National Library of Energy BETA

Sample records for gas industries association

  1. Electric and Gas Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Gas Industries Association Jump to: navigation, search Name: Electric and Gas Industries Association Place: Sacramento, CA Zip: 95821 Website: www.egia.org Coordinates:...

  2. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  3. Natural gas industry directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

  4. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  5. ,"North Carolina Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release...

  6. Solar Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Solar Energy Industries Association Name: Solar Energy Industries Association Address: 575 7th Street NW 400 Place: Washington, DC Zip: 20004 Number of Employees: 11-50 Year...

  7. Danish Wind Industry Association | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Danish Wind Industry Association Place: Copenhagen V, Denmark Zip: DK-1552 Sector: Wind energy Product: The Danish Wind Industry Association...

  8. California Solar Energy Industries Association | Open Energy...

    Open Energy Info (EERE)

    Solar Energy Industries Association Jump to: navigation, search Name: California Solar Energy Industries Association Place: Rio Vista, California Zip: 94571 Sector: Solar Product:...

  9. Natural Gas Industry and Markets

    Reports and Publications (EIA)

    2006-01-01

    This special report provides an overview of the supply and disposition of natural gas in 2004 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2004 (NGA). Unless otherwise stated, all data and figures in this report are based on summary statistics published in the NGA 2004.

  10. Natural gas industry's response to transaction costs

    SciTech Connect (OSTI)

    Mulherin, J.H.

    1985-07-25

    Legislators and regulators have historically viewed the organizational features in the natural gas industry as noncompetitive. Challenging recent suggestions that the contractual arrangements in the industry are in violation of antitrust statutes, the author states that the methods of organization such as long-term contracts, take-or-pay provisions, and most-favored nation clauses are competitive responses to the costs of transacting in the natural gas industry. These arrangements lower transaction costs by mitigating the opportunistic behavior that can potentially arise in long-term relations involving specialized assets. If policymakers want to enable cost reductions in the industry to reduce the price burden felt by users of gas, an accompaniment of price decontrol by overall deregulation is in order.

  11. Colorado Solar Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Industries Association Jump to: navigation, search Logo: Colorado Solar Energy Industries Association Name: Colorado Solar Energy Industries Association Address: 841 Front St....

  12. Texas Renewable Energy Industries Association | Open Energy Informatio...

    Open Energy Info (EERE)

    Renewable Energy Industries Association Jump to: navigation, search Logo: Texas Renewable Energy Industries Association Name: Texas Renewable Energy Industries Association Address:...

  13. ConEd (Gas)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Equipment Rebate and Commercial and Industrial Custom Efficiency Programs offer incentives to gas customers in good standing who contribute to the system benefits...

  14. NIPSCO Custom Commercial and Industrial Gas and Electric Incentive Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Custom Electric and Natural Gas Incentive Program offers financial incentives to qualifying large commercial, industrial, non-profit, governmental and...

  15. QER- Comment of Northeast Gas Association

    Broader source: Energy.gov [DOE]

    Please find enclosed comments of the Northeast Gas Association regarding the Quadrennial Energy Review. Thank you.

  16. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure Factors to consider in the implementation of fueling stations and equipment Margaret Smith, New West Technologies (DOE HQ Technical Support) John Gonzales, National Renewable Energy Laboratory This document has been peer reviewed by the natural gas industry. September 2014 2 Introduction This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas

  17. Reduce Natural Gas Use in Your Industrial Process Heating Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Natural Gas Use in Your Industrial Process Heating Systems Reduce Natural Gas Use in Your Industrial Process Heating Systems This fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance. PDF icon Reduce Natural Gas Use in Your Industrial Process Heating Systems (September 2007) More Documents & Publications Load Preheating Using Flue Gases from a Fuel-Fired

  18. National Association of the Remodeling Industry (NARI) | Open...

    Open Energy Info (EERE)

    Association of the Remodeling Industry (NARI) Jump to: navigation, search Name: National Association of the Remodeling Industry (NARI) Place: Des Plaines, IL Website: www.nari.org...

  19. Brazilian Association of Biomass Industries ABIB | Open Energy...

    Open Energy Info (EERE)

    Brazilian Association of Biomass Industries ABIB Jump to: navigation, search Name: Brazilian Association of Biomass Industries (ABIB) Place: Curitiba, Parana, Brazil Sector:...

  20. Arizona Solar Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Arizona Solar Energy Industries Association Name: Arizona Solar Energy Industries Association Place: Arizona Website: www.arizonasolarindustry.org Coordinates: 34.0489281,...

  1. US Solar Energy Industries Association SEIA | Open Energy Information

    Open Energy Info (EERE)

    Energy Industries Association SEIA Jump to: navigation, search Name: US Solar Energy Industries Association (SEIA) Place: Washington, Washington, DC Zip: 20005 Sector: Solar...

  2. New York Solar Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    New York Solar Energy Industries Association Name: New York Solar Energy Industries Association Address: 533 Woodford Avenue Place: Endicott, New York Zip: 13760 Region: Northeast...

  3. Maryland DC Virginia Solar Energy Industries Association MDV...

    Open Energy Info (EERE)

    DC Virginia Solar Energy Industries Association MDV SEIA Jump to: navigation, search Name: Maryland-DC-Virginia Solar Energy Industries Association (MDV-SEIA) Place: Bethesda,...

  4. Maryland-National Capital Building Industry Association Regulatory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012) Maryland-National Capital Building Industry Association Regulatory ...

  5. Indiana Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  6. ,"West Virginia Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","1...

  7. ,"Massachusetts Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:46 AM" "Back to Contents","Data 1: Massachusetts Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MA3"...

  8. ,"United States Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"12292015 2:57:56 AM" "Back to Contents","Data 1: United States Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

  9. ,"North Carolina Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic...

  10. ,"United States Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:27 AM" "Back to Contents","Data 1: United States Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

  11. QER- Comment of Canadian Gas Association

    Broader source: Energy.gov [DOE]

    SENT ON BEHALF OF TIMOTHY M. EGAN PRESIDENT AND CEO CANADIAN GAS ASSOCIATION Dear Quadrennial Energy Review Task Force, Please find attached the submission from the Canadian Gas Association to the Quadrennial Energy Review (QER) process.

  12. Industrial Utility Webinar: Natural Gas Efficiency Programs

    SciTech Connect (OSTI)

    2010-04-15

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  13. Peoples Gas- Commercial & Industrial Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    The Chicagoland Natural Gas Savings Program is funded by customers of Peoples Gas, through a line item on the bill called the Enhanced Efficiency Program. The Program is guided by Peoples Gas, the...

  14. NORM Management in the Oil and Gas Industry

    SciTech Connect (OSTI)

    Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat

    2008-08-07

    It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil and gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

  15. Shanghai New Energy industry Association SNEIA | Open Energy...

    Open Energy Info (EERE)

    (SNEIA) Place: Shanghai Municipality, China Zip: 200235 Product: Shanghai-based industrial association for new energy sector References: Shanghai New Energy industry...

  16. Natural Gas and U.S. Industrial Production: A Closer Look at Four Industries

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas and U.S. Industrial Production: A Closer Look at Four Industries Vipin Arora and Elizabeth Sendich August 30, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES Natural Gas and U.S. Industrial

  17. American Gas Association | Department of Energy

    Energy Savers [EERE]

    Association American Gas Association Memorandum Summarizing Ex Parte Communication PDF icon 111011_Ex_Parte.pdf More Documents & Publications Ex Parte Memorandum - Natural Resources Defense Council American Gas Association Ex Parte Communication Microsoft Word - AGA Comments on 2011 Regulatory Burden RFI

  18. Philadelphia Gas Works - Commercial and Industrial Equipment...

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Philadelphia Gas Works Website http:www.pgwenergysense.comdownloads.html State Pennsylvania Program Type Rebate Program Rebate Amount Commercial Boilers: 800 -...

  19. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  20. District of Columbia Natural Gas Industrial Price (Dollars per Thousand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Feet) District of Columbia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 -- -- -- -- -- -- -- -- -- -- -- -- 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- -- 2009 -- -- -- -- --

  1. ,"Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:15:41 AM" "Back to Contents","Data 1: Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KS3"...

  2. ,"Texas Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:25 AM" "Back to Contents","Data 1: Texas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035TX3" "Date","Texas...

  3. ,"Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:36 AM" "Back to Contents","Data 1: Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ID3" "Date","Idaho...

  4. ,"Mississippi Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:57 AM" "Back to Contents","Data 1: Mississippi Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MS3" "Date","Mississippi...

  5. ,"Maryland Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:48 AM" "Back to Contents","Data 1: Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MD3" "Date","Maryland...

  6. ,"Nebraska Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:04 AM" "Back to Contents","Data 1: Nebraska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035NE3" "Date","Nebraska...

  7. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:20 AM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama...

  8. ,"Virginia Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:29 AM" "Back to Contents","Data 1: Virginia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035VA3" "Date","Virginia...

  9. ,"Montana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:59 AM" "Back to Contents","Data 1: Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MT3" "Date","Montana...

  10. ,"Tennessee Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:16:24 AM" "Back to Contents","Data 1: Tennessee Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035TN3" "Date","Tennessee...

  11. ,"Louisiana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:44 AM" "Back to Contents","Data 1: Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035LA3" "Date","Louisiana...

  12. ,"Maine Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:49 AM" "Back to Contents","Data 1: Maine Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ME3" "Date","Maine...

  13. ,"Connecticut Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:27 AM" "Back to Contents","Data 1: Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CT3" "Date","Connecticut...

  14. ,"Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:35 AM" "Back to Contents","Data 1: Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IA3" "Date","Iowa Natural...

  15. ,"Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:16 AM" "Back to Contents","Data 1: Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OR3" "Date","Oregon...

  16. ,"Missouri Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:55 AM" "Back to Contents","Data 1: Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MO3" "Date","Missouri...

  17. ,"Minnesota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:53 AM" "Back to Contents","Data 1: Minnesota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MN3" "Date","Minnesota...

  18. ,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:18 AM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska...

  19. ,"Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:41 AM" "Back to Contents","Data 1: Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KS3" "Date","Kansas...

  20. ,"Michigan Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:52 AM" "Back to Contents","Data 1: Michigan Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MI3" "Date","Michigan...

  1. ,"Illinois Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:38 AM" "Back to Contents","Data 1: Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IL3" "Date","Illinois...

  2. ,"Florida Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:31 AM" "Back to Contents","Data 1: Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035FL3" "Date","Florida...

  3. ,"Wyoming Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:37 AM" "Back to Contents","Data 1: Wyoming Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035WY3" "Date","Wyoming...

  4. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:19 AM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama...

  5. ,"Virginia Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:30 AM" "Back to Contents","Data 1: Virginia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035VA3" "Date","Virginia...

  6. ,"Utah Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:28 AM" "Back to Contents","Data 1: Utah Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035UT3" "Date","Utah Natural...

  7. ,"Kentucky Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:43 AM" "Back to Contents","Data 1: Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KY3" "Date","Kentucky...

  8. ,"California Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:24 AM" "Back to Contents","Data 1: California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CA3" "Date","California...

  9. ,"Vermont Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:31 AM" "Back to Contents","Data 1: Vermont Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035VT3" "Date","Vermont...

  10. ,"Arizona Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:23 AM" "Back to Contents","Data 1: Arizona Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AZ3" "Date","Arizona...

  11. ,"Washington Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:16:33 AM" "Back to Contents","Data 1: Washington Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035WA3" "Date","Washington...

  12. ,"Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:13 AM" "Back to Contents","Data 1: Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OH3" "Date","Ohio Natural...

  13. ,"Pennsylvania Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:16:18 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035PA3" "Date","Pennsylvania...

  14. ,"Kentucky Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:42 AM" "Back to Contents","Data 1: Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KY3" "Date","Kentucky...

  15. ,"Oklahoma Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:15 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OK3" "Date","Oklahoma...

  16. ,"Delaware Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:29 AM" "Back to Contents","Data 1: Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035DE3" "Date","Delaware...

  17. ,"Arizona Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:22 AM" "Back to Contents","Data 1: Arizona Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AZ3" "Date","Arizona...

  18. ,"Georgia Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:32 AM" "Back to Contents","Data 1: Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035GA3" "Date","Georgia...

  19. ,"Colorado Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:25 AM" "Back to Contents","Data 1: Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CO3" "Date","Colorado...

  20. ,"Wisconsin Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:16:34 AM" "Back to Contents","Data 1: Wisconsin Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035WI3" "Date","Wisconsin...

  1. ,"Indiana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:39 AM" "Back to Contents","Data 1: Indiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IN3" "Date","Indiana...

  2. ,"Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:37 AM" "Back to Contents","Data 1: Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ID3" "Date","Idaho...

  3. ,"Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:34 AM" "Back to Contents","Data 1: Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035HI3" "Date","Hawaii...

  4. ,"Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:14 AM" "Back to Contents","Data 1: Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OH3" "Date","Ohio Natural...

  5. ,"Montana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:58 AM" "Back to Contents","Data 1: Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MT3" "Date","Montana...

  6. ,"Indiana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:40 AM" "Back to Contents","Data 1: Indiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IN3" "Date","Indiana...

  7. ,"Arkansas Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:21 AM" "Back to Contents","Data 1: Arkansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AR3" "Date","Arkansas...

  8. ,"Michigan Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:51 AM" "Back to Contents","Data 1: Michigan Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MI3" "Date","Michigan...

  9. ,"Maine Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:50 AM" "Back to Contents","Data 1: Maine Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ME3" "Date","Maine...

  10. Philadelphia Gas Works- Commercial and Industrial Efficient Building Grant Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Commercial and Industrial Efficient Building Grant Program is part of PGW's EnergySense program. This program offers incentives up to $75,000 for multifamily,...

  11. Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Turkmenistan Industrial Oil and Gas Exhibition Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition November 16, 2007 - 4:31pm Addthis Holds Bilateral Discussion with President of Turkmenistan on Opening of Markets, Increased Investment, and Multiple Trade Routes ASHGABAT, TURKMENISTAN - U.S. Secretary of Energy Samuel W. Bodman today held bilateral energy discussions with the President of Turkmenistan and other senior Turkmenistan officials and

  12. Tamil Nadu Small and Tiny Industries Association TANSTIA | Open...

    Open Energy Info (EERE)

    Association TANSTIA Jump to: navigation, search Name: Tamil Nadu Small and Tiny Industries Association (TANSTIA) Place: India Sector: Services Product: Services & Support...

  13. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Number of Natural Gas Industrial

  14. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    Broader source: Energy.gov [DOE]

    This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

  15. Reduce Natural Gas Use in Your Industrial Process Heating Systems. Industrial Technologies Program (ITP) (Trifold Brochure).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Natural Gas Use in Your Industrial Process Heating Systems Industrial Technologies Program DOE/GO-102007-2413 September 2007 A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewable energy will mean a stronger economy, a cleaner environment, and greater energy independence for America. Working with a wide array of state, community, industry, and university partners, the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy invests in a

  16. White Paper Developed by the American Gas Association and American Public Gas Association

    Broader source: Energy.gov (indexed) [DOE]

    Developed by the American Gas Association and American Public Gas Association - 1 - ME1 19099445v.1 In the Upcoming Rulemaking on Amendments to the Minimum Efficiency Standards for Non- Weatherized Residential Gas Furnaces, DOE Should Employ Separate Product Classes for Condensing and Noncondensing Furnaces October 22, 2014 The Department of Energy should, in pursuing the rulemaking on amended residential furnace standards required by the court's order in American Public Gas Association v. DOE

  17. Oil, gas tanker industry responding to demand, contract changes

    SciTech Connect (OSTI)

    True, W.R.

    1998-03-02

    Steady if slower growth in demand for crude oil and natural gas, low levels of scrapping, and a moderate newbuilding pace bode well for the world`s petroleum and natural-gas shipping industries. At year-end 1997, several studies of worldwide demand patterns and shipping fleets expressed short and medium-term optimism for seaborne oil and gas trade and fleet growth. The paper discusses steady demand and shifting patterns, the aging fleet, the slowing products traffic, the world`s fleet, gas carriers, LPG demand, and LPG vessels.

  18. Commercial national accounts program is a gas industry revenue builder

    SciTech Connect (OSTI)

    Moskitis, T.L.

    1984-04-01

    The need for gas distributors to implement revenue-generating strategies is clearly evident in the commercial sector - their fastest growing market. One strategy is A.G.A.'s commercial national accounts marketing program, designed to establish working relationships with national and regional food, hotel, and retail chains and with the firms that design energy systems for them. The program supplies these chains with information on gas industry services and research aimed at increasing energy utilization efficiency. Regular communications and coordinated sales calls by gas utility executives on chain headquarters often produce increased gas sales, even of traditionally all-electric chains, as illustrated by several case histories.

  19. Maryland-National Capital Building Industry Association Regulatory Burden

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RFI (Federal Register August 8, 2012) | Department of Energy Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012) Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012) On behalf of the Maryland-National Capital Building Industry Association, I am providing the following comments and information in response to DOE's request. The Association represents residential builders,

  20. QER- Comment of American Gas Association 2

    Broader source: Energy.gov [DOE]

    Attached please find AGA's comments relating to critical issues facing the natural gas distribution industry, which we believe could be usefully addressed in the first phase of the DOE Quadrennial Energy Review (QER). Our comments as submitted here consist of a cover letter and four additional attachments. My colleague Pam Lacey has previously submitted AGA's comments relating to methane emissions under separate cover.

  1. Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations

    SciTech Connect (OSTI)

    Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

    1994-01-01

    Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

  2. Dakota Electric Association - Commercial and Industrial Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Agricultural Savings Category Geothermal Heat Pumps Lighting Chillers Heat Pumps Air conditioners Compressed air Energy Mgmt. SystemsBuilding Controls Motors Motor VFDs...

  3. QER- Comment of National Propane Gas Association

    Broader source: Energy.gov [DOE]

    Ladies and Gentlemen: Please find attached the QER comments of the National Propane Gas Association. Please feel to contact us if we can provide further information. Thank you for your attention to our submission.

  4. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Number of Natural Gas

  5. PROJECT RULISON A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O

    Office of Legacy Management (LM)

    A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O N S T I M U L A T I O N EXPERIMENT U S I N G A NUCLEAR EXPLOSIVE Issued By PROJECT RULISON JOINT OFFICE OF INFORMATION U. S. ATOMIC ENERGY COMMISSION - AUSTRAL OIL COMPANY, INCORPORATED THE DEPARTMENT OF THE INTERIOR - CER GEONUCLEAR CORPORATION May 1, 1969 OBSERVATION AREA J SURFACE GROUND ZERO AREA S C A L E - I inch e q u a l s approximatly I 2 m i l e s Project Rulison Area Map PROJECT RULISON A N INDUSTRY-GOVERNMENT NATURAL GAS PRODUCT1 ON

  6. Application of microturbines to control emissions from associated gas

    DOE Patents [OSTI]

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  7. Challenges associated with shale gas production | Department of Energy

    Energy Savers [EERE]

    Challenges associated with shale gas production Challenges associated with shale gas production PDF icon What challenges are associated with shale gas production? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Development Challenges: Air Shale Gas Development Challenges: Fracture Fluids

  8. Water retention and gas relative permeability of two industrial concretes

    SciTech Connect (OSTI)

    Chen Wei; Liu Jian; Brue, Flore; Skoczylas, Frederic; Davy, C.A.; Bourbon, Xavier; Talandier, Jean

    2012-07-15

    This experimental study aims at identifying the water retention properties of two industrial concretes to be used for long term underground nuclear waste storage structures. Together with water retention, gas transfer properties are identified at varying water saturation level, i.e. relative gas permeability is assessed directly as a function of water saturation level S{sub w}. The influence of the initial de-sorption path and of the subsequent re-saturation are analysed both in terms of water retention and gas transfer properties. Also, the influence of concrete microstructure upon water retention and relative gas permeability is assessed, using porosity measurements, analysis of the BET theory from water retention properties, and MIP. Finally, a single relative gas permeability curve is proposed for each concrete, based on Van Genuchten-Mualem's statistical model, to be used for continuous modelling approaches of concrete structures, both during drying and imbibition.

  9. Value of Underground Storage in Today's Natural Gas Industry, The

    Reports and Publications (EIA)

    1995-01-01

    This report explores the significant and changing role of storage in the industry by examining the value of natural gas storage; short-term relationships between prices, storage levels, and weather; and some longer term impacts of the Federal Energy Regulatory Commission's (FERC) Order 636.

  10. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  11. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  12. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  13. New Hampshire Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 153 295 376 1990's 364 361 344 334 324 332 367 385 389 417 2000's 432 331 437 550 305 397 421 578 5,298 155 2010's 306 362 466 403 326 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  14. North Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138 148 151 1990's 165 170 171 174 186 189 206 216 404 226 2000's 192 203 223 234 241 239 241 253 271 279 2010's 307 259 260 266 269 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  15. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  16. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  17. Utah Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 551 627 550 1990's 1,508 631 783 345 252 713 923 3,379 3,597 3,625 2000's 3,576 3,535 949 924 312 191 274 278 313 293 2010's 293 286 302 323 328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  18. Vermont Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22 21 14 1990's 15 13 18 20 24 23 27 30 36 37 2000's 38 36 38 41 43 41 35 37 35 36 2010's 38 36 38 13 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  19. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  20. Florida Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 575 552 460 1990's 452 377 388 433 481 515 517 561 574 573 2000's 520 518 451 421 398 432 475 467 449 607 2010's 581 630 507 528 520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  1. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  2. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  3. West Virginia Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 463 208 211 1990's 182 198 159 197 191 192 182 173 217 147 2000's 207 213 184 142 137 145 155 114 109 101 2010's 102 94 97 95 92 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  4. Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 190 200 230 1990's 284 228 244 194 135 126 170 194 317 314 2000's 308 295 877 179 121 127 133 133 155 130 2010's 120 123 127 132 131 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  5. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Companys Industrial End User Program

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes the Southern California Gas Companys Industrial End User program that helps large industrial customers increase energy efficiency and reduce energy use and GHG emissions.

  6. A guide for the gas and oil industry

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This guide has been prepared to assist those in the natural gas and oil industry who may not be familiar with how the Federal government, particularly the U.S. Department of Energy (DOE or Department), does business with private sector companies. Basic information is provided on what DOE is trying to do, why it wants to work with the natural gas and oil industry, how it can work with companies, who to contact, and where to inquire for further information. This last item is noteworthy because it is important for users of this guide to be able to access information about subjects that may interest them. Selected other Federal agencies and their activities related to those of DOE`s Office of Fossil Energy (FE or Fossil Energy) also are included in this document as Appendix A. This guide provides an address and/or phone number for every topic covered to prevent any information impasse. If a question is not adequately answered by the guide, please do not hesitate to contact the appropriate person or office. It is hoped that the information provided in this guide will lead to a better understanding of the mission, roles, and procedures of DOE and result in more and better cooperative working relationships between the natural gas and oil industry and DOE. Such relationships will provide a significant benefit to our Nation`s economic, technological, and energy security.

  7. Impact of the 2008 Hurricane Season on the Natural Gas Industry

    Reports and Publications (EIA)

    2009-01-01

    This report provides an overview of the 2008 Atlantic hurricane season and its impacts on the natural gas industry

  8. California Building Industry Association et al. v. State Water...

    Open Energy Info (EERE)

    Building Industry Association et al. v. State Water Resources Control Board Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing: California...

  9. American Gas Association Memorandum Summarizing Ex Parte Communication...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memorandum Summarizing Ex Parte Communication American Gas Association Memorandum Summarizing Ex Parte Communication On October 9, 2014, a workshop was hosted by the American Gas ...

  10. Texas Associated-Dissolved Natural Gas, Wet After Lease Separation...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

  11. Comments of the American Public Gas Association on the Smart...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comments from The American Public Gas Association on the Smart Grid RFI: Addressing policy and logisitcal challenges to smart grid implementation PDF icon The American Public Gas ...

  12. QER- Comment of Natural Gas Supply Association

    Broader source: Energy.gov [DOE]

    TO: Quadrennial Energy Review Task Force In response to the Department of Energy’s August 25, 2014 Federal Register Notice seeking input on the Quadrennial Energy Review, attached are comments from the Natural Gas Supply Association. Thank you for this opportunity to share our views on the important issue of energy infrastructure. If we can be of further assistance, please let me know. Regards,

  13. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Alabama Natural Gas Percentage Total Industrial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.28 2.23 2.38 2.27 2.36 2.39 2.53 2000's 2.46 2.11 2.13 2.22 2.25 2.29 2.30 2.26 2.13 2.13 2010's 2.12 2.19 2.38 2.42 2.46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  15. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  17. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,878 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  20. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  2. North Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,236 3,196 3,381 1990's 2,802 3,506 3,119 2,664 3,401 3,652 3,973 5,375 6,228 5,672 2000's 5,288 2,962 3,200 3,101 3,021 2,891 2,701 2,991 2,984 2,384 2010's 2,457 2,468 2,525 2,567 2,596 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  4. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  6. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. South Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Virginia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 877 895 895 1990's 929 1,156 1,101 2,706 2,740 2,812 2,822 2,391 2,469 2,984 2000's 1,749 1,261 1,526 1,517 1,217 1,402 1,256 1,271 1,205 1,126 2010's 1,059 1,103 1,132 1,132 1,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  11. Washington Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,355 3,564 3,365 1990's 3,428 3,495 3,490 3,448 3,586 3,544 3,587 3,748 3,848 4,040 2000's 4,007 3,898 3,928 3,775 3,992 3,489 3,428 3,630 3,483 3,428 2010's 3,372 3,353 3,338 3,320 3,355 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. California Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 44,764 44,680 46,243 1990's 46,048 44,865 40,528 42,748 38,750 38,457 36,613 35,830 36,235 36,435 2000's 35,391 34,893 33,725 34,617 41,487 40,226 38,637 39,134 39,591 38,746 2010's 38,006 37,575 37,686 37,996 37,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  13. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 1,780 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  1. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  2. Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,411 7,218 7,307 1990's 7,154 7,194 7,396 7,979 7,342 6,454 5,861 8,346 9,158 9,756 2000's 9,630 9,864 9,648 10,138 10,190 8,484 5,707 5,999 5,969 6,396 2010's 6,413 6,376 6,581 6,677 7,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Maine Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Consumption (Million Cubic Feet) Maine Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,331 855 872 874 1,248 616 552 696 891 1,135 1,160 701 2002 464 2,399 466 2,084 2,025 3,030 24 2,661 20 3,011 3,868 3,620 2003 434 338 282 234 210 206 283 222 219 273 323 291 2004 1,931 1,739 1,589 1,316 1,158 941 1,111 1,057 1,087 1,332 1,384 1,589 2005 750 578 653 478 481 397 386 504 636 561 513 563 2006 1,206 1,426 2,121 1,243

  4. Full hoop casing for midframe of industrial gas turbine engine

    DOE Patents [OSTI]

    Myers, Gerald A.; Charron, Richard C.

    2015-12-01

    A can annular industrial gas turbine engine, including: a single-piece rotor shaft spanning a compressor section (82), a combustion section (84), a turbine section (86); and a combustion section casing (10) having a section (28) configured as a full hoop. When the combustion section casing is detached from the engine and moved to a maintenance position to allow access to an interior of the engine, a positioning jig (98) is used to support the compressor section casing (83) and turbine section casing (87).

  5. Hawaii Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Hawaii Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 51 43 44 47 46 46 50 47 39 41 37 42 2002 42 40 39 42 43 36 47 42 36 35 35 37 2003 40 36 40 38 35 36 38 37 36 36 34 39 2004 37 36 39 38 33 38 38 38 35 36 40 37 2005 38 35 38 36 40 38 34 37 34 35 36 38 2006 39 34 37 34 38 37 36 38 45 40 35 37 2007 46 29 37 34 48 44 47 37 33 50 51 45 2008 40 36 45 45 41 42 46 34 27 26 23 27 2009 25 28 29 36 27 28

  6. Georgia Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Consumption (Million Cubic Feet) Georgia Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11,025 10,991 12,416 12,284 10,980 10,558 10,974 12,062 11,624 12,533 11,239 11,212 2002 12,320 11,739 13,039 11,629 11,929 11,381 11,441 12,306 11,390 11,650 12,080 12,247 2003 14,903 14,274 13,044 13,382 13,121 11,350 11,925 12,763 12,912 14,159 13,309 14,265 2004 14,458 14,427 13,755 13,178 12,893 12,329 12,563 12,941 12,907

  7. Delaware Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Consumption (Million Cubic Feet) Delaware Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,989 2,006 1,830 1,718 1,229 1,429 1,454 1,433 1,557 1,971 1,804 1,639 2002 1,550 1,301 1,328 1,111 857 804 1,053 1,166 1,778 1,965 2,120 2,600 2003 2,167 1,702 1,251 847 748 850 828 969 1,095 1,212 1,668 1,836 2004 1,938 1,515 1,466 1,176 1,290 964 1,027 911 1,043 1,164 1,571 1,960 2005 2,068 1,465 1,558 1,055 1,185 825 804 930

  8. Connecticut Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Consumption (Million Cubic Feet) Connecticut Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 2,225 2,099 2,243 2,115 2,331 2,168 2,517 1,977 1,952 2,104 2,118 1,773 2002 2,982 2,873 2,953 2,080 2,249 2,098 2,273 1,936 2,029 2,388 2,516 2,673 2003 2,442 2,098 2,170 2,119 1,737 1,511 1,686 1,897 1,715 2,072 1,813 2,294 2004 2,264 2,166 2,044 1,742 1,431 1,342 1,330 1,300 1,519 1,483 2,003 1,906 2005 2,172 2,173 2,136

  9. Iowa Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Consumption (Million Cubic Feet) Iowa Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,174 8,509 8,666 7,687 7,439 6,610 6,490 6,582 6,852 7,846 8,268 8,465 2002 8,979 8,036 8,306 7,943 7,429 6,094 6,095 6,628 6,589 7,622 9,370 9,132 2003 8,957 10,155 8,270 7,315 7,108 6,661 6,665 6,380 7,288 7,710 8,640 8,708 2004 9,207 9,312 8,522 7,541 6,876 6,676 6,354 6,568 6,673 7,660 9,564 8,936 2005 10,425 10,143 7,559 8,502

  10. Idaho Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Consumption (Million Cubic Feet) Idaho Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,074 2,803 2,755 2,621 2,499 2,410 2,413 2,093 2,150 2,413 2,536 2,669 2002 2,888 2,668 2,675 2,483 2,400 2,157 1,830 1,872 2,281 2,490 2,451 2,533 2003 2,492 2,203 2,403 2,209 2,008 2,005 1,632 1,544 1,909 2,062 2,109 2,113 2004 2,435 2,255 2,117 2,006 1,694 1,885 1,724 1,618 1,736 2,215 2,081 2,142 2005 2,269 2,201 1,970 1,920

  11. Minnesota Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Consumption (Million Cubic Feet) Minnesota Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,110 8,557 8,841 7,676 6,052 6,046 6,202 7,183 7,926 7,945 9,056 7,858 2002 9,366 8,391 9,188 7,661 7,001 6,431 6,011 7,494 6,376 8,535 9,542 9,675 2003 9,539 9,625 8,206 7,310 6,802 6,487 6,575 6,769 6,284 8,202 9,271 9,703 2004 9,787 8,941 8,594 7,829 6,637 7,549 6,968 6,623 7,309 7,714 9,582 9,571 2005 10,057 8,561 7,940 6,667

  12. Massachusetts Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Consumption (Million Cubic Feet) Massachusetts Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,223 9,199 6,246 8,282 6,935 5,213 5,613 6,996 5,547 6,493 4,811 6,625 2002 8,237 8,719 9,197 7,344 6,115 6,321 4,184 7,865 6,085 6,264 7,442 8,179 2003 6,407 5,586 5,349 4,041 3,162 2,280 1,505 1,400 1,279 6,410 2,015 4,694 2004 5,947 6,303 5,074 4,289 2,798 2,262 1,946 1,570 1,779 2,266 5,077 4,234 2005 6,342 6,707 6,262

  13. Arkansas Oklahoma Gas Company (AOG)- Commerial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Arkansas Oklahoma Gas (AOG) programs are available to all commercial and industrial AOG customers in Arkansas. The Commercial and Industrial Prescriptive program offers rebates for the instal...

  14. Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and

    Office of Environmental Management (EM)

    Logistical Challenges to Smart Grid | Department of Energy Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid The undersigned members of the natural gas industry are pleased to submit for your consideration the following comments in response to the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability's

  15. 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China September 17, 2015 - 9:17am Addthis 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China This morning, Assistant Secretary for Fossil Energy Chris Smith, along with Zhang Yuqing, Deputy Administrator of China's National Energy Administration (NEA), opened the 15th US-China Oil and Gas Industry Forum (OGIF) in Chongqing,

  16. Emergence of the nuclear industry and associated crime. Master's thesis

    SciTech Connect (OSTI)

    Vaught, J.W.

    1991-08-01

    Nuclear energy, in weapons production and electrical power generation, is a technology that has endured public scrutiny since the late 1940s. Societal acceptance of this industry has been affected by controversy in the following areas: health effects of exposure to radiation, possible consequences resulting from accidents, and nuclear nonproliferation. The literature review begins in Chapter 2 by examining the changing public perceptions of nuclear energy over the last forty years. Support for the ideals and practices of the industry has often wavered, due to media representation of incidents, accidents, and potential catastrophic events. The second part of the chapter highlights the crimes associated with nuclear energy in a chronological order of concern by nuclear industry security specialists. Research has found certain types of crime to be more prevalent during particular eras than others. Crimes instigated by spies, peace activists, terrorists, and the insider (employee) are reviewed, with an emphasis on insider crime.

  17. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2009-09-30

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE??s goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

  18. Organizations and associations serving the Waste-To-energy industry

    SciTech Connect (OSTI)

    Not Available

    1998-12-01

    Professional organizations can provide leadership in disseminating information and answering questions about, and in providing support for, the industry. Eleven such organizations and association that directly, or in part, promote or provide technical assistance in the waste-to-energy field are listed and described briefly. Some actively lobby on waste-to-energy issues. Some provide useful publications and newsletters for those interested in keeping up with changes in the field.

  19. Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11.65 11.84 11.04 11.08 11.23 11.17 11.07 10.89 10.62 11.18 10.76 10.56 2002 8.59 10.48 9.85 9.66 9.97 10.63 10.22 10.43 10.65 10.24 10.98 10.71 2003 10.62 10.92 11.35 12.15 12.35 12.19 11.82 12.14 12.15 12.29 12.17 11.93 2004 12.10 12.37 12.14 12.29 13.18 13.31 13.20 13.15 13.79 14.06 14.30 14.84 2005 14.68 14.45 14.65 15.04

  20. Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 10.05 9.35 7.56 6.07 5.80 5.01 4.55 4.21 3.78 3.00 4.52 3.39 2002 4.07 3.67 3.48 4.65 6.74 5.02 5.11 4.84 4.98 4.92 5.48 5.74 2003 6.56 7.08 9.43 6.70 6.43 7.31 6.62 5.86 5.85 6.10 6.32 6.54 2004 7.95 7.97 6.88 6.96 7.27 8.03 7.89 7.47 6.69 7.22 9.07 7.20 2005 8.99 8.10 8.90 8.37 8.32 8.01 8.52 8.85 11.71 13.33 13.71 14.78 2006

  1. the District of Columbia Natural Gas Industrial Consumption (Million Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feet) the District of Columbia Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0

  2. Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7.37 4.61 11.53 7.36 8.20 6.89 6.65 6.54 6.29 6.19 5.68 6.11 2002 6.58 6.02 6.11 6.16 5.47 7.23 6.29 6.47 6.68 6.34 5.84 5.53 2003 5.33 5.80 7.15 6.71 6.71 6.78 6.38 6.70 7.27 5.95 6.08 6.75 2004 6.39 7.89 6.75 7.26 7.28 7.46 8.39 8.59 8.40 7.30 8.83 8.47 2005 8.85 9.59 9.28 11.33 10.93 10.46 10.46 9.33 10.77 11.27 13.11 14.05

  3. Colorado Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Colorado Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17,268 13,981 12,731 14,667 10,985 9,633 9,063 9,888 8,555 8,139 11,955 10,843 2002 10,256 10,606 12,835 11,039 9,828 10,392 12,914 9,205 9,597 12,317 9,933 11,415 2003 11,626 11,414 9,920 7,462 10,331 7,436 9,508 9,023 7,330 7,354 9,958 10,976 2004 11,434 10,376 8,694 9,635 8,728 7,987 8,460 8,200 7,683 8,441 8,231 14,305 2005 12,086 10,602

  4. Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.36 10.07 10.38 7.40 6.89 6.77 6.64 6.64 6.70 5.59 4.12 5.12 2002 6.99 7.76 5.79 5.13 4.85 4.66 4.30 4.21 4.40 4.65 5.49 6.17 2003 7.12 8.22 4.75 4.13 4.15 4.26 4.00 3.95 4.00 6.28 7.97 9.22 2004 9.06 9.91 7.06 6.62 6.59 6.58 6.49 5.88 6.51 7.29 8.08 10.51 2005 7.53 7.58 7.88 7.91 8.19 8.73 8.66 8.95 8.56 8.40 9.99 11.41 2006

  5. Florida Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Florida Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,915 7,333 7,528 7,465 8,401 7,285 8,899 7,721 8,196 8,140 7,811 8,016 2002 7,262 7,044 7,671 8,047 7,119 5,988 6,469 6,798 6,548 7,102 6,751 6,768 2003 6,976 6,327 6,236 6,325 6,434 5,724 5,837 5,951 5,864 6,209 5,645 5,805 2004 5,990 5,630 6,086 5,814 5,716 4,795 4,979 5,118 4,135 4,753 4,918 5,668 2005 6,333 5,502 5,781 6,271 5,999 5,194

  6. Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8.27 8.02 9.74 8.61 6.66 7.56 6.92 6.22 5.76 5.66 4.51 4.24 2002 5.51 5.35 5.41 4.67 5.27 5.58 5.25 5.17 5.29 5.40 5.30 5.91 2003 5.32 6.03 5.59 7.11 6.97 6.62 7.08 8.14 8.03 7.88 7.25 7.67 2004 7.62 7.91 8.36 8.02 8.00 8.56 9.34 8.95 8.12 8.29 7.64 8.48 2005 9.57 8.52 7.99 8.37 8.42 8.99 8.43 9.99 9.03 12.11 12.07 11.24 2006

  7. Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 10.11 11.82 8.37 8.23 7.19 6.24 3.13 4.62 5.22 4.61 5.15 5.92 2002 5.31 4.97 4.95 4.15 4.88 4.74 4.08 4.10 4.89 4.87 5.56 6.09 2003 7.67 8.43 9.08 8.54 7.03 7.61 7.10 6.50 6.83 6.61 6.56 7.52 2004 12.70 9.38 9.03 8.09 8.00 8.28 7.80 7.86 7.77 7.85 11.27 11.09 2005 9.85 10.02 10.36 10.81 9.51 8.73 9.55 10.51 13.43 17.16 16.27

  8. Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.54 8.44 9.52 7.96 6.35 8.08 5.35 5.74 5.26 3.87 4.25 3.42 2002 4.97 4.57 4.89 4.97 5.35 5.37 5.22 4.93 5.11 5.69 6.24 7.14 2003 6.43 6.25 7.71 5.55 6.61 6.87 7.22 5.12 6.15 5.92 6.32 7.20 2004 7.17 6.68 6.80 6.97 7.87 8.32 8.60 8.21 7.12 6.42 7.00 8.44 2005 8.17 7.80 8.09 7.66 8.11 7.65 7.92 9.24 10.27 11.53 12.18 12.05 2006 10.95

  9. Louisiana Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Louisiana Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 59,442 59,434 64,182 60,893 56,959 53,080 57,884 64,447 64,571 69,233 69,913 73,048 2002 70,512 65,911 67,135 60,540 59,376 59,591 64,331 64,681 62,517 67,104 76,062 77,070 2003 72,726 62,959 66,109 65,699 64,719 53,203 61,688 63,784 62,246 62,280 64,440 70,346 2004 71,841 68,808 68,634 66,085 66,036 63,882 68,547 67,912 66,218 68,354 69,066

  10. Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.70 6.97 5.81 5.77 5.43 5.18 4.49 4.18 4.12 3.54 3.85 3.59 2002 3.36 2.97 3.29 3.41 3.67 3.52 3.62 3.29 3.95 4.00 4.40 4.44 2003 5.15 5.98 8.01 5.35 5.34 6.07 5.53 4.84 5.09 4.98 4.91 5.47 2004 6.60 5.98 5.60 5.81 6.31 6.88 6.33 6.42 5.59 6.44 7.91 8.07 2005 6.86 7.31 6.81 7.81 7.14 6.88 7.69 8.45 11.78 14.71 13.93 12.54 2006

  11. Kansas Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Kansas Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,002 8,035 8,007 7,187 5,497 6,335 8,627 10,037 9,467 6,721 7,176 7,259 2002 7,922 7,346 7,976 6,741 7,964 7,812 9,890 13,216 11,270 8,045 10,155 10,049 2003 10,045 9,012 8,326 7,215 8,177 7,265 10,127 9,127 10,209 8,954 7,754 8,580 2004 8,778 7,435 7,869 7,557 7,828 7,713 8,023 8,936 8,734 10,148 8,704 9,084 2005 9,237 8,405 7,922 7,223 7,497

  12. Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8.77 10.38 7.59 7.09 6.09 5.29 4.78 4.48 4.65 3.29 3.09 3.99 2002 4.67 4.36 3.55 3.54 3.53 3.43 3.39 3.32 3.47 4.08 4.84 4.67 2003 5.44 5.49 6.14 5.94 4.79 5.27 4.89 4.63 4.47 4.61 4.92 5.39 2004 7.30 7.93 6.36 5.82 5.83 6.42 6.50 6.44 5.85 6.64 7.42 8.41 2005 8.81 8.69 8.62 8.33 7.27 6.61 7.10 7.26 7.83 10.44 10.55 11.14 2006

  13. Kentucky Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Kentucky Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11,054 8,742 7,395 9,901 6,629 6,460 6,740 6,597 7,074 7,364 8,090 8,851 2002 10,214 9,404 9,297 8,186 8,277 7,314 7,074 6,669 7,743 9,145 9,856 9,932 2003 11,702 9,996 8,913 7,847 7,552 6,781 6,777 7,226 7,568 8,569 8,686 10,655 2004 11,629 10,760 10,598 9,045 8,910 8,413 8,094 8,712 8,332 9,496 9,776 10,526 2005 11,242 10,146 10,519 9,307

  14. Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8.55 8.47 8.09 7.29 6.31 5.90 5.58 5.10 4.29 4.78 5.09 4.77 2002 4.88 4.69 4.15 4.57 4.50 4.26 4.14 3.99 4.25 4.66 5.46 5.36 2003 5.80 6.30 8.68 6.38 6.42 6.88 6.54 6.03 6.40 5.88 6.42 6.92 2004 7.65 7.53 6.89 6.77 6.84 7.39 7.27 7.21 6.61 6.97 8.58 8.08 2005 7.92 8.11 7.89 8.38 8.17 7.79 8.32 8.91 11.11 13.42 14.35 12.71 2006

  15. Illinois Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Illinois Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 30,126 27,294 28,116 22,192 19,913 18,238 19,905 20,406 19,383 24,125 23,899 23,695 2002 28,312 26,992 27,788 25,387 23,234 20,581 20,901 19,953 18,993 24,645 25,907 27,786 2003 31,254 28,899 26,298 21,911 19,034 17,861 17,230 18,104 18,657 20,858 24,087 26,077 2004 29,852 27,792 26,094 21,637 18,997 17,420 17,806 17,754 17,735 20,119 22,025

  16. Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 10.56 9.55 8.26 7.06 6.31 6.24 4.99 5.18 4.53 3.70 3.54 4.34 2002 4.00 4.45 4.24 4.64 5.77 5.43 4.97 5.13 4.95 5.15 5.77 5.79 2003 6.28 6.86 8.79 7.38 6.63 8.25 8.12 7.27 7.19 6.90 6.69 7.45 2004 7.69 7.94 7.40 8.13 8.03 8.55 8.07 8.44 8.32 7.80 8.45 8.76 2005 8.47 7.86 8.25 9.39 9.65 9.40 8.39 9.08 10.25 12.31 12.71 13.07 2006

  17. Indiana Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Indiana Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,677 23,164 24,258 19,456 18,831 18,369 17,553 20,171 17,971 21,014 20,330 22,971 2002 24,441 23,170 23,714 20,750 18,770 17,297 19,398 20,664 19,688 22,268 23,322 25,579 2003 27,047 24,384 21,994 19,376 18,238 16,652 16,774 17,813 18,398 20,589 22,780 24,621 2004 28,155 25,447 25,012 21,558 19,052 18,264 18,325 19,767 19,514 20,781 22,067

  18. Indiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.25 8.48 12.91 9.81 10.26 9.21 12.67 9.57 5.46 3.85 7.01 3.34 2002 7.27 5.92 4.39 6.85 7.28 5.89 5.22 4.81 4.22 4.17 5.16 5.88 2003 6.85 8.02 10.84 10.03 7.84 10.46 9.36 8.56 5.98 10.73 6.50 9.40 2004 11.18 9.96 7.96 10.35 7.42 9.65 6.55 6.70 5.84 5.87 5.77 7.19 2005 7.83 10.43 8.06 10.90 10.16 8.75 9.36 8.94 10.85 11.53 10.54

  19. Mississippi Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Mississippi Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 10,677 6,909 9,399 8,347 8,233 7,961 7,703 7,984 8,097 7,304 8,146 8,580 2002 8,485 8,021 8,941 7,960 8,002 7,800 8,401 8,207 7,668 8,724 8,987 9,761 2003 9,949 8,529 7,392 7,250 6,818 7,414 6,619 6,544 6,475 7,002 7,111 8,618 2004 8,198 8,208 9,033 8,529 8,545 8,657 8,384 8,535 7,419 7,376 8,781 9,338 2005 9,767 8,472 8,624 8,362 8,012

  20. Mississippi Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11.59 7.72 6.09 6.16 6.13 4.61 4.85 4.27 4.04 3.79 4.68 3.72 2002 4.10 3.85 3.73 4.37 4.96 4.39 4.45 4.29 4.36 4.95 5.41 5.50 2003 5.39 6.84 8.53 5.36 5.80 6.49 5.86 5.69 6.52 6.23 6.87 6.36 2004 7.34 7.68 5.64 5.31 6.29 7.05 6.44 6.42 5.59 5.81 8.02 7.70 2005 6.34 7.37 7.39 8.13 7.67 7.40 7.55 8.42 9.87 13.41 14.54 13.10

  1. Missouri Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Missouri Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8,526 7,720 5,601 5,511 4,509 4,386 4,772 4,809 4,386 4,954 5,329 7,342 2002 7,089 5,945 6,709 5,703 5,620 4,458 4,410 4,486 4,255 6,007 5,966 6,319 2003 7,084 6,868 6,028 4,820 4,273 3,942 3,396 4,833 4,317 4,659 5,254 6,070 2004 7,377 6,846 5,989 5,220 4,565 4,624 4,193 4,543 4,470 4,690 5,183 6,783 2005 7,534 6,457 6,449 5,350 4,758 4,701

  2. Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7.92 10.53 10.14 9.45 8.91 8.70 8.15 8.20 7.78 7.63 7.61 2.74 2002 6.13 5.43 5.13 6.03 6.10 6.07 6.45 6.24 6.18 6.44 6.62 6.94 2003 7.03 7.47 7.77 9.41 8.41 7.97 7.24 8.18 8.15 8.31 8.31 8.34 2004 8.42 8.82 8.06 8.44 8.38 8.85 9.33 8.72 8.70 8.61 10.04 9.58 2005 9.60 9.80 10.04 10.18 10.14 10.06 10.11 10.08 10.90 12.07 13.25

  3. Montana Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Montana Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 2,448 2,226 2,224 1,871 1,230 1,230 1,497 1,337 1,241 1,558 2,089 1,972 2002 2,134 2,136 1,938 2,296 1,672 1,554 1,351 1,409 1,696 1,920 2,215 1,547 2003 2,105 1,990 1,859 1,842 1,310 1,413 1,122 1,086 1,234 1,701 2,238 2,294 2004 2,487 2,030 1,804 1,456 1,444 1,206 1,129 1,277 1,387 1,883 2,095 2,283 2005 2,438 1,968 2,138 1,678 1,466 1,274

  4. Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 4.63 5.95 4.89 4.79 4.96 5.90 6.07 6.56 6.56 5.79 4.84 4.68 2002 3.01 2.73 2.61 2.51 2.39 2.62 3.20 3.60 3.27 2.89 2.59 2.81 2003 3.67 3.75 3.93 3.60 3.90 4.05 5.23 6.50 6.66 6.39 5.85 5.80 2004 6.14 6.32 6.62 7.02 6.03 6.19 6.37 7.11 6.73 6.10 6.11 6.35 2005 7.94 7.34 7.19 6.84 7.31 7.48 7.76 8.94 9.06 9.83 10.08 10.24 2006

  5. Maine Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.56 9.56 9.83 9.95 9.13 7.98 8.06 6.65 8.25 5.75 4.42 4.60 2002 9.38 8.81 8.44 8.08 7.33 7.65 6.64 7.60 7.45 7.61 9.77 10.02 2003 9.83 9.48 9.50 10.29 10.26 9.36 9.49 9.80 8.70 9.64 10.49 9.72 2004 10.84 11.76 10.46 9.86 9.38 10.33 9.04 8.78 8.67 9.27 11.96 12.32 2005 12.81 13.04 13.11 12.85 10.21 11.15 10.89 11.50 15.21 15.31

  6. Maryland Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Maryland Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 2,601 2,365 2,538 2,053 2,019 2,312 2,204 2,437 1,999 2,117 2,701 2,065 2002 2,389 2,374 2,739 2,107 1,755 2,047 2,242 2,271 1,836 2,161 2,776 2,485 2003 2,121 2,157 2,041 2,422 1,445 1,361 1,395 1,420 1,487 1,373 2,102 2,505 2004 2,595 2,075 2,209 1,837 1,694 1,943 1,767 1,711 1,518 1,818 1,933 2,261 2005 2,150 2,038 2,319 1,477 2,034 1,988

  7. Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11.60 14.47 10.27 9.58 8.95 8.49 6.31 6.06 6.20 6.00 7.00 6.62 2002 8.10 6.51 7.18 6.55 8.66 8.76 7.01 8.03 6.93 7.29 7.31 7.43 2003 8.41 8.62 11.37 11.41 10.93 11.70 9.64 12.04 9.18 8.72 9.57 7.49 2004 9.40 11.11 10.69 10.62 10.65 11.49 12.39 11.28 10.70 10.82 10.40 10.37 2005 10.46 10.85 10.19 11.38 10.68 10.33 10.99 10.95

  8. Massachusetts Natural Gas Industrial Price (Dollars per Thousand Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feet) Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8.04 8.71 11.80 11.09 10.44 9.23 8.98 8.99 9.79 7.62 7.95 8.07 2002 8.18 7.38 7.18 6.95 7.56 6.02 5.26 5.57 7.53 5.83 6.87 9.52 2003 11.26 12.64 13.31 15.04 13.98 11.25 12.10 12.34 13.23 1.71 12.47 13.92 2004 10.82 12.38 12.13 12.62 12.25 11.44 10.15 14.04 13.85 12.37 13.64 13.82 2005 12.91 12.27 12.23 12.93 12.49

  9. Michigan Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Michigan Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 25,494 22,752 22,291 20,181 16,240 15,260 16,263 15,666 14,433 16,600 18,669 20,006 2002 23,016 23,762 20,891 21,878 19,293 18,230 17,903 17,019 15,021 15,825 19,810 23,485 2003 26,081 25,855 22,526 19,100 15,427 13,472 13,400 14,298 13,093 14,244 16,883 18,873 2004 24,023 23,433 23,399 18,226 15,843 14,028 13,355 13,293 13,411 13,883 17,417

  10. Michigan Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 4.35 4.40 4.46 4.40 5.76 5.77 5.32 5.24 5.18 5.15 5.17 5.14 2002 4.95 5.02 4.99 4.83 4.95 5.13 6.26 5.44 5.26 5.19 5.05 3.71 2003 4.76 4.90 5.31 5.46 5.87 6.51 6.36 6.73 6.59 6.00 5.41 6.42 2004 6.48 6.63 6.32 6.28 6.38 7.41 7.91 7.82 7.63 7.41 7.86 7.74 2005 7.59 7.25 7.34 8.16 8.21 8.95 9.15 9.69 9.91 11.32 10.87 10.74 2006

  11. New Mexico Associated-Dissolved Natural Gas, Reserves in Nonproducing...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade...

  12. ,"New Mexico Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  13. ,"Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  14. ,"Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  15. ,"Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  16. ,"Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  17. ,"Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  18. ,"Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  19. ,"Texas Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

  20. ,"West Virginia Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  1. ,"Louisiana State Offshore Associated-Dissolved Natural Gas,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  2. ,"California State Offshore Associated-Dissolved Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  3. ,"Texas State Offshore Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  4. ,"New York Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  5. QER- Comment of American Gas Association 4

    Broader source: Energy.gov [DOE]

    From: Peterson, Christopher (EIA)Sent: Tuesday, October 14, 2014 12:11 PMTo: Pierpoint, LaraSubject: FW: AGA comments to QER: Natural Gas Emissions Section

  6. North Shore Gas- Commercial & Industrial Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    North Shore Gas offers the Chicagoland Natural Gas Savings Program to help non-residential customers purchase energy efficient equipment. Rebates are available on energy efficient furnaces, boilers...

  7. Laclede Gas Company - Commercial and Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Gas Steamer: 475 Food Service Gas Fryer: 350 Food Service Griddle: 400 Food Service Convection Oven: 200 Kitchen Low-Flow Spray Nozzle: 100 Program Info Sector Name Utility...

  8. North Dakota Industrial Commission, Oil and Gas Divisioin | Open...

    Open Energy Info (EERE)

    in Bismarck, North Dakota. About The Oil and Gas Division regulates the drilling and production of oil and gas in North Dakota. Our mission is to encourage and promote the...

  9. American Gas Association (AGA) for DOE Furnace Product Class | Department

    Energy Savers [EERE]

    of Energy (AGA) for DOE Furnace Product Class American Gas Association (AGA) for DOE Furnace Product Class Thank you for the opportunity to brief your staff in recent weeks on an impact analysis of a national condensing furnace standard, which was conducted jointly by the American Gas Association (AGA), the American Public Gas Association (APGA), and the Gas Technology Institute (GTI). PDF icon AGA e-mail for DOE Furnace Product Class PDF icon AGA Cover Letter for Furnace Product Class White

  10. American Gas Association Ex Parte Communication | Department of Energy

    Energy Savers [EERE]

    Ex Parte Communication American Gas Association Ex Parte Communication On March 30, 2015, representatives of the American Gas Association (AGA) met with officials and staff of the U.S. Department of Energy (DOE) to discuss the notice of proposed rulemaking (NOPR) on minimum energy efficiency standards for residential natural gas furnaces. PDF icon AGA Memorandum Ex Parte Communication 4-3-15 PDF icon AGA Summary Statement for March 27 2015 Public Meeting FINAL More Documents & Publications

  11. American Gas Association Memorandum Summarizing Ex Parte Communication |

    Energy Savers [EERE]

    Department of Energy Memorandum Summarizing Ex Parte Communication American Gas Association Memorandum Summarizing Ex Parte Communication On October 9, 2014, a workshop was hosted by the American Gas Association and Washington Gas Light (WGL) at WGLs Training Facility in Springfield, VA. PDF icon AGA Memorandum Summarizing Ex Parte Communication PDF icon Condensing Heating and Water Heating Equipment Workshop Agenda PDF icon October 9th Workshop Presentation - Melissa Adams PDF icon October

  12. Laclede Gas Company- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Commercial and Industrial customers can receive rebates for various energy efficiency measures. Customers implementing specified efficiency measures can receive prescriptive rebates. All other...

  13. Austin Utilities (Gas and Electric) - Commercial and Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    commercial location per year, 5,000 per industrial location per year Program Info Sector Name Utility Administrator Austin Utilities Website http:www.austinutilities.compages...

  14. Natural Gas Industry Restructuring and EIA Data Collection

    Reports and Publications (EIA)

    1996-01-01

    The Energy Information Administration's (EIA) Reserves and Natural Gas Division has undertaken an in-depth reevaluation of its programs in an effort to improve the focus and quality of the natural gas data that it gathers and reports. This article is to inform natural gas data users of proposed changes and of the opportunity to provide comments and input on the direction that EIA is taking to improve its data.

  15. Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Nebraska Associated-Dissolved Natural

  16. QER- Comment of American Gas Association 3

    Broader source: Energy.gov [DOE]

    Dear Ms. Pickett: Attached please find AGA's comments on natural gas vehicle fueling infrastructure as part of our response to the first phase of the DOE Quadrennial Energy Review (QER), consisting of a cover letter and attachments. Respectfully submitted, Kathryn Clay

  17. Gas reburn retrofit on an industrial cyclone boiler

    SciTech Connect (OSTI)

    Farzan, H.; Latham, C.E.; Maringo, G.J.

    1996-01-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, is being retrofitted with the gas reburning technology developed by Babcock & Wilcox (B & W) to reduce NO{sub x} emissions in order to comply with the Title I, ozone nonattainment, of the Clean Air Act Amendments (CAAA) of 1990. The required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit set in New York`s regulation is about 47%. Eastman Kodak and the Gas Research Institute (GRI) are cosponsoring this project. B & W is the prime contractor and contract negotiations with Chevron as the gas supplier are presently being finalized. Equipment installation for the gas reburn system is scheduled for a September 1995 outage. No. 43 Boiler`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow or approximately equivalent to 60 MW{sub e}. Because of the compact boiler design, there is insufficient gas residence time to use pulverized coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Based on successful completion of this gas reburn project, modifying the other three cyclone boilers with gas reburn technology is anticipated. The paper will describe B & W`s gas reburn data from a cyclone-equipped pilot facility (B & W`s Small Boiler Simulator), gas reburn design information specific to Eastman Kodak No. 43 Boiler, and numerical modeling experiences based on the pilot-scale Small Boiler Simulator (SBS) results along with those from a full-scale commercial boiler.

  18. Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power (CLFP) offers incentives tocommercial and industrial gas customers who install energy efficient equipment inexisting buildings. Incentives are available for boilers...

  19. DOE to Launch Collaborative Effort with Industry to Improve Natural Gas

    Energy Savers [EERE]

    Systems | Department of Energy to Launch Collaborative Effort with Industry to Improve Natural Gas Systems DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems July 30, 2014 - 1:10pm Addthis UPDATE - NOVEMBER 19, 2014: The agenda, participant list, and presentations from the workshop are now available. Immediately after a Capstone Methane Stakeholder Roundtable hosted by the White House and the Department of Energy on July 29th, DOE announced a series of actions,

  20. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect (OSTI)

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540C and the helium coolant was delivered at 7 MPa at 625925C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  1. The impact of corrosion on the oil and gas industry

    SciTech Connect (OSTI)

    Kermani, M.B.; Harrop, D.

    1996-08-01

    The impact of corrosion on the oil industry has been viewed in terms of its effect on both capital and operational expenditures (CAPEX and OPEX) and health, safety, and the environment (HSE). To fight against the high cost and the impact of corrosion within the oil industry, an overview of topical research and engineering activities is presented. This covers corrosion and metallurgy issues related to drilling, production, transportation, and refinery activities.

  2. The impact of corrosion on oil and gas industry

    SciTech Connect (OSTI)

    Kermani, M.B.; Harrop, D.

    1995-11-01

    The impact of corrosion on the oil industry has been viewed in terms of its effect on both capital and operational expenditures (CAPEX and OPEX) and health, safety and the environment (HSE). To fight against the high cost and the impact of corrosion within the oil industry, an overview of topical research and engineering activities is presented. This covers corrosion and metallurgy issues related to drilling, production, transportation and refinery activities.

  3. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  4. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  5. RG&E (Gas)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficiency equipment who pay a natural gas Systems Benefits Charge (SBC). Both prescriptive rebates and custom...

  6. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications - Volume I

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications Volume I: Main Text Subcontract No. 85X-TA009V Final Report to Lockheed Martin Energy Research Corporation and the DOE Office of Industrial Technologies January 2000 Notice: This report was prepared by Arthur D. Little for the account of Lockheed Martin Energy Research Corporation and the DOE's Office of Industrial Technologies. This report represents Arthur D. Little's best judgment in light of

  7. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2009-10-01

    This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

  8. FERC hears gas industry concerns, announces Transco settlement. [Federal Energy Regulatory Commission

    SciTech Connect (OSTI)

    Rodgers, L.M.

    1991-07-01

    This article examines the industry comments on the Federal Energy Regulatory Commission's (FERC) notice of proposed rulemaking on natural gas pipeline function and comparability of service and the resolution of a charge of violations of regulations against the Transcontinental Gas Pipe Line Corporation by the FERC's Office of the General Council.

  9. Ethane from associated gas still the most economical

    SciTech Connect (OSTI)

    Farry, M.

    1998-06-08

    Ethane extracted from associated gas is one of the cheapest ways to produce ethylene. This is the conclusion reached by a set of recent studies on natural gas processing and conversion published by Chem Systems Ltd. Ethane cracking usually requires a large gas project for ethane to be produced in sufficient quantity for a world-scale cracker, limiting the number of cases where this is feasible. Ethane extracted from LNG plants is an alternative source of cracker feedstock. Although more costly, gas-to-olefins technology is a potential alternative to ethane cracking.

  10. Overview of the effect of Title III of the 1990 Clean Air Act Amendments on the natural gas industry

    SciTech Connect (OSTI)

    Child, C.J.

    1995-12-31

    The regulation of hazardous air pollutants by Title III of the Clean Air Act Amendments of 1990 has a potential wide-ranging impact for the natural gas industry. Title III includes a list of 189 hazardous air pollutants (HAPs) which are targeted for reduction. Under Title III, HAP emissions from major sources will be reduced by the implementation of maximum achievable control technology (MACT) standards. If the source is defined as a major source, it must also comply with Title V (operating permit) and Title VII (enhanced monitoring) requirements. This presentation will review Title III`s effect on the natural gas industry by discussing the regulatory requirements and schedules associated with MACT as well as the control technology options available for affected sources.

  11. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  12. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect (OSTI)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  13. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 34 12 27 31 14 25 41 13 28 39 1990's 22 14 11 9 11 32 28 31 17 54 2000's 19 19 20 14 12 14 19 15 9 78 2010's 10 104 7 19 18 - = No

  14. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 67 1980's 73 66 74 80 114 105 66 61 71 105 1990's 126 108 85 53 43 27 47 51 47 31 2000's 35 26 33 27 20 20 21 30 45 38 2010's 36 62 62 43 58 - = No Data Reported; --

  15. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 51 1980's 122 89 81 108 77 91 98 97 101 68 1990's 86 66 61 53 55 53 51 42 52 67 2000's 70 85 94 112 130 161 195 219 197 312 2010's 302 270 289 304 325 - = No Data

  16. Florida Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 108 1980's 122 99 86 64 90 81 69 62 69 57 1990's 53 45 55 59 117 110 119 112 106 100 2000's 93 96 102 92 88 87 50 110 1 7 2010's 30 2 0 1 0 - = No Data Reported; -- =

  17. Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 93 44 49 - = No Data Reported; -- = Not

  18. Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 765 1980's 916 1,040 832 775 690 632 567 488 249 237 1990's 241 192 160 120 134 133 255 287 183 260 2000's 186 168 159 139 107 98 90 73 78 53

  19. Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 733 1980's 883 758 719 824 774 689 577 569 491 432 1990's 408 437 352 328 357 326 347 281 228 227 2000's 214 159 214 269 193 153 192 179 148 77 2010's 72 77 94 125 108

  20. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 100 46 141 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 1980's 194 184 174 194 189 157 150 145 157 145 1990's 67 136 133 93 85 104 89 56 38 41 2000's 39 30 38 37 40 46 44 37 12 20 2010's 29 46 82 135 189 - = No Data

  2. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    Gasoline and Diesel Fuel Update (EIA)

    After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 307 1980's 265 265 325 344 256 254 261 243 220 233 1990's 228 220 196 135 145 109 120 129 116 233 2000's 244 185 197

  3. California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas,

    Gasoline and Diesel Fuel Update (EIA)

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 207 162 103 114 162 185 149 155 158 141 1990's 110 120 100 108 108 115 112 143 153 174 2000's 203

  4. California Federal Offshore Associated-Dissolved Natural Gas, Wet After

    Gasoline and Diesel Fuel Update (EIA)

    Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 249 1980's 307 1,110 1,249 1,312 1,252 1990's 1,229 995 987 976 1,077 1,195 1,151 498 437 488 2000's 500 490 459 456 412 776 756

  5. Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 1980's 11 14 14 21 78 67 22 21 8 19 1990's 23 20 10 8 9 36 47 92 79 96 2000's 157 168 137 164 125 134 151 130 127 133 2010's 144 134 125 269 299 - = No Data

  6. Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318

  7. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect (OSTI)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  8. NOx reduction technology for natural-gas-industry prime movers. Special report, August 1990

    SciTech Connect (OSTI)

    Castaldini, C.

    1990-08-01

    The applicability, performance, and costs are summarized for state-of-the-art NOx emission controls for prime movers used by the natural gas industry to drive pipeline compressors. Nearly 7700 prime movers of 300 hp or greater are in operation at compressor stations. NOx control technologies for application to reciprocating engines are catalytic reduction, engine modification, exhaust gas recirculation, and pre-stratified charge. Technologies discussed for application to gas turbines are catalytic reduction, water or steam injection, and low-NOx combustors.

  9. Derivatives and Risk Management in the Petroleum, Natural Gas, and Electricity Industries

    Reports and Publications (EIA)

    2002-01-01

    In February 2002 the Secretary of Energy directed the Energy Information Administration (EIA) to prepare a report on the nature and use of derivative contracts in the petroleum, natural gas, and electricity industries. Derivatives are contracts ('financial instruments') that are used to manage risk, especially price risk.

  10. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2011-09-01

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  11. DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems

    Broader source: Energy.gov [DOE]

    DOE will launch a collaborative effort with industry to evaluate and scope high-impact manufacturing R&D to improve natural gas systems efficiency and leak reduction. The goal of this effort is to establish an advanced manufacturing initiative. AMO will lead this effort.

  12. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn K; Lu, Hongyou; Liu, Xu; Tsen, Katherine; Xiangyang, Wei; Yunpeng, Zhang; Jian, Guan; Rui, Hou; Junfeng, Zhang; Yuqun, Zhuo; Shumao, Xia; Yafeng, Han; Manzhi, Liu

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  13. The NEPA mandate and federal regulation of the natural gas industry. [NEPA (National Environmental Policy Act)

    SciTech Connect (OSTI)

    Hoecker, J.J.

    1992-01-01

    Utility regulators increasingly take responsibility for the [open quotes]extemalities[close quotes] associated with their decisions, meaning the economic and social costs related to rate decisions or other kinds of authorizations. Yet, when Congress adopted the National Environmental Policy Act of 1969 (NEPA), it intervened to ensure protection of the natural environment, not from abuses by the citizenry but from the activities of the federal government itself. Comprised of action forcing procedures, NEPA was designed to infuse the decisional processes of federal agencies with a broad awareness of the environmental consequences of their actions. NEPA encourages decisionmakers to counterbalance the organic statutory and political missions of their departments or agencies with a sensitivity to the ecological consequences of their directives and authorizations. This paper examines how the requirements of NEPA have fared in the environment of classical public utility regulation at the Federal Energy Regulatory Commission. Commission proceedings did not evidence any widely held opinion that economic regulation of the gas industry is hostile to the NEPA process.

  14. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect (OSTI)

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids the redundant work generally done in the near-well regions. We improved the accuracy of the streamline simulator with a higher order mapping from pressure grid to streamlines that significantly reduces smoothing errors, and a Kriging algorithm is used to map from the streamlines to the background grid. The higher accuracy of the Kriging mapping means that it is not essential for grid blocks to be crossed by one or more streamlines. The higher accuracy comes at the price of increased computational costs, but allows coarser coverage and so does not generally increase the overall costs of the computations. To reduce errors associated with fixing the pressure field between pressure updates, we developed a higher order global time-stepping method that allows the use of larger global time steps. Third-order ENO schemes are suggested to propagate components along streamlines. Both in the two-phase and three-phase experiments these ENO schemes outperform other (higher order) upwind schemes. Application of the third order ENO scheme leads to overall computational savings because the computational grid used can be coarsened. Grid adaptivity along streamlines is implemented to allow sharp but efficient resolution of solution fronts at reduced computational costs when displacement fronts are sufficiently separated. A correction for Volume Change On Mixing (VCOM) is implemented that is very effective at handling this effect. Finally, a specialized gravity operator splitting method is proposed for use in compositional streamline methods that gives an effective correction of gravity segregation. A significant part of our effort went into the development of a parallelization strategy for streamline solvers on the next generation shared memory machines. We found in this work that the built-in dynamic scheduling strategies of OpenMP lead to parallel efficiencies that are comparable to optimal schedules obtained with customized explicit load balancing strategies as long as the ratio of number of streamlines to number of threads is sufficiently high, which is the case in real-fie

  15. New York Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New York Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  16. Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,360 2,391 2,128 1,794 1,741 1990's 1,554 1,394 1,167 926 980 1,001 1,039 1,016 911 979 2000's 807 796 670 586 557 588 561 641 1,235 1,072 2010's 679 639 773 870 908

  17. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    Gasoline and Diesel Fuel Update (EIA)

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,253 1980's 2,713 2,664 2,465 2,408 2,270 2,074 2,006 2,033 1,947 1,927 1990's 1,874 1,818 1,738 1,676 1,386

  18. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,961 1980's 3,345 2,660 2,663 2,546 2,507 1990's 2,400 2,213 2,093 1,982 1,698 1,619 1,583 1,820 1,879 2,150 2000's 2,198 1,922 1,900 1,810 2,006 2,585 2,155 2,193

  19. Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 1980's 200 259 206 173 208 167 190 219 177 236 1990's 510 682 762 1,162 1,088 1,072 1,055 533 772 781 2000's 960 1,025 1,097 1,186 1,293 1,326 1,541 1,838 2,010

  20. Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,246 1980's 2,252 2,441 2,426 2,269 2,244 2,149 2,191 2,017 1,894 1,785 1990's 1,820 1,406 1,483 1,550 1,342 1,228 1,023 1,015 1,196 1,238 2000's 1,113 1,109 1,177

  1. Human resource needs and development for the gas industry of the future

    SciTech Connect (OSTI)

    Klass, D.L.

    1991-01-01

    The natural gas industry will confront many challenges in the 1990s and beyond, one of which is the development of human resources to meet future needs. An efficient, trained work force in this era of environmental concern, high technology, and alternative fuels is essential for the industry to continue to meet the competition and to safely deliver our product and service to all customers. Unfortunately, during this period there will be an increasing shortfall of technical personnel to replace those lost to attrition and a steady decline in the availability of new employees who are able to read, write, and perform simple math. Technological and government developments that will impact the industry and the skill levels needed by the industry employees are reviewed. In-house and external training of professional and nonprofessional personnel and the benefits and disadvantages of selected advanced training methods are discussed. Recommendations are presented that can help improve the training of gas industry employees to meet future needs. 22 refs.

  2. EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

  3. Dakota Electric Association- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rebates are limited to 50% of the project cost up to a maximum of $100,000. Customers who wish to participate in this rebate program should call Dakota Electric Association before the new equipme...

  4. State of Terengganu: A development plan for the petrochemical industry and its associated downstream industries. Final report

    SciTech Connect (OSTI)

    Not Available

    1987-01-08

    This study, conducted by Chem Systems, Inc., was funded by the U.S. Trade and Development Agency on behalf of Terengganu's State Economic Planning Unit. The main objectives of the report are to: (1) Identify and list all medium stream and downstream activities, including services in petrochemical industries, using natural gas-derived ethane, propane, and butane as main feedstock and other linkages; (2) List the various enterprises noted above that can be economically and viably established in Terengganu; (3) Identify and locate the various sites for the projects identified. This is volume 1 of 2 and it contains the Final Report.

  5. State of Terengganu: A development plan for the petrochemical industry and its associated downstream industries. Appendix. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1987-02-01

    The study, conducted by Chem Systems, Inc., was funded by the U.S. Trade and Development Agency on behalf of Terengganu's State Economic Planning Unit. The main objectives of the report are to: (1) Identify and list all medium stream and downstream activities, including services in petrochemical industries, using natural gas-derived ethane, propane, and butane as main feedstock and other linkages; (2) List the various enterprises noted above that can be economically and viably established in Terengganu; (3) Identify and locate the various sites for the projects identified. This is volume 2 of 2 and it contains the Appendix.

  6. Antitrust Enforcement in the Electricity and Gas Industries: Problems and Solutions for the EU

    SciTech Connect (OSTI)

    Leveque, Francois

    2006-06-15

    Antitrust enforcement in the electricity and gas industries raises specific problems that call for specific solutions. Among the issues: How can the anticompetitive effects of mergers be assessed in a changing regulatory environment? Should long-term agreements in energy purchasing be prohibited? What are the benefits of preventive action such as competition advocacy and market surveillance committees? Should Article 82 (a) of the EC Treaty be used to curb excessive pricing?. (author)

  7. Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  8. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report

    SciTech Connect (OSTI)

    Sutton, W.H.

    1997-06-30

    This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

  9. The structural design of air and gas ducts for power stations and industrial boiler applications

    SciTech Connect (OSTI)

    Schneider, R.L.

    1996-10-01

    The purpose of this paper is to discuss the new American Society of Civil Engineers (ASCE) book entitled, The Structural Design of Air and Gas Ducts for Power Stations and Industrial Boiler Applications. This 312 page book was published by the ASCE in August of 1995. This ASCE publication was created to assist structural engineers in performing the structural analysis and design of air and flue-gas ducts. The structural behavior of steel ductwork can be difficult to understand for structural engineers inexperienced in ductwork analysis and design. Because of this needed expertise, the ASCE committee that created this document highly recommends that the structural analysis and design of ducts be performed by qualified structural engineers, not be technicians, designers or drafters. There is a history within the power industry of failures and major degradation of flue-gas ductwork. There are many reasons for these failures or degradation, but in many cases, the problems may have been voided by a better initial design. This book attempts to help the structural engineer with this task. This book is not intended to be used to size or configure ductwork for flow and pressure drop considerations. But it does recommend that the ductwork system arrangement consider the structural supports and the structural behavior of the duct system.

  10. U.S. Natural Gas Average Consumption per Industrial Consumer (Thousand

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Industrial Consumer (Thousand Cubic Feet) U.S. Natural Gas Average Consumption per Industrial Consumer (Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 0 0 0 0 0 1980's 39,245 37,530 30,909 29,915 24,309 30,956 29,057 30,423 32,071 30,248 1990's 32,144 33,395 35,908 38,067 40,244 40,973 43,050 36,239 36,785 35,384 2000's 36,968 33,840 36,458 34,793 34,645 31,991 33,597 33,561 29,639 29,705 2010's 35,418 36,947 38,159

  11. New Jersey Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Jersey Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,265 6,123 6,079 1990's 5,976 8,444 11,474 11,224 10,608 10,362 10,139 17,625 16,282 10,089 2000's 9,686 9,247 8,473 9,027 8,947 8,500 8,245 8,036 7,680 7,871 2010's 7,505 7,391 7,290 7,216 7,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  12. New Mexico Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,703 1,668 1,653 1990's 1,407 1,337 141 152 1,097 1,065 1,365 1,366 1,549 1,482 2000's 1,517 1,875 1,356 1,270 1,164 988 1,062 470 383 471 2010's 438 360 121 123 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  13. New York Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New York Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23,276 24,654 27,426 1990's 25,008 28,837 28,198 23,833 21,833 22,484 15,300 23,099 5,294 6,136 2000's 6,553 6,501 3,068 2,984 2,963 3,752 3,642 7,484 7,080 6,634 2010's 6,236 6,609 5,910 6,311 6,313 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. U.S. Natural Gas % of Total Industrial Delivered for the Account of Others

    U.S. Energy Information Administration (EIA) Indexed Site

    (Percent) Industrial Delivered for the Account of Others (Percent) U.S. Natural Gas % of Total Industrial Delivered for the Account of Others (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63.1 1990's 64.8 67.3 69.7 70.7 74.8 76.0 80.6 81.9 83.9 81.3 2000's 80.2 79.2 77.3 77.9 76.3 75.9 76.6 77.8 79.6 81.2 2010's 82.8 83.7 83.8 83.4 84.1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. U.S. Natural Gas Delivered to Industrial Consumers for the Account of

    U.S. Energy Information Administration (EIA) Indexed Site

    Others (Million Cubic Feet) Industrial Consumers for the Account of Others (Million Cubic Feet) U.S. Natural Gas Delivered to Industrial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 867,124 1,087,737 1,559,503 1,839,611 2,240,381 3,128,899 3,663,187 4,297,693 1990's 4,544,535 4,863,923 5,248,609 5,644,894 6,112,919 6,517,352 7,151,885 6,969,318 6,984,012 6,564,492 2000's 6,529,240 5,813,726

  16. U.S. Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) U.S. Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 195,544 199,041 225,346 1990's 218,341 216,529 209,616 209,666 202,940 209,398 206,049 234,855 226,191 228,331 2000's 220,251 217,026 205,915 205,514 209,058 206,223 193,830 198,289 225,044 207,624 2010's 192,730 189,301 189,372 192,288 192,135 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Strategies implemented by the textile industry in response to natural-gas curtailments

    SciTech Connect (OSTI)

    Schreibeis, R.L.

    1980-01-01

    An examination is made of specific activities undertaken by textile firms in North and South Carolina and Georgia to insulate themselves against production losses resulting from natural gas curtailments. Results of the research effort focusing on investigating patterns or trends of precautionary activities undertaken by the textile industry in response to fuel interruptions are presented. Chapter II delineates the scope of the project, research design, and nature of the textile industry. One hundred candidate firms for detailed study were identified and 34 discussed their alternate fuel strategies. Information obtained was analyzed by means of two statistical analysis techniques. Methods employed and results are described in Chapter III. Overall results are presented in Chapter IV. Variations in the strategies implemented by various concerns were accounted for in terms of geographic location, plant size, plant type, and the duration and extent of curtailment impacts. Ranges of expenditures for short- and long-term strategies are identified.

  18. The role of IRP in the natural gas industry: A case study

    SciTech Connect (OSTI)

    Wright, J.A.; Brockman, L.; Herman, P.

    1994-09-29

    The natural gas industry has changed radically over the last decade. The Federal Energy Regulatory Commission`s Order 636 completed plans to unbundle interstate pipeline services and create open access for distribution companies and their customers. There has also been increasing competition for local distribution companies (LDCs) from fuel oil, electricity and unregulated energy service companies. Meanwhile, the Energy Policy Act of 1992 includes provisions that encourage energy efficiency and promote reliance on competitive forces. In response to these changes, coupled with growing environmental concerns and the need for increased energy efficiency, a number of state public utility commissions and LDCs took an interest in integrated resource planning (IRP) for gas utilities. Gas IRP was in its formative stages and a variety of regulatory approaches were being considered when this project began. In response, this project originated with the total project scope being to define, implement and institutionalize an IRP process for the Gas Customer Service Business Unit of Niagara Mohawk Power Corporation (NMGas).

  19. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  20. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    SciTech Connect (OSTI)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  1. Home Energy Score Program Overview for the American Gas Association Webinar

    Energy Savers [EERE]

    (Text Version) | Department of Energy Overview for the American Gas Association Webinar (Text Version) Home Energy Score Program Overview for the American Gas Association Webinar (Text Version) Below is the text version of the webinar, Home Energy Score Program Overview for the American Gas Association, presented on July 30, 2013. In addition to this text version of the audio, you can access the presentation slides and a recording of the webinar. Elizabeth Noll: Good afternoon. This is

  2. Development of a transonic front stage of an axial flow compressor for industrial gas turbines

    SciTech Connect (OSTI)

    Katoh, Y.; Ishii, H.; Tsuda, Y.; Yanagida, M. . Mechanical Engineering Research Lab.); Kashiwabara, Y. . Dept. of Mechanical Systems Engineering)

    1994-10-01

    This paper describes the aerodynamic blade design of a highly loaded three-stage compressor, which is a model compressor for the front stage of an industrial gas turbine. Test results are presented that confirm design performance. Some surge and rotating stall measurement results are also discussed. The first stator blade in this test compressor operates in the high subsonic range at the inlet. To reduce the pressure loss due to blade surface shock waves, a shock-free airfoil is designed to replace the first stator blade in an NACA-65 airfoil in a three-stage compressor. Comparison of the performance of both blades shows that the shock-free airfoil blade reduces pressure loss. This paper also presents some experimental results for MCA (multicircular arc) airfoils, which are used for first rotor blades.

  3. U.S. Natural Gas Number of Industrial Consumers - Sales (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Sales (Number of Elements) U.S. Natural Gas Number of Industrial Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 182,424 157,050 2000's 157,806 152,974 143,177 142,816 151,386 146,450 135,070 2010's 129,119 124,552 121,821 123,124 122,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  4. U.S. Natural Gas Number of Industrial Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Industrial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49,014 71,281 2000's 75,826 64,052 62,738 62,698 57,672 59,773 58,760 2010's 63,611 64,749 67,551 69,164 69,953 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  5. ,"Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  6. ,"Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  7. ,"Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

  8. Applicability issues and compliance strategies for the proposed oil and gas industry hazardous air pollutant standards

    SciTech Connect (OSTI)

    Tandon, N.; Winborn, K.A.; Grygar, W.W. II

    1999-07-01

    The US Environmental Protection Agency (US EPA) has targeted oil and natural gas transmission and storage facilities located across the United States for regulation under the National Emission Standards for Hazardous Air Pollutants (NESHAP) program (proposed in Title 40, Code of Federal Regulations, Part 63 [40 CFR 63], Subparts HH and HHH). The proposed NESHAP were published in the February 6, 1998 Federal Register and are expected to be promulgated in May 1999. These rules are intended to reduce Hazardous Air Pollutants (HAP) emitted from oil and gas facilities. It is expected that these rules will require more than 400 major sources and more than 500 non-major sources (also referred to as area sources) to meet maximum achievable control technology (MACT) standards defined in the NESHAP. The rules would regulate HAP emission from glycol dehydration units, storage vessels and various fugitive leak sources. This technical paper addresses the applicability issues and compliance strategies related to the proposed NESHAP. The applicability criteria for both rules differ from those promulgated for other source categories under 40 CFR 63. For example, individual unit throughput and/or HAP emission thresholds may exempt specific units from the MACT standards in the NESHAP. The proposed Subpart HH would apply not only to major sources, but also to triethylene glycol (TEC) dehydration units at area sources located in urban areas. For both proposed NESHAP all 199 HAP must be considered for the major source determinations, but only 15 specific HAP are targeted for control under the proposed standards. An overview of the HAP control requirements, exemption criteria, as well as initial and continued compliance determination strategies are presented. Several industry examples are included to assist industry develop compliance strategies.

  9. The feasibility of effluent trading in the oil and gas industry

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This paper evaluates the feasibility of effluent trading for facilities in the oil and gas industry. The evaluation leads to the conclusion that potential for effluent trading is very low in the exploration and production and distribution and marketing sectors; trading potential is moderate for the refining sector except for intraplant trades, for which the potential is high. Good potential also exists for other types of water-related trades that do not directly involve effluents (e.g., wetlands mitigation banking). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.

  10. Development of a Low NOx Medium-Sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    2009-11-01

    Solar Turbines Inc., in collaboration with Pennsylvania State University and the University of Southern California, will develop injector technologies for gas turbine use of high-hydrogen content renewable and opportunity fuels derived from coal, biomass, industrial process waste, or byproducts. This project will develop low-emission technology for alternate fuels with high-hydrogen content, thereby reducing natural gas requirements and lowering carbon intensity.

  11. Bond Coating Performance of Thermal Barrier Coatings for Industrial Gas Turbines

    SciTech Connect (OSTI)

    Wright, Ian G; Pint, Bruce A

    2005-01-01

    Thermal barrier coatings are intended to work in conjunction with internal cooling schemes to reduce the metal temperature of critical hot gas path components in gas turbine engines. The thermal resistance is typically provided by a 100--250 {mu}m thick layer of ceramic (most usually zirconia stabilized with an addition of 7--8 wt% of yttria), and this is deposited on to an approximately 50 {mu} thick, metallic bond coating that is intended to anchor the ceramic to the metallic surface, to provide some degree of mechanical compliance, and to act as a reservoir of protective scale-forming elements (Al) to protect the underlying superalloy from high-temperature corrosion. A feature of importance to the durability of thermal barrier coatings is the early establishment of a continuous, protective oxide layer (preferably {alpha}-alumina) at the bond coating-ceramic interface. Because zirconia is permeable to oxygen, this oxide layer continues to grow during service. Some superalloys are inherently resistant to high-temperature oxidation, so a separate bond coating may not be needed in those cases. Thermal barrier coatings have been in service in aeroengines for a number of years, and the use of this technology for increasing the durability and/or efficiency of industrial gas turbines is currently of significant interest. The data presented were taken from an investigation of routes to optimize bond coating performance, and the focus of the paper is on the influences of reactive elements and Pt on the oxidation behaviour of NiAl-based alloys determined in studies using cast versions of bond coating compositions.

  12. Natural Gas Modernization Clearinghouse Stakeholders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives » Natural Gas Modernization Clearinghouse » Natural Gas Modernization Clearinghouse Stakeholders Natural Gas Modernization Clearinghouse Stakeholders Regulators EMATRIX Environmental Protection Agency (EPA) Natural Gas Star program Federal Energy Regulatory Commission (FERC) National Association of Regulatory Utility Commissioners (NARUC) Pipeline and Hazardous Materials Safety Administration (PHMSA) Industry groups American Gas Association (AGA) American Gas Foundation (AGF)

  13. INTERNAL REPAIR OF GAS PIPLINES SURVEY OF OPERATOR EXPERIENCE AND INDUSTRY NEEDS REPORT

    SciTech Connect (OSTI)

    Ian D. Harris

    2003-09-01

    A repair method that can be applied from the inside of a gas transmission pipeline (i.e., a trenchless repair) is an attractive alternative to conventional repair methods since the need to excavate the pipeline is precluded. This is particularly true for pipelines in environmentally sensitive and highly populated areas. The objectives of the project are to evaluate, develop, demonstrate, and validate internal repair methods for pipelines; develop a functional specification for an internal pipeline repair system; and prepare a recommended practice for internal repair of pipelines. The purpose of this survey is to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. A total of fifty-six surveys were sent to pipeline operators. A total of twenty completed surveys were returned, representing a 36% response rate, which is considered very good given the fact that tailored surveys are known in the marketing industry to seldom attract more than a 10% response rate. The twenty survey responses produced the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water (e.g., lakes and swamps) in difficult soil conditions, under highways, under congested intersections, and under railway crossings. All these areas tend to be very difficult and very costly if, and where, conventional excavated repairs may be currently used. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem in a water/river crossing. (3) The typical travel distances required can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). In concept, these groups require pig-based systems; despooled umbilical systems could be considered for the first two groups. For the last group a self-propelled system with an onboard self-contained power and welding system is required. (4) Pipe size range requirements range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.) in diameter. The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.) diameter, with 95% using 558.8 mm (22 in.) diameter pipe.

  14. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect (OSTI)

    Joseph Rabovitser

    2009-06-30

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  15. Image is all: Deregulation, restructuring and reputation in the natural gas industry

    SciTech Connect (OSTI)

    1997-09-01

    Does image affect how one views his local utility company--or energy supplier? Does one value his utility companies more if one sees a lot of image advertising and public relations stories about community involvement, environmental action and charitable work? Or does one view utilities as faceless and anonymous entities that provide necessary services one thinks little about until there`s a problem? And, more important, what is the role of utility image in an era of deregulation, as companies begin a new scramble for customers? To find an answer to these questions, American Gas and Christopher Bonner Consultants conducted a survey of A.G.A. member companies to learn what, if anything, utility companies are doing in the areas of image assessment and change. The survey was sent to more than 200 A.G.A. member companies; written responses were received from 35. In addition, 13 follow-up telephone interviews were conducted, including four with companies that had not responded in writing. The picture that emerges if of an industry that is starting to pay greater and greater attention to image. And, as utilities reorganize and redefine themselves, they are also reexamining the ways they communicate with key audiences, including employees, customers, legislators, the financial community and the news media.

  16. Upstream Financial Review of the Global Oil and Natural Gas Industry

    Reports and Publications (EIA)

    2014-01-01

    This analysis focuses on financial and operating trends of the oil and natural gas production business segment, often referred to as upstream operations, of 42 global oil and natural gas producing companies

  17. Cooperative Research and Development for Advanced Materials in Advanced Industrial Gas Turbines Final Technical Report

    SciTech Connect (OSTI)

    Ramesh Subramanian

    2006-04-19

    Evaluation of the performance of innovative thermal barrier coating systems for applications at high temperatures in advanced industrical gas turbines.

  18. Increases in 3He/4He in Fumarolic Gas Associated with the 1989...

    Open Energy Info (EERE)

    Beneath Mammoth Mountain, California Citation Michael L. Sorey,B. Mack Kennedy,William C. Evans,Christopher D. Farrar. 1990. Increases in 3He4He in Fumarolic Gas Associated with...

  19. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture for Natural Gas and Industrial Applications Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  20. Natural gas monthly

    SciTech Connect (OSTI)

    1996-05-01

    This document highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Data presented include volume and price, production, consumption, underground storage, and interstate pipeline activities.

  1. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  2. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

  3. Conventional Energy Forum & Associated Vertical Business Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New discoveries New oil and gas production methods Associated research and development Support industry opportunities and new markets emerging in the traditional energy sector This ...

  4. Ground movements associated with gas hydrate production. Final report

    SciTech Connect (OSTI)

    Siriwardane, H.J.; Kutuk, B.

    1992-03-01

    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ``stress equilibrium`` approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ``cavity`` generated by reservoir depletion. The present study is expected to provide a ``lower bound`` solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ``stress equilibrium`` approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ``cavity`` generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir.

  5. The California greenhouse gas initiative and its implications to the automotive industry

    SciTech Connect (OSTI)

    Smith, B. C.; Miller, R. T.; Center for Automotive Research

    2006-05-31

    CAR undertook this investigation to better understand the costs and challenges of a local (state) regulation necessitating the implementation of alternative or advanced powertrain technology. CAR will attempt to add insight into the challenges that local regulations present to the automotive industry, and to contribute further to the discussion of how advanced powertrain technology may be used to meet such regulation. Any local law that (directly or indirectly) affects light duty motor vehicle fuel economy creates what in effect is a specialty market for powertrain technology. As such these small markets present significant challenges for automotive manufacturers. First, a small market with unique standards presents significant challenges to an industry that has sustained growth by relying on large volumes to achieve scale economies and deliver products at a cost acceptable to the consumer. Further, the challenges of the additional technology make it likely that any powertrain capable of meeting the stringent emissions standards will include costly additional components, and thus will be more costly to manufacture. It is likely that manufacturers would consider the following actions as steps to deliver products to meet the pending California regulatory requirements anticipated as a result of prior California legislation: (1) Substituting more fuel efficient vehicles: Bring in more efficient vehicles from global operations, while likely dropping existing domestic products. (2) Substituting powertrains: Add existing downsized engines (i.e. turbocharged versions, etc.) into California market-bound vehicles. (3) Powertrain enhancements: Add technology to current engine and transmission offerings to improve efficiency and reduce emissions. (4) Incorporating alternative powertrains into existing vehicle platforms: Develop a hybrid or other type of powertrain for an existing vehicle. (5) New powertrains and new platforms: Develop vehicles specifically intended to incorporate new powertrain technologies, materials and/or design (e.g. the General Motors EV1 or the Toyota Prius). These five actions represent the gamut from the least complicated solution to the most complex. They also generally represent the least expensive response to the most expensive. It is possible that the least expensive responses may be least likely to meet market demands while achieving required GHG emission limits. At the same time, the most expensive option may produce a vehicle that satisfies the GHG reduction requirements and meets some consumer requirements, but is far too costly to manufacture and sell profitably. The response of a manufacturer would certainly have to take market size, consumer acceptance, technology implication and cost, as well as internal capacities and constraints, into consideration. It is important to understand that individual companies may respond differently in the short term. However, it is probable that there would be a more consistent industry-wide response in the longer term. Options 1 and 2 present the simplest responses. A company may reach into its global portfolio to deliver vehicles that are more fuel-efficient. These vehicles are usually much smaller and significantly less powerful than current U.S. offerings. Industry respondents indicated that such a strategy may be possible but would likely be met with less than positive reaction from the buying public. A general estimate for the cost to homologize a vehicle--that is, to prepare an existing vehicle for entry into the United States provided all business conditions were met (reasonable product, capacity availability, etc.), would be approximately $50 million. Assuming an estimated cost for homologation to meet U.S. standards of $50 million and a 20,000 vehicle per year sales volume in California, the company would then incur a $2,500 per-vehicle cost to bring them into the market. A manufacturer may also choose to incorporate a more efficient powertrain into a vehicle already sold in the market. The costs associated with such a strategy would include reengineering the vehicle engine compartment to accept the new powertrain, and developing, engineering and manufacturing those parts unique to the vehicle. Costs would also be incurred to achieve emission certification. Total costs per vehicle, if sold only in California would be similar to nationally averaged costs per vehicle when bringing a new vehicle into the national market. While companies may consider the importation of a more fuel-efficient vehicle from their current global portfolio, or the addition of a powertrain from another market, it is likely that these would be seen as stop-gap responses to the legislation. Many of the candidate vehicles and powertrains would likely not meet California consumer expectations, and may not provide enough fuel savings to achieve more severe emission regulations, thus offering only a step toward any solution.

  6. Minnesota Energy Resources (Gas)- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    MER also provides rebates to commercial and industrial customers for an energy audit which provides a walk-through of the premise and a report on energy saving opportunities, and estimated costs...

  7. Effect of asphaltene deposition on the internal corrosion in the oil and gas industry

    SciTech Connect (OSTI)

    Palacios T, C.A.; Morales, J.L.; Viloria, A.

    1997-08-01

    Crude oil from Norte de Monagas field, in Venezuela, contains large amounts of asphaltenes. Some of them are very unstable with a tendency to precipitate. Because liquid is carried over from the separation process in the flow stations, asphaltenes are also present in the gas gathering and transmission lines, precipitating on the inner wall of pipelines. The gas gathering and transmission lines contain gas with high partial pressures of CO{sub 2}, some H{sub 2}S and are water saturated; therefore, inhibitors are used to control internal corrosion. There is uncertainty on how inhibitors perform in the presence of asphaltene deposition. The purpose of this paper is to describe the causes that enhance asphaltene deposition in gas pipelines and present some results from an ongoing research project carried out by the Venezuelan Oil Companies.

  8. NO{sub x} control using natural gas reburn on an industrial cyclone boiler

    SciTech Connect (OSTI)

    Farzan, H.; Maringo, G.J.; Beard, C.T.; Weed, G.E.; Pratapas, J.

    1996-12-31

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, has been retrofitted with the gas reburn technology developed by the Babcock and Wilcox (B and W) Company to reduce NO{sub x} emissions in order to comply with the New York State regulations adopted in conformance with the Title I of the Clean Air Act Amendments (CAAA) of 1990. At the peak load, the ozone nonattainment required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit for cyclone boilers in this regulation is 56%. Eastman Kodak Company and the Gas Research Institute (GRI) are co-sponsoring this project. Chevron has supplied the natural gas. Equipment installation for the gas reburn system was performed in a September 1995 outage. Boiler No. 43`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow (or approximately equivalent to 60 MW{sub e}). Because of the compact boiler design, there is insufficient furnace residence time to use coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Contingent upon successful completion of this gas reburn project, modification of Kodak`s other cyclone boilers to include reburn technology will be consideredd. The paper will describe B and W`s gas reburn data from a cyclone-equipped pilot facility (B and W`s Small Boiler Simulator), gas reburn system design, manufacturing, and installation information specific to Kodak`s Unit No. 43. In addition, the paper will discuss numerical modeling and the full-scale commercial boiler test results.

  9. NO{sub x} control using natural gas reburn on an industrial cyclone boiler

    SciTech Connect (OSTI)

    Farzan, H.; Maringo, G.J.; Beard, C.T.; Weed, G.E.; Pratapas, J.

    1997-07-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, has been retrofitted with the gas reburn. technology developed by the Babcock & Wilcox (B&W) Company to reduce NO{sub x} emissions in order to comply with the New York State regulations adopted in conformance with the Title I of the Clean Air Act Amendments (CAAA) of 1990. At the peak load, the ozone nonattainment required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit for cyclone boilers in this regulation is 56%. Eastman Kodak Company and the Gas Research Institute (GRI) are co-sponsoring this project. Chevron has supplied the natural gas. Equipment installation for the gas reburn system was performed in a September 1995 outage. Boiler No. 43`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow (or approximately equivalent to 60 MW{sub e}). Because of the compact boiler design, there is insufficient furnace residence time to use coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Contingent upon successful completion of this gas reburn project, modification of Kodak`s other cyclone boilers to include reburn technology will be considered. The paper will describe B&W`s gas reburn data from a cyclone-equipped pilot facility (B&W`s Small Boiler Simulator), gas reburn system design, manufacturing, and installation information specific to Kodak`s Unit No. 43. In addition, the paper will discuss numerical modeling and the full-scale commercial boiler test results.

  10. Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas,

    Gasoline and Diesel Fuel Update (EIA)

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 474 320 541 522 532 494 1990's 446 407 691 574 679 891 794 1,228 1,224 1,383 2000's 1,395 1,406 1,267

  11. Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 167 1980's 185 139 112 132 110 115 132 115 103 101 1990's 114 115 94 93 75 67 82 51 60 52 2000's 40 105 66 85 80 83 82 83 85 83 2010's 79 127 326 433 657 - = No Data Reported;

  12. Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Proved Reserves (Billion Cubic Feet) South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,304 1980's 2,134 1,871 1,789 1,582 1,488 1,792 1,573 1,380 1,338 1,273 1990's 1,106 995 853 649 678 720 627 599 630 599

  13. Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 449 251 260 207 231 1990's 207 207 154 157 168 148 157 130 98 120 2000's 129 145 84 79 61 63 56 65 686 513 2010's 107 51 128 88 68 - = No

  14. California State Offshore Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 226 1980's 160 244 232 221 206 1990's 188 55 59 63 59 56 47 54 39 58 2000's 86 80 85 76 85 89 85 79 54 53 2010's 63 79 65 75 76 - = No Data

  15. Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 209 1980's 172 180 216 175 170 260 241 205 204 251 1990's 333 401 361 191 151 248 446 68 51 67 2000's 69 43 47 48 45 57 61 72 60 67 2010's 267

  16. Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 0 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 484 1980's 546 456 489 537 617 560 537 482 424 364 1990's 311 298 396 264 264 254 253 227 234 241 2000's 289 255 271 252 249 253 316 436

  17. Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 955 1980's 921 806 780 747 661 570 517 512 428 430 1990's 407 352 308 288 299 245 252 235 204 202 2000's 115 65 70 81

  18. Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,416 1980's 1,292 1,005 890 765 702 684 596 451 393 371 1990's 301 243 228 215 191 209 246 368 394 182 2000's 176 140

  19. Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 1980's 75 44 47 52 44 40 69 118 101 136 1990's 116 89 126 141 148 47 53 68 89 49 2000's 128 83 65 62 58 51 57 50 40 21 2010's 8 40 53 177

  20. Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 868 1980's 954 869 881 943 938 874 822 811 728 695 1990's 668 638 606 607 547 611 562 578 580 545 2000's 464 412 400 387 402 344 276 247 412

  1. Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 234 1980's 332 292 214 338 292 276 244 282 264 196 1990's 214 157 170 187 181 276 232 260 204 190 2000's 114 88 57 69 76 73 74 62 68 102

  2. Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 653 1980's 520 685 704 705 776 780 666 737 727 721 1990's 768 759 748 633 631 640 692 596 557 616 2000's 693 634 737 927 994 1,037 1,196

  3. Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 249 274 299 255 274 290 263 267 241 212 1990's 214 200 184 178 148 138 121 147 199 180 2000's 209 124 140 125 110 126 105 139 158

  4. Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 25 24 24 10 20 19 1990's 17 8 7 4 3 7 6 10 5 6 2000's 1 2 5 6 9 3 1 3 5 3 2010's 3 5 6 3 0 - = No Data Reported; -- = Not Applicable; NA = Not

  5. New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 151 1980's 156 150 146 180 194 181 214 213 259 178 1990's 184 156 127 107 97 119 108 106 98 92 2000's 115 99 103 89 90 98 82 87 86 82 2010's

  6. North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717

  7. Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,047 1980's 1,417 800 984 1,635 1,178 938 898 594 480 589 1990's 371 376 381 343 315 355 399 391 342 402 2000's 469 340 346 304 208 184 174 101 99 97 2010's 90 74 223 314 208 - =

  8. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 1,001 895 872 - =

  9. West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 76 1980's 122 63 83 86 73 73 65 150 141 98 1990's 86 159 198 190 133 74 71 59 43 88 2000's 98 48 21 23 20 19 16 16 23 24 2010's 29 52 21 70 32 - = No Data

  10. Conversion of associated natural gas to liquid hydrocarbons. Final report, June 1, 1995--January 31, 1997

    SciTech Connect (OSTI)

    1997-12-31

    The original concept envisioned for the use of Fischer-Tropsch processing (FTP) of United States associated natural gas in this study was to provide a way of utilizing gas which could not be brought to market because a pipeline was not available or for which there was no local use. Conversion of gas by FTP could provide a means of utilizing offshore associated gas which would not require installation of a pipeline or re-injection. The premium quality F-T hydrocarbons produced by conversion of the gas can be transported in the same way as the crude oil or in combination (blended) with it, eliminating the need for a separate gas transport system. FTP will produce a synthetic crude oil, thus increasing the effective size of the resource. The two conventional approaches currently used in US territory for handling of natural gas associated with crude petroleum production are re-injection and pipelining. Conversion of natural gas to a liquid product which can be transported to shore by tanker can be accomplished by FTP to produce hydrocarbons, or by conversion to chemical products such as methanol or ammonia, or by cryogenic liquefaction (LNG). This study considers FTP and briefly compares it to methanol and LNG. The Energy International Corporation cobalt catalyst, ratio adjusted, slurry bubble column F-T process was used as the basis for the study and the comparisons. An offshore F-T plant can best be accommodated by an FPSO (Floating Production, Storage, Offloading vessel) based on a converted surplus tanker, such as have been frequently used around the world recently. Other structure types used in deep water (platforms) are more expensive and cannot handle the required load.

  11. Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: May 1, 2010-October 31, 2010

    SciTech Connect (OSTI)

    David B. Frederick

    2011-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (#LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  12. Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2010-October 31, 2011

    SciTech Connect (OSTI)

    David Frederick

    2012-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (No.LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  13. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2012-October 31, 2013

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  14. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012

    SciTech Connect (OSTI)

    Mike lewis

    2013-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  15. Competition in the natural gas pipeline industry: An economic policy analysis

    SciTech Connect (OSTI)

    Gallick, E.C.

    1993-01-01

    The Federal Energy Regulatory Commission (FERC) currently regulates the price at which natural gas can be sold by regulated interstate natural gas pipelines. Whether pipelines should be deregulated depends, to an important extent, on the competitive nature of the market. The key question is whether pipelines can successfully raise price (i.e., the transport fee) and reduce output if the market is deregulated. In most natural gas pipeline markets, there are a small number of current suppliers. Opponents of deregulation argue that the unrestrained market power of pipelines in many local markets will introduce inefficiencies in the sale of natural gas. Implicit in their arguments is a narrow view of competition: the number of current suppliers. The competitive effect of potential entry is largely ignored. These commentators would argue that without potential entry, it may be true that the net social cost of deregulation exceeds the costs of maintaining present regulation. A study was conducted to determine the extent to which potential entry might constrain the exercise of market power by natural gas pipelines if price and entry regulation is removed. Potential entrants are defined in the context of antitrust markets. That is, these markets are consistent with the Department of Justice (DOJ) Merger Guidelines. The study attempts to quantify the effects of potential entry on the market power of current suppliers. The selection of potential entrants therefore considers a number of factors (such as the size of the nearby supplier and the distance to the market) that are expected to affect the likelihood of collision in a deregulated market. The policy implications of the study are reviewed.

  16. Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings Technical Information Exchange on Pyrolysis Oil May 9-10, 2012 Manchester, NH Dr. Jani Lehto VTT Technical Research Centre of Finland 2 07/05/2012 Outline  Introduction  Main challenges today in general  More details on challenges associated with  Feedstock processing  Pyrolysis oil production  Transportation and storage  Use of pyrolysis

  17. The value of underground storage in today`s natural gas industry

    SciTech Connect (OSTI)

    1995-03-01

    The report consists of three chapters and four appendices. Chapter 1 provides basic information on the role of storage in today`s marketplace where natural gas is treated as a commodity. Chapter 2 provides statistical analyses of the relationship between storage and spot prices on both a monthly and daily basis. For the daily analysis, temperature data were used a proxy for storage withdrawals, providing a new means of examining the short-term relationship between storage and spot prices. Chapter 3 analyzes recent trends in storage management and use, as well as plans for additions to storage capacity. It also reviews the status of the new uses of storage resulting from Order 636, that is, market-based rates and capacity release. Appendix A serves as a stand-along primer on storage operations, and Appendix B provides further data on plans for the expansion of storage capacity. Appendix C explains recent revisions made to working gas and base gas capacity on the part of several storage operators in 1991 through 1993. The revisions were significant, and this appendix provides a consistent historical data series that reflects these changes. Finally, Appendix D presents more information on the regression analysis presented in Chapter 2. 19 refs., 21 figs., 5 tabs.

  18. Hydrodynamic modeling for corrosion control in the oil and gas industry

    SciTech Connect (OSTI)

    Palacios, C.A.; Morales, J.L.

    1995-10-01

    This article describes a methodology used to select and establish corrosion control programs. These include corrosion rate predictions using well known correlations for flowing systems, materials selection, optimization of inhibitors and corrosion monitoring techniques. The methodology characterizes internal corrosion phenomenon integrating the hydrodynamic conditions of the flow (flow velocities, flow pattern, liquid holdups, and where the condensation is taking place within a pipeline) with those that predict corrosion rates. It can be applied in the whole oil/gas production system, including subsurface and surface equipment. The methodology uses single and two phase flow modeling techniques to: (1) optimize the entire production system to obtain the most efficient objective flow rate, taking into consideration the corrosive/erosive nature of the produced fluids and (2) characterize the corrosion nature of oil and gas transmission lines. As an example of its use, a characterization of corrosion nature of a gas transmission line is described. The hydrodynamic simulation was performed using commercially available simulators, and the corrosion rates were determined using published correlations. Results using this methodology allowed for corrosion control strategies, protection and monitoring criteria, and inhibition optimization.

  19. Energy Conservation Program for Certain Commercial and Industrial Equipment: Gas Compressors, Notice of Public Meeting

    Office of Environmental Management (EM)

    natural gas compressors is an action issued by the Department of Energy. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document. 1 [6450-01-P] DEPARTMENT OF ENERGY 10 CFR Part 431 [Docket No. EERE-2014-BT-STD-0051] RIN 1904-AD40

  20. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates

    SciTech Connect (OSTI)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-22

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  1. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect (OSTI)

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  2. Natural gas 1998: Issues and trends

    SciTech Connect (OSTI)

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  3. Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32,208 1980's 33,443 32,870 31,268 31,286 30,282 29,515 28,684 27,457 26,609 26,611 1990's 26,242 25,088 24,701 23,551 23,913 24,532 24,715 24,666

  4. Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 27,217 1980's 28,567 28,676 30,814 30,408 30,356 31,092 30,893 30,732 6,269 6,198 1990's 6,927 6,729 6,723 6,494 6,487 6,265 6,080 7,716 7,275 7,209 2000's 6,768 6,592 6,376

  5. Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,513 1980's 2,429 2,080 1,881 1,784 1,756 1,537 1,405 1,296 1,226 1,148 1990's 1,056 1,123 1,206 1,159 1,063 960

  6. Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,645 1980's 2,569 2,630 2,908 3,014 2,932 3,004 3,076 2,898 3,072 3,128 1990's 3,068 2,770 2,742 2,562 2,751 2,834 2,981 3,144 2,820 3,175

  7. Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,485 1980's 1,396 1,486 1,420 1,301 1,272 1,314 1,275 1,271 1,267 1,534 1990's 1,526 1,521 1,585 1,451 1,572 1,318 1,276 1,206 1,097 1,513

  8. U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,773 6,487 6,315 6,120 6,738 7,471 7,437 7,913 7,495 7,093 2000's 7,010 8,649 8,090 7,417 6,361 5,904 4,835 4,780 5,106 5,223 2010's 5,204

  9. New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,672 1980's 1,533 1,499 1,374 1,323 1,375 1,309 1,232 1,232 1,194 1,200 1990's 1,251 1,398 1,470 1,478 1,544 1,559 1,585 1,314 1,345 1,486 2000's

  10. New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,823 1980's 1,689 1,649 1,520 1,503 1,569 1,490 1,446 1,445 1,453 1,378 1990's 1,435 1,554 1,597 1,585 1,641 1,678 1,693 1,420 1,443 1,578 2000's 1,588 1,447 1,482

  11. Natural gas monthly, May 1997

    SciTech Connect (OSTI)

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  12. Chrysler: Save Energy Now Assessment Enables a Vehicle Assembly Complex to Achieve Significant Natural Gas Savings; Industrial Technologies Program (ITP) Save Energy Now Case Study.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    powerhouse at Chrysler's St. Louis Assembly Complex provides steam, chilled water, and compressed air to both the north and south plants. Chrysler: Save Energy Now Assessment Enables a Vehicle Assembly Complex to Achieve Significant Natural Gas Savings Industrial Technologies Program Case Study Benefits * Achieves annual energy savings of $627,000 * Achieves annual natural gas savings of more than 70,000 MMBtu * Yields a simple payback of just over 2 months Key Findings * Independent evaluations

  13. Terra nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment. Industrial Technologies Program (ITP) Save Energy Now Case Study.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Terra Nitrogen plant in Verdigris, Oklahoma. Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment Industrial Technologies Program Case Study Benefits * Saves approximately $3.5 million annually * Achieves annual natural gas savings of 497,000 MMBtu * Achieves a simple payback of 11 months Key Findings * Accurately quantifying potential energy savings can provide renewed impetus to reduce energy use. * Although Terra Nitrogen actively managed

  14. Table 12. Associated-dissolved natural gas proved reserves, reserves changes, an

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014" "billion cubic feet" ,,"Changes in Reserves During 2014" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved"

  15. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992

    SciTech Connect (OSTI)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  16. Natural gas monthly, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-06-22

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  17. Natural gas monthly, July 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-27

    The Natural Gas Monthly NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  18. Natural gas monthly, September 1995

    SciTech Connect (OSTI)

    1995-09-27

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  19. Natural gas monthly, April 1995

    SciTech Connect (OSTI)

    1995-04-27

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 31 tabs.

  20. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

  1. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Discoveries (Billion Cubic Feet) Field Discoveries (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 193 1980's 365 335 161 220 156 143 88 110 67 208 1990's 141 69 13 245 530 248 222 1,360 107 394 2000's 387 1,287 229 447 34 119 40 46 107 263 2010's 102 611 151 63 327 - = No Data Reported; -- = Not Applicable; NA = Not

  2. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    U.S. Energy Information Administration (EIA) Indexed Site

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 264 1980's 369 271 365 326 296 341 189 155 339 174 1990's 250 334 292 163 202 634 338 187 218 424 2000's 249 477 331 124 97 79 65 73 820 169 2010's 186 160 229 581 584 -

  3. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6,586 845 908 1,062 987 2,071 1,960 1,350 938 678 2010's 2,469 1,884 2,150 2,843 4,589 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  4. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,925 1980's 1,053 -1,079 843 1,564 -486 695 425 177 437 415 1990's 57 257 567 -302 163 345 164 262 -706 143 2000's -605 499 499 202 -21 126 -54 276 455 877 2010's -482 390 385 -649 1,396 - = No Data Reported; -- = Not Applicable; NA =

  5. Natural gas monthly, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  6. Natural gas monthly, April 1999

    SciTech Connect (OSTI)

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  7. Natural gas monthly, September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-27

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  8. Natural gas monthly, August 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-05

    This report highlights activities, events, and analyses of interest to public and private sector oganizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 33 tabs.

  9. Natural gas monthly, July 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  10. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 5.49 5.13 3.88 4.64 5.55 3.84 1997-2015 Alabama 6.64 5.57 4.35 4.98 5.49 3.94 1997-2015 Alaska 4.23 3.84 5.11 8.16 7.97 7.21 1997-2015 Arizona 7.54 6.86 5.78 6.29 7.52 NA 1997-2015 Arkansas 7.28 7.44 6.38 6.74 6.99 6.97 1997-2015 California 7.02 7.04 5.77 6.57 7.65 6.35 1997-2015 Colorado

  11. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 5.49 5.13 3.88 4.64 5.55 3.84 1997-2015 Alabama 6.64 5.57 4.35 4.98 5.49 3.94 1997-2015 Alaska 4.23 3.84 5.11 8.16 7.97 7.21 1997-2015 Arizona 7.54 6.86 5.78 6.29 7.52 NA 1997-2015 Arkansas 7.28 7.44 6.38 6.74 6.99 6.97 1997-2015 California 7.02 7.04 5.77 6.57 7.65 6.35 1997-2015 Colorado

  12. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    67 3.73 3.58 3.46 3.18 3.38 2001-2015 Alabama 3.82 3.91 3.68 3.48 3.33 3.48 2001-2015 Alaska 7.17 7.17 7.17 7.17 7.17 7.24 2001-2015 Arizona 6.80 NA 6.62 6.36 6.35 6.43 2001-2015 Arkansas 6.71 6.62 6.47 6.46 6.02 5.67 2001-2015 California 6.02 6.07 6.09 5.88 5.77 6.92 2001-2015 Colorado 7.28 6.53 6.11 5.95 5.14 4.46 2001-2015 Connecticut 5.88 5.66 6.59 5.76 5.87 6.60 2001-2015 Delaware 8.82 11.38 11.40 11.15 9.62 8.32 2001-2015 District of Columbia -- -- -- -- -- -- 2001-2015 Florida 6.69 6.02

  13. Analysis of an industrial cogeneration unit driven by a gas engine. Part 1: Experimental testing under full and part-load operating conditions

    SciTech Connect (OSTI)

    De Lucia, M.; Lanfranchi, C.

    1994-12-31

    This paper describes and analyzes an industrial cogeneration plant driven by a gas fueled reciprocating engine installed in a textile factory. It presents the results of experimental testing conducted under full and part-load operating conditions, as well as first-law energy considerations. The experimental tests conducted on the cogeneration unit proved the validity of the plant design and also enabled evaluation of part-load performance, which is the most common operating mode in cogeneration plants in the small-size industries which typical of central Italy.

  14. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications- Volume II (Appendices), January 2000

    Broader source: Energy.gov [DOE]

    Appendices related to quantification of the total market for onsite power generation within the Industries of the Future

  15. Comprehensive Lifecycle Planning and Management System For Addressing Water Issues Associated With Shale Gas Development In New York, Pennsylvania, And West Virginia

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2012-03-31

    The objective of this project is to develop a modeling system to allow operators and regulators to plan all aspects of water management activities associated with shale gas development in the target project area of New York, Pennsylvania, and West Virginia (??target area?), including water supply, transport, storage, use, recycling, and disposal and which can be used for planning, managing, forecasting, permit tracking, and compliance monitoring. The proposed project is a breakthrough approach to represent the entire shale gas water lifecycle in one comprehensive system with the capability to analyze impacts and options for operational efficiency and regulatory tracking and compliance, and to plan for future water use and disposition. It will address all of the major water-related issues of concern associated with shale gas development in the target area, including water withdrawal, transport, storage, use, treatment, recycling, and disposal. It will analyze the costs, water use, and wastes associated with the available options, and incorporate constraints presented by permit requirements, agreements, local and state regulations, equipment and material availability, etc. By using the system to examine the water lifecycle from withdrawals through disposal, users will be able to perform scenario analysis to answer "what if" questions for various situations. The system will include regulatory requirements of the appropriate state and regional agencies and facilitate reporting and permit applications and tracking. These features will allow operators to plan for more cost effective resource production. Regulators will be able to analyze impacts of development over an entire area. Regulators can then make informed decisions about the protections and practices that should be required as development proceeds. This modeling system will have myriad benefits for industry, government, and the public. For industry, it will allow planning all water management operations for a project or an area as one entity to optimize water use and minimize costs subject to regulatory and other constraints. It will facilitate analysis of options and tradeoffs, and will also simplify permitting and reporting to regulatory agencies. The system will help regulators study cumulative impacts of development, conserve water resources, and manage disposal options across a region. It will also allow them to track permits and monitor compliance. The public will benefit from water conservation, improved environmental performance as better system wide decisions are made, and greater supply of natural gas, with attendant lower prices, as costs are reduced and development is assisted through better planning and scheduling. Altogether, better economics and fewer barriers will facilitate recovery of the more than 300 trillion cubic feet of estimated recoverable natural gas resource in the Marcellus Shale in a manner that protects the environment.

  16. Ground movements associated with gas hydrate production. Progress report, April 1, 1992--June 30, 1992

    SciTech Connect (OSTI)

    Siriwardane, H.J.

    1992-12-31

    An obvious consequence of hydrate dissociation is the compression of reservoir matrix causing displacements in the surrounding area. The reservoir compression is a time-dependent process which depends on the production rate. The ground movements cause additional stresses in the overburden which may result in rock mass fracture and failure. Rock failure may cause rubble formation or bulking in the fracture zone. This in turn can cause an increase in permeability for gas flow which may offset the reduction in permeability caused by closure of existing fractures during reservoir compression. The mechanics of ground movements during hydrate production can be more closely simulated by considering similarities with ground movements associated with subsidence in permafrost regions. The purpose of this research work is to investigate the potential strata movements associated with hydrate production by considering similarities with ground movements in permafrost regions. The work primarily involves numerical modeling of subsidence caused by hydrate dissociation. The investigation is based on the theories of continuum mechanics, thermomechanical behavior of frozen geo-materials, principles of rock mechanics and geomechanics. It is expected that some phases of the investigation will involve the use of finite element method, which is a powerful computer-based method which has been widely used in many areas of science and engineering. Parametric studies will be performed to predict expected strata movements and surface subsidence for different reservoir conditions and properties of geological materials. The results from this investigation will be useful in predicting the magnitude of the subsidence problem associated with gas hydrate production. The analogy of subsidence in permafrost regions may provide lower bounds for subsidence expected in hydrate reservoirs. Furthermore, it is anticipated that the results will provide insight into planning of hydrate recovery operations.

  17. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    SciTech Connect (OSTI)

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim storage, packaging, transportation, waste forms, waste treatment, decontamination and decommissioning issues; and low-level waste (LLW) and high-level waste (HLW) disposal.

  18. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Advancing a Novel Microbial Reverse Electrodialysis Electrolytic System. Many current manufacturing processes produce both low-grade waste heat and wastewater effuents which contain organic materials. A microbial reverse electrodialysis electrolytic cell, designed to integrate

  19. U.S. Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs,

    U.S. Energy Information Administration (EIA) Indexed Site

    Wet (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,289 5,631 5,477 5,639 2000's 5,195 6,628 6,573 5,903 5,416 6,271 6,045 6,890 6,680 7,615 2010's 9,099 13,260 19,550 22,218 27,240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,405 1980's 3,405 3,316 3,248 3,355 3,518 3,454 3,443 3,351 3,192 3,099 1990's 2,936 2,968 3,031 2,868 2,907 2,886 2,938 3,022 3,136 3,313 2000's 3,299 3,193 2,988 2,855 2,742

  1. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,139 1980's 1,861 1,537 1,351 977 1,182 1,099 758 542 498 760 1990's 615 737 760 867 850 857 991 1,116 727 586 2000's 2,683 1,194 852 817 907 1,032 810 1,098 1,488 2,669 2010's 2,660 5,957 10,030 9,630 9,962 - = No Data Reported; -- = Not

  2. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,209 1980's 2,941 2,561 4,516 3,815 2,999 3,163 2,903 2,755 27,612 3,130 1990's 2,571 3,479 1,844 2,723 3,002 2,328 2,013 3,241 3,937 8,705 2000's 4,546 3,232 2,637 2,790 3,170 2,034 2,782 1,804 7,385 2,698 2010's 3,964

  3. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,517 1980's 5,283 4,349 5,580 3,695 4,313 4,308 3,856 3,734 4,152 4,603 1990's 4,804 3,698 2,850 3,239 4,519 3,527 3,234 4,925 5,005 11,226 2000's 3,884 3,259 3,587 3,044 4,009 3,281 5,372 5,400 2,943 5,522 2010's 4,983

  4. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6,921 1,145 1,064 1,040 1,004 1,655 1,726 1,115 662 564 2010's 1,146 1,338 1,131 1,733 4,058 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  5. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59,425 1980's 62,010 61,546 62,082 61,694 60,638 60,607 59,577 58,189 32,878 32,809 1990's 33,169 31,817 31,424 30,045 30,400 30,797 30,795 32,382 30,660 31,415 2000's 29,833 29,824 29,541 28,552 27,649 28,236 29,640 32,668 29,023 33,383

  6. Natural gas monthly, October 1995

    SciTech Connect (OSTI)

    1995-10-23

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary of the terms used in this report is provided to assist readers in understanding the data presented in this publication. 6 figs., 30 tabs.

  7. Natural gas monthly, February 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-25

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  8. Natural gas monthly, February 1996

    SciTech Connect (OSTI)

    1996-03-01

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  9. Natural gas monthly, March 1998

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

  10. Natural gas monthly, May 1995

    SciTech Connect (OSTI)

    1995-05-24

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  11. Recovery Act: Innovative CO2 Sequestration from Flue Gas Using Industrial Sources and Innovative Concept for Beneficial CO2 Use

    SciTech Connect (OSTI)

    Dando, Neal; Gershenzon, Mike; Ghosh, Rajat

    2012-07-31

    field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stability in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture. Incorporation of the laboratory results showed that for the application at the aluminum smelter, the in-duct scrubber system is more economical than traditional methods. However, the reverse is true for the refinery case, where the bauxite residue is not effective enough as a sequestrant, combined with challenges related to contaminants in the bauxite residue accumulating in and fouling the scrubber absorbent. Sensitivity analyses showed that the critical variables by which process economics could be improved are enzyme concentration, efficiency, and half-life. At the end of the first part of the Phase 2 project, a gate review (DOE Decision Zero Gate Point) was conducted to decide on the next stages of the project. The original plan was to follow the pre-testing phase with a detailed design for the field testing. Unfavorable process economics, however, resulted in a decision to conclude the project before moving to field testing. It is noted that CO2 Solutions proposed an initial solution to reduce process costs through more advanced enzyme management, however, DOE program requirements restricting any technology development extending beyond 2014 as commercial deployment timeline did not allow this solution to be undertaken.

  12. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Tight Western Sands

    SciTech Connect (OSTI)

    Riedel, E.F.; Cowan, C.E.; McLaughlin, T.J.

    1980-02-01

    Results of a study to identify and evaluate potential public health and safety problems and the potential environmental impacts from recovery of natural gas from Tight Western Sands are reported. A brief discussion of economic and technical constraints to development of this resource is also presented to place the environmental and safety issues in perspective. A description of the resource base, recovery techniques, and possible environmental effects associated with tight gas sands is presented.

  13. Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical Business Development Best Practices in Indian Country

    Office of Environmental Management (EM)

    CONVENTIONAL ENERGY (OIL, GAS & COAL) FORUM & ASSOCIATED VERTICAL BUSINESS DEVELOPMENT BEST PRACTICES IN INDIAN COUNTRY March 1, 2012 MANDALAY BAY RESORT AND CASINO NORTH CONVENTION CENTER 3950 Las Vegas Blvd. South, Las Vegas, NV 89119 The dynamic world of conventional energy (focusing on oil, gas and coal energy) is a critical piece of the American energy portfolio. This strategic energy forum will focus on recent trends, existing successful partnerships, and perspectives on the future

  14. Industry Economists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Economists The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Industry Economist, whose work is associated with the performance of economic analyses using economic techniques. Responsibilities: Industry Economists perform or participate in one or more of the following

  15. Natural gas monthly, August 1995

    SciTech Connect (OSTI)

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  16. Natural Gas Monthly, October 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-10

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature articles are: US Production of Natural Gas from Tight Reservoirs: and Expanding Rule of Underground Storage.

  17. Natural gas monthly, December 1997

    SciTech Connect (OSTI)

    1997-12-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The article this month is entitled ``Recent Trends in Natural Gas Spot Prices.`` 6 figs., 27 tabs.

  18. Natural gas monthly, March 1997

    SciTech Connect (OSTI)

    1997-03-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas analysis and geographic information systems.`` 6 figs., 27 tabs.

  19. Natural gas monthly, May 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-25

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured articles for this month are: Opportunities with fuel cells, and revisions to monthly natural gas data.

  20. Natural gas monthly, April 1997

    SciTech Connect (OSTI)

    1997-04-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

  1. ,"New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  2. ,"North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  3. ,"Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  4. ,"Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  5. ,"Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  6. ,"Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  7. ,"Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  8. ,"Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  9. ,"Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  10. ,"Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  11. ,"Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  12. ,"California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  13. ,"Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  14. ,"Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  15. ,"Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  16. ,"Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  17. ,"Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  18. ,"Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  19. ,"Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  20. ,"Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  1. ,"Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  2. ,"Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  3. Natural gas monthly, October 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-05

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. 16 figs., 33 tabs.

  4. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect (OSTI)

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  5. Natural gas monthly, October 1990. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-12-28

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 7 figs., 34 tabs.

  6. ,"U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. An evaluation of gas field rules in light of current conditions and production practices in the Panhandle non-associated gas fields

    SciTech Connect (OSTI)

    Brady, C.L.; O`Rear, C.H.

    1996-09-01

    During the early years of development in the Panhandle fields the Rule of Capture was king. Under the Rule of Capture each property owner has the right to drill as many wells as desired at any location. Adjacent property owners protect their rights by doing the same. Courts adopted the Rule of Capture to protect mineral owners from liability due to migration of oil and gas across property boundary lines. This general practice {open_quotes}to go and do likewise{close_quotes} generally leads to enormous economic and natural resource waste. Established to offset the waste created under the Rule of Capture is the doctrine of Correlative Rights. Correlative Rights is the fight of each mineral owner to obtain oil and gas from a common source of supply under lawful operations conducted from his property. However, each mineral owner has a duty to every other mineral owner not to extract oil and gas in a manner injurious to the common source of supply. This paper will examine the historical context of these common law principles with regard to the Panhandle non-associated gas fields. Discovered in 1917, the Panhandle fields are ideal to evaluate the merit of statutes and regulations enacted in response to production practices. As in many Texas fields, proration in the Panhandle fields is the primary mechanism to protect correlative rights and prevent waste. Signed and made effective May 1989, the current field rules pre-date much of the enhanced recovery techniques that use well-head vacuum compression. This paper reviews the gas rules in the 1989 Texas Railroad Commission order in light of current reservoir conditions and production practices.

  8. Natural gas monthly, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured article for this month is on US coalbed methane production.

  9. Table 11.5c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Commercial Sector 8<//td> 1989 2,319,630 1,542,083 637,423 [ –] 803,754 5,302,890 37,398 4

  10. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  11. DOE to Launch Collaborative Effort with Industry to Improve Natural...

    Energy Savers [EERE]

    DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems July 30, 2014 -...

  12. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  13. Underwater robotic work systems for Russian arctic offshore oil/gas industry: Final report. Export trade information

    SciTech Connect (OSTI)

    1997-12-15

    The study was performed in association with Rosshelf, a shelf developing company located in Moscow. This volume involves developing an underwater robotic work system for oil exploration in Russia`s Arctic waters, Sea of Okhotsk and the Caspian Sea. The contents include: (1) Executive Summary; (2) Study Background; (3) Study Outline and Results; (4) Conclusions; (5) Separately Published Elements; (6) List of Subcontractors.

  14. Industrial Applications for Micropower: A Market Assessment,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and reciprocating engines offers promise to renew growth in the U.S. industrial sector. ... Opportunities for Micropower and Fuel CellGas Turbine Hybrid Systems in Industrial ...

  15. Process studies for a new method of removing H/sub 2/S from industrial gas streams

    SciTech Connect (OSTI)

    Neumann, D.W.; Lynn, S.

    1986-07-01

    A process for the removal of hydrogen sulfide from coal-derived gas streams has been developed. The basis for the process is the absorption of H/sub 2/S into a polar organic solvent where it is reacted with dissolved sulfur dioxide to form elemental sulfur. After sulfur is crystallized from solution, the solvent is stripped to remove dissolved gases and water formed by the reaction. The SO/sub 2/ is generated by burning a portion of the sulfur in a furnace where the heat of combustion is used to generate high pressure steam. The SO/sub 2/ is absorbed into part of the lean solvent to form the solution necessary for the first step. The kinetics of the reaction between H/sub 2/S and SO/sub 2/ dissolved in mixtures of N,N-Dimethylaniline (DMA)/ Diethylene Glycol Monomethyl Ether and DMA/Triethylene Glycol Dimethyl Ether was studied by following the temperature rise in an adiabatic calorimeter. This irreversible reaction was found to be first-order in both H/sub 2/S and SO/sub 2/, with an approximates heat of reaction of 28 kcal/mole of SO/sub 2/. The sole products of the reaction appear to be elemental sulfur and water. The presence of DMA increases the value of the second-order rate constant by an order of magnitude over that obtained in the glycol ethers alone. Addition of other tertiary aromatic amines enhances the observed kinetics; heterocyclic amines (e.g., pyridine derivatives) have been found to be 10 to 100 times more effective as catalysts when compared to DMA.

  16. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic

  17. Energy Savings from Industrial Water Reductions

    SciTech Connect (OSTI)

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  18. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Devonian shale

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    The purpose of this study is to identify and examine potential public health and safety issues and the potential environmental impacts from recovery of natural gas from Devonian age shale. This document will serve as background data and information for planners within the government to assist in development of our new energy technologies in a timely and environmentally sound manner. This report describes the resource and the DOE eastern gas shales project in Section 2. Section 3 describes the new and developing recovery technologies associated with Devonian shale. An assessment of the environment, health and safety impacts associated with a typical fields is presented in Section 4. The typical field for this assessment occupies ten square miles and is developed on a 40-acre spacing (that is, there is a well in each 40-acre grid). This field thus has a total of 160 wells. Finally, Section 5 presents the conclusions and recommendations. A reference list is provided to give a greater plant. Based on the estimated plant cost and the various cases of operating income, an economic analysis was performed employing a profitability index criterion of discounted cash flow to determine an interest rate of return on the plant investment.

  19. (Gas) Commercial and Industrial Gas Rebate Program

    Broader source: Energy.gov [DOE]

    NOTE: All equipment must be installed on or after January 1, 2015 through December 31, 2015. The documentation must be received no later than March 31, 2016. 

  20. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  1. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995

    SciTech Connect (OSTI)

    Sutton, W.H.

    1995-12-31

    This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

  2. EIA - Natural Gas Analysis Basics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    natural gas industry restructuring in each state, focusing on the residential customer class. About U.S. Natural Gas Pipelines State Energy Profiles What role does liquefied...

  3. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    SciTech Connect (OSTI)

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  4. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    SciTech Connect (OSTI)

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  5. Industrial Green | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Green Industrial Green - This giant bag may not look green, but it keeps a potent greenhouse gas from being released into the atmosphere. It's part of a system at the Free-Electron Laser that retains sulfur hexafluoride gas when it isn't being used in the FEL's gun test stand. The concept received a 2011 Virginia Governor's Environmental Excellence Program Gold Award. Industrial Green On behalf of work done by Kevin Jordan, a senior engineer in the Free-Electron Laser Division, and

  6. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  7. Natural gas monthly, September 1991. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-10-18

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production distribution consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia.

  8. Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation

    SciTech Connect (OSTI)

    Feng, D.C.; Yu, Z.J.; Chen, Y.; Qian, Y.

    2009-06-15

    A large amount of wastewater is produced in the Lurgi coal-gasification process with the complex compounds carbon dioxide, ammonia, phenol, etc., which cause a serious environmental problem. In this paper, a novel stripper operated at elevated pressure is designed to improve the pretreatment process. In this technology, two noticeable improvements were established. First, the carbon dioxide and ammonia were removed simultaneously in a single stripper where sour gas (mainly carbon dioxide) is removed from the tower top and the ammonia vapor is drawn from the side and recovered by partial condensation. Second, the ammonia is removed before the phenol recovery to reduce the pH value of the subsequent extraction units, so as the phenol removal performance of the extraction is greatly improved. To ensure the operational efficiency, some key operational parameters are analyzed and optimized though simulation. It is shown that when the top temperature is kept at 40 C and the weight ratio of the side draw to the feed is above 9%, the elevated pressures can ensure the removal efficiency of NH{sub 3} and carbon dioxide and the desired purified water as the bottom product of the unit is obtained. A real industrial application demonstrates the attractiveness of the new technique: it removes 99.9% CO{sub 2} and 99.6% ammonia, compared to known techniques which remove 66.5% and 94.4%, respectively. As a result, the pH value of the wastewater is reduced from above 9 to below 7. This ensures that the phenol removal ratio is above 93% in the following extraction units. The operating cost is lower than that of known techniques, and the operation is simplified.

  9. Natural gas monthly, July 1996

    SciTech Connect (OSTI)

    1996-07-01

    This document presents information pertaining to the natural gas industry. Data are included on production, consumption, distribution, and pipeline activities.

  10. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  11. ,"New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  12. ,"New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  13. ,"U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  14. ,"California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  15. ,"California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  16. ,"California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  17. ,"California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  18. ,"Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  19. ,"Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  20. ,"Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  1. Achieve Steam System Excellence: Industrial Technologies Program BestPractices Steam Overview Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BESTPRACTICES STEAM PARTNERS 3M American Boiler Manufacturers Association Armstrong International, Inc. Association of Energy Engineers BASF Corporation Bethlehem Steel Corporation CERL - U.S. Army Corps of Engineers Council of Industrial Boiler Owners Enbridge Consumers Gas Enercheck Systems Industrial Interactions, Inc. Institute of Textile Technology Iowa Energy Center Johns Manville Corporation Millennium Chemicals* N.Y. State Energy Research and Development National Board of Boiler and

  2. Plugging of Exhaust Gas Recirculation Coolers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plugging of Exhaust Gas Recirculation Coolers Plugging of Exhaust Gas Recirculation Coolers EGR coolers donated by industry and analyzed at ORNL contained lacquer-like deposits, which can be prevented by maintaining the cooler above the dew point of the hydrocarbons. PDF icon deer12_lance.pdf More Documents & Publications Materials Issues Associated with EGR Systems Vehicle Technologies Office Merit Review 2014: Materials Issues Associated with EGR Systems (Agreement ID:18571) Project

  3. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect (OSTI)

    Joel Morrison; Sharon Elder

    2006-01-24

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Organized and hosted two technology transfer meetings; (2) Collaborated with the Pennsylvania Oil and Gas Association (POGAM) to host a Natural Gas Outlook conference in Pittsburgh, PA; (3) Provided a SWC presentation at the Interstate Oil and Gas Compact Commission (IOGCC) meeting in Jackson Hole, WY; and (4) Completed and released a stripper well industry documentary entitled: ''Independent Oil: Rediscovering America's Forgotten Wells''.

  4. RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO

    SciTech Connect (OSTI)

    Stephen A. Holditch; Emrys Jones

    2002-09-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

  5. Carolina users sue Transco for natural gas carriage

    SciTech Connect (OSTI)

    Hume, M.

    1985-05-27

    Carolina Utility Customers Association, Inc., which represents 65 industrial natural gas users, is suing Transcontinental Gas Pipe Line Corp. on antitrust grounds to gain greater access to the system. The litigants claim that the pipeline is carrying only for users who would otherwise buy oil, which violates sections 1 and 2 of the Sherman Act. Similar suits are already in federal courts at a time when pipelines are also experiencing pressure to deliver more and cheaper gas to all users without class discrimination. Improved transportation would help industries, such as textiles, which are already at a competitive disadvantage due to imports.

  6. Trends in gas turbine development

    SciTech Connect (OSTI)

    Day, W.H.

    1999-07-01

    This paper represents the Gas Turbine Association's view of the gas turbine industry's R and D needs following the Advanced Turbine Systems (ATS) Program which is funded by the U.S. Department of Energy (DOE). Some of this information was discussed at the workshop Next Generation Gas Turbine Power Systems, which was held in Austin, TX, February 9--10, 1999, sponsored by DOE-Federal Energy Technology Center (FETC), reference 1. The general idea is to establish public-private partnerships to reduce the risks involved in the development of new technologies which results in public benefits. The recommendations in this paper are focused on gas turbines > 30 MW output. Specific GTA recommendations on smaller systems are not addressed here. They will be addressed in conjunction with DOE-Energy Efficiency.

  7. Natural Gas Monthly August 1998

    SciTech Connect (OSTI)

    1998-08-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. Explanatory notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication.

  8. Safety aspects of gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely.

  9. Natural gas monthly, July 1995

    SciTech Connect (OSTI)

    1995-07-21

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. Explanatory Notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided in the Data Sources section. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication. All natural gas volumes are reported at a pressure base of 14.73 pounds per square inch absolute (psia) and at 60 degrees Fahrenheit. Cubic feet are converted to cubic meters by applying a factor of 0.02831685.

  10. Studies on the impact, detection, and control of microbiology influenced corrosion related to pitting failures in the Russian oil and gas industry. Final CRADA report.

    SciTech Connect (OSTI)

    Ehst, D.

    2006-09-30

    The objectives of the Project are: (1) to design effective anti-corrosion preparations (biocides, inhibitors, penetrants and their combinations) for gas- and oil-exploration industries; (2) to study a possibility of development of environmentally beneficial ('green') biocides and inhibitors of the new generation; (3) to develop chemical and microbiological methods of monitoring of sites at risk of corrosion; and (4) to evaluate potentialities in terms of technology, raw materials and material and technical basis to set up a production of effective anti-corrosion preparations of new generation in Russia. During the four years of the project 228 compounds and formulations were synthesized and studied in respect to their corrosion inhibiting activity. A series of compounds which were according to the Bubble tests more efficient (by a factor of 10-100) than the reference inhibitor SXT-1102, some possessing the similar activity or slightly better activity than new inhibitor ??-1154? (company ONDEO/Nalco). Two synthetic routes for the synthesis of mercaptopyrimidines as perspective corrosion inhibitors were developed. Mercaptopyrimidine derivatives can be obtained in one or two steps from cheap and easily available precursors. The cost for their synthesis is not high and can be further reduced after the optimization of the production processes. A new approach for lignin utilization was proposed. Water-soluble derivative of lignin can by transformed to corrosion protective layer by its electropolymerization on a steel surface. Varying lignosulfonates from different sources, as well as conditions of electrooxidation we proved, that drop in current at high anodic potentials is due to electropolymerization of lignin derivative at steel electrode surface. The electropolymerization potential can be sufficiently decreased by an increase in ionic strength of the growing solution. The lignosulfonate electropolymerization led to the considerable corrosion protection effect of carbon steel. More than three times decrease of corrosion rate on steel surface was observed after lignosulfonate electropolymerization, exceeding protective effect of standard commercially available corrosion inhibitor. Solikamsky lignin could be a promising candidate as a base for the development of the future green corrosion inhibitor. A protective effect of isothiazolones in compositions with other biocides and inhibitors was investigated. Additionally to high biocidal properties, combination of kathon 893 and copper sulfate may also produce a strong anticorrosion effect depending on concentrations of the biocides. Based on its joint biocidal and anticorrosion properties, this combination can be recommended for protection of pipelines against carbon dioxide-induced corrosion. By means of linear polarization resistance test, corrosion properties of biocides of different classes were studied. Isothiazolones can be recommended for treating oil-processing waters in Tatarstan to curb carbon dioxide - induced corrosion. A laboratory research on evaluation of the efficiency of biocides, inhibitors and penetrants by biological and physical-and-chemical methods has been carried out. It was shown that action of corrosion inhibitors and biocides strongly depends on character of their interaction with mineral substances available in waters on oil-exploration sites. It was found that one of approaches to designing environmentally safe ('green') antimicrobial formulations may be the use of synergetic combinations, which allow one to significantly decrease concentrations of biocides. It was shown that the efficacy of biocides and inhibitors depends on physicochemical characteristics of the environment. Anticorrosion and antimicrobial effects of biocides and inhibitors depended in much on the type of medium and aeration regimen. Effects of different biocides, corrosion inhibitors. penetrants and their combinations on the biofilm were investigated. It has been shown that minimal inhibiting concentrations of the reagents for the biofilm are much higher than those for aquatic mic

  11. NIPSCO Prescriptive Electric and Natural Gas Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Prescriptive Natural Gas & Electric Program offers rebates to NIPSCO's large commercial, industrial, non-profit, governmental and institutional customers, who...

  12. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  13. EIA - Analysis of Natural Gas Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    natural gas industry restructuring in each state, focusing on the residential customer class. (Status by State as of December 2009) 2009 Revisions in Natural Gas Monthly...

  14. EIA - Analysis of Natural Gas Storage

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry....

  15. Mining Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These mined minerals include coal, metals such as iron, copper, or zinc, and industrial minerals such as potash, limestone, and other crushed rocks. Oil and natural gas extraction ...

  16. Oxygen-Enriched Combustion; Industrial Technologies Program ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... appli- cation is a PHAST analysis of a forging furnace where the flue gas temperature is ... Reference Improving Process Heating System Performance: A Sourcebook for Industry. DOE and ...

  17. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  18. Natural gas marketing and transportation

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners.

  19. AMERICAN STATISTICAL ASSOCIATION

    U.S. Energy Information Administration (EIA) Indexed Site

    ... gas because of North American natural gas being in this ... Is it, you know, the educated lay public or industry ... agencies where you're looking at health information. Right? ...

  20. Review of technology for Arctic offshore oil and gas recovery. Appendices

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-06-06

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.