National Library of Energy BETA

Sample records for gas industry restructuring

  1. Restructuring local distribution services in a competitive natural gas industry

    SciTech Connect (OSTI)

    Duann, D.J.; Costello, K.W.

    1995-12-31

    The restructuring of local distribution services is now the focus of the natural gas industry. It is viewed by some as the last major step in the {open_quotes}reconstitution{close_quotes} of the natural gas industry and a critical element in realizing the full benefits of regulatory and market reforms that have already taken place in the wellhead and interstate markets. It could also be the most important regulatory initiative for most end-use customers since they are affected directly by the costs and reliability of distribution services. Several factors contributed to the current emphasis on distribution service restructuring. They include the unbundling and restructuring of upstream markets, a realization of the limitations of supply-side options (such as gas procurement oversight), and the increased diversity and volatility of gas demand facing local distribution companies (LDCs). Overall, restructuring requires the LDC to transform itself from a franchised monopoly providing a uniform bundled service into a {open_quotes}competitive{close_quotes} enterprise delivering distinct unbundled services.

  2. Natural Gas Industry Restructuring and EIA Data Collection

    Reports and Publications (EIA)

    1996-01-01

    The Energy Information Administration's (EIA) Reserves and Natural Gas Division has undertaken an in-depth reevaluation of its programs in an effort to improve the focus and quality of the natural gas data that it gathers and reports. This article is to inform natural gas data users of proposed changes and of the opportunity to provide comments and input on the direction that EIA is taking to improve its data.

  3. Restructuring the natural gas industry: Order No. 436 and other regulatory initiatives

    SciTech Connect (OSTI)

    Griggs, J.W.

    1986-01-01

    Federal Energy Regulatory Commission (FERC) Order No. 436 is the latest in a series of major regulatory initiatives that have impacted gas pricing, pipeline contracting provisions, spot market sales, and transportation. The policy followed by FERC reflects a faith in the free market to efficiently allocate resource at reasonable cost to consumers. In responding to deregulation mandates while retaining regulation of the price of old gas and of interstate transportation and sales for resale, FERC is unbundling gas costs from the fixed costs of providing service in hopes of improving price signals. It is also pushing pipelines to provide open access to inject competition. The long-term commitments needed by producers may be incompatible with the oscillations caused by market restructuring, but there is a possibility that the new approach will work.

  4. Deregulation-restructuring: Evidence for individual industries

    SciTech Connect (OSTI)

    Costello, K.W.; Graniere, R.J.

    1997-05-01

    Several studies have measured the effects of regulation on a particular industry. These studies range widely in sophistication, from simple observation (comparison) of pre-transformation and post-transformation actual industry performance to econometric analysis that attempt to separate the effects of deregulation from other factors in explaining changes in an industry`s performance. The major problem with observation studies is that they are unable to measure the effect of one particular event, such as deregulation, on an industry`s performance. For example, at the same time that the United Kingdom privatized its electric power industry, it also radically restructured the industry to encourage competition and instituted a price-cap mechanism to regulate the prices of transmission, distribution, and bundled retail services. Subsequent to these changes in 1991, real prices for most UK electricity customers have fallen. It is not certain however, which of these factors was most important or even contributed to the decline in price. In any event, one must be cautious in interpreting the results of studies that attempt to measure the effect of deregulation per se for a specific industry. This report highlights major outcomes for five industries undergoing deregulation or major regulatory and restructuring reforms. These include the natural gas, transportation, UK electric power, financial, and telecommunications industries. Particular attention was given to the historical development of events in the telecommunications industry.

  5. Electric industry restructuring in Massachusetts

    SciTech Connect (OSTI)

    Wadsworth, J.W.

    1998-07-01

    A law restructuring the electric utility industry in Massachusetts became effective on November 25, 1997. The law will break up the existing utility monopolies into separate generation, distribution and transmission entities, and it will allow non-utility generators access to the retail end user market. The law contains many compromises aimed at protecting consumers, ensuring savings, protecting employees and protecting the environment. While it appears that the legislation recognizes the sanctity of independent power producer contracts with utilities, it attempts to provide both carrots and sticks to the utilities and the IPP generators to encourage renegotiations and buy-down of the contracts. Waste-to-energy contracts are technically exempted from some of the obligations to remediate. Waste-to-energy facilities are classified as renewable energy sources which may have positive effects on the value to waste-to-energy derived power. On November 25, 1997, the law restructuring the electric utility industry in Massachusetts became effective. The law will have two primary effects: (1) break up the existing utility monopolies into separate generation, distribution and transmission entities, and (2) allow non-utility generators access to the retail end-user market.

  6. Image is all: Deregulation, restructuring and reputation in the natural gas industry

    SciTech Connect (OSTI)

    1997-09-01

    Does image affect how one views his local utility company--or energy supplier? Does one value his utility companies more if one sees a lot of image advertising and public relations stories about community involvement, environmental action and charitable work? Or does one view utilities as faceless and anonymous entities that provide necessary services one thinks little about until there`s a problem? And, more important, what is the role of utility image in an era of deregulation, as companies begin a new scramble for customers? To find an answer to these questions, American Gas and Christopher Bonner Consultants conducted a survey of A.G.A. member companies to learn what, if anything, utility companies are doing in the areas of image assessment and change. The survey was sent to more than 200 A.G.A. member companies; written responses were received from 35. In addition, 13 follow-up telephone interviews were conducted, including four with companies that had not responded in writing. The picture that emerges if of an industry that is starting to pay greater and greater attention to image. And, as utilities reorganize and redefine themselves, they are also reexamining the ways they communicate with key audiences, including employees, customers, legislators, the financial community and the news media.

  7. Restructuring the energy industry: A financial perspective

    SciTech Connect (OSTI)

    Abrams, W.A.

    1995-12-31

    This paper present eight tables summarizing financial aspects of energy industry restructuring. Historical, current, and future business characteristics of energy industries are outlined. Projections of industry characteristics are listed for the next five years and for the 21st century. Future independent power procedures related to financial aspects are also outlined. 8 tabs.

  8. Challenges of Electric Power Industry Restructuring for Fuel Suppliers

    Reports and Publications (EIA)

    1998-01-01

    Provides an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry.

  9. Challenges of electric power industry restructuring for fuel suppliers

    SciTech Connect (OSTI)

    1998-09-01

    The purpose of this report is to provide an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry. This report is prepared for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public. 28 figs., 25 tabs.

  10. Public-policy responsibilities in a restructured electricity industry

    SciTech Connect (OSTI)

    Tonn, B.; Hirst, E.; Bauer, D.

    1995-06-01

    In this report, we identify and define the key public-policy values, objectives, and actions that the US electricity industry currently meets. We also discuss the opportunities for meeting these objectives in a restructured industry that relies primarily on market forces rather than on government mandates. And we discuss those functions that governments might undertake, presumably because they will not be fully met by a restructured industry on its own. These discussions are based on a variety of inputs. The most important inputs came from participants in an April 1995 workshop on Public-Policy Responsibilities and Electric Industry Restructuring: Shaping the Research Agenda. Other sources of information and insights include the reviews of a draft of this report by workshop participants and others and the rapidly growing literature on electric-industry restructuring and its implications. One of the major concerns about the future of the electricity industry is the fate of numerous social and environmental programs supported by today`s electric utilities. Many people worry that a market-driven industry may not meet the public-policy objectives that electric utilities have met in the past. Examples of potentially at-risk programs include demand-side management (DSM), renewable energy, low-income weatherization, and fuel diversity. Workshop participants represented electric utilities, public utility commissions (PUCs), state energy offices, public-interest groups, other energy providers, and the research community.

  11. American Indian tribes and electric industry restructuring: Issues and opportunities

    SciTech Connect (OSTI)

    Howarth, D.; Busch, J.; Starrs, T.

    1997-07-01

    The US electric utility industry is undergoing a period of fundamental change that has significant implications for Native American tribes. Although many details remain to be determined, the future electric power industry will be very different from that of the present. It is anticipated that the new competitive electric industry will be more efficient, which some believe will benefit all participants by lowering electricity costs. Recent developments in the industry, however, indicate that the restructuring process will likely benefit some parties at the expense of others. Given the historical experience and current situation of Native American tribes in the US, there is good reason to pay attention to electric industry changes to ensure that the situation of tribes is improved and not worsened as a result of electric restructuring. This paper provides a review of electricity restructuring in the US and identifies ways in which tribes may be affected and how tribes may seek to protect and serve their interests. Chapter 2 describes the current status of energy production and service on reservations. Chapter 3 provides an overview of the evolution of the electric industry to its present form and introduces the regulatory and structural changes presently taking place. Chapter 4 provides a more detailed discussion of changes in the US electric industry with a specific focus on the implications of these changes for tribes. Chapter 5 presents a summary of the conclusions reached in this paper.

  12. Technology opportunities in a restructured electric industry

    SciTech Connect (OSTI)

    Gehl, S.

    1995-12-31

    This paper describes the Strategic Research & Development (SR&D) program of the Electric Power Research Institute (EPRI). The intent of the program is to anticipate and shape the scientific and technological future of the electricity enterprise. SR&D serves those industry R&D needs that are more exploratory, precompetitive, and longer-term. To this end, SR&D seeks to anticipate technological change and, where possible, shape that change to the advantage of the electric utility enterprise and its customers. SR&D`s response to this challenge is research and development program that addresses the most probable future of the industry, but at the same time is robust against alternative futures. The EPRI SR&D program is organized into several vectors, each with a mission that relates directly to one or more EPRI industry goals, which are summarized in the paper. 1 fig., 2 tabs.

  13. Local government: The sleeping giant in electric industry restructuring

    SciTech Connect (OSTI)

    Ridley, S.

    1997-11-01

    Public power has long been a cornerstone of consumer leverage in the electric industry. But its foundation consists of a much broader and deeper consumer authority. Understanding that authority - and present threats to it - is critical to restructuring of the electric industry as well as to the future of public power. The country has largely forgotten the role that local governments have played and continue to play in the development of the electric industry. Moreover, we risk losing sight of the options local governments may offer to protect consumers, to advance competition in the marketplace, and to enhance opportunities for technology and economic development. The future role of local government is one of the most important issues in the restructuring discussion. The basic authority of consumers rests at the local level. The resulting options consumers have to act as more than just respondents to private brokers and telemarketing calls are at the local level. And the ability for consumers to shape the marketplace and standards for what it will offer exists at the local level as well.

  14. Low-income energy policy in a restructuring electricity industry: an assessment of federal options

    SciTech Connect (OSTI)

    Baxter, L.W.

    1997-07-01

    This report identifies both the low-income energy services historically provided in the electricity industry and those services that may be affected by industry restructuring. It identifies policies that are being proposed or could be developed to address low- income electricity services in a restructured industry. It discusses potential federal policy options and identifies key policy and implementation issues that arise when considering these potential federal initiatives. To understand recent policy development at the state level, we reviewed restructuring proposals from eight states and the accompanying testimony and comments filed in restructuring proceedings in these states.

  15. Assessing strategies to address transition costs in a restructuring electricity industry

    SciTech Connect (OSTI)

    Baxter, L.; Hadley, S.; Hirst, E.

    1996-08-01

    Restructuring the US electricity industry has become the nation`s central energy issue for the 1990s. Restructuring proposals at the federal and state levels focus on more competitive market structures for generation and the integration of transmission within those structures. The proposed move to more competitive generation markets will expose utility costs that are above those experienced by alternative suppliers. Debate about these above-market, or transition, costs (e.g., their size,who will pay for them and how) has played a prominent role in restructuring proceedings. This paper presents results from a project to systematically assess strategies to address transition costs exposed by restructuring the electricity industry.

  16. Informatics requirements for a restructured competitive electric power industry

    SciTech Connect (OSTI)

    Pickle, S.; Marnay, C.; Olken, F.

    1996-08-01

    The electric power industry in the United States is undergoing a slow but nonetheless dramatic transformation. It is a transformation driven by technology, economics, and politics; one that will move the industry from its traditional mode of centralized system operations and regulated rates guaranteeing long-run cost recovery, to decentralized investment and operational decisionmaking and to customer access to true spot market prices. This transformation will revolutionize the technical, procedural, and informational requirements of the industry. A major milestone in this process occurred on December 20, 1995, when the California Public Utilities Commission (CPUC) approved its long-awaited electric utility industry restructuring decision. The decision directed the three major California investor-owned utilities to reorganize themselves by the beginning of 1998 into a supply pool, at the same time selling up to a half of their thermal generating plants. Generation will be bid into this pool and will be dispatched by an independent system operator. The dispatch could potentially involve bidders not only from California but from throughout western North America and include every conceivable generating technology and scale of operation. At the same time, large customers and aggregated customer groups will be able to contract independently for their supply and the utilities will be required to offer a real-time pricing tariff based on the pool price to all their customers, including residential. In related proceedings concerning competitive wholesale power markets, the Federal Energy Regulatory Commission (FERC) has recognized that real-time information flows between buyers and sellers are essential to efficient equitable market operation. The purpose of this meeting was to hold discussions on the information technologies that will be needed in the new, deregulated electric power industry.

  17. Electric power industry restructuring in Australia: Lessons from down-under. Occasional paper No. 20

    SciTech Connect (OSTI)

    Ray, D.

    1997-01-01

    Australia`s electric power industry (EPI) is undergoing major restructuring. This restructuring includes commercialization of state-owned electric organization through privatization and through corporatization into separate governmental business units; structural unbundling of generation, transmission, retailing, and distribution; and creation of a National Electricity Market (NEM) organized as a centralized, market-based trading pool for buying and selling electricity. The principal rationales for change in the EPI were the related needs of enhancing international competitiveness, improving productivity, and lowering electric rates. Reducing public debt through privatization also played an important role. Reforms in the EPI are part of the overall economic reform package that is being implemented in Australia. Enhancing efficiency in the economy through competition is a key objective of the reforms. As the need for reform was being discussed in the early 1990s, Australia`s previous prime minister, Paul Keating, observed that {open_quotes}the engine which drives efficiency is free and open competition.{close_quotes} The optimism about the economic benefits of the full package of reforms across the different sectors of the economy, including the electricity industry, is reflected in estimated benefits of a 5.5 percent annual increase in real gross domestic product and the creation of 30,000 more jobs. The largest source of the benefits (estimated at 25 percent of total benefits) was projected to come from reform of the electricity and gas sectors.

  18. Electricity Restructuring by State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Restructuring Status Status of Electricity Restructuring by State Data as of: September 2010 Next Release Date: None The map below shows information on the electric industry ...

  19. Antitrust issues and the restructuring of the power industry

    SciTech Connect (OSTI)

    Moritz, T.F.

    1999-11-01

    Because of extensive federal oversight and state regulation of the utility area, few antitrust cases have been brought concerning the electric power industry. The limited prior case law that exists in this area nonetheless provides valuable guidance regarding how the antitrust laws will protect consumers and, therefore, competition in the electric power industry. This article will discuss the primary antitrust doctrines likely to be utilized to protect competition in this industry.

  20. Natural Gas Industrial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  1. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  2. Natural gas in the energy industry of the 21st century

    SciTech Connect (OSTI)

    Cuttica, J.

    1995-12-31

    This paper provides a gas industry perspective on the impacts of restructuring the natural gas and electric industries. The four main implications discussed are: (1) market trends, (2) strategic positioning, (3) significant market implications, and (4) issues for the future. Market trends discussed include transitioning rate of return to market competition and regulatory impacts. Significant market implications for gas-fired generation identified include limited new generation investment, extension of existing plants, and an opportunity for distributed power generation. 12 tabs.

  3. Natural gas industry directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

  4. EIA - Natural Gas Analysis Basics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    natural gas industry restructuring in each state, focusing on the residential customer class. About U.S. Natural Gas Pipelines State Energy Profiles What role does liquefied...

  5. Efficiency, equity and the environment: Institutional challenges in the restructuring of the electric power industry

    SciTech Connect (OSTI)

    Haeri, M.H.

    1998-07-01

    In the electric power industry, fundamental changes are underway in Europe, America, Australia, New Zealand and, more recently, in Asia. Rooted in increased deregulation and competition, these changes are likely to radically alter the structure of the industry. Liberalization of electric power markets in the United Kingdom is, for the most part, complete. The generation market in the United States began opening to competition following the 1987 Public Utility Regulatory Policies Act (PURPA). The Energy Policy Act of 1992 set the stage for a much more dramatic change in the industry. The most far-reaching provision of the Act was its electricity title, which opened access to the electric transmission grid. With legal barriers now removed, the traditionally sheltered US electric utility market is becoming increasingly open to entry and competition. A number of important legislative, regulatory and governmental policy initiatives are underway in the Philippines that will have a profound effect on the electric power industry. In Thailand, the National Energy Planning Organization (NEPO) has undertaken a thorough investigation of industry restructuring. This paper summarizes recent international developments in the deregulation and liberalization of electricity markets in the U.K., U.S., Australia, and New Zealand. It focuses on the relevance of these experiences to development underway in the Philippines and Thailand, and presents alternative possible structures likely to emerge in these countries, drawing heavily on the authors' recent experiences in Thailand and the Philippines. The impact of these changes on the business environment for power generation and marketing will be discussed in detail, as will the opportunities these changes create for investment among private power producers.

  6. China develops natural gas industry

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    As of 1981, more than 60 natural gas fields with a total annual output of 12.74 billion cu m have been discovered in China, placing the country among the top 12 gas producers in the world. In addition, there are prospects for natural gas in the Bohai-North China Basin and the Qaidam Basin, NW. China, providing a base for further expansion of the gas industry. Gas reservoirs have been found in 9 different geologic ages: Sinian, Cambrian, Ordovician, Carboniferous, Permian, Triassic, Jurassic, Tertiary, and Quaternary. Of the 60 gas field now being exploited, there are more than 40 fields in Sichuan. The Sichuan Basin gas industry is described in detail.

  7. Electric industry restructuring and environmental issues: A comparative analysis of the experience in California, New York, and Wisconsin

    SciTech Connect (OSTI)

    Fang, J.M.; Galen, P.S.

    1996-08-01

    Since the California Public Utilities Commission (CPUC) issued its April 20, 1994, Blue Book proposal to restructure the regulation of electric utilities in California to allow more competition, over 40 states have initiated similar activities. The question of how major public policy objectives such as environmental protection, energy efficiency, renewable energy, and assistance to low-income customers can be sustained in the new competitive environment is also an important element being considered. Because many other states will undergo restructuring in the future, the experience of the {open_quotes}early adopter{close_quotes} states in addressing public policy objectives in their electric service industry restructuring processes can provide useful information to other states. The Competitive Resource Strategies Program of the U.S. Department of Energy`s (DOE`s) Office of Utility Technologies, is interested in documenting and disseminating the experience of the pioneering states. The Center for Energy Analysis and Applications of the National Renewable Energy Laboratory assisted the Office of Utility Technologies in this effort with a project on the treatment of environmental issues in electric industry restructuring.

  8. ,"West Virginia Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035WV2" "Date","West Virginia Natural Gas Industrial Consumption ...

  9. China develops natural gas industry

    SciTech Connect (OSTI)

    An, Z.

    1982-09-06

    As of 1981, China was producing some 474.4 billion CF (12.74 billion m/sup 3/)/yr of natural gas from over 60 gas fields, 40 of them in Sichuan Province. The Sichuan gas lies in fractures and solution cavities in limestone and dolomite formations that generally require stimulation. After desulfurization, the gas is used by the steel and chemical industries and for residential heating. Recent discoveries in other areas of China include the Guxinzhuang field in the Bohai-North China basin, where geological conditions favor large gas pools, and the Sebei fields in Qaidam basin, northwest China.

  10. EIA - Analysis of Natural Gas Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    natural gas industry restructuring in each state, focusing on the residential customer class. (Status by State as of December 2009) 2009 Revisions in Natural Gas Monthly...

  11. ,"New Mexico Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Industrial Consumption ... 8:25:14 AM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Consumption ...

  12. ,"New York Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Industrial Consumption ... 8:25:17 AM" "Back to Contents","Data 1: New York Natural Gas Industrial Consumption ...

  13. ,"New Jersey Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Industrial Consumption ... 8:25:13 AM" "Back to Contents","Data 1: New Jersey Natural Gas Industrial Consumption ...

  14. ,"New Mexico Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:56:52 AM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NM2" "Date","New Mexico Natural Gas Industrial Consumption (MMcf)" ...

  15. ,"North Carolina Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:56:45 AM" "Back to Contents","Data 1: North Carolina Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NC2" "Date","North Carolina Natural Gas Industrial Consumption ...

  16. ,"North Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:56:47 AM" "Back to Contents","Data 1: North Dakota Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035ND2" "Date","North Dakota Natural Gas Industrial Consumption ...

  17. ,"North Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:56:46 AM" "Back to Contents","Data 1: North Dakota Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035ND2" "Date","North Dakota Natural Gas Industrial Consumption ...

  18. The United States natural gas industry

    SciTech Connect (OSTI)

    Gibson, D.E.

    1988-01-01

    The U.S. natural gas industry can only be understood within the context of the nation's attitudes toward the proper role of government within the U.S. economy. A review of regulatory history provides valuable insights to understanding the unique structure and functioning of the gas industry in the United States, as well as future directions for the industry. Tomorrow's natural gas industry will feature adequate gas supplies, unbundling of services, continuing competition with oil, and changed regulation.

  19. Restructuring local distribution services: Possibilities and limitations

    SciTech Connect (OSTI)

    Duann, D.J.

    1994-08-01

    The restructuring of local distribution services is now the focus of the natural gas industry. It is the last major step in the ``reconstitution`` of the natural gas industry and a critical clement in realizing the full benefits of regulatory and market reforms that already have taken place in the wellhead and interstate markets. It could also be the most important regulatory initiative for most end-use customers because they are affected directly by the costs and reliability of distribution services. Several factors contribute to the current emphasis on distribution service restructuring. They include the unbundling and restructuring of upstream markets, a realization of the limitations of supply-side options (such as gas procurement oversight), and the increased diversity and volatility of gas demand facing local distribution companies. Local distribution service is not one but a series of activities that start with commodity gas procurement and extend to transportation, load balancing, storage, and metering and billing of services provided. There are also considerable differences in the economies of scale and scope associated with these various activities. Thus, a mixture of supply arrangements (such as a competitive market or a monopoly) is required for the most efficient delivery of local distribution services. A distinction must be made between the supply of commodity gas and the provision of a bundled distribution service. This distinction and identification of the best supply arrangements for various distribution service components are the most critical factors in developing appropriate restructuring policies. For most state public utility commissions the criteria for service restructuring should include pursuing the economies of scale and scope in gas distribution, differentiating and matching gas service reliability and quality with customer requirements, and controlling costs associated with the search, negotiation, and contracting of gas services.

  20. New Mexico Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) New Mexico Natural Gas Industrial Price (Dollars ... Referring Pages: Natural Gas Industrial Price New Mexico Natural Gas Prices Natural Gas ...

  1. Minnesota Natural Gas Industrial Price (Dollars per Thousand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Industrial Price (Dollars ... Referring Pages: Natural Gas Industrial Price Minnesota Natural Gas Prices Natural Gas ...

  2. Measuring and Explaining Electricity Price Changes in Restructured States

    SciTech Connect (OSTI)

    Fagan, Mark L.

    2006-06-15

    An effort to determine the effect of restructuring on prices finds that, on average, prices for industrial customers in restructured states were lower, relative to predicted prices, than prices for industrial customers in non-restructured states. This preliminary analysis also finds that these price changes are explained primarily by high pre-restructuring prices, not whether or not a state restructured. (author)

  3. Environmental Regulation of the Nuclear Industry in England and Wales in an era of Restructuring and Accelerated Decommissioning

    SciTech Connect (OSTI)

    Parker, I.W.; Weedon, C. J.

    2006-07-01

    In 2005 a large part of the UK Nuclear Industry was restructured with a new national body, the Nuclear Decommissioning Authority (NDA), being responsible for all the assets and liabilities of the nationally owned reactors and fuel cycle facilities. The former owners are now operating and in many cases decommissioning the facilities under contract to the NDA. As the body responsible for enforcing most environmental legislation in England and Wales, the Environment Agency has reviewed its regulatory approach to the Industry. This is to ensure that our responsibility to protect and enhance the environment is met whilst considering appropriately other key drivers impacting on all sectors of environmental regulation. Factors influencing this review include: - Greater public interest and concern over nuclear issues; - Greater transparency of strategies, plans and decisions in the nuclear industry; - The need to ensure that sustainable protection of the environment remains a constant feature of environmental regulation; - The need for a proportionate approach to regulation in the non-prescriptive UK legislative system; - Being effective and efficient in a period when all types of regulation are under Government and public scrutiny; - The aim of the NDA to achieve safe, secure, cost-effective, accelerated and environmentally responsible decommissioning and clean up in part by competing the management of the facilities. This has involved - Constructive liaison with the NDA both before and after its commencement to ensure we are both aware of each other's concerns; - Taking a strong influencing role at strategic and operational levels; - Putting in position arrangements for our involvement in the competitive process; - Liaison at an early stage with the industry's plans for future work; - Establishing greater clarity in our strategy and plans, notably with re-examination of the requirements of our authorisations and permits; - Establishing a new assessment resource (the

  4. ,"South Carolina Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  5. ,"South Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  6. ,"Rhode Island Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  7. ,"North Carolina Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release...

  8. Natural Gas Industry and Markets

    Reports and Publications (EIA)

    2006-01-01

    This special report provides an overview of the supply and disposition of natural gas in 2004 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2004 (NGA). Unless otherwise stated, all data and figures in this report are based on summary statistics published in the NGA 2004.

  9. Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turkmenistan Industrial Oil and Gas Exhibition Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition November 16, 2007 - 4:31pm Addthis Holds Bilateral ...

  10. Electric and Gas Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Gas Industries Association Jump to: navigation, search Name: Electric and Gas Industries Association Place: Sacramento, CA Zip: 95821 Website: www.egia.org Coordinates:...

  11. ,"Minnesota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Industrial Price (Dollars ... 6:58:24 AM" "Back to Contents","Data 1: Minnesota Natural Gas Industrial Price (Dollars ...

  12. Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and ...

  13. Natural gas industry's response to transaction costs

    SciTech Connect (OSTI)

    Mulherin, J.H.

    1985-07-25

    Legislators and regulators have historically viewed the organizational features in the natural gas industry as noncompetitive. Challenging recent suggestions that the contractual arrangements in the industry are in violation of antitrust statutes, the author states that the methods of organization such as long-term contracts, take-or-pay provisions, and most-favored nation clauses are competitive responses to the costs of transacting in the natural gas industry. These arrangements lower transaction costs by mitigating the opportunistic behavior that can potentially arise in long-term relations involving specialized assets. If policymakers want to enable cost reductions in the industry to reduce the price burden felt by users of gas, an accompaniment of price decontrol by overall deregulation is in order.

  14. The roles of antitrust law and regulatory oversight in the restructured electricity industry

    SciTech Connect (OSTI)

    Glazer, C.A.; Little, M.B.

    1999-05-01

    The introduction of retail wheeling is changing the roles of regulators and the courts. When states unbundle the vertically integrated investor-owned utility (IOU) into generation companies, transmission companies, and distribution companies, antitrust enforcement and policy setting by the state public utility/service commissions (PUCs) will be paramount. As was seen in the deregulation of the airline industry, vigorous enforcement of antitrust laws by the courts and proper policy setting by the regulators are the keys to a successful competitive market. Many of the problems raised in the airline deregulation movement came about due to laxity in correcting clear antitrust violations and anti-competitive conditions before they caused damage to the market. As retail wheeling rolls out, it is critical for state PUCs to become attuned to these issues and, most of all, to have staff trained in these disciplines. The advent of retail wheeling changes the application of the State Action Doctrine and, in turn, may dramatically alter the role of the state PUC--meaning antitrust law and regulatory oversight must step in to protect competitors and consumers from monopolistic abuse.

  15. Fossil generation restructuring in the Ukraine

    SciTech Connect (OSTI)

    Galambas, J.W.

    1996-12-31

    This paper describes the Ukrainian electrical system as it was in 1991, defines the need for restructuring, outlines the restructuring process, identifies a number of major obstacles that are hindering the implementation of the fossil generation, restructuring process, and points out major problems in the coal procurement system. It describes the visits to several Ukrainian power plants, defines restructuring success to date, makes suggestions for improved restructuring progress, highlights lessons learned, and enlightens the audience on the opportunities of investing in the Ukrainian power generation industry. The primary focus is on the Fossil Generator Advisor task, which was carried out under the direction of Hagler Bailly Consulting, Inc. (Hagler Bailly).

  16. NIPSCO Custom Commercial and Industrial Gas and Electric Incentive Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Custom Electric and Natural Gas Incentive Program offers financial incentives to qualifying large commercial, industrial, non-profit, governmental and...

  17. ConEd (Gas)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Equipment Rebate and Commercial and Industrial Custom Efficiency Programs offer incentives to gas customers in good standing who contribute to the system benefits...

  18. ,"Oklahoma Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Oklahoma Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OK3" "Date","Oklahoma Natural Gas Industrial Price ...

  19. ,"Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas Industrial Price (Dollars per ... 6:58:18 AM" "Back to Contents","Data 1: Kansas Natural Gas Industrial Price (Dollars per ...

  20. ,"California Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CA3" "Date","California Natural Gas Industrial Price ...

  1. ,"Texas Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Texas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035TX3" "Date","Texas Natural Gas Industrial Price ...

  2. ,"West Virginia Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: West Virginia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035WV3" "Date","West Virginia Natural Gas Industrial Price ...

  3. ,"Virginia Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Virginia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035VA3" "Date","Virginia Natural Gas Industrial Price ...

  4. ,"New Mexico Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Industrial Price ... 8:25:15 AM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Price ...

  5. ,"New Jersey Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Industrial Price ... 8:25:13 AM" "Back to Contents","Data 1: New Jersey Natural Gas Industrial Price ...

  6. ,"New York Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Industrial Price (Dollars ... 8:25:17 AM" "Back to Contents","Data 1: New York Natural Gas Industrial Price (Dollars ...

  7. ,"New Mexico Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: New Mexico Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035NM3" "Date","New Mexico Natural Gas Industrial Price ...

  8. ,"North Dakota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: North Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ND3" "Date","North Dakota Natural Gas Industrial ...

  9. ,"North Carolina Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: North Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035NC3" "Date","North Carolina Natural Gas Industrial ...

  10. Restructuring in Retrospect, 2001 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Restructuring in Retrospect, 2001 Restructuring in Retrospect, 2001 This report provides policymakers with guidance as they examine past and future restructuring efforts and seek to determine how competitive markets can be of benefit to customers. Industrial and larger commercial customers may benefit from competitive markets, while residential and small commercial customers may not benefit unless legislators focus specifically on their needs. But it also has become evident that even the largest

  11. ENERGY Workforce Restructuring Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY Workforce Restructuring Plan for the Idaho Operations Office March 2016 WORKFORCE RESTRUCTURING PLAN For the Idaho Operations Office Table of Contents I. INTRODUCTION...................................................................................................................................................... 1 Executive Summary ................................................................................................................................................ 1

  12. New Hampshire Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  13. Utah Natural Gas Number of Industrial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  14. Wisconsin Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  15. Virginia Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. West Virginia Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. Washington Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Vermont Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  19. Alabama Natural Gas Percentage Total Industrial Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  20. New Mexico Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  1. North Carolina Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  2. North Dakota Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  3. ,"New Hampshire Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","6...

  4. ,"Massachusetts Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","10...

  5. ,"Massachusetts Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:46 AM" "Back to Contents","Data 1: Massachusetts Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MA3"...

  6. ,"Washington Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1012015 10:56:55 AM" "Back to Contents","Data 1: Washington Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

  7. ,"North Dakota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  8. ,"Mississippi Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  9. ,"Maryland Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  10. ,"Tennessee Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  11. ,"Nebraska Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  12. ,"South Carolina Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  13. ,"South Dakota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  14. ,"Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  15. ,"Louisiana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  16. ,"Rhode Island Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  17. ,"North Carolina Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic...

  18. Industrial Utility Webinar: Natural Gas Efficiency Programs

    SciTech Connect (OSTI)

    2010-04-15

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  19. Peoples Gas- Commercial & Industrial Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    The Chicagoland Natural Gas Savings Program is funded by customers of Peoples Gas, through a line item on the bill called the Enhanced Efficiency Program. The Program is guided by Peoples Gas, the...

  20. Major challenges loom for natural gas industry, study says

    SciTech Connect (OSTI)

    O'Driscoll, M.

    1994-01-28

    The 1994 edition of Natural Gas Trends, the annual joint study by Cambridge Energy Research Associates and Arthur Anderson Co., says that new oil-to-gas competition, price risks and the prospect of unbundling for local distribution companies loom as major challenges for the natural gas industry. With a tighter supply-demand balance in the past two years compounded by the fall in oil prices, gas is in head-to-head competition with oil for marginal markets, the report states. And with higher gas prices in 1993, industrial demand growth slowed while utility demand for gas fell. Some of this was related to fuel switching, particularly in the electric utility sector. Total electric power demand for gas has risen slightly due to the growth in industrial power generation, but there has yet to be a pronounced surge in gas use during the 1990s - a decade in which many had expected gas to make major inroads into the electric power sector, the report states. And while utilities still have plans to add between 40,000 and 45,000 megawatts of gas-fired generating capacity, gas actually has lost ground in the utility market to coal and nuclear power: In 1993, electricity output from coal and nuclear rose, while gas-fired generation fell to an estimated 250 billion kilowatt-hours - the lowest level since 1986, when gas generated 246 billion kwh.

  1. Venezuela`s gas industry poised for long term growth

    SciTech Connect (OSTI)

    Croft, G.D.

    1995-06-19

    Venezuela`s enormous gas resource, combined with a new willingness to invite outside investment, could result in rapid growth in that industry into the next century. The development of liquefied natural gas exports will depend on the future course of gas prices in the US and Europe, but reserves are adequate to supply additional projects beyond the proposed Cristobal Colon project. Venezuela`s gas reserves are likely to increase if exploration for nonassociated gas is undertaken on a larger scale. The paper discusses gas reserves in Venezuela, internal gas markets, the potential for exports, competition from Trinidad, LNG export markets, and the encouragement of foreign investment in the gas industry of Venezuela.

  2. Gas and power industries linking as regulation fades

    SciTech Connect (OSTI)

    Bergstrom, S.W.; Callender, T.

    1996-08-12

    Although the gas and electricity markets have their organizational and operational idiosyncrasies, the principles of a competitive market apply to both. The gas industry model of functional and services unbundling, and the elimination of the pipeline merchant function should be emulated. This process of one industry learning from another is inevitable as electricity and natural gas come to be traded in a nearly unified energy market. As their markets merge, two once-distinct industries will be come much more alike, each borrowing the best features of the other and leaving less-desirable features behind. Factors are discussed.

  3. Natural Gas and U.S. Industrial Production: A Closer Look at Four Industries

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas and U.S. Industrial Production: A Closer Look at Four Industries Vipin Arora and Elizabeth Sendich August 30, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES Natural Gas and U.S. Industrial

  4. Philadelphia Gas Works - Commercial and Industrial Equipment...

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Philadelphia Gas Works Website http:www.pgwenergysense.comdownloads.html State Pennsylvania Program Type Rebate Program Rebate Amount Commercial Boilers: 800 -...

  5. Philadelphia Gas Works- Commercial and Industrial Efficient Building Grant Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Commercial and Industrial Efficient Building Grant Program is part of PGW's EnergySense program. This program offers incentives up to $75,000 for multifamily,...

  6. ,"Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:36 AM" "Back to Contents","Data 1: Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ID3" "Date","Idaho...

  7. ,"Mississippi Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:57 AM" "Back to Contents","Data 1: Mississippi Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MS3" "Date","Mississippi...

  8. ,"Maryland Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:48 AM" "Back to Contents","Data 1: Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MD3" "Date","Maryland...

  9. ,"Nebraska Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:04 AM" "Back to Contents","Data 1: Nebraska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035NE3" "Date","Nebraska...

  10. ,"Tennessee Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:16:24 AM" "Back to Contents","Data 1: Tennessee Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035TN3" "Date","Tennessee...

  11. ,"Louisiana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:44 AM" "Back to Contents","Data 1: Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035LA3" "Date","Louisiana...

  12. ,"Maine Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:49 AM" "Back to Contents","Data 1: Maine Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ME3" "Date","Maine...

  13. ,"Connecticut Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:27 AM" "Back to Contents","Data 1: Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CT3" "Date","Connecticut...

  14. ,"Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:35 AM" "Back to Contents","Data 1: Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IA3" "Date","Iowa Natural...

  15. ,"Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:16 AM" "Back to Contents","Data 1: Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OR3" "Date","Oregon...

  16. ,"Minnesota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:53 AM" "Back to Contents","Data 1: Minnesota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MN3" "Date","Minnesota...

  17. ,"Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:41 AM" "Back to Contents","Data 1: Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KS3" "Date","Kansas...

  18. ,"Florida Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:31 AM" "Back to Contents","Data 1: Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035FL3" "Date","Florida...

  19. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:19 AM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama...

  20. ,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:18 AM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska...

  1. ,"Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:13 AM" "Back to Contents","Data 1: Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OH3" "Date","Ohio Natural...

  2. ,"Kentucky Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:42 AM" "Back to Contents","Data 1: Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KY3" "Date","Kentucky...

  3. ,"Oklahoma Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:15 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OK3" "Date","Oklahoma...

  4. ,"Delaware Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:29 AM" "Back to Contents","Data 1: Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035DE3" "Date","Delaware...

  5. ,"Arizona Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:22 AM" "Back to Contents","Data 1: Arizona Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AZ3" "Date","Arizona...

  6. ,"Indiana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:39 AM" "Back to Contents","Data 1: Indiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IN3" "Date","Indiana...

  7. ,"Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:34 AM" "Back to Contents","Data 1: Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035HI3" "Date","Hawaii...

  8. ,"Montana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:58 AM" "Back to Contents","Data 1: Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MT3" "Date","Montana...

  9. ,"Illinois Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:38 AM" "Back to Contents","Data 1: Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IL3" "Date","Illinois...

  10. ,"Arkansas Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:21 AM" "Back to Contents","Data 1: Arkansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AR3" "Date","Arkansas...

  11. ,"Michigan Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:51 AM" "Back to Contents","Data 1: Michigan Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MI3" "Date","Michigan...

  12. ,"Georgia Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:32 AM" "Back to Contents","Data 1: Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035GA3" "Date","Georgia...

  13. ,"Colorado Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:25 AM" "Back to Contents","Data 1: Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CO3" "Date","Colorado...

  14. ,"Vermont Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"10302015 12:25:04 PM" "Back to Contents","Data 1: Vermont Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035VT3" "Date","Vermont...

  15. ,"Pennsylvania Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    302015 12:24:52 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035PA3" "Date","Pennsylvania...

  16. ,"Utah Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"10302015 12:25:01 PM" "Back to Contents","Data 1: Utah Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035UT3" "Date","Utah Natural...

  17. ,"Missouri Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    302015 12:24:33 PM" "Back to Contents","Data 1: Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MO3" "Date","Missouri...

  18. Percent of Industrial Natural Gas Deliveries in New Mexico Represented...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Represented by the Price (Percent) Percent of Industrial Natural Gas Deliveries in New Mexico Represented by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct ...

  19. South Dakota Natural Gas Industrial Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 513 451 449 370 329 253 260 259 287 329 343 367 2002 ...

  20. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural Gas Industrial

  1. World electricity and gas industries; Pressures for structural change

    SciTech Connect (OSTI)

    Kahane, A. )

    1990-01-01

    Electric and gas utilities are central middlemen in the energy business. Worldwide, more than 50% of all primary energy is transformed by utilities and delivered to final consumers through utility wires and pipes. The structure and behavior of the electricity and gas industries and the role and behavior of utilities are therefore important to all other energy industry players. The electricity and gas industries are special. Unlike oil, coal, or wood, electricity and gas are transported from producers to consumers mostly via fixed grids. This means that supplies are generally tied to specific markets and, unlike an oil tanker on the high seas, cannot be easily diverted elsewhere. These grids are natural monopolies inasmuch as having more than one wire or pipe along a given route is generally unnecessary duplicative. In addition, both supply and grid investments are generally large and lumpy. Industrial organization theory suggests that the coordination of industries can be achieved either through hierarchies or through markets. Hierarchies are generally preferred when the transaction costs of coordinating through markets is too high. These two elements of electricity and gas industry structure are the means of hierarchical coordination. This paper discusses the possibilities for changing the structure of utilities to one which has greater reliance on markets.

  2. The antitrust wild card and electricity restructuring

    SciTech Connect (OSTI)

    Adelberg, A.W.; Ongman, J.W.

    1997-03-01

    If competitive policy issues in electricity restructuring are not addressed soon--preferably in federal legislation--it`s likely that someone will use the antitrust wild card to achieve its ends. Experience teaches that this may not be the best way to make public policy. As the electric utility industry restructures, it is widely assumed that Congress, the state legislatures, and regulators will set the ground rules for the restructured markets. Experience to date would seem to confirm this view: California`s restructuring legislation, FERC`s Order 888, and the restructuring proceedings in numerous states are all examples. And yet, there remains another player whose role could be equally important: The federal judiciary. While court decisions under the antitrust laws have had little influence to date on the industry`s direction, there is reason to believe that their role could increase dramatically. Certainly this is the history of other industries that have undergone similar transformations. The authors expect that forces at work in the electric utility industry could lead to antitrust actions playing a far greater role in the industry`s future than most observers currently expect. The electric utility industry has already experienced a close brush with the potential for antitrust rulings to unravel critical elements of regulatory policy on restructuring. The DC Circuit`s now famous (or infamous) dicta in the Cajun Electric Power case illustrated how a simple antitrust principle--the prohibition on so-called tying arrangements--could defeat the FERC`s policy with respect to utilities` recovery of billions of dollars of stranded costs. The FERC rebutted that dicta in its remand decisions and elsewhere, and it appears that the issue in now moot in the Cajun litigation itself. But the tying arrangement argument is far from dead.

  3. Oil, gas tanker industry responding to demand, contract changes

    SciTech Connect (OSTI)

    True, W.R.

    1998-03-02

    Steady if slower growth in demand for crude oil and natural gas, low levels of scrapping, and a moderate newbuilding pace bode well for the world`s petroleum and natural-gas shipping industries. At year-end 1997, several studies of worldwide demand patterns and shipping fleets expressed short and medium-term optimism for seaborne oil and gas trade and fleet growth. The paper discusses steady demand and shifting patterns, the aging fleet, the slowing products traffic, the world`s fleet, gas carriers, LPG demand, and LPG vessels.

  4. Commercial national accounts program is a gas industry revenue builder

    SciTech Connect (OSTI)

    Moskitis, T.L.

    1984-04-01

    The need for gas distributors to implement revenue-generating strategies is clearly evident in the commercial sector - their fastest growing market. One strategy is A.G.A.'s commercial national accounts marketing program, designed to establish working relationships with national and regional food, hotel, and retail chains and with the firms that design energy systems for them. The program supplies these chains with information on gas industry services and research aimed at increasing energy utilization efficiency. Regular communications and coordinated sales calls by gas utility executives on chain headquarters often produce increased gas sales, even of traditionally all-electric chains, as illustrated by several case histories.

  5. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

  6. Strategic alliances for the future of the gas industry

    SciTech Connect (OSTI)

    Catell, R.B.

    1993-12-31

    The natural gas industry is in a position to benefit significantly from the inherent environmental advantages of natural gas and access to a large reserves base. Concurrently, the domestic natural gas industry will be undergoing extensive regulatory and structural changes in the coming years as a result of the implementation of FERC Order 636. The competition between fuels is intensifying, and the number of new market players and consumer demands are rising. As all sectors of the industry are facing new risk resulting from changes in access to storage, balancing, excess capacity, capacity release programs, and from the entry of gas marketers and aggregators, companies must increasingly rely on strategic alliances to remain competitive and stable. Strategic alliances are cooperative relationships between gas companies, pipelines, end-users, producers, marketers, as well as government bodies and labor unions. The principal goals of strategic alliances are to reduce risks, leverage resources and competitiveness, achieve long-term objectives, and build flexibility. Brooklyn Union has been involved in strategic alliances in the areas of (1) exploration, production, and supply; (2) transportation and storage; (3) marketing and market development; (4) regulatory and legislative activities; and (5) environmental activities. These alliances have allowed Brooklyn Union to diversify its gas supply, cooperatively support new pipelines, introduce new products and services, retain customers, generate new business, and assist in the enactment of reasonable Federal and State regulations and energy policies. Brooklyn Union recognizes that in the future the natural gas industry must continue to form strategic alliances to better serve the customer. Through strategic alliances the industry can increase the value and importance of natural gas as America`s premier energy source.

  7. Water retention and gas relative permeability of two industrial concretes

    SciTech Connect (OSTI)

    Chen Wei; Liu Jian; Brue, Flore; Skoczylas, Frederic; Davy, C.A.; Bourbon, Xavier; Talandier, Jean

    2012-07-15

    This experimental study aims at identifying the water retention properties of two industrial concretes to be used for long term underground nuclear waste storage structures. Together with water retention, gas transfer properties are identified at varying water saturation level, i.e. relative gas permeability is assessed directly as a function of water saturation level S{sub w}. The influence of the initial de-sorption path and of the subsequent re-saturation are analysed both in terms of water retention and gas transfer properties. Also, the influence of concrete microstructure upon water retention and relative gas permeability is assessed, using porosity measurements, analysis of the BET theory from water retention properties, and MIP. Finally, a single relative gas permeability curve is proposed for each concrete, based on Van Genuchten-Mualem's statistical model, to be used for continuous modelling approaches of concrete structures, both during drying and imbibition.

  8. Value of Underground Storage in Today's Natural Gas Industry, The

    Reports and Publications (EIA)

    1995-01-01

    This report explores the significant and changing role of storage in the industry by examining the value of natural gas storage; short-term relationships between prices, storage levels, and weather; and some longer term impacts of the Federal Energy Regulatory Commission's (FERC) Order 636.

  9. EIA - Natural Gas Pipeline Network - Regulatory Authorities

    U.S. Energy Information Administration (EIA) Indexed Site

    Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it,

  10. Assessment of Industrial VOC Gas-Scrubber Performance

    SciTech Connect (OSTI)

    Saito, H

    2004-02-13

    Gas scrubbers for air-pollution control of volatile organic compounds (VOC) cover a wide range of technologies. In this review, we have attempted to evaluate the single-pass scrubber destruction and removal efficiencies (DREs) for a range of gas-scrubber technologies. We have focused primarily on typical industrial DREs for the various technologies, typical problems, and any DRE-related experiential information available. The very limited literature citations found suggest significant differences between actual versus design performance in some technologies. The potentially significant role of maintenance in maintaining DREs was also investigated for those technologies. An in-depth portrayal of the entire gas scrubbing industry is elusive. Available literature sources suggest significant differences between actual versus design performance in some technologies. Lack of scrubber system maintenance can contribute to even larger variances. ''Typical'' industrial single-pass performance of commonly used VOC gas scrubbers generally ranged from {approx}80 to 99%. Imperfect solid and/or liquid particulates capture (possibly as low as 95% despite design for 99+% capture efficiency) can also lead to VOC releases. Changing the VOC composition in the gas stream without modifying scrubber equipment or operating conditions could also lead to significant deterioration in attainable destruction and removal efficiencies.

  11. Status of Natural Gas Residential Choice Programs by State as of December 2006

    SciTech Connect (OSTI)

    2009-01-18

    This site provides an overview of the status of natural gas industry restructuring in each State, focusing on the residential customer class. Retail unbundling, or restructuring, is the division of those services required to supply natural gas to consumers into various components that can then be separately purchased. With complete unbundling, consumers can choose their own gas supplier and the local distribution company continues to provide local transportation and distribution services. The v

  12. restructuring_mecs94

    U.S. Energy Information Administration (EIA) Indexed Site

    able to participate--on a limited basis and, for the most part, as participants in pilot projects. There is no reason to believe that the restructuring of the electricity market...

  13. Natural gas 1995: Issues and trends

    SciTech Connect (OSTI)

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  14. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring

  15. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  16. Fisher Controls introduces Snug Meter to gas industry

    SciTech Connect (OSTI)

    Share, J.

    1996-04-01

    Spurred by an industry demanding a sleeker look that will appeal to consumers, Fisher Controls International inc., has introduced a compact natural gas meter that not only is considerably smaller than existing models, but also incorporates features that company officials feel may set new standards. Termed the Snug meter, the four-chamber device is particularly designed for multi-dwelling buildings and is also the initial foray of Fisher--a recognized leader in North America for pressure-control and regulation equipment--into the meter industry. This paper reviews the design features of this new meter.

  17. Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 190 200 230 1990's 284 228 244 194 135 126 170 194 317 314 2000's 308 295 877 179 121 127 133 133 155 130 2010's 120 123 127 132 131 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  18. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  19. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural

  20. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  1. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  2. Florida Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 575 552 460 1990's 452 377 388 433 481 515 517 561 574 573 2000's 520 518 451 421 398 432 475 467 449 607 2010's 581 630 507 528 520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  3. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  4. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  5. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  6. Training using multimedia in the oil and gas industry

    SciTech Connect (OSTI)

    Bihn, G.C.

    1997-02-01

    Multimedia is becoming a widely used and accepted tool in general education. From preschool to the university, multimedia is promising and delivering some very impressive results. Its application in specific industry segments, like oil and gas, is expected to proliferate within the very near future. In fact, many titles are already on the market or in development. The objective of this article is to present an overview of the current state of multimedia as used in petroleum industry training and to provide managers with a feel for not only the technology but, more importantly, what benefit the technology is expected to bring to their organization.

  7. A guide for the gas and oil industry

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This guide has been prepared to assist those in the natural gas and oil industry who may not be familiar with how the Federal government, particularly the U.S. Department of Energy (DOE or Department), does business with private sector companies. Basic information is provided on what DOE is trying to do, why it wants to work with the natural gas and oil industry, how it can work with companies, who to contact, and where to inquire for further information. This last item is noteworthy because it is important for users of this guide to be able to access information about subjects that may interest them. Selected other Federal agencies and their activities related to those of DOE`s Office of Fossil Energy (FE or Fossil Energy) also are included in this document as Appendix A. This guide provides an address and/or phone number for every topic covered to prevent any information impasse. If a question is not adequately answered by the guide, please do not hesitate to contact the appropriate person or office. It is hoped that the information provided in this guide will lead to a better understanding of the mission, roles, and procedures of DOE and result in more and better cooperative working relationships between the natural gas and oil industry and DOE. Such relationships will provide a significant benefit to our Nation`s economic, technological, and energy security.

  8. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes the Southern California Gas Company’s Industrial End User program that helps large industrial customers increase energy efficiency and reduce energy use and GHG emissions.

  9. New models for success emerge for US natural gas industry

    SciTech Connect (OSTI)

    Addy, W.M. ); Hutchinson, R.A. )

    1994-11-14

    Very few companies in the US natural gas industry are confident in their ability to compete effectively in the brave new world of deregulation. Boston Consulting Group recently conducted an internal study to help the industry think about its future and identify models for success in this new environment. The authors examined the historical performance of 800 companies using several shareholder-value indicators, including cash-flow returns on investment, a measure of cash returns on cash invested that correlates closely to share price. Based on that review and discussions with investment managers and industry analysts, the authors were able to focus on a handful of companies that actually have thrived and created value against the difficult landscape of the past decade. Interviews with their senior executives provided important strategic and operational insights.

  10. Over the past decade, the domestic oil and natural gas industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    past decade, the domestic oil and natural gas industry has been transformed by the ... industry. The mission of the Office of Oil and Natural Gas is to maximize the public ...

  11. Impact of the 2008 Hurricane Season on the Natural Gas Industry

    Reports and Publications (EIA)

    2009-01-01

    This report provides an overview of the 2008 Atlantic hurricane season and its impacts on the natural gas industry

  12. Evolution of gas processing industry in Saudi Arabia

    SciTech Connect (OSTI)

    Showail, A.

    1983-01-01

    The beginning of the natural gas processing industry in Saudi Arabia is traced back to 1959 when Aramco embarked on a program to recover natural gas liquids (NGL) for export from low pressure gases such as stabilizer overhead, spheroid, tank farm, and refinery off-gases. The processing scheme involves compression and refrigeration to extract C3+ raw NGL, a raw NGL gathering system, and a fractionation plant to separate propane, butane, and natural gasoline. NGL extracted in Abqaiq and Ras Tanura is moved to Ras Tanura for fractionation, storage, and export. The system, built in several increments, has total design capacity of 500 MMscfd of feed gases to produce 320,000 bpd of NGL composed of 40% propane, 30% butane, and 30% natural gasoline. Phase II of the Saudi gas program envisages collection and processing of associated gas produced with Arabian medium and heavy crude oils largely in the northern onshore and offshore fields. Further domestic development may focus on more diversification in gas product utilization and on upgrading to higher value products.

  13. NORM Management in the Oil and Gas Industry

    SciTech Connect (OSTI)

    Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat

    2008-08-07

    It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil and gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

  14. Work Force Restructuring Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Work Force Restructuring Activities December 10, 2008 Note: Current updates are in bold # Planned Site/Contractor HQ Approved Separations Status General * LM has finalized the compilation of contractor management team separation data for the end of FY07 actuals and end of FY08 and FY09 projections. LM has submitted to Congress the FY 2007 Annual Report on contractor work force restructuring activities. The report has been posted to the LM website. *LM conducted a DOE complex-wide data call to

  15. Indiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,497 5,696 6,196 1990's 6,439 6,393 6,358 6,508 6,314 6,250 6,586 6,920 6,635 19,069 2000's 10,866 9,778 10,139 8,913 5,368 5,823 5,350 5,427 5,294 5,190 2010's 5,145 5,338 5,204 5,178 5,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 1,780 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  20. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  1. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  2. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,878 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  4. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  5. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  7. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  10. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  13. California Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 44,764 44,680 46,243 1990's 46,048 44,865 40,528 42,748 38,750 38,457 36,613 35,830 36,235 36,435 2000's 35,391 34,893 33,725 34,617 41,487 40,226 38,637 39,134 39,591 38,746 2010's 38,006 37,575 37,686 37,996 37,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  14. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  16. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. South Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Full hoop casing for midframe of industrial gas turbine engine

    DOE Patents [OSTI]

    Myers, Gerald A.; Charron, Richard C.

    2015-12-01

    A can annular industrial gas turbine engine, including: a single-piece rotor shaft spanning a compressor section (82), a combustion section (84), a turbine section (86); and a combustion section casing (10) having a section (28) configured as a full hoop. When the combustion section casing is detached from the engine and moved to a maintenance position to allow access to an interior of the engine, a positioning jig (98) is used to support the compressor section casing (83) and turbine section casing (87).

  2. Natural gas monthly, May 1997

    SciTech Connect (OSTI)

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  3. Quality assurance in the petroleum industry: Oil and gas industry Total Quality Management (TQM)

    SciTech Connect (OSTI)

    Penny, N.P.

    1991-01-01

    This paper describes the development and implementation of Total Quality Management (TQM) at the Naval Petroleum Reserves in California (NPRC), known as Elk Hills', and one of the largest oil and gas producing and processing facilities in the nation. NPRC is jointly owned by the United States Department of Energy (DOE), and Chevron USA Inc. (CUSA), and is managed and operated by Bechtel Petroleum Operations Inc. (BPOI). This paper describes step-by-step methods for getting started in TQM in the oil and gas industry, including the essential quality systems ingredients. The paper also illustrates how the President's Award for Quality and Productivity Improvement and the Malcolm Baldrige National Quality Award (MBNQA) can be used as the assessment standards and benchmarks for measuring TQM. 8 refs., 2 figs.

  4. Arkansas Oklahoma Gas Company (AOG)- Commerial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Arkansas Oklahoma Gas (AOG) programs are available to all commercial and industrial AOG customers in Arkansas. The Commercial and Industrial Prescriptive program offers rebates for the instal...

  5. Natural gas in Central Asia. Industries, markets and export options of Kazakhstan, Turkmenistan and Uzbekistan

    SciTech Connect (OSTI)

    Miyamoto, A.

    1998-01-01

    This comprehensive study examines the recent development of the three major gas resource countries in Central Asia. The author assesses the strategies likely to be taken by the Central Asian gas industry, especially with regard to pipeline construction.

  6. 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China September 17, 2015 - 9:17am Addthis 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China This morning, Assistant Secretary for Fossil Energy Chris Smith, along with Zhang Yuqing, Deputy Administrator of China's National Energy Administration (NEA), opened the 15th US-China Oil and Gas Industry Forum (OGIF) in Chongqing,

  7. Workforce Restructuring Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Restructuring Policy Workforce Restructuring Policy This document provides revised and consolidated policy and models intended to facilitate contractor workforce restructuring activities. Workforce Restructuring Policy (5.03 MB) More Documents & Publications Involuntary Separation Plan Template Self-Select Voluntary Separation Plan Template General Workforce Restructuring Plan Template

  8. Natural gas 1994: Issues and trends

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

  9. The new structure of the gas industry in the State of Sao Paulo

    SciTech Connect (OSTI)

    Neto, J.A.J.

    1998-07-01

    The rapidly increasing availability of natural gas is leading to a significant increase in the importance of the gas industry in Brazil. This new era is already causing major changes in the existing gas distribution companies. Gas distribution concessions are a natural monopoly and the growth in demand for this energy source will require that these growing concessions are regulated. The south/south-east of Brazil is the center of the country's industrial base and the State of Sao Paulo is where most of the manufacturing activity is located. In addition, natural gas from Bolivia is scheduled to arrive in the State of Sao Paulo at the end of 1998. These two facts combined will mean major changes in the operations of manufacturing industry and in the gas supply business. Comparing the experience faced by other countries where a competitive environment in the gas industry has been introduced with privatization programs and the dismantlement of monopolies, this paper attempts to look into the future of the natural gas industry in the State of Sao Paulo in respect to the possible regulation that might be applicable, focusing on the new regulatory framework proposed to the gas industry sector and the perspectives for the introduction of the competition in gas industry in the State of Sao Paulo.

  10. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep; Pfefferle, William

    2010-04-01

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE's goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines

  11. DOE Contractor Work Force Restructuring Approval Thresholds

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractor Work Force Restructuring Approval Thresholds Up to 100 employees Contractor can ... to provide approval for NNSA work force restructurings in consultation with LM 501 ...

  12. Laclede Gas Company - Commercial and Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Gas Steamer: 475 Food Service Gas Fryer: 350 Food Service Griddle: 400 Food Service Convection Oven: 200 Kitchen Low-Flow Spray Nozzle: 100 Program Info Sector Name Utility...

  13. North Dakota Industrial Commission, Oil and Gas Divisioin | Open...

    Open Energy Info (EERE)

    in Bismarck, North Dakota. About The Oil and Gas Division regulates the drilling and production of oil and gas in North Dakota. Our mission is to encourage and promote the...

  14. North Shore Gas- Commercial & Industrial Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    North Shore Gas offers the Chicagoland Natural Gas Savings Program to help non-residential customers purchase energy efficient equipment. Rebates are available on energy efficient furnaces, boilers...

  15. The Importance of Natural Gas in the Industrial Sector With a Focus on Energy-Intensive Industries

    U.S. Energy Information Administration (EIA) Indexed Site

    Importance of Natural Gas in the Industrial Sector With a Focus on Energy-Intensive Industries Elizabeth Sendich February 28, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES February 2014 Elizabeth

  16. Laclede Gas Company- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Commercial and Industrial customers can receive rebates for various energy efficiency measures. Customers implementing specified efficiency measures can receive standard rebates. All other rebates...

  17. Austin Utilities (Gas and Electric) - Commercial and Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    commercial location per year, 5,000 per industrial location per year Program Info Sector Name Utility Administrator Austin Utilities Website http:www.austinutilities.compages...

  18. Reduce Natural Gas Use in Your Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

  19. Europe's last chance to restructure

    SciTech Connect (OSTI)

    Tattum, L.

    1992-12-23

    Looking back over the year, there has been remarkably little sign of restructuring in the chemical industry in view of the current financial crisis in most companies. But the apparent paralysis in terms of plant closures or ownership changes may be disguising much behind-the-scenes activity. But the pain threshold of companies is proving surprisingly high. Looking at ethylene plants, Shell's Peter Kwant notes that almost half the steam crackers operating in Europe are 20 years old or more. They amount to one-third of capacity, or twice current underutilization. No steps have been taken to close any unit. Meanwhile, five producers collectively will have introduced 2 million m.t./year of extra ethylene capacity between 1991 and 1994. One factor hampering closure is that 40% of ethylene capacity in Europe is at isolated sites not connected to either the Benelux/Germany ARG pipeline or a local network such as those in the UK or France. BP Chemicals chief Bryan Sanderson raised that point at a recent Wertheim Schroder/Chemical Week/Chem Systems conference in New York, arguing that steep price falls occur in times of demand slump because of the inelastic supply curve for monster chemical plants. The industry could manage cycles better, he suggests, if rather than closing its incremental capacity, small, flexible plants were available to open and close as demand warrants, thus flattening the supply curve. In addition, following the US example - where 90% of ethylene capacity is connected to pipeline system should be available in Europe, giving companies greater flexibility to take plants on- and offline. The latter solution, of course, would not work for Europe's 18 loss-making polyethylene (PE) producers, and here straight closures or merging of businesses are the only solution.

  20. Economic and Technical Assessment of Wood Biomass Fuel Gasification for Industrial Gas Production

    SciTech Connect (OSTI)

    Anastasia M. Gribik; Ronald E. Mizia; Harry Gatley; Benjamin Phillips

    2007-09-01

    This project addresses both the technical and economic feasibility of replacing industrial gas in lime kilns with synthesis gas from the gasification of hog fuel. The technical assessment includes a materials evaluation, processing equipment needs, and suitability of the heat content of the synthesis gas as a replacement for industrial gas. The economic assessment includes estimations for capital, construction, operating, maintenance, and management costs for the reference plant. To perform these assessments, detailed models of the gasification and lime kiln processes were developed using Aspen Plus. The material and energy balance outputs from the Aspen Plus model were used as inputs to both the material and economic evaluations.

  1. Gas reburn retrofit on an industrial cyclone boiler

    SciTech Connect (OSTI)

    Farzan, H.; Latham, C.E.; Maringo, G.J.

    1996-01-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, is being retrofitted with the gas reburning technology developed by Babcock & Wilcox (B & W) to reduce NO{sub x} emissions in order to comply with the Title I, ozone nonattainment, of the Clean Air Act Amendments (CAAA) of 1990. The required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit set in New York`s regulation is about 47%. Eastman Kodak and the Gas Research Institute (GRI) are cosponsoring this project. B & W is the prime contractor and contract negotiations with Chevron as the gas supplier are presently being finalized. Equipment installation for the gas reburn system is scheduled for a September 1995 outage. No. 43 Boiler`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow or approximately equivalent to 60 MW{sub e}. Because of the compact boiler design, there is insufficient gas residence time to use pulverized coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Based on successful completion of this gas reburn project, modifying the other three cyclone boilers with gas reburn technology is anticipated. The paper will describe B & W`s gas reburn data from a cyclone-equipped pilot facility (B & W`s Small Boiler Simulator), gas reburn design information specific to Eastman Kodak No. 43 Boiler, and numerical modeling experiences based on the pilot-scale Small Boiler Simulator (SBS) results along with those from a full-scale commercial boiler.

  2. Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

  3. Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid

    Broader source: Energy.gov [DOE]

    The undersigned members of the natural gas industry are pleased to submit for your consideration the following comments in response to the U.S. Department of Energy, Office of Electricity Delivery...

  4. Free trade and freer petchems drive Mexican restructuring

    SciTech Connect (OSTI)

    Wood, A.

    1992-11-25

    When Mexico first opened up its protected markets in 1987 by cutting import tariffs, it thrust the chemical industry into a phase of change. Now, with the advent of the North American Free Trade Agreement(NAFTA) and the liberalization of petrochemicals by state oil group Petroleos Mexicanos (Pemex), restructuring has moved up a gear.

  5. US Department of Energy investments in natural gas R&D: An analysis of the gas industry proposal

    SciTech Connect (OSTI)

    Sutherland, R.J.

    1992-04-13

    The natural gas industry has proposed an increase in the DOE gas R&D budget from about $100 million to about $250 million per year for each of the next 10 years. The proposal includes four programs: natural gas supplies, fuel cells, natural gas vehicles and stationary combustion systems. This paper is a qualitative assessment of the gas industry proposal and recommends a natural gas R&D strategy for the DOE. The methodology is a conceptual framework based on an analysis of market failures and the energy policy objectives of the DOE`s (1991) National Energy Strategy. This framework would assist the DOE in constructing an R&D portfolio that achieves energy policy objectives. The natural gas supply program is recommended to the extent that it contributes to energy price stability. Stationary combustion programs are supported on grounds of economic efficiency and environmental quality. The fuel cell program is supported on grounds of environmental quality. The natural gas vehicle program may potentially contribute to environmental quality and energy price stability. The R&D programs in natural gas vehicles and in fuel cells should be complemented with policies that encourage the commercialization and use of the technology, not merely its development.

  6. The impact of corrosion on the oil and gas industry

    SciTech Connect (OSTI)

    Kermani, M.B.; Harrop, D.

    1996-08-01

    The impact of corrosion on the oil industry has been viewed in terms of its effect on both capital and operational expenditures (CAPEX and OPEX) and health, safety, and the environment (HSE). To fight against the high cost and the impact of corrosion within the oil industry, an overview of topical research and engineering activities is presented. This covers corrosion and metallurgy issues related to drilling, production, transportation, and refinery activities.

  7. The impact of corrosion on oil and gas industry

    SciTech Connect (OSTI)

    Kermani, M.B.; Harrop, D.

    1995-11-01

    The impact of corrosion on the oil industry has been viewed in terms of its effect on both capital and operational expenditures (CAPEX and OPEX) and health, safety and the environment (HSE). To fight against the high cost and the impact of corrosion within the oil industry, an overview of topical research and engineering activities is presented. This covers corrosion and metallurgy issues related to drilling, production, transportation and refinery activities.

  8. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  9. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S.

  10. RG&E (Gas)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficiency equipment who pay a natural gas Systems Benefits Charge (SBC). Both prescriptive rebates and custom...

  11. Reduce Natural Gas Use in Your Industrial Process Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Think again. Cutting your natural gas bill can be as simple as adjusting a dial. Get ... water, and oils or in preheating charge material going into a furnace or oven. n Consider ...

  12. The status of electric industry restructuring

    SciTech Connect (OSTI)

    Morey, M.

    1996-12-31

    This presentation discusses current electric utility regulatory reform with a focus on the impacts of competition in the Midwest marketplace. Information and data are presented through 14 figures and 30 tables. Regulatory issues at the state and Federal levels are very briefly outlined, including reciprocity, unbundling, stranded cost recovery, and independent system operation. Graphical data on energy capacity by source, capacity additions, wholesale markets, electricity prices, and market development are also presented.

  13. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2009-10-01

    This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

  14. FERC hears gas industry concerns, announces Transco settlement. [Federal Energy Regulatory Commission

    SciTech Connect (OSTI)

    Rodgers, L.M.

    1991-07-01

    This article examines the industry comments on the Federal Energy Regulatory Commission's (FERC) notice of proposed rulemaking on natural gas pipeline function and comparability of service and the resolution of a charge of violations of regulations against the Transcontinental Gas Pipe Line Corporation by the FERC's Office of the General Council.

  15. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications - Volume I

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications Volume I: Main Text Subcontract No. 85X-TA009V Final Report to Lockheed Martin Energy Research Corporation and the DOE Office of Industrial Technologies January 2000 Notice: This report was prepared by Arthur D. Little for the account of Lockheed Martin Energy Research Corporation and the DOE's Office of Industrial Technologies. This report represents Arthur D. Little's best judgment in light of information made

  16. Investing in Russia`s oil and gas industry: The legal and bureaucratic obstacles

    SciTech Connect (OSTI)

    Skelton, J.W. Jr.

    1993-12-31

    This article discusses the unusual challenges the international oil companies have as they consider investing in the oil and gas industry of the Russian Federation. Topics include the following: Russian oil and gas reserves; the Russian legislative process; law on subsurface resources; regulations on licensing procedure; draft law on oil and gas; draft law on concessions; proposed modification draft legislation; obstacles to wide scale investment.

  17. Environmental compliance tracking for the oil and gas industry

    SciTech Connect (OSTI)

    Thompson, C.C.; Qasem, J.; Killian, T.L.

    1998-12-31

    To meet the demand to track regulatory compliance requirements for oil and gas facilities, C-K Associates, Inc. and Conoco Inc. Natural Gas and Gas Products Department developed a customized relational database. The Compliance Tracking System (CTS), a Microsoft Access database, is designed to insure compliance with all applicable federally-enforceable air quality standards. Currently, compliance is insured through work practices, operating procedures, maintenance, and testing; however, associated documentation may be less formalized, especially for work practice standards and unmanned operations. Title V Operating Permits required by the 1990 Clean Air Act Amendments created the specific need for documentation of such compliance. Title V programs require annual compliance certification and semi-annual reports of compliance monitoring with signature by a responsible official. The CTS compiles applicable standards as well as monitoring, recordkeeping, and reporting requirements. A responsible party (primary and secondary) for each compliance action is assigned. Multiple tickler functions within the system provide notice of upcoming or past-due compliance actions. Systems flexibility is demonstrated through various sort mechanisms. Compliance items can be managed and documented through work orders generated by the CTS. This paper will present how the CTS was developed as an environmental management system and populated for a natural gas plant operating under a Title V permit. The system was expanded to include water quality, waste, and emergency reporting requirements to become a multi-discipline environmental compliance tool for the facility. Regulatory requirements were re-formatted to action items pertinent to field operations. The compliance actions were assigned to fit within current procedures whenever possible. Examples are presented for each media with emphasis on federally-enforceable Title V requirements.

  18. Anti-trust in the new [De]regulated natural gas industry

    SciTech Connect (OSTI)

    McArthur, J.B.

    1997-10-01

    This Article explores the evolution of a new regulatory model in the United States. The deregulation movement has produced {open_quotes}a reduction or substantial elimination of regulatory constraints whose scope is unprecedented in modern American history.{close_quotes} The Article uses natural-gas deregulation to consider the extent and nature of the agency oversight still needed in deregulated markets whose performance deeply affects the public interest. Natural-gas deregulation is a good test case for several reasons. One is that gas deregulation is widely viewed as a successful process. The gas example has become a major piece of evidence in the debate over government intervention into economic activity. Trends in natural gas have great symbolic importance because gas distribution has been viewed as an archetypal natural monopoly since the last century. Many now view the natural gas experience as proof that the state can leave even many components of monopolized industries to the market without encouraging abuses of power. Second, large parts of the industry have been completely deregulated. Thus natural gas offers a strong test for the implications of returning realms of activity entirely to the market. Total deregulation should make it easier to spot abuses. Third, institutional as well as cultural reasons (i.e., the Federal Energy Regulatory Commission (FERC) also has jurisdiction over interstate electricity) ensure that reforms like open-access and unbundling will be applied to other industries, starting with electricity. An imitative intrastate deregulation is rippling through the state-regulated local distribution systems in both industries. Finally, natural gas is a good case study because there is a detailed public record, with clearly articulated differences, for each step of deregulation. Congress laboriously debated the first step, the Natural Gas Policy Act (NGPA). 323 refs.

  19. Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations

    SciTech Connect (OSTI)

    Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

    1994-01-01

    Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

  20. A Brief History of the Electricity Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    data and evaluating electricity restructuring James Bushnell University of California Energy Inst. www.ucei.berkeley.edu Outline * Shameless flattery - Why EIA data are so important * Why are people so unhappy? - With electricity restructuring * What EIA data have helped us learn - Production efficiencies - Market efficiency - Market competition - Environmental compliance Why EIA is so important * Important industries undergoing historic changes - Restructuring/deregulation - Environmental

  1. DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems

    Broader source: Energy.gov [DOE]

    DOE announced a series of actions, partnerships, and stakeholder commitments to help modernize the nation’s natural gas transmission and distribution systems and reduce methane emissions. As part of these DOE actions, AMO will lead a collaborative effort with industry to evaluate and scope high-impact manufacturing R&D to improve natural gas systems efficiency and leak reduction. The goal of this effort is to establish an advanced manufacturing initiative.

  2. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  3. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect (OSTI)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  4. NOx reduction technology for natural-gas-industry prime movers. Special report, August 1990

    SciTech Connect (OSTI)

    Castaldini, C.

    1990-08-01

    The applicability, performance, and costs are summarized for state-of-the-art NOx emission controls for prime movers used by the natural gas industry to drive pipeline compressors. Nearly 7700 prime movers of 300 hp or greater are in operation at compressor stations. NOx control technologies for application to reciprocating engines are catalytic reduction, engine modification, exhaust gas recirculation, and pre-stratified charge. Technologies discussed for application to gas turbines are catalytic reduction, water or steam injection, and low-NOx combustors.

  5. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2011-09-01

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  6. Derivatives and Risk Management in the Petroleum, Natural Gas, and Electricity Industries

    Reports and Publications (EIA)

    2002-01-01

    In February 2002 the Secretary of Energy directed the Energy Information Administration (EIA) to prepare a report on the nature and use of derivative contracts in the petroleum, natural gas, and electricity industries. Derivatives are contracts ('financial instruments') that are used to manage risk, especially price risk.

  7. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn K; Lu, Hongyou; Liu, Xu; Tsen, Katherine; Xiangyang, Wei; Yunpeng, Zhang; Jian, Guan; Rui, Hou; Junfeng, Zhang; Yuqun, Zhuo; Shumao, Xia; Yafeng, Han; Manzhi, Liu

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  8. DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems

    Broader source: Energy.gov [DOE]

    DOE will launch a collaborative effort with industry to evaluate and scope high-impact manufacturing R&D to improve natural gas systems efficiency and leak reduction. The goal of this effort is to establish an advanced manufacturing initiative. AMO will lead this effort.

  9. Electric restructuring: Observations about what is in the public interest

    SciTech Connect (OSTI)

    Hoecker, J.

    1996-12-31

    Opinions regarding restructuring of the U.S. electric utility industry are presented in the paper. A brief assessment is made of Federal Energy Regulatory Commission orders requiring open access transmission services and open access same-time information systems. Three subtopics are pursued in some detail: competition between renewables and conservation, the role of government, and the impact of government on the market for renewables. It is concluded that renewable programs can be incorporated into competitive markets through regulatory agencies.

  10. An industrial FT-IR process gas analyzer for stack gas cems analysis

    SciTech Connect (OSTI)

    Welch, G.M.; Herman, B.E.

    1995-12-31

    This paper describes utilizing Fourier Transform Infrared (FT-IR) technology to meet and exceed EPA requirements to Continuously Monitor Carbon Monoxide (CO) and Sulfur Dioxide (SO){sub 2} in an oil refinery. The application consists of Continuous Emission Monitoring (CEMS) of two stacks from a Fluid Catalytic Cracking unit (FCCU). The discussion will follow the project from initial specifications, installation, start-up, certification results (RATA, 7 day drift), Cylinder Gas Audit (CGA) and the required maintenance. FT-IR is a powerful analytical tool suitable for measurement of stack component gases required to meet CEMS regulations, and allows simultaneous multi-component analysis of complex stack gas streams with a continuous sample stream flow through the measurement cell. The Michelson Interferometer in a unique {open_quotes}Wishbone{close_quotes} design and with a special alignment control enables standardized configuration of the analyzer for flue gas analysis. Normal stack gas pollutants: NO{sub x}, SO{sub 2}, and CO; as well as water soluble pollutants such as NH{sub 3} and HCI may be accurately determined and reported even in the presence of 0-31 Vol % water vapor concentrations (hot and wet). This FT-IR analyzer has been operating with EPA Certification in an oil refinery environment since September 1994.