Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired  

E-Print Network [OSTI]

higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inletElevated Temperature Materials for Power Generation and Propulsion The energy industry is designing of thermomechanical fatigue life of the next generation's Ni-base superalloys are being developed to enhance life

Li, Mo

2

The Gas Industry  

Science Journals Connector (OSTI)

... the total output of towns' gas in Great Britain, distributes annually approximately as much energy as the whole of the electrical undertakings in the country. The industry has reason ... any actual thermal process, and the operations of the gas industry are not outside the ambit of the second law of thermodynamics, high though the efficiency of the carbonising process ...

J. S. G. THOMAS

1924-04-26T23:59:59.000Z

3

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

4

SPECIES COMPOSITION OF INDUSTRIAL TRAWL FISH LANDINGS  

E-Print Network [OSTI]

346; SPECIES COMPOSITION OF INDUSTRIAL TRAWL FISH LANDINGS IN NEW ENGLAND, 1958 SPECIAL SCIENTIFIC REPORT-FISHERIES Na 346 #12;#12;United States Department of the Interior, Fred A. Seaton, Secretary FishKernan, Director SPECIES COMPOSITION OF INDUSTRIAL TRAWL-FISH LANDINGS IN NEW ENGLAND, 1958 by Robert L. Edwards

5

Oil and Gas on Public Lands (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

on Public Lands (Texas) on Public Lands (Texas) Oil and Gas on Public Lands (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Program Info State Texas Program Type Siting and Permitting Provider Texas General Land Office The School Land Board may choose to lease lands for the production of oil and natural gas, on the condition that oil and gas resources are leased together and separate from other minerals. Lands that may be leased include: (1) islands, saltwater lakes, bays, inlets, marshes, and reefs owned by the state within tidewater limits; (2) the portion of the Gulf of Mexico within the jurisdiction of the state; (3) all unsold surveyed and

6

Natural Gas Industrial Price  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

7

The Venezuelan natural gas industry  

SciTech Connect (OSTI)

Venezuela's consumption energy of comes from three primary sources: hydroelectricity, liquid hydrocarbons and natural gas. In 1986, the energy consumption in the internal market was 95.5 thousand cubic meters per day of oil equivalent, of which 32% was natural gas, 46% liquid hydrocarbons and 22% hydroelectricity. The Venezuelan energy policy established natural gas usage after hydroelectricity, as a substitute of liquid hydrocarbons, in order to increase exports of these. This policy permits a solid development of the natural gas industry, which is covered in this paper.

Silva, P.V.; Hernandez, N.

1988-01-01T23:59:59.000Z

8

Gas Emissions FLOODING THE LAND,  

E-Print Network [OSTI]

signif- icant sources of emissions of the greenhouse gases carbon dioxide and, in particular, methane to bacteria breaking down organic matter in the water. Methane, a much more powerful greenhouse gas than coal plants generating the same amounts of power. Dams and their associated reservoirs are globally

Batiste, Oriol

9

Agriculture and Land Use National Greenhouse Gas Inventory Software | Open  

Open Energy Info (EERE)

Agriculture and Land Use National Greenhouse Gas Inventory Software Agriculture and Land Use National Greenhouse Gas Inventory Software Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agriculture and Land Use National Greenhouse Gas Inventory Software Agency/Company /Organization: Colorado State University Partner: United States Agency for International Development, United States Forest Service, United States Environmental Protection Agency Sector: Land Focus Area: Forestry, Agriculture Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.colostate.edu/projects/ghgtool/index.php Cost: Free Agriculture and Land Use National Greenhouse Gas Inventory Software Screenshot References: Agriculture and Land Use National Greenhouse Gas Inventory Software[1]

10

Industrial Gas Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

11

Industrial Gas Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

12

Sustainable treatment of hydrocarbon-contaminated industrial land   

E-Print Network [OSTI]

Land contamination by petroleum hydrocarbons is a widespread and global environmental pollution issue from recovery and refining of crude oil and the ubiquitous use of hydrocarbons in industrial processes and applications. ...

Cunningham, Colin John

2012-06-25T23:59:59.000Z

13

Deregulation in Japanese gas industries : significance and problems of gas rate deregulation for large industrial customers  

E-Print Network [OSTI]

In recent years, the circumstances surrounding Japanese City gas industries have been changing drastically. On one hand, as energy suppliers, natural gas which has become major fuel resource for city gas, as public utilities, ...

Inoue, Masayuki

1994-01-01T23:59:59.000Z

14

,"New York Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:17 PM" "Back to Contents","Data 1: New York Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NY2" "Date","New York...

15

Reduce Natural Gas Use in Your Industrial Process Heating Systems...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Use in Your Industrial Process Heating Systems Reduce Natural Gas Use in Your Industrial Process Heating Systems This fact sheet describes ten effective ways to save...

16

Title 30 USC 226 Lease of Oil and Gas Lands | Open Energy Information  

Open Energy Info (EERE)

StatuteStatute: Title 30 USC 226 Lease of Oil and Gas LandsLegal Abstract Section 226 - Lease of Oil and Gas Lands in Subchapter IV: Oil and Gas under Title 30: Mineral Lands and...

17

EIA - Greenhouse Gas Emissions - Land use  

Gasoline and Diesel Fuel Update (EIA)

6. Land use 6. Land use 6.1. Total land use, land use change, and forests This chapter presents estimates of carbon sequestration (removal from the atmosphere) and emissions (release into the atmosphere) from forests, croplands, grasslands, and residential areas (urban trees, grass clippings, and food scraps) in the United States. In 2008, land use, land use change, and forests were responsible for estimated net carbon sequestration of 940 MMTCO2e (Table 31), representing 16 percent of total U.S. CO2 emissions. The largest sequestration category in 2008 was forest lands and harvested wood pools,49 with estimated sequestration increasing from 730 MMTCO2e in 1990 to 792 MMTCO2e in 2008. The second-largest carbon sequestration category was urban trees,50 responsible for 57 MMTCO2e in 1990 and 94

18

Alternative fuels for industrial gas turbines (AFTUR)  

Science Journals Connector (OSTI)

Environmentally friendly, gas turbine driven co-generation plants can be located close to energy consumption sites, which can produce their own fuel such as waste process gas or biomass derived fuels. Since gas turbines are available in a large power range, they are well suited for this application. Current gas turbine systems that are capable of burning such fuels are normally developed for a single specific fuel (such as natural gas or domestic fuel oil) and use conventional diffusion flame technology with relatively high levels of \\{NOx\\} and partially unburned species emissions. Recently, great progress has been made in the clean combustion of natural gas and other fossil fuels through the use of dry low emission technologies based on lean premixed combustion, particularly with respect of \\{NOx\\} emissions. The objective of the AFTUR project is to extend this capability to a wider range of potentially commercial fuel types, including those of lower calorific value produced by gasification of biomass (LHV gas in line with the European Union targets) and hydrogen enriched fuels. The paper reports preliminary progress in the selection and characterisation of potential, liquid and gas, alternative fuels for industrial gas turbines. The combustion and emission characteristics of the selected fuels will be assessed, in the later phases of the project, both in laboratory and industrial combustion chambers.

Iskender Gökalp; Etienne Lebas

2004-01-01T23:59:59.000Z

19

Impact of the Global Forest Industry on Atmospheric Greenhouse Gas | Open  

Open Energy Info (EERE)

Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Jump to: navigation, search Tool Summary Name: Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Industry, Forestry Topics: GHG inventory, Co-benefits assessment, - Environmental and Biodiversity Resource Type: Publications Website: www.fao.org/docrep/012/i1580e/i1580e00.pdf Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Screenshot References: Forestry Industry Impacts[1] "This book examines the influence of the forest products (roundwood, processed wood products and pulp and paper) value chain on atmospheric greenhouse gases. Forests managed for natural conservation, for protection

20

Facilitating Oil Industry Access to Federal Lands through Interagency Data Sharing  

SciTech Connect (OSTI)

Much of the environmental and technical data useful to the oil and gas industry and regulatory agencies is now contained in disparate state and federal databases. Delays in coordinating permit approvals between federal and state agencies translate into increased operational costs and stresses for the oil and gas industry. Making federal lease stipulation and area restriction data available on state agency Web sites will streamline a potential lessors review of available leases, encourage more active bidding on unleased federal lands, and give third-party operators independent access to data who otherwise may not have access to lease restrictions and other environmental data. As a requirement of the Energy Policy Conservation Act (EPCA), the Bureau of Land Management (BLM) is in the process of inventorying oil and natural gas resources beneath onshore federal lands and the extent and nature of any stipulation, restrictions, or impediments to the development of these resources. The EPCA Phase 1 Inventory resulted in a collection of GIS coverage files organized according to numerous lease stipulation reference codes. Meanwhile, state agencies also collect millions of data elements concerning oil and gas operations. Much of the oil and gas data nationwide is catalogued in the Ground Water Protection Council's (GWPC's) successfully completed Risk Based Data Management System (RBDMS). The GWPC and the states of Colorado, New Mexico, Utah, and Montana are implementing a pilot project where BLM lease stipulation data and RBDMS data will be displayed in a GIS format on the Internet. This increased access to data will increase bid activity, help expedite permitting, and encourage exploration on federal lands. Linking environmental, lease stipulation and resource inventory assessment data and making a GIS interface for the data available to industry and other agencies via the internet represents an important step in the GWPC strategy for all oil and gas regulatory e-commerce. The next step beyond mere data sharing for facilitating the permitting process is to make it possible for industry to file those permit applications electronically. This process will involve the use of common XML schemas.

Paul Jehn; Ben Grunewald

2007-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Linking Oil Prices, Gas Prices, Economy, Transport, and Land Use  

E-Print Network [OSTI]

Linking Oil Prices, Gas Prices, Economy, Transport, and Land Use A Review of Empirical Findings Hongwei Dong, Ph.D. Candidate John D. Hunt, Professor John Gliebe, Assistant Professor #12;Framework Oil-run Short and Long-run #12;Topics covered by this presentation: Oil price and macro-economy Gas price

Bertini, Robert L.

22

Lean Manufacturing in the Oil and Gas Industry .  

E-Print Network [OSTI]

??This research aims to investigate the lean production tools and techniques in the oil and gas industry with a focus on the oilfield services industry.… (more)

Sakhardande, Rohan

2011-01-01T23:59:59.000Z

23

Chapter 18 - Future Trends in the Gas Turbine Industry  

Science Journals Connector (OSTI)

Abstract The future of gas turbine systems design development and the gas turbine business is steered by several factors. Business and political factors are a far greater influence on technology than the average engineer feels comfortable acknowledging. The major change in the gas turbine and gas turbine systems industries over the past several years has been the changes in turbine fuels strategy. In the power generation and land-based turbine sector, coal has lost its “number 1” place in the USA, due mostly to the advent of natural gas fracking exploration and production. Coal still remains number 1 in countries like China and much of Eastern Europe, because of those countries huge coal reserves. Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30% range with today’s steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40% range, with near-100% CO2 capture and near-zero \\{NOx\\} emissions. “I am enough of an artist to draw freely on my imagination. Imagination is more important that knowledge. Knowledge is limited. Imagination encircles.” —Albert Einstein

Claire Soares

2015-01-01T23:59:59.000Z

24

Barriers to the development of China's shale gas industry  

Science Journals Connector (OSTI)

Abstract Shale gas has become a promising onshore energy prospect in China. As much as the country aspires for greater energy independence through the use of its shale gas reserves, this process is slowed down by the combined weight of relative inexperience, lack of technology, geographical complexity, a hostile economic environment, a disincentive pipeline regime, and a complex land ownership system. To foster a better understanding of the current circumstances of the country's shale gas sector, a panel of scholars and experts shared their perspectives and insider knowledge on China's shale gas industry. It was found that some of the country's man-made institutional barriers are factors that have been hindering shale gas development in China, in addition to natural conditions such as water concerns and the complex geography of shale fields. Resolving this situation necessitates breaking the monopoly that major state-owned oil companies have over high-quality shale gas resources, opening pipeline network access, providing geological data, developing the domestic oil service market, creating conditions for fair competition between service providers, and improving the water management system.

Zheng Wan; Tao Huang; Brian Craig

2014-01-01T23:59:59.000Z

25

Exploration and Development of Oil and Gas on School and Public Lands (Nebraska)  

Broader source: Energy.gov [DOE]

This statute authorizes the Board of School Lands and Funds to lease school and public lands under its jurisdiction for oil and gas exploration and development purposes.

26

Colorado Natural Gas Number of Industrial Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

27

Connecticut Natural Gas Number of Industrial Consumers (Number...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

28

"1. Moss Landing Power Plant","Gas","Dynegy -Moss Landing LLC",2529  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "1. Moss Landing Power Plant","Gas","Dynegy -Moss Landing LLC",2529 "2. Diablo Canyon","Nuclear","Pacific Gas & Electric Co",2240 "3. San Onofre","Nuclear","Southern California Edison Co",2150 "4. AES Alamitos LLC","Gas","AES Alamitos LLC",1997 "5. Castaic","Pumped Storage","Los Angeles City of",1620 "6. Haynes","Gas","Los Angeles City of",1524 "7. Ormond Beach","Gas","RRI Energy Ormond Bch LLC",1516 "8. Pittsburg Power","Gas","Mirant Delta LLC",1311 "9. AES Redondo Beach LLC","Gas","AES Redondo Beach LLC",1310

29

,"New York Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:18 PM" "Back to Contents","Data 1: New York Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

30

,"New York Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:17 PM" "Back to Contents","Data 1: New York Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

31

,"Connecticut Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:02:15 PM" "Back to Contents","Data 1: Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

32

Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Low-Income Residential Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate All Gas Programs: Contact utility Custom Retrofits: 40% Comprehensive Project: 50% of total cost Program Info Funding Source Connecticut Energy Efficiency Fund State Connecticut Program Type Utility Rebate Program Rebate Amount

33

Gas Separation Membrane Use in the Refinery and Petrochemical Industries  

E-Print Network [OSTI]

Membranes have gained commercial acceptance as proven methods to recover valuable gases from waste gas streams. This paper explores ways in which gas separation membranes are used in the refinery and petrochemical industries to recover and purify...

Vari, J.

34

Optimal Gas Turbine Integration to the Process Industries  

Science Journals Connector (OSTI)

Gas turbine integration can also help cut down flue gas emissions as a result of the improved efficiency of a cogeneration system. ... The aeroderivative turbines have higher efficiency than the industrial type, but they are more expensive. ...

Jussi Manninen; X. X. Zhu

1999-09-28T23:59:59.000Z

35

Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Laclede Gas Company - Commercial and Industrial Energy Efficiency Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate Program Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Maximum Rebate Commercial Incentive: Contact Laclede Gas for general program incentive maximum Gas Boilers: 1,000,000 BTU/hr ($3,000) Continuous Modulating Burner: $15,000 cap per burner Gas-fired Boiler Tune Up: $750 per building (non-profit), $500 per boiler (C&I) High Efficiency Air-Forced Furnaces: $200-$250 Vent Dampers: $500 per boiler Steam Trap Replacements: $2,500 Primary Air Dampers: $500 Food Service Gas Steamer: $475 Food Service Gas Fryer: $350

36

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network [OSTI]

clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial...

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

37

Chapter 10 - The Transformation of the German Gas Supply Industry  

Science Journals Connector (OSTI)

Publisher Summary Natural gas is the second largest energy source in Germany, and its market share will continue to increase. This chapter describes the historical development of the German gas industry, discusses current issues of importance in German gas policy, and outlines the industrial organization and profiles of the major gas utilities. Today, the German gas industry can be divided into two groups: the gas supply industry and the rest of the gas industry. The gas market in Germany has developed on three levels: natural gas production and import, pipeline business and distribution, and end user supply. Germany's energy policy, as a part of economic policy, is oriented to free market principles. The future of the German gas market is very promising. The share of natural gas is growing as a part of primary energy supply, as well as in power generation, substituting coal and oil, and electricity in the heat market. With regard to the effects of liberalization, it can be said that a one-to-one transposition of international experience to the German gas industry will not be possible, due to the different historical, economical, and political factors at work.

Lutz Mez

2003-01-01T23:59:59.000Z

38

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Insulation Design & Remodeling Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $100,000 Customer: $200,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $4/MCF of first year energy savings Whole Building Design Incentive: 50% of cost up to $3,000 Steam Trap Repair/Replacement: $100

39

North Shore Gas - Commercial and Industrial Prescriptive Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

North Shore Gas - Commercial and Industrial Prescriptive Rebate North Shore Gas - Commercial and Industrial Prescriptive Rebate Program North Shore Gas - Commercial and Industrial Prescriptive Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Contact North Shore Gas Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Steam Traps (Low Pressure): $60/unit Steam Traps (High Pressure): $150/unit Industrial/Process Steam Trap (Low Pressure): $150 Industrial/Process Steam Trap (High Pressure): $200 HVAC Steam Trap Test: $5/unit surveyed Condensing Unit Heater: $2/MBH Boilers: $2 - $6.67/MBH Boiler Cutout/Reset Control: $250

40

Austin Utilities (Gas and Electric) - Commercial and Industrial Energy  

Broader source: Energy.gov (indexed) [DOE]

Austin Utilities (Gas and Electric) - Commercial and Industrial Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Commercial Weatherization Water Heating Maximum Rebate Electric Measures: $100,000 per customer location, per technology, per year Custom Gas Measures: $75,000 per commercial location per year, $5,000 per industrial location per year Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: See Program Website Air Source Heat Pumps: $20-$25/ton, plus bonus rebate of $4/ton for each

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit  

Broader source: Energy.gov (indexed) [DOE]

Philadelphia Gas Works - Commercial and Industrial EnergySense Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Insulation Appliances & Electronics Water Heating Maximum Rebate $75,000 Program Info Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Varies Widely Philadelphia Gas Works' (PGW) Commercial and Industrial Retrofit Incentive Program is part of EnergySense, PGW's portfolio of energy efficiency

42

Gas turbine considerations in the pulp and paper industry  

SciTech Connect (OSTI)

The pulp and paper industry is one of the largest users of energy in the industrial arena, requiring large quantities of process steam and electrical energy per unit of production. Developing power generation as an integral part of its power plant systems is one way for the industry to meet these requirements. Gas turbine-based cogeneration systems can also be a desirable approach. In recent years, competitive pressures, environmental concerns, the cost and availability of various fuels, and new power generation opportunities have awakened interest in power generation in the pulp and paper industry and other industries. This paper provides a strategic review of these issues of the pulp and paper industry.

Anderson, J.S. (International Paper Co., Purchase, NY (US)); Kovacik, J.M. (GE Co., Schenectady, NY (US))

1991-03-01T23:59:59.000Z

43

Peoples Gas - Commercial and Industrial Prescriptive Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Peoples Gas - Commercial and Industrial Prescriptive Rebate Program Peoples Gas - Commercial and Industrial Prescriptive Rebate Program Peoples Gas - Commercial and Industrial Prescriptive Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Commercial Prescriptive Incentives: 50,000/project; 100,000/customer per year Commercial Custom Incentives: 100,000/project; 250,000/customer per year Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Steam Traps (Low Pressure): $60/unit Steam Traps (High Pressure): $150/unit Industrial/Process Steam Trap (Low Pressure): $150 Industrial/Process Steam Trap (High Pressure): $200

44

Multi-Echelon Supply Chain Design in Natural Gas Industry  

E-Print Network [OSTI]

Abstract: In this paper, a framework is proposed for integrating of the operational parts of Natural Gas Transmission Systems (NGTSs) through pipelines and better coordination for the flow of natural gas and information in the system. The objective functions of this study are to provide a brief review of literature in natural gas supply chain modeling and to design a multi-echelon Supply Chain for the Natural Gas Transmission Systems (NSTSC). To achieve this, extensive and detailed studies in this field of research have been done. Subsequently, a complete study on the transmission of natural gas through pipelines, as well as the supply chain and its application, has been made in gas industry. Next, based on the operational systems in the natural gas industry, the supply chain levels are developed. These designs are very effective for modeling and optimization of the gas networks. In addition, the developed supply chain helps to reduce the costs of the NGTSs and increase customer satisfaction.

Mehrdad Nikbakht; N. Zulkifli; N. Ismail; S. Sulaiman; Abdolhossein Sadrnia; M. Suleiman

45

Recent Economic Trends in Colorado's Oil and Gas Industry Martin Shields, Ph.D.  

E-Print Network [OSTI]

's Oil and Gas Industry Martin Shields, Ph.D. Regional Economics Institute Trends in Colorado's Oil and Gas Industry Summary Colorado's economy lost issues affecting its prospects in Colorado. Although the oil and gas industry

46

ConEd (Gas) - Commercial and Industrial Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

ConEd (Gas) - Commercial and Industrial Energy Efficiency Program ConEd (Gas) - Commercial and Industrial Energy Efficiency Program ConEd (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Manufacturing Other Appliances & Electronics Water Heating Maximum Rebate Large Commercial Energy Study: 50,000 (gas); 67,000 (combined with electric) VFD: 12,000 Program Info Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Energy Study: 50% of the cost Custom: $1/therm at less than 20% savings; $2/therm at greater than 20% savings Control/Automation Systems: $2/therm saved, up to 50% of cost

47

Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition November 16, 2007 - 4:31pm Addthis Holds Bilateral Discussion with President of Turkmenistan on Opening of Markets, Increased Investment, and Multiple Trade Routes ASHGABAT, TURKMENISTAN - U.S. Secretary of Energy Samuel W. Bodman today held bilateral energy discussions with the President of Turkmenistan and other senior Turkmenistan officials and delivered remarks to the Turkmenistan Industrial Oil and Gas Exhibition. Secretary Bodman highlighted the role of international investment in developing Turkmenistan's vast resources and expanding infrastructure. He also discussed the importance of establishing a stable and transparent

48

Evaluation of capacity release transactions in the natural gas industry  

E-Print Network [OSTI]

The purpose of this thesis is to analyze capacity release transactions in the natural gas industry and to state some preliminary conclusions about how the capacity release market is functioning. Given FERC's attempt to ...

Lautzenhiser, Stephen

1994-01-01T23:59:59.000Z

49

Gas visualization of industrial hydrocarbon emissions  

Science Journals Connector (OSTI)

Gases leaking from a polyethene plant and a cracker plant were visualized with the gas-correlation imaging technique. Ethene escaping from flares due to incomplete or erratic...

Sandsten, Jonas; Edner, Hans; Svanberg, Sune

2004-01-01T23:59:59.000Z

50

Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)  

Broader source: Energy.gov [DOE]

This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

51

Municipal officials’ decisions to lease watershed lands for Marcellus shale gas exploration  

Science Journals Connector (OSTI)

This paper provides insight into municipalities’ decisions to lease watershed lands for Marcellus shale gas exploration in Pennsylvania. The focus was on...

Charles Abdalla; Renata Rimsaite…

2014-03-01T23:59:59.000Z

52

Brownfields in China : how Cities recycle industrial land  

E-Print Network [OSTI]

Since around 2000, China has been experiencing a major shift in its industrial bases. Many cities have been relocating polluting and energy-intensive plants from urban areas to the less-developed periphery. In the summer ...

Li, Xin, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

53

Investigation of greenhouse gas reduction strategies by industries : an enterprise systems architecting approach  

E-Print Network [OSTI]

This thesis explores an enterprise systems architecting approach to investigate the greenhouse gas reduction strategies followed by industries, especially for automotive industry and Information Technology industry. The ...

Tanthullu Athmaram, Kumaresh Babu

2012-01-01T23:59:59.000Z

54

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler Size 300-500 (kBtu/h): $800; $2900 Boiler Size 500-700 (kBtu/h): $1400; $3600 Boiler Size 700-900 (kBtu/h): $2000; $4200 Boiler Size 900-1100 (kBtu/h): $2600; $4800 Boiler Size 1100-1300 (kBtu/h): $3200; $5400 Boiler Size 1300-1500 (kBtu/h): $3800; $6000 Boiler Size 1500-1700 (kBtu/h): $4400; $6600 Boiler Size 1700-2000 (kBtu/h): $5200; $7400

55

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $75 - $300 Furnaces: $250 - $400 Boilers: $150 - $400 Setback Thermostat: $25 - $50 Convection Oven: $100 High Efficiency Range/Oven: $500 Conveyor Oven: $500 Fryer: $500 Broiler: $100 Steam Cooker: $500 Vent Dampers for Boilers: $125 Custom: Two year buy down or 50% of project cost, whichever is less

56

Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program  

Broader source: Energy.gov [DOE]

This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

57

Coal Conservation and the Gas Industry1  

Science Journals Connector (OSTI)

... won by mechanical excavation rather than underground mining. It is available, therefore, at the pit at a very low cost, and much of the German electric power supply is ... resinous bodies which cause many coals to fuse on heating and to evolve much gas, burning with a luminous smoky flame. It is owing to the absence of such components ...

J. W. COBB

1926-01-09T23:59:59.000Z

58

The mutagenic potential of soil and runoff water from land treatment of three hazardous industrial wastes  

E-Print Network [OSTI]

THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAYOL Submitted to the Graduate College of Te xa s ASM Un i ver s i ty in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1987 Major Subject: Soil Science THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAVDL Approved. s to style and content by: Kirk W...

Davol, Phebe

2012-06-07T23:59:59.000Z

59

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Simulation Tools Available from Energy Analysis and Environmental Impacts Department Tools header image January 2014 Tools and models to find the best way to save energy and reduce greenhouse gas emissions in cities and industries, to follow the transport of pollutants through the environment, and to calculate the cost of power interruptions are among those available on a new Lawrence Berkeley National Laboratory (Berkeley Lab) web site. The site brings together models and simulation tools developed by the Energy Analysis and Environmental Impacts (EAEI) Department of the Lab's Environmental Energy Technologies Division. "Our hope is that the site will facilitate greater technical awareness of

60

Electric and Gas Industries Association | Open Energy Information  

Open Energy Info (EERE)

and Gas Industries Association and Gas Industries Association Jump to: navigation, search Name Electric and Gas Industries Association Place Sacramento, CA Zip 95821 Website http://www.egia.org/ Coordinates 38.6228166°, -121.3827505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6228166,"lon":-121.3827505,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

PROJECT RULISON A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O  

Office of Legacy Management (LM)

A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O N S T I M U L A T I O N EXPERIMENT U S I N G A NUCLEAR EXPLOSIVE Issued By PROJECT RULISON JOINT OFFICE OF INFORMATION U. S. ATOMIC ENERGY COMMISSION - AUSTRAL OIL COMPANY, INCORPORATED THE DEPARTMENT OF THE INTERIOR - CER GEONUCLEAR CORPORATION May 1, 1969 OBSERVATION AREA J SURFACE GROUND ZERO AREA S C A L E - I inch e q u a l s approximatly I 2 m i l e s Project Rulison Area Map PROJECT RULISON A N INDUSTRY-GOVERNMENT NATURAL GAS PRODUCT1 ON STIMULATION EXPERIMENT USING A NUCLEAR EXPLOSIVE I. INTRODUCTION Project Rulison is o joint experiment sponsored by Austral O i l Company, Incorporated, of Houston, Texas, the U. S. Atomic Energy Commission and the Department o f the Interior, w i t h the Program Management provided b y CER Geonuclear Corporotion of L

62

Outsourcing Logistics in the Oil and Gas Industry  

E-Print Network [OSTI]

-2016 Drilling and Exploration (Upstream) $329.9bn 3.10% 5.50% $158.4bn 48.00% Refining (Downstream) $698.9bn 4.60% 3.10% $90.9bn 13.00% 9 CHAPTER II METHODOLOGY The study includes literature review from academic and industry specific journals... Outsourcing Outlook in the Oil and Gas Industry Industry Segment Drilling and Exploration Refining Revenue $329.9bn $698.9bn Average Total Logistic Expenditure (ATLE) (11% of Revenue*) $36.29bn $76.88bn Average Total Logistics Expenditure Outsourced...

Herrera, Cristina 1988-

2012-04-30T23:59:59.000Z

63

Water retention and gas relative permeability of two industrial concretes  

SciTech Connect (OSTI)

This experimental study aims at identifying the water retention properties of two industrial concretes to be used for long term underground nuclear waste storage structures. Together with water retention, gas transfer properties are identified at varying water saturation level, i.e. relative gas permeability is assessed directly as a function of water saturation level S{sub w}. The influence of the initial de-sorption path and of the subsequent re-saturation are analysed both in terms of water retention and gas transfer properties. Also, the influence of concrete microstructure upon water retention and relative gas permeability is assessed, using porosity measurements, analysis of the BET theory from water retention properties, and MIP. Finally, a single relative gas permeability curve is proposed for each concrete, based on Van Genuchten-Mualem's statistical model, to be used for continuous modelling approaches of concrete structures, both during drying and imbibition.

Chen Wei; Liu Jian; Brue, Flore; Skoczylas, Frederic [Univ Lille Nord de France, F-59000 Lille (France); ECLille, LML, BP 48, F-59650 Villeneuve d'Ascq (France); CNRS, UMR 8107, F-59650 Villeneuve d'Ascq (France); Davy, C.A., E-mail: catherine.davy@ec-lille.fr [Univ Lille Nord de France, F-59000 Lille (France); ECLille, LML, BP 48, F-59650 Villeneuve d'Ascq (France); CNRS, UMR 8107, F-59650 Villeneuve d'Ascq (France); Bourbon, Xavier; Talandier, Jean [Andra, 1-7 rue Jean Monnet, F-92298 Chatenay-Malabry Cedex (France)

2012-07-15T23:59:59.000Z

64

The Natural Gas Industry and Markets in 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 Overview The natural gas industry in 2003 experienced sustained high prices, supported at least in part by pressure on supplies as gas in storage was rebuilt from historic lows in the early part of the year. The national annual average natural gas wellhead price was $4.88 per thousand cubic feet (Mcf), which is the highest wellhead price (based on 2003 constant dollars) in the Energy Information Administration's historical data series dating to 1930. U.S. marketed production was virtually unchanged compared with the previous year at 19.9 trillion cubic feet (Tcf), despite the high prices and an increased number of drilling rigs employed in the commercial development of gas deposits. Imports of liquefied natural gas (LNG) mitigated supply declines, reaching a record

65

NYSEG (Gas) - Commercial and Industrial Efficiency Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Commercial and Industrial Efficiency Program Commercial and Industrial Efficiency Program NYSEG (Gas) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer. Program Info State New York Program Type Utility Rebate Program Rebate Amount HVAC: Prescriptive incentives vary Condensing Boilers: $1000-$6000 Hydronic Boilers: $500-$4000 Steam Boilers: $200 Furnaces: $100 Programmable Thermostats: $25 Boiler Reset Controls: $150 Provider NYSEG/RGE NYSEG and RG&E offer rebates to non-residential customers installing energy

66

Oil, Gas, and Minerals, Exploration and Production, Lease of Public Land (Iowa)  

Broader source: Energy.gov [DOE]

The state, counties and cities and other political subdivisions may lease publicly owned lands for the purpose of oil or gas or metallic minerals exploration and production.  Any such leases shall...

67

Greenhouse Gas Emissions and Land Use Change from Jatropha Curcas-Based Jet Fuel in Brazil  

Science Journals Connector (OSTI)

Greenhouse Gas Emissions and Land Use Change from Jatropha Curcas-Based Jet Fuel in Brazil ... Life cycle GHG emissions of biojet fuel derived from Jatropha curcas is quantified based on empirical data from Brazilian producers accounting for land-use change. ... This is the methodology adopted by the European Community in its current Renewable Energy Directive (40). ...

Robert E. Bailis; Jennifer E. Baka

2010-10-26T23:59:59.000Z

68

Shale gas for the petrochemical industry: Incorporation of novel technologies  

Science Journals Connector (OSTI)

Abstract In this work, a new shale gas-based polygeneration system with essentially zero CO2 emissions is proposed that co-produces methanol, dimethyl ether (DME), olefins and power. The thermal and economic analysis of the proposed process is performed to determine the optimum product portfolio regarding current market prices. The optimization results show that production of methanol/DME and power can improve the performance of the olefin production section significantly. Therefore, the proposed plant can link the shale gas industry to the petrochemical sector efficiently and in an environmentally friendly way.

Yaser Khojasteh Salkuyeh; Thomas A. Adams II

2014-01-01T23:59:59.000Z

69

Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands  

SciTech Connect (OSTI)

Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

1997-08-01T23:59:59.000Z

70

Environmental Monitoring and the Gas Industry: Program Manager Handbook  

SciTech Connect (OSTI)

This document has been developed for the nontechnical gas industry manager who has the responsibility for the development of waste or potentially contaminated soil and groundwater data or must make decisions based on such data for the management or remediation of these materials. It explores the pse of common analytical chemistry instrumentation and associated techniques for identification of environmentally hazardous materials. Sufficient detail is given to familiarize the nontechnical reader with the principles behind the operation of each technique. The scope and realm of the techniques and their constituent variations are portrayed through a discussion of crucial details and, where appropriate, the depiction of real-life data. It is the author's intention to provide an easily understood handbook for gas industry management. Techniques which determine the presence, composition, and quantification of gas industry wastes are discussed. Greater focus is given to traditional techniques which have been the mainstay of modem analytical benchwork. However, with the continual advancement of instrumental principles and design, several techniques have been included which are likely to receive greater attention in fiture considerations for waste-related detection. Definitions and concepts inherent to a thorough understanding of the principles common to analytical chemistry are discussed. It is also crucial that gas industry managers understand the effects of the various actions which take place before, during, and after the actual sampling step. When a series of sample collection, storage, and transport activities occur, new or inexperienced project managers may overlook or misunderstand the importance of the sequence. Each step has an impact on the final results of the measurement process; errors in judgment or decision making can be costly. Specific techniques and methodologies for the collection, storage, and transport of environmental media samples are not described or discussed in detail in thk handbook. However, the underlying philosophy regarding the importance of proper collection, storage, and transport practices, as well as pertinent references, are presented.

Gregory D. Gillispie

1997-12-01T23:59:59.000Z

71

North Dakota Industrial Commission, Oil and Gas Divisioin | Open Energy  

Open Energy Info (EERE)

North Dakota Industrial Commission, Oil and Gas Divisioin North Dakota Industrial Commission, Oil and Gas Divisioin Jump to: navigation, search State North Dakota Name North Dakota Industrial Commission, Oil and Gas Divisioin Address 600 East Boulevard Ave Dept 405 City, State Bismarck, North Dakota Zip 58505-0840 Website https://www.dmr.nd.gov/oilgas/ Coordinates 46.8206977°, -100.7827515° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.8206977,"lon":-100.7827515,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

72

A Multimedia Workflow-Based Collaborative Engineering Environment for Oil & Gas Industry  

E-Print Network [OSTI]

A Multimedia Workflow-Based Collaborative Engineering Environment for Oil & Gas Industry Ismael H the control and execution of large and complex industrial projects in oil and gas industry. The environment governmental oil & gas company. The necessity of collaboration is especially acute in the field of computer

Barbosa, Alberto

73

THE NATURAL GAS INDUSTRY AND MARKETS IN 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 This special report provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2002 (NGA). Unless otherwise stated, all data in this report are based on summary statistics published in the NGA 2002. Questions or comments on the contents of this report should be directed to William Trapmann at william.trapmann@eia.doe.gov or (202) 586-6408. Overview The natural gas industry and markets experienced a number of key changes during 2002. Current supplies of production and net imports decreased by about 750 billion cubic feet (Bcf) in 2002, so storage stocks were drawn down to meet an increase in consumption. Average prices in 2002 declined from the relatively high levels of 2001.

74

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Broader source: Energy.gov (indexed) [DOE]

Membrane Technology and Membrane Technology and Research, Inc. (MTR), based in Menlo Park, CA, is a privately- owned developer, manufacturer, and supplier of customized membrane process solutions. Currently, the company's principal membrane products are * VaporSep® systems to remove organic vapors from air and nitrogen * NitroSep TM and fuel gas conditioning systems for natural gas treatment * Hydrogen recovery systems for refinery and other applications MTR's current R&D is extending use of membranes to carbon sequestration and biofuels separations. www.mtrinc.com New Membrane Technology Boosts Efficiency in Industrial Gas Processes Challenge Membrane technology was first commercialized in the 1960s and 1970s for well-known applications such as water filtration

75

Factors affecting the use of soil conservation practices on non-industrial private forest lands in East Texas  

E-Print Network [OSTI]

FACTORS AFFECTING THE USE OF SOIL CONSERVATION PRACTICES ON NON-INDUSTRIAL PRIVATE FOREST LANDS IN EAST TEXAS A Thesis ABEGUNAWARDANA VIDANA GAMAGE P. YASENA Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1983 Major Subject: Agricultural Economics FACTORS AFFECTING THE USE OF SOIL CONSERVATION PRACTICES ON NON-INDUSTRIAL PRIVATE FOREST LANDS IN TEXAS A Thesis ABEGUNAWARDANA VIDANA GAMAGE PIYASENA...

Piyasena, Abegunawardana Vidana Gamage

1983-01-01T23:59:59.000Z

76

NORM Management in the Oil and Gas Industry  

SciTech Connect (OSTI)

It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil and gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat [Environmental Protection Department, Saudi Aramco Dhahran 31311 (Saudi Arabia)

2008-08-07T23:59:59.000Z

77

Simultaneous production and distribution of industrial gas supply-chains  

Science Journals Connector (OSTI)

Abstract In this paper, we propose a multi-period mixed-integer linear programming model for optimal enterprise-level planning of industrial gas operations. The objective is to minimize the total cost of production and distribution of liquid products by coordinating production decisions at multiple plants and distribution decisions at multiple depots. Production decisions include production modes and rates that determine power consumption. Distribution decisions involve source, destination, quantity, route, and time of each truck delivery. The selection of routes is a critical factor of the distribution cost. The main goal of this contribution is to assess the benefits of optimal coordination of production and distribution. The proposed methodology has been tested on small, medium, and large size examples. The results show that significant benefits can be obtained with higher coordination among plants/depots in order to fulfill a common set of shared customer demands. The application to real industrial size test cases is also discussed.

Pablo A. Marchetti; Vijay Gupta; Ignacio E. Grossmann; Lauren Cook; Pierre-Marie Valton; Tejinder Singh; Tong Li; Jean André

2014-01-01T23:59:59.000Z

78

Impacts of greenhouse gas mitigation policies on agricultural land  

E-Print Network [OSTI]

Greenhouse gas (GHG) emissions are widely acknowledged to be responsible for much of the global warming in the past century. A number of approaches have been proposed to mitigate GHG emissions. Since the burning of ...

Wang, Xiaodong, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

79

Land-use change and greenhouse gas emissions from corn and cellulosic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Land-use change and greenhouse gas emissions from corn and cellulosic ethanol July 16, 2013 Tweet EmailPrint The greenhouse gas (GHG) emissions that may accompany land-use change (LUC) from increased biofuel feedstock production are a source of debate in the discussion of drawbacks and advantages of biofuels. Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing the understanding of LUC GHG impacts associated with both corn and cellulosic ethanol will inform the on-going debate concerning their magnitudes and

80

ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR  

E-Print Network [OSTI]

ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR Conference Report - September 2007 & The Oil And Gas Development Partnership #12;ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR May 16, 2007 St. John's Conference Report September

deYoung, Brad

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Comparison of Gas Catalytic and Electric Infrared Performance for Industrial Applications  

E-Print Network [OSTI]

A study was conducted to evaluate the performance of gas catalytic and electric infrared for industrial applications. The project focused on fabric drying, paper drying, metal heating, and plastic forming as target industrial applications. Tests...

Eshraghi, R. R.; Welch, D. E.

82

Industrial Potential for Substitution of Electricity for Oil and Natural Gas  

E-Print Network [OSTI]

The prospect of natural gas decontrol as well as uncertainties of gas and other fuel supplies have aroused interest in electric processes among industrial officials. Where there is ample electric power supply at reasonable cost, an opportunity...

Reynolds, S. D.; Gardner, J. R.

1983-01-01T23:59:59.000Z

83

Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas  

SciTech Connect (OSTI)

Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1,260 C (2,300 F), with minimum pollutant emissions, is a key R and D issue. A phased combustor development program is underway burning low calorific value fuel gas (3.6--4.1 MJ/m[sup 3]) with low emissions, particularly NO[sub x] derived from fuel-bound nitrogen. The first phase of the combustor development program has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and Mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the program is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suite the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test program results for the prototype combustor. Design of the modified combustor for Phase 2 of the development program is discussed, together with preliminary combustor performance results.

Kelsall, G.J.; Smith, M.A. (British Coal Corp., Glos (United Kingdom). Coal Research Establishment); Cannon, M.F. (European Gas Turbines Ltd., Lincoln (United Kingdom). Aero and Technology Products)

1994-07-01T23:59:59.000Z

84

Percentage of Total Natural Gas Industrial Deliveries included...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download...

85

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS  

E-Print Network [OSTI]

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS Dr for Energy Efficiency and Renewable Energy Department of Mechanical and Industrial Engineering University of Massachusetts, Amherst, Massachusetts ABSTRACT The study was conducted to evaluate the energy use of natural gas

Massachusetts at Amherst, University of

86

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

SciTech Connect (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

87

Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1  

E-Print Network [OSTI]

Page 1 Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1 , P.E., M: Railway transportation is playing a key role in the development of many new shale oil and gas reserves in North America. In the rush to develop new shale oil and gas plays, sites for railway transload terminals

Barkan, Christopher P.L.

88

Do Private Firms Invest Dierently than Public Firms? Taking Cues from the Natural Gas Industry  

E-Print Network [OSTI]

Do Private Firms Invest Dierently than Public Firms? Taking Cues from the Natural Gas Industry Erik and public rms using a unique dataset of onshore U.S. natural gas producers. In rm-level regressions we nd that investments by private rms are 68% less responsive to changes in natural gas prices, a measure that captures

Lin, Xiaodong

89

Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid The undersigned members of the natural gas industry are pleased to submit for your consideration the following comments in response to the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability's Request for Information Addressing Policy and Logistical Challenges to Smart Grid Implementation, 75 Fed. Reg. 57,006 (Sep. 17, 2010). The Request seeks comment on challenges that confront smart grid implementation and recommendations on how best to overcome those challenges. We believe abundant, domestic, low-carbon natural gas resources along with

90

Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications- Volume I, January 2000  

Broader source: Energy.gov [DOE]

An assessment of the opportunities for micropower and fuel cell/gas turbine hybrid technologies in the industrial sector.

91

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Office of Energy Efficiency and Renewable Energy (EERE)

Fact sheet from Membrane Technology and Research, Inc. about its pilot-scale industrial membrane system that was funded by the SBIR program.

92

Temporal Analysis of Incompatible Land-Use and Land-Cover: The Proximity between Residential Areas and Gas Stations in Bucharest Suburban Area  

Science Journals Connector (OSTI)

Incompatible land-use and land-cover indicate the trend in territorial planning and generate instability and conflicts leading to degradation in terms of environmental quality. Urban landscape structure of Bucharest suburban area has changed lately, especially due to expansion of residential areas, increasing the risks of a chaotic urban development. The consequences of this residential expansion have led to malfunctions, outlining a disadvantage area due to environmental problems. In this context, residential areas are frequently located in the proximity of gas stations in Bucharest suburban area. This paper presents the relation between residential areas and gas stations in order to evaluate causes that led to their proximity. Results have pointed out using a number of 60 gas stations (21 gas stations in residential areas and 39 in non-residential areas) the causes and the temporal dynamics of locational conflicts, suggesting that unplanned development and residential agglomeration are the main consequences of territorial conflicts. In this respect of incompatible land-use and land-cover expansion, it is required an evaluation and hierarchy in order to start new coherent plans of space development.

Cristian Ioan Ioj?; Constantina Alina Tudor

2012-01-01T23:59:59.000Z

93

Eddy?Current Inspection of Cracking in Land?Based Gas Turbine Blades  

Science Journals Connector (OSTI)

There has been a growing need in the electric utility industry to assess the remaining life of blades in gas turbines. It is quite important to nondestructively comprehend the depths of surface?breaking cracks in blades. Flexible eddy current array probes have been developed to overcome the major limitations of existing eddy current inspection systems. The use of an array of sensors allows cracks of all lengths to be detected and will ultimately allow real time data imaging to provide rapid inspection and easy interpretation. For this study using eddy current techniques crack detection equipment has been developed and applied to gas turbine Stage 1 blades for field use.

H. Fukutomi; T. Ogata

2004-01-01T23:59:59.000Z

94

Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications  

E-Print Network [OSTI]

for industrial applications where electric ovens have predominant use. Tests were performed to obtain the process efficiency and examine cost savings potential in converting electric ovens to natural gas. Preliminary results show that, for the plat studied, cost...

Kosanovic, D.; Ambs, L.

95

Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications  

SciTech Connect (OSTI)

This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

Lee Nelson

2009-10-01T23:59:59.000Z

96

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network [OSTI]

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

Zhou, A.; Tutterow, V.; Harris, J.

97

Percentage of Total Natural Gas Industrial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 16.5 16.3 16.0 16.2 16.6 16.9 2001-2013 Alabama 22.1 21.7 21.6 22.8 22.0 22.7 2001-2013 Alaska 100.0 100.0 100.0 100.0 100.0 100.0 2001-2013 Arizona 13.4 15.7 15.3 13.8 13.7 13.9 2001-2013 Arkansas 1.7 1.4 1.2 1.4 1.3 1.5 2001-2013

98

Safety management in the Dutch oil and gas industry: the effect on the technological regime  

Science Journals Connector (OSTI)

This paper deals with the recent trend in Europe, from the formulation of detailed instructions and specifications with respect to the safety of industrial installations by governments, towards regulation on the level of safety management systems and risk analyses. The development sketched is studied with respect to the offshore oil and gas industry in the Netherlands. The government inspectorate responsible for this industry, the Staatstoezicht op de Mijnen (SodM), has, since the early 1990s, changed its approach from hardware-based inspections to inspection at the level of management systems. To assess the effects of this change in approach on industry practice the concept of ''technological regime'' is employed.

I.R. van de Poel; A.R. Hale; L.H.J. Goossens

2002-01-01T23:59:59.000Z

99

A NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL APPLICATIONS  

E-Print Network [OSTI]

A NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL instrumentation. 1. INTRODUCTION CO2 is an important industrial gas for many different uses that include electrolytes [10;11]. The most popular sensors used for CO2 gas sensing in biotechnological applications

Lee, Hyowon

100

Industry evolution : applications to the U.S. shale gas industry.  

E-Print Network [OSTI]

??The present study applies evolutionary and resource-based firm theories to three of the most prominent U.S. shale gas basins – the Barnett, Fayetteville, and Haynesville… (more)

Grote, Carl August

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ontanans use water in homes, on land, and in industries. We also use the state's streams, rivers, and lakes for recreation. When we  

E-Print Network [OSTI]

M ontanans use water in homes, on land, and in industries. We also use the state's streams, rivers Irrigation use reflects the size and importance of agriculture, the state's largest industry. Water withdrawn, and lakes for recreation. When we use water for such things as cooking, irrigation, or mineral extraction

Dyer, Bill

102

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

103

The competition situation analysis of shale gas industry in China: Applying Porter’s five forces and scenario model  

Science Journals Connector (OSTI)

Abstract With the increasing of energy demand and environmental pressure, China government has been exploring a way to diversify energy supply. Shale gas development is becoming an important energy strategy in China in recent years due to giant shale gas reserves. However, the shale gas market is preliminarily shaping in China, so that many factors have great influence on its competition. To find these factors and to control them rationally is good for the cultivating Chinese shale gas market. Five forces model for industry analysis puts an insight into the competitive landscape of shale gas market by showing the forces of supplier power, buyer power, threat of substitution, barriers to entry, and degree of rivalry. Illustrating the key factors that affect competitive landscape provides a view into the situation of shale gas industry. The variation tendency of shale gas industry is analyzed by setting various scenarios. Finally some suggestions are proposed in order to keep the development of shale gas industry positively.

Wu Yunna; Yang Yisheng

2014-01-01T23:59:59.000Z

104

DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems  

Broader source: Energy.gov [DOE]

DOE announced a series of actions, partnerships, and stakeholder commitments to help modernize the nation’s natural gas transmission and distribution systems and reduce methane emissions. As part of these DOE actions, AMO will lead a collaborative effort with industry to evaluate and scope high-impact manufacturing R&D to improve natural gas systems efficiency and leak reduction. The goal of this effort is to establish an advanced manufacturing initiative.

105

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

106

Using a total landed cost model to foster global logistics strategy in the electronics industry  

E-Print Network [OSTI]

Global operation strategies have been widely used in the last several decades as many companies and industries have taken advantage of lower production costs. However, in choosing a location, companies often only consider ...

Jearasatit, Apichart

2010-01-01T23:59:59.000Z

107

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

108

DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems  

Broader source: Energy.gov [DOE]

DOE will launch a collaborative effort with industry to evaluate and scope high-impact manufacturing R&D to improve natural gas systems efficiency and leak reduction. The goal of this effort is to establish an advanced manufacturing initiative. AMO will lead this effort.

109

Bi-level Optimization for Capacity Planning in Industrial Gas Markets  

E-Print Network [OSTI]

Bi-level Optimization for Capacity Planning in Industrial Gas Markets P. Garcia-Herreros, L. Zhang markets are dynamic: · Suppliers must anticipate demand growth · Most markets are served locally Capacity is incremental( t T, i I ) Demand satisfaction is constraint by capacities( t T, i I ) All markets

Grossmann, Ignacio E.

110

Bi-level Optimization for Capacity Planning in Industrial Gas Markets  

E-Print Network [OSTI]

Bi-level Optimization for Capacity Planning in Industrial Gas Markets P. Garcia-Herreros, E. Arslan are dynamic: · Suppliers must anticipate demand growth · Most markets are served locally Capacity expansion supplier · Set of plants from independent suppliers with limited capacity · Rational markets that select

Grossmann, Ignacio E.

111

New Concepts in Hardware and Processes to Conserve Oil and Gas in Industrial Processes  

E-Print Network [OSTI]

Programs of the U.S. Department of Energy, Argonne interacted with 130 industrial companies to help define and evaluate appropriate areas of technology. The initial step was to assemble a master list of technologies that promised to conserve oil and gas...

Humphrey, J. L.

1982-01-01T23:59:59.000Z

112

Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications  

SciTech Connect (OSTI)

This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

Lee Nelson

2011-09-01T23:59:59.000Z

113

Industrial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Energy Smart Industrial - Energy Management...

114

Industry  

E-Print Network [OSTI]

2004). US DOE’s Industrial Assessment Centers (IACs) are anof Energy’s Industrial Assessment Center program in SMEs

Bernstein, Lenny

2008-01-01T23:59:59.000Z

115

The Impact of Biofuel and Greenhouse Gas Policies on Land Management, Agricultural Production, and Environmental Quality  

E-Print Network [OSTI]

and empirical modeling. First, a simple conceptual model of land allocation and management is used to illustrate how bioenergy policies and GHG mitigation incentives could influence market prices, shift the land supply between alternative uses, alter management...

Baker, Justin Scott

2012-10-19T23:59:59.000Z

116

RG&E (Gas) - Commercial and Industrial Efficiency Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Commercial and Industrial Efficiency Program Commercial and Industrial Efficiency Program RG&E (Gas) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer. Program Info State New York Program Type Utility Rebate Program Rebate Amount HVAC: Prescriptive incentives vary Condensing Boilers: $1000-$6000 Hydronic Boilers: $500-$4000 Steam Boilers: $200 Furnaces: $100 Programmable Thermostats: $25 Boiler Reset Controls: $150 Provider NYSEG/RGE NYSEG and RG&E offer rebates to non-residential customers installing energy

117

An electromagnetic cavity sensor for multiphase measurement in the oil and gas industry  

Science Journals Connector (OSTI)

The oil and gas industry require accurate sensors to monitor fluid flow in pipelines in order to manage wells efficiently. The sensor described in this paper uses the different relative permittivity values for the three phases: oil, gas and water to help determine the fraction of each phase in the pipeline, by monitoring the resonant frequencies that occur within an electromagnetic cavity. The sensor has been designed to be non-intrusive. This is advantageous, as it will prevent the sensor being damaged by the flow through the pipeline and allow pigging, the technique used for cleaning rust and wax from the inside of the pipeline using blades or brushes.

S Al-Hajeri; S R Wylie; R A Stuart; A I Al-Shamma'a

2007-01-01T23:59:59.000Z

118

The electric and gas industries are converging: What does it mean?  

SciTech Connect (OSTI)

Three broad views define deregulation in retail gas and electric markets. One sees the future as but a lengthened shadow of the present. Change is glacial. The second predicts a significant but mannerly shift-a leisurely transition from monopoly to competition. The third posits revolution. It awaits a future marked by epochal, discontinuous, and abrupt changes. This third future is the most interesting. It raises the stakes. This article examines the industrial organization of gas and electric enterprises as they will be reinvented by those who embrace the third view. Not a prediction; rather, a thought experiment.

Dar, V.K.

1995-04-01T23:59:59.000Z

119

Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.  

SciTech Connect (OSTI)

Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A. (Energy Systems)

2011-05-01T23:59:59.000Z

120

,"Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035co3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035co3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:00 PM" "Back to Contents","Data 1: Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CO3" "Date","Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,9.36 36937,10.07

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

,"South Dakota Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sd2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sd2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:03 PM" "Back to Contents","Data 1: South Dakota Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035SD2" "Date","South Dakota Natural Gas Industrial Consumption (MMcf)" 35611,6928 35976,5607 36341,5043 36707,4323 37072,4211 37437,10584

122

,"Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035al3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035al3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:53 PM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,9.55 36937,8.54

123

,"California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ca3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ca3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:58 PM" "Back to Contents","Data 1: California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CA3" "Date","California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,7.75

124

,"Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035co3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035co3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:00 PM" "Back to Contents","Data 1: Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CO3" "Date","Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,3.02 35976,2.55 36341,3.08

125

,"Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ct3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ct3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:02 PM" "Back to Contents","Data 1: Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CT3" "Date","Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,10.11

126

,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ak3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ak3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:51 PM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,1.54 35976,1.34 36341,1.25

127

,"Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ga3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ga3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:08 PM" "Back to Contents","Data 1: Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035GA3" "Date","Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,10.05 36937,9.35

128

,"Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035fl3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035fl3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:06 PM" "Back to Contents","Data 1: Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035FL3" "Date","Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.41 35976,3.98 36341,4.12

129

,"California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ca3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ca3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:58 PM" "Back to Contents","Data 1: California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CA3" "Date","California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.18 35976,3.75 36341,3.33

130

,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ak3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ak3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:51 PM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,1.57 36937,1.55

131

,"Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035fl3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035fl3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:06 PM" "Back to Contents","Data 1: Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035FL3" "Date","Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,8.27 36937,8.02

132

,"Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035de3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035de3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:04 PM" "Back to Contents","Data 1: Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035DE3" "Date","Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,7.37 36937,4.61

133

,"South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:02 PM" "Back to Contents","Data 1: South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035SC3" "Date","South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,3.72 35976,3.29

134

,"Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035id3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035id3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:13 PM" "Back to Contents","Data 1: Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ID3" "Date","Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,2.76 35976,3.09 36341,3.29 36707,4.02

135

,"Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ga3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ga3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:07 PM" "Back to Contents","Data 1: Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035GA3" "Date","Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.55 35976,3.92 36341,3.41

136

,"Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035hi3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035hi3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:09 PM" "Back to Contents","Data 1: Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035HI3" "Date","Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,11.65 36937,11.84

137

,"South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sc3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sc3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:02 PM" "Back to Contents","Data 1: South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035SC3" "Date","South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

138

,"South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:04 PM" "Back to Contents","Data 1: South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035SD3" "Date","South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.02 35976,3.28

139

Industry  

E-Print Network [OSTI]

land, Canada, Norway and Nigeria that monetized non-energyNetherlands, Norway and the USA. As part of its energy and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

140

New Mexico Water Resources Research Institute, New Mexico State University http://wrri.nmsu.edu Land application of industrial effluent on a Chihuahuan Desert  

E-Print Network [OSTI]

, 2001). Little data are available on the use of native terrestrial ecosystems for waste- water treatmentNew Mexico Water Resources Research Institute, New Mexico State University http://wrri.nmsu.edu Land application of industrial effluent on a Chihuahuan Desert ecosystem: Impact on soil physical

Johnson, Eric E.

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Natural Gas Average Consumption per Industrial Consumer (Thousand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumer (Thousand Cubic Feet) Industrial Consumer (Thousand Cubic Feet) U.S. Natural Gas Average Consumption per Industrial Consumer (Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 0 0 0 0 0 1980's 39,245 37,530 30,909 29,915 24,309 30,956 29,057 30,423 32,071 30,248 1990's 32,144 33,395 35,908 38,067 40,244 40,973 43,050 36,239 36,785 35,384 2000's 36,968 33,840 36,458 34,793 34,645 31,991 33,597 33,561 29,639 29,705 2010's 35,418 36,947 38,155 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Average Natural Gas Consumption per Industrial

142

Impacts of Greenhouse Gas Mitigation Policies on Agricultural Land Xiaodong Wang  

E-Print Network [OSTI]

confirm the hypothesis that biomass-energy production would lead to the conversion of the five types to more production of biomass energy and conversion of agricultural land, would cause an even more severe counteracted by the land- use conversion as a result of large-scale production of biomass energy. Dissertation

143

Greenhouse Gas Emissions and the Interrelation of Urban and Forest Sectors in Reclaiming One Hectare of Land in the Pacific Northwest  

Science Journals Connector (OSTI)

Greenhouse Gas Emissions and the Interrelation of Urban and Forest Sectors in Reclaiming One Hectare of Land in the Pacific Northwest ... (38, 39, 66, 68) Energy associated with maintenance is significantly higher if roadways include lighting and traffic control. ...

Andrew Trlica; Sally Brown

2013-05-28T23:59:59.000Z

144

Land-use Leakage  

SciTech Connect (OSTI)

Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International “offsets” are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

2009-12-01T23:59:59.000Z

145

Industry  

E-Print Network [OSTI]

Emission reduction at Engen refinery in South Durban. Paperenergy consumed in refineries and other energy conversionCement Membrane separation Refinery gas Natural gas Bio-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

146

Oil and stock market activity when prices go up and down: the case of the oil and gas industry  

Science Journals Connector (OSTI)

We examine the asymmetric effects of daily oil price changes on equity returns, market betas, oil betas, return variances, and trading volumes for the US oil and gas industry. The responses of stock returns assoc...

Sunil K. Mohanty; Aigbe Akhigbe…

2013-08-01T23:59:59.000Z

147

Land O'Lakes Shaves Gas Usage through Steam System In-Plant Training  

Broader source: Energy.gov [DOE]

Twelve participants from 6 different facilities learned and practiced energy efficiency assessment skills during the recent in-plant training at a Land O'Lakes dairy plant in Carlisle, Pennsylvania...

148

Meeting Biofuels Targets: Implications for Land Use, Greenhouse Gas Emissions, and Nitrogen Use in Illinois  

Science Journals Connector (OSTI)

This article develops a dynamic micro-economic land use model to identify the cost-effective allocation of cropland for traditional row ... model and together with county level data on costs of production for Ill...

Madhu Khanna; Hayri Önal; Xiaoguang Chen…

2010-01-01T23:59:59.000Z

149

Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques  

Science Journals Connector (OSTI)

This study proposes a model-based robust fault detection and isolation (RFDI) method with hybrid structure. Robust detection and isolation of the realistic faults of an industrial gas turbine in steady-state conditions is mainly considered. For residual ... Keywords: Industrial gas turbine, Local linear model tree (LOLIMOT), Local linear neuro-fuzzy network, Model error modelling, Neural network, Robust fault detection and isolation

Hasan Abbasi Nozari; Mahdi Aliyari Shoorehdeli; Silvio Simani; Hamed Dehghan Banadaki

2012-08-01T23:59:59.000Z

150

Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation  

Science Journals Connector (OSTI)

...grasslands and in other natural vegetation, the biomass...European Union South: Cyprus, Greece, Italy...and Mitigate Greenhouse Gas Emissions (CCAFS...Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990 ZZQQhy2020...hectares) Scenario Other Natural Vegetation Pasture...

Avery S. Cohn; Aline Mosnier; Petr Havlík; Hugo Valin; Mario Herrero; Erwin Schmid; Michael O’Hare; Michael Obersteiner

2014-01-01T23:59:59.000Z

151

Pennsylvania Farmland and Forest Land Assessment Act of 1974 - Utilization  

Broader source: Energy.gov (indexed) [DOE]

Pennsylvania Farmland and Forest Land Assessment Act of 1974 - Pennsylvania Farmland and Forest Land Assessment Act of 1974 - Utilization of Land or Conveyance of Rights for Exploration or Extraction of Gas, Oil or Coal Bed Methane Pennsylvania Farmland and Forest Land Assessment Act of 1974 - Utilization of Land or Conveyance of Rights for Exploration or Extraction of Gas, Oil or Coal Bed Methane < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info Start Date 2011 State Pennsylvania Program Type Siting and Permitting Provider Pennsylvania Department of Environmental Protection This act prescribes the procedure utilization of land or conveyance of rights for exploration or extraction of gas, oil or coal bed methane in

152

,"Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ia3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ia3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

153

,"Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035il3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035il3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

154

2014-11-20 Issuance: Energy Conservation Program for Commercial and Industrial Natural Gas Compressors; NOPM  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for commercial and industrial natural gas compressors, as issued by the Deputy Assistant Secretary for Energy Efficiency and Renewable Energy on November 20, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

155

System definition and analysis gas-fired industrial advanced turbine systems  

SciTech Connect (OSTI)

The objective is to define and analyze an engine system based on the gas fuel Advanced Turbine from Task 3. Using the cycle results of Task 3, a technical effort was started for Task 6 which would establish the definition of the engine flowpath and the key engine component systems. The key engine systems are: gas turbine engine overall flowpath; booster (low pressure compressor); intercooler; high pressure compressor; combustor; high pressure turbine; low pressure turbine and materials; engine system packaging; and power plant configurations. The design objective is to use the GE90 engine as the platform for the GE Industrial Advanced Turbine System. This objective sets the bounds for the engine flowpath and component systems.

Holloway, G.M.

1997-05-01T23:59:59.000Z

156

Industry  

E-Print Network [OSTI]

Information on corn wet milling. Corn Refiners Association corn wet milling industry: An ENERGYas an automotive fuel. Corn wet milling is the most energy-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

157

Industry  

E-Print Network [OSTI]

increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal1971–2004 Notes 1) Biomass energy included 2) Industrial

Bernstein, Lenny

2008-01-01T23:59:59.000Z

158

An MBendi Profile: World: Oil And Gas Industry -Peak Oil: an Outlook on Crude Oil Depletion -C.J.Campbell -Revised February 2002 Search for  

E-Print Network [OSTI]

An MBendi Profile: World: Oil And Gas Industry - Peak Oil: an Outlook on Crude Oil Depletion - C - Contact Us - Newsletter Register subscribe to our FREE newsletter World: Oil And Gas Industry - Peak Oil the subsequent decline. q Gas, which is less depleted than oil, will likely peak around 2020. q Capacity limits

159

Dynamic system identification and model-based fault diagnosis of an industrial gas turbine prototype  

Science Journals Connector (OSTI)

In this paper, a model-based procedure exploiting analytical redundancy for the detection and isolation of faults on a gas turbine process is presented. The main point of the present work consists of exploiting system identification schemes in connection with observer and filter design procedures for diagnostic purpose. Linear model identification (black-box modelling) and output estimation (dynamic observers and Kalman filters) integrated approaches to fault diagnosis are in particular advantageous in terms of solution complexity and performance. This scheme is especially useful when robust solutions are considered for minimise the effects of modelling errors and noise, while maximising fault sensitivity. A model of the process under investigation is obtained by identification procedures, whilst the residual generation task is achieved by means of output observers and Kalman filters designed in both noise-free and noisy assumptions. The proposed tools have been tested on a single-shaft industrial gas turbine prototype model and they have been evaluated using non-linear simulations, based on the gas turbine data.

Silvio Simani; Cesare Fantuzzi

2006-01-01T23:59:59.000Z

160

Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes  

SciTech Connect (OSTI)

This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

Lee O. Nelson

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

162

Industry  

E-Print Network [OSTI]

for im- proving energy efficiency of corn wet milling havefor the corn wet milling industry: An ENERGY STAR Guide forfuel. Corn wet milling is the most energy-intensive food

Bernstein, Lenny

2008-01-01T23:59:59.000Z

163

Industry  

E-Print Network [OSTI]

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

164

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

165

Industry  

E-Print Network [OSTI]

ghg/GreenhouseGasRegister/production (Mt) a A1 B2 GHG intensity (tCO 2 -eq/t prod. )Agency, Paris, 596 pp. IEA GHG, 2000: Greenhouse gases from

Bernstein, Lenny

2008-01-01T23:59:59.000Z

166

Technical and economic analysis: Gas cofiring in industrial boilers. Final report, November 1995-September 1996  

SciTech Connect (OSTI)

This report presents an analysis of the technical and marketing issues associated with the deployment of natural gas cofiring technology in stoker boilers. As part of the work effort, a composite database of stoker boilers was developed using state and federal emission inventories over the years 1985 - 1995. Information sources included the most recent AIRS Facility Subsystem database, the Ozone Transport Region 1990 database, the 1990 Ohio Permit database and the 1985 NAPAP database--all are electronic databases of facilities with air emission permits. The initial data set included almost 3,000 stokers at about 1,500 locations. Stoker facilities were contacted to verify the operating status, capacity, fuel capability, efficiency and other stoker-specific data. The report presents the current stoker boiler distribution by SIC, industrial groups, primary solid fuel (coal, wood, waste, refuse), operating status, and state. Maps are included.

Potter, F.J.

1996-09-01T23:59:59.000Z

167

Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices  

Science Journals Connector (OSTI)

Abstract Recent regulations on biofuels require reporting of greenhouse gas (GHG) emission reductions related to feedstock-specific biofuels. However, the inclusion of GHG emissions from land-use change (LUC) into law and policy remains a subject of active discussion, with LUC–GHG emissions an issue of intense research. This article identifies key modelling choices for assessing the impact of biofuel production on LUC–GHG emissions. The identification of these modelling choices derives from evaluation and critical comparison of models from commonly accepted biofuels–LUC–GHG modelling approaches. The selection and comparison of models were intended to cover factors related to production of agricultural-based biofuel, provision of land for feedstock, and GHG emissions from land-use conversion. However, some fundamental modelling issues are common to all stages of assessment and require resolution, including choice of scale and spatial coverage, approach to accounting for time, and level of aggregation. It is argued here that significant improvements have been made to address LUC–GHG emissions from biofuels. Several models have been created, adapted, coupled, and integrated, but room for improvement remains in representing LUC–GHG emissions from specific biofuel production pathways, as follows: more detailed and integrated modelling of biofuel supply chains; more complete modelling of policy frameworks, accounting for forest dynamics and other drivers of LUC; more heterogeneous modelling of spatial patterns of LUC and associated GHG emissions; and clearer procedures for accounting for the time-dependency of variables. It is concluded that coupling the results of different models is a convenient strategy for addressing effects with different time and space scales. In contrast, model integration requires unified scales and time approaches to provide generalised representations of the system. Guidelines for estimating and reporting LUC–GHG emissions are required to help modellers to define the most suitable approaches and policy makers to better understand the complex impacts of agricultural-based biofuel production.

Luis Panichelli; Edgard Gnansounou

2015-01-01T23:59:59.000Z

168

Management and Use of Public Lands (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management and Use of Public Lands (Virginia) Management and Use of Public Lands (Virginia) Management and Use of Public Lands (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Leasing Program Siting and Permitting Provider Virginia Department of Conservation and Recreation The Virginia Department of Conservation and Recreation may elect to lease its lands for the development of mineral interests (defined herein as petroleum, natural gas, coal, ore, rock and any other solid chemical

169

Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators  

Science Journals Connector (OSTI)

Fossil fuel combustion leads to acidic pollutants like SO2 NOx HCl emission. Different control technologies are proposed however the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First using lime or limestone slurry leads to SO2 capture and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan the USA Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world nowadays. Description of the plant and results obtained has been presented in the paper.

Andrzej G. Chmielewski; Bogdan Tyminski; Zbigniew Zimek; Andrzej Pawelec; Janusz Licki

2003-01-01T23:59:59.000Z

170

Innovation in mature industries : recent impacts of the oil & gas and automobile technological trends on the steel industry  

E-Print Network [OSTI]

In order to survive, the steel industry has undergone traumatic changes in the last years. A thirty years old overcapacity combined with a slow growing market led to a steadily eroding profitability of steel companies, ...

Tivelli, Marco M. (Marco Mario), 1964-

2004-01-01T23:59:59.000Z

171

Effectiveness and potential environmental impacts of biocides and corrosion inhibitors in the natural gas industry. Topical report, December 1995  

SciTech Connect (OSTI)

The objective of this study was to assess the effectiveness and potential environmental impacts of chemical products used in natural gas industry (NGI) operations. The assessment was focused primarily on biocides and corrosion inhibitors used in storage and transmission applications of the NGI.

Morris, E.A.; Pope, D.H.; Fillo, J.P.; Brandon, D.M.; Fetsko, M.E.

1995-12-01T23:59:59.000Z

172

INTERNAL REPAIR OF GAS PIPLINES SURVEY OF OPERATOR EXPERIENCE AND INDUSTRY NEEDS REPORT  

SciTech Connect (OSTI)

A repair method that can be applied from the inside of a gas transmission pipeline (i.e., a trenchless repair) is an attractive alternative to conventional repair methods since the need to excavate the pipeline is precluded. This is particularly true for pipelines in environmentally sensitive and highly populated areas. The objectives of the project are to evaluate, develop, demonstrate, and validate internal repair methods for pipelines; develop a functional specification for an internal pipeline repair system; and prepare a recommended practice for internal repair of pipelines. The purpose of this survey is to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. A total of fifty-six surveys were sent to pipeline operators. A total of twenty completed surveys were returned, representing a 36% response rate, which is considered very good given the fact that tailored surveys are known in the marketing industry to seldom attract more than a 10% response rate. The twenty survey responses produced the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water (e.g., lakes and swamps) in difficult soil conditions, under highways, under congested intersections, and under railway crossings. All these areas tend to be very difficult and very costly if, and where, conventional excavated repairs may be currently used. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem in a water/river crossing. (3) The typical travel distances required can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). In concept, these groups require pig-based systems; despooled umbilical systems could be considered for the first two groups. For the last group a self-propelled system with an onboard self-contained power and welding system is required. (4) Pipe size range requirements range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.) in diameter. The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.) diameter, with 95% using 558.8 mm (22 in.) diameter pipe.

Ian D. Harris

2003-09-01T23:59:59.000Z

173

High-pressure turbine deposition in land-based gas turbines from various synfuels  

SciTech Connect (OSTI)

Ash deposits from four candidate power turbine synfuels were studied in an accelerated deposition test facility. The facility matches the gas temperature and velocity of modern first-stage high-pressure turbine vanes. A natural gas combustor was seeded with finely ground fuel ash particulate from four different fuels: straw, sawdust, coal, and petroleum coke. The entrained ash particles were accelerated to a combustor exit flow Mach number of 0.31 before impinging on a thermal barrier coating (TBC) target coupon at 1150{sup o}C. Postexposure analyses included surface topography, scanning electron microscopy and x-ray spectroscopy. Due to significant differences in the chemical composition of the various fuel ash samples, deposit thickness and structure vary considerably for fuel. Biomass products (e.g., sawdust and straw) are significantly less prone to deposition than coal and petcoke for the same particle loading conditions. In a test simulating one turbine operating year at a moderate particulate loading of 0.02 parts per million by weight, deposit thickness from coal and petcoke ash exceeded 1 and 2 mm, respectively. These large deposits from coal and petcoke were found to detach readily from the turbine material with thermal cycling and handling. The smaller biomass deposit samples showed greater tenacity, in adhering to the TBC surface. In all cases, corrosive elements (e.g., Na, K, V, Cl, S) were found to penetrate the TBC layer during the accelerated deposition test. Implications for the power generation goal of fuel flexibility are discussed.

Bons, J.P.; Crosby, J.; Wammack, J.E.; Bentley, B.I.; Fletcher, T.H. [Brigham Young University, Provo, UT (United States). Dept. of Mechanical Engineering

2007-01-15T23:59:59.000Z

174

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

economics of black liquor gasifier/gas turbine cogenerationblack liquor and biomass gasifier/gas turbine technology".entrained flow booster gasifier in New Bern, North Carolina;

Kong, Lingbo

2014-01-01T23:59:59.000Z

175

Image is all: Deregulation, restructuring and reputation in the natural gas industry  

SciTech Connect (OSTI)

Does image affect how one views his local utility company--or energy supplier? Does one value his utility companies more if one sees a lot of image advertising and public relations stories about community involvement, environmental action and charitable work? Or does one view utilities as faceless and anonymous entities that provide necessary services one thinks little about until there`s a problem? And, more important, what is the role of utility image in an era of deregulation, as companies begin a new scramble for customers? To find an answer to these questions, American Gas and Christopher Bonner Consultants conducted a survey of A.G.A. member companies to learn what, if anything, utility companies are doing in the areas of image assessment and change. The survey was sent to more than 200 A.G.A. member companies; written responses were received from 35. In addition, 13 follow-up telephone interviews were conducted, including four with companies that had not responded in writing. The picture that emerges if of an industry that is starting to pay greater and greater attention to image. And, as utilities reorganize and redefine themselves, they are also reexamining the ways they communicate with key audiences, including employees, customers, legislators, the financial community and the news media.

NONE

1997-09-01T23:59:59.000Z

176

An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry  

Science Journals Connector (OSTI)

With China's increasing pressures on reducing greenhouse gas (GHG) emission, Chinese iron and steel industry (ISI) is facing a great challenge. In this paper, we address the energy-related GHG emission trajectories, features, and driving forces in Chinese ISI for 2001–2010. First, energy related GHG inventory for ISI is made for both scope 1 (direct emissions) and scope 2 (including imported electricity emission). Then, the driving forces for such emission changes are explored by utilizing the method of logarithmic mean Divisa index (LMDI) decomposition analysis. Results indicate that Chinese ISI experienced a rapid growth of energy related GHG emission at average annual growth rate of 70 million tons CO2e. Production scale effect is the main driving factor for energy related GHG emission increase in Chinese ISI, while energy intensity effect and emission factor change effect offset the total increase and energy structure has marginal effect. Construction, manufacture of general purpose and special purpose machinery and manufacture of transport equipment sectors are main sectors for embodied emissions, amounting for more than 75% of the total embodied emissions from Chinese ISI. Such research findings propose that a detailed consideration can help make appropriate polices for mitigating ISI's energy-related GHG emission.

Yihui Tian; Qinghua Zhu; Yong Geng

2013-01-01T23:59:59.000Z

177

Advanced industrial gas turbine technology readiness demonstration. Quarterly technical progress report No. 12, 1 December 1979-29 February 1980  

SciTech Connect (OSTI)

The component technology base required for improved industrial gas turbine conversion efficiency is discussed. Specific goals are to demonstrate the high-pressure compressor and turbine cooling technologies required to achieve industrial gas turbine efficiencies of 34 to 36% simple cycle and 45 to 48% in combined cycle operation while reducing the number of compressor and turbine parts 80% over state-of-the-art units. The approach involves combining some of the most advanced aircraft turbine cooling and high-pressure compressor technology with the simplicity and ruggedness required of industrial engines to achieve not only improved performance, but also increased durability and low initial cost. The program currently consists of two phases. Phase I, which has been completed, included the conceptual definition of an industrial gas turbine capable of meeting the above goals and the aerothermodynamic designs of compressor and turbine component test rigs. Phase II, which is in progress, consists of component validation testing of the high-pressure compressor and turbine cooling designs which evolved in Phase I. During this quarter, work continued on Phase II, Task III - Compressor Rig Assembly and Test. Assembly of the compressor rig has been completed and final preparation of the rig for transporting to the test facility is in progress.

none,

1980-03-20T23:59:59.000Z

178

The University of Aberdeen is a charity registered in Scotland, No SC013683 Oil and gas industry resources in Special Collections  

E-Print Network [OSTI]

guide The University of Aberdeen is a charity registered in Scotland, No SC013683 Oil and gas.abdn.ac.uk/library/about/special/ Introduction Special Collections have established an Oil and Gas Archive to hold collections relating to the oil and gas industry, spanning 40 years. All areas are represented in holdings, including major

Levi, Ran

179

Overview of the effect of Title III of the 1990 Clean Air Act Amendments on the natural gas industry  

SciTech Connect (OSTI)

The regulation of hazardous air pollutants by Title III of the Clean Air Act Amendments of 1990 has a potential wide-ranging impact for the natural gas industry. Title III includes a list of 189 hazardous air pollutants (HAPs) which are targeted for reduction. Under Title III, HAP emissions from major sources will be reduced by the implementation of maximum achievable control technology (MACT) standards. If the source is defined as a major source, it must also comply with Title V (operating permit) and Title VII (enhanced monitoring) requirements. This presentation will review Title III`s effect on the natural gas industry by discussing the regulatory requirements and schedules associated with MACT as well as the control technology options available for affected sources.

Child, C.J.

1995-12-31T23:59:59.000Z

180

Influence of reactive species on the lean blowout limit of an industrial DLE gas turbine burner  

Science Journals Connector (OSTI)

Abstract In order to achieve ultra-low emissions of both NOX and CO it is imperative to use a homogeneous premixed combustor. To lower the emissions further, the equivalence ratio can be lowered. By doing so, combustion is moved towards the lean blowout (LBO) limit. To improve the blowout characteristics of a burner, heat and radicals can be supplied to the flame zone. This can be achieved using a pre-chamber combustor. In this study, a central body burner, called the RPL (rich-pilot-lean) section, was used as a pre-chamber combustor to supply heat and radicals to a downscaled industrial burner. The flue gas from the RPL is mixed with the surrounding fresh mixture and form a second flame zone. This zone acts as a stabilizer for the investigated burner. The LBO limit was modeled using two perfectly stirred reactors (PSRs) in series, which allows the chemical influence on the LBO limit to be isolated. The resulting trends for the modeled LBO limit were in agreement with measured data. Increasing the equivalence ratio in the RPL section, thus increasing the energy supplied by the fuel, is a major contributor to combustion stability up to a limit where the temperature decrease is too large support combustion. For lean RPL combustion, the reactive species O, H and OH in combination affect the stability to a greater extent than the temperature alone. At rich equivalence ratios, the conversion of methane to hydrogen and carbon monoxide in the RPL section is a factor influencing the LBO limit. The results are compared with emission probe measurements that were used to investigate the LBO limit for methane and a generic syngas (10% CH4, 67.5% H2, and 22.5% CO). The syngas was also investigated after being diluted with nitrogen to a Wobbe index of 15 MJ/m3.

Ivan R. Sigfrid; Ronald Whiddon; Robert Collin; Jens Klingmann

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Greenhouse gas emission by wastewater treatment plants of the pulp and paper industry – Modeling and simulation  

Science Journals Connector (OSTI)

Abstract Greenhouse gas (GHG) emission and energy consumption in wastewater treatment plants (WWTPs) of the pulp and paper industry were modeled and estimated. Aerobic, anaerobic, and hybrid biological processes were used for the removal of contaminants. In addition to the removal of carbonaceous compounds, anaerobic digestion of the produced sludge and the removal of excess nitrogen in the effluent of treatment plants by nitrification/denitrification processes were incorporated in the model. Carbon dioxide, methane, and nitrous oxide were the major \\{GHGs\\} generated during the biological treatment, combustion, energy generation, and transportation. The generated biogas from the anaerobic processes was assumed to be recovered and used as a source of energy for the treatment plant, in an effort to reduce GHG emissions while decreasing the total energy needs of the WWTP. The established kinetic relationships of wastewater treatment processes along with mass and energy balances were employed for the simulation of different treatment systems and estimation of GHG emissions. Various sources of GHG emission were divided into on-site and off-site sources to simplify the modeling and simulation procedure. The overall GHG generation in the presence of biogas recovery was equal to 1.576, 3.026, and 3.271 kg CO2-equivalent/kg BOD by the three examined systems. The energy produced by the recovery and combustion of biogas could exceed the energy demands of all different treatment plants examined in this study and reduce off-site GHG emission. The generation of \\{GHGs\\} from aerobic and hybrid processes increased by 27% and 33.2%, respectively, when N2O emission from nitrogen removal processes was taken into consideration.

Omid Ashrafi; Laleh Yerushalmi; Fariborz Haghighat

2013-01-01T23:59:59.000Z

182

The possibilities of using shale gas in the Russian and European power industries  

Science Journals Connector (OSTI)

Recent years have witnessed wide interest of the society in the problem of shale gas with its being discussed at different levels, ... to political ones. The data on the shale gas resources worldwide and in indiv...

A. O. Morozova; V. V. Klimenko

2014-04-01T23:59:59.000Z

183

Upstream Financial Review of the Global Oil and Natural Gas Industry 2013  

Reports and Publications (EIA)

This analysis focuses on financial and operating trends of the oil and natural gas production business segment, often referred to as upstream operations, of 42 global oil and natural gas producing companies

2014-01-01T23:59:59.000Z

184

[Outlook for 1997 in the oil and gas industries of the US  

SciTech Connect (OSTI)

This section contains 7 small articles that deal with the outlook for the following areas: US rotary rigs (Moving back up, finally); US production (Crude decline continues, gas rising); producing oil wells (Oil stays steady); producing gas wells (Well numbers up again); drilling and producing depths (New measured depths records); and US reserves (Gas reserves jump; oil dips slightly).

NONE

1997-02-01T23:59:59.000Z

185

Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques  

Science Journals Connector (OSTI)

This study proposes a model-based robust fault detection and isolation (RFDI) method with hybrid structure. Robust detection and isolation of the realistic faults of an industrial gas turbine in steady-state conditions is mainly considered. For residual generation, a bank of time-delay multilayer perceptron (MLP) models is used, and in fault detection step, a passive approach based on model error modelling is employed to achieve threshold adaptation. To do so, local linear neuro-fuzzy (LLNF) modelling is utilised for constructing error-model to generate uncertainty interval upon the system output in order to make decision whether a fault occurred or not. This model is trained using local linear model tree (LOLIMOT) which is a progressive tree-construction algorithm. Simple thresholding is also used along with adaptive thresholding in fault detection phase for comparative purposes. Besides, another MLP neural network is utilised to isolate the faults. In order to show the effectiveness of proposed RFDI method, it was tested on a single-shaft industrial gas turbine prototype model and has been evaluated based on the gas turbine data. A brief comparative study with the related works done on this gas turbine benchmark is also provided to show the pros and cons of the presented RFDI method.

Hasan Abbasi Nozari; Mahdi Aliyari Shoorehdeli; Silvio Simani; Hamed Dehghan Banadaki

2012-01-01T23:59:59.000Z

186

2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5  

U.S. Energy Information Administration (EIA) Indexed Site

TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5 2012,"Total Electric Power Industry","AK","Petroleum",4,4.8,4.8 2012,"Total Electric Power Industry","AK","Wind",1,24.6,24 2012,"Total Electric Power Industry","AK","All Sources",11,274.1,239.3 2012,"Total Electric Power Industry","AR","Coal",1,755,600 2012,"Total Electric Power Industry","AR","Natural Gas",1,22,20 2012,"Total Electric Power Industry","AR","All Sources",2,777,620

187

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

Biomass Gasification Technologies for Fuels, Chemicals andEnergy, National Energy Technology Laboratory. CO ? Solution01GO10621. Industrial Technologies Progarm (ITP). 2006e.

Kong, Lingbo

2014-01-01T23:59:59.000Z

188

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

Products Industry Technology Roadmap. Agenda 2020 Technology2011. "The IEA CCS Technology Roadmap: One Year On". Energy1287- Reitzer, R. 2007. Technology Roadmap - Applications of

Kong, Lingbo

2014-01-01T23:59:59.000Z

189

EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

190

An Evaluation of Microextraction/Capillary Column Gas Chromatography for Monitoring Industrial Outfalls  

Science Journals Connector (OSTI)

......Microextraction/Capillary Column Gas Chromatography for Monitoring...for environmental and production analyses. Gary Olsen...both environmental and production lab activities. Daniel...and capillary-column gas chromatography techniques...because of its lower cost and more desirable maintenance......

Daniel R. Thielen; Gary Olsen; Abram Davis; Edward Bajor; John Stefanovski; John Chodkowski

1987-01-01T23:59:59.000Z

191

Existing and anticipated technology strategies for reducing greenhouse gas emissions in Korea’s petrochemical and steel industries  

Science Journals Connector (OSTI)

This study examines the existing and anticipated technology strategies for reducing greenhouse gas (GHG) emissions in Korea’s petrochemical and steel industries. The results of the cluster analysis identify three types of technology strategies employed by firms for reducing GHG emissions: “wait-and-see” “in-process-focused”, and “all-round” strategies. The “in-process-focused” strategy was the most widely used strategy, followed by the “all-round” strategy. However, firms in these industries are expected to change their technology strategies to “treatment-reliance”, “inbound-substitution”, and “all-round” strategies in 5–10 years by employing a wider range of technology options to respond more effectively to the issue of GHG emissions. The demand for new energy sources and raw material substitutes is expected to strengthen in the near future as related technologies advance rapidly and become more widely available.

Su-Yol Lee

2013-01-01T23:59:59.000Z

192

Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: Walker Ridge 313 LWD Operations and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cook Cook 1 , Gilles Guerin 1 , Stefan Mrozewski 1 , Timothy Collett 2 , & Ray Boswell 3 Walker Ridge 313 LWD Operations and Results Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: 1 Borehole Research Group Lamont-Doherty Earth Observatory of Columbia University Palisades, NY 10964 E-mail: Cook: acook@ldeo.columbia.edu Guerin: guerin@ldeo.columbia.edu Mrozewski: stefan@ldeo.columbia.edu 3 National Energy Technology Laboratory U.S. Department of Energy P.O. Box 880 Morgantown, WV 26507 E-mail: ray.boswell@netl.doe.gov 2 US Geological Survey Denver Federal Center, MS-939 Box 25046 Denver, CO 80225 E-mail:

193

Sustainable development through beneficial use of produced water for the oil and gas industry.  

E-Print Network [OSTI]

??Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large… (more)

Siddiqui, Mustafa Ashique

2012-01-01T23:59:59.000Z

194

Demonstration of Natural Gas Engine Driven Air Compressor Technology at Department of Defense Industrial Facilities  

E-Print Network [OSTI]

are offset by differences in prevailing utility rates, efficiencies of partial load operation, reductions in peak demand, heat recovery, and avoiding the cost of back-up generators. Natural gas, a clean-burning fuel, is abundant and readily available...

Lin, M.; Aylor, S. W.; Van Ormer, H.

195

Introduction The KelvinoxIGH is the industry standard gas handling  

E-Print Network [OSTI]

now offers the ability to track and display the temperature, in mK, of the mixing chamber down with a KelvinoxIGH intelligent gas handling system is a complete temperature platform for research at ultra

del Barco, Enrique

196

Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions  

Science Journals Connector (OSTI)

The mitigation of greenhouse gas emissions to acceptable levels is arguably the greatest...2 increase in the atmosphere. Carbon dioxide sequestration that consists of separation, transportation and...2..., is one...

Maryam Takht Ravanchi; Saeed Sahebdelfar…

2011-06-01T23:59:59.000Z

197

Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers  

E-Print Network [OSTI]

Yankee Gas 4 ? Offer technical assistance to C & I customers who want to improve energy efficiency ? Offer financial incentives to help implement energy-efficient measures ? Provide $4 in benefits for every $1 spent on programs 5 New...&P www.cl-p.com ? UI www.uinet.com ? Yankee Gas www.yankeegas.com ? CNG www.cngcorp.com ? SCG www.soconngas.com ? CCEF www.ctcleanenergy.com 20 QUESTIONS??? ...

Sermakekian, E.

2011-01-01T23:59:59.000Z

198

Trace Analysis in the Food and Beverage Industry by Capillary Gas Chromatography: System Performance and Maintenance  

Science Journals Connector (OSTI)

......gas is of g o o d quality a n d that all gas...w o directions: increase the n u m b e r of...particular the limit for wines was set at 30 p p...t of a r o m a in wines a n d spirits. The...technique will either increase the confidence level...urethane) in wine. GC-N/TEA chromatograms......

M.A. Hayes

1988-04-01T23:59:59.000Z

199

Energy efficiency for greenhouse gas emission reduction in China: The case of the cement industry  

SciTech Connect (OSTI)

A project at LBNL has combined two different approaches to investigate changes in efficiency in China`s cement industry, which currently accounts for over 6% of China`s total commercial energy use and over 1% of global carbon emissions. Cement output has doubled over the past five years, and will double again within 15 years. Addressing cement industry carbon emissions will be a key element of any program to control China`s carbon emissions. Macro-level analysis was used to investigate industry-wide trends, and detailed case studies of individual plants illuminated key issues in technology choice that fundamentally affect efficiency. In general, enterprises adopted technologies that increased output and improved quality, and had little regard for energy efficiency, though most new technologies and practices did improve efficiency. Changes in energy prices were a surprisingly weak factor in adoption of efficient technologies. Unexpectedly, many enterprises developed a strong preference for the least fuel-efficient technology, which allows power generation with kiln waste heat. This preference was motivated in a large part by the desire to achieve security in electricity supply, and by some reforms. This alternative has become increasingly popular, and threatens to reverse some progress made in reducing the carbon-intensiveness of China`s cement industry. Foreign technical assistance and more importantly, greater participation in China`s cement industry of foreign cement companies would speed the adoption of large scale very efficient precalciner plants. Paradoxically, improving energy efficiency in China`s cement industry is also a supply-side issue, improved reliability in China`s power network will make the more fuel-efficient alternative more attractive.

Sinton, J. [Lawrence Berkeley National Lab., Berkeley, CA (United States)

1996-12-31T23:59:59.000Z

200

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources and  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations American Petroleum Institute The oil and natural gas industry provides the fuel for American life, warming our homes, powering our businesses and giving us the mobility to enjoy this great land. As the primary trade association of that industry, API represents more than 400 members involved in all aspects of the oil and natural gas industry. Our association draws on the experience and expertise of our members and staff to support a strong and viable oil and natural gas industry. International Petroleum Industry Environmental Conservation Association The International Petroleum Industry Environmental Conservation Association (IPIECA) is comprised of petroleum companies and associations from around the world. Founded in 1974 following the establishment of the United

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

THE VIABILITY OF DEREGULATION IN THE RUSSIAN GAS INDUSTRY1 C. Locatelli, IEPE, January 2003  

E-Print Network [OSTI]

again on the agenda the oft-repeated and oft-avoided question of reforms in this industry. The latest company's monopoly on sales and production. The aim of this reform is to favour the development the deregulation reforms are compatible with the institutional environment in which they are being applied

Boyer, Edmond

202

Simultaneous Production and Distribution of Industrial Gas Supply-Chains Pablo A. Marchetti1  

E-Print Network [OSTI]

of production and distribution. The proposed methodology has been tested on small, medium, and large size/depots in order to fulfill a common set of shared customer demands. The application to real industrial size test be gasified and sent to the pipeline to ensure that over-the-fence customer demands are satisfied. Moreover

Grossmann, Ignacio E.

203

Practical guide: Tools and methodologies for an oil and gas industry emission inventory  

SciTech Connect (OSTI)

During the preparation of Title V Permit applications, the quantification and speciation of emission sources from oil and gas facilities were reevaluated to determine the {open_quotes}potential-to-emit.{close_quotes} The existing emissions were primarily based on EPA emission factors such as AP-42, for tanks, combustion sources, and fugitive emissions from component leaks. Emissions from insignificant activities and routine operations that are associated with maintenance, startups and shutdowns, and releases to control devices also required quantification. To reconcile EPA emission factors with test data, process knowledge, and manufacturer`s data, a careful review of other estimation options was performed. This paper represents the results of this analysis of emission sources at oil and gas facilities, including exploration and production, compressor stations and gas plants.

Thompson, C.C. [C-K Associates, Inc., Baton Rouge, LA (United States); Killian, T.L. [Conoco, Inc., Houston, TX (United States)

1996-12-31T23:59:59.000Z

204

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network [OSTI]

Energy (DOE)’s Industrial Assessment Centers, located at 26Generated by the Industrial Assessment Center Program:

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

205

Modelling and simulation of acid gas condensation in an industrial chimney - article no. A39  

SciTech Connect (OSTI)

Coal power stations as well as waste incinerators produce humid acid gases which may condense in industrial chimneys. These condensates can cause corrosion of chimney internal cladding which is made of stainless steel, nickel base alloys or non metallic materials. In the aim of polluting emission reduction and material optimal choice, it is necessary to determine and characterize all the phenomena which occur throughout the chimney and more especially condensation and dissolution of acid gases (in this particular case, sulfur dioxide SO{sub 2}).

Serris, E.; Cournil, M.M.; Peultier, J. [Ecole des Mines de St Etienne, St Etienne (France)

2009-07-01T23:59:59.000Z

206

The California greenhouse gas initiative and its implications to the automotive industry  

SciTech Connect (OSTI)

CAR undertook this investigation to better understand the costs and challenges of a local (state) regulation necessitating the implementation of alternative or advanced powertrain technology. CAR will attempt to add insight into the challenges that local regulations present to the automotive industry, and to contribute further to the discussion of how advanced powertrain technology may be used to meet such regulation. Any local law that (directly or indirectly) affects light duty motor vehicle fuel economy creates what in effect is a specialty market for powertrain technology. As such these small markets present significant challenges for automotive manufacturers. First, a small market with unique standards presents significant challenges to an industry that has sustained growth by relying on large volumes to achieve scale economies and deliver products at a cost acceptable to the consumer. Further, the challenges of the additional technology make it likely that any powertrain capable of meeting the stringent emissions standards will include costly additional components, and thus will be more costly to manufacture. It is likely that manufacturers would consider the following actions as steps to deliver products to meet the pending California regulatory requirements anticipated as a result of prior California legislation: (1) Substituting more fuel efficient vehicles: Bring in more efficient vehicles from global operations, while likely dropping existing domestic products. (2) Substituting powertrains: Add existing downsized engines (i.e. turbocharged versions, etc.) into California market-bound vehicles. (3) Powertrain enhancements: Add technology to current engine and transmission offerings to improve efficiency and reduce emissions. (4) Incorporating alternative powertrains into existing vehicle platforms: Develop a hybrid or other type of powertrain for an existing vehicle. (5) New powertrains and new platforms: Develop vehicles specifically intended to incorporate new powertrain technologies, materials and/or design (e.g. the General Motors EV1 or the Toyota Prius). These five actions represent the gamut from the least complicated solution to the most complex. They also generally represent the least expensive response to the most expensive. It is possible that the least expensive responses may be least likely to meet market demands while achieving required GHG emission limits. At the same time, the most expensive option may produce a vehicle that satisfies the GHG reduction requirements and meets some consumer requirements, but is far too costly to manufacture and sell profitably. The response of a manufacturer would certainly have to take market size, consumer acceptance, technology implication and cost, as well as internal capacities and constraints, into consideration. It is important to understand that individual companies may respond differently in the short term. However, it is probable that there would be a more consistent industry-wide response in the longer term. Options 1 and 2 present the simplest responses. A company may reach into its global portfolio to deliver vehicles that are more fuel-efficient. These vehicles are usually much smaller and significantly less powerful than current U.S. offerings. Industry respondents indicated that such a strategy may be possible but would likely be met with less than positive reaction from the buying public. A general estimate for the cost to homologize a vehicle--that is, to prepare an existing vehicle for entry into the United States provided all business conditions were met (reasonable product, capacity availability, etc.), would be approximately $50 million. Assuming an estimated cost for homologation to meet U.S. standards of $50 million and a 20,000 vehicle per year sales volume in California, the company would then incur a $2,500 per-vehicle cost to bring them into the market. A manufacturer may also choose to incorporate a more efficient powertrain into a vehicle already sold in the market. The costs associated with such a strategy would include reengineering

Smith, B. C.; Miller, R. T.; Center for Automotive Research

2006-05-31T23:59:59.000Z

207

Energy Corridors on Federal Lands | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Corridors on Federal Lands Energy Corridors on Federal Lands Energy Corridors on Federal Lands In many areas of the United States, the infrastructure required to deliver energy has not always kept pace with growth in demand. To improve energy delivery and enhance the electric transmission grid for the future, several government agencies currently are working together to establish a coordinated network of Federal energy corridors on Federal lands throughout the United States. Energy corridors would help address growing energy demand by facilitating future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution facilities, while also protecting the environment. As the agency-preferred siting locations, the energy transport corridors will provide industry and the public with

208

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992  

SciTech Connect (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

209

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect (OSTI)

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

210

Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels  

SciTech Connect (OSTI)

This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

Srinivasan, Ram

2013-07-31T23:59:59.000Z

211

A high-pressure and high-temperature gas-loading system for the study of conventional to real industrial sized samples in catalysed gas/solid and liquid/solid reactions  

Science Journals Connector (OSTI)

A high-pressure-high-temperature gas-loading system has been developed for combined in situ high-energy X-ray diffraction and mass spectrometry investigations during catalysed gas/solid or liquid/solid reactions. The benefits of such a system are the combination of different gases, the flexibility of the cell design, the rotation of the cell, and the temperature, pressure and gas-flow ranges accessible. This opens up new opportunities for studying catalysts or compounds not just from a fundamental point of view but also for industrial applications, in both cases in operando conditions.

Andrieux, J.

2014-01-18T23:59:59.000Z

212

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Price Sold to...

213

land.PDF  

Broader source: Energy.gov (indexed) [DOE]

2 2 AUDIT REPORT SALE OF LAND AT OAK RIDGE U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES May 2001 DEPARTMENT OF ENERGY Washington, DC 20585 May 7, 2001 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on the "Sale of Land at Oak Ridge" BACKGROUND Under the Atomic Energy Act of 1954, the U.S. Department of Energy (Department) may sell land in the performance of identified programmatic functions. The functions specified in the Atomic Energy Act include encouraging scientific and industrial progress, controlling special nuclear

214

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network [OSTI]

the Corn Wet Milling Industry: A Guide for Energy and Plantenergy efficiency measures for breweries, 53 cement, 54 corn

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

215

Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications- Volume II (Appendices), January 2000  

Broader source: Energy.gov [DOE]

Appendices related to quantification of the total market for onsite power generation within the Industries of the Future

216

Natural Gas Industrial Price  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 7.68 9.65 5.33 5.49 5.13 3.89 1997-2012 Alabama 8.70 10.57 6.48 6.64 5.57 4.35 1997-2012 Alaska 4.67 5.49 4.02 4.23 3.84 5.11 1997-2012 Arizona 10.49 10.47 8.19 7.54 6.86 5.78 1997-2012 Arkansas 9.51 10.56 8.44 7.28 7.44 6.38 1997-2012 California 9.07 10.80 6.56 7.02 7.04 5.77 1997-2012 Colorado 7.21 8.76 6.57 5.84 6.42 5.79 1997-2012 Connecticut 10.54 12.63 8.44 9.60 9.16 8.83 1997-2012 Delaware 8.93 12.54 13.99 10.18 11.69 11.61 1997-2012 District of Columbia -- -- -- -- -- -- 2001-2012

217

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

7.68 9.65 5.33 5.49 5.13 3.89 1997-2012 7.68 9.65 5.33 5.49 5.13 3.89 1997-2012 Alabama 8.70 10.57 6.48 6.64 5.57 4.35 1997-2012 Alaska 4.67 5.49 4.02 4.23 3.84 5.11 1997-2012 Arizona 10.49 10.47 8.19 7.54 6.86 5.78 1997-2012 Arkansas 9.51 10.56 8.44 7.28 7.44 6.38 1997-2012 California 9.07 10.80 6.56 7.02 7.04 5.77 1997-2012 Colorado 7.21 8.76 6.57 5.84 6.42 5.79 1997-2012 Connecticut 10.54 12.63 8.44 9.60 9.16 8.83 1997-2012 Delaware 8.93 12.54 13.99 10.18 11.69 11.61 1997-2012 District of Columbia -- -- -- -- -- -- 2001-2012 Florida 10.56 11.72 9.41 8.33 8.07 6.96 1997-2012 Georgia 8.86 11.02 6.21 6.25 5.90 4.60 1997-2012 Hawaii 18.66 26.74 19.05 24.10 29.80 30.89 1997-2012 Idaho 9.39 9.18 8.53 6.39 6.36 5.73 1997-2012 Illinois

218

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 7.68 9.65 5.33 5.49 5.13 3.89 1997-2012 Alabama 8.70 10.57 6.48 6.64 5.57 4.35 1997-2012 Alaska 4.67 5.49 4.02 4.23 3.84 5.11 1997-2012 Arizona 10.49 10.47 8.19 7.54 6.86 5.78 1997-2012 Arkansas 9.51 10.56 8.44 7.28 7.44 6.38 1997-2012 California 9.07 10.80 6.56 7.02 7.04 5.77 1997-2012 Colorado 7.21 8.76 6.57 5.84 6.42 5.79 1997-2012 Connecticut 10.54 12.63 8.44 9.60 9.16 8.83 1997-2012 Delaware 8.93 12.54 13.99 10.18 11.69 11.61 1997-2012 District of Columbia -- -- -- -- -- -- 2001-2012

219

Natural Gas Industrial Price  

U.S. Energy Information Administration (EIA) Indexed Site

66 5.38 5.35 4.88 4.95 4.96 2001-2014 Alabama 6.03 5.66 4.94 4.69 4.77 4.70 2001-2014 Alaska 7.84 7.85 8.10 7.84 8.02 7.87 2001-2014 Arizona 7.57 7.62 7.61 7.48 8.08 8.15 2001-2014...

220

Removing an impediment to oil and gas leasing of certain federal lands in Corpus Christi, TX, and Port Hueneme, CA, and for other purposes. House of Representatives, Ninety-Eight Congress, Second Session  

SciTech Connect (OSTI)

With the addition of three technical ammendments, the Committee on Interior and Insular Affairs favors passage of H.R. 5787, a bill that removes a restriction to oil and gas leasing on naval air station lands within the city limits of Corpus Christi, Texas and Port Hueneme, California. Recognizing the controversial nature of competitive versus noncompetitive bidding, the committee stipulates that the land must be within a known geologic structure to use noncompetitive bidding. Additional views of three committee members follow the formal report and transmittal letter.

Not Available

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Industry Alliance Industry Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

222

Vertical Integration in a Growing Industry: Security of Supply and Market Access in  

E-Print Network [OSTI]

4. Entrepreneurial start-ups 5. Oil and Gas firms and downstream marketers #12;11 Permeability of Boundaries Land Cultivation Trading Distribution Retailing Food, Feed, IndustrialProcessing Exploration biofuels for road transport Bio-diesel : vegetable oil based substitute for diesel Bio-ethanol : alcohol

Aickelin, Uwe

223

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network [OSTI]

of industrial primary energy consumption in The Netherlands.included total primary energy consumption for twelve typeswas converted into primary energy consumption and the energy

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

224

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network [OSTI]

Institute for Energy Efficiency, Norway) and CRES (CenterInstitute for Energy Efficiency, Norway) and CRES (Centermembers, 48 Norway’s Industrial Energy Efficiency Network

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

225

Lands & Community  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Community Transmission Tower Software Public Comments Lands & Community Bonneville Power Administration owns and maintains hundreds of properties in Oregon, Washington,...

226

World experience with development of combined-cycle and gas turbine technologies and prospects for employing them in the thermal power engineering of Russia using the capacities of the country’s industry producing power machinery and equipment  

Science Journals Connector (OSTI)

World experience gained from using combined-cycle and gas-turbine technologies in power engineering is analyzed. The technical and production capacities of the Russian industry constructing power machinery and...

O. N. Favorskii; V. L. Polishchuk; I. M. Livshits…

2007-09-01T23:59:59.000Z

227

Evaluating incentives in the tax legislation applicable to the South African oil, petroleum and gas industry / Moolman A.M.  

E-Print Network [OSTI]

??The oil and gas sector holds several advantages for South Africa: direct benefits include providing growth in the country’s economy by optimising available oil and… (more)

Moolman, Anneke Maré.

2012-01-01T23:59:59.000Z

228

Industrial Green | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Green Industrial Green - This giant bag may not look green, but it keeps a potent greenhouse gas from being released into the atmosphere. It's part of a system at the...

229

H.R. 817: A Bill to authorize the Secretary of Energy to lease lands within the naval oil shale reserves to private entities for the development and production of oil and natural gas. Introduced in the House of Representatives, One Hundred Fourth Congress, First session  

SciTech Connect (OSTI)

This bill would give the Secretary of Energy authority to lease lands within the Naval oil shale reserves to private entities for the purpose of surveying for and developing oil and gas resources from the land (other than oil shale). It also allows the Bureau of Land Management to be used as a leasing agent, establishes rules on royalties, and the sharing of royalties with the state, and covers the transfer of existing equipment.

NONE

1995-12-31T23:59:59.000Z

230

Detailed Modeling of Industrial Energy Use and Greenhouse Gas Emissions in an Integrated Assessment Model of Long-term Global Change  

E-Print Network [OSTI]

in the manufacturing sector, about 26% is electricity, 58% is natural gas, 10% is coal (excluding coal coke and breeze) and the remainder is from liquid fuels. 1 AdaptedfromTableE6.4. EndUsesofFuelConsumption,1998(URL: ftp://ftp.eia.doe.gov/pub/consumption/industry/d98...FuelConsumptionbyEnd-UseforallMECSIndustries,1998,trillionBTU Electricity Liquid Fuels Natural Gas Coal (excluding Coal Cokeand Breeze) Total BoilerFuel 29 308 2,538 770 3,645 ProcessHeating 363 185 3,187 331 4,066 ProcessCoolingand Refrigeration 209 2 22 233 MachineDrive 1,881 25 99 7 2...

Sinha, P.; Wise, M.; Smith, S.

2006-01-01T23:59:59.000Z

231

Predicting the Three Dimensional Distribution of Gas Pollutants for Industrial-type Geometries in the South Pars Gas Complex Using Computational Fluid Dynamics  

Science Journals Connector (OSTI)

In the present investigation, a comprehensive map of the studied region, which includes several gas refinery phases, was prepared. ... The Reynolds averaged Navier–Stokes equations for continuity and momentum are defined as follows:(24, 25, 30, 31)(2)(3)where ? and ?t are molecular viscosity and turbulent viscosity, respectively, ? is density of the main fluid, V is mean velocity vector, P is static pressure, g is the gravitational acceleration, and Sm is the mass added to the continuous phase from other sources. ... Comparison between the CFD Calculated Concentration of the Pollutants in Two Different Input Wind Velocities of 2.5 and 3.5 (m/s) ...

Hessamodin Nourbakhsh; Dariush Mowla; Feridun Esmaeilzadeh

2013-04-02T23:59:59.000Z

232

Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape  

Science Journals Connector (OSTI)

Abstract A commercial swirl burner for industrial gas turbine combustors was equipped with an optically accessible combustion chamber and installed in a high-pressure test-rig. Several premixed natural gas/air flames at pressures between 3 and 6 bar and thermal powers of up to 1 MW were studied by using a variety of measurement techniques. These include particle image velocimetry (PIV) for the investigation of the flow field, one-dimensional laser Raman scattering for the determination of the joint probability density functions of major species concentrations, mixture fraction and temperature, planar laser induced fluorescence (PLIF) of OH for the visualization of the flame front, chemiluminescence measurements of OH* for determining the lift-off height and size of the flame and acoustic recordings. The results give insights into important flame properties like the flow field structure, the premixing quality and the turbulence–flame interaction as well as their dependency on operating parameters like pressure, inflow velocity and equivalence ratio. The 1D Raman measurements yielded information about the gradients and variation of the mixture fraction and the quality of the fuel/air mixing, as well as the reaction progress. The OH PLIF images showed that the flame was located between the inflow of fresh gas and the recirculated combustion products. The flame front structures varied significantly with Reynolds number from wrinkled flame fronts to fragmented and strongly corrugated flame fronts. All results are combined in one database that can be used for the validation of numerical simulations.

Ulrich Stopper; Wolfgang Meier; Rajesh Sadanandan; Michael Stöhr; Manfred Aigner; Ghenadie Bulat

2013-01-01T23:59:59.000Z

233

International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms  

SciTech Connect (OSTI)

Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-02-02T23:59:59.000Z

234

Virginia Gas and Oil Act (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Program Info State Virginia Program Type Safety and Operational Guidelines Siting and Permitting Provider Virginia Department of Mines, Minerals, and Energy The Gas and Oil Act addresses the exploration, development, and production of oil and gas resources in the Commonwealth of Virginia. It contains provisions pertaining to wells and well spacing, permits and fees, ownership of coalbed methane gas, and land leases. No county, city, town or other political subdivision of the Commonwealth may impose any condition, or require any other local license, permit, fee or bond to perform any gas,

235

DOE to Launch Collaborative Effort with Industry to Improve Natural...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems July 30, 2014 -...

236

Anisotropic models to account for large borehole washouts to estimate gas hydrate saturations in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Alaminos Canyon 21 B well  

Science Journals Connector (OSTI)

Through the use of 3-D seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon (AC) area of the Gulf of Mexico. Two locations were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (JIP Leg II) in May of 2009 and a comprehensive set of logging-while-drilling (LWD) logs were acquired at each well site. LWD logs indicated that resistivity in the range of ?2 ohm-m and P-wave velocity in the range of ?1.9 km/s were measured in the target sand interval between 515 and 645 feet below sea floor. These values were slightly elevated relative to those measured in the sediment above and below the target sand. However, the initial well log analysis was inconclusive regarding the presence of gas hydrate in the logged sand interval, mainly because large washouts caused by drilling in the target interval degraded confidence in the well log measurements. To assess gas hydrate saturations in the sedimentary section drilled in the Alaminos Canyon 21 B (AC21-B) well, a method of compensating for the effect of washouts on the resistivity and acoustic velocities was developed. The proposed method models the washed-out portion of the borehole as a vertical layer filled with sea water (drilling fluid) and the apparent anisotropic resistivity and velocities caused by a vertical layer are used to correct the measured log values. By incorporating the conventional marine seismic data into the well log analysis, the average gas hydrate saturation in the target sand section in the AC21-B well can be constrained to the range of 8–28%, with 20% being our best estimate.

M.W. Lee; T.S. Collett; K.A. Lewis

2012-01-01T23:59:59.000Z

237

Oil and Gas Exploration, Drilling, Transportation, and Production (South  

Broader source: Energy.gov (indexed) [DOE]

Exploration, Drilling, Transportation, and Production Exploration, Drilling, Transportation, and Production (South Carolina) Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) < Back Eligibility Commercial Construction Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Buying & Making Electricity Program Info State South Carolina Program Type Environmental Regulations Siting and Permitting Provider South Carolina Department of Health and Environmental Control This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to prevent the waste of oil and gas, promote environmental stewardship, and regulate the exploration,

238

Reducing greenhouse gas emissions from households and industry by the use of charcoal from sawmill residues in Tanzania  

Science Journals Connector (OSTI)

Like many countries in sub-Saharan Africa, Tanzania faces considerable challenges in meeting the future energy demands of its rapidly growing urban population without depleting its forests. Nonindustrial charcoal production generates large emissions of greenhouse gases (GHG) in the form of CO2 from forest degradation and methane from oxidation in traditional kilns. On a global scale, the GHG emissions from cement production are of considerable magnitude and are increasing rapidly. In this study, the impact of converting sawmill residues into charcoal briquettes and charcoal powder in Tanzania was assessed, using a cradle-to-grave approach. Furthermore, the net effects on GHG of substituting more GHG-intensive fuels with these charcoal products were evaluated. Replacing coal in cement manufacturing with this sawmill charcoal powder may reduce GHG emissions by 455–495 kg of CO2eq MWh?1, corresponding to an 83–91% decrease. The net GHG emission reduction when replacing charcoal from miombo woodlands with these sawmill charcoal briquettes is 78–557 kg of CO2eq MWh?1, or 42–84%, depending on whether the substituted charcoal can be considered carbon neutral or not. These replacements may considerably reduce the GHG emissions from the cement industry and in charcoal-dependent households in Tanzania. Due to the significant problems related to energy supply and forest deterioration in sub-Saharan countries, as well as the global growth of GHG emissions from the cement industry, this study might of relevance also outside Tanzania.

Hanne K. Sjølie

2012-01-01T23:59:59.000Z

239

Towards a history of the international industrial gases industry Ray Stokes, Ralf Banken, and Matthias Phl  

E-Print Network [OSTI]

industrial revolution" and their component companies. From David Landes's classic study, The Unbound of the industries of the second industrial revolution has been virtually ignored in this scholarship to date1 Towards a history of the international industrial gases industry Ray Stokes, Ralf Banken

Guo, Zaoyang

240

A Stakeholder’s Perspective on Contaminated Land Management  

Science Journals Connector (OSTI)

NICOLE, the Network for the management of Industrially Contaminated Land in Europe is a leading forum on this matter in Europe, promoting co-operation between industry, academia and service providers. NICOLE’s...

Lida Schelwald- Van der Kley; Johan de Fraye…

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...  

Open Energy Info (EERE)

Land Focus Area Renewable Energy, Agriculture, Forestry, Greenhouse Gas, Land Use Topics GHG inventory, Low emission development planning, -LEDS, Policiesdeployment programs...

242

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

243

Process studies for a new method of removing H/sub 2/S from industrial gas streams  

SciTech Connect (OSTI)

A process for the removal of hydrogen sulfide from coal-derived gas streams has been developed. The basis for the process is the absorption of H/sub 2/S into a polar organic solvent where it is reacted with dissolved sulfur dioxide to form elemental sulfur. After sulfur is crystallized from solution, the solvent is stripped to remove dissolved gases and water formed by the reaction. The SO/sub 2/ is generated by burning a portion of the sulfur in a furnace where the heat of combustion is used to generate high pressure steam. The SO/sub 2/ is absorbed into part of the lean solvent to form the solution necessary for the first step. The kinetics of the reaction between H/sub 2/S and SO/sub 2/ dissolved in mixtures of N,N-Dimethylaniline (DMA)/ Diethylene Glycol Monomethyl Ether and DMA/Triethylene Glycol Dimethyl Ether was studied by following the temperature rise in an adiabatic calorimeter. This irreversible reaction was found to be first-order in both H/sub 2/S and SO/sub 2/, with an approximates heat of reaction of 28 kcal/mole of SO/sub 2/. The sole products of the reaction appear to be elemental sulfur and water. The presence of DMA increases the value of the second-order rate constant by an order of magnitude over that obtained in the glycol ethers alone. Addition of other tertiary aromatic amines enhances the observed kinetics; heterocyclic amines (e.g., pyridine derivatives) have been found to be 10 to 100 times more effective as catalysts when compared to DMA.

Neumann, D.W.; Lynn, S.

1986-07-01T23:59:59.000Z

244

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

industrial demand response (DR) with energy efficiency (EE) to most effectively use electricity and natural gas

McKane, Aimee T.

2009-01-01T23:59:59.000Z

245

Resource Assessment and Land Use Change  

Broader source: Energy.gov (indexed) [DOE]

and third generation feedstocks 14 Greenhouse Gas Emissions of Gasoline and Alternatives Fuel Pathway Direct emissions (g CO2eMJ) Land use and other effects (g CO2eMJ) Total...

246

Energy Industry Analyst  

Broader source: Energy.gov [DOE]

A successful candidate in this position will function as an Energy Industry Analyst within FE's Office of Oil and Gas, with responsibility for supporting senior staff members in performing policy...

247

Edmund G. Brown, Jr. PIER INDUSTRIAL, AGRICULTURAL, AND  

E-Print Network [OSTI]

, petroleum refining, natural gas, beverage industry, water and wastewater, energy efficiency, industrial natural gas efficiency, electronics, Public Interest Energy R Edmund G. Brown, Jr. Governor PIER INDUSTRIAL, AGRICULTURAL, AND WATER ENERGY EFFICIENCY

248

MEDIA ROUNDTABLE: Possible impacts of the US EPA Notice of Proposed Rulemaking on the biofuels industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 INDUSTRIAL BIOTECHNOLOGY WINTER 2008 2 INDUSTRIAL BIOTECHNOLOGY WINTER 2008 M E D I A R O U N D T A B L E his Roundtable Discussion was held for members of the media to engage with industry experts and gain insight into the proposed (and, as this issue of Industrial Biotechnology went to press, yet-to-be-finalized) EPA Notice of Proposed Rulemaking that would set stringent greenhouse gas emission reduction targets for renew- able fuels. At issue is the methodology employed by EPA, one largely based on assessment of emission effects related to indirect land-use changes for biofuels production, to determine the reduction target requirements for existing and new biofuels. (For context, see letter, p. 332, and Point of View article, p. 334). Industrial Biotechnology gratefully acknowledges the

249

Impacts of Land-use Changes on Biofuels ORNL History of Exploring Changes in Land Use in the United States  

E-Print Network [OSTI]

Impacts of Land-use Changes on Biofuels ORNL History of Exploring Changes in Land Use in the United. Building from their work on environmental costs and benefits associated with biofuel production, ORNL positively impact the sustainability of the biofuels industry. Building understanding of land-use change from

250

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995  

SciTech Connect (OSTI)

This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-12-31T23:59:59.000Z

251

Natural gas monthly, July 1996  

SciTech Connect (OSTI)

This document presents information pertaining to the natural gas industry. Data are included on production, consumption, distribution, and pipeline activities.

NONE

1996-07-01T23:59:59.000Z

252

The Need for Open Lands  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Need for Open Lands Need for Open Lands Nature Bulletin No. 742 February 8, 1964 Forest Preserve District of Cook County Seymour .Simon, President Roberts Mann, Conservation Editor THE NEED FOR OPEN LANDS There is an old saying: The proof of the pudding is the eating . In other words, if it's good, people enjoy it and beg for more. The proof of the need for open lands -- publicly owned areas for recreational uses and open spaces undisturbed -- is the tremendous and ever-increasing use of those we have. We need more now. Year after year we will need more and more. It is imperative that areas desirable for future use be acquired now or as soon as possible, regardless of cost and even though they may stand idle ' -- vacant and undeveloped -- until more funds become available. Otherwise they may be gone, or the asking price may be a hundred times greater. Open spaces such as farm lands and prairies may have been occupied by residential, commercial or industrial developments. Woodlands may have been cut, stream channels dredged and wetlands drained, destroying all but a memory of their beauty and recreational values. There are compelling reasons for our need of open lands and why we should waste no time in providing more. Those reasons have been confirmed and emphasized by exhaustive studies and statistical analyses nationwide in scope.

253

Natural Gas for Britain  

Science Journals Connector (OSTI)

... AT a time when the Government is exhorting the gas and other major industries concerned with ... and other major industries concerned with natural fuel resources to give a forward boost to coal mining by contracting an annual intake ...

1965-05-29T23:59:59.000Z

254

Land Turtles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turtles Turtles Nature Bulletin No. 157 May 29, 1948 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation LAND TURTLES Turtles are four-legged reptiles that originated before the dinosaurs appeared, some 175 million years ago. The distinguishing feature of the turtle is its shell, varying in shape and markings with the different species: an arched upper shell grown fast to the backbone, and a flat lower shell grown fast to the breastbone, the two connected on either side by a bony bridge. In some species, like the box turtles, the lower shell is hinged, enabling the animal to completely conceal its head, tail and limbs by closing the two shells together. Most turtles live in water all or part of the time, but all of them lay their eggs on land, and neither the nest nor the young is attended by the parents. Each species has its own method of nest construction, using the hind legs to dig a hole in the ground, but the eggs are covered and left to be hatched by the heat of the sun. The eggs are relished by many animals such as skunks and squirrels; the young, before their armor hardens, are devoured by birds, mammals, fishes and other turtles.

255

Oil and Gas Industry Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Install the English Version of Adobe Acrobat Reader Install the English Version of Adobe Acrobat Reader SIMULATORS BOAST 98 BOAST 98: (Version 4.2.4) FORTRAN 90 source code and executable program. Visual, dynamic, and interactive update of BOAST3. Rock region saturations corrected by WOC and GOC. Interacts with EdBOAST. Beta tested. UserÂ’s Guide and Documentation Manual. National Petroleum Technology Office by TRW Petroleum Technologies, December 1998. Compiled with Lahey FORTRAN 90 and ISS/Interacter. Min. Req. Windows95, Windows NT, or Windows 3.1 with Win32s installed. Recommend 32 MB memory. Anticipate need of 40 to 100 MB disk space. Software 607 KB Manual 216 KB Boast 98 manual Manual 63 KB Boast 3.0 manual and documentation EdBOAST EdBOAST: (Version 1.3.3) FORTRAN 90 source code and executable program. Dialog oriented reservoir data editor for input files directed to BOAST98 and BOAST3. Graphic plots and spreadsheet import / export features. Interacts with BOAST98. Beta tested. UserÂ’s Guide. National Petroleum Technology by TRW Petroleum Technologies, December 1998. Compiled with Lahey FORTRAN 90 AND ISS / Interacter . Min. Req. Windows98, Windows NT, or Windows3.1 with Win32s installed. Recommend 32 MB memory.

256

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

257

Natural Gas Monthly  

Reports and Publications (EIA)

Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

2014-01-01T23:59:59.000Z

258

GRR/Section 3-NV-a - State Land Leasing Process and Land Access | Open  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 3-NV-a - State Land Leasing Process and Land Access < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-NV-a - State Land Leasing Process and Land Access 03NVAStateLandLeasingProcess.pdf Click to View Fullscreen Contact Agencies Nevada Division of State Lands Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) NRS 322.010-322.040 Leases for Extraction of Oil, Coal, Gas or Geothermal Resources Triggers None specified Click "Edit With Form" above to add content 03NVAStateLandLeasingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

259

The Gas/Electric Partnership  

E-Print Network [OSTI]

The electric and gas industries are each in the process of restructuring and "converging" toward one mission: providing energy. Use of natural gas in generating electric power and use of electricity in transporting natural gas will increase...

Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

260

Long-term contracts and asset specificity revisited : an empirical analysis of producer-importer relations in the natural gas industry  

E-Print Network [OSTI]

In this paper, we analyze structural changes in long-term contracts in the international trade of natural gas. Using a unique data set of 262 long-term contracts between natural gas producers and importers, we estimate the ...

Neumann, Anne

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Montana State University 1 Industrial Engineering  

E-Print Network [OSTI]

Montana State University 1 Industrial Engineering The mission of the undergraduate program in Industrial Engineering (IE) is to produce graduates well grounded in both classical and current industrial engineering knowledge and skills consistent with the land-grant mission of MSU. Graduates

Maxwell, Bruce D.

262

An international comparison of Scotland and Newfoundland's offshore marine industries: exploring the connections among commercial fisheries and offshore oil and gas.  

E-Print Network [OSTI]

??The development of the offshore oil industry in the past fifty years has created heightened interactions at sea, where traditionally fishing activities dominated. This study… (more)

Lowitt, Kerrie

2010-01-01T23:59:59.000Z

263

Industry Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

264

Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental  

Open Energy Info (EERE)

Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods Agency/Company /Organization: International Institute for Sustainable Development (IISD) Sector: Energy, Land Focus Area: Industry Topics: Market analysis, Policies/deployment programs, Background analysis Resource Type: Publications Website: www.iisd.org/pdf/2009/bali_2_copenhagen_egs.pdf References: Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods[1] Background "As part of a suite of activities under the From Bali to Copenhagen project, IISD's work on low-carbon goods has focused on trying to measure the actual potential climate gains from what's now on the table in the WTO

265

Chesapeake Forest Lands (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chesapeake Forest Lands (Maryland) Chesapeake Forest Lands (Maryland) Chesapeake Forest Lands (Maryland) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1999 State Maryland Program Type Siting and Permitting Provider Maryland Department of Natural Resources The Chesapeake Forest Lands are most of the former land holdings of the

266

Land Division: Uniform Environmental Covenants Program (Alabama) |  

Broader source: Energy.gov (indexed) [DOE]

Land Division: Uniform Environmental Covenants Program (Alabama) Land Division: Uniform Environmental Covenants Program (Alabama) Land Division: Uniform Environmental Covenants Program (Alabama) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Local Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations These regulations apply to environmental covenants arising from environmental response projects conducted under any of the following Alabama Department of Environmental Management programs: Scrap tire remediation sites, Soil and groundwater remediation sites, Leaking storage tank remediation sites, Solid waste disposal sites, Hazardous waste

267

Acquisition Of Land (Tennessee) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Acquisition Of Land (Tennessee) Acquisition Of Land (Tennessee) Acquisition Of Land (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Tennessee Program Type Siting and Permitting Provider Tennessee Regulatory Authority Every corporation organized under the laws of any state of the United

268

Land Conservation (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Land Conservation (Virginia) Land Conservation (Virginia) Land Conservation (Virginia) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia Department of Conservation and Recreation The Virginia Department of Conservation and Recreation has developed the

269

ITP Industrial Distributed Energy: Cooling, Heating, and Power...  

Broader source: Energy.gov (indexed) [DOE]

for 2-7 stationary power generation or compression applications in the oil and gas industries. Figure 2-7 illustrates the components of an industrial turbine. Multiple...

270

Development of a low swirl injector concept for gas turbines  

E-Print Network [OSTI]

Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

2000-01-01T23:59:59.000Z

271

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

272

Industrial energy use indices  

E-Print Network [OSTI]

and colder are determined by annual average temperature weather data). Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. iv... This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energy’s national Industrial Assessment Center (IAC) database. The data there come from Industrial Assessment Centers...

Hanegan, Andrew Aaron

2008-10-10T23:59:59.000Z

273

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

274

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

275

Industrial Engineering Industrial Advisory Board  

E-Print Network [OSTI]

Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

Gelfond, Michael

276

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

277

land | OpenEI  

Open Energy Info (EERE)

land land Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

278

MODIS Land Product Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation > MODIS Land Subsets Validation > MODIS Land Subsets MODIS Land Product Subsets Overview Earth, Western Hemisphere The goal of the MODIS Land Product Subsets project is to provide summaries of selected MODIS Land Products for the community to use for validation of models and remote-sensing products and to characterize field sites. Output files contain pixel values of MODIS land products in text format and in GeoTIFF format. In addition, data visualizations (time series plots and grids showing single composite periods) are available. MODIS Land Product Subsets Resources The following MODIS Land Product Subsets resources are maintained by the ORNL DAAC: MODIS Land Products Offered Background Citation Policy Methods and formats MODIS Sinusoidal Grid - Google Earth KMZ Classroom Exercises

279

ITP Industrial Distributed Energy: Integrated Energy Systems...  

Broader source: Energy.gov (indexed) [DOE]

specifically for stationary power generation or compression applications in the oil and gas industries. Multiple stages are typical and differentiate these turbines, along with...

280

Chapter 2 - Historical Development of the Gas Turbine  

Science Journals Connector (OSTI)

Abstract The development of the gas turbine took place in several countries. Several different schools of thought and contributory designs led up to Frank Whittle’s 1941 gas turbine flight. The development of the gas turbine is a source of great pride to many engineers worldwide and, in some cases, takes on either industry sector fervor (for instance, the aviation versus land-based groups) or claims that are tinged with pride in one’s national roots. People from these various sectors and subsectors can therefore get selective in their reporting. So for understanding the history of the gas turbine, one would have to read several different papers and select material written by personnel from the aviation, and land-based sectors. This chapter covers three different accounts of the gas turbine’s development, each mainly a matter of perspective. “I only hope that we never lose sight of one thing—that it was all started by a mouse.” —Walt Disney

Claire Soares

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Minerals on Public Lands (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Minerals on Public Lands (Texas) Minerals on Public Lands (Texas) Minerals on Public Lands (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Program Info State Texas Program Type Siting and Permitting Provider Texas General Land Office Any tract of land that belongs to the state, including islands, salt and freshwater lakes, bays, inlets, marshes, and reefs owned by the state within tidewater limits, the part of the Gulf of Mexico within the state's jurisdiction, unsold surveyed public school land, rivers and channels that belong to the state, and land sold with a reservation of minerals to the state are subject to prospect by any person for those minerals which are

282

Underground Storage of Natural Gas (Kansas)  

Broader source: Energy.gov [DOE]

Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

283

Oil, Gas, and Mining Leases (Nebraska)  

Broader source: Energy.gov [DOE]

This section contains rules on oil, gas, and mining leases, and grants authority to the State of Nebraska and local governments to issue leases for oil and gas mining and exploration on their lands.

284

Produce More Oil Gas via eBusiness Data Sharing  

SciTech Connect (OSTI)

GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

Paul Jehn; Mike Stettner

2004-09-30T23:59:59.000Z

285

Land Reclamation Act (Missouri)  

Broader source: Energy.gov [DOE]

It is the policy of the state to balance surface mining interests with the conservation of natural resources and land preservation. This Act authorizes the Land Reclamation Commission of the...

286

Mineral Leasing Act for Acquired Lands of 1947 | Open Energy Information  

Open Energy Info (EERE)

Acquired Lands of 1947 Acquired Lands of 1947 Jump to: navigation, search Statute Name Mineral Leasing Act for Acquired Lands of 1947 Year 1947 Url Acquiredlands.jpg Description (30 U.S.C. § 351 et seq.) - Extends the provisions of the Mineral Leasing Act and the authority of the Secretary of the Interior over oil and gas operations to federal "acquired lands." References Mineral Leasing Act for Acquired Lands of 1947 [1] The Mineral Leasing Act for Acquired Lands of 1947 (30 U.S.C. § 351 et seq.) - Extends the provisions of the Mineral Leasing Act and the authority of the Secretary of the Interior over oil and gas operations to federal "acquired lands." "To promote the mining of coal, phosphate, sodium, potassium, oil, oil shale, gas, and sulfur on lands acquired by the United States."

287

Comparison of the limulus amebocyte lysate test and gas chromatography-mass spectrometry for measuring lipopolysaccharides (endotoxins) in airborne dust from poultry-processing industries.  

Science Journals Connector (OSTI)

...by using two-dimensional gas chromatography...alternative approach to measuring LPS is based on...performed with two-dimensional GC with electron-capture...3-hydroxy fatty acid standards 3-hydroxynonanoic...C, that of the interface between the GC...in the MS system standard software was used...

A Sonesson; L Larsson; A Schütz; L Hagmar; T Hallberg

1990-05-01T23:59:59.000Z

288

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

289

Natural gas annual 1994  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

290

Natural gas annual 1995  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

291

Delaware Land Protection Act (Delaware) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delaware Land Protection Act (Delaware) Delaware Land Protection Act (Delaware) Delaware Land Protection Act (Delaware) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Nonprofit Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1990 State Delaware Program Type Environmental Regulations Provider Delaware Department of Natural Resources and Environmental Control The Land Protection Act requires the Department of Natural Resources and Environmental Control to work with the Delaware Open Space Council to develop standards and criteria for determining the existence and location

292

Metropolitan Land Use Planning (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Land Use Planning (Minnesota) Land Use Planning (Minnesota) Metropolitan Land Use Planning (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Environmental Regulations This statute establishes the Metropolitan Land Use Advisory Committee within the Metropolitan Council to coordinate plans, programs, and controls

293

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

294

Oil and Gas CDT Coupled flow of water and gas  

E-Print Network [OSTI]

Oil and Gas CDT Coupled flow of water and gas during hydraulic fracture in shale The University relevant to the oil and gas industry. You will develop a versatile analytical, computational of Oxford http://www.earth.ox.ac.uk/people/profiles/academic/joec Key Words Shale gas, hydraulic fracture

Henderson, Gideon

295

Framework and systematic functional criteria for integrated work processes in complex assets: a case study on integrated planning in offshore oil and gas production industry  

Science Journals Connector (OSTI)

Improving the efficiency and cost-effectiveness of the oil and gas (O&G) production process is considered as a critical timely need. The core work processes in particular are targeted for considerable improvements. In this context, development related to integrated planning (IP) is seen as one of the major bases for developing collaborative work processes connecting offshore production and onshore support system. With feasible benefits, for instance, relating to reduction of non-working time, less work repetition, reduction of reduction in production losses, better resource utilisation, etc., a systematic and a complete IP system is today seen as an attractive solution for integrating complex operations and to work smarter. This paper, based on a case study from North Sea oil and gas production environment, describes the systematic functional criteria required as the basis for developing a fully functional IP system.

Yu Bai; Jayantha P. Liyanage

2012-01-01T23:59:59.000Z

296

Industrial Energy Efficiency and Climate Change Mitigation  

SciTech Connect (OSTI)

Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

2009-02-02T23:59:59.000Z

297

Electricity and Gas  

Science Journals Connector (OSTI)

As in electricity, the downstream sector of the natural gas business has traditionally been regarded as a ... the two sub-industries: economies of scale, capital-intensiveness and the geographic specificity of as...

Julián Barquín

2013-01-01T23:59:59.000Z

298

BTU Accounting for Industry  

E-Print Network [OSTI]

convert utility bills to BTUs? All fuels can be measured in terms of BTU content. Natural gas has a million BTUs per thousand cubic feet; propane - 92,000 BTUs per gallon; fuel oil - 140,000 BTUs per gallon; electricity - 3,413 BTUs per KW hour... BTU ACCOUNTING FOR INDUSTRY Robert O. Redd-CPA Seidman & Seidman Grand Rapids, Michigan Today, as never before, American industry needs to identify and control their most criti cal resources. One of these is energy. In 1973 and again in 1976...

Redd, R. O.

1979-01-01T23:59:59.000Z

299

Industrial Advanced Turbine Systems Program overview  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

Esbeck, D.W. [Solar Turbines Inc., San Diego, CA (United States)

1995-10-01T23:59:59.000Z

300

Coastal Public Lands Management Act (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Coastal Public Lands Management Act (Texas) Coastal Public Lands Management Act (Texas) Coastal Public Lands Management Act (Texas) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Siting and Permitting Provider Texas General Land Office The coastal public lands of the state are managed in accordance with the following principles: (a) The natural resources of the surface land, including their aesthetic value and their ability to support and nurture all types of marine life and wildlife, shall be preserved. (b) Preference

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Pluralistic Modelling Approaches to Simulating Climate-Land Change Interactions in East Africa  

E-Print Network [OSTI]

with atmospheric trends such as greenhouse gas concentrations, to loop back to regional and global climate change dynamics (Giorgi and Mearns 1999). Developing robust forecasts of land use change is essential in the proper simulation of land-climate interactions. Forecasts of land use at regional scales require several

302

EOS Land Validation Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EOS Land Validation Presentations EOS Land Validation Presentations Meeting: Land Cover Validation Workshop Date: February 2, 2004 Place: Boston, MA Title: Validation Data Support Activities at the ORNL DAAC (Power Point) Presenter: Bob Cook Meeting: Fall 2003 American Geophysical Union (AGU) Meeting Date: December 9, 2003 Place: San Francisco, CA Title: Ground-Based Data Supporting the Validation of MODIS Land Products (Power Point) Presenter: Larry Voorhees Meeting: Terra and Aqua Products Review Date: March 2003 Place: NASA HQ Title: Supporting the Validation of MODIS Land Products (Power Point) Presenter: Larry Voorhees Meeting: Terra and Aqua Products Review Date: March 2003 Place: NASA HQ Title: MODIS Land Summary (Power Point) Presenter: Chris Justice, University of Maryland Meeting: Spring 2002 American Geophysical Union (AGU) Meeting

303

Land-Use Efficiency of Big Solar  

Science Journals Connector (OSTI)

(8) When realized generation data are available, some studies have reported generation-based LUE (e.g., m2 GWh–1), which is a function of a plant’s location (e.g., climatic conditions and solar resources), technological efficiency, and thermal energy storage, the latter enabling the instantaneous capacity to exceed the nameplate (turbine) capacity. ... For example, in the western United States, oil and gas energy systems have impacted approximately 2 orders of magnitude more land (?21 million ha) than solar (?100?000 ha), but given the region’s vast solar resources, solar energy development could impact up to 18.6 million hectares of land. ...

Rebecca R. Hernandez; Madison K. Hoffacker; Christopher B. Field

2013-12-18T23:59:59.000Z

304

Industry @ ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

305

Assistance to Oil and Gas State Agencies and Industry through Continuation of Environmental and Production Data Management and a Water Regulatory Initiative  

SciTech Connect (OSTI)

This grant project was a major step toward completion of the Risk Based Data Management System (RBDMS) project. Additionally the project addresses the needs identified during the projects initial phases. By implementing this project, the following outcomes were sought: (1) State regulatory agencies implemented more formalized environmental risk management practices as they pertain to the production of oil and gas, and injection via Class II wells. (2) Enhancement of oil and gas production by implementing a management system supporting the saving of abandoned or idle wells located in areas with a relatively low environmental risk of endangering underground sources of drinking water (USDWs) in a particular state. (3) Verification that protection of USDWs is adequate and additional restrictions of requirements are not necessary in areas with a relatively low environmental risk. (4) Standardization of data and information maintained by state regulatory agencies and decrease the regulatory cost burden on producers operating in multiple states, and (5) Development of a system for electronic data transfer among operators and state regulatory agencies and reduction of overall operator reporting burdens.

Grunewald, Ben; Arthur, Dan; Langhus, Bruce; Gillespie, Tom; Binder, Ben; Warner, Don; Roberts, Jim; Cox, D.O.

2002-05-31T23:59:59.000Z

306

Compact Ceramic Heat Exchangers for Corrosive Waste Gas Applications  

E-Print Network [OSTI]

developed for low temperature corrosive gas situations and have been applied to the pottery industry and are being developed for coal fired air heaters for the food industry....

Laws, W. R.; Reed, G. R.

1982-01-01T23:59:59.000Z

307

Industrial Hygienist  

Broader source: Energy.gov [DOE]

A successful candidate in this position wil l serve as an Industrial Hygienist in the Operations Division, providing technical oversight of the Pacific Northwest National Laboratory contractors...

308

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

309

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. Industry users are invited to contact Steve Wender, phone:505-667-1344 or...

310

E-Print Network 3.0 - assisting gas optimization Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OF NATURAL GAS: ANALYSIS AND POLICY OPTIONS Summary: -organized natural gas industry that markets natural gas and provides information and assistance for fuel conversions... 1...

311

The study of flame dynamics and structures in an industrial-scale gas turbine combustor using digital data processing and computer vision techniques  

Science Journals Connector (OSTI)

In this paper, a combined effort has been made to study the flame dynamics and structures in a gas turbine combustor using a range of imaging and digital data processing techniques. The acoustic characteristics of the combustor have been investigated extensively. It is found that there is no straightforward way to alter the peak frequency of one of the peculiar combustion modes of the rig. High speed imaging is applied to investigate the flame dynamics and quantitative analysis of the image database has been demonstrated. The results show that the frequency spectrum of the mean pixel image intensity of seeded flame is in good agreement with the acoustic spectrum. To recover the loss in depth information present in conventional imaging technique, both the optical and digital stereo imaging techniques have been applied. The important flame position relative to the combustion chamber could be resolved.

W.B. Ng; K.J. Syed; Y. Zhang

2005-01-01T23:59:59.000Z

312

Chapter 1 - Gas Turbines: An Introduction and Applications  

Science Journals Connector (OSTI)

Abstract The gas turbine is the most versatile item of turbomachinery today. It can be used in several different modes in critical industries such as power generation, oil and gas, process plants, aviation, as well domestic and smaller related industries. A gas turbine essentially brings together air that it compresses in its compressor module, and fuel, which are then ignited. Resulting gases are expanded through a turbine. That turbine’s shaft continues to rotate and drive the compressor, which is on the same shaft, and operation continues. A separate starter unit is used to provide the first rotor motion until the turbine’s rotation is up to design speed and can keep the entire unit running. The compressor module, combustor module, and turbine module connected by one or more shafts are collectively called the gas generator. The first half of this chapter looks at some typical examples of land, air, and sea use. The second half of this chapter deals in more detail with different applications and their subdivisions. “The farther backwards you can look, the farther forward you are likely to see.” —Winston Churchill

Claire Soares

2015-01-01T23:59:59.000Z

313

Ecological perspectives of land use history: The Arid Lands Ecology (ALE) Reserve  

SciTech Connect (OSTI)

The objective of this study was to gather information on the land use history of the Arid Land Ecology (ALE) Reserve so that current ecological research could be placed within a historical perspective. The data were gathered in the early 1980s by interviewing former users of the land and from previously published research (where available). Interviews with former land users of the ALE Reserve in Benton County, Washington, revealed that major land uses from 1880 to 1940 were homesteading, grazing, oil/gas production, and road building. Land use practices associated with grazing and homesteading have left the greatest impact on the landscape. Disturbed sites where succession is characterized by non-native species, plots where sagebrush was railed away, and sheep trails are major indications today of past land uses. Recent estimates of annual bunchgrass production do ALE do not support the widespread belief that bunchgrass were more productive during the homesteading era, though the invasion of cheatgrass (Bromus tectorum), Jim Hill mustard (Sisymbrium altissium), and other European alien plant species has altered pre-settlement succession patterns. 15 refs., 6 figs., 1 tab.

Hinds, N R; Rogers, L E

1991-07-01T23:59:59.000Z

314

Bureau of Land Management - Land Use Planning | Open Energy Informatio...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Bureau of Land Management - Land Use Planning Abstract The BLM's Resource Management Plans (Land Use...

315

Industrial microbiology  

Science Journals Connector (OSTI)

...include the fruit, wine, baking, milling, dairy, and distill-ing industries...fructose known as high fruc-tose corn syrup. Between 500,000 and 1...glucose isomerase has permitted the corn wet milling industry to capture 30 percent of...

AL Demain

1981-11-27T23:59:59.000Z

316

Water, Land and People  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water, Land and People Water, Land and People Nature Bulletin No. 251 January 8, 1983 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation WATER, LAND AND PEOPLE "Water, Land and People" is the title of a book which, like "Road to Survival", should be read by every American. Water, and its uses or control, has become a vital national problem. Some places, some years, we have too much of it and suffer disastrous floods. Elsewhere we have too little. In cities like New York and Los Angeles -- even in many inland towns -- and in the western lands which depend upon irrigation, the demand far exceeds the supply. Our Congress is beseeched for huge appropriations to provide flood control, navigation, electric power and irrigation.

317

Shale-gas extraction faces growing public and regulatory challenges  

Science Journals Connector (OSTI)

Two federal agencies are scrutinizing the shale-gas industry and its use of “fracking ” but gas producers insist that state regulators provide sufficient environmental oversight.

David Kramer

2011-01-01T23:59:59.000Z

318

Shale Gas Hydraulic Fracturing in the Dutch Posidonia Shale:.  

E-Print Network [OSTI]

??Recently the oil and gas industry is looking at the Posidonia shale in the Dutch subsurface for production of the unconventional shale gas. This is… (more)

Janzen, M.R.

2012-01-01T23:59:59.000Z

319

Microsoft Word - Gas-Electricity Briefing Memo 072414 FINAL  

Energy Savers [EERE]

natural gas power plants to back up increasing amounts of intermittent wind and solar power. Though the electricity and natural gas pipeline industries have operated...

320

Question 2: Gas procurement strategy  

SciTech Connect (OSTI)

This article is a collection of responses from natural gas distribution company representatives to questions on how the start-up of the natural gas futures market has changed gas procurement strategies, identification of procurement problems related to pipeline capacity, deliverability, or pregranted abandonment of firm transportation, the competition of separate utility subsidiaries with brokers, marketers, and other gas suppliers who sell gas to large-volume industrial or other 'noncore' customers.

Carrigg, J.A.; Crespo, J.R.; Davis, E.B. Jr.; Farman, R.D.; Green, R.C. Jr.; Hale, R.W.; Howard, J.J.; McCormick, W.T. Jr.; Page, T.A.; Ryan, W.F.; Schrader, T.F.; Schuchart, J.A.; Smith, J.F.; Stys, R.D.; Thorpe, J.A.

1990-10-25T23:59:59.000Z

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Economic viability of shale gas production in the Marcellus Shale; indicated by production rates, costs and current natural gas prices.  

E-Print Network [OSTI]

?? The U.S. natural gas industry has changed because of the recent ability to produce natural gas from unconventional shale deposits. One of the largest… (more)

Duman, Ryan J.

2012-01-01T23:59:59.000Z

322

Verifying Greenhouse Gas Emissions: Methods to Support International...  

Open Energy Info (EERE)

Greenhouse Gas Emissions: Methods to Support International Climate Agreements AgencyCompany Organization: Board on Atmospheric Sciences and Climate Sector: Energy, Land...

323

Thermal Barrier Coatings for Gas-Turbine Engine Applications  

Science Journals Connector (OSTI)

...but in some industrial gas-turbine engines applications it can reach...shorter thermal-cycling lives than EB-PVD TBCs...extremely well in industrial gas-turbine engines, including “bucket...thermal” compressive residual stresses in...

Nitin P. Padture; Maurice Gell; Eric H. Jordan

2002-04-12T23:59:59.000Z

324

Gas supplies of interstate/natural gas pipeline companies 1989  

SciTech Connect (OSTI)

This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

Not Available

1990-12-18T23:59:59.000Z

325

Industry turns its attention south  

SciTech Connect (OSTI)

The paper discusses the outlook for the gas and oil industries in the Former Soviet Union and Eastern Europe. Significant foreign investment continues to elude Russia`s oil and gas industry, so the Caspian nations of Kazakhstan and Azerbaijan are picking up the slack, welcoming the flow of foreign capital to their energy projects. Separate evaluations are given for Russia, Azerbaijan, Kazakhstan, Turkmenistan, Ukraine, Armenia, Belarus, Georgia, Lithuania, Latvia, Estonia, Moldova, Tajikstan, Uzbekistan, Albania, Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, and Serbia.

Marhefka, D. [Russian Petroleum Investor, Moscow (Russian Federation)

1997-08-01T23:59:59.000Z

326

Industry Perspective  

Broader source: Energy.gov [DOE]

Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

327

Natural gas monthly, June 1996  

SciTech Connect (OSTI)

The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.

NONE

1996-06-24T23:59:59.000Z

328

Marginal, Erodible Land Retirement Policy (Minnesota) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Marginal, Erodible Land Retirement Policy (Minnesota) Marginal, Erodible Land Retirement Policy (Minnesota) Marginal, Erodible Land Retirement Policy (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Environmental Regulations It is state policy to encourage the retirement of marginal, highly erodible

329

Environmental Land Use Restriction (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Environmental Land Use Restriction (Connecticut) Environmental Land Use Restriction (Connecticut) Environmental Land Use Restriction (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection

330

Florida Environmental Land and Water Management Act (Florida) | Department  

Broader source: Energy.gov (indexed) [DOE]

Florida Environmental Land and Water Management Act (Florida) Florida Environmental Land and Water Management Act (Florida) Florida Environmental Land and Water Management Act (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Economic Opportunity

331

Land and Water Developments (Newfoundland and Labrador) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Land and Water Developments (Newfoundland and Labrador) Land and Water Developments (Newfoundland and Labrador) Land and Water Developments (Newfoundland and Labrador) < Back Eligibility Agricultural Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Newfoundland and Labrador Program Type Environmental Regulations Siting and Permitting Provider Newfoundland and Labrador Department of Environment and Conservation This policy applies to public water supply areas designated by the province of Newfoundland and Labrador. The policy limits development in public water supply areas unless they meet specific conditions, and have the approval of the Minister of the Department of Environment and Conservation.

332

Alabama Land Recycling And Economic Redevelopment Act (Alabama) |  

Broader source: Energy.gov (indexed) [DOE]

Land Recycling And Economic Redevelopment Act (Alabama) Land Recycling And Economic Redevelopment Act (Alabama) Alabama Land Recycling And Economic Redevelopment Act (Alabama) < Back Eligibility Commercial Construction Developer Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Provider Department of Environmental Management This article establishes a program, to be implemented, maintained, and administered by the Alabama Department of Environmental Management, to encourage the voluntary cleanup and the reuse and redevelopment of environmentally contaminated properties. The article states criteria for applicant participation and property qualification in the voluntary cleanup

333

Protection of Public Parks and Recreational Lands (Texas) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Protection of Public Parks and Recreational Lands (Texas) Protection of Public Parks and Recreational Lands (Texas) Protection of Public Parks and Recreational Lands (Texas) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Siting and Permitting Provider Texas Parks and Wildlife Department

334

Regulations for Land Disturbing Activities (North Carolina) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Regulations for Land Disturbing Activities (North Carolina) Regulations for Land Disturbing Activities (North Carolina) Regulations for Land Disturbing Activities (North Carolina) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Siting and Permitting The law requires installation and maintenance of sufficient erosion control

335

Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) |  

Broader source: Energy.gov (indexed) [DOE]

Iowa Land Recycling and Environmental Remediation Standards Act Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources

336

Land Management - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

land. Long-Term Stewardship For more information, contact the Site Real Estate Officer, Boyd Hathaway at (509) 376-7340 or by email at HBBoydHathaway@rl.gov. Last Updated 0331...

337

National Land Cover Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Land Cover Data National Land Cover Data Metadata also available as Metadata: q Identification_Information q Data_Quality_Information q Spatial_Data_Organization_Information q Spatial_Reference_Information q Entity_and_Attribute_Information q Distribution_Information q Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: United States Geological Survey Publication_Date: Unpublished Material Title: National Land Cover Data Edition: 01 Geospatial_Data_Presentation_Form: raster digital data Other_Citation_Details: Classification and processing of the orginal remote sensing products was done by the Multi-Resolution Land Characterization Consortium and EROS Data Center (U.S. Geological Survey). The Consortium includes the

338

Survey of Critical Wetlands Bureau of Land Management Lands  

E-Print Network [OSTI]

Survey of Critical Wetlands Bureau of Land Management Lands South Park, Park County, Colorado 2003 Delivery Colorado State University #12;Survey of Critical Wetlands Bureau of Land Management Lands South place from unique wetlands to high quality grasslands to the bristlecone pine forests to its alpine

339

" Sources by Industry Group, Selected Industries, and Selected Characteristics,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Capability to Switch from Natural Gas to Alternative Energy" 4. Capability to Switch from Natural Gas to Alternative Energy" " Sources by Industry Group, Selected Industries, and Selected Characteristics," 1991 " (Estimates in Billion Cubic Feet)" ,," Natural Gas",,," Alternative Types of Energy(b)" ,,"-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity","Distillate","Residual",,,"Coal Coke",,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","and Breeze","Other(e)","Factors"

340

EIA - 2010 International Energy Outlook - Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial International Energy Outlook 2010 Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by 42 percent, or an average of 1.3 percent per year, from 2007 to 2035 in the IEO2010 Reference case. Ninety-five percent of the growth occurs in non-OECD nations. Overview The world's industries make up a diverse sector that includes manufacturing, agriculture, mining, and construction. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing and assembly, space conditioning, and lighting. Industrial energy use also includes natural gas and petroleum products used as feedstocks to produce non-energy products, such as plastics. In aggregate, the industrial sector uses more energy than any other end-use sector, consuming about one-half of the world's total delivered energy.

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

E-Print Network 3.0 - advancing industrial efficiency Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

% 70 80 94 2010 Industrial Natural Gas Price MMBtu 5.19 5.19 5... of Existing Coal Industrial Boilers with Efficient Natural Gas Boilers A CO2 emissions reduction...

342

DOE to Launch Collaborative Effort with Industry to Improve Natural...  

Energy Savers [EERE]

29, 2014 - 2:54pm Addthis DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems DOE will launch a collaborative effort with industry to evaluate and scope...

343

GRR/Section 3-WA-d - State Land Lease | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-WA-d - State Land Lease GRR/Section 3-WA-d - State Land Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-WA-d - State Land Lease 3-WA-d - State Land Lease.pdf Click to View Fullscreen Contact Agencies Washington State Department of Natural Resources Regulations & Policies RCW 79-13-020 RCW 79-13-140 RCW 79-13-150 WAC 332-22-030 WAC 332-22-105 WAC 332-22-110 Triggers None specified This flowchart illustrates the process used to lease state lands in Washington. The Washington State Department of Natural Resources (WSDNR) oversees the land leasing process through the Commissioner of Public Lands ("commissioner"). The WSDNR may lease state lands for purposes it deems advisable, including commercial, industrial, residential, agricultural, and

344

PRODUCE MORE OIL AND GAS VIA eBUSINESS DATA SHARING  

SciTech Connect (OSTI)

GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

Paul Jehn; Mike Stettner

2004-04-30T23:59:59.000Z

345

Produce More Oil and Gas via eBusiness Data Sharing  

SciTech Connect (OSTI)

GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

Paul Jehn; Mike Stettner; Ben Grunewald

2005-07-22T23:59:59.000Z

346

Career Map: Land Acquisition Specialist  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Land Acquisition Specialist positions.

347

Oil and gas developments in western Canada in 1987  

SciTech Connect (OSTI)

Exploratory drilling in western Canada increased by 21% in 1987 whereas total drilling increased by 32%. The seismic crew count increased 4% to 671 crew-months, and land expenditures increased 166% to $793 million. No major plays broke during 1987 in western Canada. The 2 major plays resulting from 1986 activity - Caroline, Alberta, and Tableland, Saskatchewan - continued to expand in 1987. By year end at Caroline, industry drilled 14 wells, which included 6 Swan Hills gas wells, 3 uphole gas wells, 3 wells standing or suspended, and 2 dry holes. The reserves for this field now are 17 billion m/sup 3/ of sales gas, 32 million m/sup 3/ of condensate, and 20 million MT of sulfur. At Tableland and surrounding areas, industry has drilled 11 oil wells and 16 dry holes. No overall reserve figures have been published for this play. In Alberta, operators had their best exploratory oil success in the Cretaceous Second White Specks and in the Devonian Nisku, Leduc, Gilwood, and Keg River; the best exploratory gas success was in the Cretaceous Viking and Paddy, and Devonian Nisku and Leduc. In British Columbia, gas drilling was successful in the Cretaceous of the Deep Basin, as well as in the Mississippian Kiskatinaw and the Triassic Halfway. In Saskatchewan, both the shallow Cretaceous gas play and the deep Devonian Winnipegosis oil play continued to expand, whereas in Manitoba the main exploration target was the Mississippian carbonates and Bakken Formation. The Northwest Territories, Beaufort Sea, and Arctic Islands had a poor year, with only 4 exploratory wells drilled - all dry holes. 7 figs., 10 tabs.

Portigal, M.H.; Creed, R.M.; Hogg, J.R.; Hewitt, M.D.

1988-10-01T23:59:59.000Z

348

Renewable Natural Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Natural Gas JOHN DAVIS: The use of clean, domestic natural gas as highway fuel in place of imported oil is growing in popularity with fleets and trucking companies. While natural gas from underground deposits is arguably a limited resource, there is a renewable, eco-friendly resource that we have right here in the U.S.A. And we're here now to give you the straight poop! Every family, farm animal and food processing plant in America produces organic waste that creates a mix of methane, CO2 and other elements called bio gas when it decomposes. Rotten vegetables, moldy bread, last night's leftovers --- they all break down when our garbage gets to the land fill. Incredibly, for

349

Secretary Chu Tasks Environmental, Industry and State Leaders...  

Office of Environmental Management (EM)

to Recommend Best Practices for Safe, Responsible Development of America's Onshore Natural Gas Resources Secretary Chu Tasks Environmental, Industry and State Leaders to...

350

Natural gas annual 1997  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

351

Natural Gas and Hydrogen Infrastructure Opportunities Workshop  

Broader source: Energy.gov [DOE]

Argonne National Laboratory held a Natural Gas and Hydrogen Infrastructure Opportunities Workshop October 18-19, 2011, in Lemont, Illinois. The workshop objectives were to convene industry and...

352

Natural Gas and Hydrogen Infrastructure Opportunities Workshop...  

Broader source: Energy.gov (indexed) [DOE]

* Convene industry and other stakeholders to share current statusstate-of-the art for natural gas and hydrogen infrastructure. * Identify key challenges (both technical and...

353

EIA - Greenhouse Gas Emissions - Methane Emissions  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

credit for renewable energy, including waste-to-energy and landfill gas combustion. Wastewater treatment, including both domestic wastewater (about two-thirds) and industrial...

354

Natural gas monthly: December 1993  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. Articles are included which are designed to assist readers in using and interpreting natural gas information.

Not Available

1993-12-01T23:59:59.000Z

355

Natural gas monthly, June 1997  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

NONE

1997-06-01T23:59:59.000Z

356

Natural gas monthly, August 1994  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1994-08-24T23:59:59.000Z

357

Natural gas monthly: September 1996  

SciTech Connect (OSTI)

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

NONE

1996-09-01T23:59:59.000Z

358

Natural gas monthly, November 1993  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-11-29T23:59:59.000Z

359

Key Elements in a Framework for Land Use Impact Assessment Within LCA (11 pp)  

Science Journals Connector (OSTI)

Land use by agriculture, forestry, mining, house-building or industry leads to substantial impacts, particularly on biodiversity and on soil quality as a supplier of life support functions. Unfortunately ther...

Llorenç Milà i Canals; Christian Bauer…

2007-01-01T23:59:59.000Z

360

Implications for decision making: Industrial sector perspectives  

SciTech Connect (OSTI)

Implications for decision making in areas related to policy towards greenhouse gas emissions are discussed from the perspective of the industrial sector. Industry is presented as supportive of energy conservation measures in spite of the large uncertainties in the global warming issue. Perspectives of developed and developing countries are contrasted, and carbon dioxide emissions are compared. Socioeconomic implications of reducing greenhouse gas emissions, particularly in the form of higher prices for goods and services, are outlined.

Mangelsdorf, F.E. [Texaco, Inc., Beacon, NY (United States)

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Current State of the U S Ethanol Industry  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(AFDC 2010). In 2009 the EPA issued a report of the Lifecycle Analysis of Greenhouse Gas Emissions from Renewable Fuels. The EPA results suggest that biofuel-induced land use...

362

Industrial Radiology  

Science Journals Connector (OSTI)

... chief application of industrial radiology in Norway is in the examination of pipe welds in hydroelectric plant. H. Vinter (Denmark), director of the Akademiet for de Technische Videns ... and to compare various methods of non-destructive testing. He gave results of tests on turbine disk forgings of austenitic steel which showed satisfactory agreement between radiography, ultrasonic examination and ...

1950-11-18T23:59:59.000Z

363

Japan's Squid Fishing Industry WILLIAM G. COURT  

E-Print Network [OSTI]

Japan's Squid Fishing Industry WILLIAM G. COURT .. Introduction Dried-squid (surume) has been an item of commerce, ceremony, and diet in Japan for hundreds of years, and squid is caught of the fishery. In 1952 squid landings reached 646,730 tons and, at 15 percent of the total, became Japan's most

364

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

365

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

366

EIA - All Natural Gas Analysis  

Gasoline and Diesel Fuel Update (EIA)

All Natural Gas Analysis All Natural Gas Analysis 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) U.S Natural Gas Imports and Exports: 2009 This report provides an overview of U.S. international natural gas trade in 2009. Natural gas import and export data, including liquefied natural gas (LNG) data, are provided through the year 2009 in Tables SR1-SR9. Categories: Imports & Exports/Pipelines (Released, 9/28/2010, Html format)

367

Natural gas monthly, July 1997  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

NONE

1997-07-01T23:59:59.000Z

368

Natural gas monthly, October 1996  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

NONE

1996-10-01T23:59:59.000Z

369

Natural gas monthly, September 1993  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-09-27T23:59:59.000Z

370

Natural gas monthly, August 1993  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-08-25T23:59:59.000Z

371

Industrial Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

603,966 598,721 565,544 584,812 593,722 576,117 2001-2013 603,966 598,721 565,544 584,812 593,722 576,117 2001-2013 Alabama 14,221 15,643 14,328 14,507 14,677 14,100 2001-2013 Alaska 317 306 262 297 370 311 2001-2013 Arizona 1,686 1,618 1,325 1,435 1,417 1,484 2001-2013 Arkansas 7,142 6,391 6,312 6,522 6,477 6,611 2001-2013 California 54,454 59,859 59,316 64,841 67,915 63,806 2001-2013 Colorado 6,957 5,661 NA 4,670 4,741 4,545 2001-2013 Connecticut NA 2,197 1,933 2,070 2,010 1,968 2001-2013 Delaware NA 2,742 2,578 2,519 2,463 NA 2001-2013 District of Columbia 0 0 0 0 0 0 2001-2013 Florida 8,594 8,789 7,617 7,686 8,131 7,363 2001-2013 Georgia 13,838 13,643 12,459 12,847 13,036 12,934 2001-2013 Hawaii 42 37 33 30 NA 31 2001-2013 Idaho 2,294 2,296 2,177 1,930 1,846 2,229 2001-2013

372

Average Natural Gas Consumption per Industrial Consumer  

Gasoline and Diesel Fuel Update (EIA)

33,561 29,639 29,705 35,418 36,947 38,155 1973-2012 33,561 29,639 29,705 35,418 36,947 38,155 1973-2012 Alabama 55,652 51,646 42,927 47,693 51,325 56,397 1973-2012 Alaska 1,795,587 997,882 2,211,756 2,135,975 1,353,819 2,118,957 1973-2012 Arizona 48,999 52,699 46,020 52,297 58,554 59,780 1973-2012 Arkansas 81,302 77,119 75,693 76,980 75,408 82,388 1973-2012 California 18,871 18,201 18,225 18,511 18,798 19,525 1973-2012 Colorado 25,529 24,856 22,341 18,340 11,396 10,575 1973-2012 Connecticut 6,872 7,052 7,835 7,874 8,576 8,559 1973-2012 Delaware 86,562 110,399 155,373 70,023 153,175 214,453 1973-2012 District of Columbia 0 0 0 0 0 0 1973-2012 Florida 142,299 152,059 107,907 131,708 135,626 193,577 1973-2012 Georgia 52,411 52,170 62,257 67,496 66,364 69,383 1973-2012

373

Natural Gas Delivered to Industrial Consumers  

Gasoline and Diesel Fuel Update (EIA)

,654,716 6,670,182 6,167,371 6,826,192 6,994,120 7,223,835 ,654,716 6,670,182 6,167,371 6,826,192 6,994,120 7,223,835 1997-2012 Alabama 150,484 142,389 131,228 144,938 153,358 171,730 1997-2012 Alaska 19,751 5,987 6,635 6,408 6,769 6,357 1997-2012 Arizona 19,355 20,184 17,948 19,245 21,724 22,657 1997-2012 Arkansas 85,773 85,140 77,585 83,061 85,437 81,399 1997-2012 California 738,501 720,592 706,154 703,536 706,350 735,787 1997-2012 Colorado 117,230 119,706 113,582 114,295 74,407 73,028 1997-2012 Connecticut 22,794 22,539 24,585 24,117 26,258 26,935 1997-2012 Delaware 16,014 18,216 17,402 7,983 19,760 28,737 1997-2012 District of Columbia 0 0 0 0 0 0 1997-2012 Florida 66,453 68,275 65,500 76,522 85,444 98,144 1997-2012 Georgia 152,674 150,773 140,326 146,737 144,940 146,399 1997-2012

374

Industrial Consumption of Natural Gas (Summary)  

Gasoline and Diesel Fuel Update (EIA)

596,680 565,544 584,812 593,722 576,367 615,382 2001-2013 596,680 565,544 584,812 593,722 576,367 615,382 2001-2013 Alabama 15,643 14,328 14,507 14,677 14,100 15,240 2001-2013 Alaska 306 262 297 370 311 392 2001-2013 Arizona 1,618 1,325 1,435 1,417 1,484 1,746 2001-2013 Arkansas 6,391 6,312 6,522 6,477 6,611 7,334 2001-2013 California 59,859 59,316 64,841 67,915 63,806 60,529 2001-2013 Colorado 5,661 NA 4,670 4,741 4,545 6,570 2001-2013 Connecticut 2,197 1,933 2,070 2,010 1,968 NA 2001-2013 Delaware 2,742 2,578 2,519 2,463 NA 2,554 2001-2013 District of Columbia 0 0 0 0 0 0 2001-2013 Florida 8,789 7,617 7,686 8,131 7,363 8,390 2001-2013 Georgia 13,643 12,459 12,847 13,036 12,934 14,597 2001-2013 Hawaii 37 33 30 NA 31 30 2001-2013 Idaho 2,296 2,177 1,930 1,846 2,229 2,372 2001-2013

375

Industrial Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

6,654,716 6,670,182 6,167,371 6,826,192 6,994,120 7,223,835 6,654,716 6,670,182 6,167,371 6,826,192 6,994,120 7,223,835 1997-2012 Alabama 150,484 142,389 131,228 144,938 153,358 171,730 1997-2012 Alaska 19,751 5,987 6,635 6,408 6,769 6,357 1997-2012 Arizona 19,355 20,184 17,948 19,245 21,724 22,657 1997-2012 Arkansas 85,773 85,140 77,585 83,061 85,437 81,399 1997-2012 California 738,501 720,592 706,154 703,536 706,350 735,787 1997-2012 Colorado 117,230 119,706 113,582 114,295 74,407 73,028 1997-2012 Connecticut 22,794 22,539 24,585 24,117 26,258 26,935 1997-2012 Delaware 16,014 18,216 17,402 7,983 19,760 28,737 1997-2012 District of Columbia 0 0 0 0 0 0 1997-2012 Florida 66,453 68,275 65,500 76,522 85,444 98,144 1997-2012 Georgia 152,674 150,773 140,326 146,737 144,940 146,399 1997-2012

376

Natural Gas Delivered to Industrial Consumers  

U.S. Energy Information Administration (EIA) Indexed Site

607,552 587,305 607,005 609,921 591,779 610,635 2001-2014 Alabama 15,008 14,421 14,219 14,491 14,773 15,611 2001-2014 Alaska 340 322 429 436 487 511 2001-2014 Arizona 1,810 1,609...

377

Connecticut Natural Gas Industrial Consumption (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 2,225 2,099 2,243 2,115 2,331 2,168 2,517 1,977 1,952 2,104 2,118 1,773 2002 2,982 2,873 2,953 2,080 2,249 2,098 2,273...

378

Connecticut Natural Gas Industrial Consumption (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 34,554 32,498 32,039 2000's 32,162 25,622 29,051 23,553 20,529 20,469 21,670 22,794 22,539...

379

,"Alabama Natural Gas Percentage Total Industrial Deliveries...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:59 PM" "Back to Contents","Data 1: Alabama...

380

Land use change emissions from oil palm expansion in Pará, Brazil depend on proper policy enforcement on deforested lands  

Science Journals Connector (OSTI)

Brazil aims to increase palm oil production to meet the growing national and global demand for edible oil and biodiesel while preserving environmentally and culturally significant areas. As land use change (LUC) is the result of complex interactions between socio-economic and biophysical drivers operating at multiple temporal and spatial scales, the type and location of LUC depend on drivers such as neighboring land use, conversion elasticity, access to infrastructure, distance to markets, and land suitability. The purpose of this study is to develop scenarios to measure the impact of land conversion under three different enforcement scenarios (none, some, and strict enforcement). We found that converting 22.5 million hectares of land can produce approximately 29 billion gallons (110 billion liters) of biodiesel a year. Of that, 22–71% of the area can come from forest land, conservation units, wetland and indigenous areas, emitting 14–84 gCO2e MJ?1. This direct land use emission alone can be higher than the carbon intensity of diesel that it intends to displace for lowering greenhouse gas emissions. This letter focuses narrowly on GHG emissions and does not address socio-economic–ecological prospects for these degraded lands for palm oil or for other purposes. Future studies should carefully evaluate these tradeoffs.

Sahoko Yui; Sonia Yeh

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Bureau of Land Management - Land Use Planning Handbook | Open...  

Open Energy Info (EERE)

Bureau of Land Management - Land Use Planning Handbook Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Bureau of...

382

A Microscale Gas Trapping Investigation Markus Buchgraber, Anthony R. Kovscek  

E-Print Network [OSTI]

A Microscale Gas Trapping Investigation Markus Buchgraber, Anthony R. Kovscek Department of Energy unit Residual Trapping Sgi Sg,max krg krg Sgt(Soi) Sgt,max Gas Saturation Gas relative Land Model * * ** 1 )( gi gi gigt CS S SS + = Sgf Sg Sgt,max kd rg Sg Gas Saturation

Stanford University

383

MODIS Land Products Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations Presentations Web and Web Services based tool that provides Subsets and Visualization of MODIS land products to facilitate land validation and field site characterization. S.K. Santhana Vannan; R. B. Cook; B. E. Wilson. AGU Fall Meeting, San Francisco, CA, December 14-18 2009 MODIS Land Product Subsets,S.K. Santhana Vannan; R. B. Cook. November, 2009 MODIS Web Service, S.K. Santhana Vannan. ORNL DAAC UWG Meeting, May 2009 Subsetting Tools for MODIS Land Products: Time-series data for field sites, R. B. Cook, S. M. Margle, S. K. Santhana Vannan, S. K. Holladay, and T. W. Beaty. Global Vegetation Workshop, Missoula MT, August 8-10, 2006 MODIS ASCII Subsets, R. B. Cook. May 2006 Subsets of Remote Sensing Products for AmeriFlux Sites: MODIS ASCII Subsets, AmeriFlux Annual Meeting, R. B. Cook, S. M. Margle, S. K. Holladay, F. A. Heinsch, and C. B. Schaaf. October 5-7, 2004, Boulder, Colorado

384

MODIS Land Products Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction Introduction The goal of the MODIS Land Product Subsets project is to provide summaries of selected MODIS Land Products for the community to use for validation of models and remote-sensing products, and to characterize field sites. The MODIS Land Product Subsets are derived from MODIS products that were generated with Collection 4 or later algorithms. Please be advised that these products are subject to continual review and revision. The MODIS land product subsets are provided in ASCII and GeoTIFF format. The subsets are stored as individual text(ASCII) files, each file represents one field site and one MODIS product.The ASCII data covers 7x7 km of the field site. These ASCII files contain comma-delimited rows of parameter values (image bands) for each pixel in the selected area. Each row in the file will contain data from one 8-day, 16-day, or annual period (depending on the temporal frequency of the data product represented).

385

URBAN/INDUSTRIAL LAND PRIVATIZATION The Republic of Georgia  

E-Print Network [OSTI]

, private enterprises will enhance their commercial viability and be more attractive for investors. They can for foreign investment and the development of a vital private sector. The assessment team recommended the privatization of medium and large enterprises; beginning the privatization of energy and transport

Onsrud, Harlan J.

386

The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline com-  

E-Print Network [OSTI]

gas hydrates. Gas hydrates are crystalline com- pounds that are often encountered in oil and gas briefly present the hydrate crystalline structure and the role of hydrates in oil-and gas industry the industrial contexts where they appear, we shall cite : hydrate plugs obstructing oil- or gas

Boyer, Edmond

387

Marine Habitats and Land Use (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Marine Habitats and Land Use (Virginia) Marine Habitats and Land Use (Virginia) Marine Habitats and Land Use (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia Marine Resources Commission The Virginia Marine Resources Commission has jurisdiction over submerged lands off the state's coast and in inland rivers and streams, wetlands and tidal wetlands, coastal sand dunes and beaches, and other shores. A permit from the Commission is required to dredge, fill, or otherwise disturb these

388

Natural Streambed and Land Preservation Act of 1975 (Montana) | Department  

Broader source: Energy.gov (indexed) [DOE]

Natural Streambed and Land Preservation Act of 1975 (Montana) Natural Streambed and Land Preservation Act of 1975 (Montana) Natural Streambed and Land Preservation Act of 1975 (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Institutional Multi-Family Residential Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Buying & Making Electricity Water Home Weatherization Wind Solar Program Info Start Date 1975 State Montana Program Type Siting and Permitting Provider Montana Association of Conservation Districts (MACD) The Natural Streambed and Land Preservation Act of 1975 aims to prevent the

389

Geothermal Resources on State Lands (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resources on State Lands (Montana) Geothermal Resources on State Lands (Montana) Geothermal Resources on State Lands (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Savings Category Buying & Making Electricity Program Info State Montana Program Type Leasing Program This chapter authorizes the leasing of state-owned lands for the development of geothermal resources, and provides regulations pertaining to the nature of the resources, compensation, and water rights, as well as for

390

Land treatment for seafood processing waste  

SciTech Connect (OSTI)

The purpose of this paper is twofold. The first is to describe selected waste water parameters at two small seafood processing plants in the eastern part of North Carolina. The second is to describe the land treatment system serving these industries and to characterize the quality of the shallow ground water exiting these systems. One of the seafood processing plants is a flounder fileting operation and the other processes crabs. Both plants employ between 10 and 40 individuals, and the processing operation is done mostly by hand.

Rubin, A.R.; McClease, J.D.; Morgan, C.B.

1983-12-01T23:59:59.000Z

391

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

392

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

393

Zero landfill, zero waste: the greening of industry in Singapore  

Science Journals Connector (OSTI)

This paper reviews how a land-scarce city-state is trying to achieve its goals of zero landfill and zero waste through the greening of industry. The main challenges Singapore confronts in its solid waste management are an increasing volume of industrial waste generated, a shortage of land for landfills, and escalating costs of incineration plants. To green its industries, there has been a coordinated effort to develop a recycling industry and to initiate public-private partnerships that will advance environmental technologies. Case studies on the steel, construction, waste incineration, and the food retail industry illustrate the environmental progress that has been made. These cases show also the crucial role played by the government in accelerating the greening of industry by facilitating the formation of strategic collaborations among organisations, and by reconciling the twin objectives of sustainability and profitability.

Josephine Chinying Lang

2005-01-01T23:59:59.000Z

394

Food Losses and Waste in China and Their Implication for Water and Land  

Science Journals Connector (OSTI)

Such losses also imply that 26 ± 11 million hectares of land were used in vain, equivalent to the total arable land of Mexico. ... The fact remains that all food produced, regardless if it is eaten, lost, wasted, and converted, has consumed water, energy, occupied land, and contributed to greenhouse gas (GHG) emissions. ... Following rapid economic development new policies and reforms to open China to the global market, living standards have improved in recent years. ...

Junguo Liu; Jan Lundqvist; Josh Weinberg; Josephine Gustafsson

2013-08-13T23:59:59.000Z

395

Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) |  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage of Natural Gas and Liquefied Petroleum Gas Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation

396

Numerical simulation on dense gas dispersion and fire characteristics after liquefied natural gas release.  

E-Print Network [OSTI]

??This PhD dissertation mainly studies the prediction, simulation and mitigation methods of the two main hazards in LNG (Liquefied Natural Gas) industry, LNG vapor dense… (more)

Sun, Biao

2012-01-01T23:59:59.000Z

397

A scenario based analysis of land competition between food and bioenergy production in the US  

Science Journals Connector (OSTI)

Greenhouse gas abatement policies will increase the demand for renewable sources of energy, including bioenergy. In combination with a global growing demand ... competition for bio-productive land. Proponents of

Daniel J. A. Johansson; Christian Azar

2007-06-01T23:59:59.000Z

398

Chapter III. Processes F. Land-Based N Sources and Their Delivery to Coastal Systems  

E-Print Network [OSTI]

to terrestrial systems of newly fixed N2 (the conversion of relatively inert N2 gas to more bioavailable N forms can be important pathways for delivery of land-based N sources. This chapter focuses on export of N

Seitzinger, Sybil

399

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

400

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

GRR/Section 3-FD-b - Tribal Land Leasing | Open Energy Information  

Open Energy Info (EERE)

3-FD-b - Tribal Land Leasing 3-FD-b - Tribal Land Leasing < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-FD-b - Tribal Land Leasing 03FDBTribalLandLeasing.pdf Click to View Fullscreen Contact Agencies Bureau of Indian Affairs Division of Energy and Mineral Development Division of Indian Energy Policy Development Bureau of Land Management Office of Natural Resources Revenue Regulations & Policies Indian Mineral Development Act of 1982 (IMDA) Bureau of Indian Affairs Regulations: 25 C.F.R. 1 to 293 Rights-of-Way over Indian Lands - 25 CFR 169 Leasing of Tribal Lands for Mineral Development - 25 CFR 211 Tribal Energy Resource Agreements - 25 CFR Part 224 Oil and Gas, Geothermal, and Solid Minerals Agreements - 25 CFR 225

402

Federal Land Policy and Management Act of 1976 | Open Energy Information  

Open Energy Info (EERE)

Land Policy and Management Act of 1976 Land Policy and Management Act of 1976 Jump to: navigation, search Statute Name Federal Land Policy and Management Act of 1976 Year 1976 Url Landpolicy1976.jpg Description FLPMA, also called the BLM Organic Act, consolidated and articulated BLM management responsibilities and delegated many management responsibilities pertaining to federal land from the Secretary of the Interior to the Director of the BLM, including oversight of oil and gas leases. References Federal Land Policy and Management Act of 1976[1] The Federal Land Policy and Management Act of 1976 (43 U.S.C. §1701 et seq.) - FLPMA, also called the BLM Organic Act, consolidated and articulated BLM management responsibilities and delegated many management responsibilities pertaining to federal land from the Secretary of the

403

MODIS Land Products Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Subsetting and Visualization Tool Global Subsetting and Visualization Tool The Global Subsetting and Visualization Tool provides customized subsets of MODIS Land products in ASCII format on demand for any location on Earth. Users select a site (either from a picklist or by entering the site's geographic coordinates) and the area surrounding that site, from one pixel up to 201 x 201 km. The tool is expected to take up to 60 minutes to complete the processing, and the tool will send you an email message containing the URL where you can access the output. The tool provides time series plots of the measurement, an ASCII file of the pixel values for the selected product along with quality information, average and standard deviations for the area selected, and a file that can be imported directly into GIS software. In addition we provide a land cover grid (IGBP classification) of the area, along with an estimate of heterogeneity (Shannon richness and evenness).

404

NICE3: Industrial Refrigeration System  

SciTech Connect (OSTI)

Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

Simon, P.

1999-09-29T23:59:59.000Z

405

EIA - Natural Gas Pipeline Network - Regulatory Authorities  

U.S. Energy Information Administration (EIA) Indexed Site

Regulatory Authorities Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it, interstate natural gas pipeline companies were required to restructure their operations by November 1993 and split-off any non-regulated merchant (sales) functions from their regulated transportation functions. This new requirement meant that interstate natural gas pipeline companies were allowed to only transport natural gas for their customers. The restructuring process and subsequent operations have been supervised closely by FERC and have led to extensive changes throughout the interstate natural gas transportation segment which have impacted other segments of the industry as well.

406

Industrial Energy Efficiency Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or is distributed immediately for direct use. Energy is then processed using a variety of highly energy-intensive systems, including steam, process heating, and

407

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

408

MODIS Land Products Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

methods methods This section describes methods used to generate MODIS Land Subsets for Collection 4 and Collection 5 data products. Methods for Selected Sites (Collections 4 and 5) Methods for North America Tool (Collection 4) Methods for the Global Tool (Collection 5) Methods for Selected Sites (Collection 4 and 5) Source for Selected Site Data: Full MODIS scenes (1200-km x 1200-km) are initially subset to 11-km x 31-km (Collection 4) or 25-km x 25-km (Collection 5) by the MODAPS; these initial subsets contain the field site or flux tower. Reformatting and additional subsetting to 7-km x 7-km containing the field site or flux tower are done by the ORNL DAAC. Tools Used: The ORNL DAAC uses the MODIS Reprojection Tool (MRT) to reformat the MODIS data from HDF-EOS to binary format. A tool developed at ORNL is then used to convert the binary format to ASCII. The MRT is available from the Land Processes DAAC. Whereas the MRT can also be used to reproject data from its native projection to other projections, ORNL chose to forgo the resampling associated with reprojection to minimize data manipulation and distortion. The MOD12Q1 Land Cover Collection 3 data are in I-Sin projection, and the Collection 4 and Collection 5 data are in Sinusoidal projection.

409

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network [OSTI]

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes by groundwater (or oil) degassing. Other natural gas fields may have been produced in-situ or migrated as a free expert academics from across the CDT and also experienced oil and gas industry professionals

Henderson, Gideon

410

Land Stewardship | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Land Stewardship Land Stewardship Land Stewardship Mission The team advocates improved ecosystem health on LM properties in accordance with DOE Order 430.1B, Real Property Asset Management; federal regulations, such as the Endangered Species Act, the Noxious Weed Act, and the Wetlands and Floodplains Act; and in consideration of LM agreements with regulatory agencies and tribes. The team advocates identifying and proposing land management improvements on LM sites that are beneficial to ecosystems and improve remedy sustainability. Improvements are implemented with consideration of adjacent land uses, owners, and political entities. Success is defined when measurable parameters are achieved. Scope The team identifies and evaluates proposals to enhance ecosystem health at

411

Natural Gas Annual, 2000  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 2000 are available as self-extracting executable files in ASCII TXT or CSV file formats. This volume emphasizes information for 2000, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1996-2000 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2000 (Table 2) ASCII TXT, are also available.

412

Water Surveys Relinquishment Act Land  

E-Print Network [OSTI]

Patented Minerals Free Surface Oil & Gas Leases RAL Oil & Gas Leases SPN Oil & Gas Free Surface Oil & Gas Andrews Martin Howard Mitchell Nolan Taylor Gaines Dawson Borden Scurry Fisher Jones Bailey Lamb Hale

Texas at Austin, University of

413

Supply Chain Management and Economic Valuation of Real Options in the Natural Gas  

E-Print Network [OSTI]

Supply Chain Management and Economic Valuation of Real Options in the Natural Gas and Liquefied Natural Gas Industry Mulan Xiaofeng Wang Submitted to the Tepper School of Business in Partial Fulfillment options in the natural gas and liquefied natural gas (LNG) industry, including gas pipeline transportation

Sadeh, Norman M.

414

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

415

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

Mountziaris, T. J.

416

land requirements | OpenEI  

Open Energy Info (EERE)

requirements requirements Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

417

land use | OpenEI  

Open Energy Info (EERE)

use use Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

418

6/10/12 UK team advances measurement of gas bubbles in pipelines. | Technology news | Process Engineer... 1/2processengineering.theengineer.co.uk/.../1012631.article  

E-Print Network [OSTI]

process in the manufacturing, power, oil & gas and petrochemical industries. For instance, the sharp

Sóbester, András

419

EIA - Natural Gas Analysis Basics  

Gasoline and Diesel Fuel Update (EIA)

for Natural Gas Basics for Natural Gas Basics Where Our Natural Gas Comes From Natural Gas Prices Natural Gas Statistics Natural Gas Kid's Page (Not Just for Kids) How natural gas was formed, how we get it, how it is stored and delivered, how it is measured, what it is used for, how it affects the environment and more. Natural Gas Residential Choice This site provides an overview of the status of natural gas industry restructuring in each state, focusing on the residential customer class. About U.S. Natural Gas Pipelines State Energy Profiles What role does liquefied natural gas (LNG) play as an energy source for the United States? This Energy In Brief discusses aspects of LNG industry in the United States. LNG is natural gas that has been cooled to about minus 260 degrees Fahrenheit for shipment and/or storage as a liquid. Growth in LNG imports to the United States has been uneven in recent years, with substantial changes in year-over-year imports as a result of suppliersÂ’ decisions to either bring spare cargos to the United States or to divert cargos to countries where prices may be higher. Categories: Imports & Exports/Pipelines (Released, 12/11/2009)

420

Natural gas 1994: Issues and trends  

SciTech Connect (OSTI)

This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

Not Available

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

INDUST: An Industrial Data Base  

E-Print Network [OSTI]

.5% of the natural gas consump tion, 98.1% of the fuel oil consumption, 99.2% of the coal/coke consumption, and 99.7% of a class of fuels called "other" fuels. Within these 13 indus try groups, INDUST addresses a wide variety of energy-intense industries... the manufac turing sector, Table 1 shows the latest EIA pro visional estimate of energy consumption (in trillion Btu) for 1985. The EIA reports fuel consumption according to five categories: electricity, fuel oil, natural gas, coal and coke, and other...

Wilfert, G. L.; Moore, N. L.

422

Natural gas monthly, October 1991  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. 16 figs., 33 tabs.

Not Available

1991-11-05T23:59:59.000Z

423

Arizona - Natural Gas 2012 Million  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Arizona - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S3. Summary statistics for natural gas - Arizona, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6 6 5 5 5 Production (million cubic feet) Gross Withdrawals From Gas Wells 523 711 183 168 117 From Oil Wells * * 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

424

Natural gas monthly, March 1997  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas analysis and geographic information systems.`` 6 figs., 27 tabs.

NONE

1997-03-01T23:59:59.000Z

425

Natural gas monthly, August 1995  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

NONE

1995-08-24T23:59:59.000Z

426

Natural gas monthly, October 1997  

SciTech Connect (OSTI)

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article in this issue is a special report, ``Comparison of Natural Gas Storage Estimates from the EIA and AGA.`` 6 figs., 26 tabs.

NONE

1997-10-01T23:59:59.000Z

427

Engineering Industrial & Systems  

E-Print Network [OSTI]

Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

Berdichevsky, Victor

428

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

429

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

430

OIL & GAS HISTORY 1 History in California  

E-Print Network [OSTI]

OIL & GAS HISTORY 1 History in California 4 Superior figures refer to references at the end of the essay. OIL AND GAS PRODUCTION California oil was always a valued commodity. When the Spanish explorers landed in California in the 1500s, they found Indians gathering asphaltum (very thick oil) from natural

431

Ceramics for ATS industrial turbines  

SciTech Connect (OSTI)

US DOE and most US manufacturers of stationary gas turbines are participating in a major national effort to develop advanced turbine systems (ATS). The ATS program will achieve ultrahigh efficiencies, environmental superiority, and cost competitiveness compared with current combustion turbine systems. A major factor in the improved efficiencies of simple cycle ATS gas turbines will be higher operating efficiencies than curren engines. These temperatures strain the limits of metallic alloy and flow-path cooling technologies. Ceramics materials offer a potential alterative to cooled turbine alloys for ATS turbines due to higher melting points than metallics. This paper evaluates ceramics technology and plant economic issues for ATS industrial turbine systems. A program with the objective of demonstrating first-stage ceramic vanes in a commerical industrial turbine is also described.

Wenglarz, R.; Ali, S. [Allison Engine Co., Indianapolis, IN (United States); Layne, A. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-05-01T23:59:59.000Z

432

FACTORS AFFECTING BONUS BIDS FOR OIL AND GAS LEASES IN THE WILLISTON BASIN .  

E-Print Network [OSTI]

??Governments receive several revenue streams from companies that hold and operate oil and gas leases on public lands. These revenues vary in their timing and… (more)

[No author

2012-01-01T23:59:59.000Z

433

LBA Land Use and Land Cover Data Set Released  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LBA Land Use and Land Cover Data Sets Released LBA Land Use and Land Cover Data Sets Released The ORNL DAAC announces the release of two image data sets from the Land Use and Land Cover science theme (LC-15 team), a component of the LBA-ECO Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). LBA-ECO LC-15 SRTM30 Digital Elevation Model Data, Amazon Basin: 2000 . Data set prepared by S. Saatchi. This data set provides a subset of the SRTM30 Digital Elevation Model (DEM) elevation and standard deviation data (STD of the data points used in the averaging) for the Amazon Basin. SRTM30 is a near-global digital elevation model (DEM) comprising a combination of data from the Shuttle Radar Topography Mission (SRTM), flown in February, 2000, and the earlier U.S. Geological Survey's GTOPO30 data set.

434

Industrial Heating with Creosote Pitch  

Science Journals Connector (OSTI)

Industrial Heating with Creosote Pitch ... TO REDUCE the demand for imported petroleum fuel oil, some British plants are using a mixture of creosote and pitch, obtained during the manufacture of city gas. ... Thus these tar oils, the most commonly used being creosote pitch, must be maintained at a temperature of not less than 90° F. at all times and delivered warm into suitably heated tanks. ...

C. H. S. TUPHOLME

1942-05-10T23:59:59.000Z

435

New York Industrial Partnership Network  

Broader source: Energy.gov [DOE]

Recognizing the potential for increased energy and cost savings, the New York Public Service Commission enacted an Energy Efficiency Portfolio Standard (EEPS) to help the state reduce electricity and natural gas consumption. In support of this goal, the New York State Energy Research and Development Authority (NYSERDA) developed energy efficiency programs to help the state achieve compliance with EEPS, including the Industrial and Process Efficiency Program.

436

Life-cycle analysis of shale gas and natural gas.  

SciTech Connect (OSTI)

The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

2012-01-27T23:59:59.000Z

437

Absentee Landowners Near a Military Installation in Texas: Use, Motivation, and Emotional Tie to their Land  

E-Print Network [OSTI]

.......................................................... 97 Family land. ........................................................................................................................... 98 Leasing land.... ......................................................................................................................... 117 Leasing land. ....................................................................................................................... 118 Hunting on land...

Dankert, Amber 1980-

2012-12-20T23:59:59.000Z

438

Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines  

Broader source: Energy.gov [DOE]

Gas turbines—heat engines that use high-temperature and high-pressure gas as the combustible fuel—are used extensively throughout U.S. industry to power industrial processes. The majority of...

439

Evaluating land application effects  

SciTech Connect (OSTI)

The Philadelphia, PA Water Department embarked on a land application program of its treated wastewater sludge in 1977. Initially, liquid sludge averaging from 1-5% solids was applied to approximately 400 acres of corn, soybeans, and sod at rates sufficient to supply crop nitrogen needs. During the 1978 through 1984 growing seasons, crops and soils were monitored for heavy metals (bioavailability of cadmium, copper, nickel, chromium, lead and zinc) and in 1984 for PCB accumulation. This report summarizes results of the monitoring program until 1984.

Sarkis, K. (Philadelphia Water Department, PA (USA))

1987-01-01T23:59:59.000Z

440

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

442

March Natural Gas Monthly  

Gasoline and Diesel Fuel Update (EIA)

'PGTI[+PHQTOCVKQP#FOKPKUVTCVKQP0CVWTCN)CU/QPVJN[/CTEJ 'PGTI[+PHQTOCVKQP#FOKPKUVTCVKQP0CVWTCN)CU/QPVJN[/CTEJ EIA Corrects Errors in Its Drilling Activity Estimates Series William Trapmann and Phil Shambaugh Introduction The Energy Information Administration (EIA) has published monthly and annual estimates of oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status. They are assessed directly for trends, as well as in combination with other measures to assess the productivity and profitability of upstream industry operations. They are a major reference point for policymakers at both the Federal and State level. Users in the private sector include financial

443

LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH’S UINTA BASIN  

SciTech Connect (OSTI)

Utah is rich in oil shale and oil sands resources. Chief among the challenges facing prospective unconventional fuel developers is the ability to access these resources. Access is heavily dependent upon land ownership and applicable management requirements. Understanding constraints on resource access and the prospect of consolidating resource holdings across a fragmented management landscape is critical to understanding the role Utah’s unconventional fuel resources may play in our nation’s energy policy. This Topical Report explains the historic roots of the “crazy quilt” of western land ownership, how current controversies over management of federal public land with wilderness character could impact access to unconventional fuels resources, and how land exchanges could improve management efficiency. Upon admission to the Union, the State of Utah received the right to title to more than one-ninth of all land within the newly formed state. This land is held in trust to support public schools and institutions, and is managed to generate revenue for trust beneficiaries. State trust lands are scattered across the state in mostly discontinuous 640-acre parcels, many of which are surrounded by federal land and too small to develop on their own. Where state trust lands are developable but surrounded by federal land, federal land management objectives can complicate state trust land development. The difficulty generating revenue from state trust lands can frustrate state and local government officials as well as citizens advocating for economic development. Likewise, the prospect of industrial development of inholdings within prized conservation landscapes creates management challenges for federal agencies. One major tension involves whether certain federal public lands possess wilderness character, and if so, whether management of those lands should emphasize wilderness values over other uses. On December 22, 2010, Secretary of the Interior Ken Salazar issued Secretarial Order 3310, Protecting Wilderness Characteristics on Lands Managed by the Bureau of Land Management. Supporters argue that the Order merely provides guidance regarding implementation of existing legal obligations without creating new rights or duties. Opponents describe Order 3310 as subverting congressional authority to designate Wilderness Areas and as closing millions of acres of public lands to energy development and commodity production. While opponents succeeded in temporarily defunding the Order’s implementation and forcing the Bureau of Land Management (BLM) to adopt a more collaborative approach, the fundamental questions remain: Which federal public lands possess wilderness characteristics and how should those lands be managed? The closely related question is: How might management of such resources impact unconventional fuel development within Utah? These questions remain pressing independent of the Order because the BLM, which manages the majority of federal land in Utah, is statutorily obligated to maintain an up-to-date inventory of federal public lands and the resources they contain, including lands with wilderness characteristics. The BLM is also legally obligated to develop and periodically update land use plans, relying on information obtained in its public lands inventory. The BLM cannot sidestep these hard choices, and failure to consider wilderness characteristics during the planning process will derail the planning effort. Based on an analysis of the most recent inventory data, lands with wilderness characteristics — whether already subject to mandatory protection under the Wilderness Act, subject to discretionary protections as part of BLM Resource Management Plan revisions, or potentially subject to new protections under Order 3310 — are unlikely to profoundly impact oil shale development within Utah’s Uinta Basin. Lands with wilderness characteristics are likely to v have a greater impact on oil sands resources, particularly those resources found in the southern part of the state. Management requirements independent of l

Keiter, Robert; Ruple, John; Holt, Rebecca; Tanana, Heather; McNeally, Phoebe; Tribby, Clavin

2012-10-01T23:59:59.000Z

444

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

445

Oil and Gas Gateway | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Gateway Oil and Gas Gateway Jump to: navigation, search Oil and Gas Companies The oil and gas industry is the largest energy industry in the world, with companies spanning the globe. The map below depicts the top oil companies. Anyone can add another company to this list. Add a new Oil and Gas Company Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

446

MODIS Land Products Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geography of the MODIS Land Subsets for selected Field Sites Geography of the MODIS Land Subsets for selected Field Sites The 7- x 7-km grid containing the field or tower site is provided to enable comparison of pixel values of MODIS products with field data collected at a site. The values are intended to be examined over time either as a collection of individual values or combined (e.g., the average and range) within a 3- x 3-km grid or a 5- x 5-km grid around the site. Examples of analyses using the ASCII subset data can be found in presentations. If users would like to examine the MODIS data spatially in a map, we suggest that they obtain the GeoTIFF subsets or MODIS products from the LP DAAC. Please note that the grid and pixel sizes are not exact multiples of 1 km, but are only approximations. For instance, the grid and pixel size for the 1 km Sinusoidal grid is approximately 926 m. For additional information, please view the MODIS Web site.

447

Volatility clustering in land markets  

E-Print Network [OSTI]

analysis. Applying a Lagrange Multiplier (LM) test for AutoRegressive Conditional Heteroskedasticity (ARCH) effects in the Canadian land markets, we find that clustering in land price returns exists in Alberta, Ontario, Quebec, and British Columbia... by even higher volatility and vice versa. III. Data and Descriptive Statistics The monthly land price index for each individual province is obtained from Statistics Canada, covering all of the Canadian provinces (Alberta, Ontario, Quebec...

Bao, Helen X. H.; Huang, Hui; Huang, Yu-Lieh; Lin, Pin-te

2014-01-01T23:59:59.000Z

448

EPA Natural Gas STAR Program Accomplishments  

E-Print Network [OSTI]

Established in 1993, the Natural Gas STAR program is a partnership between the U.S. EPA and the oil and natural gas industry designed to cost-effectively reduce methane emissions from voluntary activities undertaken at oil and natural gas operations both

unknown authors

449

Sponsors of CIEEDAC: Environment Canada Natural Resources Canada, Canadian Industry Program for Energy Conservation, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Electricity  

E-Print Network [OSTI]

. This includes the oil and gas extraction industries and the coal mining industry. To analyze changes in GHG; technology innovations; transparency of data availability; location of production facilities; international political dynamics; nuclear development initiatives; frontier exploration initiatives; Canada's Clean Air

450

Behind "successful" land acquisition : a case study of the Van Quan new urban area project in Hanoi, Vietnam  

E-Print Network [OSTI]

The transition to a market economy has sparked Vietnam's unprecedented urbanization and industrialization. In order to accommodate the spiraling land demand triggered by urban and economic growth, the Vietnamese government ...

Bui, Phuong Anh, M. C. P. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

451

Land Energy | Open Energy Information  

Open Energy Info (EERE)

on harnessing biomass. Activities include wood-pellet production, biomass-combined heat and power and forestry and energy-crop development. References: Land Energy1 This...

452

Industrial cofiring reaps big rewards  

SciTech Connect (OSTI)

US industry operates over 2,000 coal-fired stoker boilers. They are typically over 30 years old, difficult to maintain, and hard to keep in environmental compliance. Natural gas cofiring of industrial stoker boilers offers a wide range of operational benefits. Boiler efficiency is improved because combustion air requirements are reduced (low excess air of LEA) and carbon burnout is improved (loss on ignition or LOI). On the emissions side, opacity problems are reduced and NO{sub x} and SO{sub 2} emissions reduced as natural gas replaces a percentage of the coal. Further, operation is improved through easier, smoke-free start-up and warm-up, recovered steam generation, increased short-term peaking capacity, improved plant availability and improved low load operation. Fuel flexibility also increases and maintenance decreases. Cofire benefits and economics are, however, very site specific. Important factors include relative coal and gas pricing, coal and gas supply security, boiler capacity factor and seasonal use, and backup boiler capability. These factors are discussed using the example of the Dover Light and Power of Ohio.

NONE

1996-06-01T23:59:59.000Z

453

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview Net additions to storage during the fourth week of April were estimated to have been over 100 Bcf-a record high level for the first month of the refill season. Compared to last year when only 36 Bcf or 1.2 Bcf per day were added to stocks in April, this year the industry appears to be taking advantage of the reduction in demand that typically occurs in April, the first shoulder month of the year, and the recent price declines. After beginning the week down, spot prices at the Henry Hub trended down most days last week to end trading on Friday at $4.49 per MMBtu-the lowest price since early November. On the NYMEX futures market, the near-month (June) contract also moved down most days and ended last week at $4.490-down $0.377 from the previous Friday. Some-early summer high temperatures last week in the Northeast and winter-like weather in the Rockies (See Temperature Map) (See Deviation from Normal Temperatures Map) appear to have had little impact on the natural gas markets as prices declined most days at most major locations.

454

Industry Related Projects [Laser Applications Laboratory] - Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Related Projects Industry Related Projects Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Industry related projects Bookmark and Share LASER OIL & GAS WELL DRILLING Using high-power lasers to drill and complete gas & oil wells LASER HEAT TREATMENT Optimization of laser beam heat treatment (Caterpillar and USCAR)

455

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas. How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature? Links: The technology of Condensing Flue Gas Heat Recovery natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building

456

OpenEI Community - natural gas+ condensing flue gas heat recovery+ water  

Open Energy Info (EERE)

Increase Natural Gas Increase Natural Gas Energy Efficiency http://en.openei.org/community/group/increase-natural-gas-energy-efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas.How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature?gas-energy-efficiency" target="_blank">read more natural gas+ condensing flue gas heat

457

Missouri River Preservation and Land Use Authority (Iowa) | Department of  

Broader source: Energy.gov (indexed) [DOE]

River Preservation and Land Use Authority (Iowa) River Preservation and Land Use Authority (Iowa) Missouri River Preservation and Land Use Authority (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources The State Interagency Missouri River Authority engages in comprehensive

458

Solid Waste Management and Land Protection (North Dakota) | Department of  

Broader source: Energy.gov (indexed) [DOE]

and Land Protection (North Dakota) and Land Protection (North Dakota) Solid Waste Management and Land Protection (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting The policy of the State of North Dakota is to encourage and provide for environmentally acceptable and economical solid waste management practices, and the Department of Health may promulgate regulations related to waste

459

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

460

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Relative Standard Errors for Table 4.4;" 4.4 Relative Standard Errors for Table 4.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , 311,"Food",0.4,0.4,19.4,9,2,6.9,5.4,0,10.3

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

IDRISI Land Change Modeler | Open Energy Information  

Open Energy Info (EERE)

IDRISI Land Change Modeler IDRISI Land Change Modeler Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IDRISI Land Change Modeler Agency/Company /Organization: Clark Labs Sector: Land Focus Area: Agriculture, Forestry Topics: Co-benefits assessment, - Environmental and Biodiversity, Resource assessment Resource Type: Maps, Software/modeling tools User Interface: Desktop Application Website: www.clarklabs.org/ Cost: Paid IDRISI Land Change Modeler Screenshot References: IDRISI Land Change Modeler[1] Overview "The Land Change Modeler is revolutionary land cover change analysis and prediction software with tools to analyze, measure and project the impacts of such change on habitat and biodiversity." References ↑ "IDRISI Land Change Modeler" Retrieved from

462

MODIS Land Products Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction Introduction Collection 5 The MODIS data from the Terra and Aqua satellites are being reprocessed using revised algorithms beginning in September 2006. This new set of MODIS Products is called Collection 5. To view the product changes that took place in going from Collection 4 to Collection 5, please visit the following Web site: http://landweb.nascom.nasa.gov/cgi-bin/QA_WWW/newPage.cgi?fileName=MODLAND_C005_changes The ORNL DAAC provides subsets of the Collection 5 MODIS Land Products. Investigators from around the world have shown a great deal of interest in this activity, asking that over 1000 field and flux tower sites be included in Collection 5 subsetting (up from 280 sites for Collection 4 MODIS subsetting). Availability of the Collection 5 Data Products

463

MODIS Land Products Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data for Selected Field Sites (n=1147) Data for Selected Field Sites (n=1147) Obtain MODIS data for areas centered on selected field sites or flux towers from around the world. The goal of the MODIS Subsets for Selected Field Sites is to prepare summaries of selected MODIS Land Products for the community to use for validation of models and remote sensing products and to characterize field sites. Search for data: By Site from a Map Server from Google Earth (Install Google Earth) From FTP site (ASCII) Methods Data products were first subsetted from one or more 1200x1200-km MODIS tiles to 25 x 25-km arrays by the MODIS Science Data Support Team (MODAPS). These products were further subsetted (7x7) and reformatted from their native HDF-EOS to ASCII using version 2.2 of the MODIS Reprojection Tool (MRT) in combination with code developed at the ORNL DAAC.

464

MODIS Land Products Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MODIS ASCII Subset Products - FTP Access MODIS ASCII Subset Products - FTP Access All of the MODIS ASCII Subsets are available from the ORNL DAAC's ftp site. The directory structure of the ftp site is based on the abbreviated names for the MODIS Products. Terra MODIS products are abbreviated "MOD", Aqua MODIS products are abbreviated "MYD" and combined Terra and Aqua MODIS products are abbreviated "MCD". The abbreviated names also include the version number (also known as collection). For specific products, please refer to the following table: Product Acronym Spatial Resolution Temporal Frequency Terra V005 SIN Aqua V005 SIN Terra/Aqua Combined V005 SIN Surface Reflectance SREF 500 m 8 day composites MOD09A1 MYD09A1 ---------- Land Surface Temperature and Emissivity TEMP 1 km 8 day composites MOD11A2 MYD11A2 ----------

465

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

466

Implications for decision making: Auto industry perspectives  

SciTech Connect (OSTI)

Implications for decision making in areas related to policy towards greenhouse gas emissions are discussed from the perspective of the auto industry. Two methods of reducing fuel use are discussed: increasing fuel efficiency of automobiles and reducing vehicle fuel use by other methods. Regulatory and market-driven control of fuel consumption are discussed. It is concluded that the automobile industry would prefer market-driven control of fuel consumption to regulatory control of fuel efficiency.

Leonard, S.A. [General Motors Technical Center, Warren, MI (United States)

1992-12-31T23:59:59.000Z

467

Early Trends in Landcover Change and Forest Fragmentation Due to Shale-Gas Development in Pennsylvania: A Potential Outcome for the Northcentral Appalachians  

Science Journals Connector (OSTI)

Worldwide shale-gas development has the potential to cause substantial ... , we examine land cover change due to shale-gas exploration, with emphasis on forest fragmentation. Pennsylvania’s shale-gas development ...

P. J. Drohan; M. Brittingham; J. Bishop; K. Yoder

2012-05-01T23:59:59.000Z

468

and Industrial Engineering  

E-Print Network [OSTI]

45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle to prosthetic limbs to windmills, and their myriad components. Industrial engineers are concerned

Mountziaris, T. J.

469

Industrial and Systems engineering  

E-Print Network [OSTI]

Industrial and Systems engineering COLLEGE of ENGINEERING DepartmentofIndustrialandSystemsEngineering EDGE Engineering Entrepreneur Certificate Program is a great addition to an industrial and systems to expert clinical recommendations. engineering.wayne.edu/isefaculty Industrial and systems engineering

Berdichevsky, Victor

470

Commentary on industrial processes  

Science Journals Connector (OSTI)

...crucial for an industrial process, namely: catalyst activity...of catalysis to industrial processes. The papers, however, do...at the heart of successful commercialization of catalytic science and technology...addressed in any industrial process, namely: activity-the...

2005-01-01T23:59:59.000Z

471

Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options  

SciTech Connect (OSTI)

This study is a model comparison assessing the drivers and impacts of bioenergy production on the global land system and the interaction with other land use based mitigation options in the context of the EMF 27 project. We compare and evaluate results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE). All three models project that dedicated bioenergy crops and biomass residues are a potentially important and cost-effective component of the energy system. But bioenergy deployment levels and feedstock composition vary notably across models as do the implications for land-use and greenhouse gas emissions and the interaction with other land use based mitigation measures. Despite numerous model differences, we identify a few that are likely contributing to differences in land-use and emissions attributable to energy crop deployment.

Popp, Alexander; Rose, Steven K.; Calvin, Katherine V.; Van Vuuren, Detlef; Dietrich, Jan P.; Wise, Marshall A.; Stehfest, Eike; Humpenoder, Florian; Kyle, G. Page; Van Vliet, Jasper; Bauer, Nico; Lotze-Campen, Hermann; Klein, David; Kriegler, Elmar

2014-04-01T23:59:59.000Z

472

EIA - Analysis of Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

Prices Prices 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format)

473

Emerging Opportunities in Industrial Electrification Technologies  

E-Print Network [OSTI]

Safe EI Uncertain 0 Vulnerable Figure 7a - Competitive Position of Natural Gas: Metals Industries 1000 j ! J ~ i - 200 ~ Safe ? Uncertain 0 Vulnerable 800 600 400 Melling F1.Ht. Drying Calcining Firing Appllcallon Figure 7b...-frred systems. Drying, on the other hand, is considered a relatively vulnerable or uncertain market, with significant competition from both coal-fired steam-heated dryers and such electrotechnologies as infrared and dielectric heating. Gas use for calcining...

Schmidt, P. S.

474

Natural Gas Weekly Update, Printer-Friendly Version  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and Pacific hurricane activity. EIA Releases Overview of the Natural Gas Industry and Markets in 2006: The Energy Information Administration (EIA) released a special report on...

475

Shale Gas – Environmental Aspects, Technical Parameters and Explorations in TIMER.  

E-Print Network [OSTI]

??Over the last ten years the shale gas industry in North America has flourished. The ensuing economic success has inspired other countries to start investigating… (more)

Deijns, J.

2014-01-01T23:59:59.000Z

476

Design, modelling and control of a gas turbine air compressor .  

E-Print Network [OSTI]

??The production of compressed air constitutes a considerable portion of industrial electrical consumption. An alternative to electrically driven air compression systems is a gas turbine… (more)

WIESE, ASHLEY PETER

2014-01-01T23:59:59.000Z

477

Land Record System PIA, Bonneville Power Administration | Department...  

Broader source: Energy.gov (indexed) [DOE]

Land Record System PIA, Bonneville Power Administration Land Record System PIA, Bonneville Power Administration Land Record System PIA, Bonneville Power Administration Land Record...

478

Land of Enchantment's Appliance Rebate Program Spurs Shopping | Department  

Broader source: Energy.gov (indexed) [DOE]

Land of Enchantment's Appliance Rebate Program Spurs Shopping Land of Enchantment's Appliance Rebate Program Spurs Shopping Land of Enchantment's Appliance Rebate Program Spurs Shopping September 20, 2010 - 10:00am Addthis Lindsay Gsell What does this project do? Issued 8830 appliance rebates in Arizona. One local business saw an 80% sales increase weeks after the launch of the appliance rebate program. Rebates can add up quickly - especially when 8,830 are issued. Through Recovery Act funding, New Mexico has distributed about 8,830 rebates worth $200 for ENERGY STAR qualified refrigerators, clothes washers and gas furnaces. The state's appliance rebate program launched on April 22 -- Earth Day -- and is currently winding down, with a little more than $125,000 available for furnace rebates. Program manager Harold Trujillo says that more than half the rebates were

479

EA-1936: Proposed Changes to Parcel ED-1 Land Uses, Utility Infrastructure,  

Broader source: Energy.gov (indexed) [DOE]

6: Proposed Changes to Parcel ED-1 Land Uses, Utility 6: Proposed Changes to Parcel ED-1 Land Uses, Utility Infrastructure, and Natural Area Management Responsibility, Oak Ridge, Tennessee EA-1936: Proposed Changes to Parcel ED-1 Land Uses, Utility Infrastructure, and Natural Area Management Responsibility, Oak Ridge, Tennessee SUMMARY NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of DOE's proposed modifications to the allowable land uses, utility infrastructure, and Natural Area management responsibility for Parcel ED-1. The purpose of the modifications is to enhance the development potential of the Horizon Center business/industrial park, while ensuring protection of the adjacent Natural Area. The area addressed by the proposed action was evaluated for various industrial/business uses in the

480

Uranium industry annual 1997  

SciTech Connect (OSTI)

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industry land" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

EIA - Natural Gas Year-In-Review 2009  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

9 Natural Gas Year-In-Review 2009 Released: July 2010 Next Release: November 2011 This report provides an overview of the natural gas industry and markets in the United States in...

482

EIA - Natural Gas Year-In-Review 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

8 Natural Gas Year-In-Review 2008 Released: April 2009 Next Release: April 2010 This report provides an overview of the natural gas industry and markets in 2008 with special focus...

483

International Natural Gas Workshop U.S. Energy Information Administrat...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

U.S. Congress and in 16 states and Ontario on the direction of the gas industry, gas contracting, purchase and sales prices, royalty valuations, market value, hedging and risk...

484

Economic analysis of shale gas wells in the United States  

E-Print Network [OSTI]

Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

Hammond, Christopher D. (Christopher Daniel)

2013-01-01T23:59:59.000Z

485

Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Emerging gas technologies to enhance industrial energy efficiency, challenges of integrating into the marketplace and an overview of DTE Energy’s energy efficiency programs for natural gas customers.

486

Statistical Modeling of Corrosion Failures in Natural Gas Transmission Pipelines  

E-Print Network [OSTI]

Natural gas pipelines are a critical component of the U.S. energy infrastructure. The safety of these pipelines plays a key role for the gas industry. Therefore, the understanding of failure characteristics and their consequences are very important...

Cobanoglu, Mustafa Murat

2014-03-28T23:59:59.000Z

487

Outlook dims for decontrol of natural gas  

Science Journals Connector (OSTI)

Outlook dims for decontrol of natural gas ... A lot of people in the chemical industry are watching the nation's capital to see if, by some miracle, they will get some action on decontrol of natural gas prices. ... And there was a time when it appeared as if they would get their wish—to get out from under the shackles of the Natural Gas Policy Act of 1978 (NGPA) and switch to total, phased decontrol of natural gas prices. ...

EARL V. ANDERSON

1982-02-22T23:59:59.000Z

488

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

E-Print Network [OSTI]

decision support tool for landfill gas-to energy projects,”industrial emissions e. Landfills f. Solid waste treatmentreductions Forests, dairy, landfills 75% overall savings HFC

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

489

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

490

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

491

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

E-Print Network [OSTI]

ARB, 2013b) from 2000-2010: 1. Commercial a. CHP (NG) 2.Industrial a. CHP (NG, refinery gas, coal) b. Oil and gas3%/yr retrofits, ZNE 37% RPS, CHP, DG PV, nuclear relicense,

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

492

U.S. Industrial Energy Efficiency Programs  

Broader source: Energy.gov (indexed) [DOE]

Second U.S.-China Second U.S.-China Energy Efficiency Forum May 6, 2011 James Quinn Energy Efficiency & Renewable Energy U.S. Department of Energy U.S. Industrial Energy Efficiency Programs 2 | Industrial Energy Efficiency eere.energy.gov Global Energy Challenges Energy efficiency and renewable energy provide solutions to global energy challenges. Security Environment Economy Clean Energy Solutions Overarching Challenges: * Carbon reduction * Market delivery of clean energy technologies * Research and development needs * Economic growth * Workforce development 3 | Industrial Energy Efficiency eere.energy.gov U.S. industry accounts for about one-third of all U.S. energy consumption. Petroleum Natural Gas Electricity* Coal and Coke Renewable Energy Residential 21.8% Industry 31.4% Commercial

493

Water Efficient and Low Pollution Textile Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative and Emerging Technologies for an Energy Efficient Alternative and Emerging Technologies for an Energy Efficient Water Efficient and Low Pollution Textile Industry year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p Emerging energy efficiency greenhouse gas GHG and pollution mitigation technologies will be crucial for the textile industry as it responds to population and economic growth that is expected to spur a rapid increase in textile consumption over the coming decades and a corresponding increase in the industry textquoteright s absolute energy use and GHG and other pollutant emissions This report gives an overview of textile industry processes and compiles available information on the energy savings environmental and other benefits costs commercialization status and references for emerging technologies to reduce the industry

494

GRR/Section 3-TX-f - Lease of Land Trade Lands | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-TX-f - Lease of Land Trade Lands GRR/Section 3-TX-f - Lease of Land Trade Lands < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-f - Lease of Land Trade Lands 03-TX-f - Lease of Land Trade Lands.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-f - Lease of Land Trade Lands.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Land Trade Lands in Texas. The Texas General Land Office (GLO) administers leases on Land Trade Lands through Title 31 of the Texas Administrative Code Section 155.42.

495

Changes in Russia's gas exportation strategy: Europe versus Asia? Catherine Locatelli, Research Fellow,  

E-Print Network [OSTI]

Changes in Russia's gas exportation strategy: Europe versus Asia? Catherine Locatelli, Research policy. JEL classification: Industrial organization, International economics. Abstract: Russia's gas strategy is currently undergoing fundamental changes. The internationalisation of Russia's gas exchanges

Boyer, Edmond

496

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of opportunity fuels will avoid greenhouse gas emissions from the combustion of natural gas and increase the diversity of fuel sources for U.S. industry. Introduction Gas turbines...

497

Industrial energy-efficiency-improvement program  

SciTech Connect (OSTI)

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

Not Available

1980-12-01T23:59:59.000Z

498

1 - An Overview of Gas Turbines  

Science Journals Connector (OSTI)

Publisher Summary The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. The gas turbine has found increasing service in the past 60 years in the power industry among both utilities and merchant plants as well as the petrochemical industry throughout the world. The utilization of gas turbine exhaust gases, for steam generation or the heating of other heat transfer mediums, or the use of cooling or heating buildings or parts of cities is not a new concept and is currently being exploited to its full potential. The aerospace engines have been leaders in most of the technology in the gas turbine. The design criteria for these engines were high reliability, high performance, with many starts and flexible operation throughout the flight envelope. The industrial gas turbine has always emphasized long life and this conservative approach has resulted in the industrial gas turbine in many aspects giving up high performance for rugged operation. The gas turbine produces various pollutants in the combustion of the gases in the combustor. These include smoke, unburnt hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. It has found increasing service in the past 60 years in the power industry among both utilities and merchant plants, as well as in the petrochemical industry. Its compactness, low weight and multiple fuel application make it a natural power plant for offshore platforms. Today there are gas turbines that run on natural gas, diesel fuel, naphtha, methane, crude, low-BTU gases, vaporized fuel oils and biomass gases. The last 20 years have seen a large growth in gas turbine technology, spearheaded by the growth in materials technology, new coatings, new cooling schemes and combined cycle power plants. This chapter presents an overview of the development of modern gas turbines and gas turbine design considerations. The six categories of simple-cycle gas turbines (frame type heavy-duty; aircraft-derivative; industrial-type; small; vehicular; and micro) are described. The major gas turbine components (compressors; regenerators/recuperators; fuel type; and combustors) are outlined. A gas turbine produces various pollutants in the combustion of the gases in the combustor and the potential environmental impact of gas turbines is considered. The two different types of combustor (diffusion; dry low NOx, (DLN) or dry low emission (DLE)), the different methods to arrange combustors on a gas turbine, and axial-flow and radial-inflow turbines are described. Developments in materials and coatings are outlined.

Meherwan P. Boyce

2012-01-01T23:59:59.000Z

499

Land application of sludge  

SciTech Connect (OSTI)

This book is the proceedings of a workshop held in Las Vegas, NV in 1985 entitled Effects of Sewage Sludge Quality and Soil Properties on Plant Uptake of Sludge-Applied Trace Constituents. The workshop was in response to the need to utilize the most current available information in the development of regulations and criteria to safely apply and manage the land application of municipal sewage sludge. The participants were undoubtedly the most knowledgeable of this subject matter, and were divided into five separate but related task groups. The groups addressed the following sludge-related topics: (1) role of soil properties on accumulation of trace element by crops; (2) role of sludge properties on accumulation of trace elements by crops; (3) influence of long-term application on accumulation of trace elements by crops; (4) transfer of trace elements to the food chain, and (5) effects of trace organics in agroecosystems and their risk assessment to humans. The text, therefore, parallels those of the results of the task groups. The five main chapters followed a similar format, i.e., having an introduction section, a comprehensive literature review, discussion of recent and current data, and synthesis of the most relevant information.

Page, A.L.; Logan, T.J.; Ryan, J.A. (eds.)

1987-01-01T23:59:59.000Z

500

What is shale gas and why is it important?  

Reports and Publications (EIA)

Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

2012-01-01T23:59:59.000Z