Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,"New York Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:17 PM" "Back to Contents","Data 1: New York Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NY2" "Date","New York...

2

,"South Dakota Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sd2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sd2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:03 PM" "Back to Contents","Data 1: South Dakota Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035SD2" "Date","South Dakota Natural Gas Industrial Consumption (MMcf)" 35611,6928 35976,5607 36341,5043 36707,4323 37072,4211 37437,10584

3

U.S. Natural Gas Average Consumption per Industrial Consumer (Thousand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumer (Thousand Cubic Feet) Industrial Consumer (Thousand Cubic Feet) U.S. Natural Gas Average Consumption per Industrial Consumer (Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 0 0 0 0 0 1980's 39,245 37,530 30,909 29,915 24,309 30,956 29,057 30,423 32,071 30,248 1990's 32,144 33,395 35,908 38,067 40,244 40,973 43,050 36,239 36,785 35,384 2000's 36,968 33,840 36,458 34,793 34,645 31,991 33,597 33,561 29,639 29,705 2010's 35,418 36,947 38,155 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Average Natural Gas Consumption per Industrial

4

101. Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

1. Natural Gas Consumption 1. Natural Gas Consumption in the United States, 1930-1996 (Million Cubic Feet) Table Year Lease and Plant Fuel Pipeline Fuel Delivered to Consumers Total Consumption Residential Commercial Industrial Vehicle Fuel Electric Utilities Total 1930 ....................... 648,025 NA 295,700 80,707 721,782 NA 120,290 1,218,479 1,866,504 1931 ....................... 509,077 NA 294,406 86,491 593,644 NA 138,343 1,112,884 1,621,961 1932 ....................... 477,562 NA 298,520 87,367 531,831 NA 107,239 1,024,957 1,502,519 1933 ....................... 442,879 NA 283,197 85,577 590,865 NA 102,601 1,062,240 1,505,119 1934 ....................... 502,352 NA 288,236 91,261 703,053 NA 127,896 1,210,446 1,712,798 1935 ....................... 524,926 NA 313,498 100,187 790,563 NA 125,239 1,329,487 1,854,413 1936 ....................... 557,404 NA 343,346

5

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

6

Natural Gas Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 23,103,793 23,277,008 22,910,078 24,086,797 24,477,425 25,533,448 1949-2012 Alabama 418,512 404,157 454,456 534,779 598,514 666,738 1997-2012 Alaska 369,967 341,888 342,261 333,312 335,458 343,110 1997-2012

7

EIA - Analysis of Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption 2010 Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format) Trends in U.S. Residential Natural Gas Consumption This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census Division (1998 through 2009). It examines a long-term downward per-customer consumption trend and analyzes whether this trend persists across Census Divisions. The report also examines some of the factors that have contributed to the decline in per-customer consumption. To provide a more meaningful measure of per-customer consumption, EIA adjusted consumption data presented in the report for weather. Categories: Consumption (Released, 6/23/2010, pdf format)

8

EIA - Natural Gas Consumption Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Consumption by End Use U.S. and State consumption by lease and plant, pipeline, and delivered to consumers by sector (monthly, annual). Number of Consumers Number of sales and transported consumers for residential, commercial, and industrial sectors by State (monthly, annual). State Shares of U.S. Deliveries By sector and total consumption (annual). Delivered for the Account of Others Commercial, industrial and electric utility deliveries; percentage of total deliveries by State (annual). Heat Content of Natural Gas Consumed Btu per cubic foot of natural gas delivered to consumers by State (annual) and other components of consumption for U.S. (annual). Natural Gas Weekly Update Analysis of current price, supply, and storage data; and a weather snapshot.

9

Natural gas consumption | OpenEI  

Open Energy Info (EERE)

gas consumption gas consumption Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 136, and contains only the reference case. This dataset is in trillion cubic feet. The data is broken down into residential, commercial, industrial, electric power and transportation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Natural gas consumption Data application/vnd.ms-excel icon AEO2011: Natural Gas Consumption by End-Use Sector and Census Division- Reference Case (xls, 138.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

10

The Venezuelan natural gas industry  

SciTech Connect (OSTI)

Venezuela's consumption energy of comes from three primary sources: hydroelectricity, liquid hydrocarbons and natural gas. In 1986, the energy consumption in the internal market was 95.5 thousand cubic meters per day of oil equivalent, of which 32% was natural gas, 46% liquid hydrocarbons and 22% hydroelectricity. The Venezuelan energy policy established natural gas usage after hydroelectricity, as a substitute of liquid hydrocarbons, in order to increase exports of these. This policy permits a solid development of the natural gas industry, which is covered in this paper.

Silva, P.V.; Hernandez, N.

1988-01-01T23:59:59.000Z

11

Mathematical models of natural gas consumption  

E-Print Network [OSTI]

Mathematical models of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan Vazler , Marijana Zeki-Susac ksabo of natural gas consumption hourly fore- cast on the basis of hourly movement of temperature and natural gas

Scitovski, Rudolf

12

Displacing Natural Gas Consumption and Lowering Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels and thereby reduce their natural gas consumption. Opportunity gas fuels include biogas from animal and agri- cultural wastes, wastewater plants, and landfills, as well as...

13

The Gas Industry  

Science Journals Connector (OSTI)

... the total output of towns' gas in Great Britain, distributes annually approximately as much energy as the whole of the electrical undertakings in the country. The industry has reason ... any actual thermal process, and the operations of the gas industry are not outside the ambit of the second law of thermodynamics, high though the efficiency of the carbonising process ...

J. S. G. THOMAS

1924-04-26T23:59:59.000Z

14

,"Colorado Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Consumption by End Use",6,"Monthly","112014","1151989" ,"Release...

15

,"New York Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","12312014"...

16

,"California Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Consumption by End Use",11,"Annual",2013,"6301967" ,"Release...

17

,"New York Natural Gas Residential Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:45:53 PM" "Back to Contents","Data 1: New York Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NY2" "Date","New...

18

Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption...  

Broader source: Energy.gov (indexed) [DOE]

9: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by State, 2010 Fact 749: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by...

19

Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

-- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

20

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without...  

Broader source: Energy.gov (indexed) [DOE]

Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and...

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table 24. Refining Industry Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

- Corrections to Tables 24 to 32 - Corrections to Tables 24 to 32 Table 24. Refining Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 4/ (million metric tons) 190.4 185.7 188.0 191.3 207.3 215.6 220.0 222.8 225.1 226.3 228.0 230.7 234.1 237.5 238.5 239.4 239.4 238.6 240.6 240.5 242.2 244.2 245.9 246.3 246.6 1.2% Table 25. Food Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 3/ (million metric tons) 87.8 89.4 87.5 87.8 89.2 90.2 90.9 91.4 92.2 93.5 94.5 95.7 96.7 97.7 98.6 99.6 100.8 101.9 102.9 104.1 105.4 107.0 108.7 110.3 112.1 1.0% Table 26. Paper Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007

22

Natural Gas Industrial Price  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

23

Industrial Revolutions and Consumption: A Common Model to the Various Periods of Industrialization  

E-Print Network [OSTI]

Industrial Revolutions and Consumption: A Common Model to the Various Periods of Industrialization and establish a plausible link between consumption structure evolutions and industrial revolutions. In particular, we show that an industrial revolution starts with a "smithian growth process", which is demand

Boyer, Edmond

24

Industrial Biomass Energy Consumption and Electricity Net Generation by  

Open Energy Info (EERE)

47 47 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281847 Varnish cache server Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB)

25

Alternative fuels for industrial gas turbines (AFTUR)  

Science Journals Connector (OSTI)

Environmentally friendly, gas turbine driven co-generation plants can be located close to energy consumption sites, which can produce their own fuel such as waste process gas or biomass derived fuels. Since gas turbines are available in a large power range, they are well suited for this application. Current gas turbine systems that are capable of burning such fuels are normally developed for a single specific fuel (such as natural gas or domestic fuel oil) and use conventional diffusion flame technology with relatively high levels of \\{NOx\\} and partially unburned species emissions. Recently, great progress has been made in the clean combustion of natural gas and other fossil fuels through the use of dry low emission technologies based on lean premixed combustion, particularly with respect of \\{NOx\\} emissions. The objective of the AFTUR project is to extend this capability to a wider range of potentially commercial fuel types, including those of lower calorific value produced by gasification of biomass (LHV gas in line with the European Union targets) and hydrogen enriched fuels. The paper reports preliminary progress in the selection and characterisation of potential, liquid and gas, alternative fuels for industrial gas turbines. The combustion and emission characteristics of the selected fuels will be assessed, in the later phases of the project, both in laboratory and industrial combustion chambers.

Iskender Gökalp; Etienne Lebas

2004-01-01T23:59:59.000Z

26

Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

27

Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

28

Colorado Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Total Consumption (Million Cubic Feet) Colorado Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

29

Connecticut Natural Gas Total Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

30

Trends in U.S. Residential Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

Trends in U.S. Residential Natural Gas Consumption Trends in U.S. Residential Natural Gas Consumption This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census Division (1998 through 2009). It examines a long-term downward per- customer consumption trend and analyzes whether this trend persists across Census Divisions. The report also examines some of the factors that have contributed to the decline in per-customer consumption. To provide a more meaningful measure of per-customer consumption, EIA adjusted consumption data presented in the report for weather. Questions or comments on the contents of this article should be directed to Lejla Alic at Lejla.Alic@eia.doe.gov or (202) 586-0858.

31

,"New York Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Consumption by End Use",6,"Monthly","102014","1151989" ,"Release...

32

,"New York Natural Gas Lease and Plant Fuel Consumption (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

33

,"New York Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Consumption by End Use",10,"Annual",2013,"6301967" ,"Release Date:","10...

34

,"New York Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","1031...

35

Manufacturing-Industrial Energy Consumption Survey(MECS) Historical  

U.S. Energy Information Administration (EIA) Indexed Site

> Historical Publications > Historical Publications Manufacturing Establishments reports, data tables and questionnaires Released: May 2008 The Manufacturing Energy Consumption Survey (MECS) is a periodic national sample survey devoted to measuring energy consumption and related issues in the manufacturing sector. The MECS collects data on energy consumption, purchases and expenditures, and related issues and behaviors. Links to previously published documents are given below. Beginning in 1998, reports were only issued electronically. Additional electronic releases are available on the MECS Homepage. The basic unit of data collection for this survey is the manufacturing establishment. Industries are selected according to definitions found in the North American Industry Classification System (NAICS), which replace the earlier Standard Industrial Classification (SIC) system.

36

Industrial Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

603,966 598,721 565,544 584,812 593,722 576,117 2001-2013 603,966 598,721 565,544 584,812 593,722 576,117 2001-2013 Alabama 14,221 15,643 14,328 14,507 14,677 14,100 2001-2013 Alaska 317 306 262 297 370 311 2001-2013 Arizona 1,686 1,618 1,325 1,435 1,417 1,484 2001-2013 Arkansas 7,142 6,391 6,312 6,522 6,477 6,611 2001-2013 California 54,454 59,859 59,316 64,841 67,915 63,806 2001-2013 Colorado 6,957 5,661 NA 4,670 4,741 4,545 2001-2013 Connecticut NA 2,197 1,933 2,070 2,010 1,968 2001-2013 Delaware NA 2,742 2,578 2,519 2,463 NA 2001-2013 District of Columbia 0 0 0 0 0 0 2001-2013 Florida 8,594 8,789 7,617 7,686 8,131 7,363 2001-2013 Georgia 13,838 13,643 12,459 12,847 13,036 12,934 2001-2013 Hawaii 42 37 33 30 NA 31 2001-2013 Idaho 2,294 2,296 2,177 1,930 1,846 2,229 2001-2013

37

Average Natural Gas Consumption per Industrial Consumer  

Gasoline and Diesel Fuel Update (EIA)

33,561 29,639 29,705 35,418 36,947 38,155 1973-2012 33,561 29,639 29,705 35,418 36,947 38,155 1973-2012 Alabama 55,652 51,646 42,927 47,693 51,325 56,397 1973-2012 Alaska 1,795,587 997,882 2,211,756 2,135,975 1,353,819 2,118,957 1973-2012 Arizona 48,999 52,699 46,020 52,297 58,554 59,780 1973-2012 Arkansas 81,302 77,119 75,693 76,980 75,408 82,388 1973-2012 California 18,871 18,201 18,225 18,511 18,798 19,525 1973-2012 Colorado 25,529 24,856 22,341 18,340 11,396 10,575 1973-2012 Connecticut 6,872 7,052 7,835 7,874 8,576 8,559 1973-2012 Delaware 86,562 110,399 155,373 70,023 153,175 214,453 1973-2012 District of Columbia 0 0 0 0 0 0 1973-2012 Florida 142,299 152,059 107,907 131,708 135,626 193,577 1973-2012 Georgia 52,411 52,170 62,257 67,496 66,364 69,383 1973-2012

38

Industrial Consumption of Natural Gas (Summary)  

Gasoline and Diesel Fuel Update (EIA)

596,680 565,544 584,812 593,722 576,367 615,382 2001-2013 596,680 565,544 584,812 593,722 576,367 615,382 2001-2013 Alabama 15,643 14,328 14,507 14,677 14,100 15,240 2001-2013 Alaska 306 262 297 370 311 392 2001-2013 Arizona 1,618 1,325 1,435 1,417 1,484 1,746 2001-2013 Arkansas 6,391 6,312 6,522 6,477 6,611 7,334 2001-2013 California 59,859 59,316 64,841 67,915 63,806 60,529 2001-2013 Colorado 5,661 NA 4,670 4,741 4,545 6,570 2001-2013 Connecticut 2,197 1,933 2,070 2,010 1,968 NA 2001-2013 Delaware 2,742 2,578 2,519 2,463 NA 2,554 2001-2013 District of Columbia 0 0 0 0 0 0 2001-2013 Florida 8,789 7,617 7,686 8,131 7,363 8,390 2001-2013 Georgia 13,643 12,459 12,847 13,036 12,934 14,597 2001-2013 Hawaii 37 33 30 NA 31 30 2001-2013 Idaho 2,296 2,177 1,930 1,846 2,229 2,372 2001-2013

39

Industrial Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

6,654,716 6,670,182 6,167,371 6,826,192 6,994,120 7,223,835 6,654,716 6,670,182 6,167,371 6,826,192 6,994,120 7,223,835 1997-2012 Alabama 150,484 142,389 131,228 144,938 153,358 171,730 1997-2012 Alaska 19,751 5,987 6,635 6,408 6,769 6,357 1997-2012 Arizona 19,355 20,184 17,948 19,245 21,724 22,657 1997-2012 Arkansas 85,773 85,140 77,585 83,061 85,437 81,399 1997-2012 California 738,501 720,592 706,154 703,536 706,350 735,787 1997-2012 Colorado 117,230 119,706 113,582 114,295 74,407 73,028 1997-2012 Connecticut 22,794 22,539 24,585 24,117 26,258 26,935 1997-2012 Delaware 16,014 18,216 17,402 7,983 19,760 28,737 1997-2012 District of Columbia 0 0 0 0 0 0 1997-2012 Florida 66,453 68,275 65,500 76,522 85,444 98,144 1997-2012 Georgia 152,674 150,773 140,326 146,737 144,940 146,399 1997-2012

40

Connecticut Natural Gas Industrial Consumption (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 2,225 2,099 2,243 2,115 2,331 2,168 2,517 1,977 1,952 2,104 2,118 1,773 2002 2,982 2,873 2,953 2,080 2,249 2,098 2,273...

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Connecticut Natural Gas Industrial Consumption (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 34,554 32,498 32,039 2000's 32,162 25,622 29,051 23,553 20,529 20,469 21,670 22,794 22,539...

42

Industrial Gas Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

43

Industrial Gas Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

44

,"New York Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:26:12 PM" "Back to Contents","Data 1: New York Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570SNY2"...

45

Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002  

Reports and Publications (EIA)

This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

2002-01-01T23:59:59.000Z

46

AEO2011: Natural Gas Consumption by End-Use Sector and Census Division |  

Open Energy Info (EERE)

Consumption by End-Use Sector and Census Division Consumption by End-Use Sector and Census Division Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 136, and contains only the reference case. This dataset is in trillion cubic feet. The data is broken down into residential, commercial, industrial, electric power and transportation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Natural gas consumption Data application/vnd.ms-excel icon AEO2011: Natural Gas Consumption by End-Use Sector and Census Division- Reference Case (xls, 138.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

47

Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,225 1,736 1,807 1,582 4,278 2,390 2,537 1990's 27,720 36,088 36,741 35,503 37,347 39,116 40,334 40,706 39,601 41,149 2000's 42,519 42,243 44,008 44,762 44,016 43,386 38,938 41,197 40,286 39,447 2010's 37,316 35,339 37,397 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Alaska Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

48

Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,848 123,993 104,292 102,185 123,008 121,936 134,132 1990's 82,828 83,733 86,623 74,925 66,600 75,845 69,235 71,155 63,368 68,393 2000's 69,174 63,137 63,031 56,018 55,970 45,837 46,205 51,499 42,957 39,002 2010's 40,814 42,633 42,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Louisiana Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

49

Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,750 31,237 31,121 29,705 35,751 40,508 38,392 1990's 39,249 42,166 39,700 39,211 35,432 34,900 35,236 30,370 26,034 25,055 2000's 25,934 28,266 25,525 26,276 27,818 27,380 28,435 28,213 27,161 24,089 2010's 23,238 24,938 27,809 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Oklahoma Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

50

Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Wyoming Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

51

Life Cycle Greenhouse Gas Emissions and Freshwater Consumption of Marcellus Shale Gas  

Science Journals Connector (OSTI)

Life Cycle Greenhouse Gas Emissions and Freshwater Consumption of Marcellus Shale Gas ... We present results of a life cycle assessment (LCA) of Marcellus shale gas used for power generation. ... The analysis employs the most extensive data set of any LCA of shale gas to date, encompassing data from actual gas production and power generation operations. ...

Ian J. Laurenzi; Gilbert R. Jersey

2013-04-02T23:59:59.000Z

52

Connecticut Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

53

Alaska Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

54

Delaware Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

55

Mississippi Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

56

Minnesota Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

57

Nevada Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

58

Arizona Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

59

Idaho Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

60

Arkansas Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Kentucky Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

62

Idaho Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

63

Massachusetts Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

64

Maryland Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

65

Missouri Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

66

Kansas Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

67

Wisconsin Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

68

Alabama Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

69

Connecticut Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

70

Montana Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

71

Wyoming Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

72

Oklahoma Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

73

Ohio Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

74

Utah Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

75

Minnesota Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

76

Texas Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

77

Missouri Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

78

Delaware Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

79

Alabama Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

80

Nebraska Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Maine Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

82

California Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

83

Georgia Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

84

Florida Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

85

Arkansas Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

86

Alaska Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

87

Maine Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

88

Colorado Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

89

Oregon Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

90

Nebraska Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

91

Kentucky Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

92

Montana Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

93

Florida Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

94

California Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

95

Hawaii Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

96

Kansas Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

97

Michigan Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

98

Indiana Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

99

Deregulation in Japanese gas industries : significance and problems of gas rate deregulation for large industrial customers  

E-Print Network [OSTI]

In recent years, the circumstances surrounding Japanese City gas industries have been changing drastically. On one hand, as energy suppliers, natural gas which has become major fuel resource for city gas, as public utilities, ...

Inoue, Masayuki

1994-01-01T23:59:59.000Z

100

Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,270 1,530 1,924 1970's 2,251 2,419 2,847 2,725 1,649 1,760 3,043 3,210 2,134 2,889 1980's 1,320 1,580 3,278 3,543 5,236 4,575 4,715 5,799 4,983 4,767 1990's 6,031 3,502 3,381 4,145 3,252 3,069 3,299 2,275 1,706 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Pennsylvania Natural Gas Consumption by End Use Lease and Plant

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,603 109,333 62,341 71,104 112,404 151,280 189,702 1990's 166,155 187,106 197,975 202,199 200,809 253,695 255,500 230,578 242,271 224,355 2000's 226,659 229,206 241,469 255,701 237,530 259,829 218,153 227,374 211,878 219,161 2010's 211,918 208,531 214,335 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease Fuel Consumption Alaska Natural Gas Consumption by End Use Lease

102

Energy consumption analysis for CO2 separation from gas mixtures  

Science Journals Connector (OSTI)

Abstract CO2 separation is an energy intensive process, which plays an important role in both energy saving and CO2 capture and storage (CCS) implementation to deal with global warming. To quantitatively investigate the energy consumption of CO2 separation from different CO2 streams and analyze the effect of temperature, pressure and composition on energy consumption, in this work, the theoretical energy consumption of CO2 separation from flue gas, lime kiln gas, biogas and bio-syngas was calculated. The results show that the energy consumption of CO2 separation from flue gas is the highest and that from biogas is the lowest, and the concentration of CO2 is the most important factor affecting the energy consumption when the CO2 concentration is lower than 0.15 in mole fraction. Furthermore, if the CO2 captured from flue gases in CCS was replaced with that from biogases, i.e. bio-CO2, the energy saving would be equivalent to 7.31 million ton standard coal for China and 28.13 million ton standard coal globally, which corresponds to 0.30 billion US$ that can be saved for China and 1.36 billion US$ saved globally. This observation reveals the importance of trading fossil fuel-based CO2 with bio-CO2.

Yingying Zhang; Xiaoyan Ji; Xiaohua Lu

2014-01-01T23:59:59.000Z

103

Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 183,870 204,390 193,822 189,173 229,053 200,239 163,218 1990's 228,485 125,198 123,111 130,916 139,427 178,827 177,508 144,787 176,262 136,708 2000's 141,785 135,786 114,919 123,585 129,825 134,434 138,558 154,323 166,500 169,631 2010's 157,751 147,268 163,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease Fuel Consumption Texas Natural Gas Consumption by End Use Lease

104

Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,582 9,158 8,521 1970's 7,893 5,840 9,153 6,152 5,357 7,894 4,836 4,979 5,421 8,645 1980's 4,428 4,028 7,236 6,632 7,202 6,296 6,562 8,091 7,100 5,021 1990's 7,257 4,585 4,945 4,829 3,632 3,507 3,584 3,652 3,710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Mississippi Natural Gas Consumption by End Use Lease and Plant

105

Reduce Natural Gas Use in Your Industrial Process Heating Systems...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Use in Your Industrial Process Heating Systems Reduce Natural Gas Use in Your Industrial Process Heating Systems This fact sheet describes ten effective ways to save...

106

Table 20. Total Industrial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Industrial Energy Consumption, Projected vs. Actual Industrial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 24.0 24.1 24.4 24.9 25.5 26.1 AEO 1983 23.2 23.6 23.9 24.4 24.9 25.0 25.4 AEO 1984 24.1 24.5 25.4 25.5 27.1 27.4 28.7 AEO 1985 23.2 23.6 23.9 24.4 24.8 24.8 24.4 AEO 1986 22.2 22.8 23.1 23.4 23.4 23.6 22.8 AEO 1987 22.4 22.8 23.7 24.0 24.3 24.6 24.6 24.7 24.9 22.6 AEO 1989* 23.6 24.0 24.1 24.3 24.5 24.3 24.3 24.5 24.6 24.8 24.9 24.4 24.1 AEO 1990 25.0 25.4 27.1 27.3 28.6 AEO 1991 24.6 24.5 24.8 24.8 25.0 25.3 25.7 26.2 26.5 26.1 25.9 26.2 26.4 26.6 26.7 27.0 27.2 27.4 27.7 28.0 AEO 1992 24.6 25.3 25.4 25.6 26.1 26.3 26.5 26.5 26.0 25.6 25.8 26.0 26.1 26.2 26.4 26.7 26.9 27.2 27.3 AEO 1993 25.5 25.9 26.2 26.8 27.1 27.5 27.8 27.4 27.1 27.4 27.6 27.8 28.0 28.2 28.4 28.7 28.9 29.1 AEO 1994 25.4 25.9

107

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 AEO 1997 26.2 26.5 26.9 26.7 26.6 26.8 27.1 27.4 27.8 28.0 28.4 28.7 28.9 29.0 29.2 29.4 AEO 1998 27.2 27.5 27.2 26.9 27.1 27.5 27.7 27.9 28.3 28.7 29.0 29.3 29.7 29.9 30.1 AEO 1999 26.7 26.4 26.4 26.8 27.1 27.3 27.5 27.9 28.3 28.6 28.9 29.2 29.5 29.7 AEO 2000 25.8 25.5 25.7 26.0 26.5 26.9 27.4 27.8 28.1 28.3 28.5 28.8 29.0

108

Power consumption in gas-inducing-type mechanically agitated contactors  

SciTech Connect (OSTI)

Power consumption was measured in 0.57, 1.0, and 1.5 m i.d. gas inducing type of mechanically agitated contactors (GIMAC) using single and multiple impellers. The ratio of impeller diameter to vessel diameter was varied in the range of 0.13 < D/T < 0.59. The effect of liquid submergence from the top and impeller clearance from the vessel bottom was investigated in detail. In the case of multiple impeller systems, six different designs were investigated. The designs included pitched blade downflow turbine (PBTD), pitched blade upflow turbine (PBTU), downflow propeller (PD), upflow propeller (PU), straight bladed turbine (SBT) and disc turbine (DT). The effect of interimpeller clearance was studied for the multiple impeller system. The effect of impeller speed was studied in the range of 0.13 < N < 13.5 rotations/s. A mathematical model has been developed for power consumption before and after the onset of gas induction.

Saravanan, K.; Mundale, V.D.; Patwardhan, A.W.; Joshi, J.B. [Univ. of Bombay (India). Dept. of Chemical Technology] [Univ. of Bombay (India). Dept. of Chemical Technology

1996-05-01T23:59:59.000Z

109

Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Lease Fuel Consumption (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

110

U.S. Total Consumption of Heat Content of Natural Gas (BTU per...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

111

Consumption, Social Capital, and the 'Industrious Revolution' in Early Modern Germany  

E-Print Network [OSTI]

Consumption, Social Capital, and the “Industrious Revolution” in Early Modern Germany SHEILAGH OGILVIE Faculty of Economics, University of Cambridge Acknowledgements: I am grateful to Marco Belfanti, André... ; labour; discrimination; gender; Germany 1 Expanding market consumption is widely ascribed a key role in European economic growth before industrialization. A “Consumer Revolution” between 1650 and 1800 is thought to have seen the middle classes...

Ogilvie, Sheilagh

112

China's Industrial Energy Consumption Trends and Impacts of the Top-1000  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

China's Industrial Energy Consumption Trends and Impacts of the Top-1000 China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects Title China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects Publication Type Journal Year of Publication 2012 Authors Ke, Jing, Lynn K. Price, Stephanie Ohshita, David Fridley, Nina Zheng Khanna, Nan Zhou, and Mark D. Levine Keywords energy saving, energy trends, industrial energy efficiency, top-1000 Abstract This study analyzes China's industrial energy consumption trends from 1996 to 2010 with a focus on the impact of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects. From 1996 to 2010, China's industrial energy consumption increased by 134%, even as the industrial economic energy intensity decreased by 46%. Decomposition analysis shows that the production effect was the dominant cause of the rapid growth in industrial energy consumption, while the efficiency effect was the major factor slowing the growth of industrial energy consumption. The structural effect had a relatively small and fluctuating influence. Analysis shows the strong association of industrial energy consumption with the growth of China's economy and changing energy policies. An assessment of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects indicates that the economic energy intensity of major energy-intensive industrial sub-sectors, as well as the physical energy intensity of major energy-intensive industrial products, decreased significantly during China's 11th Five Year Plan (FYP) period (2006-2010). This study also shows the importance and challenge of realizing structural change toward less energy-intensive activities in China during the 12th FYP period (2011-2015).

113

THE NATURAL GAS INDUSTRY AND MARKETS IN 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 This special report provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2002 (NGA). Unless otherwise stated, all data in this report are based on summary statistics published in the NGA 2002. Questions or comments on the contents of this report should be directed to William Trapmann at william.trapmann@eia.doe.gov or (202) 586-6408. Overview The natural gas industry and markets experienced a number of key changes during 2002. Current supplies of production and net imports decreased by about 750 billion cubic feet (Bcf) in 2002, so storage stocks were drawn down to meet an increase in consumption. Average prices in 2002 declined from the relatively high levels of 2001.

114

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network [OSTI]

Industry Constraining Energy Consumption of China’s Largestone-to-one ratio of energy consumption to GDP – given China’goal of reducing energy consumption per unit of GDP by 20%

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

115

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network [OSTI]

China’s total primary energy consumption in 2005, along withthe industrial sector primary energy consumption was 1,416of China’s total primary energy consumption (Lin et al. ,

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

116

Simultaneous production and distribution of industrial gas supply-chains  

Science Journals Connector (OSTI)

Abstract In this paper, we propose a multi-period mixed-integer linear programming model for optimal enterprise-level planning of industrial gas operations. The objective is to minimize the total cost of production and distribution of liquid products by coordinating production decisions at multiple plants and distribution decisions at multiple depots. Production decisions include production modes and rates that determine power consumption. Distribution decisions involve source, destination, quantity, route, and time of each truck delivery. The selection of routes is a critical factor of the distribution cost. The main goal of this contribution is to assess the benefits of optimal coordination of production and distribution. The proposed methodology has been tested on small, medium, and large size examples. The results show that significant benefits can be obtained with higher coordination among plants/depots in order to fulfill a common set of shared customer demands. The application to real industrial size test cases is also discussed.

Pablo A. Marchetti; Vijay Gupta; Ignacio E. Grossmann; Lauren Cook; Pierre-Marie Valton; Tejinder Singh; Tong Li; Jean André

2014-01-01T23:59:59.000Z

117

Lean Manufacturing in the Oil and Gas Industry .  

E-Print Network [OSTI]

??This research aims to investigate the lean production tools and techniques in the oil and gas industry with a focus on the oilfield services industry.… (more)

Sakhardande, Rohan

2011-01-01T23:59:59.000Z

118

Energy Consumption and Potential for Energy Conservation in the Steel Industry  

E-Print Network [OSTI]

The domestic steel industry, being energy-use intensive, requires between 4 and 5 percent of total annual domestic energy consumption. More than two-thirds of total steel industry energy, however, is derived from coal. During the post-World War II...

Hughes, M. L.

1979-01-01T23:59:59.000Z

119

Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use  

Science Journals Connector (OSTI)

Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use ... Despite the water intensity of hydraulic fracturing, recent life cycle analyses have concluded that increased shale gas development will lead to net decreases in water consumption if the increased natural gas production is used at natural gas combined cycle power plants, shifting electricity generation away from coal-fired steam cycle power plants. ... This work expands on these studies by estimating the spatial and temporal patterns of changes in consumptive water use in Texas river basins during a period of rapid shale gas development and use in electricity generation from August 2008 through December 2009. ...

Adam P. Pacsi; Kelly T. Sanders; Michael E. Webber; David T. Allen

2014-06-24T23:59:59.000Z

120

Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines  

Broader source: Energy.gov [DOE]

Gas turbines—heat engines that use high-temperature and high-pressure gas as the combustible fuel—are used extensively throughout U.S. industry to power industrial processes. The majority of...

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

TAPPI survey of energy consumption: A snapshot of industry trends  

SciTech Connect (OSTI)

Energy management is one of the most important aspects of mill operation. Mills compete chiefly on the basis of price and product quality. Because pulp and paper production consumes tremendous amount of energy, the mill that can reduce the energy consumed per ton of production gains a competitive edge. The opportunities for savings range from investment in new equipment to simply increasing the efficiency of existing operations. The authors wanted to learn what mills are doing to reduce energy consumption in 1994. He also wanted to know if energy management at the mill is as important today as it was a decade ago. The results presented here are based on the 105 responses from a survey.

Burke, D.J.

1994-09-01T23:59:59.000Z

122

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Consumption, Projected vs. Actual Total Natural Gas Consumption, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 19.87 20.21 20.64 20.99 21.20 21.42 21.60 21.99 22.37 22.63 22.95 23.22 23.58 23.82 24.09 24.13 24.02 24.14 AEO 1995 20.82 20.66 20.85 21.21 21.65 21.95 22.12 22.25 22.43 22.62 22.87 23.08 23.36 23.61 24.08 24.23 24.59 AEO 1996 21.32 21.64 22.11 22.21 22.26 22.34 22.46 22.74 23.14 23.63 24.08 24.25 24.63 25.11 25.56 26.00 26.63 AEO 1997 22.15 22.75 23.24 23.64 23.86 24.13 24.65 25.34 25.82 26.22 26.52 27.00 27.35 27.70 28.01 28.47 AEO 1998 21.84 23.03 23.84 24.08 24.44 24.81 25.33 25.72 26.22 26.65 27.22 27.84 28.35 28.84 29.17 AEO 1999 21.35 22.36 22.54 23.18 23.65 24.17 24.57 25.19 25.77 26.41 26.92 27.42 28.02 28.50

123

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

China’s Largest Industrial Enterprises Through the Top-1000Top-1000 Energy- Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in ChinaTop-1000 Energy-Consuming Enterprises Program : Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

Price, Lynn

2008-01-01T23:59:59.000Z

124

Natural gas monthly, July 1996  

SciTech Connect (OSTI)

This document presents information pertaining to the natural gas industry. Data are included on production, consumption, distribution, and pipeline activities.

NONE

1996-07-01T23:59:59.000Z

125

Reduction of fuel consumption in gasoline engines by introducing HHO gas into intake manifold  

Science Journals Connector (OSTI)

Brown’s gas (HHO) has recently been introduced to the auto industry as a new source of energy. The present work proposes the design of a new device attached to the engine to integrate an HHO production system with the gasoline engine. The proposed HHO generating device is compact and can be installed in the engine compartment. This auxiliary device was designed, constructed, integrated and tested on a gasoline engine. Test experiments were conducted on a 197cc (Honda G 200) single-cylinder engine. The outcome shows that the optimal surface area of an electrolyte needed to generate sufficient amount of HHO is twenty times that of the piston surface area. Also, the volume of water needed in the cell is about one and half times that of the engine capacity. Eventually, the goals of the integration are: a 20–30% reduction in fuel consumption, lower exhaust temperature, and consequently a reduction in pollution.

Ammar A. Al-Rousan

2010-01-01T23:59:59.000Z

126

Colorado Natural Gas Number of Industrial Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

127

Connecticut Natural Gas Number of Industrial Consumers (Number...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

128

Vol. XV No.2 The Global Seafood Industry: A Perspective on Consumption and Supply  

E-Print Network [OSTI]

July 2011 Vol. XV No.2 The Global Seafood Industry: A Perspective on Consumption and Supply Florida. These resulting campaigns (e.g., dolphin-safe tuna, Give Swordfish a Break) aim to affect the seafood demand and lead to a sustainable seafood supply. Although there are indicators of some regional successes, lack

Florida, University of

129

,"New York Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:18 PM" "Back to Contents","Data 1: New York Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

130

,"New York Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:17 PM" "Back to Contents","Data 1: New York Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

131

,"Connecticut Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:02:15 PM" "Back to Contents","Data 1: Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

132

Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Low-Income Residential Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate All Gas Programs: Contact utility Custom Retrofits: 40% Comprehensive Project: 50% of total cost Program Info Funding Source Connecticut Energy Efficiency Fund State Connecticut Program Type Utility Rebate Program Rebate Amount

133

Gas Separation Membrane Use in the Refinery and Petrochemical Industries  

E-Print Network [OSTI]

Membranes have gained commercial acceptance as proven methods to recover valuable gases from waste gas streams. This paper explores ways in which gas separation membranes are used in the refinery and petrochemical industries to recover and purify...

Vari, J.

134

Optimal Gas Turbine Integration to the Process Industries  

Science Journals Connector (OSTI)

Gas turbine integration can also help cut down flue gas emissions as a result of the improved efficiency of a cogeneration system. ... The aeroderivative turbines have higher efficiency than the industrial type, but they are more expensive. ...

Jussi Manninen; X. X. Zhu

1999-09-28T23:59:59.000Z

135

Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Laclede Gas Company - Commercial and Industrial Energy Efficiency Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate Program Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Maximum Rebate Commercial Incentive: Contact Laclede Gas for general program incentive maximum Gas Boilers: 1,000,000 BTU/hr ($3,000) Continuous Modulating Burner: $15,000 cap per burner Gas-fired Boiler Tune Up: $750 per building (non-profit), $500 per boiler (C&I) High Efficiency Air-Forced Furnaces: $200-$250 Vent Dampers: $500 per boiler Steam Trap Replacements: $2,500 Primary Air Dampers: $500 Food Service Gas Steamer: $475 Food Service Gas Fryer: $350

136

Modeling the Belgian gas consumption W. Favoreel, P. Lemmerling, J. Suykens, B. De Moor, \\Lambda M. Crepel, P. Briol y  

E-Print Network [OSTI]

Modeling the Belgian gas consumption W. Favoreel, P. Lemmerling, J. Suykens, B. De Moor, \\Lambda M in particular to normalize the gas consumption with respect to temperature. Key Words: modeling, time series rate of the market and the normalization of the gas consumption with respect to temperature changes

137

Green Computing Wanted: Electricity Consumptions in the IT Industry and by Household Computers in Five Major Chinese Cities  

Science Journals Connector (OSTI)

Exhausted energy consumption becomes a world-wide issue nowadays. Computing contributes a large portion of energy consumption. The concept of green computing has been popularized. Along with the rapid development of China, energy issue becomes more and ... Keywords: energy/electricity consumption, IT industry, household computers, energy efficiency, green computing

Luyang Wang; Tao Wang

2011-08-01T23:59:59.000Z

138

U. S. Industrial Energy Consumption and Conservation: Past and Future Perspectives  

E-Print Network [OSTI]

-bed combustors and medium Btu gasifiers to enable use of coal for gas turbines. Motors. Another partly developed technology which may have a major impact on industrial energy is motor controls. Although small motors are often remarkably inefficient, most...-bed combustors and medium Btu gasifiers to enable use of coal for gas turbines. Motors. Another partly developed technology which may have a major impact on industrial energy is motor controls. Although small motors are often remarkably inefficient, most...

Ganeriwal, R; Ross, M. H.

1980-01-01T23:59:59.000Z

139

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network [OSTI]

clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial...

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

140

Chapter 10 - The Transformation of the German Gas Supply Industry  

Science Journals Connector (OSTI)

Publisher Summary Natural gas is the second largest energy source in Germany, and its market share will continue to increase. This chapter describes the historical development of the German gas industry, discusses current issues of importance in German gas policy, and outlines the industrial organization and profiles of the major gas utilities. Today, the German gas industry can be divided into two groups: the gas supply industry and the rest of the gas industry. The gas market in Germany has developed on three levels: natural gas production and import, pipeline business and distribution, and end user supply. Germany's energy policy, as a part of economic policy, is oriented to free market principles. The future of the German gas market is very promising. The share of natural gas is growing as a part of primary energy supply, as well as in power generation, substituting coal and oil, and electricity in the heat market. With regard to the effects of liberalization, it can be said that a one-to-one transposition of international experience to the German gas industry will not be possible, due to the different historical, economical, and political factors at work.

Lutz Mez

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Arizona Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,898 2,093 2,015 1,810 1,975 1,872 1,853 1,813 1,439 1,344 1,412 1,704 2002 1,705 1,448 1,418 1,308 1,279 1,278 1,291 1,281 1,247 1,530 1,622 1,748 2003 1,527 1,431 1,448 1,325 1,262 1,242 1,181 1,112 1,045 1,101 1,214 1,390 2004 2,082 2,108 1,725 1,590 1,523 1,633 1,455 1,500 1,504 1,641 1,854 2,097 2005 1,617 1,442 1,498 1,620 1,491 1,303 1,131 1,251 1,273 1,253 1,427 1,669 2006 1,828 1,747 1,808 1,518 1,413 1,284 1,269 1,295 1,343 1,426 1,594 1,921 2007 1,983 1,763 1,660 1,613 1,402 1,254 1,297 1,410 1,362 1,758 1,713 2,141 2008 2,223 1,898 1,772 1,646 1,602 1,583 1,360 1,352 1,441 1,598 1,770 1,938

142

Alabama Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 14,252 13,534 14,746 13,227 12,911 11,989 11,891 12,319 12,134 13,613 11,767 12,672 2002 14,069 13,875 14,404 13,433 13,224 12,875 12,442 12,540 12,721 13,268 12,690 14,398 2003 15,463 14,505 13,359 12,784 12,651 11,707 11,923 12,800 12,339 13,365 13,235 14,381 2004 15,170 14,489 13,878 13,567 12,955 12,878 12,557 12,722 12,800 13,906 13,521 14,812 2005 14,959 13,377 14,398 12,900 12,229 11,710 12,259 11,816 11,009 11,518 11,913 13,013 2006 13,370 12,848 13,006 11,889 12,438 11,946 11,839 12,284 12,002 12,898 12,367 13,086 2007 14,536 13,470 12,857 12,592 11,866 11,659 11,798 11,727 11,086 12,745 12,814 13,336

143

Montana Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 2,448 2,226 2,224 1,871 1,230 1,230 1,497 1,337 1,241 1,558 2,089 1,972 2002 2,134 2,136 1,938 2,296 1,672 1,554 1,351 1,409 1,696 1,920 2,215 1,547 2003 2,105 1,990 1,859 1,842 1,310 1,413 1,122 1,086 1,234 1,701 2,238 2,294 2004 2,487 2,030 1,804 1,456 1,444 1,206 1,129 1,277 1,387 1,883 2,095 2,283 2005 2,438 1,968 2,138 1,678 1,466 1,274 1,244 1,475 1,520 2,140 2,175 2,498 2006 2,426 2,676 2,788 2,044 1,766 1,524 1,635 1,687 2,088 2,441 3,073 3,279 2007 3,233 2,989 2,884 1,823 1,763 1,559 1,589 1,658 1,597 2,125 2,459 3,243 2008 3,250 2,786 2,814 2,211 1,876 1,828 1,545 1,614 1,754 2,309 2,395 3,418

144

Colorado Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17,268 13,981 12,731 14,667 10,985 9,633 9,063 9,888 8,555 8,139 11,955 10,843 2002 10,256 10,606 12,835 11,039 9,828 10,392 12,914 9,205 9,597 12,317 9,933 11,415 2003 11,626 11,414 9,920 7,462 10,331 7,436 9,508 9,023 7,330 7,354 9,958 10,976 2004 11,434 10,376 8,694 9,635 8,728 7,987 8,460 8,200 7,683 8,441 8,231 14,305 2005 12,086 10,602 11,364 10,395 9,087 8,899 10,543 9,727 9,285 10,541 10,899 12,931 2006 11,511 10,839 11,156 7,510 7,333 7,200 8,716 8,265 6,614 9,349 10,235 12,528 2007 13,296 10,830 8,124 6,784 7,705 8,474 10,890 10,258 8,494 10,644 9,292 12,438 2008 14,079 11,230 10,988 9,712 7,945 7,576 8,828 8,071 7,807 10,463 10,733 12,275

145

Delaware Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,989 2,006 1,830 1,718 1,229 1,429 1,454 1,433 1,557 1,971 1,804 1,639 2002 1,550 1,301 1,328 1,111 857 804 1,053 1,166 1,778 1,965 2,120 2,600 2003 2,167 1,702 1,251 847 748 850 828 969 1,095 1,212 1,668 1,836 2004 1,938 1,515 1,466 1,176 1,290 964 1,027 911 1,043 1,164 1,571 1,960 2005 2,068 1,465 1,558 1,055 1,185 825 804 930 864 1,222 1,597 1,683 2006 1,663 1,364 1,329 1,032 1,376 1,328 1,187 1,412 1,288 1,505 1,544 1,371 2007 1,514 1,183 1,274 1,227 1,208 1,213 1,128 1,170 1,091 1,425 1,750 1,831 2008 1,548 1,592 1,583 1,726 1,718 1,225 1,259 1,411 1,084 1,796 1,708 1,565 2009 1,341 1,542 1,505 1,330 1,628 1,168 1,067 1,021 1,072 2,242 1,729 1,756

146

Ohio Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 37,109 29,330 29,486 23,751 20,933 19,944 19,239 19,128 20,275 23,504 24,307 28,550 2002 29,194 26,686 26,292 24,740 25,148 22,819 21,954 23,129 21,439 25,594 28,066 30,823 2003 32,628 29,744 27,309 23,316 22,015 18,602 19,268 19,980 19,576 24,052 24,733 29,260 2004 36,641 30,495 28,938 25,615 23,011 19,347 20,217 21,268 21,020 24,137 23,774 27,560 2005 31,923 29,614 29,126 24,281 22,434 20,025 19,136 21,068 20,716 21,012 24,229 30,420 2006 28,224 25,471 24,749 22,099 22,468 19,921 20,214 21,459 22,886 25,535 25,568 27,894 2007 29,455 31,868 27,921 24,888 21,874 20,202 19,450 20,910 20,491 21,988 25,288 29,640

147

Indiana Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,677 23,164 24,258 19,456 18,831 18,369 17,553 20,171 17,971 21,014 20,330 22,971 2002 24,441 23,170 23,714 20,750 18,770 17,297 19,398 20,664 19,688 22,268 23,322 25,579 2003 27,047 24,384 21,994 19,376 18,238 16,652 16,774 17,813 18,398 20,589 22,780 24,621 2004 28,155 25,447 25,012 21,558 19,052 18,264 18,325 19,767 19,514 20,781 22,067 24,940 2005 28,069 24,575 27,661 22,009 19,346 18,322 17,340 19,005 18,711 20,639 21,908 26,437 2006 25,027 23,973 25,455 20,862 19,892 19,018 18,789 20,320 20,116 22,745 23,061 24,551 2007 27,073 27,693 23,647 21,150 19,716 19,141 19,499 21,125 20,528 22,527 24,483 25,969

148

South Dakota Natural Gas Industrial Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 513 451 449 370 329 253 260 259 287 329 343 367 2002 1,045 851 1,343 795 706 635 637 739 724 901 1,185 1,023 2003 1,123 1,200 1,067 1,001 851 805 803 744 768 836 995 988 2004 1,023 1,049 987 863 770 781 768 774 756 780 1,196 1,219 2005 1,113 1,186 942 915 805 842 706 711 762 761 942 975 2006 1,044 963 974 886 758 704 706 710 748 906 1,078 949 2007 1,146 1,283 1,137 1,851 1,769 1,819 1,784 1,786 1,847 1,868 2,099 2,312 2008 2,772 2,620 2,474 2,760 2,552 2,571 2,558 2,769 2,867 2,545 2,844 3,135 2009 3,219 3,004 2,812 2,816 2,546 2,694 2,806 3,156 3,029 3,056 3,397 3,764 2010 3,602 3,804 3,637 3,435 2,971 3,198 3,224 3,286 3,185 3,276 3,500 3,636

149

Kentucky Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11,054 8,742 7,395 9,901 6,629 6,460 6,740 6,597 7,074 7,364 8,090 8,851 2002 10,214 9,404 9,297 8,186 8,277 7,314 7,074 6,669 7,743 9,145 9,856 9,932 2003 11,702 9,996 8,913 7,847 7,552 6,781 6,777 7,226 7,568 8,569 8,686 10,655 2004 11,629 10,760 10,598 9,045 8,910 8,413 8,094 8,712 8,332 9,496 9,776 10,526 2005 11,242 10,146 10,519 9,307 8,613 8,097 7,726 8,471 8,177 9,076 9,805 10,826 2006 10,029 9,456 9,754 9,263 9,134 8,377 7,610 8,083 8,551 9,298 8,731 9,807 2007 11,070 11,077 9,590 9,116 8,390 7,601 7,091 8,199 7,805 9,027 9,766 10,510 2008 11,588 10,108 10,472 9,279 8,505 7,802 7,802 7,932 7,709 8,009 8,157 8,691

150

Virginia Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 5,554 5,924 4,623 4,388 5,348 3,437 6,230 5,204 4,911 3,420 8,820 7,375 2002 6,351 6,083 4,656 5,588 6,276 6,159 7,390 7,330 6,500 6,162 5,866 5,613 2003 6,484 6,550 6,373 4,408 7,190 6,196 4,980 4,068 5,070 5,399 5,457 6,916 2004 6,111 5,660 6,190 5,642 5,534 6,983 5,094 5,890 7,489 5,437 5,551 6,670 2005 6,697 5,856 6,173 5,965 5,488 4,756 6,408 7,055 6,543 6,643 5,498 6,659 2006 5,642 6,035 6,404 6,039 4,705 5,879 5,758 7,264 6,022 5,100 5,815 5,755 2007 6,375 6,277 5,839 5,237 5,195 7,701 5,761 4,756 6,578 6,250 4,987 6,780 2008 6,419 5,918 4,813 5,393 5,032 6,948 6,669 4,996 3,282 4,186 4,363 4,622

151

Iowa Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,174 8,509 8,666 7,687 7,439 6,610 6,490 6,582 6,852 7,846 8,268 8,465 2002 8,979 8,036 8,306 7,943 7,429 6,094 6,095 6,628 6,589 7,622 9,370 9,132 2003 8,957 10,155 8,270 7,315 7,108 6,661 6,665 6,380 7,288 7,710 8,640 8,708 2004 9,207 9,312 8,522 7,541 6,876 6,676 6,354 6,568 6,673 7,660 9,564 8,936 2005 10,425 10,143 7,559 8,502 6,689 6,817 6,469 6,068 7,212 7,426 8,825 9,870 2006 9,483 9,530 8,709 8,616 8,007 7,554 7,006 6,823 7,939 8,823 9,537 9,005 2007 13,855 13,120 12,382 11,158 10,435 9,811 10,474 10,561 10,988 11,623 12,527 13,957 2008 17,498 16,834 14,671 12,846 12,441 10,976 11,292 11,391 11,641 13,332 14,831 14,724

152

Rhode Island Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 382 444 601 437 443 474 553 565 550 606 468 604 2002 122 149 283 367 306 359 379 481 502 578 588 342 2003 550 448 438 396 309 462 239 278 284 249 445 354 2004 649 651 584 511 321 451 329 332 382 322 648 350 2005 573 587 605 736 417 423 397 389 368 457 436 503 2006 472 485 598 560 533 536 559 449 606 461 642 496 2007 591 514 588 606 628 385 546 603 327 605 654 660 2008 429 630 491 895 705 470 420 704 473 749 480 328 2009 651 651 708 721 540 725 580 590 492 669 635 778 2010 964 747 735 624 588 568 544 556 537 651 685 835 2011 752 725 781 665 554 551 509 563 549 584 696 533

153

Vermont Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 142 180 302 239 207 173 162 179 200 236 263 313 2002 342 323 318 245 230 199 189 200 199 269 287 283 2003 219 124 181 269 190 176 155 174 182 254 260 294 2004 148 307 284 229 187 208 181 196 197 253 285 307 2005 232 304 303 233 225 185 175 161 146 214 241 208 2006 256 267 316 229 204 190 179 183 182 233 238 284 2007 316 318 302 251 209 187 182 186 192 223 286 336 2008 344 322 311 227 212 179 182 191 201 241 271 321 2009 350 298 268 230 206 190 185 172 183 238 244 326 2010 338 271 275 222 207 190 198 198 194 241 255 320 2011 344 306 299 228 185 177 173 166 174 240 233 286

154

Wyoming Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,730 2,988 3,021 3,074 2,843 2,914 2,792 2,897 2,933 3,272 3,204 3,468 2002 3,714 3,312 3,494 3,737 3,697 3,137 3,086 3,296 3,058 3,741 4,028 3,816 2003 3,958 3,634 3,945 3,672 3,570 3,501 3,216 3,324 3,480 3,759 3,001 3,939 2004 3,709 3,871 3,620 3,511 3,526 3,343 3,398 3,533 3,205 3,690 3,817 3,862 2005 4,072 3,545 3,672 3,521 3,529 3,347 3,418 3,319 3,435 3,809 3,615 4,024 2006 4,058 3,771 3,927 3,317 3,386 3,298 3,450 3,492 3,247 3,802 3,744 3,967 2007 4,110 3,662 4,029 3,363 3,497 3,308 3,249 3,308 3,350 3,683 3,906 4,364 2008 4,242 3,846 3,716 3,446 3,526 3,169 3,115 3,219 2,732 3,480 3,394 4,005

155

Maryland Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 2,601 2,365 2,538 2,053 2,019 2,312 2,204 2,437 1,999 2,117 2,701 2,065 2002 2,389 2,374 2,739 2,107 1,755 2,047 2,242 2,271 1,836 2,161 2,776 2,485 2003 2,121 2,157 2,041 2,422 1,445 1,361 1,395 1,420 1,487 1,373 2,102 2,505 2004 2,595 2,075 2,209 1,837 1,694 1,943 1,767 1,711 1,518 1,818 1,933 2,261 2005 2,150 2,038 2,319 1,477 2,034 1,988 1,833 1,870 1,765 1,662 2,093 2,542 2006 2,429 2,123 2,080 1,857 1,884 1,899 1,813 1,978 1,374 1,884 1,997 1,698 2007 1,665 1,795 1,842 1,529 1,502 1,923 1,638 1,893 1,307 2,178 1,369 1,771 2008 2,096 1,832 2,063 1,597 1,695 1,637 1,902 1,392 1,765 1,751 1,539 1,883

156

Oklahoma Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 10,099 10,890 10,450 9,852 9,605 8,292 8,183 9,437 10,333 11,560 10,829 11,371 2002 12,141 10,474 10,650 9,757 9,627 8,483 10,232 10,436 9,783 10,612 11,799 12,211 2003 14,135 11,988 11,704 11,216 10,525 9,751 10,952 11,488 11,057 12,316 12,760 14,423 2004 15,167 14,324 12,285 11,799 11,991 11,641 11,355 11,723 11,157 11,189 11,798 12,549 2005 12,333 13,811 12,546 13,724 11,949 12,281 11,409 11,658 12,140 12,265 11,940 10,536 2006 14,008 13,352 13,574 13,489 12,310 12,862 13,302 14,628 14,747 11,136 13,371 14,452 2007 15,091 16,919 16,642 14,626 14,857 14,010 13,933 14,017 13,656 13,655 14,013 14,463

157

North Dakota Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,307 1,550 1,228 2,195 1,852 2,011 814 1,795 1,359 1,460 1,068 1,119 2002 2,070 1,625 1,612 1,563 1,672 2,104 1,499 1,376 1,348 1,491 1,306 1,435 2003 1,234 1,175 911 1,077 1,239 1,086 649 460 989 1,063 925 3,642 2004 1,680 1,380 1,752 1,515 1,052 720 729 1,307 1,591 1,562 1,484 1,638 2005 1,089 1,106 1,031 745 769 836 804 660 1,163 1,413 1,183 1,043 2006 1,045 962 1,128 1,548 1,615 1,455 689 560 1,148 1,760 1,485 907 2007 1,073 1,003 1,094 1,798 1,897 1,325 706 1,077 1,778 2,154 2,150 2,062 2008 1,229 2,165 2,024 2,198 2,106 1,812 889 1,479 1,530 2,675 1,965 1,185 2009 1,209 1,084 1,247 972 1,717 843 755 753 1,387 1,972 1,859 1,881

158

Maine Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,331 855 872 874 1,248 616 552 696 891 1,135 1,160 701 2002 464 2,399 466 2,084 2,025 3,030 24 2,661 20 3,011 3,868 3,620 2003 434 338 282 234 210 206 283 222 219 273 323 291 2004 1,931 1,739 1,589 1,316 1,158 941 1,111 1,057 1,087 1,332 1,384 1,589 2005 750 578 653 478 481 397 386 504 636 561 513 563 2006 1,206 1,426 2,121 1,243 1,342 1,337 1,062 1,071 1,848 1,662 1,586 1,611 2007 2,203 1,939 428 1,832 1,958 1,775 1,763 1,916 1,846 1,712 2,108 2,161 2008 2,327 2,220 2,387 2,166 2,098 1,852 1,918 1,916 2,061 2,010 2,169 2,505 2009 2,218 1,573 2,198 2,134 1,747 2,162 1,990 2,275 2,081 2,330 2,502 2,716

159

Michigan Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 25,494 22,752 22,291 20,181 16,240 15,260 16,263 15,666 14,433 16,600 18,669 20,006 2002 23,016 23,762 20,891 21,878 19,293 18,230 17,903 17,019 15,021 15,825 19,810 23,485 2003 26,081 25,855 22,526 19,100 15,427 13,472 13,400 14,298 13,093 14,244 16,883 18,873 2004 24,023 23,433 23,399 18,226 15,843 14,028 13,355 13,293 13,411 13,883 17,417 20,190 2005 24,423 20,656 19,541 19,315 15,384 15,777 18,343 15,371 13,148 13,801 15,401 20,379 2006 20,975 18,318 21,135 16,904 13,629 13,233 13,156 13,105 12,264 13,366 15,347 17,075 2007 17,007 18,275 18,272 13,341 10,374 8,657 8,235 8,246 8,458 9,442 11,796 14,482

160

Utah Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,150 3,254 2,742 2,978 2,945 2,848 2,624 2,349 2,711 3,024 2,565 2,395 2002 2,632 2,431 2,332 2,004 2,175 1,864 1,971 2,040 2,117 2,415 2,409 2,488 2003 2,399 2,240 2,186 2,021 1,934 1,902 1,911 1,955 1,950 2,117 2,270 2,317 2004 2,557 2,405 2,213 2,069 2,021 1,892 2,588 1,446 2,158 2,293 2,451 2,581 2005 2,326 2,345 2,134 2,394 2,133 2,016 1,927 1,771 1,969 1,937 2,233 2,184 2006 2,704 2,719 2,574 2,568 2,348 2,409 2,164 2,186 2,306 2,129 2,458 2,511 2007 2,873 2,953 2,602 2,658 2,575 2,645 2,390 2,315 2,395 2,442 2,791 2,940 2008 3,210 3,242 2,912 2,986 2,857 2,590 2,526 2,404 2,397 2,535 2,738 2,713

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Idaho Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,074 2,803 2,755 2,621 2,499 2,410 2,413 2,093 2,150 2,413 2,536 2,669 2002 2,888 2,668 2,675 2,483 2,400 2,157 1,830 1,872 2,281 2,490 2,451 2,533 2003 2,492 2,203 2,403 2,209 2,008 2,005 1,632 1,544 1,909 2,062 2,109 2,113 2004 2,435 2,255 2,117 2,006 1,694 1,885 1,724 1,618 1,736 2,215 2,081 2,142 2005 2,269 2,201 1,970 1,920 1,797 1,822 1,620 1,587 1,604 1,925 1,910 2,226 2006 2,295 2,106 2,279 1,964 1,902 1,977 1,511 1,531 1,794 2,095 1,919 2,116 2007 2,532 2,105 2,195 1,975 1,850 1,741 1,697 1,672 1,761 2,184 2,061 2,346 2008 2,529 2,281 2,110 2,109 2,003 1,959 1,843 1,718 2,031 2,339 1,918 2,351

162

Arkansas Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 10,671 9,476 11,092 10,224 9,956 8,795 8,802 9,233 9,591 11,777 11,168 11,527 2002 11,021 11,320 9,844 9,842 9,685 9,045 7,746 9,082 9,352 10,289 10,474 10,733 2003 11,631 10,424 9,570 9,720 9,116 8,672 7,102 7,278 7,919 9,730 9,533 10,471 2004 10,719 10,376 9,849 8,987 8,944 6,903 6,708 7,128 7,153 7,699 7,533 8,589 2005 9,018 7,827 8,255 7,435 6,998 6,705 6,367 6,880 6,349 7,385 7,474 8,130 2006 8,140 7,753 7,797 6,923 7,073 6,819 6,503 6,794 6,764 7,543 7,504 7,920 2007 8,738 7,762 7,311 7,022 6,854 6,537 6,644 6,319 6,348 7,200 7,312 7,726 2008 8,685 8,084 7,595 7,228 6,911 6,468 6,331 6,366 6,711 6,869 6,597 7,294

163

New Jersey Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,509 7,665 7,736 7,686 6,581 7,031 6,881 6,928 6,221 7,283 7,205 7,371 2002 8,346 7,648 7,106 6,467 6,301 6,029 5,538 6,845 5,773 6,139 6,794 7,496 2003 7,645 7,276 7,078 6,438 6,258 5,611 6,007 5,690 5,565 6,033 6,742 7,108 2004 7,355 7,436 7,395 6,914 5,860 5,823 5,549 5,364 5,593 6,090 6,613 7,031 2005 7,592 7,304 7,920 6,823 5,879 5,654 5,437 5,475 5,332 5,373 5,738 6,330 2006 6,502 6,043 6,382 5,651 5,115 5,040 5,078 4,906 4,606 5,107 5,607 5,595 2007 6,346 5,934 6,116 5,392 4,765 4,689 4,495 4,667 4,404 4,529 5,651 6,088 2008 5,778 5,831 5,384 4,424 4,191 3,928 3,493 3,619 3,548 4,402 4,545 4,839

164

Alaska Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6,025 5,327 6,001 5,721 5,333 4,909 6,300 6,462 5,784 5,263 4,843 5,205 2002 5,749 5,318 4,607 4,771 5,952 6,692 6,756 6,206 5,537 5,220 4,578 4,308 2003 2,354 2,374 3,121 3,831 4,124 4,125 4,097 4,327 4,057 4,626 2,231 1,900 2004 2,655 2,775 3,983 4,253 4,470 5,222 5,348 4,387 4,325 3,650 2,622 3,051 2005 3,174 2,891 3,812 4,438 5,212 5,444 5,992 5,284 5,468 4,231 3,588 3,352 2006 2,225 2,549 2,793 2,898 3,210 3,831 3,537 3,517 2,956 2,290 818 834 2007 1,032 831 752 1,113 2,681 2,819 2,793 2,634 2,795 961 711 631 2008 436 348 471 387 470 621 655 537 578 494 551 439 2009 555 471 599 470 523 597 617 465 589 617 547 585

165

California Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 53,179 49,474 46,193 50,003 51,398 51,983 54,565 65,128 63,833 61,177 57,442 62,087 2002 62,945 51,558 63,581 55,898 57,251 55,782 64,753 68,124 63,667 70,242 63,406 62,987 2003 59,814 60,780 65,097 59,951 61,718 63,535 63,716 68,056 71,778 69,904 68,187 66,550 2004 66,480 69,591 62,162 68,688 65,201 67,632 67,551 73,433 75,362 73,862 72,814 73,046 2005 72,402 71,329 65,134 67,858 66,838 62,435 65,091 62,315 64,648 63,180 61,455 58,697 2006 60,043 59,659 61,924 60,888 58,174 57,333 59,573 62,997 64,032 63,729 60,995 62,708 2007 61,788 61,141 59,722 58,301 54,001 57,444 59,539 63,863 66,575 64,899 65,574 65,655

166

Kansas Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,002 8,035 8,007 7,187 5,497 6,335 8,627 10,037 9,467 6,721 7,176 7,259 2002 7,922 7,346 7,976 6,741 7,964 7,812 9,890 13,216 11,270 8,045 10,155 10,049 2003 10,045 9,012 8,326 7,215 8,177 7,265 10,127 9,127 10,209 8,954 7,754 8,580 2004 8,778 7,435 7,869 7,557 7,828 7,713 8,023 8,936 8,734 10,148 8,704 9,084 2005 9,237 8,405 7,922 7,223 7,497 7,294 8,273 9,035 8,744 7,335 7,824 9,092 2006 9,400 9,090 9,242 8,693 7,795 9,281 10,352 10,210 9,278 8,677 9,024 9,869 2007 11,631 10,799 9,270 9,233 7,781 9,050 10,210 11,151 11,479 10,911 12,738 12,631 2008 10,655 9,587 9,201 8,875 8,646 9,284 9,654 11,504 8,985 8,512 8,878 9,882

167

Louisiana Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 59,442 59,434 64,182 60,893 56,959 53,080 57,884 64,447 64,571 69,233 69,913 73,048 2002 70,512 65,911 67,135 60,540 59,376 59,591 64,331 64,681 62,517 67,104 76,062 77,070 2003 72,726 62,959 66,109 65,699 64,719 53,203 61,688 63,784 62,246 62,280 64,440 70,346 2004 71,841 68,808 68,634 66,085 66,036 63,882 68,547 67,912 66,218 68,354 69,066 73,874 2005 71,022 61,602 72,541 69,921 71,755 69,015 68,404 64,695 50,697 53,633 55,350 61,249 2006 62,975 61,941 70,864 66,764 69,046 66,491 68,822 72,286 68,393 70,332 71,207 73,813 2007 75,277 71,200 73,191 72,144 73,041 73,558 66,335 68,563 62,401 67,182 67,695 68,266

168

Florida Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,915 7,333 7,528 7,465 8,401 7,285 8,899 7,721 8,196 8,140 7,811 8,016 2002 7,262 7,044 7,671 8,047 7,119 5,988 6,469 6,798 6,548 7,102 6,751 6,768 2003 6,976 6,327 6,236 6,325 6,434 5,724 5,837 5,951 5,864 6,209 5,645 5,805 2004 5,990 5,630 6,086 5,814 5,716 4,795 4,979 5,118 4,135 4,753 4,918 5,668 2005 6,333 5,502 5,781 6,271 5,999 5,194 4,859 4,551 4,231 4,384 4,629 5,399 2006 6,398 5,800 6,197 6,119 6,354 6,044 5,554 5,192 5,145 5,469 5,542 5,907 2007 6,348 5,492 5,824 6,172 5,649 4,977 4,819 5,017 5,057 5,317 5,711 6,069 2008 6,570 6,047 6,789 6,847 6,265 5,748 5,274 5,424 4,821 4,999 4,445 5,045

169

North Carolina Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,082 6,749 7,837 5,882 6,904 7,048 6,810 7,331 7,421 9,111 8,170 8,498 2002 8,843 8,714 8,888 7,805 8,045 7,271 7,074 7,771 7,733 8,589 8,746 8,826 2003 9,007 9,247 7,603 7,196 6,729 5,652 6,005 6,840 6,894 7,555 7,175 8,542 2004 8,627 8,576 8,451 7,575 7,272 6,572 5,975 6,411 7,211 7,413 7,730 8,320 2005 8,558 8,290 8,545 7,185 7,155 6,750 6,195 6,671 6,437 7,024 6,886 7,125 2006 7,286 7,493 8,275 6,857 7,138 6,681 6,435 6,954 6,813 7,653 7,767 7,799 2007 8,404 7,885 7,446 6,927 6,857 6,633 6,483 6,924 6,941 7,692 8,106 8,102 2008 9,226 8,470 8,193 7,492 7,160 6,569 6,752 6,815 6,739 7,470 7,450 6,981

170

Nevada Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,012 976 1,036 974 838 751 894 910 858 962 865 1,398 2002 1,063 797 863 963 803 855 832 861 894 1,033 994 1,064 2003 1,052 775 1,014 1,018 858 834 786 793 775 846 965 954 2004 1,065 1,034 960 961 955 887 894 837 928 1,046 1,070 1,100 2005 1,211 1,147 1,225 1,186 1,104 1,083 1,015 1,067 1,036 1,210 1,215 1,253 2006 1,289 1,189 1,325 1,190 1,087 1,045 1,031 1,018 1,014 1,191 1,018 1,179 2007 1,192 1,188 1,260 1,118 1,034 1,012 898 950 1,081 1,204 1,110 1,188 2008 1,255 1,121 1,166 1,179 1,022 935 982 971 995 1,087 1,006 1,169 2009 1,074 1,019 1,034 979 846 891 878 825 867 960 960 1,127

171

Colorado Natural Gas Industrial Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 60,750 82,991 75,745 2000's 80,824 137,709 130,336 112,339 112,174 126,360 111,259 117,230...

172

New York Natural Gas Industrial Consumption (Million Cubic Feet...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

9,195 9,209 8,109 7,686 6,089 5,202 5,166 5,353 5,583 6,475 6,990 7,373 2004 8,193 8,871 7,888 7,187 5,808 5,275 5,038 5,033 5,282 5,802 6,528 7,384 2005 8,745 9,156 8,450...

173

South Carolina Natural Gas Industrial Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 4,868 5,810 6,682 6,138 6,015 6,245 6,665 7,082 6,839 8,343 7,201 7,785 2002 8,654 8,380 8,435 8,041 8,281 8,096 7,685 7,515 7,269 8,097 8,096 7,718 2003 7,833 7,301 6,090 6,962 6,475 5,469 5,910 6,307 6,449 6,519 6,559 6,934 2004 7,000 6,923 7,105 6,482 6,341 6,047 6,054 6,413 6,405 6,534 6,432 6,685 2005 7,222 6,952 7,325 6,577 6,527 6,379 6,095 6,187 4,276 5,018 5,213 6,232 2006 6,324 6,458 7,264 6,505 6,972 6,279 6,273 6,485 6,144 6,810 5,885 5,774 2007 6,969 6,213 6,165 5,988 6,412 6,063 6,115 6,358 6,072 6,718 6,668 6,546 2008 7,282 6,897 6,963 6,339 6,038 5,855 5,773 5,769 5,430 5,517 5,263 4,800

174

Nebraska Natural Gas Industrial Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,350 3,088 2,887 3,230 2,646 2,637 5,283 3,782 3,414 2,746 3,947 3,135 2002 3,374 3,222 2,416 2,786 2,840 1,919 5,602 4,879 4,369 2,846 2,950 3,224 2003 3,384 3,125 2,517 2,548 2,640 1,816 4,392 4,190 4,005 3,644 2,863 2,991 2004 3,428 3,291 2,458 2,973 2,584 3,188 4,366 4,402 2,170 2,830 3,472 3,704 2005 3,450 3,453 2,623 2,975 2,545 2,597 4,393 4,914 3,613 3,175 3,696 3,514 2006 4,851 4,406 3,758 4,299 3,657 4,541 5,326 5,689 4,415 3,465 4,750 4,252 2007 5,509 5,500 4,866 4,325 5,068 4,818 5,904 6,830 5,963 4,809 6,067 5,998 2008 6,503 6,659 6,021 5,359 4,947 6,164 6,233 7,278 5,661 7,457 7,426 6,550

175

Greenhouse Gas Emissions from the Consumption of Electric and Electronic Equipment by Norwegian Households  

Science Journals Connector (OSTI)

Greenhouse Gas Emissions from the Consumption of Electric and Electronic Equipment by Norwegian Households ... Conventional wisdom holds that large appliances, in particular washers, dryers, refrigerators and freezers, dominate residential energy consumption apart from heat, hot water and light. ... (16) It excludes lighting, all professional equipment, space heating, hot water, garden or car equipment, fire alarms, and air conditioning. ...

Edgar G. Hertwich; Charlotte Roux

2011-08-30T23:59:59.000Z

176

Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by State, 2010  

Broader source: Energy.gov [DOE]

The map below shows the amount of petroleum and natural gas consumed in the transportation sector by state for 2010. The pie charts for each state are scaled based on total consumption of petroleum...

177

Federal Offshore--Gulf of Mexico Natural Gas Plant Fuel Consumption...  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - No Data Reported;...

178

Reduced Nitrogen and Natural Gas Consumption at Deepwell Flare  

E-Print Network [OSTI]

Facing both an economic downturn and the liklihood of steep natural gas price increases, company plants were challenged to identify and quickly implement energy saving projects that would reduce natural gas usage. Unit operating personnel...

Williams, C.

2004-01-01T23:59:59.000Z

179

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Insulation Design & Remodeling Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $100,000 Customer: $200,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $4/MCF of first year energy savings Whole Building Design Incentive: 50% of cost up to $3,000 Steam Trap Repair/Replacement: $100

180

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network [OSTI]

of industrial primary energy consumption in The Netherlands.included total primary energy consumption for twelve typeswas converted into primary energy consumption and the energy

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels  

Broader source: Energy.gov (indexed) [DOE]

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels June 11, 2008 - 1:30pm Addthis Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. Read the letter. Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol1, a first-generation biofuel. For a typical household, that means saving about $150 to $300 per year. For the U.S. overall, this saves gas expenditures of $28 billion to

182

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels  

Broader source: Energy.gov (indexed) [DOE]

Gas Prices and Oil Consumption Would Increase Without Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels June 11, 2008 - 1:30pm Addthis Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. Read the letter. Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol1, a first-generation biofuel. For a typical household, that means saving about $150 to $300 per year. For the U.S. overall, this saves gas expenditures of $28 billion to

183

Short- and long-run relationships between natural gas consumption and economic growth: Evidence from Pakistan  

Science Journals Connector (OSTI)

Abstract This paper examines the dynamic relationship between natural gas consumption and economic growth in Pakistan using a multivariate model by including capital and labor as control variables for the period between 1972QI and 2011QIV. The results of the ARDL bound testing indicate the presence of cointegration relationships among the variables. The estimated long-run impact of gas consumption on economic growth is greater than other factor inputs suggesting that energy is a critical driver of production and growth in Pakistan. Furthermore, the results of causality test suggest that natural gas consumption and economic growth are complements. Given that natural gas constitutes to the primary source of energy in Pakistan, the implication of this study is that natural gas conservation policies could harm growth and, therefore, requires the policy makers to improve the energy supply efficiency as well as formulate appropriate policies to attract investment and establish public–private partnership initiatives.

Muhammad Shahbaz; Mohamed Arouri; Frédéric Teulon

2014-01-01T23:59:59.000Z

184

North Shore Gas - Commercial and Industrial Prescriptive Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

North Shore Gas - Commercial and Industrial Prescriptive Rebate North Shore Gas - Commercial and Industrial Prescriptive Rebate Program North Shore Gas - Commercial and Industrial Prescriptive Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Contact North Shore Gas Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Steam Traps (Low Pressure): $60/unit Steam Traps (High Pressure): $150/unit Industrial/Process Steam Trap (Low Pressure): $150 Industrial/Process Steam Trap (High Pressure): $200 HVAC Steam Trap Test: $5/unit surveyed Condensing Unit Heater: $2/MBH Boilers: $2 - $6.67/MBH Boiler Cutout/Reset Control: $250

185

Austin Utilities (Gas and Electric) - Commercial and Industrial Energy  

Broader source: Energy.gov (indexed) [DOE]

Austin Utilities (Gas and Electric) - Commercial and Industrial Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Commercial Weatherization Water Heating Maximum Rebate Electric Measures: $100,000 per customer location, per technology, per year Custom Gas Measures: $75,000 per commercial location per year, $5,000 per industrial location per year Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: See Program Website Air Source Heat Pumps: $20-$25/ton, plus bonus rebate of $4/ton for each

186

Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit  

Broader source: Energy.gov (indexed) [DOE]

Philadelphia Gas Works - Commercial and Industrial EnergySense Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Insulation Appliances & Electronics Water Heating Maximum Rebate $75,000 Program Info Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Varies Widely Philadelphia Gas Works' (PGW) Commercial and Industrial Retrofit Incentive Program is part of EnergySense, PGW's portfolio of energy efficiency

187

Gas turbine considerations in the pulp and paper industry  

SciTech Connect (OSTI)

The pulp and paper industry is one of the largest users of energy in the industrial arena, requiring large quantities of process steam and electrical energy per unit of production. Developing power generation as an integral part of its power plant systems is one way for the industry to meet these requirements. Gas turbine-based cogeneration systems can also be a desirable approach. In recent years, competitive pressures, environmental concerns, the cost and availability of various fuels, and new power generation opportunities have awakened interest in power generation in the pulp and paper industry and other industries. This paper provides a strategic review of these issues of the pulp and paper industry.

Anderson, J.S. (International Paper Co., Purchase, NY (US)); Kovacik, J.M. (GE Co., Schenectady, NY (US))

1991-03-01T23:59:59.000Z

188

Peoples Gas - Commercial and Industrial Prescriptive Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Peoples Gas - Commercial and Industrial Prescriptive Rebate Program Peoples Gas - Commercial and Industrial Prescriptive Rebate Program Peoples Gas - Commercial and Industrial Prescriptive Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Commercial Prescriptive Incentives: 50,000/project; 100,000/customer per year Commercial Custom Incentives: 100,000/project; 250,000/customer per year Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Steam Traps (Low Pressure): $60/unit Steam Traps (High Pressure): $150/unit Industrial/Process Steam Trap (Low Pressure): $150 Industrial/Process Steam Trap (High Pressure): $200

189

Empirical investigation on energy dependence-consumption nexus: Evidence from Turkish natural gas market  

Science Journals Connector (OSTI)

Abstract Because energy dependence is an important issue for today’s energy markets, understanding its effect on the long-term relationships in the markets has crucial implications. We argue that dependence strongly affects the interaction between energy consumption and its determinants even if this market is regulated. To test this hypothesis, this paper empirically investigates the long-term dynamics among the related variables in the Turkish natural gas market, because the market is under regulation and Turkey is an energy dependence country in natural gas. The aim is to understand the effect of dependence on the long-term dynamics of natural gas consumption in Turkey. To this aim, we employ a simultaneous co-integration model with structural breaks. Our findings suggest that energy dependence strongly affects the long-term dynamics of gas consumption. Also, we find that governments intervene in price regulated by an independent regulator.

Tamer Çetin; Fatih Yüksel

2014-01-01T23:59:59.000Z

190

Multi-Echelon Supply Chain Design in Natural Gas Industry  

E-Print Network [OSTI]

Abstract: In this paper, a framework is proposed for integrating of the operational parts of Natural Gas Transmission Systems (NGTSs) through pipelines and better coordination for the flow of natural gas and information in the system. The objective functions of this study are to provide a brief review of literature in natural gas supply chain modeling and to design a multi-echelon Supply Chain for the Natural Gas Transmission Systems (NSTSC). To achieve this, extensive and detailed studies in this field of research have been done. Subsequently, a complete study on the transmission of natural gas through pipelines, as well as the supply chain and its application, has been made in gas industry. Next, based on the operational systems in the natural gas industry, the supply chain levels are developed. These designs are very effective for modeling and optimization of the gas networks. In addition, the developed supply chain helps to reduce the costs of the NGTSs and increase customer satisfaction.

Mehrdad Nikbakht; N. Zulkifli; N. Ismail; S. Sulaiman; Abdolhossein Sadrnia; M. Suleiman

191

U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 383,077 389,525 367,572 348,731 408,115 398,180 429,269 1990's 428,657 456,954 460,571 448,822 423,878 427,853 450,033 426,873 401,314 399,509 2000's 404,059 371,141 382,503 363,903 366,341 355,193 358,985 365,323 355,590 362,009 2010's 368,830 384,248 408,316 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption U.S. Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

192

Recent Economic Trends in Colorado's Oil and Gas Industry Martin Shields, Ph.D.  

E-Print Network [OSTI]

's Oil and Gas Industry Martin Shields, Ph.D. Regional Economics Institute Trends in Colorado's Oil and Gas Industry Summary Colorado's economy lost issues affecting its prospects in Colorado. Although the oil and gas industry

193

ConEd (Gas) - Commercial and Industrial Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

ConEd (Gas) - Commercial and Industrial Energy Efficiency Program ConEd (Gas) - Commercial and Industrial Energy Efficiency Program ConEd (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Manufacturing Other Appliances & Electronics Water Heating Maximum Rebate Large Commercial Energy Study: 50,000 (gas); 67,000 (combined with electric) VFD: 12,000 Program Info Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Energy Study: 50% of the cost Custom: $1/therm at less than 20% savings; $2/therm at greater than 20% savings Control/Automation Systems: $2/therm saved, up to 50% of cost

194

Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition November 16, 2007 - 4:31pm Addthis Holds Bilateral Discussion with President of Turkmenistan on Opening of Markets, Increased Investment, and Multiple Trade Routes ASHGABAT, TURKMENISTAN - U.S. Secretary of Energy Samuel W. Bodman today held bilateral energy discussions with the President of Turkmenistan and other senior Turkmenistan officials and delivered remarks to the Turkmenistan Industrial Oil and Gas Exhibition. Secretary Bodman highlighted the role of international investment in developing Turkmenistan's vast resources and expanding infrastructure. He also discussed the importance of establishing a stable and transparent

195

Evaluation of capacity release transactions in the natural gas industry  

E-Print Network [OSTI]

The purpose of this thesis is to analyze capacity release transactions in the natural gas industry and to state some preliminary conclusions about how the capacity release market is functioning. Given FERC's attempt to ...

Lautzenhiser, Stephen

1994-01-01T23:59:59.000Z

196

Gas visualization of industrial hydrocarbon emissions  

Science Journals Connector (OSTI)

Gases leaking from a polyethene plant and a cracker plant were visualized with the gas-correlation imaging technique. Ethene escaping from flares due to incomplete or erratic...

Sandsten, Jonas; Edner, Hans; Svanberg, Sune

2004-01-01T23:59:59.000Z

197

Consumption of Methane and CO2 by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic Black Sea  

Science Journals Connector (OSTI)

...Consumption of Methane and CO2 by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic...Black Sea has numerous gas seeps, which are...patterns of CH4 and CO2 assimilation in relation...Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic...

Tina Treude; Victoria Orphan; Katrin Knittel; Armin Gieseke; Christopher H. House; Antje Boetius

2007-02-02T23:59:59.000Z

198

,"Oklahoma Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sok_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sok_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

199

,"Michigan Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_smi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_smi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

200

,"Mississippi Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sms_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sms_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:50 PM"

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"Louisiana Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

202

,"Florida Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:48 PM"

203

,"Wyoming Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:54 PM"

204

,"Pennsylvania Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_spa_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_spa_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

205

,"Kentucky Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sky_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sky_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

206

,"South Dakota Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1840_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1840_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:44 PM"

207

,"South Dakota Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption (MMcf)" Total Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Total Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1490_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1490_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:45:27 PM"

208

,"Alaska Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sak_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sak_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:46 PM"

209

,"Kentucky Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1840_sky_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1840_sky_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:39 PM"

210

,"Arkansas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sar_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sar_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:47 PM"

211

,"Nebraska Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sne_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sne_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:51 PM"

212

,"California Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sca_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sca_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:47 PM"

213

,"Illinois Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Consumption (MMcf)" Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sil_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sil_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:21 PM"

214

,"Colorado Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sco_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sco_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:48 PM"

215

,"Utah Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sut_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sut_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:53 PM"

216

,"Kansas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sks_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sks_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

217

,"Tennessee Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_stn_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_stn_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

218

,"Montana Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_smt_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_smt_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:50 PM"

219

The role of natural gas consumption and trade in Tunisia's output  

Science Journals Connector (OSTI)

Abstract This paper examines the impact of natural gas consumption, real gross fixed capital formation and trade on the real GDP in the case of Tunisia over the period 1980–2010. We use an Autoregressive Distributed Lag (ARDL) bounds testing approach to test for cointegration between the variables. The Toda–Yamamoto approach is then used to test for causality. Our findings indicate the existence of a long-term relationship between the variables. Natural gas consumption, real gross fixed capital formation and trade add in economic growth. Natural gas consumption, real gross fixed capital formation and real trade cause real GDP in Tunisia. These findings open up new insights for policymakers to formulate a comprehensive energy policy to sustain economic growth in the long-term.

Sahbi Farhani; Muhammad Shahbaz; Mohamed Arouri; Frédéric Teulon

2014-01-01T23:59:59.000Z

220

New Hampshire Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

South Dakota Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

222

North Dakota Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

223

District of Columbia Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

224

New Jersey Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

225

West Virginia Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

226

North Carolina Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

227

South Carolina Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

228

U.S. Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total Consumption

229

U.S. Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

230

Investigation of greenhouse gas reduction strategies by industries : an enterprise systems architecting approach  

E-Print Network [OSTI]

This thesis explores an enterprise systems architecting approach to investigate the greenhouse gas reduction strategies followed by industries, especially for automotive industry and Information Technology industry. The ...

Tanthullu Athmaram, Kumaresh Babu

2012-01-01T23:59:59.000Z

231

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler Size 300-500 (kBtu/h): $800; $2900 Boiler Size 500-700 (kBtu/h): $1400; $3600 Boiler Size 700-900 (kBtu/h): $2000; $4200 Boiler Size 900-1100 (kBtu/h): $2600; $4800 Boiler Size 1100-1300 (kBtu/h): $3200; $5400 Boiler Size 1300-1500 (kBtu/h): $3800; $6000 Boiler Size 1500-1700 (kBtu/h): $4400; $6600 Boiler Size 1700-2000 (kBtu/h): $5200; $7400

232

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $75 - $300 Furnaces: $250 - $400 Boilers: $150 - $400 Setback Thermostat: $25 - $50 Convection Oven: $100 High Efficiency Range/Oven: $500 Conveyor Oven: $500 Fryer: $500 Broiler: $100 Steam Cooker: $500 Vent Dampers for Boilers: $125 Custom: Two year buy down or 50% of project cost, whichever is less

233

ELECTRICITY CONSUMPTION IN THE INDUSTRIAL SECTOR OF JORDAN: APPLICATION OF MULTIVARIATE LINEAR REGRESSION AND ADAPTIVE NEURO?FUZZY TECHNIQUES  

Science Journals Connector (OSTI)

In this study two techniques for modeling electricity consumption of the Jordanian industrial sector are presented: (i) multivariate linear regression and (ii) neuro?fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments number of employees electricity tariff prevailing fuel prices production outputs capacity utilizations and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro?fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However comparison that is based on the square root average squared error of data suggests that the neuro?fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work using different methods for other countries.

M. Samhouri; A. Al?Ghandoor; R. H. Fouad

2009-01-01T23:59:59.000Z

234

Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,659 2,240 6,864 1970's 4,748 8,459 16,056 15,217 14,402 17,842 15,972 17,336 15,895 12,153 1980's 30,250 15,249 94,232 97,828 111,069 64,148 72,686 116,682 153,670 192,239 1990's 193,875 223,194 234,716 237,702 238,156 292,811 295,834 271,284 281,872 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Alaska Natural Gas Consumption by End Use

235

Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,267 4,027 6,268 1970's 9,184 6,433 4,740 3,000 4,246 4,200 4,049 4,032 3,760 7,661 1980's 1,949 2,549 5,096 5,384 5,922 12,439 9,062 11,990 12,115 11,586 1990's 7,101 1,406 5,838 6,405 4,750 5,551 5,575 6,857 8,385 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Arkansas Natural Gas Consumption by End Use Lease and Plant

236

New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,793 46,331 45,309 1970's 47,998 46,114 48,803 52,553 43,452 38,604 49,160 43,751 37,880 50,798 1980's 36,859 22,685 55,722 47,630 50,662 46,709 35,615 48,138 41,706 42,224 1990's 65,889 44,766 53,697 49,658 54,786 52,589 81,751 64,458 59,654 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption New Mexico Natural Gas Consumption by End Use

237

Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,956 1,503 2,113 1970's 633 2,115 1,978 2,435 4,193 7,240 9,150 7,585 8,325 14,123 1980's 7,594 511 5,965 4,538 8,375 9,001 13,289 17,671 16,889 16,211 1990's 19,719 13,738 12,611 12,526 13,273 27,012 27,119 24,619 27,466 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Utah Natural Gas Consumption by End Use Lease and Plant

238

West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,052 2,276 0 1970's 2,551 3,043 3,808 2,160 1,909 1,791 1,490 1,527 1,233 1,218 1980's 2,482 2,515 6,426 5,826 7,232 7,190 6,658 8,835 8,343 7,882 1990's 9,631 7,744 8,097 7,065 8,087 8,045 6,554 7,210 6,893 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption West Virginia Natural Gas Consumption by End Use Lease and Plant

239

Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,668 2,361 2,604 1970's 2,726 3,231 4,676 7,202 5,822 7,673 7,739 9,124 10,619 21,610 1980's 7,041 7,093 13,673 10,000 10,560 10,829 9,397 12,095 11,622 12,221 1990's 17,343 23,883 21,169 24,832 24,347 25,130 27,492 29,585 31,074 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Colorado Natural Gas Consumption by End Use

240

Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,828 1,992 2,277 1970's 2,317 2,212 1,509 1,238 1,206 1,218 1,040 1,107 1,160 1,214 1980's 989 1,040 9,772 8,361 9,038 9,095 6,335 3,254 2,942 2,345 1990's 3,149 2,432 2,812 3,262 2,773 2,647 2,426 2,457 2,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Kentucky Natural Gas Consumption by End Use Lease and Plant

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,133 16,163 14,691 1970's 14,067 13,990 12,773 12,462 11,483 12,008 15,998 13,697 12,218 3,950 1980's 1,017 13,759 3,514 4,100 4,563 4,710 3,974 5,194 4,014 3,388 1990's 6,939 11,583 8,462 8,256 11,306 11,342 11,603 8,572 8,309 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption North Dakota Natural Gas Consumption by End Use

242

Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,798 2,012 2,074 1970's 3,440 2,145 2,143 2,551 3,194 8,420 7,647 8,022 11,076 14,695 1980's 6,494 3,461 9,699 8,130 8,710 8,195 7,609 9,616 8,250 8,003 1990's 9,094 9,595 7,274 8,171 9,766 9,535 8,489 12,060 9,233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Michigan Natural Gas Consumption by End Use Lease and Plant

243

Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,842 15,867 17,587 1970's 20,841 27,972 28,183 32,663 35,350 27,212 31,044 29,142 30,491 48,663 1980's 24,521 19,665 41,392 37,901 40,105 42,457 38,885 44,505 45,928 43,630 1990's 40,914 44,614 43,736 56,657 44,611 47,282 49,196 46,846 33,989 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Kansas Natural Gas Consumption by End Use

244

Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 65,167 84,259 103,361 1970's 98,417 101,126 98,784 80,233 80,780 79,728 84,025 77,631 82,046 128,475 1980's 59,934 56,785 91,465 79,230 91,707 88,185 84,200 104,415 100,926 90,225 1990's 111,567 88,366 92,978 99,869 91,039 80,846 73,039 81,412 61,543 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Oklahoma Natural Gas Consumption by End Use

245

U.S. Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Lease Fuel Consumption (Million Cubic Feet) Lease Fuel Consumption (Million Cubic Feet) U.S. Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 595,172 687,356 598,475 573,793 741,268 697,703 640,633 1990's 807,735 672,314 710,250 723,118 699,842 792,315 799,629 776,306 771,366 679,480 2000's 746,889 747,411 730,579 758,380 731,563 756,324 782,992 861,063 864,113 913,229 2010's 916,797 938,340 987,957 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease Fuel Consumption U.S. Natural Gas Consumption by End Use

246

Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,904 5,188 6,183 1970's 5,091 6,148 5,924 4,281 3,683 2,315 2,754 2,972 2,792 4,796 1980's 3,425 1,832 2,012 1,970 2,069 2,138 1,808 2,088 1,994 1,766 1990's 2,262 1,680 1,871 2,379 2,243 2,238 2,401 2,277 2,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Montana Natural Gas Consumption by End Use Lease and Plant

247

Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,656 3,505 2,879 1970's 3,140 4,302 3,397 3,548 2,957 2,925 2,742 2,814 3,477 22,094 1980's 1,941 1,776 3,671 4,377 5,741 5,442 5,243 5,802 4,869 3,876 1990's 5,129 1,476 1,450 1,366 1,332 1,283 1,230 1,201 1,125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Ohio Natural Gas Consumption by End Use Lease and Plant

248

The challenge of reducing energy consumption of the Top-1000 largest industrial enterprises in China  

Science Journals Connector (OSTI)

In 2005, the Chinese government announced an ambitious goal of reducing energy consumption per unit of gross domestic product (GDP) by 20% between 2005 and 2010. One of the key initiatives for realizing this goal is the Top-1000 Energy-Consuming Enterprises program. The energy consumption of these 1000 enterprises accounted for 33% of national and 47% of industrial energy usage in 2004. Under the Top-1000 program, 2010 energy consumption targets were determined for each enterprise. The objective of this article is to evaluate the program design and initial results, given limited information and data, to understand the possible implications of its success in terms of energy and carbon dioxide emission reductions and to recommend future program modifications based on international experience with similar target-setting agreement programs. Even though the Top-1000 program was designed and implemented rapidly, it appears that – depending upon the GDP growth rate – it could contribute to somewhere between approximately 10% and 25% of the savings required to support China's efforts to meet a 20% reduction in energy use per unit of GDP by 2010.

Lynn Price; Xuejun Wang; Jiang Yun

2010-01-01T23:59:59.000Z

249

"Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual" Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO 1995",,26.164,26.293,26.499,27.044,27.252,26.855,26.578,26.798,27.098,27.458,27.878,28.158,28.448,28.728,29.038,29.298,29.608 "AEO 1996",,,26.54702756,26.62236823,27.31312376,27.47668697,26.90313339,26.47577946,26.67685979,26.928811,27.23795407,27.58448499,27.91057103,28.15050595,28.30145734,28.518,28.73702901,28.93001263,29.15872662 "AEO 1997",,,,26.21291769,26.45981795,26.88483478,26.67847443,26.55107968,26.78246968,27.07367604,27.44749539,27.75711339,28.02446072,28.39156621,28.69999783,28.87316602,29.01207631,29.19475644,29.37683575

250

Development of method for estimation of world industrial energy consumption and its application  

Science Journals Connector (OSTI)

The energy balances published by the International Energy Agency (IEA) are one of the most valuable sources of energy statistics covering world energy supply and demand. However, some issues arise when these data are analyzed or used directly. Even when industrial energy consumption alone is examined, at least three types of issues are encountered: missing data, large amounts of misallocated data in some countries, and numerous unrealistic outliers in the time-series variations. When we deal with only a few regions, we can look at data one by one and modify them. In this case, we are going to overcome these issues with a systematic method because the data covers world including more than a hundred regions. This paper proposes a data reconciliation method to treat these issues, and describes its application to world industrial energy consumption. As a result of its application, we found that the three issues mentioned above seemed to be overcome. The degree of the reconciliation by region showed that OECD countries' degree tends to be smaller than those of non-OECD countries. However, not all of the OECD countries have low values and some countries, such as the United States, have high values.

Shinichiro Fujimori; Yuzuru Matsuoka

2011-01-01T23:59:59.000Z

251

Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program  

Broader source: Energy.gov [DOE]

This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

252

Coal Conservation and the Gas Industry1  

Science Journals Connector (OSTI)

... won by mechanical excavation rather than underground mining. It is available, therefore, at the pit at a very low cost, and much of the German electric power supply is ... resinous bodies which cause many coals to fuse on heating and to evolve much gas, burning with a luminous smoky flame. It is owing to the absence of such components ...

J. W. COBB

1926-01-09T23:59:59.000Z

253

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

SciTech Connect (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

254

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Simulation Tools Available from Energy Analysis and Environmental Impacts Department Tools header image January 2014 Tools and models to find the best way to save energy and reduce greenhouse gas emissions in cities and industries, to follow the transport of pollutants through the environment, and to calculate the cost of power interruptions are among those available on a new Lawrence Berkeley National Laboratory (Berkeley Lab) web site. The site brings together models and simulation tools developed by the Energy Analysis and Environmental Impacts (EAEI) Department of the Lab's Environmental Energy Technologies Division. "Our hope is that the site will facilitate greater technical awareness of

255

Electric and Gas Industries Association | Open Energy Information  

Open Energy Info (EERE)

and Gas Industries Association and Gas Industries Association Jump to: navigation, search Name Electric and Gas Industries Association Place Sacramento, CA Zip 95821 Website http://www.egia.org/ Coordinates 38.6228166°, -121.3827505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6228166,"lon":-121.3827505,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

PROJECT RULISON A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O  

Office of Legacy Management (LM)

A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O N S T I M U L A T I O N EXPERIMENT U S I N G A NUCLEAR EXPLOSIVE Issued By PROJECT RULISON JOINT OFFICE OF INFORMATION U. S. ATOMIC ENERGY COMMISSION - AUSTRAL OIL COMPANY, INCORPORATED THE DEPARTMENT OF THE INTERIOR - CER GEONUCLEAR CORPORATION May 1, 1969 OBSERVATION AREA J SURFACE GROUND ZERO AREA S C A L E - I inch e q u a l s approximatly I 2 m i l e s Project Rulison Area Map PROJECT RULISON A N INDUSTRY-GOVERNMENT NATURAL GAS PRODUCT1 ON STIMULATION EXPERIMENT USING A NUCLEAR EXPLOSIVE I. INTRODUCTION Project Rulison is o joint experiment sponsored by Austral O i l Company, Incorporated, of Houston, Texas, the U. S. Atomic Energy Commission and the Department o f the Interior, w i t h the Program Management provided b y CER Geonuclear Corporotion of L

257

Outsourcing Logistics in the Oil and Gas Industry  

E-Print Network [OSTI]

-2016 Drilling and Exploration (Upstream) $329.9bn 3.10% 5.50% $158.4bn 48.00% Refining (Downstream) $698.9bn 4.60% 3.10% $90.9bn 13.00% 9 CHAPTER II METHODOLOGY The study includes literature review from academic and industry specific journals... Outsourcing Outlook in the Oil and Gas Industry Industry Segment Drilling and Exploration Refining Revenue $329.9bn $698.9bn Average Total Logistic Expenditure (ATLE) (11% of Revenue*) $36.29bn $76.88bn Average Total Logistics Expenditure Outsourced...

Herrera, Cristina 1988-

2012-04-30T23:59:59.000Z

258

Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,256 2,561 1,864 4,817 4,343 10.9 312 Beverage and Tobacco Product Mfg. 38 50 48 88 95 -7.7 313 Textile Mills 31 29 21 60 59 2.2 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w

259

The future of natural gas consumption in Beijing, Guangdong and Shanghai: An assessment utilizing MARKAL  

Science Journals Connector (OSTI)

Natural gas could possibly become a si0gnificant portion of the future fuel mix in China. However, there is still great uncertainty surrounding the size of this potential market and therefore its impact on the global gas trade. In order to identify some of the important factors that might drive natural gas consumption in key demand areas in China, we focus on three regions: Beijing, Guangdong, and Shanghai. Using the economic optimization model MARKAL, we initially assume that the drivers are government mandates of emissions standards, reform of the Chinese financial structure, the price and available supply of natural gas, and the rate of penetration of advanced power generating and end-use. The results from the model show that the level of natural gas consumption is most sensitive to policy scenarios, which strictly limit SO2 emissions from power plants. The model also revealed that the low cost of capital for power plants in China boosts the economic viability of capital-intensive coal-fired plants. This suggests that reform within the financial sector could be a lever for encouraging increased natural gas use.

BinBin Jiang; Chen Wenying; Yu Yuefeng; Zeng Lemin; David Victor

2008-01-01T23:59:59.000Z

260

The relationship among natural gas energy consumption, capital and economic growth: Bootstrap-corrected causality tests from G-7 countries  

Science Journals Connector (OSTI)

This paper examines the relationship between natural gas consumption, economic growth and capital by using G-7 countries data and a bootstrap-corrected causality test for the period 1970–2008. It was found eight significant Granger causality relationships. For Italy, the Granger causality is from natural gas consumption to growth and United Kingdom adverse. For pattern of France, Germany and United States there is two sided Granger causality between natural gas and growth.

Hakan Kum; Oguz Ocal; Alper Aslan

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 645,058 711,720 741,902 1970's 769,500 784,773 802,112 828,139 817,194 763,107 729,946 732,428 757,853 717,462 1980's 536,766 505,322 347,846 307,717 326,662 307,759 302,266 355,765 318,922 291,977 1990's 394,605 297,233 293,845 296,423 298,253 333,548 330,547 301,800 330,228 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption

262

Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 195,990 212,134 273,213 1970's 287,222 292,589 312,145 336,832 347,098 301,816 556,772 591,292 558,877 305,181 1980's 196,033 180,687 337,398 275,698 303,284 258,069 243,283 301,279 272,455 256,123 1990's 258,267 195,526 220,711 222,813 207,171 209,670 213,721 227,542 194,963 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption

263

Water retention and gas relative permeability of two industrial concretes  

SciTech Connect (OSTI)

This experimental study aims at identifying the water retention properties of two industrial concretes to be used for long term underground nuclear waste storage structures. Together with water retention, gas transfer properties are identified at varying water saturation level, i.e. relative gas permeability is assessed directly as a function of water saturation level S{sub w}. The influence of the initial de-sorption path and of the subsequent re-saturation are analysed both in terms of water retention and gas transfer properties. Also, the influence of concrete microstructure upon water retention and relative gas permeability is assessed, using porosity measurements, analysis of the BET theory from water retention properties, and MIP. Finally, a single relative gas permeability curve is proposed for each concrete, based on Van Genuchten-Mualem's statistical model, to be used for continuous modelling approaches of concrete structures, both during drying and imbibition.

Chen Wei; Liu Jian; Brue, Flore; Skoczylas, Frederic [Univ Lille Nord de France, F-59000 Lille (France); ECLille, LML, BP 48, F-59650 Villeneuve d'Ascq (France); CNRS, UMR 8107, F-59650 Villeneuve d'Ascq (France); Davy, C.A., E-mail: catherine.davy@ec-lille.fr [Univ Lille Nord de France, F-59000 Lille (France); ECLille, LML, BP 48, F-59650 Villeneuve d'Ascq (France); CNRS, UMR 8107, F-59650 Villeneuve d'Ascq (France); Bourbon, Xavier; Talandier, Jean [Andra, 1-7 rue Jean Monnet, F-92298 Chatenay-Malabry Cedex (France)

2012-07-15T23:59:59.000Z

264

The Natural Gas Industry and Markets in 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 Overview The natural gas industry in 2003 experienced sustained high prices, supported at least in part by pressure on supplies as gas in storage was rebuilt from historic lows in the early part of the year. The national annual average natural gas wellhead price was $4.88 per thousand cubic feet (Mcf), which is the highest wellhead price (based on 2003 constant dollars) in the Energy Information Administration's historical data series dating to 1930. U.S. marketed production was virtually unchanged compared with the previous year at 19.9 trillion cubic feet (Tcf), despite the high prices and an increased number of drilling rigs employed in the commercial development of gas deposits. Imports of liquefied natural gas (LNG) mitigated supply declines, reaching a record

265

EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,044 1,116 1,186 312 Beverage and Tobacco Products 108 104 109 313 Textile Mills 254 205 178 314 Textile Product Mills 49 60 72 315 Apparel 48 30 14 316 Leather and Allied Products 8 7 3 321 Wood Products 504 375 445 322 Paper 2,744 2,361 2,354 323 Printing and Related Support 98 98 85 324 Petroleum and Coal Products 3,622 3,202 3,396 325 Chemicals 3,704 3,769 3,195 326 Plastics and Rubber Products 327 348 336 327 Nonmetallic Mineral Products 969 1,052 1,105 331 Primary Metals 2,576 2,123 1,744 332 Fabricated Metal Products 441 387 397

266

,"Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:26 PM" "Back to Contents","Data 1: Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SLA_2" "Date","Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,34 33419,9 33785,9 34150,8 34515,22

267

,"Florida Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:14 PM" "Back to Contents","Data 1: Florida Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SFL_2" "Date","Florida Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,7 33785,9 34150,27 34515,68 34880,75

268

,"Idaho Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sid_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sid_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:20 PM" "Back to Contents","Data 1: Idaho Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SID_2" "Date","Idaho Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,6 40224,5 40252,6 40283,6 40313,6 40344,6 40374,6

269

,"Alabama Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sal_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sal_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:04 PM" "Back to Contents","Data 1: Alabama Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAL_2" "Date","Alabama Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,3 33419,0 33785,3 34150,4 34515,3 34880,4

270

,"California Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sca_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sca_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:08 PM" "Back to Contents","Data 1: California Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCA_2" "Date","California Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,4 33419,9 33785,27 34150,255 34515,550

271

,"California Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sca_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sca_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:09 PM" "Back to Contents","Data 1: California Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCA_2" "Date","California Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1153 40224,1041 40252,1153 40283,1116

272

,"Massachusetts Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sma_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sma_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:28 PM" "Back to Contents","Data 1: Massachusetts Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SMA_2" "Date","Massachusetts Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,1 33785,2 34150,2

273

,"Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sar_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sar_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:06 PM" "Back to Contents","Data 1: Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAR_2" "Date","Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1 40224,1 40252,1 40283,1 40313,1 40344,1

274

,"Alabama Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sal_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sal_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:05 PM" "Back to Contents","Data 1: Alabama Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAL_2" "Date","Alabama Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,9 40224,8 40252,9 40283,9 40313,9 40344,9

275

,"Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sct_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sct_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:10 PM" "Back to Contents","Data 1: Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCT_2" "Date","Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,2

276

,"South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:57 PM" "Back to Contents","Data 1: South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SSD_2" "Date","South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,2 33785,5 34150,7 34515,5

277

,"Kansas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sks_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sks_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:24 PM" "Back to Contents","Data 1: Kansas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SKS_2" "Date","Kansas Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,10 34880,2

278

,"Florida Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sfl_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sfl_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:14 PM" "Back to Contents","Data 1: Florida Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SFL_2" "Date","Florida Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,5 40224,5 40252,5 40283,5 40313,5 40344,5

279

,"Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_shi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_shi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:17 PM" "Back to Contents","Data 1: Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SHI_2" "Date","Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" 35611,284 35976,0 36341,380 36707,0 37072,0 37437,0 37802,0 38168,0

280

,"Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sla_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sla_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:27 PM" "Back to Contents","Data 1: Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SLA_2" "Date","Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1 40224,1 40252,1 40283,1 40313,1

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"South Dakota Natural Gas Residential Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010sd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010sd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:56 PM" "Back to Contents","Data 1: South Dakota Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010SD2" "Date","South Dakota Natural Gas Residential Consumption (MMcf)" 32523,1762 32554,1865 32582,1639 32613,1036 32643,562

282

,"South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_ssd_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_ssd_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:58 PM" "Back to Contents","Data 1: South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SSD_2" "Date","South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,0 40224,0 40252,0 40283,0 40313,0

283

,"Idaho Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sid_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sid_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:19 PM" "Back to Contents","Data 1: Idaho Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SID_2" "Date","Idaho Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,10 34880,19

284

,"Indiana Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sin_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sin_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:23 PM" "Back to Contents","Data 1: Indiana Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SIN_2" "Date","Indiana Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,4 40224,4 40252,4 40283,4 40313,4 40344,4

285

,"Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_shi_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_shi_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:17 PM" "Back to Contents","Data 1: Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SHI_2" "Date","Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,0 40224,0 40252,0 40283,0 40313,0 40344,0

286

,"Colorado Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sco_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sco_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:10 PM" "Back to Contents","Data 1: Colorado Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCO_2" "Date","Colorado Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,21 40224,19 40252,21 40283,20 40313,21

287

,"Arizona Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_saz_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_saz_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:07 PM" "Back to Contents","Data 1: Arizona Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAZ_2" "Date","Arizona Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,37 33785,46 34150,44 34515,61 34880,118

288

,"Georgia Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sga_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sga_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:16 PM" "Back to Contents","Data 1: Georgia Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SGA_2" "Date","Georgia Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,78 40224,70 40252,78 40283,75 40313,78

289

,"Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sar_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sar_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:06 PM" "Back to Contents","Data 1: Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAR_2" "Date","Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,3 34880,2

290

,"Delaware Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:13 PM" "Back to Contents","Data 1: Delaware Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SDE_2" "Date","Delaware Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,1 34880,1

291

,"Alaska Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sak_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sak_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:04 PM" "Back to Contents","Data 1: Alaska Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAK_2" "Date","Alaska Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,2 40224,2 40252,2 40283,2 40313,2 40344,2

292

,"South Carolina Natural Gas Residential Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010sc2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010sc2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:55 PM" "Back to Contents","Data 1: South Carolina Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010SC2" "Date","South Carolina Natural Gas Residential Consumption (MMcf)" 32523,3768 32554,3029 32582,3327 32613,1875

293

,"South Carolina Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_ssc_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_ssc_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:56 PM" "Back to Contents","Data 1: South Carolina Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SSC_2" "Date","South Carolina Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1 40224,1 40252,1 40283,1

294

,"Kansas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sks_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sks_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:24 PM" "Back to Contents","Data 1: Kansas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SKS_2" "Date","Kansas Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1 40224,1 40252,1 40283,1 40313,1 40344,1

295

NYSEG (Gas) - Commercial and Industrial Efficiency Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Commercial and Industrial Efficiency Program Commercial and Industrial Efficiency Program NYSEG (Gas) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer. Program Info State New York Program Type Utility Rebate Program Rebate Amount HVAC: Prescriptive incentives vary Condensing Boilers: $1000-$6000 Hydronic Boilers: $500-$4000 Steam Boilers: $200 Furnaces: $100 Programmable Thermostats: $25 Boiler Reset Controls: $150 Provider NYSEG/RGE NYSEG and RG&E offer rebates to non-residential customers installing energy

296

Table 3b. Relative Standard Errors for Total Natural Gas Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

b. Relative Standards Errors per Sq Ft b. Relative Standards Errors per Sq Ft Table 3b. Relative Standard Errors for Total Natural Gas Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Natural Gas (thousand) Total Natural Gas Consumption (trillion Btu) Natural Gas Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 5 7 6 6 Building Floorspace (Square Feet) 1,001 to 5,000 7 12 11 11 5,001 to 10,000 5 9 8 8 10,001 to 25,000 6 18 18 18 25,001 to 50,000 9 21 18 18 50,001 to 100,000 8 12 9 9 100,001 to 200,000 8 13 13 13 200,001 to 500,000 11 21 16 16 Over 500,000 15 27 22 23 Principal Building Activity Education 12 11 9 8 Food Sales and Service 8 12 10 9 Health Care 15 21 17 13 Lodging 12 22 16 16 Mercantile and Service 6 17 14 14 Office 7 24 24 24 Public Assembly 10 18 14 13 Public Order and Safety

297

Shale gas for the petrochemical industry: Incorporation of novel technologies  

Science Journals Connector (OSTI)

Abstract In this work, a new shale gas-based polygeneration system with essentially zero CO2 emissions is proposed that co-produces methanol, dimethyl ether (DME), olefins and power. The thermal and economic analysis of the proposed process is performed to determine the optimum product portfolio regarding current market prices. The optimization results show that production of methanol/DME and power can improve the performance of the olefin production section significantly. Therefore, the proposed plant can link the shale gas industry to the petrochemical sector efficiently and in an environmentally friendly way.

Yaser Khojasteh Salkuyeh; Thomas A. Adams II

2014-01-01T23:59:59.000Z

298

Natural gas consumption and economic growth: The role of foreign direct investment, capital formation and trade openness in Malaysia  

Science Journals Connector (OSTI)

Abstract The objective of this paper is to reinvestigate the relationship between natural gas consumption and economic growth by including foreign direct investment, capital and trade openness in Malaysia for the period of 1971–2012. The structural break unit root test is employed to investigate the stationary properties of the series. We have applied combined cointegration test to examine the relationship between the variables in the long run. For robustness sake, the ARDL bounds testing method is also employed to test for a possible long run relationship in the presence of structural breaks. We note the validity of cointegration between the variables. Natural gas consumption, foreign direct investment, capital formation and trade openness have positive influence on economic growth in Malaysia. The results support the presence of feedback hypothesis between natural gas consumption and economic growth, foreign direct investment and economic growth, and natural gas consumption and foreign direct investment. The policy implications of these results are provided.

Sakiru Adebola Solarin; Muhammad Shahbaz

2015-01-01T23:59:59.000Z

299

Consumption of Methane and CO2 by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic Black Sea  

Science Journals Connector (OSTI)

June 1, 2007 ERRATUM ERRATUM Consumption of Methane and CO2 by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic Black Sea Tina Treude Victoria Orphan Katrin Knittel Armin Gieseke Christopher H. House Antje Boetius Max...

Tina Treude; Victoria Orphan; Katrin Knittel; Armin Gieseke; Christopher H. House; Antje Boetius

2007-06-01T23:59:59.000Z

300

Microsoft Word - Gas Prices and Oil Consumption Would Increase Without Biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For Immediate Release For Immediate Release June 11, 2008 202-586-4940 Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. The letter is available at http://www.energy.gov Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. * The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol 1 , a first-generation biofuel. * For a typical household, that means saving about $150 to $300 per year. * For the U.S. overall, this saves gas expenditures of $28 billion to $49 billion based on annual

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

comparison o f energy consumption i n housing (1998) (Trends i n household energy consumption (Jyukankyo Research4) Average (N=2976) Energy consumption [GJ / household-year

2006-01-01T23:59:59.000Z

302

Environmental Monitoring and the Gas Industry: Program Manager Handbook  

SciTech Connect (OSTI)

This document has been developed for the nontechnical gas industry manager who has the responsibility for the development of waste or potentially contaminated soil and groundwater data or must make decisions based on such data for the management or remediation of these materials. It explores the pse of common analytical chemistry instrumentation and associated techniques for identification of environmentally hazardous materials. Sufficient detail is given to familiarize the nontechnical reader with the principles behind the operation of each technique. The scope and realm of the techniques and their constituent variations are portrayed through a discussion of crucial details and, where appropriate, the depiction of real-life data. It is the author's intention to provide an easily understood handbook for gas industry management. Techniques which determine the presence, composition, and quantification of gas industry wastes are discussed. Greater focus is given to traditional techniques which have been the mainstay of modem analytical benchwork. However, with the continual advancement of instrumental principles and design, several techniques have been included which are likely to receive greater attention in fiture considerations for waste-related detection. Definitions and concepts inherent to a thorough understanding of the principles common to analytical chemistry are discussed. It is also crucial that gas industry managers understand the effects of the various actions which take place before, during, and after the actual sampling step. When a series of sample collection, storage, and transport activities occur, new or inexperienced project managers may overlook or misunderstand the importance of the sequence. Each step has an impact on the final results of the measurement process; errors in judgment or decision making can be costly. Specific techniques and methodologies for the collection, storage, and transport of environmental media samples are not described or discussed in detail in thk handbook. However, the underlying philosophy regarding the importance of proper collection, storage, and transport practices, as well as pertinent references, are presented.

Gregory D. Gillispie

1997-12-01T23:59:59.000Z

303

North Dakota Industrial Commission, Oil and Gas Divisioin | Open Energy  

Open Energy Info (EERE)

North Dakota Industrial Commission, Oil and Gas Divisioin North Dakota Industrial Commission, Oil and Gas Divisioin Jump to: navigation, search State North Dakota Name North Dakota Industrial Commission, Oil and Gas Divisioin Address 600 East Boulevard Ave Dept 405 City, State Bismarck, North Dakota Zip 58505-0840 Website https://www.dmr.nd.gov/oilgas/ Coordinates 46.8206977°, -100.7827515° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.8206977,"lon":-100.7827515,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Chapter 18 - Future Trends in the Gas Turbine Industry  

Science Journals Connector (OSTI)

Abstract The future of gas turbine systems design development and the gas turbine business is steered by several factors. Business and political factors are a far greater influence on technology than the average engineer feels comfortable acknowledging. The major change in the gas turbine and gas turbine systems industries over the past several years has been the changes in turbine fuels strategy. In the power generation and land-based turbine sector, coal has lost its “number 1” place in the USA, due mostly to the advent of natural gas fracking exploration and production. Coal still remains number 1 in countries like China and much of Eastern Europe, because of those countries huge coal reserves. Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30% range with today’s steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40% range, with near-100% CO2 capture and near-zero \\{NOx\\} emissions. “I am enough of an artist to draw freely on my imagination. Imagination is more important that knowledge. Knowledge is limited. Imagination encircles.” —Albert Einstein

Claire Soares

2015-01-01T23:59:59.000Z

305

Barriers to the development of China's shale gas industry  

Science Journals Connector (OSTI)

Abstract Shale gas has become a promising onshore energy prospect in China. As much as the country aspires for greater energy independence through the use of its shale gas reserves, this process is slowed down by the combined weight of relative inexperience, lack of technology, geographical complexity, a hostile economic environment, a disincentive pipeline regime, and a complex land ownership system. To foster a better understanding of the current circumstances of the country's shale gas sector, a panel of scholars and experts shared their perspectives and insider knowledge on China's shale gas industry. It was found that some of the country's man-made institutional barriers are factors that have been hindering shale gas development in China, in addition to natural conditions such as water concerns and the complex geography of shale fields. Resolving this situation necessitates breaking the monopoly that major state-owned oil companies have over high-quality shale gas resources, opening pipeline network access, providing geological data, developing the domestic oil service market, creating conditions for fair competition between service providers, and improving the water management system.

Zheng Wan; Tao Huang; Brian Craig

2014-01-01T23:59:59.000Z

306

A Multimedia Workflow-Based Collaborative Engineering Environment for Oil & Gas Industry  

E-Print Network [OSTI]

A Multimedia Workflow-Based Collaborative Engineering Environment for Oil & Gas Industry Ismael H the control and execution of large and complex industrial projects in oil and gas industry. The environment governmental oil & gas company. The necessity of collaboration is especially acute in the field of computer

Barbosa, Alberto

307

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Broader source: Energy.gov (indexed) [DOE]

Membrane Technology and Membrane Technology and Research, Inc. (MTR), based in Menlo Park, CA, is a privately- owned developer, manufacturer, and supplier of customized membrane process solutions. Currently, the company's principal membrane products are * VaporSep® systems to remove organic vapors from air and nitrogen * NitroSep TM and fuel gas conditioning systems for natural gas treatment * Hydrogen recovery systems for refinery and other applications MTR's current R&D is extending use of membranes to carbon sequestration and biofuels separations. www.mtrinc.com New Membrane Technology Boosts Efficiency in Industrial Gas Processes Challenge Membrane technology was first commercialized in the 1960s and 1970s for well-known applications such as water filtration

308

Life Cycle Water Consumption for Shale Gas and Conventional Natural Gas  

Science Journals Connector (OSTI)

The average shale gas well EUR is 100 million cubic meters (3.5 billion cubic feet (BCF)) for bulk gas, which is a mixture containing methane, in addition to other gases such as ethane, propane, carbon dioxide, and nitrogen. ... Overbey, W. K.; Carden, R. S.; Locke, C. D.; Salamy, S. P.; Reeves, T. K.; Johnson, H. R.; Site Selection, Drilling, and Completion of Two Horizontal Wells in the Devonian Shales of West Virginia, DOE/MC/25115–3116; Prepared for U.S. Department of Energy, 1992. ...

Corrie E. Clark; Robert M. Horner; Christopher B. Harto

2013-09-04T23:59:59.000Z

309

Natural Gas Monthly  

Reports and Publications (EIA)

Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

2014-01-01T23:59:59.000Z

310

Are fluctuations in natural gas consumption per capita transitory? Evidence from time series and panel unit root tests  

Science Journals Connector (OSTI)

Abstract The stationary properties of natural gas consumption are essential for predicting the impacts of exogenous shocks on energy demand, which can help modeling the energy-growth nexus. Then, this paper proposes to investigate the panel unit root proprieties of natural gas energy consumption of 48 countries over the period of 1971–2010. We apply the Harvey et al. [69] linearity test in order to determine the type of the unit root tests (the Kruse (2010) nonlinear unit root or LM (Lagrange Multiplier) linear unit root tests). Our results show that the stationarity of natural gas consumption cannot be rejected for more than 60% of countries. In order to provide corroborating evidence, we employed not only the first and second generation panel unit root tests, but also the recent LM panel unit root test developed by Im et al. [28]. This test allows for structural breaks both in intercept and slope. The empirical findings support evidence in favor of stationarity of natural gas consumption for all panels. These results announce that any shock to natural gas consumption has a transitory impact for almost all countries implying that energy consumption will turn back to its time trend.

Muhammad Shahbaz; Naceur Khraief; Mantu Kumar Mahalik; Khair Uz Zaman

2014-01-01T23:59:59.000Z

311

Label Building Natural Gas Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS)  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Usage Form Natural Gas Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may choose to mark

312

NORM Management in the Oil and Gas Industry  

SciTech Connect (OSTI)

It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil and gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat [Environmental Protection Department, Saudi Aramco Dhahran 31311 (Saudi Arabia)

2008-08-07T23:59:59.000Z

313

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

i n g s 2.1 Total Energy Consumption i n Japan's Residentialhouses. 2.1 Total Energy Consumption in Japan's Residentialorder to reduce total energy consumption. Figure 2 suggests

2006-01-01T23:59:59.000Z

314

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

e d u c i n g Primary Energy Consumption and C O 2 emissionssystem can reduce primary energy consumption by about 22system can reduce primary energy consumption by about 26

2006-01-01T23:59:59.000Z

315

"Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Selected Energy Operating Ratios for Total Energy Consumption for" 7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumption","Natural Gas","Row" "Code(a)","Industry Group and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

316

ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR  

E-Print Network [OSTI]

ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR Conference Report - September 2007 & The Oil And Gas Development Partnership #12;ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR May 16, 2007 St. John's Conference Report September

deYoung, Brad

317

Comparison of Gas Catalytic and Electric Infrared Performance for Industrial Applications  

E-Print Network [OSTI]

A study was conducted to evaluate the performance of gas catalytic and electric infrared for industrial applications. The project focused on fabric drying, paper drying, metal heating, and plastic forming as target industrial applications. Tests...

Eshraghi, R. R.; Welch, D. E.

318

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

Monitoring of Direct Energy Consumption in Long-Term2007. “Constraining Energy Consumption of China’s LargestProgram: Reducing Energy Consumption of the 1000 Largest

Price, Lynn

2008-01-01T23:59:59.000Z

319

Industrial Potential for Substitution of Electricity for Oil and Natural Gas  

E-Print Network [OSTI]

The prospect of natural gas decontrol as well as uncertainties of gas and other fuel supplies have aroused interest in electric processes among industrial officials. Where there is ample electric power supply at reasonable cost, an opportunity...

Reynolds, S. D.; Gardner, J. R.

1983-01-01T23:59:59.000Z

320

Power Factor correction capacitors for utilising power consumption in industrial plants  

Science Journals Connector (OSTI)

Installation of capacitor banks proved to be cost effective approach to correct power factor in industrial plants. Optimum capacitance value that contributes to the maximum PF improvement varies from one system to another. Such value depends on the existing electrical system within the industrial plant. This paper provides industrial plants operators an optimisation model to correct and improve PF. This paper is supported by using both MATLAB programming and iteration loop technique. The Jordanian Petroleum Refinery Company is taken as a case study. Results indicate that PF improvement reached almost unity PF for this case, which yields to a reduction in the overall electricity bill.

Osama M. Aloquili; Nazih M. Abu-Shikhah

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas  

SciTech Connect (OSTI)

Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1,260 C (2,300 F), with minimum pollutant emissions, is a key R and D issue. A phased combustor development program is underway burning low calorific value fuel gas (3.6--4.1 MJ/m[sup 3]) with low emissions, particularly NO[sub x] derived from fuel-bound nitrogen. The first phase of the combustor development program has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and Mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the program is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suite the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test program results for the prototype combustor. Design of the modified combustor for Phase 2 of the development program is discussed, together with preliminary combustor performance results.

Kelsall, G.J.; Smith, M.A. (British Coal Corp., Glos (United Kingdom). Coal Research Establishment); Cannon, M.F. (European Gas Turbines Ltd., Lincoln (United Kingdom). Aero and Technology Products)

1994-07-01T23:59:59.000Z

322

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

from household energy consumption i n Japan increased b y 20is that household energy consumption i n Japan has notfrom a l l households i n Japan, through 2050 (with energy-

2006-01-01T23:59:59.000Z

323

Life Cycle Water Consumption and Wastewater Generation Impacts of a Marcellus Shale Gas Well  

Science Journals Connector (OSTI)

The relative importance of water consumption was analyzed by integrating the method into the Eco-indicator-99 LCIA method. ...

Mohan Jiang; Chris T. Hendrickson; Jeanne M. VanBriesen

2013-12-31T23:59:59.000Z

324

Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing  

Science Journals Connector (OSTI)

Abstract As the installed capacity of wind generation in Ireland continues to increase towards an overall goal of 40% of electricity from renewable sources by 2020, it is inevitable that the frequency of wind curtailment occurrences will increase. Using this otherwise discarded energy by strategically increasing demand at times that would otherwise require curtailment has the potential to reduce the installed capacity of wind required to meet the national 2020 target. Considering two industrial electricity consumers, this study analyses the potential for the implementation of price based demand response by an industrial consumer to increase their proportional use of wind generated electricity by shifting their demand towards times of low prices. Results indicate that while curtailing during peak price times has little or no benefit in terms of wind energy consumption, demand shifting towards low price times is likely to increase a consumer’s consumption of wind generation by approximately 5.8% for every 10% saved on the consumer’s average unit price of electricity.

Paddy Finn; Colin Fitzpatrick

2014-01-01T23:59:59.000Z

325

Percentage of Total Natural Gas Industrial Deliveries included...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download...

326

"Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

A8. Selected Energy Operating Ratios for Total Energy Consumption for" A8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Industry Group, and" " Selected Industries, 1991" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumsption","Natural Gas","Row" "Code(a)","Industry Groups and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(PERCENT)","(percent)","Factors"

327

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS  

E-Print Network [OSTI]

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS Dr for Energy Efficiency and Renewable Energy Department of Mechanical and Industrial Engineering University of Massachusetts, Amherst, Massachusetts ABSTRACT The study was conducted to evaluate the energy use of natural gas

Massachusetts at Amherst, University of

328

Impact of the Global Forest Industry on Atmospheric Greenhouse Gas | Open  

Open Energy Info (EERE)

Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Jump to: navigation, search Tool Summary Name: Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Industry, Forestry Topics: GHG inventory, Co-benefits assessment, - Environmental and Biodiversity Resource Type: Publications Website: www.fao.org/docrep/012/i1580e/i1580e00.pdf Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Screenshot References: Forestry Industry Impacts[1] "This book examines the influence of the forest products (roundwood, processed wood products and pulp and paper) value chain on atmospheric greenhouse gases. Forests managed for natural conservation, for protection

329

Design, modelling and control of a gas turbine air compressor .  

E-Print Network [OSTI]

??The production of compressed air constitutes a considerable portion of industrial electrical consumption. An alternative to electrically driven air compression systems is a gas turbine… (more)

WIESE, ASHLEY PETER

2014-01-01T23:59:59.000Z

330

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

recently. In 2006, total energy consumption reached 2,4577.5% per year, total energy consumption in 2010 will reachof Enterprises Total Energy Consumption Mtce pe tro iro le

Price, Lynn

2008-01-01T23:59:59.000Z

331

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network [OSTI]

recently. In 2005, total energy consumption reached 2,2257.5% per year, total energy consumption in 2010 will reachof Enterprises and Total Energy Consumption by Sector of the

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

332

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

China’s total primary energy consumption in 2005, along withof China’s total primary energy consumption (Lin et al. ,accounted for, the primary energy consumption of the Top-

Price, Lynn

2008-01-01T23:59:59.000Z

333

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

SciTech Connect (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

334

Energy Consumption Characteristics of Light Manufacturing Facilities in The Northern Plains: A Study of Detailed Data from 10 Industrial Energy Audits Conducted in 1993  

E-Print Network [OSTI]

ENERGY CONSUMPTION CHARACTERISTICS OF LIGHT MANUFACTURING FACll..ITIES IN THE NORTHERN PLAINS: A study of detailed data from 10 industrial energy audits conducted in 1993. Michael Twedt Graduate Research Assistant IEOPIEADC South Dakota... profiles and common energy conservation opportunities. A statistical breakdown of energy consumption of 10 light manufacturing facilities by process, equipment type, and end use is provided. Common energy optimization procedures are also summarized...

Twedt, M.; Bassett, K.

335

Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1  

E-Print Network [OSTI]

Page 1 Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1 , P.E., M: Railway transportation is playing a key role in the development of many new shale oil and gas reserves in North America. In the rush to develop new shale oil and gas plays, sites for railway transload terminals

Barkan, Christopher P.L.

336

Do Private Firms Invest Dierently than Public Firms? Taking Cues from the Natural Gas Industry  

E-Print Network [OSTI]

Do Private Firms Invest Dierently than Public Firms? Taking Cues from the Natural Gas Industry Erik and public rms using a unique dataset of onshore U.S. natural gas producers. In rm-level regressions we nd that investments by private rms are 68% less responsive to changes in natural gas prices, a measure that captures

Lin, Xiaodong

337

Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid The undersigned members of the natural gas industry are pleased to submit for your consideration the following comments in response to the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability's Request for Information Addressing Policy and Logistical Challenges to Smart Grid Implementation, 75 Fed. Reg. 57,006 (Sep. 17, 2010). The Request seeks comment on challenges that confront smart grid implementation and recommendations on how best to overcome those challenges. We believe abundant, domestic, low-carbon natural gas resources along with

338

Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications- Volume I, January 2000  

Broader source: Energy.gov [DOE]

An assessment of the opportunities for micropower and fuel cell/gas turbine hybrid technologies in the industrial sector.

339

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Office of Energy Efficiency and Renewable Energy (EERE)

Fact sheet from Membrane Technology and Research, Inc. about its pilot-scale industrial membrane system that was funded by the SBIR program.

340

Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications  

E-Print Network [OSTI]

for industrial applications where electric ovens have predominant use. Tests were performed to obtain the process efficiency and examine cost savings potential in converting electric ovens to natural gas. Preliminary results show that, for the plat studied, cost...

Kosanovic, D.; Ambs, L.

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

"Table A45. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Selected Energy Operating Ratios for Total Energy Consumption" 5. Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Value of Shipment Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

342

"Table A46. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption" Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Employment Size Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

343

"Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Selected Energy Operating Ratios for Total Energy Consumption for" 0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent of","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(Percent)","(percent)","Factors"

344

Detailed Modeling of Industrial Energy Use and Greenhouse Gas Emissions in an Integrated Assessment Model of Long-term Global Change  

E-Print Network [OSTI]

in the manufacturing sector, about 26% is electricity, 58% is natural gas, 10% is coal (excluding coal coke and breeze) and the remainder is from liquid fuels. 1 AdaptedfromTableE6.4. EndUsesofFuelConsumption,1998(URL: ftp://ftp.eia.doe.gov/pub/consumption/industry/d98...FuelConsumptionbyEnd-UseforallMECSIndustries,1998,trillionBTU Electricity Liquid Fuels Natural Gas Coal (excluding Coal Cokeand Breeze) Total BoilerFuel 29 308 2,538 770 3,645 ProcessHeating 363 185 3,187 331 4,066 ProcessCoolingand Refrigeration 209 2 22 233 MachineDrive 1,881 25 99 7 2...

Sinha, P.; Wise, M.; Smith, S.

2006-01-01T23:59:59.000Z

345

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network [OSTI]

Daily, 2007. Energy consumption per unit GDP down 1.23%increase in energy use per unit of GDP after 2002 following2006, the energy consumption per unit of GDP declined 1.23%

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

346

Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications  

SciTech Connect (OSTI)

This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

Lee Nelson

2009-10-01T23:59:59.000Z

347

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network [OSTI]

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

Zhou, A.; Tutterow, V.; Harris, J.

348

INDUST: An Industrial Data Base  

E-Print Network [OSTI]

.5% of the natural gas consump tion, 98.1% of the fuel oil consumption, 99.2% of the coal/coke consumption, and 99.7% of a class of fuels called "other" fuels. Within these 13 indus try groups, INDUST addresses a wide variety of energy-intense industries... the manufac turing sector, Table 1 shows the latest EIA pro visional estimate of energy consumption (in trillion Btu) for 1985. The EIA reports fuel consumption according to five categories: electricity, fuel oil, natural gas, coal and coke, and other...

Wilfert, G. L.; Moore, N. L.

349

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

350

Percentage of Total Natural Gas Industrial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 16.5 16.3 16.0 16.2 16.6 16.9 2001-2013 Alabama 22.1 21.7 21.6 22.8 22.0 22.7 2001-2013 Alaska 100.0 100.0 100.0 100.0 100.0 100.0 2001-2013 Arizona 13.4 15.7 15.3 13.8 13.7 13.9 2001-2013 Arkansas 1.7 1.4 1.2 1.4 1.3 1.5 2001-2013

351

Greenhouse gas emission by wastewater treatment plants of the pulp and paper industry – Modeling and simulation  

Science Journals Connector (OSTI)

Abstract Greenhouse gas (GHG) emission and energy consumption in wastewater treatment plants (WWTPs) of the pulp and paper industry were modeled and estimated. Aerobic, anaerobic, and hybrid biological processes were used for the removal of contaminants. In addition to the removal of carbonaceous compounds, anaerobic digestion of the produced sludge and the removal of excess nitrogen in the effluent of treatment plants by nitrification/denitrification processes were incorporated in the model. Carbon dioxide, methane, and nitrous oxide were the major \\{GHGs\\} generated during the biological treatment, combustion, energy generation, and transportation. The generated biogas from the anaerobic processes was assumed to be recovered and used as a source of energy for the treatment plant, in an effort to reduce GHG emissions while decreasing the total energy needs of the WWTP. The established kinetic relationships of wastewater treatment processes along with mass and energy balances were employed for the simulation of different treatment systems and estimation of GHG emissions. Various sources of GHG emission were divided into on-site and off-site sources to simplify the modeling and simulation procedure. The overall GHG generation in the presence of biogas recovery was equal to 1.576, 3.026, and 3.271 kg CO2-equivalent/kg BOD by the three examined systems. The energy produced by the recovery and combustion of biogas could exceed the energy demands of all different treatment plants examined in this study and reduce off-site GHG emission. The generation of \\{GHGs\\} from aerobic and hybrid processes increased by 27% and 33.2%, respectively, when N2O emission from nitrogen removal processes was taken into consideration.

Omid Ashrafi; Laleh Yerushalmi; Fariborz Haghighat

2013-01-01T23:59:59.000Z

352

Safety management in the Dutch oil and gas industry: the effect on the technological regime  

Science Journals Connector (OSTI)

This paper deals with the recent trend in Europe, from the formulation of detailed instructions and specifications with respect to the safety of industrial installations by governments, towards regulation on the level of safety management systems and risk analyses. The development sketched is studied with respect to the offshore oil and gas industry in the Netherlands. The government inspectorate responsible for this industry, the Staatstoezicht op de Mijnen (SodM), has, since the early 1990s, changed its approach from hardware-based inspections to inspection at the level of management systems. To assess the effects of this change in approach on industry practice the concept of ''technological regime'' is employed.

I.R. van de Poel; A.R. Hale; L.H.J. Goossens

2002-01-01T23:59:59.000Z

353

Greenhouse Gas Emissions Driven by the Transportation of Goods Associated with French Consumption  

Science Journals Connector (OSTI)

By product, transport of coal and coke and intermediate goods make the largest contribution to overall freight transport emissions associated with French household consumption. ... Finally, improving rail and inland water transportation infrastructure between northern European countries and France also serves the purpose of improving trade-relations and economic efficiency within Europe. ... per capita footprints were 1 ton CO2 equiv./yr in African countries to ?30ton CO2 equiv./yr in Luxembourg and the USA. ...

Troy R. Hawkins; Sébastien M. R. Dente

2010-10-01T23:59:59.000Z

354

Impact of Office Productivity Cloud Computing on Energy Consumption and Greenhouse Gas Emissions  

Science Journals Connector (OSTI)

A Lenovo U260 Laptop and Acer Iconia W500 Tablet device (Supporting Information Table S1) were analyzed as previous research(3) indicated that low power devices are best suited to cloud services and will be more common in the future. ... For example, while using Word in O365 one could also be listening to music, potentially making more use of the idle energy consumption of the OS as a consequence. ...

Daniel R. Williams; Yinshan Tang

2013-04-02T23:59:59.000Z

355

A NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL APPLICATIONS  

E-Print Network [OSTI]

A NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL instrumentation. 1. INTRODUCTION CO2 is an important industrial gas for many different uses that include electrolytes [10;11]. The most popular sensors used for CO2 gas sensing in biotechnological applications

Lee, Hyowon

356

Industry evolution : applications to the U.S. shale gas industry.  

E-Print Network [OSTI]

??The present study applies evolutionary and resource-based firm theories to three of the most prominent U.S. shale gas basins – the Barnett, Fayetteville, and Haynesville… (more)

Grote, Carl August

2014-01-01T23:59:59.000Z

357

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

358

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

359

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

360

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

362

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

363

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

364

The relationship among oil, natural gas and coal consumption and economic growth in BRICTS (Brazil, Russian, India, China, Turkey and South Africa) countries  

Science Journals Connector (OSTI)

Abstract The causality relationship between economic growth and coal, natural gas and oil consumption was investigated using the ARDL (autoregressive distributed lag bounds) testing approach for the 1980–2011 period in Brazil, Russian, India, China, Turkey and South Africa. According to long-run and strong causality results, there is bi-directional causality between oil energy consumption and Y for all countries. The long-run causality and strong causality results between coal consumption and economic growth indicated that there is bi-directional causality for China and India. According to long-run causality results and a strong causality result, there are bi-directional causality relationships between NGC (natural gas energy consumption) and Y for Brazil, Russia and Turkey.

Melike E. Bildirici; Tahsin Bakirtas

2014-01-01T23:59:59.000Z

365

The competition situation analysis of shale gas industry in China: Applying Porter’s five forces and scenario model  

Science Journals Connector (OSTI)

Abstract With the increasing of energy demand and environmental pressure, China government has been exploring a way to diversify energy supply. Shale gas development is becoming an important energy strategy in China in recent years due to giant shale gas reserves. However, the shale gas market is preliminarily shaping in China, so that many factors have great influence on its competition. To find these factors and to control them rationally is good for the cultivating Chinese shale gas market. Five forces model for industry analysis puts an insight into the competitive landscape of shale gas market by showing the forces of supplier power, buyer power, threat of substitution, barriers to entry, and degree of rivalry. Illustrating the key factors that affect competitive landscape provides a view into the situation of shale gas industry. The variation tendency of shale gas industry is analyzed by setting various scenarios. Finally some suggestions are proposed in order to keep the development of shale gas industry positively.

Wu Yunna; Yang Yisheng

2014-01-01T23:59:59.000Z

366

DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems  

Broader source: Energy.gov [DOE]

DOE announced a series of actions, partnerships, and stakeholder commitments to help modernize the nation’s natural gas transmission and distribution systems and reduce methane emissions. As part of these DOE actions, AMO will lead a collaborative effort with industry to evaluate and scope high-impact manufacturing R&D to improve natural gas systems efficiency and leak reduction. The goal of this effort is to establish an advanced manufacturing initiative.

367

Thermodynamic-Analysis-Based Energy Consumption Minimization for Natural Gas Liquefaction  

Science Journals Connector (OSTI)

The earliest NG liquefaction plants consisted of fairly simple processes based on either cascaded refrigeration or single mixed-refrigerant (MR) processes with train capacities of less than 1 million tons per annum (MTPA). ... Kano?lu, M.Exergy analysis of multistage cascade refrigeration cycle used for natural gas liquefaction Int. ...

Meiqian Wang; Jian Zhang; Qiang Xu; Kuyen Li

2011-09-25T23:59:59.000Z

368

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

369

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

370

Efficacy of LEED-certification in reducing energy consumption and greenhouse gas emission for large New York City office buildings  

Science Journals Connector (OSTI)

Abstract In this paper 2011 energy consumption, green house gas (GHG) emission, and ENERGY STAR Energy Performance Rating (EPR) data for 953 office buildings in New York City are examined. The data were made public as a result of New York City's local law 84. Twenty-one of these office buildings were identified as LEED-certified, providing the opportunity for direct comparison of energy performance data for LEED and non-LEED buildings of the same type, time frame, and geographical and climate region. With regard to energy consumption and GHG emission the LEED-certified buildings, collectively, showed no savings as compared with non-LEED buildings. The subset of the LEED buildings certified at the Gold level outperformed other NYC office buildings by 20%. In contrast LEED Silver and Certified office buildings underperformed other NYC office buildings. The average EPR for the LEED buildings was 78, 10 pts higher than that for all NYC office buildings, raising questions about the validity and interpretation of these EPR's. This work suggests that LEED building certification is not moving NYC toward its goal of climate neutrality. The results also suggest the need to re-examine some aspects of ENERGY STAR's benchmarking tool.

John H. Scofield

2013-01-01T23:59:59.000Z

371

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

reducing energy consumption per unit of GDP by 20% between20% reduction in energy use per unit of GDP by 2010. China'sincrease in energy use per unit of GDP after 2002 following

Price, Lynn

2008-01-01T23:59:59.000Z

372

DOE to Launch Collaborative Effort with Industry to Improve Natural Gas Systems  

Broader source: Energy.gov [DOE]

DOE will launch a collaborative effort with industry to evaluate and scope high-impact manufacturing R&D to improve natural gas systems efficiency and leak reduction. The goal of this effort is to establish an advanced manufacturing initiative. AMO will lead this effort.

373

Bi-level Optimization for Capacity Planning in Industrial Gas Markets  

E-Print Network [OSTI]

Bi-level Optimization for Capacity Planning in Industrial Gas Markets P. Garcia-Herreros, L. Zhang markets are dynamic: · Suppliers must anticipate demand growth · Most markets are served locally Capacity is incremental( t T, i I ) Demand satisfaction is constraint by capacities( t T, i I ) All markets

Grossmann, Ignacio E.

374

Bi-level Optimization for Capacity Planning in Industrial Gas Markets  

E-Print Network [OSTI]

Bi-level Optimization for Capacity Planning in Industrial Gas Markets P. Garcia-Herreros, E. Arslan are dynamic: · Suppliers must anticipate demand growth · Most markets are served locally Capacity expansion supplier · Set of plants from independent suppliers with limited capacity · Rational markets that select

Grossmann, Ignacio E.

375

New Concepts in Hardware and Processes to Conserve Oil and Gas in Industrial Processes  

E-Print Network [OSTI]

Programs of the U.S. Department of Energy, Argonne interacted with 130 industrial companies to help define and evaluate appropriate areas of technology. The initial step was to assemble a master list of technologies that promised to conserve oil and gas...

Humphrey, J. L.

1982-01-01T23:59:59.000Z

376

Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications  

SciTech Connect (OSTI)

This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

Lee Nelson

2011-09-01T23:59:59.000Z

377

Industrial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Energy Smart Industrial - Energy Management...

378

Industry  

E-Print Network [OSTI]

2004). US DOE’s Industrial Assessment Centers (IACs) are anof Energy’s Industrial Assessment Center program in SMEs

Bernstein, Lenny

2008-01-01T23:59:59.000Z

379

Manufacturing consumption of energy 1994  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

380

NICE3: Industrial Refrigeration System  

SciTech Connect (OSTI)

Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

Simon, P.

1999-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

1 Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

382

Industrial energy use indices  

E-Print Network [OSTI]

and colder are determined by annual average temperature weather data). Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. iv... This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energy’s national Industrial Assessment Center (IAC) database. The data there come from Industrial Assessment Centers...

Hanegan, Andrew Aaron

2008-10-10T23:59:59.000Z

383

RG&E (Gas) - Commercial and Industrial Efficiency Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Commercial and Industrial Efficiency Program Commercial and Industrial Efficiency Program RG&E (Gas) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer. Program Info State New York Program Type Utility Rebate Program Rebate Amount HVAC: Prescriptive incentives vary Condensing Boilers: $1000-$6000 Hydronic Boilers: $500-$4000 Steam Boilers: $200 Furnaces: $100 Programmable Thermostats: $25 Boiler Reset Controls: $150 Provider NYSEG/RGE NYSEG and RG&E offer rebates to non-residential customers installing energy

384

China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects  

E-Print Network [OSTI]

Choices, and Energy Consumption. Praeger Publishers,The decomposition effect of energy consumption in China'sThe challenge of reducing energy consumption of the Top-1000

Ke, Jing

2014-01-01T23:59:59.000Z

385

An electromagnetic cavity sensor for multiphase measurement in the oil and gas industry  

Science Journals Connector (OSTI)

The oil and gas industry require accurate sensors to monitor fluid flow in pipelines in order to manage wells efficiently. The sensor described in this paper uses the different relative permittivity values for the three phases: oil, gas and water to help determine the fraction of each phase in the pipeline, by monitoring the resonant frequencies that occur within an electromagnetic cavity. The sensor has been designed to be non-intrusive. This is advantageous, as it will prevent the sensor being damaged by the flow through the pipeline and allow pigging, the technique used for cleaning rust and wax from the inside of the pipeline using blades or brushes.

S Al-Hajeri; S R Wylie; R A Stuart; A I Al-Shamma'a

2007-01-01T23:59:59.000Z

386

The electric and gas industries are converging: What does it mean?  

SciTech Connect (OSTI)

Three broad views define deregulation in retail gas and electric markets. One sees the future as but a lengthened shadow of the present. Change is glacial. The second predicts a significant but mannerly shift-a leisurely transition from monopoly to competition. The third posits revolution. It awaits a future marked by epochal, discontinuous, and abrupt changes. This third future is the most interesting. It raises the stakes. This article examines the industrial organization of gas and electric enterprises as they will be reinvented by those who embrace the third view. Not a prediction; rather, a thought experiment.

Dar, V.K.

1995-04-01T23:59:59.000Z

387

Implications for decision making: Auto industry perspectives  

SciTech Connect (OSTI)

Implications for decision making in areas related to policy towards greenhouse gas emissions are discussed from the perspective of the auto industry. Two methods of reducing fuel use are discussed: increasing fuel efficiency of automobiles and reducing vehicle fuel use by other methods. Regulatory and market-driven control of fuel consumption are discussed. It is concluded that the automobile industry would prefer market-driven control of fuel consumption to regulatory control of fuel efficiency.

Leonard, S.A. [General Motors Technical Center, Warren, MI (United States)

1992-12-31T23:59:59.000Z

388

,"Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035co3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035co3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:00 PM" "Back to Contents","Data 1: Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CO3" "Date","Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,9.36 36937,10.07

389

,"Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035al3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035al3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:53 PM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,9.55 36937,8.54

390

,"California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ca3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ca3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:58 PM" "Back to Contents","Data 1: California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CA3" "Date","California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,7.75

391

,"Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035co3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035co3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:00 PM" "Back to Contents","Data 1: Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CO3" "Date","Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,3.02 35976,2.55 36341,3.08

392

,"Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ct3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ct3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:02 PM" "Back to Contents","Data 1: Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CT3" "Date","Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,10.11

393

,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ak3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ak3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:51 PM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,1.54 35976,1.34 36341,1.25

394

,"Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ga3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ga3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:08 PM" "Back to Contents","Data 1: Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035GA3" "Date","Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,10.05 36937,9.35

395

,"Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035fl3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035fl3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:06 PM" "Back to Contents","Data 1: Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035FL3" "Date","Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.41 35976,3.98 36341,4.12

396

,"California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ca3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ca3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:58 PM" "Back to Contents","Data 1: California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CA3" "Date","California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.18 35976,3.75 36341,3.33

397

,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ak3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ak3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:51 PM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,1.57 36937,1.55

398

,"Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035fl3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035fl3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:06 PM" "Back to Contents","Data 1: Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035FL3" "Date","Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,8.27 36937,8.02

399

,"Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035de3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035de3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:04 PM" "Back to Contents","Data 1: Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035DE3" "Date","Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,7.37 36937,4.61

400

,"South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:02 PM" "Back to Contents","Data 1: South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035SC3" "Date","South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,3.72 35976,3.29

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035id3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035id3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:13 PM" "Back to Contents","Data 1: Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ID3" "Date","Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,2.76 35976,3.09 36341,3.29 36707,4.02

402

,"Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ga3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ga3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:07 PM" "Back to Contents","Data 1: Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035GA3" "Date","Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.55 35976,3.92 36341,3.41

403

,"Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035hi3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035hi3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:09 PM" "Back to Contents","Data 1: Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035HI3" "Date","Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,11.65 36937,11.84

404

,"South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sc3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sc3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:02 PM" "Back to Contents","Data 1: South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035SC3" "Date","South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

405

,"South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:04 PM" "Back to Contents","Data 1: South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035SD3" "Date","South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.02 35976,3.28

406

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

407

State energy data report 1996: Consumption estimates  

SciTech Connect (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

NONE

1999-02-01T23:59:59.000Z

408

Industry  

E-Print Network [OSTI]

Emission reduction at Engen refinery in South Durban. Paperenergy consumed in refineries and other energy conversionCement Membrane separation Refinery gas Natural gas Bio-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

409

EIA - 2010 International Energy Outlook - Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial International Energy Outlook 2010 Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by 42 percent, or an average of 1.3 percent per year, from 2007 to 2035 in the IEO2010 Reference case. Ninety-five percent of the growth occurs in non-OECD nations. Overview The world's industries make up a diverse sector that includes manufacturing, agriculture, mining, and construction. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing and assembly, space conditioning, and lighting. Industrial energy use also includes natural gas and petroleum products used as feedstocks to produce non-energy products, such as plastics. In aggregate, the industrial sector uses more energy than any other end-use sector, consuming about one-half of the world's total delivered energy.

410

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

411

Oil and stock market activity when prices go up and down: the case of the oil and gas industry  

Science Journals Connector (OSTI)

We examine the asymmetric effects of daily oil price changes on equity returns, market betas, oil betas, return variances, and trading volumes for the US oil and gas industry. The responses of stock returns assoc...

Sunil K. Mohanty; Aigbe Akhigbe…

2013-08-01T23:59:59.000Z

412

Commercial Buildings Energy Consumption and Expenditures 1992...  

U.S. Energy Information Administration (EIA) Indexed Site

1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

413

Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques  

Science Journals Connector (OSTI)

This study proposes a model-based robust fault detection and isolation (RFDI) method with hybrid structure. Robust detection and isolation of the realistic faults of an industrial gas turbine in steady-state conditions is mainly considered. For residual ... Keywords: Industrial gas turbine, Local linear model tree (LOLIMOT), Local linear neuro-fuzzy network, Model error modelling, Neural network, Robust fault detection and isolation

Hasan Abbasi Nozari; Mahdi Aliyari Shoorehdeli; Silvio Simani; Hamed Dehghan Banadaki

2012-08-01T23:59:59.000Z

414

Electricity Consumption Electricity Consumption EIA Electricity Consumption Estimates  

Broader source: Energy.gov (indexed) [DOE]

Consumption Consumption Electricity Consumption EIA Electricity Consumption Estimates (million kWh) National Petroleum Council Assumption: The definition of electricity con- sumption and sales used in the NPC 1999 study is the equivalent ofwhat EIA calls "sales by utilities" plus "retail wheeling by power marketers." This A nn u al Gro wth total could also be called "sales through the distribution grid," 2o 99 99 to Sales by Utilities -012% #N/A Two other categories of electricity consumption tracked by EIA cover on site Retail Wheeling Sales by generation for host use. The first, "nonutility onsite direct use," covers the Power Marketen 212.25% #N/A traditional generation/cogeneration facilities owned by industrial or large All Sales Through Distribution

415

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

12.97% electricity, 8.91% coke, 1.91% heat, 1.48% naturalgas from blast furnace, and coke oven gas. Pe t Co N on -fe12.97% electricity, 8.91% coke, 1.91% heat, 1.48% natural

Price, Lynn

2008-01-01T23:59:59.000Z

416

Energy Information Administration - Energy Efficiency-Table 5b. Consumption  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: June 2010 Table 5b. Consumption of Energy for All Purposes (First Use) per Ton of Steel, 1998, 2002, and 2006 (Million Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 19982 20022 20062 Total 3 17 16 13 Net Electricity 4 2 2 2 Natural Gas 5 5 4 Coal 7 6 4 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. Denominators represent the entire steel industry, not those based mainly on electric, natural gas, residual fuel oil or coal.

417

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network [OSTI]

consumption. Total energy consumption (in thousand BTUs) waselectricity and total energy consumption. Because all homesin gas, electric, and total energy consumption. Removing

Kelsven, Phillip

2013-01-01T23:59:59.000Z

418

Natural gas monthly: December 1993  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. Articles are included which are designed to assist readers in using and interpreting natural gas information.

Not Available

1993-12-01T23:59:59.000Z

419

Natural gas monthly, June 1997  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

NONE

1997-06-01T23:59:59.000Z

420

Natural gas monthly, August 1994  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1994-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural gas monthly: September 1996  

SciTech Connect (OSTI)

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

NONE

1996-09-01T23:59:59.000Z

422

Natural gas monthly, November 1993  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-11-29T23:59:59.000Z

423

,"Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ia3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ia3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

424

,"Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035il3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035il3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

425

2014-11-20 Issuance: Energy Conservation Program for Commercial and Industrial Natural Gas Compressors; NOPM  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for commercial and industrial natural gas compressors, as issued by the Deputy Assistant Secretary for Energy Efficiency and Renewable Energy on November 20, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

426

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Chemical Industry Analysis Brief Change Topic: Steel | Chemical Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials for producing an extensive assortment of consumer goods. They are also crucial materials in creating many resources that are essential inputs to the numerous industries and sectors of the U.S. economy.1 The manufacturing sector is classified by the North American Industry Classification System (NAICS) of which the chemicals sub-sector is NAICS

427

System definition and analysis gas-fired industrial advanced turbine systems  

SciTech Connect (OSTI)

The objective is to define and analyze an engine system based on the gas fuel Advanced Turbine from Task 3. Using the cycle results of Task 3, a technical effort was started for Task 6 which would establish the definition of the engine flowpath and the key engine component systems. The key engine systems are: gas turbine engine overall flowpath; booster (low pressure compressor); intercooler; high pressure compressor; combustor; high pressure turbine; low pressure turbine and materials; engine system packaging; and power plant configurations. The design objective is to use the GE90 engine as the platform for the GE Industrial Advanced Turbine System. This objective sets the bounds for the engine flowpath and component systems.

Holloway, G.M.

1997-05-01T23:59:59.000Z

428

Industry  

E-Print Network [OSTI]

Information on corn wet milling. Corn Refiners Association corn wet milling industry: An ENERGYas an automotive fuel. Corn wet milling is the most energy-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

429

Industry  

E-Print Network [OSTI]

increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal1971–2004 Notes 1) Biomass energy included 2) Industrial

Bernstein, Lenny

2008-01-01T23:59:59.000Z

430

Natural gas monthly, June 1996  

SciTech Connect (OSTI)

The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.

NONE

1996-06-24T23:59:59.000Z

431

CSV File Documentation: Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption The State Energy Data System (SEDS) comma-separated value (CSV) files contain consumption estimates shown in the tables located on the SEDS website. There are four files that contain estimates for all states and years. Consumption in Physical Units contains the consumption estimates in physical units for all states; Consumption in Btu contains the consumption estimates in billion British thermal units (Btu) for all states. There are two data files for thermal conversion factors: the CSV file contains all of the conversion factors used to convert data between physical units and Btu for all states and the United States, and the Excel file shows the state-level conversion factors for coal and natural gas in six Excel spreadsheets. Zip files are also available for the large data files. In addition, there is a CSV file for each state, named

432

Energy consumption and greenhouse gas emissions from enzyme and yeast manufacture for corn and cellulosic ethanol production  

Science Journals Connector (OSTI)

Enzymes and yeast are important ingredients in the production of ethanol, yet the energy consumption and emissions associated with their production ... are often excluded from life-cycle analyses of ethanol. We p...

Jennifer B. Dunn; Steffen Mueller; Michael Wang; Jeongwoo Han

2012-12-01T23:59:59.000Z

433

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

434

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Manufacturing Energy Consumption Survey (MECS) Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections MECS Industry Analysis Briefs Steel Industry Analysis The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago. Chemical Industry Analysis The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals

435

An MBendi Profile: World: Oil And Gas Industry -Peak Oil: an Outlook on Crude Oil Depletion -C.J.Campbell -Revised February 2002 Search for  

E-Print Network [OSTI]

An MBendi Profile: World: Oil And Gas Industry - Peak Oil: an Outlook on Crude Oil Depletion - C - Contact Us - Newsletter Register subscribe to our FREE newsletter World: Oil And Gas Industry - Peak Oil the subsequent decline. q Gas, which is less depleted than oil, will likely peak around 2020. q Capacity limits

436

Dynamic system identification and model-based fault diagnosis of an industrial gas turbine prototype  

Science Journals Connector (OSTI)

In this paper, a model-based procedure exploiting analytical redundancy for the detection and isolation of faults on a gas turbine process is presented. The main point of the present work consists of exploiting system identification schemes in connection with observer and filter design procedures for diagnostic purpose. Linear model identification (black-box modelling) and output estimation (dynamic observers and Kalman filters) integrated approaches to fault diagnosis are in particular advantageous in terms of solution complexity and performance. This scheme is especially useful when robust solutions are considered for minimise the effects of modelling errors and noise, while maximising fault sensitivity. A model of the process under investigation is obtained by identification procedures, whilst the residual generation task is achieved by means of output observers and Kalman filters designed in both noise-free and noisy assumptions. The proposed tools have been tested on a single-shaft industrial gas turbine prototype model and they have been evaluated using non-linear simulations, based on the gas turbine data.

Silvio Simani; Cesare Fantuzzi

2006-01-01T23:59:59.000Z

437

Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes  

SciTech Connect (OSTI)

This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

Lee O. Nelson

2011-04-01T23:59:59.000Z

438

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

439

Injections of Natural Gas into Storage (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

440

Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Industry  

E-Print Network [OSTI]

for im- proving energy efficiency of corn wet milling havefor the corn wet milling industry: An ENERGY STAR Guide forfuel. Corn wet milling is the most energy-intensive food

Bernstein, Lenny

2008-01-01T23:59:59.000Z

442

Industry  

E-Print Network [OSTI]

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

443

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

444

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Greenhouse Gas Tables (1990-2009) Greenhouse Gas Tables (1990-2009) Table Title Formats Overview 1 U.S. emissions of greenhouse gases, based on global warming potential 2 U.S. greenhouse gas intensity and related factors 3 Distribution of total U.S. greenhouse gas emissions by end-use sector 4 World energy-related carbon dioxide emissions by region 5 Greenhouse gases and 100-year net global warming potentials Carbon dioxide emissions 6 U.S. carbon dioxide emissions from energy and industry 7 U.S. energy-related carbon dioxide emissions by end-use sector 8 U.S. carbon dioxide emission from residential sector energy consumption 9 U.S. carbon dioxide emissions from commercial sector energy consumption 10 U.S. carbon dioxide emissions from industrial sector energy consumption

445

Industry  

E-Print Network [OSTI]

ghg/GreenhouseGasRegister/production (Mt) a A1 B2 GHG intensity (tCO 2 -eq/t prod. )Agency, Paris, 596 pp. IEA GHG, 2000: Greenhouse gases from

Bernstein, Lenny

2008-01-01T23:59:59.000Z

446

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Steel Industry Analysis Brief Change Topic: Steel | Chemical Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago.1 The U.S. steel industry (including iron production) relies significantly on natural gas and coal coke and breeze for fuel, and is one of the largest

447

Technical and economic analysis: Gas cofiring in industrial boilers. Final report, November 1995-September 1996  

SciTech Connect (OSTI)

This report presents an analysis of the technical and marketing issues associated with the deployment of natural gas cofiring technology in stoker boilers. As part of the work effort, a composite database of stoker boilers was developed using state and federal emission inventories over the years 1985 - 1995. Information sources included the most recent AIRS Facility Subsystem database, the Ozone Transport Region 1990 database, the 1990 Ohio Permit database and the 1985 NAPAP database--all are electronic databases of facilities with air emission permits. The initial data set included almost 3,000 stokers at about 1,500 locations. Stoker facilities were contacted to verify the operating status, capacity, fuel capability, efficiency and other stoker-specific data. The report presents the current stoker boiler distribution by SIC, industrial groups, primary solid fuel (coal, wood, waste, refuse), operating status, and state. Maps are included.

Potter, F.J.

1996-09-01T23:59:59.000Z

448

Reduction of Heavy-Duty Fuel Consumption and CO2 Generation-- What the Industry Does and What the Government Can Do  

Broader source: Energy.gov [DOE]

Smart regulations, funding for advanced technologies, and improvements to operations and infrastructure play important roles in reducing fuel consumption

449

A proportional method for calculating the efficiency and specific consumption of fuel at gas-turbine cogeneration stations  

Science Journals Connector (OSTI)

A new proportional method for calculating the indicators characterizing the energy efficiency of gas-turbine cogeneration stations is presented. The data obtained are compared...

G. P. Chitashvili

2006-12-01T23:59:59.000Z

450

Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators  

Science Journals Connector (OSTI)

Fossil fuel combustion leads to acidic pollutants like SO2 NOx HCl emission. Different control technologies are proposed however the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First using lime or limestone slurry leads to SO2 capture and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan the USA Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world nowadays. Description of the plant and results obtained has been presented in the paper.

Andrzej G. Chmielewski; Bogdan Tyminski; Zbigniew Zimek; Andrzej Pawelec; Janusz Licki

2003-01-01T23:59:59.000Z

451

EIA - Analysis of Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

Prices Prices 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format)

452

Gas Chromatographic Applications with the Dielectric Barrier Discharge Detector  

Science Journals Connector (OSTI)

......can incur more cost and maintenance...non- irritating gas that is 2.5...during microchip production and other industries...reliable with a low cost of ownership because of its low gas consumption...disruption to reaction gas supply, and cost effectiveness......

Ronda Gras; Jim Luong; Matthew Monagle; Bill Winniford

2006-02-01T23:59:59.000Z

453

Natural gas monthly, July 1997  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

NONE

1997-07-01T23:59:59.000Z

454

Natural gas monthly, October 1996  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

NONE

1996-10-01T23:59:59.000Z

455

Natural gas monthly, September 1993  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-09-27T23:59:59.000Z

456

Natural gas monthly, August 1993  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-08-25T23:59:59.000Z

457

Innovation in mature industries : recent impacts of the oil & gas and automobile technological trends on the steel industry  

E-Print Network [OSTI]

In order to survive, the steel industry has undergone traumatic changes in the last years. A thirty years old overcapacity combined with a slow growing market led to a steadily eroding profitability of steel companies, ...

Tivelli, Marco M. (Marco Mario), 1964-

2004-01-01T23:59:59.000Z

458

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

4) 4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Coal Natural Gas c Petroleum Nuclear Electric Power Hydro- electric Power d Biomass e Other f Net Interstate Flow of Electricity/Losses g Residential Commercial Industrial b Transportation Alabama 2,159.7 853.9 404.0 638.5 329.9 106.5 185.0 0.1 -358.2 393.7 270.2 1,001.1 494.7 Alaska 779.1 14.1 411.8 334.8 0.0 15.0 3.3 0.1 0.0 56.4 63.4 393.4 266.0 Arizona 1,436.6 425.4 354.9 562.8 293.1 69.9 8.7 3.6 -281.7 368.5 326.0 231.2 511.0 Arkansas 1,135.9 270.2 228.9 388.3 161.1 36.5 76.0 0.6 -25.7 218.3 154.7 473.9 288.9 California 8,364.6 68.9 2,474.2 3,787.8 315.6 342.2

459

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9) 9) June 2011 State Energy Consumption Estimates 1960 Through 2009 2009 Consumption Summary Tables Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity/ Losses f Net Electricity Imports Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,906.8 631.0 473.9 583.9 1,688.8 415.4 272.9 -470.3 0.0 383.2 266.0 788.5 469.2 Alaska 630.4 14.5 344.0 255.7 614.1 0.0 16.3 0.0 (s) 53.4 61.0 325.4 190.6 Arizona 1,454.3 413.3 376.7 520.8 1,310.8 320.7 103.5 -279.9 -0.8 400.8 352.1 207.8 493.6 Arkansas 1,054.8 264.1 248.1 343.1 855.3 158.7 126.5 -85.7 0.0 226.3 167.0 372.5

460

Effectiveness and potential environmental impacts of biocides and corrosion inhibitors in the natural gas industry. Topical report, December 1995  

SciTech Connect (OSTI)

The objective of this study was to assess the effectiveness and potential environmental impacts of chemical products used in natural gas industry (NGI) operations. The assessment was focused primarily on biocides and corrosion inhibitors used in storage and transmission applications of the NGI.

Morris, E.A.; Pope, D.H.; Fillo, J.P.; Brandon, D.M.; Fetsko, M.E.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Consumption  

Science Journals Connector (OSTI)

We investigated the relationship between electrical power consumption per capita and GDP per capita in 130 countries using the data reported by World Bank. We found that an electrical power consumption per capita...

Aki-Hiro Sato

2014-01-01T23:59:59.000Z

462

INTERNAL REPAIR OF GAS PIPLINES SURVEY OF OPERATOR EXPERIENCE AND INDUSTRY NEEDS REPORT  

SciTech Connect (OSTI)

A repair method that can be applied from the inside of a gas transmission pipeline (i.e., a trenchless repair) is an attractive alternative to conventional repair methods since the need to excavate the pipeline is precluded. This is particularly true for pipelines in environmentally sensitive and highly populated areas. The objectives of the project are to evaluate, develop, demonstrate, and validate internal repair methods for pipelines; develop a functional specification for an internal pipeline repair system; and prepare a recommended practice for internal repair of pipelines. The purpose of this survey is to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. A total of fifty-six surveys were sent to pipeline operators. A total of twenty completed surveys were returned, representing a 36% response rate, which is considered very good given the fact that tailored surveys are known in the marketing industry to seldom attract more than a 10% response rate. The twenty survey responses produced the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water (e.g., lakes and swamps) in difficult soil conditions, under highways, under congested intersections, and under railway crossings. All these areas tend to be very difficult and very costly if, and where, conventional excavated repairs may be currently used. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem in a water/river crossing. (3) The typical travel distances required can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). In concept, these groups require pig-based systems; despooled umbilical systems could be considered for the first two groups. For the last group a self-propelled system with an onboard self-contained power and welding system is required. (4) Pipe size range requirements range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.) in diameter. The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.) diameter, with 95% using 558.8 mm (22 in.) diameter pipe.

Ian D. Harris

2003-09-01T23:59:59.000Z

463

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

economics of black liquor gasifier/gas turbine cogenerationblack liquor and biomass gasifier/gas turbine technology".entrained flow booster gasifier in New Bern, North Carolina;

Kong, Lingbo

2014-01-01T23:59:59.000Z

464

Image is all: Deregulation, restructuring and reputation in the natural gas industry  

SciTech Connect (OSTI)

Does image affect how one views his local utility company--or energy supplier? Does one value his utility companies more if one sees a lot of image advertising and public relations stories about community involvement, environmental action and charitable work? Or does one view utilities as faceless and anonymous entities that provide necessary services one thinks little about until there`s a problem? And, more important, what is the role of utility image in an era of deregulation, as companies begin a new scramble for customers? To find an answer to these questions, American Gas and Christopher Bonner Consultants conducted a survey of A.G.A. member companies to learn what, if anything, utility companies are doing in the areas of image assessment and change. The survey was sent to more than 200 A.G.A. member companies; written responses were received from 35. In addition, 13 follow-up telephone interviews were conducted, including four with companies that had not responded in writing. The picture that emerges if of an industry that is starting to pay greater and greater attention to image. And, as utilities reorganize and redefine themselves, they are also reexamining the ways they communicate with key audiences, including employees, customers, legislators, the financial community and the news media.

NONE

1997-09-01T23:59:59.000Z

465

An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry  

Science Journals Connector (OSTI)

With China's increasing pressures on reducing greenhouse gas (GHG) emission, Chinese iron and steel industry (ISI) is facing a great challenge. In this paper, we address the energy-related GHG emission trajectories, features, and driving forces in Chinese ISI for 2001–2010. First, energy related GHG inventory for ISI is made for both scope 1 (direct emissions) and scope 2 (including imported electricity emission). Then, the driving forces for such emission changes are explored by utilizing the method of logarithmic mean Divisa index (LMDI) decomposition analysis. Results indicate that Chinese ISI experienced a rapid growth of energy related GHG emission at average annual growth rate of 70 million tons CO2e. Production scale effect is the main driving factor for energy related GHG emission increase in Chinese ISI, while energy intensity effect and emission factor change effect offset the total increase and energy structure has marginal effect. Construction, manufacture of general purpose and special purpose machinery and manufacture of transport equipment sectors are main sectors for embodied emissions, amounting for more than 75% of the total embodied emissions from Chinese ISI. Such research findings propose that a detailed consideration can help make appropriate polices for mitigating ISI's energy-related GHG emission.

Yihui Tian; Qinghua Zhu; Yong Geng

2013-01-01T23:59:59.000Z

466

Heavy Oil Consumption Reduction Program (Quebec, Canada) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Heavy Oil Consumption Reduction Program (Quebec, Canada) Heavy Oil Consumption Reduction Program (Quebec, Canada) Heavy Oil Consumption Reduction Program (Quebec, Canada) < Back Eligibility Commercial Agricultural Industrial Construction Savings Category Solar Buying & Making Electricity Maximum Rebate $5 million per site Program Info Funding Source Government of Quebec State Quebec Program Type Rebate Program Provider Agence de l'efficacité énergétique This program helps heavy oil consumers move toward sustainable development while improving their competitive position by reducing their consumption. Financial assistance is offered to carry out various analyses as well as implement energy efficient measures relating to heavy fuel oil or to switch to other forms of energy containing fewer pollutants, such as natural gas,

467

Advanced industrial gas turbine technology readiness demonstration. Quarterly technical progress report No. 12, 1 December 1979-29 February 1980  

SciTech Connect (OSTI)

The component technology base required for improved industrial gas turbine conversion efficiency is discussed. Specific goals are to demonstrate the high-pressure compressor and turbine cooling technologies required to achieve industrial gas turbine efficiencies of 34 to 36% simple cycle and 45 to 48% in combined cycle operation while reducing the number of compressor and turbine parts 80% over state-of-the-art units. The approach involves combining some of the most advanced aircraft turbine cooling and high-pressure compressor technology with the simplicity and ruggedness required of industrial engines to achieve not only improved performance, but also increased durability and low initial cost. The program currently consists of two phases. Phase I, which has been completed, included the conceptual definition of an industrial gas turbine capable of meeting the above goals and the aerothermodynamic designs of compressor and turbine component test rigs. Phase II, which is in progress, consists of component validation testing of the high-pressure compressor and turbine cooling designs which evolved in Phase I. During this quarter, work continued on Phase II, Task III - Compressor Rig Assembly and Test. Assembly of the compressor rig has been completed and final preparation of the rig for transporting to the test facility is in progress.

none,

1980-03-20T23:59:59.000Z

468

A Two-Phase Pressure Drop Model Incorporating Local Water Balance and Reactant Consumption in PEM Fuel Cell Gas Channels  

E-Print Network [OSTI]

), and directly affects cost and sizing of fuel cell subsystems. Within several regions of PEMFC operating Fuel Cell Gas Channels E. J. See and S. G. Kandlikar Department of Mechanical Engineering, Rochester in proton exchange membrane fuel cells (PEMFCs). The ability to model two-phase flow and pressure drop

Kandlikar, Satish

469

Natural gas monthly, March 1997  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas analysis and geographic information systems.`` 6 figs., 27 tabs.

NONE

1997-03-01T23:59:59.000Z

470

Natural gas monthly, August 1995  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

NONE

1995-08-24T23:59:59.000Z

471

Natural gas monthly, October 1997  

SciTech Connect (OSTI)

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article in this issue is a special report, ``Comparison of Natural Gas Storage Estimates from the EIA and AGA.`` 6 figs., 26 tabs.

NONE

1997-10-01T23:59:59.000Z

472

EIA - Annual Energy Outlook 2008 (Early Release)-Energy-Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Annual Energy Outlook 2008 (Early Release) Energy Consumption Total primary energy consumption in the AEO2008 reference case increases at an average rate of 0.9 percent per year, from 100.0 quadrillion Btu in 2006 to 123.8 quadrillion Btu in 2030—7.4 quadrillion Btu less than in the AEO2007 reference case. In 2030, the levels of consumption projected for liquid fuels, natural gas, and coal are all lower in the AEO2008 reference case than in the AEO2007 reference case. Among the most important factors resulting in lower total energy demand in the AEO2008 reference case are lower economic growth, higher energy prices, greater use of more efficient appliances, and slower growth in energy-intensive industries. Figure 2. Delivered energy consumption by sector, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

473

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

474

The University of Aberdeen is a charity registered in Scotland, No SC013683 Oil and gas industry resources in Special Collections  

E-Print Network [OSTI]

guide The University of Aberdeen is a charity registered in Scotland, No SC013683 Oil and gas.abdn.ac.uk/library/about/special/ Introduction Special Collections have established an Oil and Gas Archive to hold collections relating to the oil and gas industry, spanning 40 years. All areas are represented in holdings, including major

Levi, Ran

475

New York Industrial Partnership Network  

Broader source: Energy.gov [DOE]

Recognizing the potential for increased energy and cost savings, the New York Public Service Commission enacted an Energy Efficiency Portfolio Standard (EEPS) to help the state reduce electricity and natural gas consumption. In support of this goal, the New York State Energy Research and Development Authority (NYSERDA) developed energy efficiency programs to help the state achieve compliance with EEPS, including the Industrial and Process Efficiency Program.

476

Overview of the effect of Title III of the 1990 Clean Air Act Amendments on the natural gas industry  

SciTech Connect (OSTI)

The regulation of hazardous air pollutants by Title III of the Clean Air Act Amendments of 1990 has a potential wide-ranging impact for the natural gas industry. Title III includes a list of 189 hazardous air pollutants (HAPs) which are targeted for reduction. Under Title III, HAP emissions from major sources will be reduced by the implementation of maximum achievable control technology (MACT) standards. If the source is defined as a major source, it must also comply with Title V (operating permit) and Title VII (enhanced monitoring) requirements. This presentation will review Title III`s effect on the natural gas industry by discussing the regulatory requirements and schedules associated with MACT as well as the control technology options available for affected sources.

Child, C.J.

1995-12-31T23:59:59.000Z

477

Influence of reactive species on the lean blowout limit of an industrial DLE gas turbine burner  

Science Journals Connector (OSTI)

Abstract In order to achieve ultra-low emissions of both NOX and CO it is imperative to use a homogeneous premixed combustor. To lower the emissions further, the equivalence ratio can be lowered. By doing so, combustion is moved towards the lean blowout (LBO) limit. To improve the blowout characteristics of a burner, heat and radicals can be supplied to the flame zone. This can be achieved using a pre-chamber combustor. In this study, a central body burner, called the RPL (rich-pilot-lean) section, was used as a pre-chamber combustor to supply heat and radicals to a downscaled industrial burner. The flue gas from the RPL is mixed with the surrounding fresh mixture and form a second flame zone. This zone acts as a stabilizer for the investigated burner. The LBO limit was modeled using two perfectly stirred reactors (PSRs) in series, which allows the chemical influence on the LBO limit to be isolated. The resulting trends for the modeled LBO limit were in agreement with measured data. Increasing the equivalence ratio in the RPL section, thus increasing the energy supplied by the fuel, is a major contributor to combustion stability up to a limit where the temperature decrease is too large support combustion. For lean RPL combustion, the reactive species O, H and OH in combination affect the stability to a greater extent than the temperature alone. At rich equivalence ratios, the conversion of methane to hydrogen and carbon monoxide in the RPL section is a factor influencing the LBO limit. The results are compared with emission probe measurements that were used to investigate the LBO limit for methane and a generic syngas (10% CH4, 67.5% H2, and 22.5% CO). The syngas was also investigated after being diluted with nitrogen to a Wobbe index of 15 MJ/m3.

Ivan R. Sigfrid; Ronald Whiddon; Robert Collin; Jens Klingmann

2014-01-01T23:59:59.000Z

478

Energy Consumption and Economic Growth The Case of Australia Hong To a, *  

E-Print Network [OSTI]

;3 depend on imports of crude oil, natural gas, and coal for their industrial and residential energy needs). A decline in energy use does not, under conditions of economic efficiency, result in a reduction in economic1 Energy Consumption and Economic Growth ­ The Case of Australia Hong To a, * , Albert Wijeweera

479

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

480

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

Note: This page contains sample records for the topic "gas industrial consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The possibilities of using shale gas in the Russian and European power industries  

Science Journals Connector (OSTI)

Recent years have witnessed wide interest of the society in the problem of shale gas with its being discussed at different levels, ... to political ones. The data on the shale gas resources worldwide and in indiv...

A. O. Morozova; V. V. Klimenko

2014-04-01T23:59:59.000Z

482

Upstream Financial Review of the Global Oil and Natural Gas Industry 2013  

Reports and Publications (EIA)

This analysis focuses on financial and operating trends of the oil and natural gas production business segment, often referred to as upstream operations, of 42 global oil and natural gas producing companies

2014-01-01T23:59:59.000Z

483

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

484

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

485

[Outlook for 1997 in the oil and gas industries of the US  

SciTech Connect (OSTI)

This section contains 7 small articles that deal with the outlook for the following areas: US rotary rigs (Moving back up, finally); US production (Crude decline continues, gas rising); producing oil wells (Oil stays steady); producing gas wells (Well numbers up again); drilling and producing depths (New measured depths records); and US reserves (Gas reserves jump; oil dips slightly).

NONE

1997-02-01T23:59:59.000Z

486

Indexes of Consumption and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Figure on manufacturing production indexes and purchased energy consumption Figure on manufacturing production indexes and purchased energy consumption Source: Energy Information Administration and Federal Reserve Board. History of Shipments This chart presents indices of 14 years (1980-1994) of historical data of manufacturing production indexes and Purchased (Offsite-Produced) Energy consumption, using 1992 as the base year (1992 = 100). Indexing both energy consumption and production best illustrates the trends in output and consumption. Taken separately, these two indices track the relative growth rates within the specified industry. Taken together, they reveal trends in energy efficiency. For example, a steady increase in output, coupled with a decline in energy consumption, represents energy efficiency gains. Likewise, steadily rising energy consumption with a corresponding decline in output illustrates energy efficiency losses.

487

Survey Consumption  

Gasoline and Diesel Fuel Update (EIA)

fsidentoi fsidentoi Survey Consumption and 'Expenditures, April 1981 March 1982 Energy Information Administration Wasningtoa D '" N """"*"""*"Nlwr. . *'.;***** -. Mik>. I This publication is available from ihe your COr : 20585 Residential Energy Consumption Survey: Consum ption and Expendi tures, April 1981 Through March 1982 Part 2: Regional Data Prepared by: Bruce Egan This report was prepared by the Energy Information Administra tion, the independent statistical

488

Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques  

Science Journals Connector (OSTI)

This study proposes a model-based robust fault detection and isolation (RFDI) method with hybrid structure. Robust detection and isolation of the realistic faults of an industrial gas turbine in steady-state conditions is mainly considered. For residual generation, a bank of time-delay multilayer perceptron (MLP) models is used, and in fault detection step, a passive approach based on model error modelling is employed to achieve threshold adaptation. To do so, local linear neuro-fuzzy (LLNF) modelling is utilised for constructing error-model to generate uncertainty interval upon the system output in order to make decision whether a fault occurred or not. This model is trained using local linear model tree (LOLIMOT) which is a progressive tree-construction algorithm. Simple thresholding is also used along with adaptive thresholding in fault detection phase for comparative purposes. Besides, another MLP neural network is utilised to isolate the faults. In order to show the effectiveness of proposed RFDI method, it was tested on a single-shaft industrial gas turbine prototype model and has been evaluated based on the gas turbine data. A brief comparative study with the related works done on this gas turbine benchmark is also provided to show the pros and cons of the presented RFDI method.

Hasan Abbasi Nozari; Mahdi Aliyari Shoorehdeli; Silvio Simani; Hamed Dehghan Banadaki

2012-01-01T23:59:59.000Z

489

2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5  

U.S. Energy Information Administration (EIA) Indexed Site

TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5 2012,"Total Electric Power Industry","AK","Petroleum",4,4.8,4.8 2012,"Total Electric Power Industry","AK","Wind",1,24.6,24 2012,"Total Electric Power Industry","AK","All Sources",11,274.1,239.3 2012,"Total Electric Power Industry","AR","Coal",1,755,600 2012,"Total Electric Power Industry","AR","Natural Gas",1,22,20 2012,"Total Electric Power Industry","AR","All Sources",2,777,620

490

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in...

491

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

Biomass Gasification Technologies for Fuels, Chemicals andEnergy, National Energy Technology Laboratory. CO ? Solution01GO10621. Industrial Technologies Progarm (ITP). 2006e.

Kong, Lingbo

2014-01-01T23:59:59.000Z

492

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

Products Industry Technology Roadmap. Agenda 2020 Technology2011. "The IEA CCS Technology Roadmap: One Year On". Energy1287- Reitzer, R. 2007. Technology Roadmap - Applications of

Kong, Lingbo

2014-01-01T23:59:59.000Z

493

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

60% of total primary energy consumption, compared to theShare of Total Primary Energy Consumption World US Chinaof industrial primary energy consumption in The Netherlands.

Price, Lynn

2008-01-01T23:59:59.000Z

494

EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

495

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

TPER) includes total energy consumption and energy used inrepresented 52% of the total energy consumption of the LIEN.of 2 to 4% of total energy consumption per agreement after

Price, Lynn

2010-01-01T23:59:59.000Z

496

Carbon, Land, and Water Footprint Accounts for the European Union: Consumption, Production, and Displacements through International Trade  

Science Journals Connector (OSTI)

Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway ... On the global level, the accounting for emissions embodied in trade increases the already high carbon footprints of Europe, Japan, South Korea, and the United States. ... On a global level, 72% of greenhouse gas emissions are related to household consumption, 10% to government consumption, and 18% to investments. ...

Kjartan Steen-Olsen; Jan Weinzettel; Gemma Cranston; A. Ertug Ercin; Edgar G. Hertwich

2012-09-26T23:59:59.000Z

497

Tobacco Consumption  

Science Journals Connector (OSTI)

Tobacco consumption is the use of tobacco products in different forms such as , , , water-pipes or tobacco products. Cigarettes and tobacco products containing tobacco are highly engineered so as to creat...

Martina Pötschke-Langer

2008-01-01T23:59:59.000Z

498

Natural gas monthly, October 1991  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. 16 figs., 33 tabs.

Not Available

1991-11-05T23:59:59.000Z

499

An Evaluation of Microextraction/Capillary Column Gas Chromatography for Monitoring Industrial Outfalls  

Science Journals Connector (OSTI)

......Microextraction/Capillary Column Gas Chromatography for Monitoring...for environmental and production analyses. Gary Olsen...both environmental and production lab activities. Daniel...and capillary-column gas chromatography techniques...because of its lower cost and more desirable maintenance......

Daniel R. Thielen; Gary Olsen; Abram Davis; Edward Bajor; John Stefanovski; John Chodkowski

1987-01-01T23:59:59.000Z

500

Energy Information Administration - Energy Efficiency, energy consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Efficiency Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and related information. This site provides an in depth discussion of the concept of energy efficiency and how it is measured, measurement, summaries of formal user meetings on energy efficiency data and measurement, as well as analysis of greenhouse gas emissions as related to energy use and energy efficiency. At the site you will find links to other sources of information, and via a listserv all interested analysts can share ideas, data, and ask for assistance on methodological problems associated with energy use, energy efficiency, and greenhouse gas issues. Contact: Behjat.Hojjati@eia.doe.gov