation: k/sub 2/ = (8.5 +/- 1.1) x 10/sup -14/ exp(-(110 +/- 40)/T) cm/sup 3/ molecule/sup -1/ s/sup -1/.

Dagaut, P.; Wallington, T.J.; Kurylo, M.J.

1988-06-30T23:59:59.000Z

54

Alabama Gas Corporation - Residential Natural Gas Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Furnace (Replacement): $200 Dryer (Replacement): $100 Natural Gas Range/Cooktop (Replacement): $100 Water Heaters (Replacement): $200 Tankless Water Heaters (Replacement): $200 Provider Alabama Gas Corporation Alabama Gas Corporation (Alagasco) offers various rebates to its residential customers who replace older furnaces, water heaters, cooktops, ranges and clothes dryers with new, efficient equipment. All equipment

55

KITCHENER ST PARLIAMENT STREET  

E-Print Network (OSTI)

Audio Visual Engineering Fine Arts General Library Law (Davis) Music 423 409 402 432 109 802 250 Science Centre Science Centre Engineering 403 409 422 423 410410 431 432 614 435 601 602 603 International to Grafton Campus Arts Business & Economics Creative Arts & Industries Engineering Law Science 201 260 423

Auckland, University of

56

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Kitchen Ranges and Ovens Kitchen Ranges and Ovens Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's (DOE) energy conservation standards for residential kitchen ranges and ovens since 1990. Residential kitchen ranges and ovens include conventional ranges, conventional cooking tops, conventional ovens, microwave ovens, and microwave/conventional ranges, known collectively as cooking products. Cooking products cook or heat food by means of gas, electricity, or microwave energy. These products are used primarily in homes and apartments. Kitchen ranges and ovens do not include portable or countertop ovens that use electric resistance heating or are designed to use an electrical supply of approximately 120 volts. For information about microwave ovens, go to microwave ovens.

57

Oil and Gas Conservation (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

Parts 1 and 2 of this chapter contain a broad range of regulations pertaining to oil and gas conservation, including requirements for the regulation of oil and gas exploration and extraction by the...

58

Enhanced membrane gas separations  

SciTech Connect

An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

Prasad, R.

1993-07-13T23:59:59.000Z

59

Comment on flash photolysis resonance fluorescence investigation of the gas-phase reactions of OH radicals with a series of aliphatic ketones over the temperature range 240-440 K  

SciTech Connect

The recent flash photolysis-resonance fluorescence study of Wallington and Kurylo dealing with the kinetics of the gas-phase reactions of the OH radical with ketones has greatly expanded the literature data base concerning this class of organic compounds. For 2- and 3-pentanone and 2-hexanone the absolute room temperature rate constants determined by Wallington and Kurylo can be compared to rate constants obtained by using a relative rate technique, and significant discrepancies, outside of the combined stated experimental error limits, are evident. The relative rate constant measurements were carried out in a 60-L Teflon chamber, and problems ascribed to first-order wall losses of the ketones during the irradiations were observed.

Atkinson, R.; Aschmann, S.M.

1988-06-30T23:59:59.000Z

60

Range Fuels | Open Energy Information  

Open Energy Info (EERE)

Fuels Fuels Jump to: navigation, search Logo: Range Fuels Name Range Fuels Address 11101 W. 120th Avenue Place Broomfield, Colorado Zip 80021 Sector Biomass Product Uses a thermochemical process to turn biomass into synthetic gas and then fuel Website http://www.rangefuels.com/ Coordinates 39.915572°, -105.122053° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.915572,"lon":-105.122053,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Neutron Gas  

Science Journals Connector (OSTI)

We assume that the neutron-neutron potential is well-behaved and velocity-dependent. We can then apply perturbation theory to find the energy per particle of a neutron gas, in the range of Fermi wave numbers 0.5range of densities 0.5range considered. Our results suggest that at moderately low densities the energy/particle in a many-body system is insensitive to the shape or nonlocal character of the assumed two-body potential.

J. S. Levinger and L. M. Simmons

1961-11-01T23:59:59.000Z

62

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

63

Computers: Honeywell's New Range  

Science Journals Connector (OSTI)

... THE recent announcement by Honeywell of a new range of computers implies that the company's acquisition of the business ... software, maintenance and so on) is fully taken into account, the advantages of the Honeywell range could turn out to be much greater. The larger members of the new ...

1971-02-26T23:59:59.000Z

64

Chapter 10 - Natural Gas Sweetening  

Science Journals Connector (OSTI)

Abstract Acid gas constituents present in most natural gas streams are mainly hydrogen sulfide (H2S) and carbon dioxide (CO2). Many gas streams, however, particularly those in a refinery or manufactured gases, may contain mercaptans, carbon sulfide, or carbonyl sulfide. The level of acid gas concentration in the sour gas is an important consideration for selecting the proper sweetening process. Some processes are applicable for removal of large quantities of acid gas, and other processes have the capacity for removing acid gas constituents to ppm range. This chapter covers the minimum process requirements, criteria, and features for accomplishment of process design of gas sweetening units. The basic principles for process design of main equipment, piping, and instrumentation together with guidelines on present developments and process selection in the gas sweetening process are the main objectives throughout this chapter.

Alireza Bahadori

2014-01-01T23:59:59.000Z

65

NREL: Energy Analysis - Natural Gas-Fired Generation Results...  

NLE Websites -- All DOE Office Websites (Extended Search)

assessments have shown wide-ranging results. To better understand the greenhouse gas (GHG) emissions from utility-scale, natural gas-fired electricity generation systems (based...

66

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 at 2:00 P.M. 5, 2009 at 2:00 P.M. Next Release: Friday, November 13, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 4, 2009) Natural gas spot prices fell over the week at most market locations, declining on average 16 cents per million Btu (MMBtu). Decreases ranged between 2 cents and 77 cents per MMBtu. In the few trading locations where prices rose, increases were modest, ranging between 1 and 4 cents per MMBtu. The Henry Hub natural gas spot price fell 10 cents on the week, closing at $4.49 per MMBtu. At the New York Mercantile Exchange (NYMEX), the December 2009 natural gas contract fell 34 cents per MMBtu, or 7 percent. The November contract expired on Wednesday, October 28, at $4.289 per MMBtu.

67

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 at 2:00 P.M. 3, 2009 at 2:00 P.M. Next Release: September 10, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 2, 2009) Natural gas prices posted significant decreases at both the spot and futures markets since last Wednesday. Spot prices fell at all market locations in the lower 48 States, with decreases ranging between 7 and 68 cents per million Btu (MMBtu). The price at the Henry Hub spot market fell to $2.25 per MMBtu, decreasing by 51 cents or 18 percent. As of yesterday, the price of natural gas at the Henry Hub was the lowest since February 15, 2002, when natural gas at this location traded at $2.18 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas futures

68

Life-cycle analysis of shale gas and natural gas.  

SciTech Connect

The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

2012-01-27T23:59:59.000Z

69

RangeTables.xls  

NLE Websites -- All DOE Office Websites (Extended Search)

(MeVcmmg) LET vs. Range in Si for 25 MeV SEE Beams (low LET) 4 He 14 N 0 0.5 1 1.5 0 600 1200 1800 2400 3000 3600 4 He 14 N 22 Ne 0 1 2 3 4 5 6 7 8 9 10 0 100 200 300 400 500...

70

Applicability ranges for offshore oil and gas production facilities  

Science Journals Connector (OSTI)

In the early stages of the selection process for the hardware to exploit an offshore petroleum reservoir, it is important to be able to identify rapidly which production facility type(s) are likely to deliver the greatest value. This paper explores key features and constraints of the ten common fixed, floating and subsea facility options. Both shallow and deepwater are considered, along with regional variations. It is shown that facility applications may be categorised in a very simple matrix form, with the water depth and well count being particularly important drivers of facility choice.

Beverley F. Ronalds

2005-01-01T23:59:59.000Z

71

When you go shopping for groceries you sometimes bring home many items which may be used to produce house plants. Not only is it fun, but growing houseplants from kitchen waste is educational for children -caring for plants can help teach them responsibil  

E-Print Network (OSTI)

house plants. Not only is it fun, but growing houseplants from kitchen waste is educational for children. Sweet potatoes produce viney stems that are somewhat like philodendrons. You can produce these easily by setting the narrow end of a sweet potato in a container of sand or a glass of water, sup- ported

New Hampshire, University of

72

Greater focus needed on methane leakage from natural gas infrastructure  

Science Journals Connector (OSTI)

...benefits of natural gas fuel-technology pathways. Significant progress appears possible given...leakage in the natural gas system (EPA reports a range of-19% to...factor for stationary gas turbines of 110 lbMMBtu [AP-42...

Ramn A. Alvarez; Stephen W. Pacala; James J. Winebrake; William L. Chameides; Steven P. Hamburg

2012-01-01T23:59:59.000Z

73

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

74

RANGE DESIGN CRITERIA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RANGE DESIGN CRITERIA RANGE DESIGN CRITERIA U.S. DEPARTMENT OF ENERGY Office of Health, Safety and Security AVAILABLE ONLINE AT: INITIATED BY: http://www.hss.energy.gov Office of Health, Safety and Security Notices This document is intended for the exclusive use of elements of the Department of Energy (DOE), to include the National Nuclear Security Administration, their contractors, and other government agencies/individuals authorized to use DOE facilities. DOE disclaims any and all liability for personal injury or property damage due to use of this document in any context by any organization, group, or individual, other than during official government activities. Local DOE management is responsible for the proper execution of firearms-related programs for

75

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

76

Range Separated Brueckner Coupled Cluster Doubles Theory  

E-Print Network (OSTI)

We introduce a range-separation approximation to coupled cluster doubles (CCD) theory that successfully overcomes limitations of regular CCD when applied to the uniform electron gas. We combine the short-range ladder channel with the long-range ring channel in the presence of a Bruckner renormalized one-body interaction and obtain ground-state energies with an accuracy of 0.001 a.u./electron across a wide range of density regimes. Our scheme is particularly useful in the low-density and strongly-correlated regimes, where regular CCD has serious drawbacks. Moreover, we cure the infamous overcorrelation of approaches based on ring diagrams (i.e. the particle-hole random phase approximation). Our energies are further shown to have appropriate basis set and thermodynamic limit convergence, and overall this scheme promises energetic properties for realistic periodic and extended systems which existing methods do not possess.

Shepherd, James J; Scuseria, Gustavo E

2013-01-01T23:59:59.000Z

77

Neutron range spectrometer  

DOE Patents (OSTI)

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

Manglos, S.H.

1988-03-10T23:59:59.000Z

78

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

79

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

80

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

82

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

83

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

84

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

85

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

86

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

87

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

88

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

89

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

90

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

91

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

92

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2009 6, 2009 Next Release: July 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 15, 2009) Natural gas spot prices rose during the week in all trading locations. Price increases ranged between 6 cents and 48 cents per million Btu (MMBtu), with the biggest increases occurring in the Rocky Mountain region. During the report week, the spot price at the Henry Hub increased 15 cents or 5 percent to $3.37 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas near-month contract (August 2009) decreased 7 cents to $3.283 per MMBtu from $3.353 the previous week. During its tenure as the near-month contract, the August 2009 contract has lost 66 cents. As of Friday, July 10, 2009, working gas in storage rose to 2,886

93

Range imaging laser radar  

DOE Patents (OSTI)

A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.

Scott, Marion W. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

94

Improved gas mixtures for gas-filled radiation detectors  

DOE Patents (OSTI)

Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

1980-03-28T23:59:59.000Z

95

Neutron range spectrometer  

DOE Patents (OSTI)

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

Manglos, Stephen H. (East Syracuse, NY)

1989-06-06T23:59:59.000Z

96

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

E-Print Network (OSTI)

air quality, kitchen, oven, nitrogen dioxide, pollutant emissions, range hood, residential, source control,

Singer, Brett C.

2011-01-01T23:59:59.000Z

97

Long range Energy Alternatives Planning (LEAP) System | Open Energy  

Open Energy Info (EERE)

Long range Energy Alternatives Planning (LEAP) System Long range Energy Alternatives Planning (LEAP) System (Redirected from LEAP) Jump to: navigation, search Tool Summary Name: Long range Energy Alternatives Planning System Agency/Company /Organization: Stockholm Environment Institute Sector: Climate, Energy Focus Area: Non-renewable Energy, Agriculture, Biomass, - Anaerobic Digestion, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, - Waste to Energy, Buildings, Economic Development, Energy Efficiency, - Central Plant, Food Supply, Forestry, Geothermal, Goods and Materials, - Embodied Energy, - Materials, Greenhouse Gas, Ground Source Heat Pumps, Hydrogen, Industry, - Industrial Processes, Offsets and Certificates, People and Policy, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, - Solar Ventilation Preheat, Transportation, Water Conservation, Water Power, Wind

98

Long range Energy Alternatives Planning (LEAP) System | Open Energy  

Open Energy Info (EERE)

Long range Energy Alternatives Planning (LEAP) System Long range Energy Alternatives Planning (LEAP) System Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Long range Energy Alternatives Planning System Agency/Company /Organization: Stockholm Environment Institute Sector: Climate, Energy Focus Area: Non-renewable Energy, Agriculture, Biomass, - Anaerobic Digestion, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, - Waste to Energy, Buildings, Economic Development, Energy Efficiency, - Central Plant, Food Supply, Forestry, Geothermal, Goods and Materials, - Embodied Energy, - Materials, Greenhouse Gas, Ground Source Heat Pumps, Hydrogen, Industry, - Industrial Processes, Offsets and Certificates, People and Policy, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, - Solar Ventilation Preheat, Transportation, Water Conservation, Water Power, Wind

99

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

100

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2009 at 2:00 P.M. 4, 2009 at 2:00 P.M. Next Release: October 1, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 23, 2009) Natural gas prices posted across-the-board increases at both the spot and futures markets since last Wednesday. Spot prices rose at almost all market locations in the lower 48 States, with increases ranging between 2 and 23 cents per million Btu (MMBtu). The price at the Henry Hub spot market rose to $3.43 per MMBtu, increasing by 15 cents or about 5 percent. At the New York Mercantile Exchange (NYMEX), the natural gas futures contract for October delivery increased by 10 cents to $3.860 per MMBtu. The November contract also posted gains this week, albeit much smaller at 4

102

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2009 4, 2009 Next Release: May 21, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 13, 2009) Since Wednesday, May 6, natural gas spot prices rose at most market locations in the Lower 48 States, with increases ranging between 49 and 95 cents per million Btu (MMBtu). Prices at the Henry Hub climbed by 75 cents per MMBtu, or about 20 percent, to $4.42 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for June delivery at the Henry Hub settled yesterday, May 13, at $4.333 per MMBtu, increasing by 45 cents or about 11 percent during the report week. Natural gas in storage was 2,013 billion cubic feet (Bcf) as of May 8, which is about 23 percent above the 5-year average (2004-2008),

103

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2010 at 2:00 P.M. 3, 2010 at 2:00 P.M. Next Release: Thursday, May 20, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 12, 2010) Natural gas spot prices increased at nearly all market locations in the lower 48 States, with price hikes ranging between 6 and 30 cents per million Btu (MMBtu). The Henry Hub spot price ended the report week yesterday, May 12, at $4.18 per MMBtu, 18 cents higher than the preceding week. At the New York Mercantile Exchange (NYMEX), the futures contract for June delivery at the Henry Hub ended trading yesterday at $4.284 per MMBtu, increasing by 29 cents or about 7 percent during the report week. Natural gas in storage increased to 2,089 billion cubic feet (Bcf)

104

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2011 at 2:00 P.M. 5, 2011 at 2:00 P.M. Next Release: Thursday, September 22, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 14, 2011) A touch of autumn in the air combined with hopes for the eventual return of winter was likely the catalyst enabling natural gas prices to recapture the $4 mark this week despite an environment of negative consumption fundamentals and continued strong production. At the New York Mercantile Exchange (NYMEX), the October 2011 natural gas contract advanced 9.9 cents per million Btu (MMBtu) to close at $4.039 per MMBtu over the week. The Henry Hub price oscillated in a similar but narrow range before closing up 5 cents for the week at $4.01 per MMBtu on September 14. Working natural gas in storage rose last week to 3,112 billion cubic

105

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2009 1, 2009 Next Release: May 28, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 20, 2009) Natural gas prices at most trading locations fell on the week because of mild weather as well as continued weakness in the economy. Declines ranged between 37 cents at the Dracut trading area in the Northeast to 90 cents at the El Paso non-Bondad area in the Rocky Mountains. The Henry Hub spot price fell by 67 cents during the week to $3.75 per million Btu (MMBtu). Moving in the opposite direction of natural gas prices, the price of the West Texas Intermediate (WTI) crude oil contract rose on the week to $61.45 per barrel, or $10.59 per MMBtu. Oil prices are now at their highest level since November 10, 2008, having more than doubled since falling to a

106

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2009 9, 2009 Next Release: February 26, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 18, 2009) Since Wednesday, February 11, natural gas spot prices declined at virtually all market locations in the Lower 48 States, with decreases ranging between 3 and 78 cents per MMBtu. Prices at the Henry Hub fell 33 cents per million Btu (MMBtu), or about 7 percent, to $4.35 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for March delivery at the Henry Hub settled yesterday (February 18) at $4.214 per MMBtu, declining 32 cents per MMBtu or about 7 percent during the report week. Natural gas in storage was 1,996 billion cubic feet (Bcf) as of February 13, which is about 8.4 percent above the 5-year average

107

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2009 at 2:00 P.M. 9, 2009 at 2:00 P.M. Next Release: November 5, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 28, 2009) Natural gas prices posted decreases at both the spot and futures markets since last Wednesday. Spot prices fell at virtually all market locations in the lower 48 States, with decreases ranging between 6 and 46 cents per million Btu (MMBtu). However, a couple trading locations did post gains this week. The price at the Henry Hub spot market fell 21 cents or about 4 percent, ending trading yesterday at $4.59 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas futures contract for November delivery expired yesterday at $4.289 per MMBtu, falling 81 cents or about 16 percent since last Wednesday. The December

108

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2009 7, 2009 Next Release: September 3, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 26, 2009) Since Wednesday, August 19, natural gas spot prices fell at all market locations, with decreases ranging between 10 and 39 cents per million Btu (MMBtu). Prices at the Henry Hub declined by 26 cents per MMBtu, or about 9 percent, to $2.76 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for September delivery at the Henry Hub settled yesterday, August 26, at $2.91 per MMBtu, decreasing by 21 cents or about 7 percent during the report week. Natural gas in storage was 3,258 billion cubic feet (Bcf) as of August 21, which is about 18 percent above the 5-year average (2004-2008),

109

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2009 2, 2009 Next Release: March 19, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 11, 2009) Since Wednesday, March 4, natural gas spot prices declined at most market locations in the Lower 48 States, with decreases ranging up to 59 cents per million Btu (MMBtu). Prices at the Henry Hub fell 31 cents per MMBtu, or about 7 percent, to $3.92 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for April delivery at the Henry Hub settled yesterday, March 11, at $3.80 per MMBtu, declining 54 cents per MMBtu or about 12 percent during the report week. Natural gas in storage was 1,681 billion cubic feet (Bcf) as of March 6, which is about 13 percent above the 5-year average (2004-2008),

110

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2009 6, 2009 Next Release: August 13, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 5, 2009) Natural gas prices posted increases at both the spot and futures markets since last Wednesday, with price increases at the spot market ranging between 12 and 43 cents per million Btu (MMBtu). During the report week, the price at the Henry Hub spot market rose to $3.61 per MMBtu, increasing by 20 cents or 5.9 percent. At the New York Mercantile Exchange (NYMEX), the natural gas futures contract for September delivery increased by 49 cents to $4.042 per MMBtu. The September futures contract closed above $4.00 per MMBtu for the first time since June 19 on Monday, reaching $4.031 per MMBtu. The near-month

111

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2009 9, 2009 Next Release: April 16, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 8, 2009) Since Wednesday, April 1, natural gas spot prices declined at most market locations in the Lower 48 States, with decreases ranging up to 40 cents per million Btu (MMBtu). Prices at the Henry Hub fell by 6 cents per MMBtu, or about 2 percent, to $3.50. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery at the Henry Hub settled yesterday, April 8, at $3.63 per MMBtu, declining by 7 cents or about 2 percent during the report week. Natural gas in storage was 1,674 billion cubic feet (Bcf) as of April 3, which is about 23 percent above the 5-year average (2004-2008),

112

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2009 at 2:00 P.M. 8, 2009 at 2:00 P.M. Next Release: October 15, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 7, 2009) Since last Wednesday, September 30, natural gas prices rose across the board, with increases ranging between 37 cents and $1.32 per million Btu (MMBtu). Natural gas prices oscillated by large amounts at most market locations across the United States. The Henry Hub began the report week at $3.24 per MMBtu, fell to $2.32 on October 2, and ended trading yesterday at $3.70 per MMBtu. At the New York Mercantile Exchange (NYMEX), the near-month contract for November ended the week at $4.904 per MMBtu, a slight increase from the previous week’s value of $4.841 per MMBtu.

113

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2009 at 2:00 P.M. 2, 2009 at 2:00 P.M. Next Release: October 29, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 21, 2009) Since Wednesday, October 14, natural gas spot prices increased at all market locations in the lower 48 States, with price hikes generally ranging between $0.31 and $1.14 per million Btu (MMBtu). Prices at the Henry Hub climbed 98 cents per MMBtu, or about 26 percent, to $4.80 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for November delivery at the Henry Hub settled yesterday, October 21, at $5.10 per MMBtu, increasing by 66 cents or about 15 percent during the report week. Natural gas in storage was a record-setting 3,734 billion cubic feet

114

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2010 at 2:00 P.M. 4, 2010 at 2:00 P.M. Next Release: Thursday, October 21, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 13, 2010) Natural gas spot prices posted gains at most markets across the lower 48 States since Wednesday, October 6, accompanied by double-digit increases in trading since the holiday weekend. Price increases on the week ranged up to 25 cents per million Btu (MMBtu), with the Henry Hub natural gas spot price increasing $0.02 per MMBtu since last Wednesday, averaging $3.58 per MMBtu in trading yesterday, October 13. At the New York Mercantile Exchange (NYMEX), the futures contract for November delivery at the Henry Hub settled yesterday at $3.696 per MMBtu, falling by $0.169, or about 4 percent, since the previous Wednesday.

115

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

16, 2009 16, 2009 Next Release: April 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 15, 2009) Since Wednesday, April 8, natural gas spot prices increased at most market locations in the Lower 48 States, with some exceptions including those in the Northeast, Midwest, and Midcontinent. Despite this week’s upticks at most locations, natural gas spot prices remain at relatively low levels and have continued to trade within a limited range for the past 4 weeks. The Henry Hub spot market prices gained about 10 cents or 2.9 percent per million Btu (MMBtu), ending trading yesterday at $3.60 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery at the Henry Hub settled yesterday (April 15) at $3.693

116

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2009 9, 2009 Next Release: July 16, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 8, 2009) Natural gas prices posted across-the-board decreases at both the spot and futures markets since last Wednesday. Price decreases at the spot market ranged between 1 and 44 cents per million Btu (MMBtu), although a few points in the lower 48 States posted small increases. During the report week, the price at the Henry Hub spot market fell to $3.22 per MMBtu, decreasing by 11 percent since last Wednesday. At the New York Mercantile Exchange (NYMEX), the natural gas futures contract for August delivery lost 44.2 cents and ended the report week at $3.353 per MMBtu. The price for the August 2009 contract has posted a

117

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

118

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

119

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

120

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

122

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

123

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

124

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

125

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

126

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

127

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

128

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

129

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

130

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

131

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

132

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

133

Gas vesicles.  

Science Journals Connector (OSTI)

...in the suspending water, of concentration...MPa and balances the atmospheric pressure. Note that...versely, liquid water could not form by condensation inside the gas vesicle...presumably surrounded by water on all sides. At...

A E Walsby

1994-03-01T23:59:59.000Z

134

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

135

Gas-driven microturbine  

SciTech Connect

This paper describes an invention which relates to microtechnology and the fabrication process for developing microelectrical systems. It describes a means for fabricating a gas-driven microturbine capable of providing autonomous propulsion in which the rapidly moving gases are directed through a micromachined turbine to power devices by direct linkage or turbo-electric generators components in a domain ranging from tenths of micrometers to thousands of micrometers.

Sniegowski, J.J.; Rodgers, M.S.; McWhorter, P.J.; Aeschliman, D.P.; Miller, W.M.

1996-06-27T23:59:59.000Z

136

Vehicle Technologies Office: Natural Gas Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Research Natural Gas Research Natural gas offers tremendous opportunities for reducing the use of petroleum in transportation. Medium and heavy-duty fleets, which have significant potential to use natural gas, currently consume more than a third of the petroleum in transportation in the U.S. Natural gas is an excellent fit for a wide range of heavy-duty applications, especially transit buses, refuse haulers, and Class 8 long-haul or delivery trucks. In addition, natural gas can be a very good choice for light-duty vehicle fleets with central refueling. See the Alternative Fuels Data Center for a description of the uses and benefits of natural gas vehicles or its Laws and Incentives database for information on tax incentives. The Vehicle Technologies Office (VTO) supports the development of natural gas engines and research into renewable natural gas production.

137

To Fill or not to Fill: The Gas Station Problem. (Extended Abstract) #  

E-Print Network (OSTI)

To Fill or not to Fill: The Gas Station Problem. (Extended Abstract) # Samir Khuller, Azarakhsh; At each gas station we may fill up some amount of gas to ``extend'' the range of the vehicle by a certain to fluctuating gas prices, there is significant variance in the price of gas between gas stations in di

Khuller, Samir

138

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

139

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

140

College of Law LLM in Oil and Gas Law  

E-Print Network (OSTI)

College of Law LLM in Oil and Gas Law New LLM in Oil and Gas Law launched to complement our other internationally acclaimed LLM degrees NEW Holman Fenwick Willan is proud to sponsor the LLM Prize in Oil and Gas impressive range of courses on maritime and commercial law, the new LLM in Oil and Gas Law will allow

Martin, Ralph R.

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

142

Small gas turbine technology  

Science Journals Connector (OSTI)

Small Gas Turbine Technology: Small gas turbine, in the power range up to 500 kW, requires a recuperated thermodynamic cycle to achieve an electrical efficiency of about 30%. This efficiency is the optimum, which is possible for a cycle pressure ratio of about 41. The cycle airflow is function of the power requirement. To increase the efficiency, in view to reduce the CO2 emission, it is mandatory to develop a more efficient thermodynamic cycle. Different thermodynamic cycles were examined and the final choice was made for an Intercooled, Recuperated cycle. The advantage of this cycle, for the same final electrical efficiency of about 35%, is the smaller cycle airflow, which is the most dimensional parameter for the important components as the heat exchanger recuperator and the combustion chamber. In parallel with the thermodynamic cycle it is necessary to develop the High Speed Alternator technology, integrated on the same shaft that the gas turbine rotating components, to achieve the constant efficiency at part loads, from 50% up to 100%, by the capacity to adjust the engine speed at the required load. To satisfy the stringent requirement in pollutant emissions of \\{NOx\\} and CO, the catalytic combustion system is the most efficient and this advance technology has to be proven. The major constraints for the small gas turbine technology development are the production cost and the maintenance cost of the unit. In the power range of 0500 kW the gas turbine technology is in competition with small reciprocating engines, which are produced in large quantity for automotive industry, at a very low production cost.

Andre Romier

2004-01-01T23:59:59.000Z

143

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

144

EA-1662: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

62: Final Environmental Assessment 62: Final Environmental Assessment EA-1662: Final Environmental Assessment 10 CFR Part 430 Energy Conservation Program: EnergyConservation Standards for Certain Consumer Products (Dishwashers, Dehumidifiers, Microwave Ovens, and Electric and Gas Kitchen Ranges and Ovens) This chapter describes potential environmental effects that may result from amended energy conservation standards for residential cooking products and commercial clothes washers. Environmental Assessment for 10 CFR Part 430 Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products (Dishwashers, Dehumidifiers, Microwave Ovens, and Electric and Gas Kitchen Ranges and Ovens) and for Certain Commercial and Industrial Equipment (Commercial Clothes Washers), DOE/EA-1662 (April 2009)

145

Property:Wave Period Range(s) | Open Energy Information  

Open Energy Info (EERE)

Wave Period Range(s) Wave Period Range(s) Jump to: navigation, search Property Name Wave Period Range(s) Property Type String Pages using the property "Wave Period Range(s)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 10.0 + 10-ft Wave Flume Facility + 0.0 + 11-ft Wave Flume Facility + 10.0 + 2 2-ft Flume Facility + 10.0 + 3 3-ft Wave Flume Facility + 10.0 + 5 5-ft Wave Flume Facility + 10.0 + 6 6-ft Wave Flume Facility + 10.0 + A Alden Large Flume + 2.1 + Alden Small Flume + 0.0 + Alden Wave Basin + 1.0 + B Breakwater Research Facility + 0.0 + C Carderock Maneuvering & Seakeeping Basin + 0.0 + Carderock Tow Tank 2 + 0.0 + Carderock Tow Tank 3 + 0.0 + Chase Tow Tank + 3.1 + Coastal Harbors Modeling Facility + 2.3 +

146

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

147

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

148

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

149

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

150

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

151

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

152

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

153

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

154

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

155

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

156

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

157

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

158

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

159

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

160

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Gas vesicles.  

Science Journals Connector (OSTI)

...the gas vesicles simply reduce their sinking rates and...remaining suspended in the water column. A microorganism...phenomena as stratification, water- bloom formation, and...the many proteins that make up the phycobilisome (73...flagellate bacteria in natural waters. The natural selection...

A E Walsby

1994-03-01T23:59:59.000Z

162

Gas vesicles.  

Science Journals Connector (OSTI)

...these costs can be compared is in units of energy expenditure per time (joules per second...requires 7.24 x 10-18 kg of Gvp. The energy cost of making this protein, Eg, is...Eg = 2.84 x 101- o J. The rate of energy expenditure in gas vesicle synthesis then...

A E Walsby

1994-03-01T23:59:59.000Z

163

Gas sensor  

DOE Patents (OSTI)

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

164

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

November 18 (No issue Thanksgiving week; next release 2:00 p.m. on December 2) November 18 (No issue Thanksgiving week; next release 2:00 p.m. on December 2) Natural gas spot and futures prices fell for a third consecutive week (Wednesday to Wednesday, November 10-17), as temperatures for most of the nation continued to be moderate to seasonal. At the Henry Hub, the spot price declined 6 cents on the week, for the smallest week-on-week decrease in the nation. Spot gas traded there yesterday (Wednesday, November 17) at $6.06 per MMBtu. Price declines at the majority of market locations ranged from around a dime to nearly 60 cents per MMBtu. On the NYMEX, the price for the near-month natural gas futures contract (for December delivery) fell by almost 40 cents on the week, settling yesterday at $7.283 per MMBtu. EIA reported that working gas inventories in underground storage were 3,321 Bcf as of Friday, November 12, which is 9 percent greater than the previous 5-year average. The spot price for West Texas Intermediate (WTI) crude oil declined for a fourth consecutive week, dropping $1.85 per barrel ($0.32 per MMBtu), or nearly 4 percent, from last Wednesday's level, to trade yesterday at $46.85 per barrel ($8.08 per MMBtu).

165

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

166

Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector  

Energy.gov (U.S. Department of Energy (DOE))

This report examines the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased electric power sector natural gas use.

167

Extended range chemical sensing apparatus  

DOE Patents (OSTI)

An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

Hughes, R.C.; Schubert, W.K.

1994-01-18T23:59:59.000Z

168

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, April 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 21, 2010) Natural gas spot prices fell during the week at locations across the country, with declines ranging from 12 to 62 cents per million Btu (MMBtu). The Henry Hub spot price fell 19 cents, or about 5 percent, averaging $3.96 per MMBtu yesterday, April 21. At the New York Mercantile Exchange (NYMEX), the value of the futures contract for May 2010 delivery at the Henry Hub fell about 6 percent, from $4.199 per MMBtu on April 14 to $3.955 per MMBtu on April 21. The West Texas Intermediate crude oil spot price fell 3 percent since last Wednesday to $82.98 per barrel, or $14.31 per MMBtu.

169

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 5, 2009 Next Release: February 12, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 4, 2009) Natural gas spot prices decreased in half of the trading regions in the Lower 48 States this report week. Generally, areas east of the Rockies and particularly those that experienced frigid temperatures posted weekly price increases. However, there were some exceptions, including the Midcontinent and East Texas. At the New York Mercantile Exchange (NYMEX), futures trading for the near-month contract was fairly volatile, with daily price changes ranging between a 16-cent loss and a 16-cent increase. The March 2009 contract ended trading yesterday 18 cents higher than on the previous Wednesday.

170

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

, 2009 at 2:00 P.M. , 2009 at 2:00 P.M. Next Release: October 8, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 30, 2009) Since Wednesday, September 23, natural gas spot prices fell at most market locations, with decreases generally ranging between 10 and 30 cents per million Btu (MMBtu). Prices at the Henry Hub declined by 19 cents per MMBtu, or about 5 percent, to $3.24 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for November delivery at the Henry Hub settled yesterday, September 30, at $4.84 per MMBtu, increasing by 9 cents or about 2 percent during the report week. The contract for October delivery expired on September 28 at $3.73 per MMBtu, increasing nearly 70 cents per MMBtu or 21 percent during its

171

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2008 1, 2008 Next Release: August 28, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, August 13, to Wednesday, August 20) During the report week (Wednesday-Wednesday, August 13-20), natural gas prices continued their overall declines in the Lower 48 States, with decreases ranging between 1 and 58 cents per million British thermal units (MMBtu). However, there were a few exceptions in the Rocky Mountains, where the only average regional price increase on the week was recorded. At the New York Mercantile Exchange (NYMEX), prices for the September delivery contract decreased 38 cents per MMBtu, settling yesterday at $8.077. On Monday and Tuesday, the September contract price dipped below $8 per MMBtu, reaching this level for the first time since

172

NATURAL GAS MARKET ASSESSMENT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

173

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Price Sold to...

174

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

175

Shale gas is natural gas trapped inside  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

176

Gas Chromatography  

Science Journals Connector (OSTI)

Researchers from the University of Missouri and ICx Nomadics have reported on the use of a optofluidic ring resonator (OFRR) sensor for on-column detection ?. ... Although substantial differences were noted between fresh and aged (or oxidized) oils, many of the compounds in the oxidized oil went unidentified due to lack of library mass spectral data. ... A high resolution MEMS based gas chromatography column for the analysis of benzene and toluene gaseous mixtures ...

Frank L. Dorman; Joshua J. Whiting; Jack W. Cochran; Jorge Gardea-Torresdey

2010-05-26T23:59:59.000Z

177

How regulators should use natural gas price forecasts  

SciTech Connect

Natural gas prices are critical to a range of regulatory decisions covering both electric and gas utilities. Natural gas prices are often a crucial variable in electric generation capacity planning and in the benefit-cost relationship for energy-efficiency programs. High natural gas prices can make coal generation the most economical new source, while low prices can make natural gas generation the most economical. (author)

Costello, Ken

2010-08-15T23:59:59.000Z

178

APS Long Range Operations Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Shutdown Planning Shutdown Planning Planning Templates Shutdown Planning Schedules: Current Shutdown Schedule Archives: 2006 - 2013 APS Long-Range Operations Schedule: 2014 Archives: 2013 | 2012 2011 | 2010 | 2009 | 2008 2007 | 2006 | 2005 | 2004 2003 | 2002 | 2001 | 2000 1999 | 1998 | 1997 | 1996 APS Long-Range Operations Schedule (Fiscal Year 2014) Alternate Formats: iCal | Excel | PDF APS Long-Range Operation Schedule 2013-3 2014-1 2014-2 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

179

IPA Extensions Range: 025002AF  

E-Print Network (OSTI)

IPA Extensions Range: 0250­02AF This file contains an excerpt from the character code tables 0268IPA Extensions0250 025B LATIN SMALL LETTER OPEN E = LATIN SMALL LETTER EPSILON · lower-mid front

Erjavec, Toma?

180

Gas Sampling Considerations  

Science Journals Connector (OSTI)

Gas sampling is carried out to measure the quality of a gas. Gas samples are sometimes acquired by in situ observation within the main gas body by using remote or visual observation for specific properties. A mor...

Alvin Lieberman

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Georgia Tech Dangerous Gas  

E-Print Network (OSTI)

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

182

Market Digest: Natural Gas  

Reports and Publications (EIA)

The Energy Information Administration's Natural Gas Market Digest provides information and analyses on all aspects of natural gas markets.

2014-01-01T23:59:59.000Z

183

Gas Chromatography  

Science Journals Connector (OSTI)

He received his B.S. degree in 1970 from Rhodes College in Memphis, TN, his M.S. degree in 1973 from the University of Missouri, Columbia, MO, and his Ph.D. degree in 1975 from Dalhousie University, Halifax, Nova Scotia, Canada. ... A review (with 145 references) on the role of carrier gases on the separation process (A4) demonstrates that carrier gas interactions are integral to the chromatographic process. ... In another report, activity coefficients for refrigerants were evaluated with a polyol ester oil stationary phase (C22). ...

Gary A. Eiceman; Herbert H. Hill, Jr.; Jorge Gardea-Torresdey

2000-04-25T23:59:59.000Z

184

Power control system for a hot gas engine  

DOE Patents (OSTI)

A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

Berntell, John O. (Staffanstorp, SE)

1986-01-01T23:59:59.000Z

185

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7 (next release 2:00 p.m. on October 14) 7 (next release 2:00 p.m. on October 14) Natural gas spot and futures prices generally moved in opposite directions for the week (Wednesday to Wednesday, September 29-October 6), as spot prices fell at most market locations, while futures prices continued to climb higher. In yesterday's (Wednesday, October 6) trading at the Henry Hub, the spot price for natural gas averaged $6.00 per MMBtu, down 23 cents per MMBtu, or close to 4 percent, from the previous Wednesday. On the New York Mercantile Exchange (NYMEX), the futures contract for November delivery gained $0.134 per MMBtu on the week, or about 2 percent, as it settled yesterday at $7.045. Settlement prices for contracts for gas delivery in December 2004 through March 2005 rose much more sharply, with increases ranging from just over 40 cents to nearly 60 cents per MMBtu. EIA reported that inventories were 3,092 Bcf as of Friday, October 1, which is 6.9 percent greater than the previous 5-year average for the week. The spot price for West Texas Intermediate crude oil rose $2.45 per barrel (42 cents per MMBtu) on the week, or about 5 percent, to yesterday's record-high price of $51.98 per barrel ($8.96 per MMBtu).

186

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

June 27, 2002 (next release 2:00 p.m. on July 5) June 27, 2002 (next release 2:00 p.m. on July 5) Since Wednesday, June 19, natural gas spot prices increased at most locations, despite declines ranging between 5 and 14 cents per MMBtu on Wednesday, June 26. For the week, prices at the Henry Hub increased 19 cents to $3.42 per MMBtu, which is an increase of almost 6 percent. High temperatures and rising crude oil prices contributed to increased cooling demand for gas, which spurred the price hikes. The NYMEX futures contract for July delivery at the Henry Hub expired yesterday (June 26) at $3.278 per MMBtu, falling over 17 cents in its final day of trading. Natural gas in storage increased to 2,184 Bcf, which exceeds the 5-year average by more 20 than percent. The spot price for West Texas Intermediate (WTI) crude oil increased $1.10 per barrel or over 4 percent since last Wednesday, trading at $26.67 per barrel or $4.60 per MMBtu.

187

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

10 (next release 2:00 p.m. on March 17) 10 (next release 2:00 p.m. on March 17) Natural gas spot prices increased this week (Wednesday to Wednesday, March 2-9) as a late season cold front moved into major gas-consuming regions of the country, bringing a reminder that the end of winter is still two weeks away. Spot prices climbed 17 to 76 cents per MMBtu at trading locations in the Lower 48 States since last Wednesday. Price changes in the Northeast were at the higher end of the range, while trading in the West resulted in gains at the lower end. The Henry Hub spot price increased 38 cents per MMBtu, or 5.7 percent, to $6.99. At the New York Mercantile Exchange (NYMEX), the futures contract for April delivery gained 16.3 cents per MMBtu, settling at $6.880 on Wednesday, March 9. Natural gas in storage as of Friday, March 4, decreased to 1,474 Bcf, which is 25.7 percent above the 5-year (2000-2004) average. The spot price for West Texas Intermediate (WTI) crude oil traded at near-record highs, rising $1.75 per barrel on the week to yesterday's closing price of $54.75 per barrel, or $9.44 per MMBtu.

188

Natural Gas Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market  

U.S. Energy Information Administration (EIA) Indexed Site

Processing: The Crucial Link Between Natural Gas Production Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e., cleaned, before it can be safely delivered to the high-pressure, long-distance pipelines that transport the product to the consuming public. Natural gas that is not within certain specific gravities, pressures, Btu content range, or water content levels will

189

Chapter 4 - Natural Gasfired Gas Turbines and Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Abstract Gas turbines can burn a range of liquid and gaseous fuels but most burn natural gas. Power plants based on gas turbines are one of the cheapest types of plant to build, but the cost of their electricity depends heavily on the cost of their fuel. Two types of gas turbine are used for power generation: aero-derivative gas turbines and heavy-duty gas turbines. The former are used to provide power to the grid at times of peak demand. The latter are most often found in combined cycle power stations. These are capable of more than 60% efficiency. There are a number of ways of modifying the gas turbine cycle to improve efficiency, including reheating and intercooling. Micro-turbines have been developed for very small-scale generation of both electricity and heat. The main atmospheric emissions from gas turbines are carbon dioxide and nitrogen oxide.

Paul Breeze

2014-01-01T23:59:59.000Z

190

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Holiday Notice: Holiday Notice: Due to the federal holiday in observance of Martin Luther King Day on Monday, January 21, 2002, the next issue of the Natural Gas Weekly Update will be published on Tuesday, January 22, 2002. Overview: Monday, January 14, 2002 Natural gas prices were generally lower last week as the fundamentals of ample working gas in storage and very little temperature-driven swing demand dominated the market. With little in the way of market-changing developments, trading in both the spot and futures markets tended to occur in relatively small price ranges throughout the week. The warming trend begun late in the previous week continued nearly unabated through last week, with the heavy gas-consuming areas of the Midwest and Northeast recording many of the greatest deviations above daily normal temperatures. Philadelphia, New York City, and Buffalo, NY had at least 3 days of temperatures that were 10 or more degrees above normal; Chicago's temperature reached an unusually warm 26 degrees above normal on Wednesday. (See Temperature Map) (See Deviation Map) Spot prices at the Henry Hub moved down moderately from the previous week, ending trading on Friday at $2.31, down 5 cents from the previous Friday. On the NYMEX, the futures contract for February delivery at the Henry Hub declined by $0.071 from the previous Friday, settling on Friday, January 11 at $2.204 per MMBtu. The spot price for West Texas Intermediate crude oil also fell, dipping below $20 per barrel for the first time in the New Year, ending trading last Friday at $19.67 per barrel, or $3.39 per MMBtu, down $1.80 per barrel, or $0.31 per MMBtu, from Friday, January 4.

191

Range Condition: Key to Sustained Ranch Productivity  

E-Print Network (OSTI)

Range condition, or a rangeland's "state of health," is an ecological measurement of the current condition of a range. Range condition is evaluated by the plant species composition. This leaflet explains the importance of range condition, how range...

McGinty, Allan; White, Larry D.

2000-04-25T23:59:59.000Z

192

PACIFIC SOUTHWEST Forest and Range  

E-Print Network (OSTI)

Donald, Philip M. 1973. Cutting a young-growth, mixed-conifer stand to California Forest Practice Act StandardsPACIFIC SOUTHWEST Forest and Range Experiment Station FOREST SERVICE U. S. DEPARTMENT OF AGRICULTURE P.O. BOX 245, BERKELEY, CALIFORNIA 94701 Cutting a Young-Growth, Mixed-Conifer Stand to California

Standiford, Richard B.

193

PACIFIC SOUTHWEST Forest and Range  

E-Print Network (OSTI)

C. Hathaway, both of the Black Hills National Forest, Custer, South Dakota, provided the necessaryPACIFIC SOUTHWEST Forest and Range FOREST SERVICE U. S.DEPARTMENT OF AGRICULTURE P.O. BOX 245, BERKELEY, CALIFORNIA 94701 Experiment Station USDA FOREST SERVICE RESEARCH PAPER PSW- 96 /1973 #12;CONTENTS

Standiford, Richard B.

194

Gas Bubbles and Gas Pancakes at Liquid/Solid Interface: A Continuum Theory Incorporated with Molecular Interactions  

E-Print Network (OSTI)

The states of gas accumulated at the liquid-solid interface are analyzed based on the continuum theory where the Hamaker constant is used to describe the long-range interaction at the microscopic scale. The Hamaker constant is always negative, whereas the gas spreading coefficient can be either sign. Despite the complexity of gas, including that the density profile may not be uniform due to absorption on both solid and liquid surfaces, we predict three possible gas states at the liquid-solid interface, i.e. complete wetting, partial wetting and pseudopartial wetting. These possible gas states correspond respectively to a gas pancake (or film) surrounded by a wet solid, a gas bubble with a finite contact angle, and a gas bubble(s) coexisting with a gas pancake. Typical thickness of the gas pancakes is at the nanoscale within the force range of the long-range interaction, whereas the radius of the gas bubbles can be large. The state of gas bubble(s) coexisting with a gas film is predicted theoretically for the first time. Our theoretical results can contribute to the development of a unified picture of gas nucleation at the liquid-solid interface.

Zhaoxia Li; Xuehua Zhang; Lijuan Zhang; Xiaocheng Zeng; Jun Hu; Haiping Fang

2007-10-27T23:59:59.000Z

195

Natural gas 1994: Issues and trends  

SciTech Connect

This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

Not Available

1994-07-01T23:59:59.000Z

196

Fuel gas conditioning process  

DOE Patents (OSTI)

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

197

Molecular Gas Reservoir in low-z Powerful Radio Galaxies  

E-Print Network (OSTI)

We report a survey for molecular gas in 3C radio galaxies at redshifts z gas masses in the range 10^7--10^9 Msun. The remainder had typical upper limits in molecular gas masses of ~10^8 Msun.

Jeremy Lim; Stephane Leon; Francoise Combes; Dinh-V-Trung

2002-11-13T23:59:59.000Z

198

Alternative fuels for industrial gas turbines (AFTUR)  

Science Journals Connector (OSTI)

Environmentally friendly, gas turbine driven co-generation plants can be located close to energy consumption sites, which can produce their own fuel such as waste process gas or biomass derived fuels. Since gas turbines are available in a large power range, they are well suited for this application. Current gas turbine systems that are capable of burning such fuels are normally developed for a single specific fuel (such as natural gas or domestic fuel oil) and use conventional diffusion flame technology with relatively high levels of \\{NOx\\} and partially unburned species emissions. Recently, great progress has been made in the clean combustion of natural gas and other fossil fuels through the use of dry low emission technologies based on lean premixed combustion, particularly with respect of \\{NOx\\} emissions. The objective of the AFTUR project is to extend this capability to a wider range of potentially commercial fuel types, including those of lower calorific value produced by gasification of biomass (LHVgas in line with the European Union targets) and hydrogen enriched fuels. The paper reports preliminary progress in the selection and characterisation of potential, liquid and gas, alternative fuels for industrial gas turbines. The combustion and emission characteristics of the selected fuels will be assessed, in the later phases of the project, both in laboratory and industrial combustion chambers.

Iskender Gkalp; Etienne Lebas

2004-01-01T23:59:59.000Z

199

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

Science Journals Connector (OSTI)

...2011 ) Natural gas: Should fracking stop? Nature 477 ( 7364 ): 271...13 Boyer EW ( 2012 ) The Impact of Marcellus Gas Drilling on Rural Drinking Water Supplies...the Nicholas School of the Environment and Center on Global Change...derived from depositional environments that ranged from proposed...

Robert B. Jackson; Avner Vengosh; Thomas H. Darrah; Nathaniel R. Warner; Adrian Down; Robert J. Poreda; Stephen G. Osborn; Kaiguang Zhao; Jonathan D. Karr

2013-01-01T23:59:59.000Z

200

Range-Separated Brueckner Coupled Cluster Doubles Theory  

Science Journals Connector (OSTI)

We introduce a range-separation approximation to coupled cluster doubles (CCD) theory that successfully overcomes limitations of regular CCD when applied to the uniform electron gas. We combine the short-range ladder channel with the long-range ring channel in the presence of a Bruckner renormalized one-body interaction and obtain ground-state energies with an accuracy of 0.001 a.u./electron across a wide range of density regimes. Our scheme is particularly useful in the low-density and strongly correlated regimes, where regular CCD has serious drawbacks. Moreover, we cure the infamous overcorrelation of approaches based on ring diagrams (i.e., the particle-hole random phase approximation). Our energies are further shown to have appropriate basis set and thermodynamic limit convergence, and overall this scheme promises energetic properties for realistic periodic and extended systems which existing methods do not possess.

James J. Shepherd; Thomas M. Henderson; Gustavo E. Scuseria

2014-04-03T23:59:59.000Z

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Tunable quantum hypersound generator in the gigahertz to terahertz range  

Science Journals Connector (OSTI)

The steady-state nonequilibrium phonon distribution function of a semiconductor in which the hot electronic gas is quantized by a strong magnetic field is calculated with the use of a quantum Boltzmann equation. There is a very strong cyclotron output in the direction perpendicular to the magnetic field. Conditions for which this output is strong as well as monochromatic and directional are found. A new tunable GaAs phonon source in the 100-GHz range should thus be possible.

G. W. Slater and A.-M. S. Tremblay

1984-02-15T23:59:59.000Z

202

Natural Gas Hydrates  

Science Journals Connector (OSTI)

Natural Gas Hydrates ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ...

Willard I. Wilcox; D. B. Carson; D. L. Katz

1941-01-01T23:59:59.000Z

203

Gas Kick Mechanistic Model  

E-Print Network (OSTI)

Gas kicks occur during drilling when the formation pressure is greater than the wellbore pressure causing influx of gas into the wellbore. Uncontrolled gas kicks could result in blowout of the rig causing major financial loss and possible injury...

Zubairy, Raheel

2014-04-18T23:59:59.000Z

204

APS Long Range Operations Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

2) 2) Alternate Formats: iCal | Excel | PDF APS Long-Range Operation Schedule 2011-3 2012-1 2012-2 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5

205

APS Long Range Operations Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

1) 1) Alternate Formats: iCal | Excel | PDF APS Long-Range Operation Schedule 2010-3 2011-1 2011-2 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5

206

APS Long Range Operations Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

3) 3) Alternate Formats: iCal | Excel | PDF APS Long-Range Operation Schedule 2012-3 2013-1 2013-2 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5

207

Normal Growth of Range Cattle.  

E-Print Network (OSTI)

TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR College Station, Brazos County, Texas BULLETIN NO. 409 MARCH, 1930 DIVISION OF RANGE ANIMAL HUSBANDRY - Lr9RARv' *n+!nmt">3~roql f', 44+lpl,9-' . 16' , ,, ..!c?! cq!!f?~c nt... of these special problems, the Texas Station presents in this Bulletin a study of the growth in weight and in measurements which actually took place in the calves born during nine years at Substation No. 14, the Ranch Experiment Station. This study so far has...

Lush, Jay L. (Jay Laurence)

1930-01-01T23:59:59.000Z

208

Case Study - Liquefied Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Environmental Environmental Science Enviro Express Kenworth LNG tractor. Connecticut Clean Cities Future Fuels Project Case Study - Liquefied Natural Gas As a part of the U.S. Department of Energy's broad effort to develop cleaner transportation technologies that reduce U.S. dependence on imported oil, this study examines advanced 2011 natural gas fueled trucks using liquefied natural gas (LNG) replacing older diesel fueled trucks. The trucks are used 6 days per week in regional city-to-landfill long hauls of incinerator waste with two fills per day. This is a workable fit for the limited range LNG trucks. Reduction of fuel costs and harmful emissions relative to the replaced trucks are significant. Introduction The American Recovery and Reinvestment Act legislation

209

Kinetics simulation for natural gas conversion to unsaturated C? hydrocarbons  

E-Print Network (OSTI)

value. The usual chemical composition range of natural gas is shown in Table I. l. Table 1. 1 Natural Gas Composition Component Methane Ethane Pro ane iso-Butane normal-Butane iso-Pentane normal-Pentane Hexane s lus Nitro en Carbon Dioxide... Acetylene Carbon Ethylene Hydrogen Methane Water Carbon Dioxide CHAPTER I INTRODUCTION Challenge for Natural Gas Natural Gas (NG), which is comprised priinarily of methane, is found throughout the world, burns cleanly, and processes a high caloric...

Yang, Li

2003-01-01T23:59:59.000Z

210

Live Fire Range Environmental Assessment  

SciTech Connect

The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

None

1993-08-01T23:59:59.000Z

211

Portable tester for determining gas content within a core sample  

DOE Patents (OSTI)

A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas- a selector valve connected to the low and high range pressure transducers, a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container, and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use.

Garcia, Jr., Fred (Donora, PA); Schatzel, Steven J. (Bethel Park, PA)

1998-01-01T23:59:59.000Z

212

Portable tester for determining gas content within a core sample  

DOE Patents (OSTI)

A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas; a selector valve connected to the low and high range pressure transducers and a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container; and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use. 5 figs.

Garcia, F. Jr.; Schatzel, S.J.

1998-04-21T23:59:59.000Z

213

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

214

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

215

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

216

Future of Natural Gas  

Office of Environmental Management (EM)

technology is improving - Producers are drilling in liquids rich gas and crude oil shale plays due to lower returns on dry gas production - Improved well completion time...

217

Natural Gas Industrial Price  

Annual Energy Outlook 2012 (EIA)

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

218

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Overview: Thursday April 11, 2002 Overview: Thursday April 11, 2002 Natural gas prices have declined substantially in the past 7 days. Spot prices at most market locations across the country finished the day on Wednesday, April 10 down slightly. However the cumulative difference from the previous Wednesday ranged between $0.21 and $0.89 per MMBtu. Prices at the Henry Hub declined 43 cents per MMBtu from the previous Wednesday to trade at $3.25 yesterday. On the NYMEX, the price of the futures contract for May delivery at the Henry Hub settled at $3.184 per MMBtu, down roughly 32 cents since last Wednesday. The spot price for West Texas Intermediate (WTI) crude oil declined $1.40 per barrel since the previous Wednesday, trading at $26.15 per barrel or $4.51 per MMBtu. Prices:

219

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

14 (next release 2:00 p.m. on December 21, 2006) 14 (next release 2:00 p.m. on December 21, 2006) Softening natural gas market conditions led to spot price decreases at most market locations in the Lower 48 States since Wednesday, December 6, with decreases ranging between $0.02 and $1.22 per MMBtu. The few price increases on the week were mostly confined to market locations west of the Rocky Mountains. On Wednesday, December 13, prices at the Henry Hub averaged $7.21 per MMBtu, decreasing $0.13 per MMBtu, or about 2 percent, since the previous Wednesday. The prices of futures contracts through December 2007 changed only slightly since December 6. The price for the January delivery contract decreased about 5 cents per MMBtu, or about 1 percent on the week (Wednesday-Wednesday), settling at $7.673 per MMBtu yesterday (December 13). Natural gas in storage was 3,238 Bcf as of December 8, which is 7.5 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil decreased 86 cents per barrel, or about 1 percent on the week to $61.34 per barrel or $10.58 per MMBtu.

220

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2003 (next release 2:00 p.m. on May 15) 8, 2003 (next release 2:00 p.m. on May 15) Spot and futures prices seesawed throughout the week (Wednesday to Wednesday, April 30-May 7) with no clear underlying trend, however prices ended trading yesterday at uniformly higher levels than one week ago. The weather's influence on gas demand was muted, as temperatures in most areas of the country were generally comfortably spring-like, except for some parts of the Southeast and Southwest, where summer-like temperatures prompted some early air conditioning load. The Henry Hub average spot price increased 23 cents from the previous Wednesday (April 30) to $5.48 per MMBtu. The daily settlement price of the NYMEX futures contract for June delivery rose $0.275 on the week, ending at $5.660 per MMBtu in yesterday's trading. The EIA reported that 821 Bcf of gas was held in storage as of Friday, May 2, which is 39.9 percent less than the 5-year average. The average spot price for West Texas Intermediate crude oil traded in a narrow range of less than $1 per barrel during the week, and ended trading yesterday with a small increase of 15 cents on the week, at $26.24 per barrel, or $4.52 per MMBtu.

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

11, 2002 11, 2002 On Friday, spot gas traded at the Henry Hub for $2.20 per MMBtu, marking no change from the price on the previous Friday. Last week spot prices at the Henry Hub traded within a tight range of $2.14-$2.20 per MMBtu. Temperatures in much of the country returned to above normal in the second half of the week and the National Weather Service's (NWS) latest 6-to 10-day forecast called for this pattern to continue through the weekend and all of this week. (See Temperature Map) (See Deviation Map) This dominant pattern of above normal temperatures has resulted in heating degree days thus far this winter that are 16 percent lower than normal. At the NYMEX, the settlement price for the March contract ended the week up almost 5 cents at $2.191 per MMBtu. Natural gas stocks remained well above last year's level as estimated net withdrawals were 82 Bcf during the last week of January. The spot price for West Texas Intermediate (WTI) crude oil moved down 15 cents last week and ended Friday trading at $20.25 per barrel or $3.49 per MMBtu.

222

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

13, 2001 13, 2001 Spot prices for natural gas appeared to stabilize just above the $3.00 mark during the week ended August 10, 2001, as the price at the Henry Hub in Louisiana varied between $3.14 and $2.98 per million Btu. Net injections of natural gas into storage for the previous week again fell within the range of market expectations reported in the trade press and contributed to the stability of the price level. However, due to warmer-than-normal temperatures in the Northeast, Midwest, and parts of the Southwest and Southeast, prices at the Henry Hub increased early in the week before decreasing and finishing over 2 percent lower than the previous week. (See Temperature Map) (See Deviation from Normal Temperatures Map) The price of West Texas Intermediate (WTI) crude oil finished the week at $28.10 per barrel or $4.84 per million Btu, an increase of almost 2 percent above the previous Friday.

223

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Thursday, December 19 2002 (next release 2:00 p.m. on January 3) Thursday, December 19 2002 (next release 2:00 p.m. on January 3) Natural gas spot prices on Wednesday, December 18, were higher than the previous Wednesday at most locations in the Lower 48 States, climbing between 20 and 60 cents per MMBtu. For the week (Wednesday-Wednesday), prices at the Henry Hub increased 36 cents or roughly 8 percent to $4.86 per MMBtu. The price of the NYMEX futures contract for January delivery at the Henry Hub has increased nearly 57 cents since last Wednesday to settle at $5.278 per MMBtu yesterday (December 18). Natural gas in storage decreased to 2,635 Bcf, which is below the 5-year average by over 5 percent, but well within the 5-year historical range. The spot price for West Texas Intermediate (WTI) crude oil increased $2.95 per barrel or about 11 percent since last Wednesday to trade at $30.44 per barrel or $5.248 per MMBtu.

224

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2 (next release 2:00 p.m. on February 9, 2006) 2 (next release 2:00 p.m. on February 9, 2006) Since Wednesday, January 25, natural gas spot prices have increased at most market locations in the Lower 48 States, with increases ranging between 20 and 67 cents per MMBtu or about 2 to 8 percent at most markets. On Wednesday, February 1, prices at the Henry Hub averaged $8.71 per MMBtu, reflecting an increase of $0.21 per MMBtu or about 2 percent since Wednesday, January 25. The futures contract for February delivery at the Henry Hub closed at $8.40 per MMBtu on Friday, January 27, falling about 6 cents per MMBtu since Wednesday, January 25. By February 1, the futures contract for March delivery at the Henry Hub increased about 9 cents per MMBtu or about 1 percent since Wednesday, January 25. Natural gas in storage was 2,406 Bcf as of January 27, which is about 28 percent above the 5-year average. Since January 25, the spot price for West Texas Intermediate (WTI) crude oil increased $1.01 per barrel, or about 1.5 percent to $66.61 per barrel or $11.48 per MMBtu.

225

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2002 (next release 2:00 p.m. on August 29) 2, 2002 (next release 2:00 p.m. on August 29) Natural gas prices continued their upward trend for a second consecutive week with most market locations in the Lower 48 States registering gains of up to 25 cents per MMBtu since Wednesday, August 14. Continued hot temperatures across the country and an increase in oil prices resulted in prices generally ranging between $3.15 and $3.25 per MMBtu along the Gulf Coast, representing new 8-week highs. At the NYMEX, the price for the futures contract for September delivery closed on Wednesday, August 21, at $3.274 per MMBtu, an increase of just over 36 cents, or about 12.5 percent, on the week. Working gas in storage for the week ended Friday, August 16 was 2,657 Bcf, which exceeds the average for the previous 5 years by 13.1 percent. On the week (Wednesday-Wednesday), the spot price for West Texas Intermediate (WTI) crude oil gained $2.18 to end trading yesterday at $30.37 per barrel, or $5.24 per MMBtu

226

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

15 (next release 2:00 p.m. on June 22, 2006) 15 (next release 2:00 p.m. on June 22, 2006) Natural gas spot prices increased at almost all locations this week (Wednesday - Wednesday, June 7-14) as wide ranging temperatures across the country affected some regional demand for both heating and air conditioning needs. The Henry Hub spot price rose 27 cents, or about 5 percent, to $6.09 per MMBtu. At the New York Mercantile Exchange (NYMEX), prices also increased for almost all the futures contracts listed. The NYMEX contract for July delivery rose about 62 cents, or about 10 percent, since last Wednesday to settle at $6.590 per MMBtu yesterday (June 14). Natural gas in storage as of Friday, June 9 was 2,397 Bcf, which is 37.9 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil declined $1.78 per barrel, or about 3 percent, since last Wednesday, trading yesterday at $69.12 per barrel or $11.92 per MMBtu.

227

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

June 30 (next release 2:00 p.m. on July 7) June 30 (next release 2:00 p.m. on July 7) Natural gas spot prices dropped in almost all locations this week (Wednesday - Wednesday, June 22-29) partly because of a decline in cooling demand across much of the Lower 48 States. The Henry Hub spot price decreased 33 cents, or about 4.5 percent, to $7.07 per MMBtu, while locations in the West generally saw the largest decreases ranging between 27 cents and 71 cents per MMBtu. The price of the NYMEX futures contract for July delivery expired Tuesday (June 28) at $6.976, decreasing about 47 cents per MMBtu, or 6.2 percent, since last Wednesday (June 22). Natural gas in storage as of Friday, June 24 was 2,123 Bcf, which is 14.7 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil declined $1.04 per barrel, or about 2 percent, since last Wednesday, ending trading yesterday (June 29) at $57.28. The WTI crude oil spot price experienced an all-time high price of $59.78 per barrel on Monday, June 27.

228

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2007 (next release 2:00 p.m. on July 26, 2007) 9, 2007 (next release 2:00 p.m. on July 26, 2007) Since Wednesday, July 11, natural gas spot prices decreased at virtually all markets in the Lower 48 States. Prices at the Henry Hub declined 41 cents per MMBtu, or 6 percent, since Wednesday, July 11, to $6.24 per MMBtu. At the NYMEX, the futures contract for August delivery at the Henry Hub settled yesterday (July 18) at $6.528 per MMBtu, falling 7 cents per MMBtu, or 1 percent since last Wednesday, July 11. Natural gas in storage was 2,692 Bcf as of July 13, which is 15.7 percent above the 5-year average (2002-2006). The spot price for West Texas Intermediate (WTI) crude oil gained $2.45 per barrel on the week (Wednesday-Wednesday) to $75.03 per barrel or $12.94 per MMBtu. Prices: Natural gas prices fell at virtually all market locations since last Wednesday, July 11, with declines of 25 to 50 cents per MMBtu or about 4 to 12 percent. Moderating temperatures in most areas of the Lower 48 States likely accounted for the widespread declines, as cooler temperatures mitigated cooling demand for natural gas. On a regional basis, price declines averaged between 18 and 58 cents per MMBtu, or 3 and 13 percent, since last Wednesday, July 11. The largest price decreases since last Wednesday, July 11, occurred principally in the Rocky Mountain region, where prices fell by more than 57 cents per MMBtu, or 13 percent on average. By far, the smallest decreases occurred in the Arizona/Nevada and Florida regions, where prices fell by 18 and 24 cents per MMBtu on average, respectively, with the Florida citygate posting the highest price in the Lower 48 States at $8.00 per MMBtu. Elsewhere, average price decreases by region ranged between 30 and 43 cents per MMBtu. Despite these declines and lower electric generation demand relative to last year, prices generally exceeded levels reported last year at this time, with prices at the Henry Hub $0.22 per MMBtu or 4 percent above last year's level. The principal exception to the year-over-year price increases occurred in the Rocky Mountain region, where prices at selected markets were between $1.87 and $2.28 per MMBtu or about 35 and 43 percent below last year's level.

229

Raman gas analyzer for determining the composition of natural gas  

Science Journals Connector (OSTI)

We describe a prototype of a Raman gas analyzer designed for measuring the composition of natural gas. Operation of the gas analyzer was tested on a real natural gas. We show that our Raman gas analyzer prototype...

M. A. Buldakov; B. V. Korolev; I. I. Matrosov

2013-03-01T23:59:59.000Z

230

Noble gas magnetic resonator  

DOE Patents (OSTI)

Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

2014-04-15T23:59:59.000Z

231

OIL & GAS INSTITUTE Introduction  

E-Print Network (OSTI)

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

232

Electricity and Natural Gas Efficiency Improvements for Residential Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Efficiency Improvements for Residential Gas and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Publication Type Report LBNL Report Number LBNL-59745 Year of Publication 2006 Authors Lekov, Alexander B., Victor H. Franco, Stephen Meyers, James E. McMahon, Michael A. McNeil, and James D. Lutz Document Number LBNL-59745 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78% annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80% AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81% AFUE) and condensing furnaces (90-96% AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80%. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90% or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current extra cost of this technology more than offsets the sizable electricity savings.

233

The United States has significant natural gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States has significant natural gas United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to locate and bring into production. To help meet this challenge, the U.S. Department of Energy's Office of Fossil Energy over the years has amassed wide ranging expertise in areas related to deepwater resource location, production, safety and environmental protection. The goal of these activities has been to not only help overcome

234

Gas Source Localisation by Constructing Concentration Gridmaps with a Mobile Robot  

E-Print Network (OSTI)

Gas Source Localisation by Constructing Concentration Gridmaps with a Mobile Robot Achim Lilienthal of a gas distribution by creating concentration gridmaps with a mobile robot equipped with a gas-sensitive system ("mobile nose"). By contrast to metric gridmaps extracted from sonar or laser range scans, a gas

Duckett, Tom

235

UDC 622.276 A NEW APPROACH CALCULATE OIL-GAS RATIO  

E-Print Network (OSTI)

UDC 622.276 A NEW APPROACH CALCULATE OIL-GAS RATIO FOR GAS CONDENSATE AND VOLATILE OIL RESERVOIRS. In this work, we develop a new approach to calculate oil-gas ratio (Rv) by matching PVT experimental data laboratory analysis of eight gas condensate and five volatile oil fluid samples; selected under a wide range

Fernandez, Thomas

236

Analysis of moisture variability in the European Centre for Medium-Range Weather Forecasts 15-year  

E-Print Network (OSTI)

Analysis of moisture variability in the European Centre for Medium-Range Weather Forecasts 15-year Centre for Medium-Range Weather Forecasts 15-year reanalysis (ERA-15) moisture over the tropical oceans. Introduction [2] Because water vapor is the most significant green- house gas and it exhibits a strong

Allan, Richard P.

237

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

238

Control apparatus for hot gas engine  

DOE Patents (OSTI)

A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

239

Natural Gas: Dry Wells Yield Gas  

Science Journals Connector (OSTI)

... THE Gas Council and Home Oil of Canada have announced plans for developing two ... Council and Home Oil of Canada have announced plans for developing two natural ...

1969-04-26T23:59:59.000Z

240

Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

South Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

242

Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

243

Montana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

244

Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

245

Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

246

New York Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

247

West Virginia Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

248

North Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

249

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

250

U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

251

Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

252

Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

253

Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

254

Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

255

Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

256

Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

257

Chapter Nine - Gas Sweetening  

Science Journals Connector (OSTI)

Abstract This chapter begins by reviewing the processing of natural gas to meet gas sales contract specifications. It then describes acid gas limitations for pipelines and gas plants, before detailing the most common acid gas removal processes, such as solid-bed, chemical solvent processes, physical solvent processes, direct conversion processes, distillation process, and gas permeation processes. The chapter discusses the selection of the appropriate removal process for a given situation, and it provides a detailed design procedure for a solid-bed and chemical solvent process. The chapter ends by supplying a sample design for a solid-bed and chemical solvent process.

Maurice I. Stewart Jr.

2014-01-01T23:59:59.000Z

258

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2007 (next release 2:00 p.m. on February 8, 2007) 1, 2007 (next release 2:00 p.m. on February 8, 2007) Since Wednesday, January 24, natural gas spot prices have increased at most market locations in the Lower 48 States, with increases ranging between 9 and 60 cents per MMBtu or about 1.1 to 8.4 percent at most markets. On Wednesday, January 31, prices at the Henry Hub averaged $7.75 per MMBtu, reflecting an increase of 29 cents per MMBtu or about 4 percent since Wednesday, January 24. The futures contract for February delivery at the Henry Hub closed at $6.917 per MMBtu on Monday, January 29, decreasing about 50 cents per MMBtu since Wednesday, January 24. By yesterday, (January 31), the futures contract for March 2007 delivery at the Henry Hub increased about 29 cents per MMBtu or about 4 percent since Wednesday, January 24. Natural gas in storage was 2,571 Bcf as of January 26, which is about 21 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $3.93 per barrel, or 7.3 percent to $58.17 per barrel or $10.03 per MMBtu. This week's WTI price change was the highest week-on-week increase since the week ended November 29, 2006, when crude oil increased $5.17 per barrel or $0.89 per MMBtu. Despite this week's relatively high increase, crude oil prices remain about 14.3 percent lower than a year ago.

259

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

17, 2003 (next release 2:00 p.m. on July 24) 17, 2003 (next release 2:00 p.m. on July 24) Spot and futures prices fell significantly during the week (Wednesday-Wednesday, July 9-16), as working gas inventories continued to grow strongly, intense summer heat was limited almost exclusively to the mountainous regions of the West, and Hurricane Claudette's immediate effect on prices was minimal. In trading at the Henry Hub, spot prices fell 56 cents from the previous Wednesday (July 9), to an even $5 per MMBtu. On the NYMEX, the settlement price of the futures contract for August delivery dipped below $5 per MMBtu, as it closed yesterday (July 16) at $4.934 per MMBtu-the first sub-$5 settlement for a near-month contract in nearly 4 months. EIA reported that working gas inventories were 1,866 Bcf as of Friday, July 11, which is 13.9 percent below the previous 5-year (1998-2002) average. The spot price for West Texas Intermediate (WTI) crude oil traded in a narrow range between $31.04 and $31.60 per barrel for the week. It ended trading yesterday with a decline of 40 cents per barrel to $31.20, or about $5.38 per MMBtu, as oil markets also reacted to Hurricane Claudette's limited impact on infrastructure and production. For the week, WTI showed a modest gain of $0.33 per barrel ($0.03 per MMBtu).

260

Gas Turbine Based Power Cycles - A State-of-the-Art Review  

Science Journals Connector (OSTI)

Gas turbines have been used in wide ranging applications ... This paper provides the historical evolution of the gas turbine (GT) based power cycles. A detailed ... , modified Brayton cycles under development by ...

R. K. Bhargava; M. Bianchi; A. De Pascale

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor...  

Gasoline and Diesel Fuel Update (EIA)

Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Pipeline...

262

Technically recoverable Devonian shale gas in Ohio  

SciTech Connect

The technically recoverable gas from Devonian shale (Lower and Middle Huron) in Ohio is estimated to range from 6.2 to 22.5 Tcf, depending on the stimulation method and pattern size selected. This estimate of recovery is based on the integration of the most recent data and research on the Devonian Age gas-bearing shales of Ohio. This includes: (1) a compilation of the latest geologic and reservoir data for the gas in-place; (2) analysis of the key productive mechanisms; and, (3) examination of alternative stimulation and production strategies for most efficiently recovering this gas. Beyond a comprehensive assembly of the data and calculation of the technically recoverable gas, the key findings of this report are as follows: a substantial volume of gas is technically recoverable, although advanced (larger scale) stimulation technology will be required to reach economically attractive gas production rates in much of the state; well spacing in certain of the areas can be reduced by half from the traditional 150 to 160 acres per well without severely impairing per-well gas recovery; and, due to the relatively high degree of permeability anisotropy in the Devonian shales, a rectangular, generally 3 by 1 well pattern leads to optimum recovery. Finally, although a consistent geological interpretation and model have been constructed for the Lower and Middle Huron intervals of the Ohio Devonian shale, this interpretation is founded on limited data currently available, along with numerous technical assumptions that need further verification. 11 references, 21 figures, 32 tables.

Kuushraa, V.A.; Wicks, D.E.; Sawyer, W.K.; Esposito, P.R.

1983-07-01T23:59:59.000Z

263

Radar range measurements in the atmosphere.  

SciTech Connect

The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

Doerry, Armin Walter

2013-02-01T23:59:59.000Z

264

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

265

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

266

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

"N3050MS3","N3010MS3","N3020MS3","N3035MS3","NA1570SMS3","N3045MS3" "Date","Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

267

Natural Gas Monthly  

Reports and Publications (EIA)

Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

2014-01-01T23:59:59.000Z

268

Microminiature gas chromatograph  

DOE Patents (OSTI)

A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

Yu, Conrad M. (Antioch, CA)

1996-01-01T23:59:59.000Z

269

Natural gas annual 1996  

SciTech Connect

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

270

Gas Turbine Plants  

Science Journals Connector (OSTI)

In a cycle process of a gas turbine, the compressor load, as well as ... from the expansion of the hot pressurized flue gas. Either turbine, compressor and driven assembly are joined by ... shaft is thus divided,...

1992-01-01T23:59:59.000Z

271

Gas-Turbine Cycles  

Science Journals Connector (OSTI)

This book focuses on the design of regenerators for high-performance regenerative gas turbines. The ways in which gas-turbine regenerators can be designed for high system performance can be understood by studying...

Douglas Stephen Beck; David Gordon Wilson

1996-01-01T23:59:59.000Z

272

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

of 1 Tcf from the 1994 estimate of 51 Tcf. Ultimate potential for natural gas is a science-based estimate of the total amount of conventional gas in the province and is an...

273

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3010CT3","N3020CT3","N3035CT3","N3045CT3" "Date","Natural Gas Citygate Price in Connecticut (Dollars per Thousand Cubic Feet)","Connecticut Price of Natural Gas Delivered to...

274

Natural Gas in Britain  

Science Journals Connector (OSTI)

... AT a recent meeting of the Institution of Gas Engineers, Sir Harold Smith, chairman ofthe ... Engineers, Sir Harold Smith, chairman ofthe Gas Council, stated that an intensive, large-scale search for ...

1953-06-13T23:59:59.000Z

275

Natural Gas Weekly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Rotary Rig Count Rises to Highest Level since February 2009. The natural gas rotary rig count was 992 as of Friday, August 13, according to data released by Baker...

276

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

277

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

278

Compressed Gas Cylinder Policy  

E-Print Network (OSTI)

storage rack, a wall mounted cylinder rack, anchored to a fixed bench top, vented gas cabinet, or other

279

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

. Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis...

280

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Natural gas annual 1995  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

282

Residual gas analysis device  

DOE Patents (OSTI)

A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

Thornberg, Steven M. (Peralta, NM)

2012-07-31T23:59:59.000Z

283

Natural Gas Reforming  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This technology is an important pathway for near-term hydrogen production.

284

Fuel: Bargain Gas  

Science Journals Connector (OSTI)

... THE Gas Council has done well to agree on low prices for North Sea Gas with the Shell and Esso companies. The ... for North Sea Gas with the Shell and Esso companies. The price finally agreed is both much less than the two companies wanted and much less than ...

1968-12-28T23:59:59.000Z

285

Gas Cylinders: Proper Management  

E-Print Network (OSTI)

Compressed Gas Cylinders: Proper Management And Use Published by the Office of Environment, Health;1 Introduction University of California, Berkeley (UC Berkeley) departments that use compressed gas cylinders (MSDS) and your department's Job Safety Analyses (JSAs). Talk to your gas supplier about hands

Boyer, Elizabeth W.

286

Gas Chromatography -Mass Spectrometry  

E-Print Network (OSTI)

GCMS - 1 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS OF ETHANOL AND BENZENE IN GASOLINE Last updated: June 17, 2014 #12;GCMS - 2 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS). The goal of this experiment is to separate the components in a sample of gasoline using Gas Chromatography

Nizkorodov, Sergey

287

Static gas expansion cooler  

DOE Patents (OSTI)

Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

Guzek, J.C.; Lujan, R.A.

1984-01-01T23:59:59.000Z

288

Valve for gas centrifuges  

DOE Patents (OSTI)

The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, C.A.; Rurbage, C.H.

1982-03-17T23:59:59.000Z

289

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Glossary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Glossary Glossary Acquifer - A single underground geological formation, or group of formations, containing water. Antrim Shale - A shale deposit located in the northern Michigan basin that is a Devonian age rock formation lying at a relatively shallow depth of 1,000 feet. Gas has been produced from this formation for several decades primarily via vertical, rather than horizontal, wells. The Energy Information Administration (EIA) estimates the technically recoverable Antrim shale resource at 20 trillion cubic feet (tcf). Appalachian Basin - The geological formations that roughly follow the Appalachian Mountain range and contain

290

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

291

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

292

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

293

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

294

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

295

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

296

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

297

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

298

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

299

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

300

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

302

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

303

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

304

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

305

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

306

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

307

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

308

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

309

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

310

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

311

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

312

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

313

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

314

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

315

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

316

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

317

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

318

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

319

Gas Hydrate Storage of Natural Gas  

SciTech Connect

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

320

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

322

Natural gas leak mapper  

DOE Patents (OSTI)

A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

2008-05-20T23:59:59.000Z

323

NITROGEN REMOVAL FROM NATURAL GAS  

SciTech Connect

The objective of this project was to develop a membrane process for the denitrogenation of natural gas. Large proven reserves in the Lower-48 states cannot be produced because of the presence of nitrogen. To exploit these reserves, cost-effective, simple technology able to reduce the nitrogen content of the gas to 4-5% is required. Technology applicable to treatment of small gas streams (below 10 MMscfd) is particularly needed. In this project membranes that selectively permeate methane and reject nitrogen in the gas were developed. Preliminary calculations show that a membrane with a methane/nitrogen selectivity of 3 to 5 is required to make the process economically viable. A number of polymer materials likely to have the required selectivities were evaluated as composite membranes. Polyacetylenes such as poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(4-methyl-2-pentyne) [PMP] had high selectivities and fluxes, but membranes prepared from these polymers were not stable, showing decreasing flux and selectivity during tests lasting only a few hours. Parel, a poly(propylene oxide allyl glycidyl ether) had a selectivity of 3 at ambient temperatures and 4 or more at temperatures of {minus}20 C. However, Parel is no longer commercially available, and we were unable to find an equivalent material in the time available. Therefore, most of our experimental work focused on silicone rubber membranes, which have a selectivity of 2.5 at ambient temperatures, increasing to 3-4 at low temperatures. Silicone rubber composite membranes were evaluated in bench-scale module tests and with commercial-scale, 4-inch-diameter modules in a small pilot plant. Over six days of continuous operation at a feed gas temperature of {minus}5 to {minus}10 C, the membrane maintained a methane/nitrogen selectivity of about 3.3. Based on the pilot plant performance data, an analysis of the economic potential of the process was prepared. We conclude that a stand-alone membrane process is the lowest-cost technology for small gas streams containing less than 10% nitrogen. The membrane process can recover more than 60-70% of the hydrocarbon content of the gas at a cost of $0.60-0.70/Mscfd. The capital cost of the process is about $100-200/Mscf. A number of small operators appear to be ready to use the technology if these costs can be demonstrated in the field. A second, and perhaps better, application of the technology is to combine the membrane process with a cryogenic process to treat large gas streams containing 10-20% nitrogen. The combination process achieves significant synergies. The membrane process performs a bulk separation of the gas, after which the cryogenic process treats the membrane residue (nitrogen-enriched) gas to recover more methane. Overall, hydrocarbon recoveries are greater than 95%. The capital cost of the combination process is lower than that of either process used alone and the processing costs are in the range $0.30-0.40/Mscf. This operating cost would be attractive to many gas producers. MTR is collaborating with a producer of cryogenic systems to further develop the combination process. A number of innovations in membrane process designs were made during the project; four U.S. patents covering various aspects of the technology were filed and issued.

K.A. Lokhandwala; M.B. Ringer; T.T. Su; Z. He; I. Pinnau; J.G. Wijmans; A. Morisato; K. Amo; A. DaCosta; R.W. Baker; R. Olsen; H. Hassani; T. Rathkamp

1999-12-31T23:59:59.000Z

324

Nuclear Physics Long Range Plan | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Physics Long Range Plan June 26, 2014 For a couple of years now, we have been waiting to get started on the next nuclear physics long range plan (LRP). What does that mean?...

325

Medium- and Long-Range Forecasting  

Science Journals Connector (OSTI)

In contrast to short and extended range forecasts, predictions for periods beyond 5 days use time-averaged, midtropospheric height fields as their primary guidance. As time ranges are increased to 3O- and 90-day outlooks, guidance increasingly ...

A. James Wagner

1989-09-01T23:59:59.000Z

326

Viking Range: Order (2014-CE-23014)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Viking Range, LLC to pay a $8,000 civil penalty after finding Viking Range had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

327

American Range: Order (2014-CE-23006)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered American Range Corporation to pay a $8,000 civil penalty after finding American Range had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

328

Drilling through gas hydrates formations: possible problems and suggested solution  

E-Print Network (OSTI)

Gas hydrate research in the last two decades has taken various directions ranging from ways to understand the safe and economical production of this enormous resource to drilling problems. as more rigs and production platforms move into deeper...

Amodu, Afolabi Ayoola

2009-05-15T23:59:59.000Z

329

Deuteron Scattering from a Polarized He3 Gas Target  

Science Journals Connector (OSTI)

Scattering asymmetries in the angular range 78?<~?c.m.<~127? have been measured for 9.9- and 11.9-MeV (lab energy) unpolarized deuterons incident on a polarized He3 gas target.

B. E. Watt and W. T. Leland

1970-11-01T23:59:59.000Z

330

Working on new gas turbine cycle for heat pump drive  

E-Print Network (OSTI)

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor, is sized for a 10-ton heat pump system - will be scaled to power a commercial product line ranging from 7 of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

331

Technically recoverable Devonian shale gas in Kentucky  

SciTech Connect

This report evaluates the natural gas potential of the Devonian Age shales of Kentucky. For this, the study: (1) compiles the latest geologic and reservoir data to establish the gas in-place; (2) analyzes and models the dominant gas production mechanisms; and (3) examines alternative well stimulation and production strategies for most efficiently recovering the in-place gas. The major findings of the study include the following: (1) The technically recoverable gas from Devonian shale (Lower and Upper Huron, Rhinestreet, and Cleveland intervals) in Kentucky is estimated to range from 9 to 23 trillion cubic feet (Tcf). (2) The gas in-place for the Devonian shales in eastern Kentucky is 82 Tcf. About one half of this amount is found in the Big Sandy gas field and its immediate extensions. The remainder is located in the less naturally fractured, but organically rich area to the west of the Big Sandy. (3) The highly fractured shales in the Big Sandy area in southeast Kentucky and the more shallow shales of eastern Kentucky respond well to small-scale stimulation. New, larger-scale stimulation technology will be required for the less fractured, anisotropic Devonian shales in the rest of the state. 44 refs., 49 figs., 24 tabs.

Kuuskraa, V.A.; Sedwick, K.B.; Thompson, K.B.; Wicks, D.E.

1985-05-01T23:59:59.000Z

332

Multicomponent Gas Diffusion in Porous Electrodes  

E-Print Network (OSTI)

Multicomponent gas transport is investigated with unprecedented precision by AC impedance analysis of porous YSZ anode-supported solid oxide fuel cells. A fuel gas mixture of H2-H2O-N2 is fed to the anode, and impedance data are measured across the range of hydrogen partial pressure (10-100%) for open circuit conditions at three temperatures (800C, 850C and 900C) and for 300mA applied current at 800C. For the first time, analytical formulae for the diffusion resistance (Rb) of three standard models of multicomponent gas transport (Fick, Stefan-Maxwell, and Dusty Gas) are derived and tested against the impedance data. The tortuosity is the only fitting parameter since all the diffusion coefficients are known. Only the Dusty Gas model leads to a remarkable data collapse for over twenty experimental conditions, using a constant tortuosity consistent with permeability measurements and the Bruggeman relation. These results establish the accuracy of the Dusty Gas model for multicomponent gas diffusion in porous med...

Fu, Yeqing; Dutta, Abhijit; Mohanram, Aravind; Pietras, John D; Bazant, Martin Z

2014-01-01T23:59:59.000Z

333

Climate VISION: Private Sector Initiatives: Oil and Gas: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Prior to developing the API Compendium of GHG Emissions Methodologies for the Oil and Gas Industry (PDF 14.6 MB), API reviewed a wide range of government estimates of greenhouse gas emissions from the oil and gas industry as well as existing and widely used methodologies for estimating emissions from our industry's operations. This review made it quite clear that while existing data and methods may be adequate for national-level estimates of greenhouse gas emissions, they were inadequate for developing reliable facility- and company-specific estimates of greenhouse gas emissions from oil and gas operations. Download Acrobat Reader The Compendium is used by industry to assess its greenhouse gas emissions. Working with a number of other international associations as well as

334

Gas turbine generators from India for Asian and world markets  

SciTech Connect

Bharat Heavy Electricals Ltd. (BHEL), in India, is an important producer of large industrial gas turbines in the Asian area. The company produces both GE frame type industrial gas turbines and Siemens design gas turbines for power generation service. Up to this time, BHEL has manufactured and supplied 68 gas turbine power generation units of GE design, ranging from Frame 1 to Frame 6 sizes, and two Siemens V94.2 gas turbines rated at 150 MW ISO. In addition, 15 gas turbine generating units are currently being manufactured. These include a large Frame 9 unit and a V94.2 gas turbine. This paper describes briefly some of the projects completed by the company.

NONE

1996-07-01T23:59:59.000Z

335

Mid-Infrared Trace Gas Analysis with Single-Pass Fourier Transform Infrared Hollow Waveguide Gas Sensors  

Science Journals Connector (OSTI)

A hollow core optical fiber gas sensor has been developed in combination with a Fourier transform infrared (FT-IR) spectrometer operating in the spectral range of 4000500...

Kim, Seong-Soo; Menegazzo, Nicola; Young, Christina; Chan, James; Carter, Chance; Mizaikoff, Boris

2009-01-01T23:59:59.000Z

336

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Maximum Rebate $1,000 Program Info Start Date 01/01/2013 Expiration Date 04/30/2013 State Illinois Program Type Utility Rebate Program Rebate Amount ComEd Rebates Central Air Conditioner Unit 14 SEER or above: $350 Central Air Conditioner Unit Energy Star rated: $500 Nicor Gas, Peoples Gas and North Shore Gas Furnace: $200 - $500 (varies based on gas company and unit installed) Provider ComEd Energy ComEd, Nicor Gas, Peoples Gas and North Shore Gas are offering a Complete System Replacement Rebate Program to residential customers. The program is

337

U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Refinery Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

338

U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Biomass Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

339

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

340

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

342

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

343

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

344

1M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing  

E-Print Network (OSTI)

disturbances: flue gas flowrate, CO2 composition in flue gas + active constraint values Step 4. Optimization 41M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances Mehdi Panahi Sigurd

Skogestad, Sigurd

345

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2001 1, 2001 From Friday, June 1 to Friday, June 8, cash prices fell again, as cooler-than-normal temperatures prevailed from midweek on in the northern half of the nation as well as in some areas along the Gulf of Mexico (See Temperature Map) (See Deviation from Normal Temperatures Map). Price declines in cash markets ranged from pennies to over $1.00 per MMBtu, with most points down 9-15 cents. At the Henry Hub, the price fell 8 cents to $3.63 per MMBtu. The near-month (July delivery) futures contract lost less than 1 cent for the week, settling on Friday, June 8 at $3.922 per MMBtu. Once again, weekly storage injections topped 100 Bcf, approaching or exceeding regional records for the report week. Prices: It was a week of contrasting price movements in cash markets. Spot prices responded on Monday to demand-increasing weather extremes (hot weather in Texas and the Gulf Coast; near-winter temperatures in the Rockies) with increases of 20 cents or more at most locations. Further gains of a nickel to a dime occurred on Tuesday as Tropical Storm Allison headed for landfall in the western Gulf. However, gains began to erode Wednesday with the American Gas Association's (AGA) announcement of storage injections of 117 Bcf. Spot prices continued to trend down for the rest of the week. Allison was no threat to production assets, and her heavy rains and persistent cloud cover over much of east Texas, Louisiana, and southern Arkansas eased utility demand significantly. Price drops were most pronounced in California, where moderate temperatures and adequate electricity supplies obliterated early-week gains. Both PG&E and SOCAL issued high-inventory operational flow orders (OFO) on Friday. On SOCAL, prices were down nearly $6 from their Tuesday highs to $3.54 per MMBtu on Friday. This is the first time since May 2000 that the SOCAL price was less than at the Henry Hub. At Rockies price points, where the effects of warming temperatures, lack of demand in California, and major pipeline maintenance projects had gas backing up throughout the region, prices fell under $2.00 per MMBtu at several locations for the first time since early November 1999. The average spot price in the Rockies on Friday was $1.76 per MMBtu.

346

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0 (next release 2:00 p.m. on May 27) 0 (next release 2:00 p.m. on May 27) Since Wednesday, May 12, natural gas spot prices have decreased at virtually all market locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the Henry Hub decreased 21 cents or about 3 percent to $6.18 per MMBtu. Yesterday (May 19), the price of the NYMEX futures contract for June delivery at the Henry Hub settled at $6.455 per MMBtu, decreasing roughly 5 cents or less than 1 percent since last Wednesday. Natural gas in storage was 1,388 Bcf as of May 14, which is 1.1 percent below the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil climbed $1.31 per barrel or 3 percent on the week to $41.61 per barrel or $7.174 per MMBtu. Prices: Moderating temperatures led to price declines of 12 to 48 cents per MMBtu at virtually all market locations in the Lower 48 States since last Wednesday, May 12. The steepest declines occurred principally west of the Rockies, where prices fell more than 35 cents per MMBtu at most markets. In California, prices fell more than 40 cents per MMBtu, while declines in the Rocky Mountains region averaged roughly 36 cents per MMBtu. East of the Rockies, price decreases were widespread with declines ranging between 20 and 35 cents per MMBtu at most markets. These declines were more pronounced along the northern tier with declines averaging 28, 27, and 23 cents per MMBtu in the Midcontinent, Northeast and Midwest regions, respectively. In the south, including Texas, Louisiana, and Florida, price decreases were less than 23 cents per MMBtu on average. Despite these widespread declines, prices nevertheless remain somewhat high relative to historical trends and exceed last year's levels by 3 to 5 percent. For example, prices at the New York citygate are 34 cents or 5 percent above last year's level. Principal contributing factors sustaining the higher price levels likely include higher oil prices this year as the price of crude oil exceeds last year's level by more than 42 percent.

347

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

10 (next release 2:00 p.m. on June 17) 10 (next release 2:00 p.m. on June 17) Since Wednesday, June 2, natural gas spot prices have decreased at virtually all market locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the Henry Hub decreased 46 cents or about 7 percent to $6.05 per MMBtu. Yesterday (June 9), the price of the NYMEX futures contract for July delivery at the Henry Hub settled at $6.082 per MMBtu, decreasing roughly 44 cents or nearly 7 percent since last Wednesday. Natural gas in storage was 1,666 Bcf as of June 4, which is 0.2 percent below the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil fell $2.36 per barrel or nearly 6 percent on the week to $37.60 per barrel or $6.48 per MMBtu. Prices: Widespread moderate temperatures and falling crude oil prices contributed to price declines of 31 to 87 cents per MMBtu at virtually all market locations in the Lower 48 States since last Wednesday, June 2. The steepest declines occurred principally west of the Rockies, where prices fell more than 70 cents per MMBtu at most markets, with the largest declines in California. The lack of temperature-driven demand also caused operational difficulties, with a number of pipelines in the West issuing either high inventory OFOs or critical notices in response to high linepack on their systems. East of the Rockies, price decreases were widespread with declines ranging between 40 and 60 cents per MMBtu at most markets. These declines were more pronounced in the central regions of the Lower 48 States with declines averaging between 50 and 60 cents per MMBtu in the Midcontinent, Midwest, and Texas regions. In Louisiana and east of the Mississippi, prices fell less than 50 cents. With these widespread declines, prices have fallen below last year's levels by as much as 39 cents per MMBtu. For example, prices at the southern California border are 39 cents or nearly 7 percent below last year's level, while prices at the Henry Hubare 20 cents or 3 percent below last year's level.

348

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

349

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIA’s Weekly Natural Gas Storage Report.

350

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, July 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 21, 2010) Natural gas prices rose across market locations in the lower 48 States during the report week. The Henry Hub natural gas spot price rose 31 cents, or 7 percent, during the week, averaging $4.70 per million Btu (MMBtu) yesterday, July 21. At the New York Mercantile Exchange (NYMEX), the price of the August 2010 natural gas futures contract for delivery at the Henry Hub rose about 21 cents, or 5 percent, ending the report week at $4.513 per MMBtu. Working natural gas in storage increased to 2,891 billion cubic feet (Bcf) as of Friday, July 16, according to EIA’s Weekly Natural Gas Storage

351

Chapter 8 - Natural Gas  

Science Journals Connector (OSTI)

Although natural gas is a nonrenewable resource, it is included for discussion because its sudden growth from fracking will impact the development and use of renewable fuels. Firms who are engaged in the development of processes that employ synthesis gas as an intermediate have concluded that the synthesis gas is more economically obtainable by steam reforming of natural gas than by gasification of waste cellulose. In some instances, firms have largely abandoned the effort to produce a renewable fuel as such, and in others firms are developing hybrid processes that employ natural gas in combination with a fermentation system. Moreover, natural gas itself is an attractive fuel for internal combustion engines since it can be the least expensive option on a cost per joule basis. It is also aided by its high octane number of 130.

Arthur M. Brownstein

2015-01-01T23:59:59.000Z

352

Gas shielding apparatus  

DOE Patents (OSTI)

An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

Brandt, D.

1984-06-05T23:59:59.000Z

353

Tonopah Test Range capabilities: technical manual  

SciTech Connect

This manual describes Tonopah Test Range (TTR), defines its testing capabilities, and outlines the steps necessary to schedule tests on the Range. Operated by Sandia National Laboratories, TTR is a major test facility for DOE-funded weapon programs. The Range presents an integrated system for ballistic test vehicle tracking and data acquisition. Multiple radars, optical trackers, telemetry stations, a central computer complex, and combined landline/RF communications systems assure full Range coverage for any type of test. Range operations are conducted by a department within Sandia's Field Engineering Directorate. While the overall Range functions as a complete system, it is operationally divided into the Test Measurements, Instrumentation Development, and Range Operations divisions. The primary function of TTR is to support DOE weapons test activities. Management, however, encourages other Government agencies and their contractors to schedule tests on the Range which can make effective use of its capabilities. Information concerning Range use by organizations outside of DOE is presented. Range instrumentation and support facilities are described in detail. This equipment represents the current state-of-the-art and reflects a continuing commitment by TTR management to field the most effective tracking and data acquisition system available.

Manhart, R.L.

1982-11-01T23:59:59.000Z

354

Thermodynamics of Chaplygin gas  

E-Print Network (OSTI)

We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

Yun Soo Myung

2011-05-11T23:59:59.000Z

355

Gas Filter Testing Methods  

Science Journals Connector (OSTI)

Gas filtration of air in the cleanroom is carried out with HEPA (high- ... filter. The ambient air filters for the cleanroom are relatively fragile and require great care...

Alvin Lieberman

1992-01-01T23:59:59.000Z

356

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Prices",8,"Monthly","112014","1151989" ,"Release Date:","1302015"...

357

,"California Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",4,"Annual",2013,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 7","Consumption",11,"Annual",2013,...

358

,"Maryland Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1999" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",10,"Annual",2013,...

359

,"Georgia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1999" ,"Data 3","Underground Storage",3,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",8,"Annual",2013,"...

360

,"Massachusetts Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",3,"Annual",1975,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",8,"Annual",2013,"...

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

,"Oregon Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1979" ,"Data 3","Underground Storage",4,"Annual",2013,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",10,"Annual",2013,...

362

,"Texas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",4,"Annual",2013,"6301967" ,"Data 6","Liquefied Natural Gas Storage",1,"Annual",2013,"6302012" ,"Data 7","Consumption",11,"Annual",2013,...

363

,"Washington Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",4,"Annual",2013,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",9,"Annual",2013,"...

364

,"Nebraska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 3","Underground Storage",4,"Annual",2013,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",11,"Annual",2013,...

365

,"Pennsylvania Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

366

,"Alaska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",6,"Annual",2013,"6301973" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2013,"6301969" ,"Data 7","Consumption",11,"Annual",2013,...

367

,"Maine Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Imports and Exports",2,"Annual",2013,"6301982" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301981" ,"Data 4","Consumption",8,"Annual",2013,"...

368

,"Minnesota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",4,"Annual",2013,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",8,"Annual",2013,"...

369

,"Idaho Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",2,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301981" ,"Data 5","Consumption",9,"Annual",2013,"...

370

,"Wisconsin Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 4","Consumption",8,"Annual",2013,"...

371

,"Louisiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",4,"Annual",2013,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 7","Consumption",11,"Annual",2013,...

372

,"Delaware Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 4","Consumption",9,"Annual",2013,"...

373

,"Colorado Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",2,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

374

,"Tennessee Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 3","Underground Storage",4,"Annual",2013,"6301968" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",11,"Annual",2013,...

375

,"Arkansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

376

,"Nevada Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

301967" ,"Data 2","Production",11,"Annual",2013,"6301991" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301982" ,"Data 4","Consumption",10,"Annual",2013,...

377

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 4","Consumption",8,"Annual",2013,"...

378

,"Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",10,"Annual",2013,...

379

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

380

,"Indiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 3","Underground Storage",4,"Annual",2013,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",10,"Annual",2013,...

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural Gas Rules (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

382

Oil and Gas (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

383

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

(NETL) Anthony Zammerilli General Engineer Strategic Center for Natural Gas and Oil Energy Sector Planning and Analysis (ESPA) Robert C. Murray, Thomas Davis, and James...

384

Oil and Gas Outlook  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Outlook For Independent Petroleum Association of America November 13, 2014 | Palm Beach, FL By Adam Sieminski, Administrator U.S. Energy Information Administration Recent...

385

Natural gas annual 1997  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

386

Ammonia synthesis gas purification  

SciTech Connect

This patent describes the purification of a reformed gas mixture following water gas shift conversion to produce a purified ammonia synthesis gas stream. The improved processing sequence consisting essentially of: (A) Selectively catalytically oxidizing the residual carbon monoxide content of the gas mixture to carbon dioxide so as to reduce the carbon monoxide content of the gas mixture to less than about 20 ppm, the selective catalytic oxidation being carried out with an excess of air, with the excess oxygen being catalytically reacted with a small amount of hydrogen so that the residual oxygen level is reduced to less than about 3 ppm; (B) removing the bulk of the carbon dioxide content of the gas mixture by liquid absorption; (C) Removing residual amounts of carbon monoxide, carbon dioxide and water by selective adsorption on the fixed beds of a thermal swing adsorption system, a dry, purified ammonia ammonia synthesis gas stream containing less than a total of 10 ppm of carbon monoxide and carbon dioxide being recovered from the thermal swing adsorption system; (D) Passing the resulting dry, purified ammonia synthesis gas stream having a low content of methane to an ammonia production operation without intermediate passage of the ammonia synthesis gas stream to a methanation unit or to a cryogenic unit for removal of carbon monoxide and carbon dioxide therefrom; whereby the efficiency of the overall purification operation and the effective utilization of hydrogen are enhanced.

Fuderer, A.

1986-02-25T23:59:59.000Z

387

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Prices",13,"Annual",2013,"6301967" ,"Release Date:","10312014"...

388

EIA - Natural Gas Publications  

Gasoline and Diesel Fuel Update (EIA)

data collected on Form EIA-914 (Monthly Natural Gas Production Report) for Federal Offshore Gulf of Mexico, Texas, Louisiana, New Mexico, Oklahoma, Texas, Wyoming, Other States...

389

The Natural Gas Advantage  

Science Journals Connector (OSTI)

Environmental think-tank leaders and the new energy secretary are singing the praises of the ever-expanding U.S. natural gas bonanza, but at the same time, they worry about permanent dependence on this fossil fuel. ... This flood of shale-based natural gas finds has been great for U.S. chemical companies because it is a cheap feedstock and fuel source. ... Equally important, it is also revising the greenhouse gas-climate change equation because, when burned to generate electricity, natural gas produces the same electrical output as coal but emits half the amount of carbon dioxide. ...

JEFF JOHNSON

2013-06-24T23:59:59.000Z

390

NETL: Natural Gas Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Significant volumes of natural gas can also be produced from tight (low permeability) sandstone reservoirs and coal seams, both unconventional reservoir rocks. NETL...

391

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

force majeure declared December 17 at its Totem storage field, Colorado Interstate Gas Pipeline (CIG) reported that it anticipates repair work to be complete around February 12,...

392

Natural Gas Weekly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

imbalances. Northern Natural Gas Company declared a force majeure after an unplanned repair issue at the Spearman Compressor Station in Ochiltree County, Texas, on Friday,...

393

String Gas Baryogenesis  

E-Print Network (OSTI)

We describe a possible realization of the spontaneous baryogenesis mechanism in the context of extra-dimensional string cosmology and specifically in the string gas scenario.

G. L. Alberghi

2010-02-19T23:59:59.000Z

394

Home Safety: Radon Gas  

E-Print Network (OSTI)

Every home should be tested for radon, an invisible, odorless, radioactive gas that occurs naturally. This publication explains the health risks, testing methods, and mitigation and reduction techniques....

Shaw, Bryan W.; Denny, Monica L.

1999-11-12T23:59:59.000Z

395

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Interstate Gas Company (CIG) declared force majeure as a result of an unforeseen mechanical outage at the Morton compressor station in Colorado on pipeline segment 118....

396

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Columbia Gas Transmission, LLC on March 16 began planned maintenance on its pipeline in Green County, Pennsylvania. The maintenance will reduce capacity at an interconnect...

397

Reversible Acid Gas Capture  

SciTech Connect

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2009-08-01T23:59:59.000Z

398

Reversible Acid Gas Capture  

ScienceCinema (OSTI)

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2012-12-31T23:59:59.000Z

399

NETL: Oil & Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Gas Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Efficient recovery of our nation's fossil fuel resources...

400

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

402

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

403

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

404

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9,907 13,978 15,608 18,154 20,244 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,188,657 1,467,331 1,572,728 1,652,504 1,736,136 From Oil Wells.................................................. 137,385 167,656 174,748 183,612 192,904 Total................................................................... 1,326,042 1,634,987 1,747,476 1,836,115 1,929,040 Repressuring ...................................................... 50,216 114,407 129,598 131,125 164,164 Vented and Flared.............................................. 9,945 7,462 12,356 16,685 16,848

405

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

406

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60,577 63,704 65,779 68,572 72,237 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 5,859,358 4,897,366 4,828,188 4,947,589 5,074,067 From Oil Wells.................................................. 999,624 855,081 832,816 843,735 659,851 Total................................................................... 6,858,983 5,752,446 5,661,005 5,791,324 5,733,918 Repressuring ...................................................... 138,372 195,150 212,638 237,723 284,491 Vented and Flared.............................................. 32,010 26,823 27,379 23,781 26,947

407

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,700 16,350 17,100 16,939 20,734 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 4,260,529 1,398,981 1,282,137 1,283,513 1,293,204 From Oil Wells.................................................. 895,425 125,693 100,324 94,615 88,209 Total................................................................... 5,155,954 1,524,673 1,382,461 1,378,128 1,381,413 Repressuring ...................................................... 42,557 10,838 9,754 18,446 19,031 Vented and Flared.............................................. 20,266 11,750 10,957 9,283 5,015 Wet After Lease Separation................................

408

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 36,000 40,100 40,830 42,437 44,227 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 150,000 130,853 157,800 159,827 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 150,000 130,853 157,800 159,827 197,217 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 150,000 130,853 157,800 159,827 197,217

409

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 4,359 4,597 4,803 5,157 5,526 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 555,043 385,915 380,700 365,330 333,583 From Oil Wells .................................................. 6,501 6,066 5,802 5,580 5,153 Total................................................................... 561,544 391,981 386,502 370,910 338,735 Repressuring ...................................................... 13,988 12,758 10,050 4,062 1,307 Vented and Flared .............................................. 1,262 1,039 1,331 1,611 2,316 Wet After Lease Separation................................

410

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,321 4,331 4,544 4,539 4,971 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 61,974 71,985 76,053 78,175 87,292 From Oil Wells.................................................. 8,451 9,816 10,371 8,256 10,546 Total................................................................... 70,424 81,802 86,424 86,431 97,838 Repressuring ...................................................... 1 0 0 2 5 Vented and Flared.............................................. 488 404 349 403 1,071 Wet After Lease Separation................................ 69,936 81,397 86,075 86,027 96,762

411

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,051 3,521 3,429 3,506 3,870 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,545 71,543 76,915 R 143,644 152,495 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,545 71,543 76,915 R 143,644 152,495 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,545 71,543 76,915 R 143,644 152,495 Nonhydrocarbon Gases Removed

412

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,948 35,217 35,873 37,100 38,574 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,484,269 1,484,856 1,432,966 1,391,916 1,397,934 From Oil Wells.................................................. 229,437 227,534 222,940 224,263 246,804 Total................................................................... 1,713,706 1,712,390 1,655,906 1,616,179 1,644,738 Repressuring ...................................................... 15,280 20,009 20,977 9,817 8,674 Vented and Flared.............................................. 3,130 3,256 2,849 2,347 3,525 Wet After Lease Separation................................

413

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

414

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,000 4,825 6,755 7,606 3,460 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 156,333 150,972 147,734 157,039 176,221 From Oil Wells.................................................. 15,524 16,263 14,388 12,915 11,088 Total................................................................... 171,857 167,235 162,122 169,953 187,310 Repressuring ...................................................... 8 0 0 0 0 Vented and Flared.............................................. 206 431 251 354 241 Wet After Lease Separation................................ 171,642 166,804

415

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,178 4,601 3,005 3,220 3,657 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 244,826 264,809 260,554 254,488 259,432 From Oil Wells.................................................. 36,290 36,612 32,509 29,871 31,153 Total................................................................... 281,117 301,422 293,063 284,359 290,586 Repressuring ...................................................... 563 575 2,150 1,785 1,337 Vented and Flared.............................................. 1,941 1,847 955 705 688 Wet After Lease Separation................................

416

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7,068 7,425 7,700 8,600 8,500 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 241,776 224,560 224,112 194,121 212,276 From Oil Wells.................................................. 60,444 56,140 56,028 48,530 53,069 Total................................................................... 302,220 280,700 280,140 242,651 265,345 Repressuring ...................................................... 2,340 2,340 2,340 2,340 2,340 Vented and Flared.............................................. 3,324 3,324 3,324 3,324 3,324 Wet After Lease Separation................................

417

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 13,487 14,370 14,367 12,900 13,920 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,545 81,723 88,259 87,608 94,259 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,545 81,723 88,259 87,608 94,259 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,545 81,723 88,259 87,608 94,259 Nonhydrocarbon Gases Removed

418

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,897 33,917 34,593 33,828 33,828 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 98,551 97,272 97,154 87,993 85,018 From Oil Wells.................................................. 6,574 2,835 6,004 5,647 5,458 Total................................................................... 105,125 100,107 103,158 93,641 90,476 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 105,125 100,107 103,158

419

Black Hills Energy (Gas) - Residential New Construction Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential New Construction Rebate Black Hills Energy (Gas) - Residential New Construction Rebate Program Black Hills Energy (Gas) - Residential New Construction Rebate Program < Back Eligibility Construction Residential Savings Category Appliances & Electronics Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Builder Incentive: $800 - $2300 Provider Black Hills Energy Black Hills Energy offers new construction rebates for home builders in the eligible service area. Rebates between $800 and $5,000 are available for a range of efficiency measures incorporated into home construction. Qualifying homes must use natural gas and meet the minimum efficiency

420

Range Design Criteria- June 4, 2012  

Energy.gov (U.S. Department of Energy (DOE))

This document contains the currently-approved firearms "Range Design Criteria" referred to on DOE O 473.3, Protection Program Operations

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

47 Natural Gas Market Trends NATURAL GAS MARKET TRENDS  

E-Print Network (OSTI)

47 Natural Gas Market Trends Chapter 5 NATURAL GAS MARKET TRENDS INTRODUCTION Natural gas discusses current natural gas market conditions in California and the rest of North America, followed on the outlook for demand, supply, and price of natural gas for the forecasted 20-year horizon. It also addresses

422

GAS EXPLORATION Winter 2006 GasTIPS 5  

E-Print Network (OSTI)

GAS EXPLORATION Winter 2006 · GasTIPS 5 T he prediction of reservoir parameters such as gas or oil, but is particularly challenging in the case of gas exploration. Current seismic imaging technol- ogy cannot accurately discriminate between economic and non-eco- nomic concentrations of gas. This is primarily because

Rubin, Yoram

423

Starter systems designed for efficient air/gas comsumption  

SciTech Connect

This paper examines engine starting systems designed by Pow-R-Quik. Pow-R-Quik's most recent product line includes several models that are designed to start most diesel and natural gas engines. Pow-R-Quick also offers air starting systems for a wide range of gas turbine applications. The model DS16, air or gas starter, is designed for engines with a displacement up to 500 cid diesel and up to 1000 cid natural gas. The DS60 model is also an air or gas operated starter with specially designed heavy duty bearings for maximum performance. To prove out starter durability and performance, Pow-R-Quik has installed three fully instrumented diesel engine test cells. The number of starts that can be achieved ranges from zero to 99,000. The system can be set to regulate the air for low or high pressure starts, control the lubricant, etc.

Not Available

1985-05-01T23:59:59.000Z

424

Gas turbine alternative fuels combustion characteristics  

SciTech Connect

An experimental investigation was conducted to obtain combustion performance and exhaust pollutant concentrations for specific synthetic hydrocarbon fuels. Baseline comparison fuels used were gasoline and diesel fuel number two. Testing was done over a range of fuel to air mass ratios, total mass flow rates, and input combustion air temperatures in a flame-tube-type gas turbine combustor. Test results were obtained in terms of released heat and combustion gas emission values. The results were comparable to those obtained with the base fuels with variations being obtained with changing operating conditions. The release of carbon particles during the tests was minimal. 22 refs., 12 figs., 2 tabs.

Rollbuhler, R.J.

1989-02-01T23:59:59.000Z

425

Spectroscopy of a cold strontium Rydberg gas  

E-Print Network (OSTI)

We present a study of a cold strontium Rydberg gas. The narrowband laser excitation of Rydberg states in the range n=20-80 from a 6~mK cloud of strontium atoms is detected using the spontaneous ionization of the Rydberg atoms. Using a high-resolution step-scanning technique, we perform detailed measurements of the Stark maps of selected Rydberg states. We find excellent agreement between the measured Stark maps and a numerical calculation based on an independent-electron model. Finally we show that excitation of the second valence electron can be used to probe the dynamics of the Rydberg gas with nanosecond temporal resolution via autoionization.

Millen, J; Corbett, G R; Potvliege, R M; Jones, M P A

2011-01-01T23:59:59.000Z

426

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

427

ISABE-2005-1214 Optimum Applications of Four-Port Wave Rotors for Gas Turbines Enhancement  

E-Print Network (OSTI)

1 ISABE-2005-1214 Optimum Applications of Four-Port Wave Rotors for Gas Turbines Enhancement Emmett investigations on wave rotor applications for gas turbines have been published, among them conceptual, analytical in the gas turbine industry. The results and conclusions are derived from a wide- range multi

Müller, Norbert

428

Oil and Gas CDT Anomalous compaction and lithification during early burial in  

E-Print Network (OSTI)

Oil and Gas CDT Anomalous compaction and lithification during early burial in sedimentary basins training in a range of skills will mean opportunities for academic, government or Oil and Gas sector (e geoscience for oil and gas). References & Further Reading Neagu, R.C. Cartwright, J., Davies R.J. & Jensen L

Henderson, Gideon

429

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview Net additions to storage during the fourth week of April were estimated to have been over 100 Bcf-a record high level for the first month of the refill season. Compared to last year when only 36 Bcf or 1.2 Bcf per day were added to stocks in April, this year the industry appears to be taking advantage of the reduction in demand that typically occurs in April, the first shoulder month of the year, and the recent price declines. After beginning the week down, spot prices at the Henry Hub trended down most days last week to end trading on Friday at $4.49 per MMBtu-the lowest price since early November. On the NYMEX futures market, the near-month (June) contract also moved down most days and ended last week at $4.490-down $0.377 from the previous Friday. Some-early summer high temperatures last week in the Northeast and winter-like weather in the Rockies (See Temperature Map) (See Deviation from Normal Temperatures Map) appear to have had little impact on the natural gas markets as prices declined most days at most major locations.

430

The Gas Industry  

Science Journals Connector (OSTI)

... the total output of towns' gas in Great Britain, distributes annually approximately as much energy as the whole of the electrical undertakings in the country. The industry has reason ... any actual thermal process, and the operations of the gas industry are not outside the ambit of the second law of thermodynamics, high though the efficiency of the carbonising process ...

J. S. G. THOMAS

1924-04-26T23:59:59.000Z

431

,"Kansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

S3","N3050KS3","N3010KS3","N3020KS3","N3035KS3","NA1570SKS3","N3045KS3" "Date","Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Kansas Natural Gas Pipeline...

432

,"Wyoming Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050WY3","N3010WY3","N3020WY3","N3035WY3","NA1570SWY3","N3045WY3" "Date","Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Wyoming Natural Gas...

433

,"Montana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050MT3","N3010MT3","N3020MT3","N3035MT3","NA1570SMT3","N3045MT3" "Date","Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Montana Natural Gas Imports...

434

,"Oklahoma Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050OK3","N3010OK3","N3020OK3","N3035OK3","NA1570SOK3","N3045OK3" "Date","Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Oklahoma Natural Gas...

435

,"Michigan Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050MI3","N3010MI3","N3020MI3","N3035MI3","NA1570SMI3","N3045MI3" "Date","Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Michigan Natural Gas...

436

,"Vermont Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","NA1480SVT3","N3050VT3","N3010VT3","N3020VT3","N3035VT3","N3045VT3" "Date","Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Vermont Natural Gas Pipeline...

437

,"Florida Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050FL3","N3010FL3","N3020FL3","N3035FL3","NA1570SFL3","N3045FL3" "Date","Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Florida Natural Gas...

438

,"Kentucky Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050KY3","N3010KY3","N3020KY3","N3035KY3","NA1570SKY3","N3045KY3" "Date","Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Kentucky Natural Gas...

439

,"Ohio Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

SOH3","N3050OH3","N3010OH3","N3020OH3","N3035OH3","NA1570SOH3","N3045OH3" "Date","Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Ohio Natural Gas Pipeline...

440

,"Utah Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

SUT3","N3050UT3","N3010UT3","N3020UT3","N3035UT3","NA1570SUT3","N3045UT3" "Date","Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Utah Natural Gas Pipeline...

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Shale Gas 101  

Energy.gov (U.S. Department of Energy (DOE))

This webpage has been developed to answer the many questions that people have about shale gas and hydraulic fracturing (or fracking). The information provided below explains the basics, including what shale gas is, where its found, why its important, how its produced, and challenges associated with production.

442

EXHAUST GAS RECIRCULATION  

E-Print Network (OSTI)

EXHAUST GAS RECIRCULATION (EGR) COOLER TESTING Southwest Research Institute® #12;overnment environmental regulations for diesel engine emissions are becoming increas- ingly stringent, and are driving) and oxides of nitrogen (NOx). The use of exhaust gas recirculation (EGR) coolers is considered

Chapman, Clark R.

443

Natural Gas Infrastructure Modernization  

Energy.gov (U.S. Department of Energy (DOE))

In order to help modernize the nations natural gas transmission and distribution systems and reduce methane emissions through common-sense standards, smart investments, and innovative research to advance the state of the art in natural gas system performance, the Department of Energy has launched several new initiatives and enhanced existing programs.

444

VALUING FLARED NATURAL GAS  

Science Journals Connector (OSTI)

LAST YEAR , enough natural gas to supply 27% of U.S. needs was burned off as waste around the world, according to a new report by the World Bank. Flared natural gas is a by-product of petroleum production and is not generally considered worth capture and ...

2007-09-10T23:59:59.000Z

445

Modern Gas Turbines  

Science Journals Connector (OSTI)

... THE published information on gas turbines is both voluminous and widely dispersed, a considerable part of the technical literature of ... hands of students whose imagination has been fired by the rapid development of the gas turbine, and whose knowledge of thermodynamics may not be sufficient to detect such errors. There ...

E. G. STERLAND

1948-06-12T23:59:59.000Z

446

The gas surge  

Science Journals Connector (OSTI)

...S. SHALE GAS PRODUCTION SINCE 2007 40...TOTAL U.S. PRODUCTION 47PERCENT INCREASE IN U.S. ELECTRICITY GENERATED USING...dusty gas drilling site in southwestern Kansas to try an experiment...40% of U.S. production, up from less...

David Malakoff

2014-06-27T23:59:59.000Z

447

Landfill gas recovery  

Science Journals Connector (OSTI)

Landfill gas recovery ... However, by referring to landfills as dumps, the article creates a misimpression. ... The answers revolve around the relative emissions from composting facilities and landfills and the degree to which either finished compost or landfill gas is used beneficially. ...

Morton A. Barlaz

2009-04-29T23:59:59.000Z

448

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD  

E-Print Network (OSTI)

; Herrmann, 1981) and secondary oil recovery in western Colorado at the Rangely oil field (Gibbs et al. 1973COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 John D. Godchaux Trinity University, San Antonio, TX Noah

Sheehan, Anne F.

449

Photometric Calibration of High Dynamic Range Cameras  

E-Print Network (OSTI)

calibration of cameras with a dynamic range of more than six orders of magnitude such as complex camera re with a total dynamic range of 8 orders of luminance magnitude. Three acquisitions: without filter, using to the measurements of 6 gray patches of GretagMacbeth ColorChecker chart under 6 different illumination conditions. 0

Durand, Frédo

450

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, April 28, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 20, 2011) Natural gas prices rose at most market locations during the week, as consumption increased. The Henry Hub spot price increased 19 cents from $4.14 per million Btu (MMBtu) on Wednesday, April 13 to $4.33 per MMBtu on Wednesday, April 20. Futures prices behaved similar to spot prices; at the New York Mercantile Exchange, the price of the near-month natural gas contract (May 2011) rose from $4.141 per MMBtu to $4.310 per MMBtu. Working natural gas in storage rose to 1,654 billion cubic feet (Bcf) as of Friday, April 15, according to EIA’s Weekly Natural Gas

451

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 5, 2009 Next Release: July 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 24, 2009) Natural gas spot prices generally declined this report week (June 17-24), with the largest decreases generally occurring in the western half of the country. During the report week, the Henry Hub spot price decreased by $0.19 per million Btu (MMBtu) to $3.80. At the New York Mercantile Exchange (NYMEX), futures prices for natural gas decreased as prices for most energy products fell amid concerns over the economy. The natural gas futures contract for July delivery decreased by 49 cents per MMBtu on the week to $3.761. Working gas in underground storage as of last Friday, June 19, is

452

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1996 and detailed annual historical information by State for 1967-1996. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1996. The remaining tables contain detailed annual historical information, by State, for 1967-1996. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

453

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1997 and detailed annual historical information by State for 1967-1997. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1997. The remaining tables contain detailed annual historical information, by State, for 1967-1997. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

454

Renewable Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas JOHN DAVIS: The use of clean, domestic natural gas as highway fuel in place of imported oil is growing in popularity with fleets and trucking companies. While natural gas from underground deposits is arguably a limited resource, there is a renewable, eco-friendly resource that we have right here in the U.S.A. And we're here now to give you the straight poop! Every family, farm animal and food processing plant in America produces organic waste that creates a mix of methane, CO2 and other elements called bio gas when it decomposes. Rotten vegetables, moldy bread, last night's leftovers --- they all break down when our garbage gets to the land fill. Incredibly, for

455

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

8 8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1998 and detailed annual historical information by State for 1967-1998. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1998. The remaining tables contain detailed annual historical information, by State, for 1967-1998. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

456

Beam-Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Gas and Thermal Photon Scattering in the NLC Main Linac as a Source of Beam Halo P. Tenenbaum LCC-Note-0051 12-JAN-2001 Abstract Scattering of primary beam electrons off of residual gas molecules or blackbody radiation photons in the NLC main linac has been identified as a potential source of beam haloes which must be collimated in the beam delivery system. We consider the contributions from four scat- tering mechanisms: inelastic thermal-photon scattering, elastic beam-gas (Coulomb) scattering inelastic beam-gas (Bremsstrahlung) scattering, and atomic-electron scattering. In each case we develop the formalism necessary to estimate the backgrounds generated in the main linac, and determine the expected number of off-energy or large-amplitude particles from each process, assuming a main linac injection energy of 8 GeV and extraction energy of 500 GeV. 1 Introduction The

457

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, June 30, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 22, 2011) Natural gas prices fell slightly at most market locations from Wednesday, June 15 to Wednesday, June 22. The Henry Hub price fell 10 cents from $4.52 per million Btu (MMBtu) last Wednesday to $4.42 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the July 2011 near-month futures contract fell by 26 cents, or about 6 percent, from $4.58 last Wednesday to $4.32 yesterday. Working natural gas in storage rose to 2,354 this week, according to EIA’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

458

Supersonic gas compressor  

DOE Patents (OSTI)

A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2007-11-13T23:59:59.000Z

459

Cryogenic treatment of gas  

DOE Patents (OSTI)

Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

Bravo, Jose Luis (Houston, TX); Harvey, III, Albert Destrehan (Kingwood, TX); Vinegar, Harold J. (Bellaire, TX)

2012-04-03T23:59:59.000Z

460

Energy Impacts of Effective Range Hood Use for all U.S. Residential Cooking  

E-Print Network (OSTI)

electric, natural gas, or propane) was assigned to each homeof 123 kJ/min (7 kBtu/h). Propane ranges and stoves wereand 2.2 TWh [8.0 PJ] of propane for the U.S. housing sector.

Logue, Jennifer M

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

What Consumers Should Know What Consumers Should Know An Assessment of Prices of Natural Gas Futures Contracts As A Predictor of Realized Spot Prices at the Henry Hub Overview of U.S. Legislation and Regulations Affecting Offshore Natural Gas and Oil Activity Changes in U.S. Natural Gas Transportation Infrastructure in 2004 Major Legislative and Regulatory Actions (1935 - 2004) U.S. Natural Gas Imports and Exports: Issues and Trends 2003 U.S. LNG Markets and Uses: June 2004 Natural Gas Restructuring Previous Issues of Natural Gas Weekly Update Natural Gas Homepage EIA's Natural Gas Division Survey Form Comments Overview: Thursday, December 1, 2005 (next release 2:00 p.m. on December 8) Colder-than-normal temperatures contributed to widespread price increases in natural gas spot markets since Wednesday, November 23 as heating demand increased. For the week (Wednesday to Wednesday), the spot price at the Henry Hub gained 59 cents per MMBtu, or about 5 percent, to trade at $11.73 per MMBtu yesterday (November 30). Similarly, at the NYMEX, the price for the futures contract for January delivery at the Henry Hub gained 54 cents since last Wednesday to close yesterday at $12.587 per MMBtu. Natural gas in storage as of Friday, November 25, decreased to 3,225 Bcf, which is 6.3 percent above the 5 year average. The spot price for West Texas Intermediate (WTI) crude oil dropped $1.02 per barrel, or about 2 percent, since last Wednesday to trade yesterday at $57.33 per barrel or $9.88 per MMBtu.

462

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

463

Colorado Natural Gas in Underground Storage (Base Gas) (Million...  

Annual Energy Outlook 2012 (EIA)

Base Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 39,062 39,062...

464

Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 40 37 39 38 37 36 35...

465

California--State Offshore Natural Gas Withdrawals from Gas Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (Million Cubic Feet) California--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

466

Federal Offshore California Natural Gas Withdrawals from Gas...  

Gasoline and Diesel Fuel Update (EIA)

Gas Wells (Million Cubic Feet) Federal Offshore California Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

467

Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

468

Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

469

Alabama--State Offshore Natural Gas Withdrawals from Gas Wells...  

Annual Energy Outlook 2012 (EIA)

Withdrawals from Gas Wells (Million Cubic Feet) Alabama--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

470

Texas--State Offshore Natural Gas Withdrawals from Gas Wells...  

Annual Energy Outlook 2012 (EIA)

Gas Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

471

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

OSullivan, Francis Martin

472

What is shale gas? | Department of Energy  

Office of Environmental Management (EM)

What is shale gas? What is shale gas? What is shale gas? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary How is shale gas produced?...

473

Summary Short-Term Petroleum and Natural Gas Outlook  

Gasoline and Diesel Fuel Update (EIA)

Short-Term Petroleum and Natural Gas Outlook Short-Term Petroleum and Natural Gas Outlook 1/12/01 Click here to start Table of Contents Summary Short-Term Petroleum. and Natural Gas Outlook WTI Crude Oil Price: Base Case and 95% Confidence Interval Real and Nominal Crude Oil Prices OPEC Crude Oil Production 1999-2001 Total OECD Oil Stocks* U.S. Crude Oil Inventory Outlook U.S. Distillate Inventory Outlook Distillate Stocks Are Important Part of East Coast Winter Supply Retail Heating Oil and Diesel Fuel Prices Consumer Winter Heating Costs U.S. Total Gasoline Inventory Outlook Retail Motor Gasoline Prices* U.S. Propane Total Stocks Average Weekly Propane Spot Prices Current Natural Gas Spot Prices: Well Above the Recent Price Range Natural Gas Spot Prices: Base Case and 95% Confidence Interval Working Gas in Storage (Percentage Difference fron Previous 5-Year Average)

474

Florida City Gas - Residential Energy Smart Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Gas - Residential Energy Smart Rebate Program City Gas - Residential Energy Smart Rebate Program Florida City Gas - Residential Energy Smart Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Appliances & Electronics Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount Water Heater: $350 - $500 Tankless Water Heater: $550 - $ 675 Furnace: $500 - $725 Cooking Range: $100 - $200 Dryer: $100 - $150 Space Conditioning Conversion: $1,200 Provider Florida City Gas Florida City Gas (FCG) encourages residential customers to become more energy efficient by offering various rebates for the purchase and installation of efficient natural gas appliances. Rebate amounts depend on whether appliances are converted from a different power source or natural

475

Homogeneous gas-phase nucleation in silane pyrolysis  

Science Journals Connector (OSTI)

Dilute and particle free mixtures of silane in the range of 100 ppm to 10% by volume in different carrier gases were decomposed thermally in a tube reactor. The onset of homogeneous nucleation was determined as a function of temperature and silane concentration for each carrier gas using a CNC with a detection limit of ca 0.01 ?m. The gaseous decomposition by-products, disilane, trisilane and hydrogen were measured simultaneously using gas-phase chromatography. The onset of gas-phase nucleation was found to be inversely proportional to the temperature and influenced by the nature of the carrier gas. In inert gases, no chemical reaction took place between the decomposition products of silane and the carrier gas. In hydrogen, equilibrium displacement with the primary decomposition product (SiH2) lead to a retardation of particle formation. Thus, the temperatures of onset of gas-phase nucleation was higher for mixtures in hydrogen than for mixtures in inert gases.

Frank Slootman; Jean-Claude Parent

1994-01-01T23:59:59.000Z

476

Impulse gage development for the 100-200 ktap range  

SciTech Connect

Special effects underground test (UGT) material response and source diagnostics data require impulse gages that can be used in the 50--150 ktap range and have equilibrated from electrical and mechanical noise sources within 0.001 s. Such gages were designed, analyzed, and tested under this program. One- and two-dimensional stress propagation calculations were performed and predictions were developed for deformation of the gage specimen cup. These predictions were conservative when compared to gas gun test results. The response of the gage will equilibrate within 5% to its final value within 300 {mu}sec. The impulse delivered to the gages for these tests exceeded 250 ktap. The code and experimental results provides a basis for confidence in the operability of the gage in an actual UGT environment.

Rose, P.C.; Naumann, W.J. (General Research Corp., Santa Barbara, CA (USA). Advanced Technologies Div.)

1990-07-31T23:59:59.000Z

477

Time-varying long range dependence in energy futures markets  

Science Journals Connector (OSTI)

Abstract This study aims to investigate the presence of long-range dependence in energy futures markets. Using a daily dataset covering from 1990 to 2013 (which includes crucial events for energy markets such as invasion of Iraq and global financial crisis of 2008), we estimate time-varying generalized Hurst exponents of several energy futures contracts with different times to maturity using a rolling window approach. Results reveal that efficiency of energy futures markets is clearly time-varying and changes drastically over the sample period. For futures contracts with 14months to maturities, crude oil and gasoline are found to be more efficient compared to others. On the other hand, for contracts with 59months to maturities, crude oil and natural gas futures are more efficient. For almost every different month to maturity, heating oil and gas oil futures are found to be the least efficient markets. Moreover in general, the efficiency of energy futures markets is found to be decreasing dramatically when time to maturity is increasing. Several implications are discussed.

Ahmet Sensoy; Erk Hacihasanoglu

2014-01-01T23:59:59.000Z

478

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

479

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

480

Techniques for optically compressing light intensity ranges  

DOE Patents (OSTI)

A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.

Rushford, Michael C. (Livermore, CA)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas kitchen ranges" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Neutron scattering and extra short range interactions  

E-Print Network (OSTI)

The available data on neutron scattering were analyzed to constrain a hypothetical new short-range interaction. We show that these constraints are several orders of magnitude better than those usually cited in the range between 1 pm and 5 nm. This distance range occupies an intermediate space between collider searches for strongly coupled heavy bosons and searches for new weak macroscopic forces. We emphasise the reliability of the neutron constraints in so far as they provide several independent strategies. We have identified the most promising way to improve them.

V. V. Nesvizhevsky; G. Pignol; K. V. Protasov

2007-11-14T23:59:59.000Z

482

Techniques for optically compressing light intensity ranges  

DOE Patents (OSTI)

A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

Rushford, M.C.

1989-03-28T23:59:59.000Z

483

Natural Gas Annual, 2000  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 2000 are available as self-extracting executable files in ASCII TXT or CSV file formats. This volume emphasizes information for 2000, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1996-2000 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2000 (Table 2) ASCII TXT, are also available.

484

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview: Monday, June 04, 2001 Stock builds slowed from their recent pace, even though spot prices continued their downward trend to end the week at the Henry Hub at $3.71 per MMBtu, which is a Friday-to-Friday decline of $0.14 per MMBtu. The NYMEX contract price for June delivery at the Henry Hub settled Tuesday at $3.738, the lowest close-out of a near month contract since the May 2000 contract. The July contract price was $3.930 per MMBtu on Friday, $0.103 lower than a week earlier. Mild weather in the Northeast and Midwest continued to suppress prices on the Eastern Seaboard, while a short burst of warm temperatures in southern California early in the week had the opposite effect on prices in that region. (See Temperature Map) (See Deviation from Normal Temperatures Map) Net injections to storage for the week ended Friday, May 25 were 99 Bcf, breaking a 4-week string of 100-plus net injections.

485

The Gas/Electric Partnership  

E-Print Network (OSTI)

The electric and gas industries are each in the process of restructuring and "converging" toward one mission: providing energy. Use of natural gas in generating electric power and use of electricity in transporting natural gas will increase...

Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

486

Shale Gas R&D  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas from shales has the potential to significantly increase Americas security of energy supply, reduce greenhouse gas emissions, and lower prices for consumers. Although shale gas has been...

487

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule1, and Alaska Oil and Gas Supply Submodule. A detailed description...

488

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

489

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

490

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

491

Process for production desulfurized of synthesis gas  

DOE Patents (OSTI)

A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.

Wolfenbarger, James K. (Torrance, CA); Najjar, Mitri S. (Wappingers Falls, NY)

1993-01-01T23:59:59.000Z

492

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2001 2, 2001 The overall decline in spot prices accelerated last week, as continued below-normal temperatures in significant portions of the country suppressed electricity demand for air-conditioning use and storage injections once again hit record-setting levels. Temperatures averaged in the 80s for most of the eastern half of the nation, with slightly cooler temperatures prevailing along much of the populous West coast. (See Temperature Map) (See Deviation from Normal Temperatures Map). Futures market prices reinforced the general price weakness, with contracts for future deliveries falling 5 days in a row. NYMEX Natural Gas Futures Near Month Contract Settlement Price, Henry Hub Spot Price, and West Texas Intermediate Crude Oil Price Prices: The key factors of increased supply and very little weather-generated swing demand sent prices lower in spot markets throughout the country, with the majority showing declines every day of the week. Average temperatures last week were as much as 7 degrees below normal in the usually high summertime electricity demand areas of the Midwest, Southeast, Gulf Coast, and eastern Texas. In addition, temperatures were normal to slightly below normal in southern California, and cooler still in northern California. By Friday, the low end of the common trading range for spot gas at the Henry Hub fell below $3.00 per MMBtu for the first time since April 2000, and by the end of Friday trading, the Henry Hub midpoint price had dropped $0.69 per MMBtu from the previous Friday to an even $3. Spot prices under $2 per MMBtu were seen at some Rockies trading points on Friday. Only in the Northeast were prices able to buck the downward trend, where hot, muggy weather early in the week had New York citygate prices rising for several days to the week's high point on Wednesday of $4.34 per MMBtu-up 27 cents from the previous Friday. But by Thursday, with temperatures beginning to moderate, Northeast prices joined in the overall downward trend so that by Friday, the price at TRANSCO Zone 6 for New York delivery had fallen to $3.50 per MMBtu. While spot prices jumped on Monday on both SOCAL and PG&E as these systems lifted their respective weekend high-inventory operational flow orders (OFO), the over $2 increase on SOCAL (to around $6.06 per MMBtu) and nearly 25-cent increase on PG&E (to about $4.00) were easily overwhelmed by the week-long demand weakness. By Friday, the spot price on SOCAL had fallen to $3.83 per MMBtu, while on PG&E, spot prices fell nearly a dollar from the previous Friday, dipping below $3 at $2.79 per MMBtu.

493

Shale Gas Glossary | Department of Energy  

Office of Environmental Management (EM)

Glossary Shale Gas Glossary Shale Gas Glossary More Documents & Publications Natural Gas from Shale: Questions and Answers Modern Shale Gas Development in the United States: A...

494

Gas ampoule-syringe  

DOE Patents (OSTI)

A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one end and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

Gay, Don D. (Aiken, SC)

1986-01-01T23:59:59.000Z

495

Gas ampoule-syringe  

DOE Patents (OSTI)

A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

Gay, D.D.

1985-02-02T23:59:59.000Z

496

Active dendrites enhance neuronal dynamic range  

E-Print Network (OSTI)

Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the last decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of active dendritic trees is a highly non-linear function of their afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease of dynamic range.

Leonardo L. Gollo; Osame Kinouchi; Mauro Copelli

2009-02-26T23:59:59.000Z

497

Coniferous Forests of the Colorado Front Range  

Science Journals Connector (OSTI)

Forests along the Front Range of Colorado are exposed to elevated concentrations of ozone and other pollutants (see Chapter 3) due to emissions from the urbanized corridor stretching from Colorado Springs to D...

D. A. Graybill; D. L. Peterson

1992-01-01T23:59:59.000Z

498

Megatectonics of the Coast Ranges, California  

Science Journals Connector (OSTI)

...folding is shearing well casings and buckling surface pipelines. There are, however, numer...sions and must be a factor in global tectonics. In the Coast Ranges...San Andreas fault has played in global tectonics. In this paper, an...

499

Long Range Campus Development Plan Existing Conditions  

E-Print Network (OSTI)

design solutions and in serving members of the larger community. The Long Range Campus Development Plan environments and year-round recreation opportunities. During the summer season, daylight lasts into the evening

Maxwell, Bruce D.

500

Atmospheric Noises in SLF/ELF Ranges  

Science Journals Connector (OSTI)

In Chap.8, based on available materials, including public literature and non-public AD reports, and our recent work, synthesized summaries are given. By using the observation data in HF and VLF ranges, the globa...

Prof. Weiyan Pan; Dr. Kai Li

2014-01-01T23:59:59.000Z