Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Monte Carlo Simulation of Isopentane Glass  

Science Journals Connector (OSTI)

...research-article Monte Carlo Simulation of Isopentane Glass S. Yashonath C. N. R. Rao Monte Carlo...quenching the liquid, we have obtained the glass-transition temperature from the temperature...distribution functions suggest a structure of the glass primarily influenced by geometrical factors...

1985-01-01T23:59:59.000Z

2

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

3

DOE Considers Natural Gas Utility Service Options: Proposal Includes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Considers Natural Gas Utility Service Options: Proposal Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford DOE Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford January 23, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is considering natural gas transportation and distribution requirements to support the Waste Treatment Plant (WTP) and evaporator operations at the Hanford Site in southeastern Washington State. DOE awarded a task order worth up to $5 million to the local, licensed supplier of natural gas in the Hanford area, Cascade Natural Gas Corporation (Cascade). Cascade will support DOE and its Environmental

4

Percentage of Total Natural Gas Industrial Deliveries included...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download...

5

Percentage of Total Natural Gas Commercial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 63.3 59.3 57.9 57.0 57.4 61.3 1983-2013 Alabama 71.7 71.0 68.5 68.2 68.4 66.7 1989-2013 Alaska 94.1 91.6 91.1 91.0 92.3 92.6 1989-2013 Arizona 84.0 83.0 81.6 80.3 82.8 82.7 1989-2013 Arkansas 37.8 28.3 28.1 28.6 26.7 28.0 1989-2013

6

Percentage of Total Natural Gas Industrial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 16.5 16.3 16.0 16.2 16.6 16.9 2001-2013 Alabama 22.1 21.7 21.6 22.8 22.0 22.7 2001-2013 Alaska 100.0 100.0 100.0 100.0 100.0 100.0 2001-2013 Arizona 13.4 15.7 15.3 13.8 13.7 13.9 2001-2013 Arkansas 1.7 1.4 1.2 1.4 1.3 1.5 2001-2013

7

Energy Department Expands Gas Gouging Reporting System to Include 1-800  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expands Gas Gouging Reporting System to Include Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 Energy Department Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 September 6, 2005 - 9:50am Addthis Washington, DC - Energy Secretary Samuel W. Bodman announced today that the Department of Energy has expanded its gas gouging reporting system to include a toll-free telephone hotline. The hotline is available to American consumers starting today. "While we've largely seen the best of American generosity and unity throughout the recovery effort, we recognize that there are some bad actors that may try to take advantage of the situation. Consumers are our first line of defense in guarding against gas price gouging. I can assure you, our Administration - from the President down - takes this issue very

8

Thermal stability of working fluids for organic Rankine cycles: An improved survey method and experimental results for cyclopentane, isopentane and n-butane  

Science Journals Connector (OSTI)

Abstract In this work we present an improved survey method for the evaluation of the thermal stability of working fluids for organic Rankine cycles. The method presented here represents an improvement of a test methodology already used in literature, based on the analysis of temperature and pressure measurements of a fluid subjected to increasing thermal stress temperatures. Compared to the already known methodology, the survey technique presented in this work offers a different evaluation of the measured vapor pressure deviations and a different estimation method of the decomposition rates. After the description of the experimental apparatus and of the test methodology, we present and discuss some experimental results of the thermal stability of three fluids of interest for organic Rankine cycle applications, namely Cyclopentane, Isopentane and n-Butane, in the temperature range between 220 °C and 350 °C.

Marco Pasetti; Costante M. Invernizzi; Paolo Iora

2014-01-01T23:59:59.000Z

9

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents (OSTI)

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

10

Kinetics simulation for natural gas conversion to unsaturated C? hydrocarbons  

E-Print Network (OSTI)

value. The usual chemical composition range of natural gas is shown in Table I. l. Table 1. 1 Natural Gas Composition Component Methane Ethane Pro ane iso-Butane normal-Butane iso-Pentane normal-Pentane Hexane s lus Nitro en Carbon Dioxide... Acetylene Carbon Ethylene Hydrogen Methane Water Carbon Dioxide CHAPTER I INTRODUCTION Challenge for Natural Gas Natural Gas (NG), which is comprised priinarily of methane, is found throughout the world, burns cleanly, and processes a high caloric...

Yang, Li

2003-01-01T23:59:59.000Z

11

Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery  

DOE Patents (OSTI)

A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

2011-10-18T23:59:59.000Z

12

Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis  

Science Journals Connector (OSTI)

Abstract Power-to-Substitute Natural Gas processes are investigated to offer solutions for renewable energy storing or transportation. In the present study, an original Power-to-SNG process combining high-temperature steam electrolysis and CO2 methanation is implemented and simulated. A reference process is firstly defined, including a specific modelling approach of the electrolysis and a methanation modelling including a kinetic law. The process also integrates a unit to clean the gas from residual CO2, H2 and H2O for gas network injection. Having set all the units, simulations are performed with ProsimPlus 3™ software for a reference case where the electrolyser and the methanation reactors are designed. The reference case allows to produce 67.5 Nm3/h of SNG with an electrical energy consumption of 14.4 kW h/Nm3. The produced SNG satisfies specifications required for network injection. From this reference process, two sensitivity analyses on electrolysis and methanation working points and on external parameters and constraints are considered. As a main result, we observe that the reference case maximises both process efficiency and SNG production when compared with other studied cases.

Myriam De Saint Jean; Pierre Baurens; Chakib Bouallou

2014-01-01T23:59:59.000Z

13

Forecast of U. S. Refinery Demand for NGL's (natural gas liquids) in 1978-1985  

SciTech Connect

A forecast of U.S. Refinery Demand for NGL's (Natural Gas Liquids) in 1978-1985 is based on a predicted 1.4%/yr decline in motor gasoline consumption from 7.4 to 6.7 million bbl/day (Mbd), including a 2.6%/yr reduction from 5.3 to 4.4 Mbd for automobiles and a 1.3%/yr growth from 2.1 to 2.3 Mbd for trucks, because of slow growth rates in the U.S. automobile fleet (1.1%/yr) and average annual miles driven (0.9%/yr), a 3.9%/yr growth in average mileage from 14.2 to 18.6 mpg, and diesel penetration to the automobile market which should increase from 0.3 to 3.3%. Leaded gasoline's share is expected to decline from 68% of the market (5.1 Mbd, including 0.8 Mbd leaded premium) to 24% (1.7 Mbd, leaded regular only), including a drop from 56 to 6% for automobiles and from approx. 100 to 60% for trucks. This will require increased production of clean-octane reformates and alkylates and reduce the need for straight-run gasolines, but because of the decline in the total gasoline demand, these changes should be minimal. Butane demand from outside-refinery production should decrease by 5-6%/yr, and natural gasoline will be consumed according to available production as an isopentane source.

Laskosky, J.

1980-01-01T23:59:59.000Z

14

Investigation of materials performances in high moisture environments including corrosive contaminants typical of those arising by using alternative fuels in gas turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

materials performances in high moisture materials performances in high moisture environments including corrosive contaminants typical of those arising by using alternative fuels in gas turbines Gerald Meier, Frederick Pettit and Keeyoung Department of Materials Science and Engineering, Jung University of Pittsburgh Pittsburgh, PA 15260 Peer review Workshop III UTSR Project 04 01 SR116 October 18-20, 2005 Project Approach Task I Selection and Preparation of Specimens Task II Selection of Test Conditions Specimens : GTD111+CoNiCrAlY and Pt Aluminides, N5+Pt Aluminides Deposit : No Deposit, CaO, CaSO 4 , Na 2 SO 4 1150℃ Dry 1150℃ Wet 950℃ Wet 750℃ SO 3 950℃ Dry Selection of Test Temperature, T 1 , Gas Environment and Deposit Composition, D

15

Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape  

Science Journals Connector (OSTI)

Abstract A commercial swirl burner for industrial gas turbine combustors was equipped with an optically accessible combustion chamber and installed in a high-pressure test-rig. Several premixed natural gas/air flames at pressures between 3 and 6 bar and thermal powers of up to 1 MW were studied by using a variety of measurement techniques. These include particle image velocimetry (PIV) for the investigation of the flow field, one-dimensional laser Raman scattering for the determination of the joint probability density functions of major species concentrations, mixture fraction and temperature, planar laser induced fluorescence (PLIF) of OH for the visualization of the flame front, chemiluminescence measurements of OH* for determining the lift-off height and size of the flame and acoustic recordings. The results give insights into important flame properties like the flow field structure, the premixing quality and the turbulence–flame interaction as well as their dependency on operating parameters like pressure, inflow velocity and equivalence ratio. The 1D Raman measurements yielded information about the gradients and variation of the mixture fraction and the quality of the fuel/air mixing, as well as the reaction progress. The OH PLIF images showed that the flame was located between the inflow of fresh gas and the recirculated combustion products. The flame front structures varied significantly with Reynolds number from wrinkled flame fronts to fragmented and strongly corrugated flame fronts. All results are combined in one database that can be used for the validation of numerical simulations.

Ulrich Stopper; Wolfgang Meier; Rajesh Sadanandan; Michael Stöhr; Manfred Aigner; Ghenadie Bulat

2013-01-01T23:59:59.000Z

16

Interstellar Simulations Using A Unified Microscopic-Macroscopic Monte Carlo Model with a full Gas-Grain Network including Bulk Diffusion in Ice Mantles  

E-Print Network (OSTI)

We have designed an improved algorithm that enables us to simulate the chemistry of cold dense interstellar clouds with a full gas-grain reaction network. The chemistry is treated by a unified microscopic-macroscopic Monte Carlo approach that includes photon penetration and bulk diffusion. To determine the significance of these two processes, we simulate the chemistry with three different models. In Model 1, we use an exponential treatment to follow how photons penetrate and photodissociate ice species throughout the grain mantle. Moreover, the products of photodissociation are allowed to diffuse via bulk diffusion and react within the ice mantle. Model 2 is similar to Model 1 but with a slower bulk diffusion rate. A reference Model 0, which only allows photodissociation reactions to occur on the top two layers, is also simulated. Photodesorption is assumed to occur from the top two layers in all three models. We found that the abundances of major stable species in grain mantles do not differ much among these...

Chang, Qiang

2014-01-01T23:59:59.000Z

17

Numerical Simulations of Bubble Dynamics and Heat Transfer in Pool Boiling--Including the Effects of Conjugate Conduction, Level of Gravity, and Noncondensable Gas Dissolved in the Liquid  

E-Print Network (OSTI)

Microgravity Fluid Physics and Heat Transfer, 62-71. 47.that included the heat transfer between the fluid and solidflux, only one fluid—water—showed significant heat transfer

Aktinol, Eduardo

2014-01-01T23:59:59.000Z

18

Outer Continental Shelf oil and gas activities in the Gulf of Alaska (including Lower Cook Inlt) and their onshore impacts: a summary report, September 1980  

SciTech Connect

The search for oil and gas on the Outer Continental Shelf (OCS) in the Gulf of Alaska subregion of the Alaska leasing region began in 1967, when geophysical surveys of the area were initiated. Two lease sales have been held in the subregion. Lease Sale 39, for the Northern Gulf of Alaska, was held on April 13, 1976, and resulted in the leasing of 76 tracts. Lease Sale CI, for Lower Cook Inlet, was held on October 27, 1977, and resulted in the leasing of 87 tracts. Exploratory drilling on the tracts leased in Sale 39 began in September 1976, and exploratory drilling on tracts leased in Sale CI began in July 1978. Commercial amounts of hydrocarbons have not been found in any of the wells drilled in either sale area. Seventy-four of the leases issued in the Northern Gulf of Alaska have been relinquished. As of June 1980, exploratory drilling in both areas had ceased, and none was planned for the near future. The next lease sale in the Gulf of Alaska, Sale 55, is scheduled for October 1980. Lease Sale 60 (Lower Cook Inlet and Shelikof Strait) is scheduled for September 1981, and Lease Sale 61 (OCS off Kodiak Island) is scheduled for April 1983. Sale 60 will be coordinated with a State lease sale in adjacent State-owned waters. The most recent estimates (June 1980) by the US Geological Survey of risked, economically recoverable resources for the 2 tracts currently under lease in the Northern Gulf of Alaska are negligible. For the 87 tracts currently under lease in Lower Cook Inlet, the USGS has produced risked, economically recoverable resource estimates of 35 million barrels of oil and 26 billion cubic feet of gas. These resource estimates for the leased tracts in both areas are short of commercially producible amounts. Onshore impacts from OCS exploration have been minimal. Two communities - Yakutat and Seward - served as support bases for the Northern Gulf of Alaska.

Jackson, J.B.; Dorrier, R.T.

1980-01-01T23:59:59.000Z

19

Power generation method including membrane separation  

DOE Patents (OSTI)

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

20

Extension of the semi-empirical correlation for the effects of pipe diameter and internal surface roughness on the decompression wave speed to include High Heating Value Processed Gas mixtures  

Science Journals Connector (OSTI)

Abstract The decompression wave speed, which is used throughout the pipeline industry in connection with the Battelle two-curve method for the control of propagating ductile fracture, is typically calculated using GASDECOM (GAS DECOMpression). GASDECOM, developed in the 1970's, idealizes the decompression process as isentropic and one-dimensional, taking no account of pipe wall frictional effects or pipe diameter. Previous shock tube tests showed that decompression wave speeds in smaller diameter and rough pipes are consistently slower than those predicted by GASDECOM for the same conditions of mixture composition and initial pressure and temperature. Previous analysis based on perturbation theory and the fundamental momentum equation revealed a correction term to be subtracted from the ‘idealized’ value of the decompression speed calculated by GASDECOM. One parameter in this correction term involves a dynamic spatial pressure gradient of the outflow at the rupture location. While this is difficult to obtain without a shock tube or actual rupture test, data from 14 shock tube tests, as well as from 14 full scale burst tests involving a variety of gas mixture compositions, were analyzed to correlate the variation of this pressure gradient with two characteristics of the gas mixture, namely; the molecular weight and the higher heating value (HHV). For lean to moderately-rich gas mixes, the developed semi-empirical correlation was found to fit very well the experimentally determined decompression wave speed curve. For extremely rich gas mixes, such as High Heating Value Processed Gas (HHVPG) mixtures of HHV up to 58 MJ/m3, it was found that it overestimates the correction term. Therefore, additional shock tube tests were conducted on (HHVPG) mixes, and the previously developed semi-empirical correlation was extended (revised) to account for such extremity in the richness of the gas mixtures. The newly developed semi-empirical correlation covers a wider range of natural gas mixtures from as lean as pure methane up to HHVPG mixtures of HHV = 58 MJ/m3.

K.K. Botros; L. Carlson; M. Reed

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fuel gas conditioning process  

DOE Patents (OSTI)

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

22

Pump apparatus including deconsolidator  

DOE Patents (OSTI)

A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

2014-10-07T23:59:59.000Z

23

Gas sensor incorporating a porous framework  

DOE Patents (OSTI)

The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

Yaghi, Omar M; Czaja, Alexander U; Wang, Bo; Galatsis, Kosmas; Wang, Kang L; Furukawa, Hiroyasu

2014-05-27T23:59:59.000Z

24

Transmission line including support means with barriers  

DOE Patents (OSTI)

A gas insulated transmission line includes an elongated outer sheath, a plurality of inner conductors disposed within and extending along the outer sheath, and an insulating gas which electrically insulates the inner conductors from the outer sheath. A support insulator insulatably supports the inner conductors within the outer sheath, with the support insulator comprising a main body portion including a plurality of legs extending to the outer sheath, and barrier portions which extend between the legs. The barrier portions have openings therein adjacent the main body portion through which the inner conductors extend.

Cookson, Alan H. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

25

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

26

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

27

Natural gas annual 1995  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

28

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,032 979 1,003 855 565 457 471 518 560 657 654 1,014 1990 1,195 903 893 857 577 244 413 365 508 587 763 774 1991 1,089 979 864 605 667 414 538 540 555 628 496 895 1992 1,076 1,128 1,103 1,047 676 498 448 479 411 609 654 951 1993 1,140 1,359 1,325 907 429 330 273 364 243 503 1,008 1,324 1994 1,919 1,974 1,626 1,092 653 542 343 599 384 569 1,010 1,338 1995 1,077 1,679 1,883 1,353 901 562 413 582 294 580 1,216 1,523 1996 1,963 1,919 1,606 1,251 757 446 421 443 581 648 972 1,290 1997 1,694 1,744 1,739 1,144 892 537 430 399 460 637 1,211 1,416 1998 1,817 1,642 1,518 1,141 694 506 496 195 483 628 1,019 1,338

29

Natural Gas Delivered to Consumers in Pennsylvania (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 96,012 79,547 77,363 52,992 33,092 26,098 25,208 27,662 29,499 38,457 46,614 63,083 2002 80,458 74,651 70,773 53,368 38,209 33,401 32,700 34,743 30,425 40,462 58,542 83,877 2003 101,975 96,176 79,246 53,759 36,015 29,095 30,298 32,640 26,799 39,895 47,467 78,054 2004 100,298 95,715 73,189 54,937 42,873 33,367 36,047 33,735 32,060 34,578 50,908 74,224 2005 90,958 84,388 85,058 50,137 38,196 34,547 36,133 37,648 32,674 35,439 50,234 80,301 2006 76,519 77,324 76,877 49,039 37,224 36,803 44,307 41,471 31,545 40,867 49,703 63,941 2007 78,283 95,894 81,570 63,089 41,955 37,217 42,996 50,308 38,092 42,936 57,228 82,068

30

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,069 7,033 6,197 2,868 1,601 1,279 1,180 1,097 1,241 1,528 2,542 5,873 1990 7,587 5,618 4,176 3,424 2,281 1,519 1,312 1,355 1,235 1,613 2,520 4,567 1991 8,702 6,014 4,265 2,489 1,702 1,330 1,290 1,279 1,299 1,590 3,974 5,653 1992 6,180 5,310 3,653 2,956 1,785 1,540 1,407 1,292 1,240 1,449 2,608 5,771 1993 7,076 6,147 5,910 3,743 2,057 1,439 1,324 1,432 1,345 1,544 3,424 5,327 1994 6,644 6,611 4,717 2,954 1,875 1,384 1,364 1,256 1,384 1,475 2,207 4,632 1995 6,358 6,001 5,160 2,968 2,354 1,794 1,558 1,524 1,903 1,836 3,020 5,164 1996 7,808 7,923 5,595 4,413 2,222 1,770 1,798 1,678 1,759 1,900 3,273 6,014

31

Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 136,340 110,078 102,451 66,525 41,541 34,864 34,025 32,667 33,129 48,517 59,935 87,118 2002 106,011 98,576 94,429 70,082 51,854 40,885 40,538 38,774 34,999 51,972 76,275 108,800 2003 140,436 123,688 99,629 65,861 43,326 32,959 33,810 37,562 32,918 52,253 65,617 103,846 2004 137,568 117,976 93,845 67,347 46,827 33,561 34,567 34,689 34,129 47,268 64,279 99,290 2005 122,404 107,459 105,183 63,669 47,239 37,221 35,833 37,060 33,808 42,569 65,578 113,292 2006 95,548 97,666 85,732 52,957 42,766 33,443 36,271 36,307 35,048 54,845 69,951 88,329 2007 105,108 128,279 87,809 70,627 41,797 34,877 33,361 40,637 34,554 41,730 69,858 102,787

32

Natural Gas Delivered to Consumers in Nebraska (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17,481 15,747 13,983 11,129 7,094 5,429 8,556 6,368 5,506 5,854 10,730 11,012 2002 16,123 14,049 12,938 10,424 6,676 4,984 8,748 7,414 6,786 6,218 9,753 13,269 2003 15,675 15,319 13,354 8,644 6,232 4,472 7,653 7,469 5,904 6,758 8,775 13,011 2004 16,104 16,445 12,058 7,983 6,255 5,830 6,952 6,641 4,338 5,935 8,995 13,129 2005 17,242 14,641 11,440 8,360 6,579 5,853 7,874 8,028 6,345 6,081 8,200 13,733 2006 15,551 13,741 13,940 10,766 7,411 7,500 9,685 9,019 6,665 7,092 10,375 13,432 2007 17,851 19,390 16,040 10,333 9,436 7,602 10,286 11,264 8,529 7,818 10,704 15,974 2008 20,241 20,433 17,488 13,024 9,556 9,390 10,050 10,893 8,126 10,847 13,250 17,360

33

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 23,636 24,435 21,187 13,360 8,237 3,927 3,565 3,735 4,397 8,946 15,949 30,143 1990 25,317 19,642 20,361 13,373 7,446 4,838 3,975 4,165 4,240 7,272 13,757 19,190 1991 26,286 24,481 20,157 11,779 6,341 3,971 3,703 3,933 4,196 8,065 15,488 21,940 1992 26,321 24,820 20,215 15,893 7,455 5,016 4,291 4,260 4,418 9,092 15,094 23,770 1993 25,230 26,706 25,531 15,019 6,359 5,221 3,939 3,860 4,492 9,636 14,979 23,071 1994 33,573 29,301 22,713 14,498 7,933 5,111 4,027 4,287 4,492 7,331 12,594 20,936 1995 28,306 29,814 21,860 14,128 8,132 4,979 4,697 4,406 4,623 7,916 18,650 27,649 1996 33,993 29,732 26,650 16,833 8,960 7,661 4,569 4,401 4,048 8,548 18,274 26,298

34

Natural Gas Delivered to Consumers in Georgia (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 49,414 34,292 35,867 25,368 20,633 20,544 24,229 26,863 21,857 25,679 23,983 34,450 2002 44,041 37,992 33,260 23,775 22,612 24,924 30,113 29,701 24,899 23,785 32,829 47,106 2003 56,470 43,704 31,355 30,232 21,920 20,512 23,789 26,828 21,628 22,981 26,920 45,508 2004 52,486 48,806 31,529 28,718 26,610 24,562 26,132 26,093 22,927 22,025 29,012 49,125 2005 47,756 39,503 39,085 25,191 23,198 26,957 31,619 33,089 28,453 26,199 32,483 52,399 2006 39,904 45,015 35,118 26,670 26,891 30,790 36,980 38,808 25,412 31,321 35,677 40,816 2007 49,163 47,589 32,236 31,955 27,318 31,415 32,039 49,457 31,028 27,420 33,851 41,413

35

Natural Gas Delivered to Consumers in New Hampshire (Including Vehicle  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,171 3,309 2,951 2,280 1,441 1,134 1,003 888 1,182 1,589 1,904 2,520 2002 2,917 3,188 2,833 2,179 1,815 1,423 1,657 1,055 1,381 1,038 1,847 3,507 2003 6,844 6,457 5,490 3,772 3,085 2,034 3,900 5,640 4,166 4,643 3,574 4,515 2004 5,204 7,595 6,870 6,131 2,712 4,473 4,167 4,306 4,766 3,194 5,704 6,026 2005 6,958 7,545 6,875 5,691 6,049 5,824 5,780 6,010 4,491 4,069 5,173 5,988 2006 7,782 6,823 7,852 4,511 2,505 2,608 3,895 5,107 5,407 5,917 3,850 6,263 2007 6,645 5,329 5,157 5,429 3,826 4,223 5,642 5,420 5,969 4,295 4,527 5,641 2008 7,786 7,653 7,558 5,076 4,511 4,124 5,536 4,876 5,352 5,548 6,443 6,692

36

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,357 1,414 1,111 852 521 368 285 233 268 396 724 1,022 1990 1,305 1,199 1,085 822 628 410 247 234 241 378 759 1,132 1991 1,639 1,249 996 830 680 362 272 248 269 449 873 1,233 1992 1,404 1,078 821 668 438 309 264 269 287 439 760 1,271 1993 1,631 1,376 1,262 882 639 400 362 389 378 667 874 1,407 1994 1,351 1,412 1,065 869 544 369 291 270 308 550 915 1,287 1995 1,671 1,247 1,217 987 873 594 373 258 NA NA NA NA 1996 1,176 1,203 1,030 925 712 342 197 197 250 640 1,301 1,748 1997 1,570 1,309 1,403 1,189 958 491 623 287 316 554 966 1,088 1998 1,628 1,322 1,279 936 597 442 371 253 343 493 927 1,822

37

Natural Gas Delivered to Consumers in Maryland (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 28,398 21,618 21,408 13,900 9,252 8,342 9,046 11,007 9,109 12,662 13,558 17,125 2002 24,221 22,802 20,670 12,534 8,846 8,846 10,514 12,842 10,157 12,911 20,408 28,827 2003 31,739 28,530 21,240 15,685 9,809 8,723 8,128 7,986 7,131 11,863 16,167 27,049 2004 33,576 27,062 20,558 14,623 9,867 8,560 7,704 8,271 7,535 11,725 16,222 26,279 2005 29,469 25,497 24,272 13,414 10,273 10,104 9,641 11,634 8,302 12,060 16,807 28,263 2006 24,101 24,846 19,870 11,807 9,034 9,251 11,438 11,236 8,042 11,895 16,300 21,239 2007 24,841 32,498 20,950 15,805 8,835 9,239 9,540 12,974 9,655 10,242 17,911 25,311 2008 28,394 26,094 20,551 12,340 9,832 9,808 10,778 7,669 8,974 12,394 20,316 25,502

38

Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,475 6,484 5,643 5,505 4,182 3,864 3,515 3,541 3,688 4,790 5,518 6,170 2002 6,844 5,846 6,319 5,737 5,034 4,070 4,980 4,124 4,599 6,126 7,421 8,523 2003 7,672 7,313 7,026 5,737 4,976 4,408 4,112 4,164 4,356 5,062 5,554 7,236 2004 7,555 7,180 6,077 5,400 4,775 4,216 4,064 4,187 4,024 5,032 6,153 6,963 2005 7,585 6,443 6,231 5,612 5,092 4,247 4,081 3,903 4,080 4,829 5,360 7,262 2006 7,304 6,824 6,957 5,389 4,762 4,109 4,108 4,063 3,935 5,157 5,893 6,958 2007 7,982 7,322 6,900 5,469 4,958 4,253 3,873 3,944 4,150 5,003 6,095 7,723 2008 8,446 7,443 6,660 5,737 5,057 4,098 3,749 3,805 3,520 4,922 5,595 7,419

39

Natural Gas Delivered to Consumers in Colorado (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 57,089 50,447 49,042 41,157 30,506 23,904 22,403 22,033 19,905 22,672 30,231 42,797 2002 47,541 44,713 45,909 30,319 24,230 22,105 26,301 21,119 21,764 34,563 38,884 46,826 2003 44,971 47,164 38,292 25,380 24,811 18,484 23,772 23,529 20,981 22,248 39,408 48,023 2004 47,548 44,859 30,853 28,458 23,766 20,408 22,895 21,210 20,651 26,731 39,719 50,977 2005 50,356 41,495 39,617 33,501 25,108 20,725 26,350 23,387 22,698 29,399 38,140 54,566 2006 45,074 45,360 42,614 26,074 20,799 20,115 23,277 22,817 18,928 30,373 38,546 49,332 2007 62,803 46,554 33,579 30,243 25,136 25,014 28,465 26,787 27,444 32,786 39,145 57,263

40

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,567 1,575 1,160 692 409 355 301 249 321 435 785 1,176 1990 1,313 1,283 1,000 610 479 389 293 280 292 459 822 1,315 1991 1,848 1,291 956 822 623 405 316 304 329 424 942 1,321 1992 1,543 1,167 834 643 447 343 345 330 369 465 889 1,557 1993 1,806 1,673 1,294 828 566 387 383 360 381 507 947 1,543 1994 1,510 1,457 1,121 771 480 377 374 306 357 571 1,098 1,667 1995 1,754 1,319 1,154 951 708 487 361 346 392 591 997 1,300 1996 1,734 1,783 1,359 996 710 477 346 354 421 597 1,107 1,621 1997 1,810 1,778 1,341 1,037 684 397 372 354 409 584 979 1,687 1998 1,969 1,564 1,417 1,072 686 535 405 380 386 577 1,045 1,640

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6,537 6,903 6,950 5,791 7,780 6,957 8,161 9,020 8,835 8,864 9,644 9,127 2002 9,857 10,737 9,131 9,186 10,030 9,602 7,965 10,909 8,186 10,974 12,161 11,924 2003 8,047 5,034 5,581 5,924 4,577 4,916 6,000 5,629 5,606 6,652 5,970 6,036 2004 7,095 8,049 7,635 7,137 6,496 6,314 6,648 7,333 6,100 7,027 7,786 7,858 2005 5,882 5,823 5,955 5,764 4,162 5,163 5,883 6,097 4,936 4,955 4,236 2,234 2006 3,888 4,850 5,239 4,090 5,138 4,996 6,505 5,264 5,580 6,835 5,939 5,217 2007 6,180 5,355 4,869 4,768 4,222 4,680 6,405 6,403 4,340 3,731 4,999 6,480 2008 6,142 5,066 5,389 5,928 5,679 4,545 6,177 5,002 5,965 5,812 6,785 6,712

42

Natural Gas Delivered to Consumers in Vermont (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,164 1,003 1,084 834 544 381 304 307 361 438 658 827 2002 1,127 1,149 960 808 575 428 330 336 348 485 803 1,003 2003 1,153 1,191 1,062 906 539 367 293 312 325 502 708 1,029 2004 1,154 1,381 1,072 829 517 421 331 342 365 479 769 1,011 2005 1,211 1,280 1,199 776 558 404 310 298 295 418 666 943 2006 1,112 1,063 1,190 745 501 415 318 318 347 481 658 893 2007 1,104 1,375 1,250 915 536 382 340 331 342 423 696 1,158 2008 1,202 1,217 1,137 865 512 384 331 333 361 480 702 1,084 2009 1,407 1,307 1,076 794 507 409 348 321 337 508 684 922 2010 1,270 1,126 897 685 488 376 344 335 348 581 801 1,177

43

Percentage of Total Natural Gas Commercial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

80.4 79.7 77.8 77.5 67.3 65.2 1987-2012 80.4 79.7 77.8 77.5 67.3 65.2 1987-2012 Alabama 79.8 80.2 78.8 79.3 78.9 76.2 1990-2012 Alaska 76.0 74.9 85.3 87.7 88.6 94.9 1990-2012 Arizona 93.4 93.1 88.0 88.7 87.8 86.6 1990-2012 Arkansas 70.4 64.5 59.4 55.6 51.5 40.2 1990-2012 California 60.7 56.7 54.9 54.1 54.3 50.0 1990-2012 Colorado 95.7 95.2 94.8 94.6 93.8 92.2 1990-2012 Connecticut 71.5 70.7 69.0 65.4 65.4 65.1 1990-2012 Delaware 74.8 70.6 53.5 49.8 53.4 43.7 1990-2012 District of Columbia 100.0 100.0 100.0 100.0 16.9 17.9 1990-2012 Florida 100.0 100.0 100.0 100.0 38.5 37.0 1990-2012 Georgia 100.0 100.0 100.0 100.0 100.0 100.0 1990-2012 Hawaii 100 100 100 100 100 100 1990-2012 Idaho 84.8 86.0 83.7 82.0 80.8 77.0 1990-2012 Illinois

44

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,133 2,021 2,066 1,635 999 803 692 763 712 775 1,090 2,052 1990 1,986 1,857 1,789 1,384 951 699 514 572 721 574 836 1,589 1991 2,204 2,308 2,131 1,381 1,063 784 705 794 689 658 1,071 1,764 1992 2,300 2,256 2,132 1,774 1,056 764 718 673 653 753 1,103 1,921 1993 2,352 2,438 2,166 1,550 1,150 731 664 703 684 841 1,040 1,909 1994 2,303 1,865 1,483 1,588 979 815 753 692 740 785 1,082 1,658 1995 2,280 2,583 2,089 1,607 1,158 884 820 744 766 794 1,116 2,194 1996 2,147 1,942 1,551 1,925 1,233 824 878 750 774 804 1,195 2,325 1997 2,334 2,315 2,183 1,738 1,372 951 782 853 852 899 1,354 2,379

45

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,156 2,125 1,533 1,100 1,004 890 790 805 811 954 1,257 1,690 1990 1,959 1,963 1,740 1,185 1,006 970 879 782 701 1,157 1,026 1,705 1991 2,447 1,839 1,739 1,593 1,333 1,121 947 1,005 761 1,104 1,095 1,976 1992 2,327 1,873 1,725 1,335 1,012 945 1,015 824 872 982 1,022 2,170 1993 2,271 2,110 2,016 1,314 1,341 1,052 919 939 909 1,047 1,421 2,211 1994 2,334 2,277 1,995 1,456 1,300 1,136 995 909 978 1,146 1,541 2,625 1995 2,551 2,139 1,868 1,784 1,558 1,268 1,082 978 1,009 1,151 1,444 1,871 1996 2,466 2,309 2,268 1,811 1,454 1,286 1,145 1,062 1,116 1,269 1,817 2,417 1997 2,717 2,634 2,447 1,900 1,695 1,412 1,099 1,148 1,195 1,273 1,800 2,638

46

Natural Gas Delivered to Consumers in Wisconsin (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 52,126 51,020 52,466 24,969 17,238 15,421 16,478 16,540 16,716 25,355 26,981 41,400 2002 49,850 43,815 48,646 31,946 24,278 16,100 16,531 15,795 16,659 28,429 39,330 49,912 2003 62,523 55,695 44,756 32,270 20,752 15,502 15,630 18,099 16,485 24,636 36,907 47,677 2004 65,038 48,498 41,599 27,544 21,106 15,420 15,949 14,951 16,063 23,268 33,602 56,693 2005 59,667 45,463 47,647 29,885 23,265 22,788 21,959 22,549 19,566 23,868 35,232 54,600 2006 44,700 49,036 42,628 24,331 20,527 17,607 20,221 19,919 18,038 31,566 36,227 44,483 2007 53,637 61,738 41,274 32,627 19,348 17,305 18,156 21,627 17,044 22,827 36,770 53,091

47

Natural Gas Delivered to Consumers in Kansas (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 35,585 27,368 26,284 16,906 10,552 11,171 18,862 17,962 13,422 11,375 14,263 20,610 2002 28,513 25,068 25,566 17,348 13,424 13,947 18,253 20,062 15,937 13,007 21,946 26,371 2003 31,180 29,594 25,952 16,337 13,386 11,371 15,614 15,421 13,725 13,096 15,980 25,771 2004 30,087 29,036 21,955 15,496 13,148 12,282 11,912 13,013 13,177 13,809 15,207 23,992 2005 29,876 25,291 20,604 15,459 12,953 11,687 13,164 13,264 12,147 11,254 14,924 25,902 2006 25,596 23,451 22,320 16,673 12,748 14,289 18,023 17,171 12,559 13,555 17,451 24,135 2007 29,886 31,709 22,007 16,753 13,449 14,165 16,842 20,565 16,098 15,324 19,705 29,579

48

Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 45,337 36,026 35,468 29,023 26,153 28,194 41,056 38,697 30,910 29,194 26,719 33,193 2002 42,957 42,546 40,981 36,989 28,784 31,741 39,440 43,092 34,007 26,058 27,197 34,574 2003 44,633 43,363 39,395 32,941 30,147 32,417 46,076 47,914 30,139 28,937 26,588 39,627 2004 44,286 47,720 40,198 35,528 36,608 33,843 39,855 38,791 36,056 30,069 25,036 35,444 2005 42,941 41,516 38,987 36,599 35,972 45,327 48,696 49,698 42,454 32,097 30,402 42,813 2006 42,641 45,534 43,562 45,754 43,689 44,512 51,955 56,344 37,425 35,388 34,881 46,374 2007 55,048 57,329 44,646 43,762 41,758 42,250 47,969 58,650 43,759 42,172 36,392 49,540

49

Natural Gas Delivered to Consumers in Kentucky (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 31,659 23,182 21,670 14,953 9,527 8,890 9,668 9,881 10,024 12,591 16,271 23,216 2002 26,131 24,533 23,241 14,879 12,317 11,623 13,804 10,869 11,129 14,628 21,069 27,646 2003 34,776 29,032 20,580 14,017 10,797 9,334 9,467 10,296 10,390 13,196 16,933 27,218 2004 32,640 27,566 21,630 15,771 12,331 11,249 10,810 11,428 10,883 13,355 17,689 27,203 2005 29,373 24,036 24,578 15,557 13,614 13,693 12,658 14,134 12,122 14,104 19,304 29,050 2006 23,093 23,721 20,380 14,447 13,054 12,108 12,861 13,777 11,131 14,865 17,982 22,930 2007 26,916 29,946 20,044 17,410 12,573 11,418 10,304 16,709 11,848 13,874 18,696 24,799

50

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,176 1,936 2,098 1,489 1,094 891 908 808 866 970 1,324 1,964 1990 2,455 1,649 1,576 1,262 1,040 846 836 830 872 965 1,315 1,749 1991 2,199 2,076 1,746 1,143 908 818 810 859 875 952 1,492 1,917 1992 2,276 2,158 1,745 1,436 1,068 944 820 882 875 1,006 1,345 2,089 1993 2,268 2,155 2,200 1,507 1,007 877 832 840 846 947 1,463 2,070 1994 2,845 2,472 1,910 1,174 1,027 1,342 913 949 947 1,089 1,361 1,843 1995 2,600 2,626 2,111 1,382 1,045 1,013 950 956 1,044 1,054 1,674 2,414 1996 3,136 2,782 2,190 1,884 1,154 997 940 957 1,041 1,157 1,644 2,447 1997 2,378 2,381 1,793 1,202 1,268 1,096 989 1,004 1,884 1,167 1,757 2,639

51

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,784 4,016 4,367 3,046 2,022 1,568 1,475 1,454 1,534 1,843 2,639 4,396 1990 5,379 3,690 3,400 2,747 1,820 1,445 1,394 1,480 1,596 1,795 2,715 3,817 1991 4,947 4,647 3,990 2,629 1,928 1,677 1,613 1,679 1,789 2,052 3,200 4,162 1992 5,169 5,066 3,983 3,296 2,205 1,733 1,591 1,607 1,679 2,138 3,010 4,941 1993 5,866 5,566 5,426 3,602 1,988 1,532 1,437 1,539 1,674 2,067 3,379 3,292 1994 7,247 6,269 4,727 2,761 1,844 1,605 1,487 1,647 1,831 2,115 2,817 4,592 1995 5,839 6,031 4,241 3,065 1,766 1,579 1,487 1,475 1,597 1,740 3,263 5,279 1996 6,913 6,421 4,851 3,760 1,970 1,586 1,415 1,575 1,658 1,917 3,240 5,160

52

Natural Gas Delivered to Consumers in Delaware (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 5,014 4,742 5,389 3,439 2,924 3,276 3,324 4,609 4,923 5,078 3,908 3,419 2002 5,258 4,880 4,847 3,830 2,810 2,738 6,396 3,816 4,170 3,843 3,936 5,597 2003 6,397 5,499 5,102 3,399 2,081 2,433 3,570 3,550 2,728 2,949 3,547 4,833 2004 6,827 5,602 4,600 3,387 3,731 2,595 2,620 2,437 2,880 2,484 4,033 6,759 2005 6,870 5,543 5,427 2,696 2,517 2,866 3,287 3,735 2,652 2,870 3,515 4,876 2006 5,025 4,699 4,451 2,549 2,659 3,204 3,812 3,447 2,516 2,972 3,454 4,379 2007 4,855 5,154 4,783 3,486 2,804 3,196 3,833 4,160 3,127 3,346 3,838 5,551 2008 5,197 5,132 4,474 3,574 2,885 3,871 4,077 3,567 3,009 2,937 4,178 5,239

53

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 26,553 25,448 24,717 16,375 10,150 5,954 4,570 4,467 5,047 8,855 15,776 28,269 1990 26,939 22,780 20,870 15,431 9,230 5,638 4,610 4,865 5,117 8,592 14,122 21,237 1991 29,054 24,902 21,321 14,617 9,583 5,601 4,916 4,508 5,510 9,450 12,966 23,131 1992 26,677 24,979 22,443 17,769 10,406 5,883 4,981 4,964 5,431 9,760 16,298 24,211 1993 28,122 27,427 25,623 18,238 9,009 5,968 5,035 4,140 5,767 10,193 16,875 23,833 1994 33,440 31,356 24,263 16,330 10,123 6,207 5,343 5,363 5,719 8,796 14,511 21,617 1995 27,945 29,223 23,980 18,384 11,004 6,372 5,664 5,778 6,417 9,647 19,742 29,922 1996 32,468 30,447 27,914 19,664 12,272 6,343 5,673 5,383 6,146 9,472 19,486 26,123

54

Natural Gas Delivered to Consumers in Arizona (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 19,804 23,088 21,742 19,153 21,113 17,703 18,312 16,919 14,352 14,127 12,164 19,204 2002 19,840 19,954 18,340 14,544 14,463 17,262 23,546 22,088 20,988 19,112 17,712 21,662 2003 20,639 18,895 21,753 16,848 14,559 16,858 28,981 30,940 25,278 24,409 16,317 18,043 2004 25,379 30,143 26,925 23,982 26,878 29,819 35,860 33,244 27,591 23,349 23,090 26,140 2005 24,400 22,209 17,591 20,779 22,660 23,609 35,036 34,587 26,451 24,130 22,651 28,011 2006 26,212 24,177 22,606 21,814 22,339 30,548 34,718 36,448 30,678 32,378 24,493 29,027 2007 34,237 26,857 17,051 20,379 28,959 35,463 43,104 40,305 33,790 29,544 27,001 33,835

55

Natural Gas Delivered to Consumers in Iowa (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 33,183 29,626 26,788 17,172 12,430 10,449 10,249 10,177 10,494 14,476 16,865 23,400 2002 28,527 25,072 25,693 18,706 13,413 10,076 9,731 9,815 10,403 14,561 22,219 27,225 2003 31,445 32,450 25,482 16,870 12,421 10,288 9,892 10,030 10,550 13,644 20,542 26,599 2004 32,639 30,955 23,081 15,569 11,543 10,481 9,546 10,080 10,193 14,132 20,759 27,591 2005 34,272 27,838 24,671 18,370 13,180 12,206 11,888 11,542 11,838 13,551 19,595 30,763 2006 26,997 26,909 23,941 17,158 14,088 12,588 13,244 11,886 12,277 18,360 22,732 25,747 2007 35,848 38,728 28,204 22,726 17,742 14,922 15,363 15,754 14,595 18,051 24,001 35,021

56

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,976 3,700 4,247 2,586 1,701 1,154 968 941 978 1,220 1,801 3,647 1990 4,168 3,115 3,057 2,477 1,557 1,131 1,049 961 1,016 1,095 1,686 2,738 1991 5,709 5,334 4,545 3,320 2,108 1,602 1,545 1,465 1,486 2,289 3,582 5,132 1992 6,323 6,382 5,073 3,807 2,391 1,784 1,553 1,586 1,615 2,491 3,895 5,565 1993 6,273 6,568 6,232 3,772 2,110 1,861 1,507 1,567 1,700 2,231 3,898 5,915 1994 8,122 6,354 5,634 2,844 2,547 1,709 1,732 1,588 2,016 2,531 3,582 5,475 1995 6,743 7,826 4,472 3,736 2,388 1,994 1,612 1,722 2,065 1,907 4,871 7,538 1996 7,648 6,515 5,476 3,766 2,672 1,816 1,608 1,866 1,922 2,427 4,693 5,433

57

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,493 3,435 3,545 3,083 2,670 2,570 2,525 2,369 2,484 2,444 2,868 3,620 1990 4,101 3,305 3,246 3,026 2,860 2,673 2,584 2,497 2,483 2,521 3,285 3,725 1991 3,875 3,770 3,782 3,363 2,978 2,674 2,845 2,708 2,998 2,798 3,519 3,954 1992 4,408 4,364 3,856 3,741 3,382 3,085 2,976 2,881 2,849 2,954 3,317 3,914 1993 3,951 4,078 4,088 3,871 3,362 3,085 2,919 2,830 2,887 2,983 3,336 3,760 1994 4,619 3,941 3,853 3,374 3,078 2,937 2,855 2,909 2,896 2,814 3,089 3,570 1995 4,274 4,361 3,900 3,433 3,055 2,930 2,970 2,751 2,818 2,840 3,171 3,883 1996 4,731 4,272 4,167 3,918 3,336 3,029 2,836 2,716 2,840 2,957 3,179 3,830

58

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,919 4,336 3,961 2,180 1,261 1,357 1,019 1,007 1,096 1,245 1,948 3,942 1990 4,957 3,368 2,807 2,223 1,398 1,065 1,030 1,043 1,081 1,260 1,948 2,949 1991 5,034 4,043 2,848 1,778 1,211 1,027 998 1,023 1,045 1,184 2,497 3,297 1992 4,159 3,861 2,708 2,114 1,358 1,108 1,062 1,022 1,029 1,219 2,078 3,596 1993 4,757 4,174 3,999 2,923 1,540 1,078 1,013 1,047 1,126 1,389 2,480 3,473 1994 5,101 4,707 3,388 2,306 1,360 1,107 990 887 1,253 1,275 1,897 3,136 1995 4,387 4,171 3,478 2,027 1,337 1,156 1,015 1,021 1,060 1,183 2,265 4,311 1996 5,411 5,249 3,895 2,964 1,519 1,052 1,056 1,060 1,106 1,356 2,462 3,876

59

Natural Gas Delivered to Consumers in Arkansas (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,139 20,654 21,940 16,528 13,819 12,558 14,779 16,061 15,014 18,239 19,675 22,233 2002 24,431 24,940 22,284 19,166 15,635 16,964 18,741 17,700 16,789 16,932 17,770 21,567 2003 27,116 27,256 22,904 18,625 17,603 17,849 18,208 18,467 15,282 16,402 16,960 20,603 2004 24,746 25,909 21,663 16,382 15,991 14,085 14,456 14,551 11,956 14,094 13,138 18,337 2005 22,386 19,719 19,170 15,597 14,643 15,315 16,703 17,392 13,113 13,511 15,272 20,113 2006 19,984 19,909 19,394 17,499 17,865 19,198 19,107 19,963 16,976 17,107 15,346 19,021 2007 20,936 22,984 17,280 15,779 16,099 17,982 17,998 22,294 15,747 13,225 15,235 18,728

60

Natural Gas Delivered to Consumers in Utah (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 20,043 17,426 13,012 11,173 7,791 7,056 6,214 6,023 6,572 9,189 11,646 18,505 2002 19,727 17,659 15,165 8,453 7,113 5,260 5,915 6,481 7,591 11,589 13,814 16,447 2003 16,474 16,494 12,825 10,664 6,942 5,612 6,174 6,166 6,229 7,898 13,299 16,533 2004 21,414 17,627 10,247 9,033 6,775 5,344 6,398 5,617 6,456 8,714 13,097 17,058 2005 18,357 16,430 13,763 12,951 9,253 7,461 7,380 6,187 6,053 6,449 9,027 16,786 2006 19,708 17,533 16,428 13,496 8,309 8,516 8,734 8,180 8,599 9,422 13,464 19,710 2007 27,918 22,251 16,927 13,476 12,260 11,106 9,771 9,790 10,976 12,425 15,630 20,497 2008 27,371 26,146 20,495 17,995 13,506 10,286 10,157 10,919 10,422 11,249 14,386 19,141

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Natural Gas Delivered to Consumers in North Carolina (Including Vehicle  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 29,800 21,808 20,434 14,585 11,544 11,979 13,229 15,763 11,364 14,905 15,898 19,179 2002 27,750 25,444 22,993 16,550 13,274 14,816 16,400 17,088 13,640 15,047 19,024 27,257 2003 32,135 30,180 20,979 15,717 12,038 9,338 12,359 13,177 11,210 12,814 16,520 25,999 2004 31,785 30,416 22,379 16,242 16,033 12,711 12,866 13,027 11,970 11,729 15,635 24,946 2005 30,538 27,324 26,203 17,851 13,162 12,669 15,688 16,197 12,616 12,082 15,331 25,731 2006 25,596 23,904 23,271 15,873 13,091 13,120 17,476 19,153 11,452 14,070 18,457 22,889 2007 26,988 29,743 21,686 17,606 13,644 14,343 14,640 22,849 15,744 14,159 17,540 23,411

62

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,283 3,376 2,280 1,227 653 472 357 346 390 522 1,313 2,304 1990 2,864 2,779 2,272 1,203 860 581 373 364 374 629 1,382 2,540 1991 4,055 3,108 2,282 1,771 1,316 668 405 375 407 551 1,634 2,704 1992 3,330 2,952 1,866 1,155 642 457 410 372 405 545 1,329 3,120 1993 3,922 3,682 2,988 1,839 1,248 707 597 594 606 946 2,023 3,436 1994 3,929 3,846 2,665 2,037 962 814 820 787 882 1,883 3,542 4,335 1995 4,244 3,324 2,948 2,429 1,675 1,122 861 899 1,088 1,905 2,605 3,724 1996 4,549 4,604 3,129 2,479 1,356 892 904 874 1,279 2,073 3,185 4,220 1997 5,030 4,454 3,350 2,664 1,263 942 923 939 1,120 2,012 3,174 5,257

63

Natural Gas Delivered to Consumers in Michigan (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 133,140 112,047 111,301 76,191 48,707 41,686 43,845 44,577 40,142 59,283 71,352 92,053 2002 119,902 108,891 104,208 87,138 63,810 52,457 51,899 47,094 40,938 53,419 82,015 114,268 2003 140,545 133,702 114,085 80,651 53,258 37,279 35,261 42,115 32,744 49,901 69,659 99,067 2004 137,906 127,671 102,442 76,978 54,610 41,310 38,001 37,565 37,285 48,239 71,870 107,025 2005 133,079 112,812 108,608 72,884 50,886 47,768 50,667 44,890 35,502 42,661 64,574 111,058 2006 104,803 99,454 96,633 65,814 43,901 35,824 43,332 39,459 31,740 50,167 70,643 85,634 2007 100,406 124,441 98,314 69,491 43,699 33,353 30,415 38,655 30,211 36,831 59,171 97,411

64

Natural Gas Delivered to Consumers in Louisiana (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 90,750 82,773 86,038 87,577 81,223 77,877 93,937 105,743 93,365 92,353 85,277 92,797 2002 102,807 96,945 102,315 94,281 91,511 97,058 107,870 109,348 97,986 94,054 96,857 102,289 2003 106,504 91,821 89,554 89,376 88,426 78,863 91,469 95,243 85,824 84,198 83,677 94,139 2004 101,114 98,005 96,851 86,763 89,143 89,075 96,344 98,583 93,156 94,397 89,577 99,046 2005 102,652 87,403 100,620 97,398 104,027 102,860 104,234 99,244 82,252 75,899 72,958 91,598 2006 80,495 79,755 88,341 86,459 88,047 89,170 97,472 103,508 88,124 89,721 89,141 94,300 2007 100,669 93,075 95,251 91,900 94,668 99,373 92,367 104,606 87,792 91,661 83,575 89,348

65

Natural Gas Delivered to Consumers in Florida (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 34,086 30,338 35,463 39,708 42,466 46,947 53,430 53,352 55,306 52,955 42,205 47,598 2002 50,177 41,302 50,453 55,845 56,767 62,343 67,197 70,144 65,136 64,259 47,600 45,144 2003 53,384 43,538 54,761 51,487 62,575 58,312 64,041 61,764 62,150 59,558 56,488 50,525 2004 50,877 49,866 51,687 53,442 62,663 69,628 72,443 70,540 70,259 66,961 50,122 53,169 2005 59,417 49,956 60,238 55,269 64,436 69,719 90,376 84,114 67,877 63,782 55,683 46,489 2006 54,827 56,557 68,707 73,645 85,346 87,268 88,949 86,772 83,397 76,817 58,594 56,867 2007 57,409 56,412 60,397 70,366 76,461 81,312 93,683 97,040 88,865 89,976 66,512 67,153

66

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 28,465 29,564 21,880 18,656 19,249 21,469 15,319 17,351 19,452 19,856 21,665 26,192 1990 30,798 34,767 27,425 23,423 18,540 17,392 21,030 17,705 23,233 17,384 22,637 30,759 1991 31,793 23,911 26,128 28,375 21,468 20,003 22,080 16,547 23,307 26,510 20,109 27,379 1992 38,234 23,834 24,413 18,379 27,118 22,150 21,150 21,633 19,247 19,112 20,999 28,738 1993 27,151 31,334 21,654 18,276 18,032 15,638 18,341 14,348 16,845 19,708 20,404 28,553 1994 29,342 27,032 23,156 18,463 22,621 18,091 25,752 14,123 14,604 17,844 25,032 25,929 1995 31,883 25,693 23,399 23,976 24,831 19,028 21,954 18,362 19,391 21,272 22,818 26,152

67

Natural Gas Delivered to Consumers in Colorado (Including Vehicle...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 272,530 289,945 288,147 2000's 321,784 412,773 404,873 377,794 378,894 405,509 383,452 435,360...

68

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,109 11,224 12,435 1970's 14,500 16,073 17,005 15,420 16,247 15,928 16,694 16,813 16,940 16,830...

69

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,909 3,749 3,937 2,897 2,106 1,625 1,528 1,579 1,551 1,685 2,324 3,891 1990 4,318 3,869 3,369 3,009 1,743 1,483 1,358...

70

Natural Gas Delivered to Consumers in Connecticut (Including...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 142,216 130,664 149,294 2000's 156,692 143,330 175,072 150,692 159,259 164,740 169,504 175,820...

71

Natural Gas Delivered to Consumers in Connecticut (Including...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 18,442 15,861 16,485 10,646 7,197 7,730 7,420 9,010 11,276 11,370 12,345 15,400 2002 19,009 18,410 17,585 13,782 12,805...

72

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Gasoline and Diesel Fuel Update (EIA)

Dec 1989 21,163 22,930 20,215 15,779 11,310 10,731 12,786 11,350 9,367 10,345 12,823 23,871 1990 21,376 16,323 17,118 14,054 12,299 14,204 14,184 11,592 9,448 9,571 12,192 19,981...

73

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Gasoline and Diesel Fuel Update (EIA)

285,213 323,054 347,818 1950's 387,838 464,309 515,669 530,650 584,957 629,219 716,871 775,916 871,774 975,107 1960's 1,020,222 1,076,849 1,206,668 1,267,783 1,374,717...

74

Natural Gas Delivered to Consumers in Ohio (Including Vehicle...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 877,039 792,617 823,448 2000's 871,444 787,719 813,735 832,563 812,084 811,759 729,264 791,733 780,187 723,471 2010's...

75

Natural Gas Delivered to Consumers in Rhode Island (Including...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 116,871 130,415 117,758 2000's 88,124 95,326 87,472 78,074 72,301 80,070 76,401 87,150 88,391...

76

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Annual Energy Outlook 2012 (EIA)

40,988 43,950 42,953 43,080 37,466 42,422 40,532 39,821 47,326 1980's 28,576 32,055 30,871 30,758 25,299 24,134 23,816 25,544 25,879 26,920 1990's 24,051 38,117 42,464 43,635...

77

Natural Gas Delivered to Consumers in North Dakota (Including...  

Gasoline and Diesel Fuel Update (EIA)

1,988 3,550 3,908 4,743 2003 5,308 4,986 4,115 2,464 2,072 1,511 1,109 963 1,664 2,336 3,871 6,879 2004 5,976 4,565 4,243 2,998 2,087 1,270 1,207 1,858 2,219 2,970 3,638 4,990 2005...

78

Energy Department Expands Gas Gouging Reporting System to Include...  

Office of Environmental Management (EM)

U.S.'s part of this action). The Treasury Department and IRS announced that "dyed diesel fuel" normally limited to off-road use would be permitted for road use. This action will...

79

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 25,565 24,630 25,344 18,494 12,079 8,747 8,382 8,305 8,812 11,741 16,631 27,650 1990 24,659 23,697 22,939 17,706 11,586 10,272 9,602 9,683 10,261 12,661 17,210 24,715 1991 28,442 25,685 23,462 17,684 11,669 9,641 10,331 9,764 9,195 11,571 17,033 25,121 1992 29,246 29,912 27,748 23,039 13,518 9,915 9,327 9,456 9,582 12,860 16,804 25,808 1993 28,857 29,740 28,926 20,266 11,667 11,221 10,477 10,502 9,972 13,970 18,205 26,928 1994 31,014 32,757 29,376 21,207 13,641 11,207 10,158 10,485 10,002 12,399 16,783 24,226 1995 28,329 29,345 28,182 20,813 14,459 11,501 11,281 10,797 10,619 13,394 22,325 30,309 1996 NA NA NA NA NA NA NA NA NA NA NA NA

80

Natural Gas Delivered to Consumers in South Carolina (Including Vehicle  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17,028 13,472 12,569 10,957 8,683 9,367 10,138 11,625 9,077 11,870 11,334 12,725 2002 20,494 17,611 16,270 14,448 14,921 14,889 16,325 15,616 11,675 10,993 12,221 16,164 2003 18,666 17,514 12,917 11,948 9,803 8,615 10,304 12,231 8,766 8,909 9,675 14,460 2004 19,029 19,575 14,664 11,619 12,602 10,686 12,311 13,363 11,234 9,815 10,497 15,861 2005 19,494 16,945 17,212 12,523 11,619 12,506 16,813 18,833 10,439 8,087 9,210 15,920 2006 14,609 15,594 14,881 12,013 11,535 13,578 18,401 19,755 10,930 12,902 14,061 14,246 2007 18,348 19,666 12,154 11,405 11,154 12,705 14,438 22,784 13,231 12,270 11,398 13,530

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Natural Gas Delivered to Consumers in Indiana (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 77,275 61,840 57,608 37,045 27,762 26,685 25,473 29,184 25,697 34,650 39,146 51,997 2002 65,893 58,962 58,569 44,882 32,659 27,696 30,899 30,668 28,357 37,204 49,556 68,056 2003 80,534 70,155 52,368 35,903 31,266 25,652 24,580 26,666 27,072 34,914 46,556 64,253 2004 80,680 70,341 53,056 37,842 30,840 25,006 25,592 27,498 26,658 33,102 43,630 65,054 2005 72,775 58,428 61,390 39,473 30,697 28,897 28,628 29,602 26,476 32,838 44,576 70,488 2006 56,899 57,392 54,200 34,311 30,004 26,873 29,579 29,996 27,630 39,210 47,253 56,403 2007 66,914 76,347 49,045 40,498 29,129 27,272 28,150 34,503 29,267 35,013 48,878 63,510

82

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

83

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

84

Natural gas monthly, July 1996  

SciTech Connect

This document presents information pertaining to the natural gas industry. Data are included on production, consumption, distribution, and pipeline activities.

NONE

1996-07-01T23:59:59.000Z

85

Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams  

DOE Patents (OSTI)

A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

Wilding, Bruce M; Turner, Terry D

2014-12-02T23:59:59.000Z

86

Cryogenic treatment of gas  

DOE Patents (OSTI)

Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

Bravo, Jose Luis (Houston, TX); Harvey, III, Albert Destrehan (Kingwood, TX); Vinegar, Harold J. (Bellaire, TX)

2012-04-03T23:59:59.000Z

87

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

88

Microminiature gas chromatograph  

DOE Patents (OSTI)

A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

Yu, Conrad M. (Antioch, CA)

1996-01-01T23:59:59.000Z

89

Natural gas annual 1997  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

90

Displacing Natural Gas Consumption and Lowering Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels and thereby reduce their natural gas consumption. Opportunity gas fuels include biogas from animal and agri- cultural wastes, wastewater plants, and landfills, as well as...

91

Dense gas-compatible enzymes  

DOE Patents (OSTI)

An enzymatic reaction system including a modified enzyme, and a dense gas system; modified enzymes; and methods of reacting modified enzymes in a dense gas system or liquid carbon dioxide.

Kao, Fu-jung (Dracut, MA); Laintz, Kenneth E. (Los Alamos, NM); Sawan, Samuel P. (Tyngsborough, MA); Sivils, L. Dale (Jupiter, FL); Spall, W. Dale (Los Alamos, NM)

1998-07-21T23:59:59.000Z

92

Oil and Gas Conservation (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

Parts 1 and 2 of this chapter contain a broad range of regulations pertaining to oil and gas conservation, including requirements for the regulation of oil and gas exploration and extraction by the...

93

Gas Utility Pipeline Tax (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

94

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

95

Meals included in Conference Registrations  

E-Print Network (OSTI)

Meals included in Conference Registrations Meals included as part of the cost of a conference the most reasonable rates are obtained. Deluxe hotels and motels should be avoided. GSA rates have been for Georgia high cost areas. 75% of these amounts would be $21 for non- high cost areas and $27 for high cost

Arnold, Jonathan

96

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

97

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

98

Shale Gas 101  

Energy.gov (U.S. Department of Energy (DOE))

This webpage has been developed to answer the many questions that people have about shale gas and hydraulic fracturing (or fracking). The information provided below explains the basics, including what shale gas is, where it’s found, why it’s important, how it’s produced, and challenges associated with production.

99

Natural Gas Hydrate Dissociation  

Science Journals Connector (OSTI)

Materials for hydrate synthesis mainly include methane gas of purity 99.9% (produced by Nanjing Special Gases Factory Co., Ltd.), natural sea sand of grain sizes 0.063?0.09,...

Qingguo Meng; Changling Liu; Qiang Chen; Yuguang Ye

2013-01-01T23:59:59.000Z

100

EIA - All Natural Gas Analysis  

Gasoline and Diesel Fuel Update (EIA)

All Natural Gas Analysis All Natural Gas Analysis 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) U.S Natural Gas Imports and Exports: 2009 This report provides an overview of U.S. international natural gas trade in 2009. Natural gas import and export data, including liquefied natural gas (LNG) data, are provided through the year 2009 in Tables SR1-SR9. Categories: Imports & Exports/Pipelines (Released, 9/28/2010, Html format)

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sponsorship includes: Agriculture in the  

E-Print Network (OSTI)

Sponsorship includes: · Agriculture in the Classroom · Douglas County Farm Bureau · Gifford Farm · University of Nebraska Agricultural Research and Development Center · University of Nebraska- Lincoln Awareness Coalition is to help youth, primarily from urban communities, become aware of agriculture

Nebraska-Lincoln, University of

102

Gas Separation With Graphene Membranes By Will Soutter  

E-Print Network (OSTI)

Gas Separation With Graphene Membranes By Will Soutter Introduction What is Graphene? Benefits of Graphene in Gas Separation Membranes Recent Developments Conclusion References Introduction The separation applications including fuel cells, batteries, gas sensors and gas purification. The materials

Bunch, Scott

103

Homeowners: Respond to Natural Gas Disruptions | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

your gas company to report any problems, including: Emergencies-Report gas leaks, pipeline breaks, and other gas-related emergencies to your gas company and the local fire...

104

Chapter 8 - Natural Gas  

Science Journals Connector (OSTI)

Although natural gas is a nonrenewable resource, it is included for discussion because its sudden growth from fracking will impact the development and use of renewable fuels. Firms who are engaged in the development of processes that employ synthesis gas as an intermediate have concluded that the synthesis gas is more economically obtainable by steam reforming of natural gas than by gasification of waste cellulose. In some instances, firms have largely abandoned the effort to produce a renewable fuel as such, and in others firms are developing hybrid processes that employ natural gas in combination with a fermentation system. Moreover, natural gas itself is an attractive fuel for internal combustion engines since it can be the least expensive option on a cost per joule basis. It is also aided by its high octane number of 130.

Arthur M. Brownstein

2015-01-01T23:59:59.000Z

105

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1996 and detailed annual historical information by State for 1967-1996. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1996. The remaining tables contain detailed annual historical information, by State, for 1967-1996. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

106

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1997 and detailed annual historical information by State for 1967-1997. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1997. The remaining tables contain detailed annual historical information, by State, for 1967-1997. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

107

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

8 8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1998 and detailed annual historical information by State for 1967-1998. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1998. The remaining tables contain detailed annual historical information, by State, for 1967-1998. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

108

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

109

Life cycle greenhouse gas footprint of shale gas: a probabilistic approach  

Science Journals Connector (OSTI)

With the increase in natural gas (NG) production in recent years, primarily from shale gas, some sources, including the US Environmental ... the data from the Montney and Horn River shale gas basins in the Northe...

Anjuman Shahriar; Rehan Sadiq…

2014-12-01T23:59:59.000Z

110

Natural gas monthly, July 1997  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

NONE

1997-07-01T23:59:59.000Z

111

Division of Oil, Gas, and Mining Permitting  

E-Print Network (OSTI)

" or "Gas" does not include any gaseous or liquid substance processed from coal, oil shale, or tar sands

Utah, University of

112

Greenhouse Gas Program Overview (Revised) (Fact Sheet)  

SciTech Connect

Overview of the Federal Energy Management Program (FEMP) Greenhouse Gas program, including Federal requirements, FEMP services, and contacts.

Not Available

2010-06-01T23:59:59.000Z

113

Natural gas monthly: December 1993  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. Articles are included which are designed to assist readers in using and interpreting natural gas information.

Not Available

1993-12-01T23:59:59.000Z

114

Appendix F Cultural Resources, Including  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix F Appendix F Cultural Resources, Including Section 106 Consultation STATE OF CALIFORNIA - THE RESOURCES AGENCY EDMUND G. BROWN, JR., Governor OFFICE OF HISTORIC PRESERVATION DEPARTMENT OF PARKS AND RECREATION 1725 23 rd Street, Suite 100 SACRAMENTO, CA 95816-7100 (916) 445-7000 Fax: (916) 445-7053 calshpo@parks.ca.gov www.ohp.parks.ca.gov June 14, 2011 Reply in Reference To: DOE110407A Angela Colamaria Loan Programs Office Environmental Compliance Division Department of Energy 1000 Independence Ave SW, LP-10 Washington, DC 20585 Re: Topaz Solar Farm, San Luis Obispo County, California Dear Ms. Colamaria: Thank you for seeking my consultation regarding the above noted undertaking. Pursuant to 36 CFR Part 800 (as amended 8-05-04) regulations implementing Section

115

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

116

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

117

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

118

EIA - Greenhouse Gas Emissions - Methane Emissions  

Annual Energy Outlook 2012 (EIA)

credit for renewable energy, including waste-to-energy and landfill gas combustion. Wastewater treatment, including both domestic wastewater (about two-thirds) and industrial...

119

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

120

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

122

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

123

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

124

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

125

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

126

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

127

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

128

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

129

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

130

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

131

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

132

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

133

U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report  

SciTech Connect

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

NONE

1998-12-01T23:59:59.000Z

134

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

States, acquire natural gas from foreign producers for resale States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes unconventional gas recovery from low permeability formations of sandstone and shale, and coalbeds. Foreign gas transactions may occur via either pipeline (Canada or Mexico) or transport ships as liquefied natural gas (LNG). Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 89 Figure 7. Oil and Gas Supply Model Regions Source: Energy Information Administration, Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

135

Natural Gas Exports from Iran  

Reports and Publications (EIA)

This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

2012-01-01T23:59:59.000Z

136

Biogenic gas nanostructures as ultrasonic molecular reporters  

E-Print Network (OSTI)

Biogenic gas nanostructures as ultrasonic molecular reporters Mikhail G. Shapiro1,2,3 *, Patrick W on the nanoscale. Here, we introduce a new class of reporters for ultrasound based on genetically encoded gas nanostructures from microorganisms, including bacteria and archaea. Gas vesicles are gas-filled protein

Schaffer, David V.

137

Direct fired absorption machine flue gas recuperator  

DOE Patents (OSTI)

A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1985-01-01T23:59:59.000Z

138

Cryostat including heater to heat a target  

DOE Patents (OSTI)

A cryostat is provided which comprises a vacuum vessel; a target disposed within the vacuum vessel; a heat sink disposed within the vacuum vessel for absorbing heat from the detector; a cooling mechanism for cooling the heat sink; a cryoabsorption mechanism for cryoabsorbing residual gas within the vacuum vessel; and a heater for maintaining the target above a temperature at which the residual gas is cryoabsorbed in the course of cryoabsorption of the residual gas by the cryoabsorption mechanism. 2 figs.

Pehl, R.H.; Madden, N.W.; Malone, D.F.

1990-09-11T23:59:59.000Z

139

Pore-scale mechanisms of gas flow in tight sand reservoirs  

E-Print Network (OSTI)

include tight gas sands, gas shales, and coal-bed methane.Figure 3. Although the gas-shale production grows at a

Silin, D.

2011-01-01T23:59:59.000Z

140

Apparatus for gas sorption measurement with integrated gas composition measurement device and gas mixing  

SciTech Connect

An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.

Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven

2014-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Monetizing stranded gas : economic valuation of GTL and LNG projects.  

E-Print Network (OSTI)

??Globally, there are significant quantities of natural gas reserves that lie economically or physically stranded from markets. Options to monetize such reserves include Gas to… (more)

Black, Brodie Gene, 1986-

2010-01-01T23:59:59.000Z

142

EIA responds to Nature article on shale gas projections  

Annual Energy Outlook 2012 (EIA)

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...

143

Gas Companies Operating Within the State of Connecticut (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply a broad definition of “gas company”, which includes any person or entity involved in the manufacture or transportation of gas within Connecticut. The regulations set...

144

Natural Gas Annual, 2000  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 2000 are available as self-extracting executable files in ASCII TXT or CSV file formats. This volume emphasizes information for 2000, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1996-2000 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2000 (Table 2) ASCII TXT, are also available.

145

Natural Gas Regulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Regulation Natural Gas Regulation Natural Gas Regulation Natural Gas Regulation The Natural Gas Act of 1938, as amended, requires anyone who wants to import or export natural gas, including liquefied natural gas (LNG) from or to a foreign country must first obtain an authorization from the Department of Energy. The Office of Oil and Gas Global Security and Supply, Division of Natural Gas Regulatory Activities is the one-stop-shopping place to obtain these authorizations in the Department. The import/export authorizations are necessary for anyone who wants to import or export natural gas, including LNG. There are basically two types of authorizations, blanket and long-term authorizations. The blanket authorization enables you to import or export on a short-term or spot market basis for a period of up to two years. The

146

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

147

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

148

Chapter 1 - Natural Gas Fundamentals  

Science Journals Connector (OSTI)

Natural gas is the most energy-efficient fossil fuel; it offers important energy-saving benefits when it is used instead of oil or coal. Although the primary use of natural gas is as a fuel, it is also a source of hydrocarbons for petrochemical feedstocks and a major source of elemental sulfur, an important industrial chemical. Its popularity as an energy source is expected to grow substantially in the future because natural gas can help achieve two important energy goals for the twenty-first century: providing the sustainable energy supplies and services needed for social and economic development and reducing adverse impacts on global climate and the environment in general. Natural gas consumption and trade have been growing steadily over the past two decades, and natural gas has strengthened its position in the world energy mix. Although natural gas demand declined in 2009, as a result of the economic slowdown, it is expected to resume growth in both emerging and traditional markets in the coming decades. Such increase in the near future will be driven because of additional demand in current uses, primarily power generation. There is yet little overlap between the use of natural gas and oil in all large markets. However, there are certain moves in the horizon, including the electrifying of transportation, that will push natural gas use to ever higher levels. This book gives the reader an introduction to natural gas by describing the origin and composition of natural gas, gas sources, phase behavior and properties, and transportation methods. Keywords: Absolute Open Flow, bulk modulus of elasticity, coal-bed methane, cricondenbar, cricondentherm, Expected Ultimate Recovery, gas deviation factor, higher heating value, Inflow Performance Relationship, kerogen, laminar flow, liquefied natural gas, primary thermogenic gas, pyrobitumen, secondary thermogenic gas, super-compressibility factor, thiol, Tubing Performance Curve, turbulent flow, unconventional gas resources, Wobbe Index, Wobbe Number.

Saeid Mokhatab; William A. Poe

2012-01-01T23:59:59.000Z

149

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

150

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

151

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

152

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

153

Italy (including San Marino) Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe » Italy Western Europe » Italy (including San Marino) Italy (including San Marino) Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends As occurred in many industrialized nations, CO2 emissions from Italy rose steeply since the late 1940's until the growth was abruptly terminated in 1974. Since 1974, emissions from liquid fuels have vacillated, dropping from 76% to 46% of a static but varying total. Significant increases in natural gas consumption have compensated for the drop in oil consumption. In 2008, 35.8% of Italy's fossil-fuel CO2 emissions were due to natural gas consumption. Coal usage grew steadily until 1985 when CO2 emissions from coal consumption reached 16 million metric tons of carbon. Not until 2004 did coal usage exceed 1985 levels and now accounts for 13.9% of Italy's

154

Is the situation and immediate threat to life and health? Spill/Leak/Release Medical Emergency Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor? Possible Fire / Natural Gas  

E-Print Network (OSTI)

? Possible Fire / Natural Gas (including chemicals and bio agents") (not including chemicals or bio agents Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor

155

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

156

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

157

Central Hudson Gas and Electric (Gas) - Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Energy Commercial Energy Efficiency Program Central Hudson Gas and Electric (Gas) - Commercial Energy Efficiency Program < Back Eligibility Commercial Installer/Contractor Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Construction Appliances & Electronics Water Heating Maximum Rebate See Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $500 Furnace with ECM Fan: $700 - $900 Water Boiler: $800 - $1,200 Steam Boiler: $800 Boiler Reset Control: $100 Indirect Water Heater: $300 Programmable Thermostats: $25 Provider Central Hudson Gas and Electric The Business Energy SavingsCentral program is for non-residential gas customers of Central Hudson. This includes businesses, local governments,

158

History of Gas Lasers, Part 2: Pulsed Gas Lasers  

Science Journals Connector (OSTI)

In this second article of a two-part series, Colin Webb explores the origins of pulsed gas lasers, which made possible many critical applications of laser technology, including...

Webb, Colin

2010-01-01T23:59:59.000Z

159

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

160

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

162

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

163

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

164

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

165

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

166

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

167

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

168

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

169

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

170

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

171

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

172

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

173

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

174

Gas vesicles.  

Science Journals Connector (OSTI)

...in the suspending water, of concentration...MPa and balances the atmospheric pressure. Note that...versely, liquid water could not form by condensation inside the gas vesicle...presumably surrounded by water on all sides. At...

A E Walsby

1994-03-01T23:59:59.000Z

175

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

176

EIA - Natural Gas Publications & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Publications & Analysis Publications & Analysis Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S. Natural Gas Weekly Update Analysis of current price, supply, and storage data; and a weather snapshot. Natural Gas Monthly U.S. production, supply, consumption, disposition, storage, imports, exports, and prices. Natural Gas Annual Provides comprehensive information on the supply and disposition of natural gas in the U.S. ... see complete list of Natural Gas Publications Basics All Prices Exploration & Reserves Production Imports/Exports & Pipelines Storage Consumption Natural Gas Survey Forms Natural Gas Section from International Energy Annual Forecasts & Analysis Includes petroleum and natural gas forecasts and analysis for consumption, production, prices, and sales.

177

Natural Gas Program Archive (Disk1)  

NLE Websites -- All DOE Office Websites (Extended Search)

Eastern U.S. Gas Eastern U.S. Gas Shales Eastern U.S. Gas Eastern U.S. Gas Shales Shales Program Program This DVD contains information related to research and development (R&D) undertaken by the U.S. Department of Energy (DOE) during the 1976-1995 time period. This R&D focused on improving industry understanding of ways to locate and produce natural gas from the fractured organic gas shales of the Eastern U.S. A second DVD is also available that includes similar information related to the five other R&D programs targeting unconventional natural gas during roughly the same time frame: Western U.S. Gas Sands (1977-1992), Methane Recovery from Coalbeds (1978-1982), Methane Hydrates (1982-1992), Deep Source Gas Project (1982-1992), and Secondary Gas Recovery (1987-1995). The following items are found on this DVD.

178

Gas turbine combustor transition  

DOE Patents (OSTI)

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

179

Gas cooled traction drive inverter  

SciTech Connect

The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

Chinthavali, Madhu Sudhan

2013-10-08T23:59:59.000Z

180

Economics of natural gas upgrading  

SciTech Connect

Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels.

Hackworth, J.H.; Koch, R.W.

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

AVESTAR® - Shale Gas Processing (SGP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Shale Gas Processing (SGP) Shale Gas Processing (SGP) SPG The shale gas revolution is transforming America's energy landscape and economy. The shale gas boom, including the Marcellus play in Appalachia, is driving job creation and investment in the energy sector and is also helping to revive other struggling sectors of the economy like manufacturing. Continued growth in domestic shale gas processing requires that energy companies maximize the efficiency and profitability from their operations through excellent control and drive maximum business value from all their plant assets, all while reducing negative environmental impact and improving safety. Changing demographics and rapidly evolving plant automation and control technologies also necessitate training and empowering the next-generation of shale gas process engineering and

182

NETL: Gasification Systems - Gas Cleaning  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleaning Cleaning Chemicals from Coal Complex Chemicals from Coal Complex (Eastman Company) Novel gas cleaning and conditioning are crucial technologies for achieving near-zero emissions, while meeting gasification system performance and cost targets. DOE's Gasification Systems program supports technology development in the area of gas cleaning and conditioning, including advanced sorbents and solvents, particulate filters, and other novel gas-cleaning approaches that remove and convert gas contaminants into benign and marketable by-products. To avoid the cost and efficiency penalties associated with cooling the gas stream to temperatures at which conventional gas clean-up systems operate, novel processes are being developed that operate at mild to high temperatures and incorporate multi-contaminant control to

183

Historical Natural Gas Annual 1999  

Gasoline and Diesel Fuel Update (EIA)

1999 1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1999 and detailed annual historical information by State for 1967-1999. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CSV file formats. Tables 1-3 present annual historical data at the national level for 1930-1999. The remaining tables contain detailed annual historical information, by State, for 1967-1999. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

184

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

185

The Gas Flow from the Gas Attenuator to the Beam Line  

SciTech Connect

The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

Ryutov, D.D.

2010-12-03T23:59:59.000Z

186

Evaluation of gas-liquid separation performance of natural gas filters  

Science Journals Connector (OSTI)

Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filte...

Baisong Li; Zhongli Ji; Xue Yang

2009-12-01T23:59:59.000Z

187

gas cylinder storage guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gas Cylinder Storage Guidelines Compressed Gas Cylinder Storage Guidelines All cylinders must be stored vertical, top up across the upper half the cylinder but below the shoulder. Small cylinder stands or other methods may be appropriate to ensure that the cylinders are secured from movement. Boxes, cartons, and other items used to support small cylinders must not allow water to accumulate and possible cause corrosion. Avoid corrosive chemicals including salt and fumes - keep away from direct sunlight and keep objects away that could fall on them. Use Gas pressure regulators that have been inspected in the last 5 years. Cylinders that contain fuel gases whether full or empty must be stored away from oxidizer cylinders at a minimum of 20 feet. In the event they are stored together, they must be separated by a wall 5 feet high with

188

Gas-Saving Tips  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Gas-Saving Tips Gas-Saving Tips Some consumers believe fuel economy ratings are a fixed number, like engine size or cargo volume. However, a vehicle's fuel economy can vary significantly due to several factors, including how the vehicle is driven, the vehicle's mechanical condition, and the environment in which it is driven. That's good news. It means you may be able to improve your vehicle's gas mileage through proper maintenance and driving habits. In fact, studies suggest the average driver can improve his/her fuel economy by roughly 10 percent. Here are a few simple tips to help you get the best possible fuel economy from your vehicle and reduce your fuel costs. Adopt Good Driving Habits Drive Sensibly Aggressive driving (speeding, rapid acceleration and braking)

189

Natural Gas Annual, 1998  

Gasoline and Diesel Fuel Update (EIA)

8 8 Historical The Natural Gas Annual, 1998 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 1998. Summary data are presented for each Census Division and State for 1994 to 1998. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 1998 are available as self-extracting executable files in ASCII TXT or CDF file formats. This volume emphasizes information for 1998, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

190

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2009 0, 2009 Next Release: August 27, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 19, 2009) Natural gas spot prices declined this report week (August 12-19), with the largest decreases generally occurring in the western half of the country. The Henry Hub spot price decreased by $0.34 to $3.02 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices decreased as supplies continued to be viewed as more than adequate to address near-term demand, including heating-related demand increases this winter. The futures contract for September delivery decreased by $0.36 on the week to $3.12 per MMBtu. Working gas in underground storage as of last Friday is estimated to

191

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 at 2:00 P.M. 5, 2009 at 2:00 P.M. Next Release: October 22, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 14, 2009) Natural gas spot prices increased this report week (October 7-14) as a cold-air mass moved over major consuming areas of the country, including the populous Northeast. The Henry Hub spot price increased by $0.12 to $3.82 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices decreased significantly after increasing for 5 consecutive weeks. The futures contract for November delivery decreased by $0.47 per MMBtu on the week to $4.436. Working gas in underground storage as of last Friday (October 9) is estimated to have been 3,716 billion cubic feet (Bcf), a record high

192

Natural Gas Annual, 1997  

Gasoline and Diesel Fuel Update (EIA)

7 7 Historical The Natural Gas Annual, 1997 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 1997. Summary data are presented for each Census Division and State for 1993 to 1997. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 1997 are available as self-extracting executable files in ASCII TXT or CDF file formats. This volume emphasizes information for 1997, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

193

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

16, 2009 16, 2009 Next Release: April 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 15, 2009) Since Wednesday, April 8, natural gas spot prices increased at most market locations in the Lower 48 States, with some exceptions including those in the Northeast, Midwest, and Midcontinent. Despite this weekÂ’s upticks at most locations, natural gas spot prices remain at relatively low levels and have continued to trade within a limited range for the past 4 weeks. The Henry Hub spot market prices gained about 10 cents or 2.9 percent per million Btu (MMBtu), ending trading yesterday at $3.60 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery at the Henry Hub settled yesterday (April 15) at $3.693

194

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

195

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

196

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

197

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

198

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

199

On-line gas chromatographic analysis of airborne particles  

DOE Patents (OSTI)

A method and apparatus for the in-situ, chemical analysis of an aerosol. The method may include the steps of: collecting an aerosol; thermally desorbing the aerosol into a carrier gas to provide desorbed aerosol material; transporting the desorbed aerosol material onto the head of a gas chromatography column; analyzing the aerosol material using a gas chromatograph, and quantizing the aerosol material as it evolves from the gas chromatography column. The apparatus includes a collection and thermal desorption cell, a gas chromatograph including a gas chromatography column, heated transport lines coupling the cell and the column; and a quantization detector for aerosol material evolving from the gas chromatography column.

Hering, Susanne V. (Berkeley, CA); Goldstein, Allen H. (Orinda, CA)

2012-01-03T23:59:59.000Z

200

Treatment of gas from an in situ conversion process  

DOE Patents (OSTI)

A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

Diaz, Zaida (Katy, TX); Del Paggio, Alan Anthony (Spring, TX); Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX)

2011-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

202

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

203

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

204

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

205

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

206

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

207

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

208

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

209

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

210

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

211

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

212

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

213

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

214

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

215

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

216

Gas vesicles.  

Science Journals Connector (OSTI)

...the gas vesicles simply reduce their sinking rates and...remaining suspended in the water column. A microorganism...phenomena as stratification, water- bloom formation, and...the many proteins that make up the phycobilisome (73...flagellate bacteria in natural waters. The natural selection...

A E Walsby

1994-03-01T23:59:59.000Z

217

Gas vesicles.  

Science Journals Connector (OSTI)

...these costs can be compared is in units of energy expenditure per time (joules per second...requires 7.24 x 10-18 kg of Gvp. The energy cost of making this protein, Eg, is...Eg = 2.84 x 101- o J. The rate of energy expenditure in gas vesicle synthesis then...

A E Walsby

1994-03-01T23:59:59.000Z

218

Gas sensor  

DOE Patents (OSTI)

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

219

Gas-liquid separator and method of operation  

DOE Patents (OSTI)

A system for gas-liquid separation in electrolysis processes is provided. The system includes a first compartment having a liquid carrier including a first gas therein and a second compartment having the liquid carrier including a second gas therein. The system also includes a gas-liquid separator fluidically coupled to the first and second compartments for separating the liquid carrier from the first and second gases.

Soloveichik, Grigorii Lev (Latham, NY); Whitt, David Brandon (Albany, NY)

2009-07-14T23:59:59.000Z

220

Definition: Liquid natural gas | Open Energy Information  

Open Energy Info (EERE)

Liquid natural gas Liquid natural gas Jump to: navigation, search Dictionary.png Liquid natural gas Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure.[1] View on Wikipedia Wikipedia Definition Liquefied natural gas or LNG is natural gas that has been converted to liquid form for ease of storage or transport. Liquefied natural gas takes up about 1/600th the volume of natural gas in the gaseous state. It is odorless, colorless, non-toxic and non-corrosive. Hazards include flammability after vaporization into a gaseous state, freezing and asphyxia. The liquefaction process involves removal of certain components, such as dust, acid gases, helium, water, and heavy hydrocarbons, which could cause difficulty downstream. The natural gas is then condensed into a

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Historical Natural Gas Annual - 1930 Through 2000  

Gasoline and Diesel Fuel Update (EIA)

Historical Natural Gas Annual Historical Natural Gas Annual 1930 Through 2000 EIA Home > Natural Gas > Natural Gas Data Publications Historical Natural Gas Annual The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-2000 and detailed annual historical information by State for 1967-2000. To read reports in PDF format download a free copy of Adobe Acrobat Reader.

222

Passive gas separator and accumulator device  

DOE Patents (OSTI)

A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

Choe, H.; Fallas, T.T.

1994-08-02T23:59:59.000Z

223

Flammable gas project topical report  

SciTech Connect

The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

Johnson, G.D.

1997-01-29T23:59:59.000Z

224

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

225

NATURAL GAS MARKET ASSESSMENT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

226

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Price Sold to...

227

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

228

Shale gas is natural gas trapped inside  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

229

Gas Chromatography  

Science Journals Connector (OSTI)

Researchers from the University of Missouri and ICx Nomadics have reported on the use of a optofluidic ring resonator (OFRR) sensor for on-column detection ?. ... Although substantial differences were noted between fresh and aged (or oxidized) oils, many of the compounds in the oxidized oil went unidentified due to lack of library mass spectral data. ... A high resolution MEMS based gas chromatography column for the analysis of benzene and toluene gaseous mixtures ...

Frank L. Dorman; Joshua J. Whiting; Jack W. Cochran; Jorge Gardea-Torresdey

2010-05-26T23:59:59.000Z

230

NETL: Gasification Systems - Gas Separation  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation Separation Ion-Transport Membrane Oxygen Separation Modules Ion-Transport Membrane Oxygen Separation Modules Gas separation unit operations represent major cost elements in gasification plants. The gas separation technology being supported in the DOE program promises significant reduction in cost of electricity, improved thermal efficiency, and superior environmental performance. Gasification-based energy conversion systems rely on two gas separation processes: (1) separation of oxygen from air for feed to oxygen-blown gasifiers; and (2) post-gasification separation of hydrogen from carbon dioxide following (or along with) the shifting of gas composition when carbon dioxide capture is required or hydrogen is the desired product. Research efforts include development of advanced gas separation

231

Passive gas separator and accumulator device  

DOE Patents (OSTI)

A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

Choe, Hwang (Saratoga, CA); Fallas, Thomas T. (Berkeley, CA)

1994-01-01T23:59:59.000Z

232

U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report  

SciTech Connect

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

NONE

1996-11-01T23:59:59.000Z

233

US crude oil, natural gas, and natural gas liquids reserves 1996 annual report  

SciTech Connect

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

NONE

1997-12-01T23:59:59.000Z

234

Next Generation Natural Gas Vehicle Activity: Natural Gas Engine and Vehicle Research & Development (Fact Sheet)  

SciTech Connect

This fact sheet describes the status of the Next Generation Natural Gas Vehicle (NGNGV) activity, including goals, R&D progress, NGV implementation, and the transition to hydrogen.

Not Available

2003-09-01T23:59:59.000Z

235

Gas Sampling Considerations  

Science Journals Connector (OSTI)

Gas sampling is carried out to measure the quality of a gas. Gas samples are sometimes acquired by in situ observation within the main gas body by using remote or visual observation for specific properties. A mor...

Alvin Lieberman

1992-01-01T23:59:59.000Z

236

Georgia Tech Dangerous Gas  

E-Print Network (OSTI)

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

237

Sequential injection gas guns for accelerating projectiles  

DOE Patents (OSTI)

Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

Lacy, Jeffrey M. (Idaho Falls, ID); Chu, Henry S. (Idaho Falls, ID); Novascone, Stephen R. (Idaho Falls, ID)

2011-11-15T23:59:59.000Z

238

Net Taxable Gasoline Gallons (Including Aviation Gasoline)  

E-Print Network (OSTI)

Net Taxable Gasoline Gallons (Including Aviation Gasoline) Period 2000 2001 (2) 2002 2003 2004 "gross" to "net" , was deemed impractical. (5) This report replaces the Gross Taxable Gasoline Gallons (Including Aviation Gasoline) report which will not be produced after December 2002. (6) The November 2007

239

Global Natural Gas Market Trends, 2. edition  

SciTech Connect

The report provides an overview of major trends occurring in the natural gas industry and includes a concise look at the drivers behind recent rapid growth in gas usage and the challenges faced in meeting that growth. Topics covered include: an overview of Natural Gas including its history, the current market environment, and its future market potential; an analysis of the overarching trends that are driving a need for change in the Natural Gas industry; a description of new technologies being developed to increase production of Natural Gas; an evaluation of the potential of unconventional Natural Gas sources to supply the market; a review of new transportation methods to get Natural Gas from producing to consuming countries; a description of new storage technologies to support the increasing demand for peak gas; an analysis of the coming changes in global Natural Gas flows; an evaluation of new applications for Natural Gas and their impact on market sectors; and, an overview of Natural Gas trading concepts and recent changes in financial markets.

NONE

2007-07-15T23:59:59.000Z

240

Market Digest: Natural Gas  

Reports and Publications (EIA)

The Energy Information Administration's Natural Gas Market Digest provides information and analyses on all aspects of natural gas markets.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EIA - Analysis of Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

Prices Prices 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format)

242

Gas Chromatography  

Science Journals Connector (OSTI)

He received his B.S. degree in 1970 from Rhodes College in Memphis, TN, his M.S. degree in 1973 from the University of Missouri, Columbia, MO, and his Ph.D. degree in 1975 from Dalhousie University, Halifax, Nova Scotia, Canada. ... A review (with 145 references) on the role of carrier gases on the separation process (A4) demonstrates that carrier gas interactions are integral to the chromatographic process. ... In another report, activity coefficients for refrigerants were evaluated with a polyol ester oil stationary phase (C22). ...

Gary A. Eiceman; Herbert H. Hill, Jr.; Jorge Gardea-Torresdey

2000-04-25T23:59:59.000Z

243

Tax Treatment of Natural Gas The "landowner" referred to in  

E-Print Network (OSTI)

. There are a number of oil and gas regulations and laws such as the Oil and Gas Act, Coal and Gas Resource Coor OGM, including the Clean Streams Law, the Dam Safety and Encroach- ments Act, the Solid Waste Manage advances in drilling technology and rising natural gas prices have attracted new interest

Boyer, Elizabeth W.

244

Samson Sherman President Obama's Energy Plan & Natural Gas  

E-Print Network (OSTI)

Samson Sherman President Obama's Energy Plan & Natural Gas The Plan On March 30, President Obama" but includes wind, solar, nuclear, natural gas, and coal plants that can capture and store CO2 emissions period. Natural Gas Natural gas is considered the cleanest of all fossil fuels. Mostly comprised

Toohey, Darin W.

245

DRAFT DRAFT Electricity and Natural Gas Sector Description  

E-Print Network (OSTI)

DRAFT DRAFT Electricity and Natural Gas Sector Description For Public Distribution AB 32 Scoping of electricity and natural gas; including electricity generation, combined heat and power, and electricity and natural gas end uses for residential and commercial purposes. Use of electricity and/or gas for industrial

246

Natural gas strategic plan and program crosscut plans  

SciTech Connect

The natural gas strategic plan recognizes the challenges and opportunities facing increased U.S. natural gas use. Focus areas of research include natural gas supply, delivery, and storage, power generation, industrial, residential and commercial, natural gas vehicles, and the environment. Historical aspects, mission, situation analysis, technology trends, strategic issues, performance indicators, technology program overviews, and forecasting in the above areas are described.

NONE

1995-06-01T23:59:59.000Z

247

Gas fluidized-bed stirred media mill  

DOE Patents (OSTI)

A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

Sadler, III, Leon Y. (Tuscaloosa, AL)

1997-01-01T23:59:59.000Z

248

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2007 (next release 2:00 p.m. on May 24, 2007) 7, 2007 (next release 2:00 p.m. on May 24, 2007) Natural gas spot and futures prices increased slightly this week (Wednesday-Wednesday, May 9-16), despite the usual lull in demand during this shoulder period between the winter heating and summer cooling seasons. The upward price trend likely resulted from a variety of factors, including rising prices for competing petroleum products (as evidenced by an increase in the underlying crude oil price). Additionally, concerns over current and future supplies do not appear to have eased. The official start of the hurricane season is imminent, and the first named tropical storm appeared this week. However, imports of liquefied natural gas (LNG) have increased markedly in the past few months. On the week, the Henry Hub spot price increased 16 cents per MMBtu, or 2 percent, to $7.62. At the New York Mercantile Exchange (NYMEX), the contract for June delivery increased 17.0 cents per MMBtu on the week to a daily settlement of $7.890 yesterday (May 16). EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 1,842 Bcf as of Friday, May 11, reflecting an implied net injection of 95 Bcf. This level of working gas in underground storage is 20.6 percent above the 5-year average inventory for this time of year. The spot price for West Texas Intermediate (WTI) crude oil increased $1.03 per barrel on the week to $62.57 per barrel, or $10.79 per MMBtu.

249

Flammable Gas Detection for the D-Zero Gas System  

SciTech Connect

The use of flammable gas and high voltage in detector systems is common in many experiments at Fermilab. To mitigate the hazards associated with these systems, Fermilab Engineering Standard SD-45B (Ref. 1) was adopted. Since this note is meant to be a guide and not a mandatory standard, each experiment is reviewed for compliance with SD-45B by the flammable gas safety subcommittee. Currently, there are only two types of flammable gas in use, ethane (Appendix A) and methane (Appendix B). The worst flammable-gas case is C2H6 (ethane), which has an estimated flow rate that is 73% of the CH4 (methane) flow but a heat of combustion (in kcal/g-mole) that is 173% of that of methane. In the worst case, if ethane were to spew through its restricting orifice into its gas line at 0 psig and then through a catastrophic leak into Room 215 (TRD) or Room 511 (CDC/FDCNTX), the time that would be required to build up a greater than Class 1 inventory (0.4kg H2 equivalent) would be 5.2 hours (Ref. 2). Therefore a worst-case flammable gas leak would have to go undetected for over 5 hours in order to transform a either mixing room to an environment with a Risk Class greater than Class 1. The mixing systems, gas lines, and detectors themselves will be thoroughly leak checked prior to active service. All vessels that are part of the mixing systems will be protected from overpressure by safety valves vented outside the building. Both the input and output of all detector volumes are protected from overpressure in the same way. The volume immediately outside the central tracking detectors is continuously purged by nitrogen from boiloff from the main nitrogen dewar at the site. However, if flammable gas were to build up in the mixing rooms or particular detector areas, no matter how unlikely, flammable gas detectors that are part of the interlock chain of each gas mixing system will shut down the appropriate system. This includes shutting off the output of flammable gas manifolds within the gas shed. Similarly, if a fire were to break out anywhere in the D-ZERO Hall, fire sensors would stop the output of all flammable gas manifolds within the gas shed, by unpowering electrically controlled solenoid valves that are normally closed in the event of a power failure. Fire sensor contacts have not yet been installed.

Spires, L.D.; Foglesong, J.; /Fermilab

1991-02-11T23:59:59.000Z

250

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 5, 2009 Next Release: February 12, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 4, 2009) Natural gas spot prices decreased in half of the trading regions in the Lower 48 States this report week. Generally, areas east of the Rockies and particularly those that experienced frigid temperatures posted weekly price increases. However, there were some exceptions, including the Midcontinent and East Texas. At the New York Mercantile Exchange (NYMEX), futures trading for the near-month contract was fairly volatile, with daily price changes ranging between a 16-cent loss and a 16-cent increase. The March 2009 contract ended trading yesterday 18 cents higher than on the previous Wednesday.

251

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2008 9, 2008 Next Release: June 5, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Natural gas spot price movements were mixed this report week (Wednesday–Wednesday, May 21-28), with price decreases generally occurring in markets west of the Mississippi River and price increases dominant in trading locations in the eastern parts of the country. During the report week, the Henry Hub spot price increased $0.20 per million Btu (MMBtu) to $11.60. At the New York Mercantile Exchange (NYMEX), futures prices increased for the report week, continuing a trend of rising prices that has occurred in futures markets for many commodities this spring, including futures prices for crude oil. The futures contract for June delivery, for

252

National Energy Board Act Part VI (Oil and Gas) Regulations (Canada)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations from the National Energy Board cover licensing for oil and gas, including the exportation and importation of natural gas. The regulations also cover inspections, reporting...

253

Gas sensitive materials for gas detection and methods of making  

SciTech Connect

A gas sensitive material comprising SnO.sub.2 nanocrystals doped with In.sub.2O.sub.3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO.sub.2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

2014-07-15T23:59:59.000Z

254

Natural Gas Delivered to Consumers in Rhode Island (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,425 8,875 9,886 7,566 7,317 6,419 6,971 7,536 7,493 7,652 6,918 9,231 2002 10,511 8,745 7,848 6,823 6,244 5,757 5,873 5,748 5,630 5,720 8,981 9,553 2003 9,510 10,141 9,429 5,721 4,332 4,902 5,830 5,423 4,891 4,709 6,468 6,670 2004 9,122 9,552 6,607 6,373 5,874 5,299 4,296 4,885 3,594 3,675 6,015 6,955 2005 8,403 8,917 7,847 7,729 6,062 6,293 5,990 6,010 4,836 5,169 5,246 7,434 2006 8,207 6,737 7,405 5,579 5,935 5,619 6,982 5,512 5,724 6,845 5,472 6,230 2007 7,988 9,766 8,374 7,190 6,533 4,869 7,009 7,571 6,437 6,185 5,880 9,217 2008 10,073 9,216 8,387 9,366 6,092 6,760 7,028 6,288 5,544 6,433 5,614 7,492

255

Natural Gas Delivered to Consumers in New York (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 135,000 121,033 117,080 87,191 75,087 78,246 82,949 95,148 84,785 85,317 85,604 117,809 2002 130,795 125,601 121,522 96,684 77,319 74,903 86,308 87,878 74,748 77,281 106,098 130,678 2003 145,176 150,464 132,321 96,357 69,848 57,468 66,369 71,177 61,893 63,566 74,370 103,175 2004 143,310 146,400 118,918 96,553 76,708 61,518 59,080 60,352 63,530 61,753 84,337 116,290 2005 131,102 130,863 130,581 94,151 72,115 68,850 75,042 73,408 58,655 53,370 68,534 109,966 2006 117,077 122,348 125,713 88,492 72,223 71,803 85,597 79,345 63,354 74,825 81,800 99,716 2007 123,033 141,204 137,001 102,645 76,067 71,823 74,597 83,048 66,970 67,841 92,753 133,841

256

Intentionally Including - Engaging Minorities in Physics Careers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers April 24, 2013 - 4:37pm Addthis Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the American Institute of Physics Resources. Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the

257

Scramjet including integrated inlet and combustor  

SciTech Connect

This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

Kutschenreuter, P.H. Jr.; Blanton, J.C.

1992-02-04T23:59:59.000Z

258

1 - Introduction to gas turbines  

Science Journals Connector (OSTI)

Abstract: This chapter provides an overview of the importance of gas turbines for the power generation and oil and gas sector and – in less detail – the aviation sector. Worldwide trends in power generation and electricity conversion processes and the role of gas turbines to minimise CO2 emissions are addressed. Gas turbines are essential and crucial to reduce emissions both in aviation and in power production. Technologies for improving gas turbine and system efficiency, through higher turbine inlet temperatures, improved materials, cooling methods and thermal barrier coatings are described. New thermodynamic approaches, including intercooling, water and steam injection and hybrid cycles are addressed. Major issues are also fuel and operational flexibility, reliability and availability, cost reduction and power density, especially for the offshore sector. Market trends have been sketched. In the coming decades, gas turbines will be one of the major technologies for CO2 emission reductions in the power generation, aviation, oil and gas exploration and transport sectors. This prognosis is based on their high current efficiency and further efficiency improvement potential, both for simple cycle as for combined-cycle applications.

A.J.A. Mom

2013-01-01T23:59:59.000Z

259

Energy Consumption of Personal Computing Including Portable  

E-Print Network (OSTI)

Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

Namboodiri, Vinod

260

EE Regional Technology Roadmap Includes comparison  

E-Print Network (OSTI)

EE Regional Technology Roadmap Includes comparison against 6th Power Plan (Update cyclically Roadmap with a strong linkage to utility programs Scan for Technologies 1. How does it address the NW Data Clearinghouse BPA/RTF NEEA/Regional Programs Group Update Regional EE Technology Roadmap Lighting

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Video Topics Include Freshman Inquiry Course  

E-Print Network (OSTI)

Video Topics Include Freshman Inquiry Course Open Advisement/ Group Advisement Dinning Campus: End of Spring 2012, Commencement May 18: Grades available on MAX after 4:30pm AdvisementYouTubeVideoSeries I N S I D E T H I S I S S U E : YouTube Video Series 1 Mark Your Calendar 1 Exploring Major Tips 2

Hardy, Christopher R.

262

Including Ocean Model Uncertainties in Climate Predictions  

E-Print Network (OSTI)

Including Ocean Model Uncertainties in Climate Predictions Chris Brierley, Alan Thorpe, Mat Collins's to perform the integrations Currently uses a `slab' ocean #12;An Ocean Model Required to accurately model transient behaviour Will have its own uncertainties Requires even more computing power Create new models

Jones, Peter JS

263

Landfill Gas | OpenEI  

Open Energy Info (EERE)

Landfill Gas Landfill Gas Dataset Summary Description The UK Department of Energy and Climate Change (DECC) publishes annual renewable energy generation and capacity by region (9 regions in England, plus Wales, Scotland and Northern Ireland). Data available 2003 to 2009. Data is included in the DECC Energy Trends: September 2010 Report (available: http://www.decc.gov.uk/assets/decc/Statistics/publications/trends/558-tr...) Source UK Department of Energy and Climate Change (DECC) Date Released September 30th, 2010 (4 years ago) Date Updated Unknown Keywords Energy Generation Hydro Landfill Gas Other Biofuels Renewable Energy Consumption Sewage Gas wind Data application/zip icon 2 Excel files, 1 for generation, 1 for capacity (zip, 24.9 KiB) Quality Metrics Level of Review Peer Reviewed

264

Ceramic gas turbine shroud  

DOE Patents (OSTI)

An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

Shi, Jun; Green, Kevin E.

2014-07-22T23:59:59.000Z

265

Thermal Barrier Coatings for Gas-Turbine Engine Applications  

Science Journals Connector (OSTI)

...but in some industrial gas-turbine engines applications it can reach...shorter thermal-cycling lives than EB-PVD TBCs...extremely well in industrial gas-turbine engines, including “bucket...thermal” compressive residual stresses in...

Nitin P. Padture; Maurice Gell; Eric H. Jordan

2002-04-12T23:59:59.000Z

266

Vermont Gas- Residential Energy Efficiency Loan and Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Vermont Gas customers whose homes have used at least 0.5 Ccf per square foot of natural gas over the past year are eligible for this program, as are multi-family buildings. Typical measures include...

267

An economic analysis of Floating Liquefied Natural Gas (FLNG)  

E-Print Network (OSTI)

This report includes a discussion of the potential production of stranded natural gas reserves through the implementation of Floating Liquefied Natural Gas (FLNG) in a world of growing energy demand followed by an analysis ...

Marmolejo, Phillip Christian

2014-01-01T23:59:59.000Z

268

EIA - AEO2010 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Gas Demand Gas Demand Annual Energy Outlook 2010 with Projections to 2035 Natural Gas Demand Figure 68. Regional growth in nonhydroelectric renewable electricity capacity including end-use capacity, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 69. Annual average lower 48 wellhead and Henry Hub spot market prices for natural gas, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 70. Ratio of low-sulfur light crude oil price to Henry Hub natural gas price on an energy equivalent basis, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 71. Annual average lower 48 wellhead prices for natural gas in three technology cases, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 72. Annual average lower 48 wellhead prices for natural gas in three oil price cases, 1990-2035

269

Definition: Natural gas | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Natural gas Jump to: navigation, search Dictionary.png Natural gas A hydrocarbon gas obtained from underground sources, often in association with petroleum and coal deposits.[1] View on Wikipedia Wikipedia Definition Natural gas is a naturally occurring hydrocarbon gas mixture consisting primarily of methane, but commonly includes varying amounts of other higher alkanes and even a lesser percentage of carbon dioxide, nitrogen, and hydrogen sulfide. Natural gas is an energy source often used for heating, cooking, and electricity generation. It is also used as fuel for vehicles and as a chemical feedstock in the manufacture of plastics and other commercially important organic chemicals. Natural gas is found in

270

Buildings Included on EMS Reports"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Legacy Management Office of Legacy Management Buildings Included on EMS Reports" "Site","Property Name","Property ID","GSF","Incl. in Water Baseline (CY2007)","Water Baseline (sq. ft.)","Water CY2008 (sq. ft.)","Water CY2009 (sq. ft.)","Water Notes","Incl. in Energy Baseline (CY2003)","Energy Baseline (sq. ft.)","CY2008 Energy (sq. ft.)","CY2009 Energy (sq. ft.)","Energy Notes","Included as Existing Building","CY2008 Existing Building (sq. ft.)","Reason for Building Exclusion" "Column Totals",,"Totals",115139,,10579,10579,22512,,,3183365,26374,115374,,,99476 "Durango, CO, Disposal/Processing Site","STORAGE SHED","DUD-BLDG-STORSHED",100,"no",,,,,"no",,,,"OSF","no",,"Less than 5,000 GSF"

271

Exhaust gas recirculation system for an internal combustion engine  

DOE Patents (OSTI)

An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

Wu, Ko-Jen

2013-05-21T23:59:59.000Z

272

Category:Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Gas Gas Jump to: navigation, search This category includes companies and information related to oil (petroleum) or natural gas. Pages in category "Oil and Gas" The following 114 pages are in this category, out of 114 total. A Abu Dhabi National Oil Company Abu Dhabi Supreme Petroleum Council Al Furat Petroleum Company Alabama Oil and Gas Board Alaska Division of Oil and Gas Alaska Oil and Gas Conservation Commission Algeria Ministry of Energy and Mining Archaeological Resource Protection Act Archaeological Resources Protection Act Arizona Oil and Gas Commission Arkansas Oil and Gas Commission B Bahrain National Gas and Oil Authority Bald and Golden Eagle Protection Act C California Division of Oil, Gas, and Geothermal Resources California Environmental Quality Act

273

Completion strategy includes clay and precipitate control  

SciTech Connect

This article describes the conditions which are necessary for a successful oil well completion in the Mississippi and Cherokee zones of South Central Kansas. Topics considered include paraffin precipitation, clay swelling and migration, and iron precipitation. Clays in these zones are sensitive to water-base treating fluids and tend to swell and migrate to the well bore, thereby causing permeability damage. The presence of iron in the Mississippi and Cherokee formations has been indicated by cuttings, core samples, and connate water samples.

Sandy, T.; Gardner, G.R.

1985-05-06T23:59:59.000Z

274

Jet-calculus approach including coherence effects  

Science Journals Connector (OSTI)

We show how integrodifferential equations typical of jet calculus can be combined with an averaging procedure to obtain jet-calculus-based results including the Mueller interference graphs. Results in longitudinal-momentum fraction x for physical quantities are higher at intermediate x and lower at large x than with the conventional ‘‘incoherent’’ jet calculus. These results resemble those of Marchesini and Webber, who used a Monte Carlo approach based on the same dynamics.

L. M. Jones; R. Migneron; K. S. S. Narayanan

1987-01-01T23:59:59.000Z

275

Natural gas hydrates - issues for gas production and geomechanical stability  

E-Print Network (OSTI)

bearing sediments in offshore environments, I divided these data into different sections. The data included water depths, pore water salinity, gas compositions, geothermal gradients, and sedimentary properties such as sediment type, sediment mineralogy... .................................................................. 9 2.2 Hydrate patterns in sediments .................................................................... 24 3.1 Water depths and penetration for the Blake Ridge..................................... 31 3.2 Geothermal gradients measured...

Grover, Tarun

2008-10-10T23:59:59.000Z

276

Gas distributor for fluidized bed coal gasifier  

DOE Patents (OSTI)

A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

1980-01-01T23:59:59.000Z

277

Simple Cosmological Model with Relativistic Gas  

E-Print Network (OSTI)

We construct simple and useful approximation for the relativistic gas of massive particles. The equation of state is given by an elementary function and admits analytic solution of the Friedmann equation, including more complex cases when the relativistic gas of massive particles is considered together with radiation or with dominating cosmological constant. The model of relativistic gas may be interesting for the description of primordial Universe, especially as a candidate for the role of a Dark Matter.

Guilherme de Berredo-Peixoto; Ilya L. Shapiro; Flavia Sobreira

2005-06-16T23:59:59.000Z

278

Neutron Gas  

Science Journals Connector (OSTI)

We assume that the neutron-neutron potential is well-behaved and velocity-dependent. We can then apply perturbation theory to find the energy per particle of a neutron gas, in the range of Fermi wave numbers 0.5

J. S. Levinger and L. M. Simmons

1961-11-01T23:59:59.000Z

279

Chapter 4 - Natural Gas–fired Gas Turbines and Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Abstract Gas turbines can burn a range of liquid and gaseous fuels but most burn natural gas. Power plants based on gas turbines are one of the cheapest types of plant to build, but the cost of their electricity depends heavily on the cost of their fuel. Two types of gas turbine are used for power generation: aero-derivative gas turbines and heavy-duty gas turbines. The former are used to provide power to the grid at times of peak demand. The latter are most often found in combined cycle power stations. These are capable of more than 60% efficiency. There are a number of ways of modifying the gas turbine cycle to improve efficiency, including reheating and intercooling. Micro-turbines have been developed for very small-scale generation of both electricity and heat. The main atmospheric emissions from gas turbines are carbon dioxide and nitrogen oxide.

Paul Breeze

2014-01-01T23:59:59.000Z

280

Natural Gas Hydrates  

Science Journals Connector (OSTI)

Natural Gas Hydrates ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ...

Willard I. Wilcox; D. B. Carson; D. L. Katz

1941-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Gas Kick Mechanistic Model  

E-Print Network (OSTI)

Gas kicks occur during drilling when the formation pressure is greater than the wellbore pressure causing influx of gas into the wellbore. Uncontrolled gas kicks could result in blowout of the rig causing major financial loss and possible injury...

Zubairy, Raheel

2014-04-18T23:59:59.000Z

282

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

283

Neural net controlled tag gas sampling system for nuclear reactors  

DOE Patents (OSTI)

A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

Gross, Kenneth C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Fall, ID); Lambert, John D. B. (Wheaton, IL); Herzog, James P. (Downers Grove, IL)

1997-01-01T23:59:59.000Z

284

Gas turbine cooling system  

DOE Patents (OSTI)

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

285

Clearing the air with natural gas engines  

SciTech Connect

This article examines the increased popularity of natural gas vehicles which has spurred engine designers to manipulate fuel-air ratios, compression ratios, ignition timing, and catalytic converters in ways to minimize exhaust pollutants. The topics of the article include reducing pollutants, high-octane engineering, diesel to natural gas, and the two-fuel choice.

O'Connor, L.

1993-10-01T23:59:59.000Z

286

5 - Combustors in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: This chapter discusses combustion systems in gas turbines. It begins by reviewing basic design principles before discussing developments in technology such as advanced fuel staging and reheat combustion systems. The chapter also covers the impact of different natural gas types on combustor operations, including combustor design for low calorific gases and fuel oils.

P. Flohr; P. Stuttaford

2013-01-01T23:59:59.000Z

287

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

288

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

289

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

290

Future of Natural Gas  

Office of Environmental Management (EM)

technology is improving - Producers are drilling in liquids rich gas and crude oil shale plays due to lower returns on dry gas production - Improved well completion time...

291

Natural Gas Industrial Price  

Annual Energy Outlook 2012 (EIA)

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

292

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Permeability Gas Low Permeability Gas Design and Implementation of Energized Fracture Treatment in Tight Gas Sands DE-FC26-06NT42955 Goal The goal of this project is to develop methods and tools that can enable operators to design, optimize, and implement energized fracture treatments in a systematic way. The simulator that will result from this work would significantly expand the use and cost-effectiveness of energized fracs and improve their design and implementation in tight gas sands. Performer University of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands account for 58 percent of the total proved natural gas reserves in the United States. As many of these tight gas sand basins mature, an increasing number of wells are being drilled or completed into nearly depleted reservoirs. This includes infill wells, recompletions, and field-extension wells. When these activities are carried out, the reservoir pressures encountered are not as high as the initial reservoir pressures. In these situations, where pressure drawdowns can be less than 2,000 psi, significant reductions in well productivity are observed, often due to water blocking and insufficient clean-up of fracture-fluid residues. In addition, many tight gas sand reservoirs display water sensitivity—owing to high clay content—and readily imbibe water due both to very high capillary pressures and low initial water saturations.

293

Optical panel system including stackable waveguides  

DOE Patents (OSTI)

An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

DeSanto, Leonard (Dunkirk, MD); Veligdan, James T. (Manorville, NY)

2007-11-20T23:59:59.000Z

294

Thermovoltaic semiconductor device including a plasma filter  

DOE Patents (OSTI)

A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

Baldasaro, Paul F. (Clifton Park, NY)

1999-01-01T23:59:59.000Z

295

Critical point anomalies include expansion shock waves  

SciTech Connect

From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

2014-02-15T23:59:59.000Z

296

Complex shell model representation including antibound states  

Science Journals Connector (OSTI)

A generalization of the complex shell model formalism is presented that includes antibound states in the basis. These states, together with bound states, Gamow states, and the continuum background, represented by properly chosen scattering waves, form a representation in which all states are treated on the same footing. Two-particle states are evaluated within this formalism, and observable two-particle resonances are defined. The formalism is illustrated in the well-known case of Li11 in its bound ground state and in Ca70(g.s.), which is also bound. Both cases are found to have a halo structure. These halo structures are described within the generalized complex shell model. We investigated the formation of two-particle resonances in these nuclei, but no evidence of such resonances was found.

R. Id Betan; R. J. Liotta; N. Sandulescu; T. Vertse; R. Wyss

2005-11-30T23:59:59.000Z

297

Gas-path leakage seal for a gas turbine  

DOE Patents (OSTI)

A gas-path leakage seal is described for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a gas turbine (such as combustor casing segments). The seal includes a generally imperforate foil-layer assemblage which is generally impervious to gas and is located in the leakage-gap. The seal also includes a cloth-layer assemblage generally enclosingly contacting the foil-layer assemblage. In one seal, the first edge of the foil-layer assemblage is left exposed, and the foil-layer assemblage resiliently contacts the first member near the first edge to reduce leakage in the ``plane`` of the cloth-layer assemblage under conditions which include differential thermal growth of the two members. In another seal, such leakage is reduced by having a first weld-bead which permeates the cloth-layer assemblage, is attached to the metal-foil-layer assemblage near the first edge, and unattachedly contacts the first member. 4 figs.

Wolfe, C.E.; Dinc, O.S.; Bagepalli, B.S.; Correia, V.H.; Aksit, M.F.

1996-04-23T23:59:59.000Z

298

Supply Chain Management and Economic Valuation of Real Options in the Natural Gas  

E-Print Network (OSTI)

Supply Chain Management and Economic Valuation of Real Options in the Natural Gas and Liquefied Natural Gas Industry Mulan Xiaofeng Wang Submitted to the Tepper School of Business in Partial Fulfillment options in the natural gas and liquefied natural gas (LNG) industry, including gas pipeline transportation

Sadeh, Norman M.

299

Natural gas 1994: Issues and trends  

SciTech Connect

This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

Not Available

1994-07-01T23:59:59.000Z

300

Solid fuel volatilization to produce synthesis gas  

DOE Patents (OSTI)

A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.

Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.

2014-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Avista Utilities (Gas)- Prescriptive Commercial Incentive Program  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities offers Natural Gas saving incentives to commercial customers on rate schedule 420 and 424. This program provides rebates for a variety of equipment and appliances including cooking...

302

Our lab focuses on materials durability in extreme environments for energy, power, and propulsion applications. Current research interests include  

E-Print Network (OSTI)

has been developed that simulates the temperature, gas chemistry, and gas velocity of turbine engines for Combustion Applications SiC-based Ceramic Matrix Composites are currently under development for turbine oxide stability for use in a variety of energy applications, including solid oxide fuel cells and solar

Acton, Scott

303

Raman gas analyzer for determining the composition of natural gas  

Science Journals Connector (OSTI)

We describe a prototype of a Raman gas analyzer designed for measuring the composition of natural gas. Operation of the gas analyzer was tested on a real natural gas. We show that our Raman gas analyzer prototype...

M. A. Buldakov; B. V. Korolev; I. I. Matrosov…

2013-03-01T23:59:59.000Z

304

Noble gas magnetic resonator  

DOE Patents (OSTI)

Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

2014-04-15T23:59:59.000Z

305

OIL & GAS INSTITUTE Introduction  

E-Print Network (OSTI)

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

306

SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE  

SciTech Connect

The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to stochastic hydrologic properties and flow processes.

C. Tsang

2004-09-22T23:59:59.000Z

307

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Environment Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) Greenhouse Gas Emissions Overview Diagram Notes [a] CO2 emissions related to petroleum consumption (includes 64 MMTCO2 of non-fuel-related emissions). [b] CO2 emissions related to coal consumption (includes 0.3 MMTCO2 of non-fuel-related emissions). [c] CO2 emissions related to natural gas consumption (includes 13 MMTCO2 of non-fuel-related emissions). [d] Excludes carbon sequestered in nonfuel fossil products. [e] CO2 emissions from the plastics portion of municipal solid waste (11 MMTCO2) combusted for electricity generation and very small amounts (0.4 MMTCO2) of geothermal-related emissions.

308

System and method for producing substitute natural gas from coal  

DOE Patents (OSTI)

The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

Hobbs, Raymond (Avondale, AZ)

2012-08-07T23:59:59.000Z

309

Historical Natural Gas Annual - 1930 Through 2000  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-2000 and detailed annual historical information by State for 1967-2000. Entire . The entire report as a single file. PDF 1.5 MB Front Matter . Historical Natural Gas Annual Cover Page, Preface, Common Abbreviations Used, and Table of Contents PDF . . Tables . 1 Quantity and Average Price of Natural Gas Production in the United States, 1930-1998 PDF

310

gas rates | OpenEI Community  

Open Energy Info (EERE)

gas rates gas rates Home > Groups > Utility Rate Are there Gas Utility Rates available in OpenEI? Submitted by Nlong on 11 July, 2012 - 11:41 1 answer Points: 1 Hi, OpenEI doesn't have NG utility rates as far as I'm aware. That may be a dataset that is added in the future. You can access natural gas prices by utility and sector by downloading the EIA-176 form from the Energy Information Administration. I've included some links to help you find your way. http://205.254.135.7/survey/form/eia_176/efs176.cfm http://www.eia.gov/oil_gas/natural_gas/applications/eia176query_historical.html -Sfomail Sfomail on 12 July, 2012 - 12:04 Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge?

311

Natural gas annual 1993 supplement: Company profiles  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

Not Available

1995-02-01T23:59:59.000Z

312

EIA - Natural Gas Pipeline System - Southwest Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southwest Region Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily exporters of the region's natural gas production to other parts of the country and Mexico, while an extensive Gulf of Mexico and intrastate natural gas pipeline network is the main conduit for deliveries within the region. More than 56,000 miles of natural gas pipeline on more than 66 intrastate natural gas pipeline systems (including offshore-to-onshore and offshore Gulf of Mexico pipelines) deliver natural gas to the region's local natural gas distribution companies and municipalities and to the many large industrial and electric power facilities located in the region.

313

EIA - Analysis of Natural Gas Production  

Gasoline and Diesel Fuel Update (EIA)

Production Production 2010 Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format) Natural Gas Data Collection and Estimation This presentation to the Oklahoma Independent Petroleum Association gives an overview of the EIA natural gas data collection system, Oklahoma natural gas statistics, recent changes in monthly natural gas production statistics, and the May 2010 short-term natural gas forecast. The presentation focuses on the EIA-914, the "Monthly Natural Gas Production Report," and recent changes to this survey's estimation methodology. Categories: Production (Released, 6/9/2010, ppt format)

314

Natural gas annual 1992: Volume 1  

SciTech Connect

This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

Not Available

1993-11-22T23:59:59.000Z

315

New Jersey: Atlantic City Jitneys Running on Natural Gas | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

approximately 15 million in funding allowed he city to purchase nearly 300 compressed natural gas vehicles, including 190 Atlantic City "jitneys." The jitneys, minibuses run by...

316

Natural Gas Weekly Update, Printer-Friendly Version  

Annual Energy Outlook 2012 (EIA)

diameter pipeline with the capacity to transport 477 million cubic feet (MMcf) of natural gas per day. Facilities would also include a compressor station, 2 meter stations, 19...

317

Air Emmissions Trading Program/Regional Greenhouse Gas Initiative...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Environmental Services Air Resources Division The New Hampshire Regional Greenhouse Gas Initiative is a carbon dioxide emissions budget trading program. The program includes...

318

Natural Gas Weekly Update, Printer-Friendly Version  

Annual Energy Outlook 2012 (EIA)

the Gulf Coast, including the construction of a new marine terminal for liquefied natural gas (LNG) imports. FERC approved Corpus Christi LNG, a terminal proposed by Cheniere...

319

ARM - Measurement - Trace gas concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsTrace gas concentration govMeasurementsTrace gas concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Trace gas concentration The amount per unit volume of trace gases other than carbon dioxide, ozone and water vapor, typically measured in conjunction with in situ aerosol measurements, e.g. carbon monoxide, nitrogen oxides, sulfur dioxide. Categories Atmospheric Carbon, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO : Carbon Monoxide Mixing Ratio System

320

Gas-Phase Molecular Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Phase Molecular Dynamics Gas-Phase Molecular Dynamics The Gas-Phase Molecular Dynamics Group is dedicated to developing and applying spectroscopic and theoretical tools to challenging problems in chemical physics related to reactivity, structure, dynamics and kinetics of transient species. Recent theoretical work has included advances in exact variational solution of vibrational quantum dynamics, suitable for up to five atoms in systems where large amplitude motion or multiple strongly coupled modes make simpler approximations inadequate. Other theoretical work, illustrated below, applied direct dynamics, quantum force trajectory calculations to investigate a series of reactions of the HOCO radical. The potential energy surface for the OH + CO/ H + CO2 reaction, showing two barriers (TS1 and TS2) and the deep HOCO well along the minimum energy pathway. The inset figure shows the experimental and calculated reactivity of HOCO with selected collision partners. See J.S. Francisco, J.T. Muckerman and H.-G. Yu, "HOCO radical chemistry,"

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Natural gas cavern storage regulation  

SciTech Connect

Investigation of an incident at an LPG storage facility in Texas by U.S. Department of Transportation resulted in recommendation that state regulation of natural gas cavern storage might be improved. Interstate Oil & Gas Compact Commission has established a subcommittee to analyze the benefits and risks associated with natural gas cavern storage, and to draft a regulation model which will suggest engineering and performance specifications. The resulting analysis and regulatory language will be reviewed by I.O.G.C.C., and if approved, distributed to member states (including New York) for consideration. Should the states desire assistance in modifying the language to reflect local variables, such as policy and geology, I.O.G.C.C. may offer assistance. The proposed presentation will review the I.O.G.C.C. product (if published at that date), and discuss implications of its application in New York.

Heneman, H.

1995-09-01T23:59:59.000Z

322

Natural Gas: Dry Wells Yield Gas  

Science Journals Connector (OSTI)

... THE Gas Council and Home Oil of Canada have announced plans for developing two ... Council and Home Oil of Canada have announced plans for developing two natural ...

1969-04-26T23:59:59.000Z

323

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

November 30 (next release 2:00 p.m. on December 7, 2006) November 30 (next release 2:00 p.m. on December 7, 2006) Natural gas spot prices increased at nearly all market locations in the Lower 48 States since Wednesday, November 22, 2006, with some Midcontinent and Western regions showing increases of more than $2 per MMBtu. With only 3 trading days included in the report week owing to the Thanksgiving holiday, the spot price at the Henry Hub increased by 34 cents, or about 5 percent, to $7.75 per MMBtu. The price of the NYMEX futures contract for January delivery settled at $8.871 per MMBtu yesterday (November 29), which is 77 cents, or about 10 percent, more than last Wednesday, and the December 2006 contract expired Tuesday at $8.318 per MMBtu. As of Friday, November 24, 2006, natural gas in storage was 3,417 Bcf or 7.2 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil rose to $62.45 per barrel or $10.77 per MMBtu yesterday. This price is $5.17 per barrel, or 9 percent, more than the price last week and is the highest price since late September.

324

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

18, 2002 (next release 2:00 p.m. on July 25) 18, 2002 (next release 2:00 p.m. on July 25) Since Wednesday, July 10, natural gas spot prices have declined slightly at most trading locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the Henry Hub fell 6 cents or 2 percent to $2.98 per MMBtu. Notable exceptions to the general market trend included a recovery in prices at Rockies trading locations and an upward surge in the spot price at the New York citygate. The price of the NYMEX futures contract for August delivery at the Henry Hub fell $0.023 per MMBtu on the week to settle at $2.841 on Wednesday (July 17). Natural gas in storage for the week ending July 12 increased to 2,422 Bcf, which exceeds the 5-year average by 17.8 percent. The spot price for West Texas Intermediate (WTI) crude oil increased $1.15 per barrel since last Wednesday, trading at $27.88 or $4.81 per MMBtu.

325

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9 (next release 2:00 p.m. on November 16, 2006) 9 (next release 2:00 p.m. on November 16, 2006) Natural gas spot price movements were mixed since Wednesday, November 1, including significant price decreases at locations in the Rockies, relatively small increases along the Gulf Coast, and varied movements in other regions. The spot price at the Henry Hub increased 21 cents per MMBtu, or about 3 percent, to $7.37 per MMBtu. The NYMEX futures contract for December delivery at the Henry Hub gained about 11 cents since last Wednesday to close yesterday (November 8) at $7.823 per MMBtu. Natural gas in storage as of Friday, November 3, was 3,445 Bcf, which is 7.7 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $1.29 per barrel, or 2.2 percent, since last Wednesday to trade yesterday at $59.93 per barrel or $10.33 per MMBtu. Yesterday's crude oil price was only 23 cents higher than the year-ago level, when crude oil traded at $59.70 per barrel on November 8, 2005.

326

The Performance of Fractured Horizontal Well in Tight Gas Reservoir  

E-Print Network (OSTI)

?, including tight gas, gas/oil shale, oil sands, and coal-bed methane. North America has a substantial growth in its unconventional oil and gas market over the last two decades. The primary reason for that growth is because North America, being a mature...

Lin, Jiajing

2012-02-14T23:59:59.000Z

327

Neutron microdosimetric response of a gas electron multiplier  

Science Journals Connector (OSTI)

......avalanching structure called the gas electron multiplier...MSGC including its high cost per unit area, the inability...metallic strips, a counting gas region and a cathode...below 10 keV microm1. The production of alpha particles, through...heavy recoil ions in the gas produced the high LET......

J. Dubeau; A. J. Waker

2008-03-01T23:59:59.000Z

328

Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

329

South Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

330

Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

331

Montana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

332

Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

333

Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

334

New York Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

335

West Virginia Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

336

North Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

337

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

338

U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

339

Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

340

Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

342

Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

343

Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

344

Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

345

Natural Gas Annual, 1999 (HISTORICAL)  

Gasoline and Diesel Fuel Update (EIA)

9 9 The Natural Gas Annual, 1999 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 1999. Summary data are presented for each Census Division and State for 1995 to 1999. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 1999 are available as self-extracting executable files in ASCII TXT or CSV file formats. This volume emphasizes information for 1999, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1995-1999 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 1999 (Table 2) ASCII TXT, are also available.

346

March Natural Gas Monthly  

Gasoline and Diesel Fuel Update (EIA)

'PGTI[+PHQTOCVKQP#FOKPKUVTCVKQP0CVWTCN)CU/QPVJN[/CTEJ 'PGTI[+PHQTOCVKQP#FOKPKUVTCVKQP0CVWTCN)CU/QPVJN[/CTEJ EIA Corrects Errors in Its Drilling Activity Estimates Series William Trapmann and Phil Shambaugh Introduction The Energy Information Administration (EIA) has published monthly and annual estimates of oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status. They are assessed directly for trends, as well as in combination with other measures to assess the productivity and profitability of upstream industry operations. They are a major reference point for policymakers at both the Federal and State level. Users in the private sector include financial

347

OGEL (Oil, Gas & Energy Law Intelligence): Focussing on recent developments in the area of oil-gas-energy law,  

E-Print Network (OSTI)

About OGEL OGEL (Oil, Gas & Energy Law Intelligence): Focussing on recent developments in the area of oil-gas-energy law, regulation, treaties, judicial and arbitral cases, voluntary guidelines, tax and contracting, including the oil-gas- energy geopolitics. For full Terms & Conditions and subscription rates

Dixon, Juan

348

EIA - Analysis of Natural Gas Imports/Exports & Pipelines  

Gasoline and Diesel Fuel Update (EIA)

Imports/Exports & Pipelines Imports/Exports & Pipelines 2010 U.S Natural Gas Imports and Exports: 2009 This report provides an overview of U.S. international natural gas trade in 2009. Natural gas import and export data, including liquefied natural gas (LNG) data, are provided through the year 2009 in Tables SR1-SR9. Categories: Imports & Exports/Pipelines (Released, 9/28/2010, Html format) Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format)

349

title Estimating Policy Driven Greenhouse Gas Emissions Trajectories  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy Driven Greenhouse Gas Emissions Trajectories Estimating Policy Driven Greenhouse Gas Emissions Trajectories in California The California Greenhouse Gas Inventory Spreadsheet GHGIS Model year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p A California Greenhouse Gas Inventory Spreadsheet GHGIS model was developed to explore the impact of combinations of state policies on state greenhouse gas GHG and regional criteria pollutant emissions The model included representations of all GHGemitting sectors of the California economy including those outside the energy sector such as high global warming potential gases waste treatment agriculture and forestry in varying degrees of detail and was carefully calibrated using available data and projections from multiple state agencies and

350

1 - An Overview of Gas Turbines  

Science Journals Connector (OSTI)

Publisher Summary The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. The gas turbine has found increasing service in the past 60 years in the power industry among both utilities and merchant plants as well as the petrochemical industry throughout the world. The utilization of gas turbine exhaust gases, for steam generation or the heating of other heat transfer mediums, or the use of cooling or heating buildings or parts of cities is not a new concept and is currently being exploited to its full potential. The aerospace engines have been leaders in most of the technology in the gas turbine. The design criteria for these engines were high reliability, high performance, with many starts and flexible operation throughout the flight envelope. The industrial gas turbine has always emphasized long life and this conservative approach has resulted in the industrial gas turbine in many aspects giving up high performance for rugged operation. The gas turbine produces various pollutants in the combustion of the gases in the combustor. These include smoke, unburnt hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. It has found increasing service in the past 60 years in the power industry among both utilities and merchant plants, as well as in the petrochemical industry. Its compactness, low weight and multiple fuel application make it a natural power plant for offshore platforms. Today there are gas turbines that run on natural gas, diesel fuel, naphtha, methane, crude, low-BTU gases, vaporized fuel oils and biomass gases. The last 20 years have seen a large growth in gas turbine technology, spearheaded by the growth in materials technology, new coatings, new cooling schemes and combined cycle power plants. This chapter presents an overview of the development of modern gas turbines and gas turbine design considerations. The six categories of simple-cycle gas turbines (frame type heavy-duty; aircraft-derivative; industrial-type; small; vehicular; and micro) are described. The major gas turbine components (compressors; regenerators/recuperators; fuel type; and combustors) are outlined. A gas turbine produces various pollutants in the combustion of the gases in the combustor and the potential environmental impact of gas turbines is considered. The two different types of combustor (diffusion; dry low NOx, (DLN) or dry low emission (DLE)), the different methods to arrange combustors on a gas turbine, and axial-flow and radial-inflow turbines are described. Developments in materials and coatings are outlined.

Meherwan P. Boyce

2012-01-01T23:59:59.000Z

351

DOI: 10.1002/chem.201303086 Comparison of Gas Sorption Properties of Neutral and Anionic Metal  

E-Print Network (OSTI)

of the stronger interaction of the gas molecules with the anionic framework and the ammoni- um cations included

Paik Suh, Myunghyun

352

Chapter Nine - Gas Sweetening  

Science Journals Connector (OSTI)

Abstract This chapter begins by reviewing the processing of natural gas to meet gas sales contract specifications. It then describes acid gas limitations for pipelines and gas plants, before detailing the most common acid gas removal processes, such as solid-bed, chemical solvent processes, physical solvent processes, direct conversion processes, distillation process, and gas permeation processes. The chapter discusses the selection of the appropriate removal process for a given situation, and it provides a detailed design procedure for a solid-bed and chemical solvent process. The chapter ends by supplying a sample design for a solid-bed and chemical solvent process.

Maurice I. Stewart Jr.

2014-01-01T23:59:59.000Z

353

Electricity and Natural Gas Efficiency Improvements for Residential Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Efficiency Improvements for Residential Gas and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Publication Type Report LBNL Report Number LBNL-59745 Year of Publication 2006 Authors Lekov, Alexander B., Victor H. Franco, Stephen Meyers, James E. McMahon, Michael A. McNeil, and James D. Lutz Document Number LBNL-59745 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78% annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80% AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81% AFUE) and condensing furnaces (90-96% AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80%. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90% or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current extra cost of this technology more than offsets the sizable electricity savings.

354

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor...  

Gasoline and Diesel Fuel Update (EIA)

Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Pipeline...

355

Enhanced membrane gas separations  

SciTech Connect

An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

Prasad, R.

1993-07-13T23:59:59.000Z

356

Alternative fuels for industrial gas turbines (AFTUR)  

Science Journals Connector (OSTI)

Environmentally friendly, gas turbine driven co-generation plants can be located close to energy consumption sites, which can produce their own fuel such as waste process gas or biomass derived fuels. Since gas turbines are available in a large power range, they are well suited for this application. Current gas turbine systems that are capable of burning such fuels are normally developed for a single specific fuel (such as natural gas or domestic fuel oil) and use conventional diffusion flame technology with relatively high levels of \\{NOx\\} and partially unburned species emissions. Recently, great progress has been made in the clean combustion of natural gas and other fossil fuels through the use of dry low emission technologies based on lean premixed combustion, particularly with respect of \\{NOx\\} emissions. The objective of the AFTUR project is to extend this capability to a wider range of potentially commercial fuel types, including those of lower calorific value produced by gasification of biomass (LHV gas in line with the European Union targets) and hydrogen enriched fuels. The paper reports preliminary progress in the selection and characterisation of potential, liquid and gas, alternative fuels for industrial gas turbines. The combustion and emission characteristics of the selected fuels will be assessed, in the later phases of the project, both in laboratory and industrial combustion chambers.

Iskender Gökalp; Etienne Lebas

2004-01-01T23:59:59.000Z

357

Fuel cell gas management system  

DOE Patents (OSTI)

A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2000-01-11T23:59:59.000Z

358

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

"N3050MS3","N3010MS3","N3020MS3","N3035MS3","NA1570SMS3","N3045MS3" "Date","Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

359

Natural Gas Monthly  

Reports and Publications (EIA)

Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

2014-01-01T23:59:59.000Z

360

Natural gas annual 1996  

SciTech Connect

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gas Turbine Plants  

Science Journals Connector (OSTI)

In a cycle process of a gas turbine, the compressor load, as well as ... from the expansion of the hot pressurized flue gas. Either turbine, compressor and driven assembly are joined by ... shaft is thus divided,...

1992-01-01T23:59:59.000Z

362

Gas-Turbine Cycles  

Science Journals Connector (OSTI)

This book focuses on the design of regenerators for high-performance regenerative gas turbines. The ways in which gas-turbine regenerators can be designed for high system performance can be understood by studying...

Douglas Stephen Beck; David Gordon Wilson

1996-01-01T23:59:59.000Z

363

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

of 1 Tcf from the 1994 estimate of 51 Tcf. Ultimate potential for natural gas is a science-based estimate of the total amount of conventional gas in the province and is an...

364

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3010CT3","N3020CT3","N3035CT3","N3045CT3" "Date","Natural Gas Citygate Price in Connecticut (Dollars per Thousand Cubic Feet)","Connecticut Price of Natural Gas Delivered to...

365

Natural Gas in Britain  

Science Journals Connector (OSTI)

... AT a recent meeting of the Institution of Gas Engineers, Sir Harold Smith, chairman ofthe ... Engineers, Sir Harold Smith, chairman ofthe Gas Council, stated that an intensive, large-scale search for ...

1953-06-13T23:59:59.000Z

366

Natural Gas Weekly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Rotary Rig Count Rises to Highest Level since February 2009. The natural gas rotary rig count was 992 as of Friday, August 13, according to data released by Baker...

367

Inherent Safety Analysis of a Propane Precooled Gas-Phase Liquified Natural Gas Process  

Science Journals Connector (OSTI)

Refrigeration is widely used in chemical and petrochemical industries and in the liquefaction of gases including natural gas (LNG). ... Conventional refrigeration processes such as the single mixed refrigerant process and the cascade refrigerant process operate by evaporation of the refrigerant. ...

Nipen M. Shah; Andrew F. A. Hoadley; G. P. Rangaiah

2009-03-25T23:59:59.000Z

368

Compressed Gas Cylinder Policy  

E-Print Network (OSTI)

storage rack, a wall mounted cylinder rack, anchored to a fixed bench top, vented gas cabinet, or other

369

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

. Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis...

370

Residual gas analysis device  

DOE Patents (OSTI)

A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

Thornberg, Steven M. (Peralta, NM)

2012-07-31T23:59:59.000Z

371

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

372

Natural Gas Reforming  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This technology is an important pathway for near-term hydrogen production.

373

Fuel: Bargain Gas  

Science Journals Connector (OSTI)

... THE Gas Council has done well to agree on low prices for North Sea Gas with the Shell and Esso companies. The ... for North Sea Gas with the Shell and Esso companies. The price finally agreed is both much less than the two companies wanted and much less than ...

1968-12-28T23:59:59.000Z

374

Gas Cylinders: Proper Management  

E-Print Network (OSTI)

Compressed Gas Cylinders: Proper Management And Use Published by the Office of Environment, Health;1 Introduction University of California, Berkeley (UC Berkeley) departments that use compressed gas cylinders (MSDS) and your department's Job Safety Analyses (JSAs). Talk to your gas supplier about hands

Boyer, Elizabeth W.

375

Gas Chromatography -Mass Spectrometry  

E-Print Network (OSTI)

GCMS - 1 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS OF ETHANOL AND BENZENE IN GASOLINE Last updated: June 17, 2014 #12;GCMS - 2 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS). The goal of this experiment is to separate the components in a sample of gasoline using Gas Chromatography

Nizkorodov, Sergey

376

Static gas expansion cooler  

DOE Patents (OSTI)

Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

Guzek, J.C.; Lujan, R.A.

1984-01-01T23:59:59.000Z

377

Valve for gas centrifuges  

DOE Patents (OSTI)

The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, C.A.; Rurbage, C.H.

1982-03-17T23:59:59.000Z

378

Gas-cooled nuclear reactor  

DOE Patents (OSTI)

A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

1985-01-01T23:59:59.000Z

379

Natural Gas 1995 Issues and Trends  

Gasoline and Diesel Fuel Update (EIA)

5) 5) Distribution Category UC-950 Natural Gas 1995 Issues and Trends November 1995 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration Natural Gas 1995: Issues and Trends iii Preface Natural Gas 1995: Issues and Trends has been prepared by the Energy Information Administration (EIA) to provide a summary of the latest data and information relating to the natural gas industry, including prices, production, transmission,

380

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

382

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

383

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

384

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

385

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

386

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

387

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

388

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

389

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

390

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

391

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

392

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

393

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

394

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

395

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

396

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

397

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

398

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

399

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

400

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

402

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

403

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

404

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

405

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

406

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

407

EIA - Natural Gas Pipeline Network - Natural Gas Import/Export Locations  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelines > Import/Export Location List Pipelines > Import/Export Location List About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Currently, there are 58 locations at which natural gas can be exported or imported into the United States, including 9 LNG (liquefied natural gas) facilities in the continental United States and Alaska (There is a tenth U.S. LNG import facility located in Puerto Rico). At 28 of these locations natural gas or LNG currently can only be imported; while at 17 they may only be exported (1 LNG export facility is located in Alaska). At 13 of the 58 locations natural gas may, and sometimes does, flow in both directions, although at each of these sites the flow is primarily either import or export.

408

Method for improved gas-solids separation  

DOE Patents (OSTI)

Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.

Kusik, C.L.; He, B.X.

1990-11-13T23:59:59.000Z

409

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

410

Shale-gas scheduling for natural-gas supply in electric power production  

Science Journals Connector (OSTI)

Abstract This paper describes a novel integration of shale-gas supply in geographical proximity to natural-gas power production. Shale-gas reservoirs hold special properties that make them particularly suited for intermittent shut-in based production schemes. The proposed scheme argues that shale-gas reservoirs can be used to shift storage of gas used for meeting varying demands, from separate underground storage units operated by local distribution companies to the gas producers themselves. Based on this property, we present an economical attractive option for generating companies to increase their use of firm gas–supply contracts to the natural-gas power plants in order to secure a sufficient gas supply. The shale-well scheduling is formulated as profit-maximization model for well operators, in which we seek to include their main operational challenges, while preserving an economic incentive for the operators to adopt the proposed scheme. The resulting large-scale mixed integer linear program is solved by a Lagrangian relaxation scheme, with a receding horizon strategy implemented to handle operational uncertainties. We present the proposed optimization framework by illustrative case studies. The numerical results show a significant economic potential for the shale-well operators, and a viable approach for generating companies to secure a firm gas supply for meeting varying seasonal electricity demands.

Brage Rugstad Knudsen; Curtis H. Whitson; Bjarne Foss

2014-01-01T23:59:59.000Z

411

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

412

Gas Hydrate Storage of Natural Gas  

SciTech Connect

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

413

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

414

Natural gas leak mapper  

DOE Patents (OSTI)

A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

2008-05-20T23:59:59.000Z

415

Gas Bubbles and Gas Pancakes at Liquid/Solid Interface: A Continuum Theory Incorporated with Molecular Interactions  

E-Print Network (OSTI)

The states of gas accumulated at the liquid-solid interface are analyzed based on the continuum theory where the Hamaker constant is used to describe the long-range interaction at the microscopic scale. The Hamaker constant is always negative, whereas the gas spreading coefficient can be either sign. Despite the complexity of gas, including that the density profile may not be uniform due to absorption on both solid and liquid surfaces, we predict three possible gas states at the liquid-solid interface, i.e. complete wetting, partial wetting and pseudopartial wetting. These possible gas states correspond respectively to a gas pancake (or film) surrounded by a wet solid, a gas bubble with a finite contact angle, and a gas bubble(s) coexisting with a gas pancake. Typical thickness of the gas pancakes is at the nanoscale within the force range of the long-range interaction, whereas the radius of the gas bubbles can be large. The state of gas bubble(s) coexisting with a gas film is predicted theoretically for the first time. Our theoretical results can contribute to the development of a unified picture of gas nucleation at the liquid-solid interface.

Zhaoxia Li; Xuehua Zhang; Lijuan Zhang; Xiaocheng Zeng; Jun Hu; Haiping Fang

2007-10-27T23:59:59.000Z

416

About U.S. Natural Gas Pipelines  

Reports and Publications (EIA)

This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

2007-01-01T23:59:59.000Z

417

Gas well operation with liquid production  

SciTech Connect

Prediction of liquid loading in gas wells is discussed in terms of intersecting tubing or system performance curves with IPR curves and by using a more simplified critical velocity relationship. Different methods of liquid removal are discussed including such methods as intermittent lift, plunger lift, use of foam, gas lift, and rod, jet, and electric submersible pumps. Advantages, disadvantages, and techniques for design and application of the methods of liquid removal are discussed.

Lea, J.F.; Tighe, R.E.

1983-02-01T23:59:59.000Z

418

Compressed Gas Safety for Experimental Fusion Facilities  

SciTech Connect

Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

Lee C. Cadwallader

2004-09-01T23:59:59.000Z

419

Natural Gas Engine Development Gaps (Presentation)  

SciTech Connect

A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

Zigler, B.T.

2014-03-01T23:59:59.000Z

420

The National Energy Modeling System: An Overview 1998 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

NATURAL GAS TRANSMISSION AND DISTRIBUTION MODULE NATURAL GAS TRANSMISSION AND DISTRIBUTION MODULE blueball.gif (205 bytes) Annual Flow Submodule blueball.gif (205 bytes) Capacity Expansion Submodule blueball.gif (205 bytes) Pipeline Tariff Submodule blueball.gif (205 bytes) Distributor Tariff Submodule The natural gas transmission and distribution module (NGTDM) is the component of NEMS that represents the natural gas market. The NGTDM models the natural gas transmission and distribution network in the lower 48 States, which links suppliers (including importers) and consumers of natural gas. The module determines regional market-clearing prices for natural gas supplies (including border prices) and end-use consumption. The NGTDM has four primary submodules: the annual flow submodule, the capacity expansion submodule, the pipeline tariff submodule, and the

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Technically recoverable Devonian shale gas in Ohio  

SciTech Connect

The technically recoverable gas from Devonian shale (Lower and Middle Huron) in Ohio is estimated to range from 6.2 to 22.5 Tcf, depending on the stimulation method and pattern size selected. This estimate of recovery is based on the integration of the most recent data and research on the Devonian Age gas-bearing shales of Ohio. This includes: (1) a compilation of the latest geologic and reservoir data for the gas in-place; (2) analysis of the key productive mechanisms; and, (3) examination of alternative stimulation and production strategies for most efficiently recovering this gas. Beyond a comprehensive assembly of the data and calculation of the technically recoverable gas, the key findings of this report are as follows: a substantial volume of gas is technically recoverable, although advanced (larger scale) stimulation technology will be required to reach economically attractive gas production rates in much of the state; well spacing in certain of the areas can be reduced by half from the traditional 150 to 160 acres per well without severely impairing per-well gas recovery; and, due to the relatively high degree of permeability anisotropy in the Devonian shales, a rectangular, generally 3 by 1 well pattern leads to optimum recovery. Finally, although a consistent geological interpretation and model have been constructed for the Lower and Middle Huron intervals of the Ohio Devonian shale, this interpretation is founded on limited data currently available, along with numerous technical assumptions that need further verification. 11 references, 21 figures, 32 tables.

Kuushraa, V.A.; Wicks, D.E.; Sawyer, W.K.; Esposito, P.R.

1983-07-01T23:59:59.000Z

422

Physical Properties of Gas Hydrates: A Review  

SciTech Connect

Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

2010-01-01T23:59:59.000Z

423

Oxygen sensor for monitoring gas mixtures containing hydrocarbons  

DOE Patents (OSTI)

A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.

Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA)

1996-01-01T23:59:59.000Z

424

Oxygen sensor for monitoring gas mixtures containing hydrocarbons  

DOE Patents (OSTI)

A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.

Ruka, R.J.; Basel, R.A.

1996-03-12T23:59:59.000Z

425

The Department of Energy's Role in Liquefied Natural Gas Export  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Department of Energy's Role in Liquefied Natural Gas Export The Department of Energy's Role in Liquefied Natural Gas Export Applications The Department of Energy's Role in Liquefied Natural Gas Export Applications November 8, 2011 - 11:34am Addthis Statement of Christopher Smith, Deputy Assistant Secretary for Oil and Natural Gas, Office of Fossil Energy before the Senate Committee on Energy and Natural Resources on DOE's Role in Liquefied Natural Gas Export Applications. Thank you Chairman Bingaman, Ranking Member Murkowski, and members of the Committee; I appreciate the opportunity to be here today to discuss the Department of Energy's (DOE) program regulating the export of natural gas, including liquefied natural gas (LNG). DOE's Statutory Authority DOE's authority to regulate the export of natural gas arises under

426

Chapter 7 - Gas Turbine Fuel Systems and Fuels  

Science Journals Connector (OSTI)

Abstract The basics of a gas turbine fuel system are similar for all turbines. The most common fuels are natural gas, LNG (liquid natural gas), and light diesel. With appropriate design changes, the gas turbine has proved to be capable of handling residual oil, pulverized coal, syngas from coal and various low BTU fluids, both liquid and gas, that may be waste streams of petrochemical processes or, for instance, gas from a steel (or other industry) blast furnace. Handling low BTU fuel can be a tricky operation, requiring long test periods and a willingness to trade the savings in fuel costs with the loss of turbine availability during initial prototype full load tests. This chapter covers gas turbine fuel systems and includes a case study (Case 5) on blast furnace gas in a combined cycle power plant (CCPP). “All truths are easy to understand once they are discovered, the point is to discover them.” —Plato

Claire Soares

2015-01-01T23:59:59.000Z

427

DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss  

E-Print Network (OSTI)

DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss P: 847-768-0753; E: william hurdles facing on-board liquid fuel reforming. This program leverages efforts to develop natural gas for compressed natural gas vehicles. The integrated natural gas-to-hydrogen system includes a high efficiency

428

Last Updated: 05.30.2013 Part I: California Uses for Natural Gas  

E-Print Network (OSTI)

1 Last Updated: 05.30.2013 Part I: California Uses for Natural Gas Natural gas is the second most shares of natural gas consumed by end-use sectors and in-state electricity generation. Table 1: Natural and Energy Reports. * Does not include out-of-state natural gas used to produce electricity that is imported

429

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Maximum Rebate $1,000 Program Info Start Date 01/01/2013 Expiration Date 04/30/2013 State Illinois Program Type Utility Rebate Program Rebate Amount ComEd Rebates Central Air Conditioner Unit 14 SEER or above: $350 Central Air Conditioner Unit Energy Star rated: $500 Nicor Gas, Peoples Gas and North Shore Gas Furnace: $200 - $500 (varies based on gas company and unit installed) Provider ComEd Energy ComEd, Nicor Gas, Peoples Gas and North Shore Gas are offering a Complete System Replacement Rebate Program to residential customers. The program is

430

U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Refinery Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

431

U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Biomass Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

432

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0 (next release 2:00 p.m. on May 27) 0 (next release 2:00 p.m. on May 27) Since Wednesday, May 12, natural gas spot prices have decreased at virtually all market locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the Henry Hub decreased 21 cents or about 3 percent to $6.18 per MMBtu. Yesterday (May 19), the price of the NYMEX futures contract for June delivery at the Henry Hub settled at $6.455 per MMBtu, decreasing roughly 5 cents or less than 1 percent since last Wednesday. Natural gas in storage was 1,388 Bcf as of May 14, which is 1.1 percent below the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil climbed $1.31 per barrel or 3 percent on the week to $41.61 per barrel or $7.174 per MMBtu. Prices: Moderating temperatures led to price declines of 12 to 48 cents per MMBtu at virtually all market locations in the Lower 48 States since last Wednesday, May 12. The steepest declines occurred principally west of the Rockies, where prices fell more than 35 cents per MMBtu at most markets. In California, prices fell more than 40 cents per MMBtu, while declines in the Rocky Mountains region averaged roughly 36 cents per MMBtu. East of the Rockies, price decreases were widespread with declines ranging between 20 and 35 cents per MMBtu at most markets. These declines were more pronounced along the northern tier with declines averaging 28, 27, and 23 cents per MMBtu in the Midcontinent, Northeast and Midwest regions, respectively. In the south, including Texas, Louisiana, and Florida, price decreases were less than 23 cents per MMBtu on average. Despite these widespread declines, prices nevertheless remain somewhat high relative to historical trends and exceed last year's levels by 3 to 5 percent. For example, prices at the New York citygate are 34 cents or 5 percent above last year's level. Principal contributing factors sustaining the higher price levels likely include higher oil prices this year as the price of crude oil exceeds last year's level by more than 42 percent.

433

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

434

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

435

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

436

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

437

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006;" 6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

438

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)","Row"

439

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

440

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010;" 5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002;" 5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Row"

442

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010;" 6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

443

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002;" 6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

444

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006;" 5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

445

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIAÂ’s Weekly Natural Gas Storage Report.

446

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, July 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 21, 2010) Natural gas prices rose across market locations in the lower 48 States during the report week. The Henry Hub natural gas spot price rose 31 cents, or 7 percent, during the week, averaging $4.70 per million Btu (MMBtu) yesterday, July 21. At the New York Mercantile Exchange (NYMEX), the price of the August 2010 natural gas futures contract for delivery at the Henry Hub rose about 21 cents, or 5 percent, ending the report week at $4.513 per MMBtu. Working natural gas in storage increased to 2,891 billion cubic feet (Bcf) as of Friday, July 16, according to EIAÂ’s Weekly Natural Gas Storage

447

Gas shielding apparatus  

DOE Patents (OSTI)

An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

Brandt, D.

1984-06-05T23:59:59.000Z

448

Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics  

E-Print Network (OSTI)

International Coalbed and Shale Gas Symposium, Paper 808.Shale RVSP, New Albany Shale Gas Project, RVSP SeismicWave Analysis from Antrim Shale Gas Play, Michigan Basin,

Dobson, Patrick

2014-01-01T23:59:59.000Z

449

Thermodynamics of Chaplygin gas  

E-Print Network (OSTI)

We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

Yun Soo Myung

2011-05-11T23:59:59.000Z

450

Nitrogen Removal From Low Quality Natural Gas  

SciTech Connect

Natural gas provides more than one-fifth of all the primary energy used in the United States. It is especially important in the residential sector, where it supplies nearly half of all the energy consumed in U.S. homes. However, significant quantities of natural gas cannot be produced economically because its quality is too low to enter the pipeline transportation system without some type of processing, other than dehydration, to remove the undesired gas fraction. Such low-quality natural gas (LQNG) contains significant concentration or quantities of gas other than methane. These non- hydrocarbons are predominantly nitrogen, carbon dioxide, and hydrogen sulfide, but may also include other gaseous components. The nitrogen concentrations usually exceeds 4%. Nitrogen rejection is presently an expensive operation which can present uneconomic scenarios in the potential development of natural gas fields containing high nitrogen concentrations. The most reliable and widely used process for nitrogen rejection from natural gas consists of liquefying the feed stream using temperatures in the order of - 300{degrees}F and separating the nitrogen via fractionation. In order to reduce the gas temperature to this level, the gas is compressed, cooled by mullet-stream heat exchangers, and expanded to low pressure. Significant energy for compression and expensive materials of construction are required. Water and carbon dioxide concentrations must be reduced to levels required to prevent freezing. SRI`s proposed research involves screening new nitrogen selective absorbents and developing a more cost effective nitrogen removal process from natural gas using those compounds. The long-term objective of this project is to determine the technical and economical feasibility of a N{sub 2}2 removal concept based on complexation of molecular N{sub 2} with novel complexing agents. Successful development of a selective, reversible, and stable reagent with an appropriate combination of capacity and N{sub 2} absorption/desorption characteristics will allow selective separation of N{sub 2} from LQNG.

Alvarado, D.B.; Asaro, M.F.; Bomben, J.L.; Damle, A.S.; Bhown, A.S.

1997-10-01T23:59:59.000Z

451

Gas Filter Testing Methods  

Science Journals Connector (OSTI)

Gas filtration of air in the cleanroom is carried out with HEPA (high- ... filter. The ambient air filters for the cleanroom are relatively fragile and require great care...

Alvin Lieberman

1992-01-01T23:59:59.000Z

452

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Prices",8,"Monthly","112014","1151989" ,"Release Date:","1302015"...

453

,"California Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",4,"Annual",2013,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 7","Consumption",11,"Annual",2013,...

454

,"Maryland Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1999" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",10,"Annual",2013,...

455

,"Georgia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1999" ,"Data 3","Underground Storage",3,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",8,"Annual",2013,"...

456

,"Massachusetts Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",3,"Annual",1975,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",8,"Annual",2013,"...

457

,"Oregon Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1979" ,"Data 3","Underground Storage",4,"Annual",2013,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",10,"Annual",2013,...

458

,"Texas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",4,"Annual",2013,"6301967" ,"Data 6","Liquefied Natural Gas Storage",1,"Annual",2013,"6302012" ,"Data 7","Consumption",11,"Annual",2013,...

459

,"Washington Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",4,"Annual",2013,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",9,"Annual",2013,"...

460

,"Nebraska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 3","Underground Storage",4,"Annual",2013,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",11,"Annual",2013,...

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

,"Pennsylvania Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

462

,"Alaska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",6,"Annual",2013,"6301973" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2013,"6301969" ,"Data 7","Consumption",11,"Annual",2013,...

463

,"Maine Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Imports and Exports",2,"Annual",2013,"6301982" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301981" ,"Data 4","Consumption",8,"Annual",2013,"...

464

,"Minnesota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",4,"Annual",2013,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",8,"Annual",2013,"...

465

,"Idaho Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",2,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301981" ,"Data 5","Consumption",9,"Annual",2013,"...

466

,"Wisconsin Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 4","Consumption",8,"Annual",2013,"...

467

,"Louisiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",4,"Annual",2013,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 7","Consumption",11,"Annual",2013,...

468

,"Delaware Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 4","Consumption",9,"Annual",2013,"...

469

,"Colorado Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",2,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

470

,"Tennessee Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 3","Underground Storage",4,"Annual",2013,"6301968" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",11,"Annual",2013,...

471

,"Arkansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

472

,"Nevada Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

301967" ,"Data 2","Production",11,"Annual",2013,"6301991" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301982" ,"Data 4","Consumption",10,"Annual",2013,...

473

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 4","Consumption",8,"Annual",2013,"...

474

,"Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",10,"Annual",2013,...

475

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

476

,"Indiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 3","Underground Storage",4,"Annual",2013,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",10,"Annual",2013,...

477

Natural Gas Rules (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

478

Oil and Gas (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

479

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

(NETL) Anthony Zammerilli General Engineer Strategic Center for Natural Gas and Oil Energy Sector Planning and Analysis (ESPA) Robert C. Murray, Thomas Davis, and James...

480

Oil and Gas Outlook  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Outlook For Independent Petroleum Association of America November 13, 2014 | Palm Beach, FL By Adam Sieminski, Administrator U.S. Energy Information Administration Recent...

Note: This page contains sample records for the topic "gas includes isopentane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Ammonia synthesis gas purification  

SciTech Connect

This patent describes the purification of a reformed gas mixture following water gas shift conversion to produce a purified ammonia synthesis gas stream. The improved processing sequence consisting essentially of: (A) Selectively catalytically oxidizing the residual carbon monoxide content of the gas mixture to carbon dioxide so as to reduce the carbon monoxide content of the gas mixture to less than about 20 ppm, the selective catalytic oxidation being carried out with an excess of air, with the excess oxygen being catalytically reacted with a small amount of hydrogen so that the residual oxygen level is reduced to less than about 3 ppm; (B) removing the bulk of the carbon dioxide content of the gas mixture by liquid absorption; (C) Removing residual amounts of carbon monoxide, carbon dioxide and water by selective adsorption on the fixed beds of a thermal swing adsorption system, a dry, purified ammonia ammonia synthesis gas stream containing less than a total of 10 ppm of carbon monoxide and carbon dioxide being recovered from the thermal swing adsorption system; (D) Passing the resulting dry, purified ammonia synthesis gas stream having a low content of methane to an ammonia production operation without intermediate passage of the ammonia synthesis gas stream to a methanation unit or to a cryogenic unit for removal of carbon monoxide and carbon dioxide therefrom; whereby the efficiency of the overall purification operation and the effective utilization of hydrogen are enhanced.

Fuderer, A.

1986-02-25T23:59:59.000Z

482

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Prices",13,"Annual",2013,"6301967" ,"Release Date:","10312014"...

483

EIA - Natural Gas Publications  

Gasoline and Diesel Fuel Update (EIA)

data collected on Form EIA-914 (Monthly Natural Gas Production Report) for Federal Offshore Gulf of Mexico, Texas, Louisiana, New Mexico, Oklahoma, Texas, Wyoming, Other States...

484

The Natural Gas Advantage  

Science Journals Connector (OSTI)

Environmental think-tank leaders and the new energy secretary are singing the praises of the ever-expanding U.S. natural gas bonanza, but at the same time, they worry about permanent dependence on this fossil fuel. ... This flood of shale-based natural gas finds has been great for U.S. chemical companies because it is a cheap feedstock and fuel source. ... Equally important, it is also revising the greenhouse gas-climate change equation because, when burned to generate electricity, natural gas produces the same electrical output as coal but emits half the amount of carbon dioxide. ...

JEFF JOHNSON

2013-06-24T23:59:59.000Z

485

NETL: Natural Gas Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Significant volumes of natural gas can also be produced from tight (low permeability) sandstone reservoirs and coal seams, both unconventional reservoir rocks. NETL...

486

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

force majeure declared December 17 at its Totem storage field, Colorado Interstate Gas Pipeline (CIG) reported that it anticipates repair work to be complete around February 12,...

487

Natural Gas Weekly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

imbalances. Northern Natural Gas Company declared a force majeure after an unplanned repair issue at the Spearman Compressor Station in Ochiltree County, Texas, on Friday,...

488

String Gas Baryogenesis  

E-Print Network (OSTI)

We describe a possible realization of the spontaneous baryogenesis mechanism in the context of extra-dimensional string cosmology and specifically in the string gas scenario.

G. L. Alberghi

2010-02-19T23:59:59.000Z

489

Home Safety: Radon Gas  

E-Print Network (OSTI)

Every home should be tested for radon, an invisible, odorless, radioactive gas that occurs naturally. This publication explains the health risks, testing methods, and mitigation and reduction techniques....

Shaw, Bryan W.; Denny, Monica L.

1999-11-12T23:59:59.000Z

490

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Interstate Gas Company (CIG) declared force majeure as a result of an unforeseen mechanical outage at the Morton compressor station in Colorado on pipeline segment 118....

491

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Columbia Gas Transmission, LLC on March 16 began planned maintenance on its pipeline in Green County, Pennsylvania. The maintenance will reduce capacity at an interconnect...

492

Reversible Acid Gas Capture  

SciTech Connect

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2009-08-01T23:59:59.000Z

493

Reversible Acid Gas Capture  

ScienceCinema (OSTI)

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2012-12-31T23:59:59.000Z

494

NETL: Oil & Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Gas Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Efficient recovery of our nation's fossil fuel resources...

495

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

496

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

497

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

498

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

499

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9,907 13,978 15,608 18,154 20,244 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,188,657 1,467,331 1,572,728 1,652,504 1,736,136 From Oil Wells.................................................. 137,385 167,656 174,748 183,612 192,904 Total................................................................... 1,326,042 1,634,987 1,747,476 1,836,115 1,929,040 Repressuring ...................................................... 50,216 114,407 129,598 131,125 164,164 Vented and Flared.............................................. 9,945 7,462 12,356 16,685 16,848

500

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed