Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

South Dakota Heat Content of Natural Gas Deliveries to Consumers...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) South Dakota Heat Content of Natural Gas...

2

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

3

Illinois Heat Content of Natural Gas Deliveries to Consumers...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1...

4

Wisconsin Heat Content of Natural Gas Deliveries to Consumers...  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1...

5

California Heat Content of Natural Gas Deliveries to Consumers...  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) California Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1...

6

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

7

Colorado Heat Content of Natural Gas Deliveries to Consumers...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1...

8

Vermont Heat Content of Natural Gas Deliveries to Consumers ...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1...

9

Michigan Heat Content of Natural Gas Deliveries to Consumers...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1...

10

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

11

New Mexico Heat Content of Natural Gas Deliveries to Consumers...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1...

12

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

13

New York Heat Content of Natural Gas Consumed  

U.S. Energy Information Administration (EIA)

Heat Content of Natural Gas Consumed (Btu per Cubic Foot) Area: Period: Annual : Download Series History: Definitions, Sources & Notes: Show Data ...

14

U.S. Heat Content of Natural Gas Consumed  

U.S. Energy Information Administration (EIA)

Heat Content of Natural Gas Consumed (Btu per Cubic Foot) Area: Period: Annual : Download Series History: Definitions, Sources & Notes: Show Data By: Data Series ...

15

Utilizing the heat content of gas-to-liquids by-product streams for commercial power generation  

E-Print Network (OSTI)

The Gas-to-liquids (GTL) processes produce a large fraction of by-products whose disposal or handling ordinarily becomes a cost rather than benefit. As an alternative strategy to market stranded gas reserves, GTL provides middle distillates to an unsaturated global market and offers opportunities to generate power for commercial purposes from waste by-product streams, which normally are associated with increased expenses incurred from additional handling cost. The key concept investigated in this work is the possibility of integrating the GTL process with power generation using conventional waste by-product steam streams. Simulation of the integrated process was conducted with the aim of identifying the critical operating conditions for successful integration of the GTL and power generation processes. About 500 MW of electric power can be generated from 70% of the exit steam streams, with around 20 to 25% steam plant thermal efficiency. A detailed economic analysis on the LNG, stand-alone GTL, and Integrated GTL Power-Generation plants indicates that the integrated system is more profitable than the other options considered. Justifying the technology and economics involved in the use of the by-product streams to generate power could increase the net revenue and overall profitability of GTL projects. This technology may be transferable to GTL projects in the world, wherever a market for generated power exists.

Adegoke, Adesola Ayodeji

2006-08-01T23:59:59.000Z

16

Consumer Natural Gas Heating Costs  

Gasoline and Diesel Fuel Update (EIA)

5 Notes: Mild weather has minimized residential gas consumption over most of the past 3 winters. Unlike heating oil, average increases in natural gas prices last winter were small....

17

1999 Oil & Gas Conference Proceedings - Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy's Federal Energy Technology Center and National Petroleum Technology Office 1999 Oil & Gas Technology Options Conference Proceedings for Producer Survival Contents This...

18

Estimating Oceanic Heat Content Change Using Isotherms  

Science Conference Proceedings (OSTI)

This paper presents a new analysis of ocean heat content changes over the last 50 yr using isotherms by calculating the mean temperature above the 14°C isotherm and the depth of the 14°C isotherm as separate variables. A new quantity called the “...

Matthew D. Palmer; Keith Haines

2009-10-01T23:59:59.000Z

19

Intermountain Gas Company (IGC) - Gas Heating Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Furnace: $200/unit Provider Customer Service The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system using another energy source. New furnaces must meet a minimum AFUE efficiency rating of 90%, and the home must have been built at least three years prior to the furnace conversion to qualify for the rebate. Visit IGC's program web site for more

20

Effects of variable wind stress on ocean heat content  

E-Print Network (OSTI)

Ocean heat content change (ocean heat uptake) has an important role in variability of the Earth's heat balance. The understanding of which methods and physical processes control ocean heat uptake needs improvement in order ...

Klima, Kelly

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table A3. Approximate Heat Content of Petroleum Consumption and ...  

U.S. Energy Information Administration (EIA)

Table A3. Approximate Heat Content of Petroleum Consumption and Biofuels Production, 1949-2011 (Million Btu per Barrel)

22

Table 5.14c Heat Content of Petroleum Consumption ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

23

Table A6. Approximate Heat Rates for Electricity, and Heat Content ...  

U.S. Energy Information Administration (EIA)

State energy information, detailed and overviews. Maps. ... Table A6. Approximate Heat Rates for Electricity, and Heat Content of Electricity, 1949-2011

24

Table A3. Approximate Heat Content of Petroleum Consumption and ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Annual Energy Review 2011 323 Table A3. Approximate Heat Content of Petroleum Consumption and Biofuels Production, Selected ...

25

Table A3. Approximate Heat Content of Petroleum Consumption and ...  

U.S. Energy Information Administration (EIA)

Table A3. Approximate Heat Content of Petroleum Consumption and Biofuels Production, 1949-2011 (Million Btu per Barrel) Year: Total Petroleum 1 ...

26

NEWTON: Greenhouse Gas and Heat Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenhouse Gas and Heat Transfer Greenhouse Gas and Heat Transfer Name: Robert Status: teacher Grade: 9-12 Location: AK Country: USA Date: Summer 2013 Question: It would appear from a superficial reading that heat flows out of a greenhouse gas more slowly than heat flows into the same gas. This has to be an incorrect interpretation. It seems more likely that molecules with high heat capacities resist heat transfer-both into and out of such a molecular system. At a molecular level how does heat move out of a hot greenhouse gas? I have seen plots of Cv vs Tempt which indicates that heat moves from translational modes of motion-into rotational modes and finally into modes of vibration. The energy spacing of vibrations is generally grater that rotation which are greater than translation. Could it be that it is this quantization of the energy levels and the difference in energy between such quantum states that is the source of the resistance to heat flow or transfer?

27

Gas, Heat, Water, Sewerage Collection and Disposal, and Street...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies...

28

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network (OSTI)

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant.… (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

29

Computer Measurement and Automation System for Gas-fired Heating...  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Measurement and Automation System for Gas-fired Heating Furnace Title Computer Measurement and Automation System for Gas-fired Heating Furnace Publication Type Journal...

30

Heat Hyperbolic Diffusion in Planck Gas  

E-Print Network (OSTI)

In this paper we investigate the diffusion of the thermal pulse in Planck Gas. We show that the Fourier diffusion equation gives the speed of diffusion, v > c and breaks the causality of the thermal processes in Planck gas .For hyperbolic heat transport v

Miroslaw Kozlowski; Janina Marciak-Kozlowska

2006-07-06T23:59:59.000Z

31

Heat conductivity of a pion gas  

E-Print Network (OSTI)

We evaluate the heat conductivity of a dilute pion gas employing the Uehling-Uehlenbeck equation and experimental phase-shifts parameterized by means of the SU(2) Inverse Amplitude Method. Our results are consistent with previous evaluations. For comparison we also give results for an (unphysical) hard sphere gas.

Antonio Dobado Gonzalez; Felipe J. Llanes-Estrada; Juan M. Torres Rincon

2007-02-13T23:59:59.000Z

32

Idaho Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

33

Colorado Heat Content of Natural Gas Consumed  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

34

Gas heat transfer in a heated vertical channel under deteriorated turbulent heat transfer regime  

E-Print Network (OSTI)

Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

Lee, Jeongik

2007-01-01T23:59:59.000Z

35

Gas Heat Transfer in a Heated Vertical Channel under Deteriorated Turbulent Heat Transfer Regime  

E-Print Network (OSTI)

Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

Lee, Jeongik

36

Automatic flue gas heat recovery system  

Science Conference Proceedings (OSTI)

An automatic flue gas heat recovery system for supplementing or replacing a conventional, separate hot water system. In the example described, the heat recovery system is applied to a pizza restaurant where large quantities of heat energy are normally wasted up an oven chimney stack, and large quantities of hot water also are required for restaurant operations. An electric motor driven pump circulates water in a closed loop between a storage tank and a heat exchanger tube located in the oven chimney stack. A thermostat control automatically starts the pump when the oven heats the chimney stack to an effective water heating temperature. When temperature in the storage tank reaches a predetermined maximum, the thermostat control stops the pump, opens a drain valve, and dumps water quickly and completely from the heat exchanger tube. Three different embodiments are shown and described illustrating systems with one or more storage tanks and one or more pumps. In the plural storage tank embodiments, an existing hot water heating tank may be converted for use to augment a main tank supplied with the present system.

Whalen, D.A.

1983-02-22T23:59:59.000Z

37

Waste Heat Recovery from Industrial Smelting Exhaust Gas  

Science Conference Proceedings (OSTI)

For a cost efficient capture of more valuable heat (higher exergy), heat exchangers should operate on the exhaust gases upstream of the gas treatment plants.

38

COOLING AND HEATING FUNCTIONS OF PHOTOIONIZED GAS  

SciTech Connect

Cooling and heating functions of cosmic gas are crucial ingredients for any study of gas dynamics and thermodynamics in the interstellar and intergalactic media. As such, they have been studied extensively in the past under the assumption of collisional ionization equilibrium. However, for a wide range of applications, the local radiation field introduces a non-negligible, often dominant, modification to the cooling and heating functions. In the most general case, these modifications cannot be described in simple terms and would require a detailed calculation with a large set of chemical species using a radiative transfer code (the well-known code Cloudy, for example). We show, however, that for a sufficiently general variation in the spectral shape and intensity of the incident radiation field, the cooling and heating functions can be approximated as depending only on several photoionization rates, which can be thought of as representative samples of the overall radiation field. This dependence is easy to tabulate and implement in cosmological or galactic-scale simulations, thus economically accounting for an important but rarely included factor in the evolution of cosmic gas. We also show a few examples where the radiation environment has a large effect, the most spectacular of which is a quasar that suppresses gas cooling in its host halo without any mechanical or non-radiative thermal feedback.

Gnedin, Nickolay Y. [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Hollon, Nicholas, E-mail: gnedin@fnal.gov [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

2012-10-15T23:59:59.000Z

39

Heating fuel choice shows electricity and natural gas roughly ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

40

Natural gas content of geopressured aquifers  

DOE Green Energy (OSTI)

It is hypothesized that free, but immobile, natural gas is trapped in pores in geopressured aquifers and that this gas becomes mobile as aquifer pressure is reduced by water production. Computer simulation reveals this hypothesis is a plausible explanation for the high gas/water ratio observed from the No. 1 sand in the Edna Delcambre No. 1 well. In this Delcambre well test, the gas/water ratio increased from the solution gas value of less than 20 SCF/bbl to more than 50 SCF/bbl during production of 32,000 barrels of water in 10 days. Bottom hole pressure was reduced from 10,846 to 9,905 psia. The computer simulation reveals that such increased gas production requires relative permeability to gas(k{sub rg}) increase from less than 10{sup -4} to about 10{sup -3} due to a decrease in fractional water saturation of pores (S{sub w}) of only about 0.001. Further, assuming drainage relative permeabilities are as calculated by the method of A.T. Corey{sup 1}, initial gas saturation of pores must be greater than 0.065. Means for achieving these initial conditions during geological time will be qualitatively discussed, and the effect of trapped gas upon long-term production will be described.

Randolph, Philip L.

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term....

42

In Situ Data Biases and Recent Ocean Heat Content Variability  

Science Conference Proceedings (OSTI)

Two significant instrument biases have been identified in the in situ profile data used to estimate globally integrated upper-ocean heat content. A large cold bias was discovered in a small fraction of Argo floats along with a smaller but more ...

Josh K. Willis; John M. Lyman; Gregory C. Johnson; John Gilson

2009-04-01T23:59:59.000Z

43

Method and apparatus for fuel gas moisturization and heating  

SciTech Connect

Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

44

Laclede Gas Company - Residential High Efficiency Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential High Efficiency Heating Rebate Residential High Efficiency Heating Rebate Program Laclede Gas Company - Residential High Efficiency Heating Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Heating System: 2 maximum Programmable Thermostats: 2 maximum Multi-Family Property Owners: 50 thermostat rebates, 50 furnace rebates over the life of the program Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Gas Furnace: $150 - $200 Gas Boiler: $150 Programmable Setback Thermostat: $25 Gas Water Heater: $50 - $200 Provider Laclede Gas Company Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential

45

Working on new gas turbine cycle for heat pump drive  

E-Print Network (OSTI)

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor DO NOT 16 0 REMOVE 16 Small recuperated gas turbine engine, design rated at 13 hp and 27% efficiency of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

46

Electric, Gas, Water, Heating, Refrigeration, and Street Railways...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Street Railways Facilities and Service (South Dakota) Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota) < Back...

47

Southwest Gas Corporation - Combined Heat and Power Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program < Back Eligibility Commercial Industrial Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate 50% of the installed cost of the project Program Info State Arizona Program Type Utility Rebate Program Rebate Amount $400/kW - $500/kW up to 50% of the installed cost of the project Provider Southwest Gas Corporation Southwest Gas Corporation (SWG) offers incentives to qualifying commercial and industrial facilities who install efficient Combined Heat and Power systems (CHP). CHP systems produce localized, on-site power and heat which can be used in a variety of ways. Incentives vary based upon the efficiency

48

What is the average heat content of U.S. coal? - FAQ - U.S ...  

U.S. Energy Information Administration (EIA)

What is the average heat content of U.S. coal? In 2012, the average heat content of coal produced in the United States was about 20.14 million ...

49

Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives < Back Eligibility Commercial Industrial Multi-Family Residential Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Water Heating Maximum Rebate General: $600,000 Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Custom: $1.20/therm saved/yr Steamers: $300-$1200 Fryer: $400 Griddle: $50/ln. ft. Ovens: custom Storage Water Heaters: $150/unit Tankless Water Heater: $300/unit Gas Boiler/Furnace Replacement: $400 - $6,000

50

Process for production of synthesis gas with reduced sulfur content  

DOE Patents (OSTI)

A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

Najjar, Mitri S. (Hopewell Junction, NY); Corbeels, Roger J. (Wappingers Falls, NY); Kokturk, Uygur (Wappingers Falls, NY)

1989-01-01T23:59:59.000Z

51

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas. How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature? Links: The technology of Condensing Flue Gas Heat Recovery natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building

52

Gas heat pumps are coming: But by a different name  

SciTech Connect

Gas heat pumps are coming, but by a different name. The manufacturers have elected not to call these products {open_quote}heat pumps{close_quotes} because advertising by gas distributors has been so effective at associating the term {open_quote}air-source heat pump{close_quotes} with cold blowing air. Nonetheless, gas-fired air-source heat pumps of the engine-driven and absorption types will be marketed starting in 1994 and in 1997, respectively, according to current plans. This paper identifies the generic participants that have been and will be involved in the gas heat pump deployment effort, and it reviews the underlying forces that caused (or likely will cause) those participants to act as they do. The participants include technology developers; the heating, ventilation, and air-conditioning (HVAC) industry; the utility industry; and state utility regulators. The driving forces include the drifting of unitary HVAC products toward a commodity-like status, the decline of the domestic component of global HVAC markets, the restructuring of the HVAC and gas utility industries, the anticipated restructuring of the electric utility industry, the strengths and weaknesses of gas distributors, and state utility regulation. Also reviewed are technology status, manufacturer commitments, and timetables for introducing products. The road to widespread domestic market acceptance of gas heat pumps will likely be very different from that experienced by electric heat pump manufacturers in the 1950s and 1960s.

Hughes, P.J.

1994-09-01T23:59:59.000Z

53

Southwest Gas Corporation - Smarter Greener Better Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Smarter Greener Better Solar Water Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program (Arizona) Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program (Arizona) < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate 50% of system cost Program Info State Nevada Program Type Utility Rebate Program Rebate Amount $15.00/therm Provider Southwest Gas Corporation '''''Note: Effective July 15, 2013, Southwest Gas is no longer accepting applications for the current program year. Systems installed during the current program year will not be eligible for a rebate in the next program

54

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas and Oil Heating Systems Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the equipment is off. Consider a sealed-combustion furnace -- they are safer and more efficient. Long-Term Savings Tip Install a new energy-efficient furnace to save money over the long term. Look for the ENERGY STAR® and EnergyGuide labels to compare efficiency and

55

Cascade heat recovery with coproduct gas production  

DOE Patents (OSTI)

A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

1986-10-14T23:59:59.000Z

56

Cascade heat recovery with coproduct gas production  

DOE Patents (OSTI)

A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

Brown, William R. (Zionsville, PA); Cassano, Anthony A. (Allentown, PA); Dunbobbin, Brian R. (Allentown, PA); Rao, Pradip (Allentown, PA); Erickson, Donald C. (Annapolis, MD)

1986-01-01T23:59:59.000Z

57

PECO Energy (Gas) – Heating Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The PECO Smart Gas Efficiency Upgrade Program offers rebates and incentives to commercial or residential customers that install an ENERGY STAR qualified high-efficiency natural gas furnace or...

58

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description:...

59

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services, exemptions, investigations, and records. Article 4 (58-5-400 et seq.) of this

60

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Energy.gov (U.S. Department of Energy (DOE))

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

62

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

63

Determining the locus of a processing zone in an oil shale retort by effluent off gas heating value  

SciTech Connect

A processing zone advances through a fragmented permeable mass of particles containing oil shale in an in situ oil shale retort in a subterranean formation containing oil shale. The retort has an effluent gas passing therefrom. The effluent gas has a heating value which is dependent on the kerogen content of the oil shale then in contact with the processing zone. To determine the locus of the processing zone, the formation is assayed at selected locations in the retort for kerogen content before processing the selected locations, and effluent gas from the retort is monitored for its heating value.

Cha, C.Y.

1981-07-21T23:59:59.000Z

64

OpenEI Community - natural gas+ condensing flue gas heat recovery+ water  

Open Energy Info (EERE)

Increase Natural Gas Increase Natural Gas Energy Efficiency http://en.openei.org/community/group/increase-natural-gas-energy-efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas.How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature?gas-energy-efficiency" target="_blank">read more natural gas+ condensing flue gas heat

65

Residential gas heat pump assessment: A market-based approach  

SciTech Connect

There has been considerable activity in recent years to develop technologies that could reduce or levelize residential and light-commercial building space cooling electrical use and heating/cooling energy use. For example, variable or multi-speed electric heat pumps, electric ground-source heat pumps, dual-fuel heat pumps, multi-function heat pumps, and electric cool storage concepts have been developed; and several types of gas heat pumps are emerging. A residential gas heat pump (GHP) benefits assessment is performed to assist gas utility and equipment manufacturer decision making on level of commitment to this technology. The methodology and generic types of results that can be generated are described. National market share is estimated using a market segmentation approach. The assessment design requires dividing the 334 Metropolitan Statistical Areas (MSAS) of the US into 42 market segments of relatively homogeneous weather and gas/electric rates (14 climate groupings by 3 rate groupings). Gas and electric rates for each MSA are evaluated to arrive at population-weighted rates for the market segments. GHPs are competed against 14 conventional equipment options in each homogeneous segment.

Hughes, P.J.

1995-09-01T23:59:59.000Z

66

South Dakota shallow gas hunt heats up  

SciTech Connect

As the search for shallow gas reserves in South Dakota intensifies, most of the exploratory drilling activity is concentrating along the Camp Crook anticline in the northwestern part of the state, where large amounts of gas could be locked in shallow, low-pressure sands. Gas production found in 1977 in the Cretaceous Shannon of the West Short Pine hills field in Harding Co. set off the current gas play. Drilling reports now list some 28 wells in that section of the state, mostly in Harding Co. Previous drilling - notably at the Ardmore gas field in southwestern South Dakota in the 1940s - failed to initiate any exploratory plays. The state remains one of the most undrilled prospective hydrocarbon regions in the US. South Dakota's Cretaceous section is similar to that in Wyoming, where the Dakota and Muddy sandstones are important producers. Numerous sites for exploratory wells lie in the Powder River, Kennedy, and Williston basins.

McCaslin, J.C.

1981-03-02T23:59:59.000Z

67

Heat generation in natural gas adsorption systems  

SciTech Connect

Experiments were conducted using a high-surface-area carbon as an adsorbent for methane to determine the impact of the heat of adsorption upon the storage capacity. The rapid filling of an adsorption storage system under conditions in which the heat of adsorption is not dissipated results in only about 75% of the methane being stored at 3.44 MPa (500 psia) as can be stored by a slow fill rate with heat dissipation. These results depend upon the initial temperature of the absorbent bed and upon the characteristics of the substrate itself. 4 refs., 5 figs.

Remick, R.J.; Tiller, A.J.

1986-01-01T23:59:59.000Z

68

Consumer Natural Gas Winter Heating Costs  

Gasoline and Diesel Fuel Update (EIA)

5 of 26 Notes: Mild weather minimized residential gas consumption over most of the past 3 winters. Our projections for more or less normal winter weather through the remainder of...

69

Southwest Gas Corporation - Smarter Greener Better Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Smarter Greener Better Solar Water Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program < Back Eligibility Commercial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential: 30% of system cost or $3,000, whichever is less Small Commercial: 30% of system cost or $7,500, whichever is less Schools, Religious, Non-profit, Public Facilities and Civic and County Facilities: 50% of system cost or $30,000, whichever is less Program Info State Nevada Program Type Utility Rebate Program Rebate Amount Residential and Small Business: $14.50 per therm Schools, Religious, Non-profit, Public Facilities and Civic and County

70

International Journal of Greenhouse Gas Control 5 (2011) 10551064 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

International Journal of Greenhouse Gas Control 5 (2011) 1055­1064 Contents lists available at ScienceDirect International Journal of Greenhouse Gas Control journal homepage: www option in the portfolio of mitigation actions for stabilization of atmospheric greenhouse gas

Prevost, Jean-Herve

71

POSTING: Technician 5 Heat and Greenhouse gas Exchange The Centre for Earth Observation Science (CEOS) within the Faculty of Environment,  

E-Print Network (OSTI)

POSTING: Technician 5 ­ Heat and Greenhouse gas Exchange technician in support of multidisciplinary research on heat and greenhouse gas

72

Method for controlling exhaust gas heat recovery systems in vehicles  

DOE Patents (OSTI)

A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

Spohn, Brian L.; Claypole, George M.; Starr, Richard D

2013-06-11T23:59:59.000Z

73

Experimental performance of solid-gas chemical heat pump in solar chemical heat pump dryer  

Science Conference Proceedings (OSTI)

A solar assisted chemical heat pump dryer has been designed, fabricated and tested. The performance of the system has been studied under the meteorological conditions of Malaysia. The system consists of four mean components: solar collector (evacuated ... Keywords: coefficient of performance, drying, energy density, evacuated tubes solar collector, reactor temperature, solid gas chemical heat pump

M. Ibrahim; K. Sopian; A. S. Hussein; W. R. W. Daud; A. Zaharim

2009-02-01T23:59:59.000Z

74

Table 5.14c Heat Content of Petroleum Consumption ...  

U.S. Energy Information Administration (EIA)

1 Electricity-only and combined-heat-and-power (CHP) plants within the NAICS 22 category whose primary business is to sell electricity, or electricity ...

75

Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas  

DOE Patents (OSTI)

Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

2004-06-22T23:59:59.000Z

76

Purged window apparatus utilizing heated purge gas  

DOE Patents (OSTI)

A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

Ballard, Evan O. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

77

Heating Fuel Comparision Calculator - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

HEAT CONTENT PRICES INSTRUCTIONS CALCULATOR Fuel Heat Content Per Unit (Btu) Fuel Type Electricity Propane Kerosene Gallon Cord Ton AFUE Natural Gas COP Geothermal ...

78

Low-pressure-ratio regenerative exhaust-heated gas turbine  

SciTech Connect

A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

1991-01-01T23:59:59.000Z

79

Energy Recovery By Direct Contact Gas-Liquid Heat Exchange  

E-Print Network (OSTI)

Energy from hot gas discharge streams can be recovered by transfer directly to a coolant liquid in one of several available gas-liquid contacting devices. The design of the device is central to the theme of this paper, and experimental work has verified that the analogy between heat transfer and mass transfer can be used for design purposes. This enables the large amount of available mass transfer data for spray, packed and tray columns to be used for heat transfer calculations. Additional information is provided on flow arrangements for integrating direct contact exchangers into systems for recovering the energy transferred to the liquid.

Fair, J. R.; Bravo, J. L.

1988-09-01T23:59:59.000Z

80

Sour gas injection for use with in situ heat treatment  

DOE Patents (OSTI)

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

Fowler, Thomas David (Houston, TX)

2009-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Prediction of strongly-heated internal gas flows  

Science Conference Proceedings (OSTI)

The purposes of the present article are to remind practitioners why the usual textbook approaches may not be appropriate for treating gas flows heated from the surface with large heat fluxes and to review the successes of some recent applications of turbulence models to this case. Simulations from various turbulence models have been assessed by comparison to the measurements of internal mean velocity and temperature distributions by Shehata for turbulent, laminarizing and intermediate flows with significant gas property variation. Of about fifteen models considered, five were judged to provide adequate predictions.

McEligot, D.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.]|[Univ. of Arizona, Tucson, AZ (United States)]|[Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan); Shehata, A.M. [Xerox Corp., Webster, NY (United States); Kunugi, Tomoaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)]|[Tokai Univ., Hiratsuka, Kanagawa (Japan)

1997-12-31T23:59:59.000Z

82

Utilizing secondary heat to heat wash oil in the coke-oven gas desulfurization division  

SciTech Connect

Removal of hydrogen sulfide from the coke-oven gas by the vacuum-carbonate method involves significant energy costs, comprising about 47% of the total costs of the process. This is explained by the significant demand of steam for regeneration of the wash oil, the cost of which exceeds 30% of the total operating costs. The boiling point of the saturated wash oil under vacuum does not exceed 70/sup 0/C, thus the wash oil entering the regenerator can be heated either by the direct coke-oven gas or by the tar supernatant from the gas collection cycle. Utilizing the secondary heat of the direct coke-oven gas and the tar supernatant liquor (the thermal effect is approximately the same) to heat the wash oil from the gas desulfurization shops significantly improves the industrial economic indices. Heating the wash oil from gas desulfurization shops using the vacuum-carbonate method by the heat of the tar supernatant liquor may be adopted at a number of coking plants which have a scarcity of thermal resources and which have primary coolers with vertical tubes.

Volkov, E.L.

1981-01-01T23:59:59.000Z

83

Performance of Gas-Engine Driven Heat Pump Unit  

SciTech Connect

Air-conditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved air-conditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motor-driven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater operating efficiency compared to conventional electric motor-driven units (SCGC 1998). In Japan, many hundreds of thousands of natural gas-driven heat pumps have been sold (typically 40,000 systems annually) (Yahagi et al. 2006). The goal of this program is to develop dependable and energy efficient GHPs suitable for U.S. commercial rooftop applications (the single largest commercial product segment). This study describes the laboratory performance evaluation of an integrated 10-ton GHP rooftop unit (a 900cc Daihatsu-Aisin natural gas engine) which uses R410A as the refrigerant (GEDAC No.23). ORNL Thermally-Activated Heat Pump (TAHP) Environmental Chambers were used to evaluate this unit in a controlled laboratory environment.

Abdi Zaltash; Randy Linkous; Randall Wetherington; Patrick Geoghegan; Ed Vineyard; Isaac Mahderekal; Robert Gaylord

2008-09-30T23:59:59.000Z

84

Heat Content of Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

Data Series: Delivered to Consumers Total Consumption Electric Power Other Sectors Period: Data Series: Delivered to Consumers Total Consumption Electric Power Other Sectors Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 1,027 1,027 1,025 1,023 1,022 1,024 2003-2012 Alabama 1,029 1,025 1,026 1,018 1,018 1,016 2007-2012 Alaska 1,006 1,006 1,005 1,005 1,013 1,012 2007-2012 Arizona 1,023 1,027 1,021 1,016 1,015 1,021 2007-2012 Arkansas 1,014 1,015 1,016 1,012 1,017 1,015 2007-2012 California 1,030 1,028 1,027 1,023 1,020 1,022 2007-2012 Colorado 1,030 1,020 1,019 1,019 1,032 1,039 2007-2012 Connecticut 1,019 1,018 1,019 1,022 1,026 1,031 2007-2012

85

Table A4. Approximate Heat Content of Natural Gas, 1949 ...  

U.S. Energy Information Administration (EIA)

1954. 1,115 : 1,035 : 1,035 : 1,035 : 1,035 : 1,035 : 1,035 : 1955. 1,120 : 1,035 : 1,035 : 1,035 : 1,035 : 1,035 : 1,035 : 1956. 1,116 : 1,035 : ...

86

Heat Content of Natural Gas Delivered to Consumers  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

87

South Dakota Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin...

88

A Decadal Prediction Case Study: Late Twentieth-Century North Atlantic Ocean Heat Content  

Science Conference Proceedings (OSTI)

An ensemble of initialized decadal prediction (DP) experiments using the Community Climate System Model, version 4 (CCSM4) shows considerable skill at forecasting changes in North Atlantic upper-ocean heat content and surface temperature up to a ...

Stephen Yeager; Alicia Karspeck; Gokhan Danabasoglu; Joe Tribbia; Haiyan Teng

2012-08-01T23:59:59.000Z

89

The Annual Cycle of Heat Content in the Peru Current Region  

Science Conference Proceedings (OSTI)

The relative importance of the processes responsible for the annual cycle in the upper-ocean heat content in the Peru Current, in the southeastern tropical Pacific, was diagnosed from an oceanic analysis dataset. It was found that the annual ...

Ken Takahashi

2005-12-01T23:59:59.000Z

90

Interannual Variability in the Heat Content of the Kuroshio Extension Associated with the 1982 ENSO Event  

Science Conference Proceedings (OSTI)

Interannual variability in vertically averaged temperature over the upper 400 m of ocean (i.e., upper ocean heat content) in the vicinity of the Kuroshio Extension experienced significant changes during the 1982 ENSO year, as compared to the ...

Warren B. White; Youhai He

1986-02-01T23:59:59.000Z

91

Monitoring North Pacific Heat Content Variability: An Indicator of Fish Quantity?  

Science Conference Proceedings (OSTI)

Fields of modeled sea surface heights and temperatures are used to develop an algorithm to monitor the low-frequency heat content variability of the North Pacific's midlatitudes associated with regime shifts in the circulation patterns of the ...

R. Tokmakian

2003-11-01T23:59:59.000Z

92

Compact Ceramic Heat Exchangers for Corrosive Waste Gas Applications  

E-Print Network (OSTI)

The development of large ceramic heat exchangers is described and performance data given for units installed on steel industry soaking pits in the U.K. Operational experience since 1973 confirms that ceramic heat exchangers capable of operating with high airside pressures have long lives and low maintenance even when operating with dirty gases at 1350 deg. C and preheating combustion air to 800 deg. C. The design of compact units suitable for factory assembly is also described. Units have been developed for low temperature corrosive gas situations and have been applied to the pottery industry and are being developed for coal fired air heaters for the food industry.

Laws, W. R.; Reed, G. R.

1982-01-01T23:59:59.000Z

93

Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.  

DOE Green Energy (OSTI)

In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

Parkinson, W. J. (William Jerry),

2003-01-01T23:59:59.000Z

94

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California  

SciTech Connect

Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

1992-07-01T23:59:59.000Z

95

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report  

SciTech Connect

Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

1992-07-01T23:59:59.000Z

96

A Gas-Fired Heat Pipe Zone Heater  

E-Print Network (OSTI)

A gas-fired vented zone heater has recently been developed by the Altar Corporation for Colorado State University (CSU) under a Gas Research Institute (GRI) contract. The unit war developed for auxiliary heating applications in passive solar buildings. An early prototype was tested at Altas and operated as expected. The final model was shipped to CSU in December 1983 for testing in the REPEAT Facility at CSU. A heat pipe extends through the wall to the outside of the building. It has a modest water charge which can freeze repeatedly with no damage, since the heat pips is only partially filled. Firing efficiency at 4,000 Btu/b (1.17 kW thermal) is approximately 80%. The unit features a 3 foot by 3 foot radiator mounted inside the room to be heated, and is thermostatically controlled. Ignition is accomplished with an electronic sparker (pilot). The radiator typically operates at 150-180°F (65-82°C), and has been operated at between 2,000 and 5,000 Btu/h (0.6-1.47 kW). Results of testing the vented heat pipe zone heater at CSU arm presented. Also, a method for determining the optimal combination of zone heater, passive solar heating and energy conservation measures has been developed. Nomographs have been developed that may be used by a building designer to determine the optimal combination of zone heater size, passive solar system size, and energy conservation measures for given types of passive solar heating systems in selected locations. A representative nomograph is presented along with a design example.

Winn, C. B.; Burns, P.; Guire, J.

1984-01-01T23:59:59.000Z

97

Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions  

E-Print Network (OSTI)

options ·Universal application as an Air-Air System (VRF), Air-Water System or combined as a Mixed System application options · Option 1: Air-Air System (VRF) #12;· Option 2: Air-Air System (HVAC System) Gas Heat

Oak Ridge National Laboratory

98

Impact of Interruptible Natural Gas Service on Northeast Heating Oil Demand  

Reports and Publications (EIA)

Assesses the extent of interruptible natural gas contracts and their effect on heating oil demand in the Northeast.

Elizabeth E. Campbell

2001-02-01T23:59:59.000Z

99

A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies  

E-Print Network (OSTI)

Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

Guyer, Brittany (Brittany Leigh)

2009-01-01T23:59:59.000Z

100

Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Fired Absorption Gas-Fired Absorption Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on AddThis.com...

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

U.S. Coal Reserves: An Update by Heat and Sulfur Content  

Gasoline and Diesel Fuel Update (EIA)

2) 2) Distribution Category UC-98 U.S. Coal Reserves: An Update by Heat and Sulfur Content February 1993 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 Energy Information Administration/ U.S. Coal Reserves: An Update by Heat and Sulfur Content ii This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Energy Information Administration/ U.S. Coal Reserves: An Update by Heat and Sulfur Content iii Contacts This report was prepared by the staff of the Energy

102

Table A6. Approximate Heat Rates for Electricity, and Heat Content ...  

U.S. Energy Information Administration (EIA)

Total Fossil Fuels 6,7: ... 7 The fossil-fuels heat rate is used as the thermal conversion factor for ... approximate the quantity of fossil fuels replaced by these ...

103

Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones  

E-Print Network (OSTI)

In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones. The analysis shows that the low-temperature radiant floor heating system is more suitable for natural gas- condensing water boilers. It is more comfortable, more economical, and can save more energy than other heating systems.

Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

2006-01-01T23:59:59.000Z

104

CenterPoint Energy - Residential Gas Heating Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CenterPoint Energy - Residential Gas Heating Rebates CenterPoint Energy - Residential Gas Heating Rebates CenterPoint Energy - Residential Gas Heating Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Storage Tank Water Heater: $75 Tankless Water Heater: $500 Forced-Air Furnace: $400 - $600 Forced-Air Furnace (Back-Up System): $125 - $175 Hydronic Heating System: $400 Provider CenterPoint Energy CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage water heaters and tankless water heaters. All equipment must meet program requirements for efficiency and

105

Variability of Heat Content in the Central North Pacific in Summer 1987 Determined from Long-Range Acoustic Transmissions  

Science Conference Proceedings (OSTI)

The evolution of the heat content in the central North Pacific Ocean during summer 1987 has been measured using acoustic transmissions between transceivers deployed in a triangle approximately 1000 km on a side. The acoustically determined heat ...

Brian D. Dushaw; Peter F. Worcester; Bruce D. Cornuelle; Bruce M. Howe

1993-12-01T23:59:59.000Z

106

Fluid and heat flow in gas-rich geothermal reservoirs  

DOE Green Energy (OSTI)

Numerical-simulation techniques are used to study the effects of noncondensible gases (CO/sub 2/) on geothermal reservoir behavior in the natural state and during exploitation. It is shown that the presence of CO/sub 2/ has large effects on the thermodynamic conditions of a reservoir in the natural state, especially on temperature distributions and phase compositions. The gas will expand two-phase zones and increase gas saturations to enable flow of CO/sub 2/ through the system. During exploitation, the early pressure drop is primarily due to degassing of the system. This process can cause a very rapid initial pressure drop, on the order of tens of bars, depending upon the initial partial pressure of CO/sub 2/. The following gas content from wells can provide information on in-place gas saturations and relative permeability curves that apply at a given geothermal resource. Site-specific studies are made for the gas-rich two-phase reservoir at the Ohaki geothermal field in New Zealand. A simple lumped-parameter model and a vertical column model are applied to the field data. The results obtained agree well with the natural thermodynamic state of the Ohaki field (pressure and temperature profiles) and a partial pressure of 15 to 25 bars is calculated in the primary reservoirs. The models also agree reasonably well with field data obtained during exploitation of the field. The treatment of thermophysical properties of H/sub 2/O-CO/sub 2/ mixtures for different phase compositions is summarized.

O'Sullivan, M.J.; Bodvarsson, G.S.; Pruess, K.; Blakeley, M.R.

1983-07-01T23:59:59.000Z

107

Global Decadal Upper-Ocean Heat Content as Viewed in Nine Analyses  

Science Conference Proceedings (OSTI)

This paper examines nine analyses of global ocean 0-/700-m temperature and heat content during the 43-yr period of warming, 1960–2002. Among the analyses are two that are independent of any numerical model, six that rely on sequential data ...

James A. Carton; Anthony Santorelli

2008-11-01T23:59:59.000Z

108

CONTENTS  

E-Print Network (OSTI)

This report was prepared by Sargent & Lundy, L.L.C., hereinafter referred to as S&L, expressly for Perrin Quarles Associates, Inc., hereinafter referred to as PQA, under EPA Contract No. EP-W-07-064. Neither S&L nor any person acting on its behalf (a) makes any warranty, express or implied, with respect to the use of any information or methods disclosed in this report or (b) assumes any liability with respect to the use of any information or methods disclosed in this report. Although prepared with EPA funding and reviewed by the EPA, this report has not been approved by the EPA for publication as an EPA report. The contents do not necessarily reflect the views or policies of the EPA, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. COAL-FIRED POWER PLANT HEAT RATE REDUCTIONS i

unknown authors

2009-01-01T23:59:59.000Z

109

Gas-Fired Absorption Heat Pump Water Heater Research Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Gas-Fired Absorption Heat Pump Water Emerging Technologies » Gas-Fired Absorption Heat Pump Water Heater Research Project Gas-Fired Absorption Heat Pump Water Heater Research Project The U.S. Department of Energy (DOE) is currently conducting research into carbon gas-fired absorption heat pump water heaters. This project will employ innovative techniques to increase water heating energy efficiency over conventional gas storage water heaters by 40%. Project Description This project seeks to develop a natural gas-fired water heater using an absorption heat. The development effort is targeting lithium bromide aqueous solutions as a working fluid in order to avoid the negative implications of using more toxic ammonia. Project Partners Research is being undertaken through a Cooperative Research and Development

110

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams  

E-Print Network (OSTI)

An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

111

Energy recovery during expansion of compressed gas using power plant low-quality heat sources  

SciTech Connect

A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

Ochs, Thomas L. (Albany, OR); O' Connor, William K. (Lebanon, OR)

2006-03-07T23:59:59.000Z

112

Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint  

DOE Green Energy (OSTI)

Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

Turchi, C. S.; Ma, Z.

2011-08-01T23:59:59.000Z

113

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

114

Photographic study of the mechanism of heat transfer enhancement by electrolytic hydrogen gas  

SciTech Connect

A mechanism of promoting heat transfer, by which a remarkably high heat flux is obtained with a heat source having a small temperature difference is elucidated. The method consists of generating a small amount of electrolytic hydrogen gas from a heating surface undergoing nucleate boiling and natural convection. Photographs of a boiling process in the presence of electrolytic hydrogen gas evolution from the heating surface were taken. By analyzing high-speed motion pictures it is shown that the electrolytic hydrogen gas permits vapor bubble production with a small degree of superheat and increases the number of vapor bubble nuclei.

Nakayama, A.; Kano, M.

1983-06-01T23:59:59.000Z

115

Gas-Cooled Fast Reactor (GFR) Decay Heat Removal Concepts  

SciTech Connect

Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with an outlet temperature of 850ºC at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report is a compilation of work performed on decay heat removal systems for a 2400 MWt GFR during this fiscal year (FY05).

K. D. Weaver; L-Y. Cheng; H. Ludewig; J. Jo

2005-09-01T23:59:59.000Z

116

Fouling reduction characteristics of a no-distributor-fluidized-bed heat exchanger for flue gas heat recovery  

Science Conference Proceedings (OSTI)

In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulate and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.

Jun, Y.D.; Lee, K.B.; Islam, S.Z.; Ko, S.B. [Kongju National University, Kong Ju (Republic of Korea). Dept. for Mechanical Engineering

2008-07-01T23:59:59.000Z

117

Optimization of Combustion Efficiency for Supplementally Fired Gas Turbine Cogenerator Exhaust Heat Receptors  

E-Print Network (OSTI)

A broad range of unique cogeneration schemes are being installed or considered for application in the process industries involving gas turbines with heat recovery from the exhaust gas. Depending on the turbine design, exhaust gases will range from 800 to 1000 F with roughly 15 to 18 percent remaining oxygen. The overall heat utilization efficiency and the net effective heat rate of the cogenerating facility varies widely with the degree of supplemental firing of the heat receptor. This effect is explained and its economic significance defined. Other effects are also explored, such as adiabatic and equilibrium combustion temperatures; and variations in radiant versus convection heat transfer in the heat receptor furnace or boiler.

Waterland, A. F.

1984-01-01T23:59:59.000Z

118

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network (OSTI)

Cornell's conversion of a coal fired heating plant to natural Gas University began operating with natural gas, instead of the coal-fired generators of the coal that had been stockpiled, the Plant is running completely on natural gas

Keinan, Alon

119

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network (OSTI)

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different outdoor temperatures are obtained, and the heating load of the manufactured space is analyzed. The relationship between the envelope internal surface temperature and the workspace temperature is also analyzed in this paper. CFD simulation software is used to simulate the temperature field and the envelope's internal surface temperature of the manufacture space with hot-air heating system. Comparison and analysis of heating loads are done between the manufactured spaces with convection heating and radiant heating systems.

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

120

Contents  

Science Conference Proceedings (OSTI)

... 4) Power Consumption. ... The ICs are powered with only ± 6 V to minimize the power consumption and thus heat dissipation. ...

2003-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CenterPoint Energy - Business Gas Heating Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CenterPoint Energy - Business Gas Heating Rebates CenterPoint Energy - Business Gas Heating Rebates CenterPoint Energy - Business Gas Heating Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Boiler System, Modulating Boiler Burner, and Vent Dampeners: 25% of equipment cost Program Info Expiration Date 12/31/2013 State Arkansas Program Type Utility Rebate Program Rebate Amount Solutions Program: Varies Direct Install Measures: No cost to customers 85% to 91.9% Efficiency Boiler: $1,400/MMBtuh Input 92%+ Efficiency Boiler: $2000/MMBtuh Input Modulating Boiler Burners: $1,000/MMBtuh Input Vent Dampers: $250/boiler Boiler Controls: $150/system Storage Water Heater: $75 Tankless Water Heater: $500

122

International Journal of Greenhouse Gas Control 14 (2013) 114 Contents lists available at SciVerse ScienceDirect  

E-Print Network (OSTI)

International Journal of Greenhouse Gas Control 14 (2013) 1­14 Contents lists available at SciVerse ScienceDirect International Journal of Greenhouse Gas Control journal homepage: www

Zhou, Quanlin

123

Conjugate Heat Transfer with Large Eddy Simulation for Gas Turbine Components.  

E-Print Network (OSTI)

Conjugate Heat Transfer with Large Eddy Simulation for Gas Turbine Components. Florent Duchaine constraint for GT (gas turbines). Most existing CHT tools are developped for chained, steady phenomena with colder walls is a key phenomenon in all chambers and is actually a main design constraint in gas turbines

Nicoud, Franck

124

A scheme for reducing experimental heat capacity data of gas hydrates  

SciTech Connect

Experimental heat capacity data of simple gas hydrates on xenon, methane, ethane, and propane are reduced by application of classical thermodynamics and the ideal solid solution theory. It is shown that calculated heat capacities of the empty hydrate lattices of the structure 1 and 2 hydrates can be higher or lower than the heat capacity of ice. Similarly, the calculated partial molar heat capacity of the enclathrated gases are higher or lower than the corresponding experimental ideal gas heat capacity. These differences depend on the size of the guest relative to the cavity, the hydrate number, and the temperature. For estimation of the thermodynamic properties of the empty hydrate lattice, further experimental work is recommended. Within the present limitations, a consistent methodology is applied for the prediction of the heat capacity of a natural gas hydrate.

Avlonitis, D. (Aero-engines Factory, Elefsis (Greece). Division of Chemistry)

1994-12-01T23:59:59.000Z

125

A Comparative Analysis of Upper-Ocean Heat Content Variability from an Ensemble of Operational Ocean Reanalyses  

Science Conference Proceedings (OSTI)

Ocean heat content (HC) is one of the key indicators of climate variability and also provides ocean memory critical for seasonal and decadal predictions. The availability of multiple operational ocean analyses (ORAs) now routinely produced around ...

Yan Xue; Magdalena A. Balmaseda; Tim Boyer; Nicolas Ferry; Simon Good; Ichiro Ishikawa; Arun Kumar; Michele Rienecker; Anthony J. Rosati; Yonghong Yin

2012-10-01T23:59:59.000Z

126

CenterPoint Energy - Business Gas Heating Rebates (Arkansas)...  

Open Energy Info (EERE)

install natural gas energy efficiency measures such as faucet aerators and pre-rinse spray valves that reduce natural gas use as well as reducing water and sewer costs....

127

Two-tank working gas storage system for heat engine  

DOE Patents (OSTI)

A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

Hindes, Clyde J. (Troy, NY)

1987-01-01T23:59:59.000Z

128

Contents  

Science Conference Proceedings (OSTI)

Page 1. Volume 97, Number 5, September-October 1992 Journal of Research of the National Institute of Standards and Technology Contents ...

2003-10-15T23:59:59.000Z

129

Contents  

Science Conference Proceedings (OSTI)

Page 1. Volume 96, Number 2, March-April 1991 Journal of Research of the National Institute of Standards and Technology Contents Articles ...

2003-10-06T23:59:59.000Z

130

Contents  

Science Conference Proceedings (OSTI)

Page 1. Volume 96, Number 6, November-December 1991 Journal of Research of the National Institute of Standards and Technology Contents ...

2003-10-10T23:59:59.000Z

131

Contents  

Science Conference Proceedings (OSTI)

Page 1. Volume 98, Number 6, November-December 1993 Journal of Research of the National Institute of Standards and Technology Contents ...

2003-10-21T23:59:59.000Z

132

Contents  

Science Conference Proceedings (OSTI)

Page 1. Volume 96, Number 4, July-August 1991 Journal of Research of the National Institute of Standards and Technology Contents Articles ...

2003-10-08T23:59:59.000Z

133

CONTENTS  

Science Conference Proceedings (OSTI)

Page 1. JOURNAL OF RESEARCH of the National Bureau of Standards Vol. 88, No. 6, November-December 1983 CONTENTS Page ...

2003-07-03T23:59:59.000Z

134

Contents  

Science Conference Proceedings (OSTI)

Page 1. Volume 97, Number 6, November-December 1992 Journal of Research of the National Institute of Standards and Technology Contents ...

2003-10-15T23:59:59.000Z

135

CONTENTS  

Science Conference Proceedings (OSTI)

... Liquefied natural gas (LNG) densities can be measured directly but are usually determined indirectly in custody transfer measurement by usming a ...

2003-07-03T23:59:59.000Z

136

Contents  

Science Conference Proceedings (OSTI)

... gen; radiation correction; thermal con- with measurements on liquid toluene as ductivity; thermal diffusivity; toluene; well as argon and nitrogen gas. ...

2003-10-07T23:59:59.000Z

137

THE DIVERSE HOT GAS CONTENT AND DYNAMICS OF OPTICALLY SIMILAR LOW-MASS ELLIPTICAL GALAXIES  

Science Conference Proceedings (OSTI)

The presence of hot X-ray-emitting gas is ubiquitous in massive early-type galaxies. However, much less is known about the content and physical status of the hot X-ray gas in low-mass ellipticals. In the present paper, we study the X-ray gas content of four low-mass elliptical galaxies using archival Chandra X-ray observations. The sample galaxies, NGC 821, NGC 3379, NGC 4278, and NGC 4697, have approximately identical K-band luminosities, and hence stellar masses, yet their X-ray appearance is strikingly different. We conclude that the unresolved emission in NGC 821 and NGC 3379 is built up from a multitude of faint compact objects, such as coronally active binaries and cataclysmic variables. Despite the non-detection of X-ray gas, these galaxies may host low density, and hence low luminosity, X-ray gas components, which undergo an outflow driven by a Type Ia supernova (SN Ia). We detect hot X-ray gas with a temperature of kT {approx} 0.35 keV in NGC 4278, the component of which has a steeper surface brightness distribution than the stellar light. Within the central 50'' ({approx}3.9 kpc), the estimated gas mass is {approx}3 Multiplication-Sign 10{sup 7} M{sub Sun }, implying a gas mass fraction of {approx}0.06%. We demonstrate that the X-ray gas exhibits a bipolar morphology in the northeast-southwest direction, indicating that it may be outflowing from the galaxy. The mass and energy budget of the outflow can be maintained by evolved stars and SNe Ia, respectively. The X-ray gas in NGC 4697 has an average temperature of kT {approx} 0.3 keV and a significantly broader distribution than the stellar light. The total gas mass within 90'' ({approx}5.1 kpc) is {approx}2.1 Multiplication-Sign 10{sup 8} M{sub Sun }, hence the gas mass fraction is {approx}0.4%. Based on the distribution and physical parameters of the X-ray gas, we conclude that it is most likely in hydrostatic equilibrium, although a subsonic outflow may be present.

Bogdan, Akos; David, Laurence P.; Jones, Christine; Forman, William R.; Kraft, Ralph P., E-mail: abogdan@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-10-10T23:59:59.000Z

138

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

DOE Green Energy (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

139

Repowering reheat units with gas turbines: Final report. [Adding gas turbines and heat recovery to present units  

SciTech Connect

Although conventional repowering on nonreheat units replaces existing boilers with gas turbines and heat recovery steam generators, options investigated by Virginia Power use gas turbine waste heat to supplement, rather than replace, the output of existing steam generators. Virginia Power's experience in considering feedwater heater repowering (FHR) and hot windbox repowering (HWR) as repowering options is described here. Studying five plants identified as potential repowering candidates, investigators first evaluated FHR, which uses a gas turbine generator set equipped with an economizer to heat boiler feedwater. This reduces the steam turbine extraction flow and increases the steam turbine capacity. HWR, the second method investigated, routes the hot, relatively oxygen-rich exhaust flow from a gas turbine into the boiler windbox, eliminating the need for an air preheater. A boiler stack gas cooler then heats feedwater, again increasing turbine capacity by reducing extraction steam flow requirements for feedwater heating. FHR provided the lowest installed cost, especially at Mount Storm unit 3, a coal-fired minemouth plant. Use of a gas turbine to heat feedwater at this plant resulted in a $523/kW (1985) installed cost and 124-MWe unit capacity increase at a design incremental heat rate of 8600 Btu/kWh. FHR at Mount Storm units 1, 2, and 3 cost less overall than installation and operation of a new combined cycle. Although the findings and conclusions in this series of repowering reports are largely unique to the individual plants, units, and applications studied, other utilities performing repowering studies can draw on the types of consideration entertained, alternatives examined, and factors and rationale leading to rejection or acceptance of a given repowering approach. 12 figs., 12 tabs.

Rives, J.D.; Catina, J.

1987-05-01T23:59:59.000Z

140

CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTENTS CONTENTS Introduction ........................................................................................................3 ON THE HORIZON: Promising Research Efforts Currently Underway A Smarter Charge .........................................................................................4 Unlocking Fire Ice .........................................................................................5 CRISP Crunches Cyber Threats ....................................................................6 Gel Zeroes in on Cancer ...............................................................................7 Liquid Solvent: A Solid Solution for CO 2 .....................................................8 Real-time Grid Stability ................................................................................9

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

Demirel, Melik C.

142

Heat capacity of a two-component superfluid Fermi gas  

E-Print Network (OSTI)

We investigate mean-field effects in two- component trapped Fermi gases in the superfluid phase, in the vicinity of s-wave Feshbach resonances. Within the resonance superfluidity approach (Holland et al., 2001) we calculate the ground state energy and the heat capacity as function of temperature. Heat capacity is analyzed for different trap aspect ratios. We find that trap anisotropy is an important factor in determining both the value of heat capacity near the transition temperature and the transition temperature itself.

Alexander V. Avdeenkov

2003-09-25T23:59:59.000Z

143

Heat Recovery from the Exhaust Gas of Aluminum Reduction Cells  

Science Conference Proceedings (OSTI)

Increased Energy Efficiency and Reduced HF Emissions with New Heat Exchanger · Industrial Test of Low-voltage Energy-saving Aluminum Reduction ...

144

Analysis of Chemically Reacting Gas Flow and Heat Transfer in Methane Reforming Processes  

Science Conference Proceedings (OSTI)

This paper presents simulation and analysis of gas flow and heat transfer affected by chemical reactions relating to steam reforming of methane in a compact reformer. The reformer conditions such as the combined thermal boundary conditions on solid walls, ...

Guogang Yang; Danting Yue; Xinrong Lv; Jinliang Yuan

2009-10-01T23:59:59.000Z

145

Optimization of the controlling design parameters of fluidised bed gas-solid heat exchangers  

Science Conference Proceedings (OSTI)

Generalised analytical correlations relating heat transfer coefficient, mass velocity of gas, tube diameter, bed particle size and relative pitch have been formulated based on experimental data reported in literature. These correlations are used to predict ...

V. N. Vedamurthy; T. Janakirajan; S. Natarajan; C. P. Sarathy

1990-12-01T23:59:59.000Z

146

Analysis and numerical optimization of gas turbine space power systems with nuclear fission reactor heat sources  

Science Conference Proceedings (OSTI)

A new three objective optimization technique is developed and applied to find the operating conditions for fission reactor heated Closed Cycle Gas Turbine (CCGT) space power systems at which maximum efficiency, minimum radiator area, and minimum total ...

Albert J. Juhasz / Jerzy Sawicki

2005-01-01T23:59:59.000Z

147

Heat transfer between stratified immiscible liquid layers driven by gas bubbling across the interface  

SciTech Connect

The modeling of molten core debris in the CORCON and VANESA computer codes as overlying, immiscible liquid layers is discussed as it relates to the transfer of heat and mass between the layers. This initial structure is identified and possible configurations are discussed. The stratified, gas-sparged configuration that is presently employed in CORCON and VANESA is examined and the existing literature for interlayer heat transfer is assessed. An experiment which was designed to measure interlayer heat transfer with gas sparging is described. The results are presented and compared to previously existing models. A dimensionless correlation for stratified, interlayer heat transfer with gas sparging is developed. This relationship is recommended for inclusion in CORCON-MOD2 for heat transfer between stratified, molten liquid layers. 12 refs., 6 figs., 3 tabs.

Greene, G.A.; Irvine, T.F. Jr.

1988-01-01T23:59:59.000Z

148

Flow and heat transfer in gas turbine disk cavities subject to nonuniform external pressure field  

SciTech Connect

Ingestion of hot gas from the main-stream gas path into turbine disk cavities, particularly the first-stage disk cavity, has become a serious concern for the next-generation industrial gas turbines features high rotor inlet temperature. Fluid temperature in the cavities increases further due to windage generated by fluid drag at the rotating and stationary surfaces. The resulting problem of rotor disk heat-up is exacerbated by the high disk rim temperature due to adverse (relatively flat) temperature profile of the mainstream gas in the annular flow passage of the turbine. This describes an investigation into local convective heat transfer coefficient and cooling effectiveness of the rotor disk, flow field in the disk cavity, computation of the flow field and heat transfer in the disk cavity, and mainstream gas injection and rotor disk cooling effectiveness by mass transfer analogy.

Roy, R.P.; Kim, Y.W.; Tong, T.W. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mechanical and Aerospace Engineering

1995-12-31T23:59:59.000Z

149

Contents  

Science Conference Proceedings (OSTI)

... condenser, with cooling pro- vided by a 3.5 KW helium gas refrigerator. ... between the casing and liners is filled with mineral oil, which is a ... 7. Outlook ...

2003-10-17T23:59:59.000Z

150

International Journal of Greenhouse Gas Control 9 (2012) 1023 Contents lists available at SciVerse ScienceDirect  

E-Print Network (OSTI)

International Journal of Greenhouse Gas Control 9 (2012) 10­23 Contents lists available at SciVerse ScienceDirect International Journal of Greenhouse Gas Control journal homepage: www and the climate system. The most significant greenhouse gas is CO2 which has increased from pre

151

International Journal of Greenhouse Gas Control 11 (2012) 172180 Contents lists available at SciVerse ScienceDirect  

E-Print Network (OSTI)

International Journal of Greenhouse Gas Control 11 (2012) 172­180 Contents lists available at SciVerse ScienceDirect International Journal of Greenhouse Gas Control journal homepage: www.elsevier.com/locate/ijggc Gas­solid carbonation of Ca(OH)2 and CaO particles under non-isothermal and isothermal conditions

Montes-Hernandez, German

152

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

Science Conference Proceedings (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

153

Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report  

SciTech Connect

For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

2013-01-21T23:59:59.000Z

154

Texas Gas Service- Residential Solar Water Heating Rebate Program (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Texas Gas Service offers a flat rebate of $750 for its residential customers within the Austin and Sunset Valley city limits for the installation and purchase of a new solar water heater with...

155

THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS  

SciTech Connect

A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

Michael G. McKellar

2011-11-01T23:59:59.000Z

156

Collisionless electron heating by radio frequency bias in low gas pressure inductive discharge  

SciTech Connect

We show experimental observations of collisionless electron heating by the combinations of the capacitive radio frequency (RF) bias power and the inductive power in low argon gas pressure RF biased inductively coupled plasma (ICP). With small RF bias powers in the ICP, the electron energy distribution (EED) evolved from bi-Maxwellian distribution to Maxwellian distribution by enhanced plasma bulk heating and the collisionless sheath heating was weak. In the capacitive RF bias dominant regime, however, high energy electrons by the RF bias were heated on the EEDs in the presence of the ICP. The collisionless heating mechanism of the high energy electrons transited from collisionless inductive heating to capacitive coupled collisionless heating by the electron bounce resonance in the RF biased ICP.

Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

2012-12-10T23:59:59.000Z

157

Deposition of device quality, low hydrogen content, amorphous silicon films by hot filament technique using ``safe`` silicon source gas  

DOE Patents (OSTI)

A method is described for producing hydrogenated amorphous silicon on a substrate by flowing a stream of safe (diluted to less than 1%) silane gas past a heated filament. 7 figs.

Mahan, A.H.; Molenbroek, E.C.; Nelson, B.P.

1998-07-07T23:59:59.000Z

158

Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process  

SciTech Connect

A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

Yoder Jr, Graydon L [ORNL; Harvey, Karen [ORNL; Ferrada, Juan J [ORNL

2011-02-01T23:59:59.000Z

159

CONTENTS  

E-Print Network (OSTI)

February 2010This document is in the public domain and may be freely copied or reprinted. Disclaimer Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). In addition, citations to Web sites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these Web sites. Ordering Information To receive documents or other information about occupational safety and health topics, contact NIOSH at

A. Breslin, Ph.D.

2010-01-01T23:59:59.000Z

160

Sulfur content of heating oil to be reduced in northeastern states ...  

U.S. Energy Information Administration (EIA)

Also, the Northeast Home Heating Oil Reserve has switched to ULSD. The Northeast is the largest regional consumer of heating oil in the United States.

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The origin of the hot metal-poor gas in NGC1291: Testing the hypothesis of gas dynamics as the cause of the gas heating  

E-Print Network (OSTI)

In this paper we test the idea that the low-metallicity hot gas in the centre of NGC 1291 is heated via a dynamical process. In this scenario, the gas from the outer gas-rich ring loses energy through bar-driven shocks and falls to the centre. Heating of the gas to X-ray temperatures comes from the high velocity that it reaches ($\\approx$ 700 \\kms) as it falls to the bottom of the potential well. This would explain why the stellar metallicity in the bulge region is around solar while the hot gas metallicity is around 0.1 solar. We carried out an observational test to check this hypothesis by measuring the metallicity of HII regions in the outer ring to check whether they matched the hot gas metallicity. For this purpose we obtained medium resolution long slit spectroscopy with FORS1 on the ESO VLT at Paranal and obtained the metallicities using emission line ratio diagnostics. The obtained metallicities are compatible with the bulge stellar metallicities but very different from the hot-gas metallicity. However, when comparing the different time-scales, the gas in the ring had time enough to get enriched through stellar processes, therefore we cannot rule out the dynamical mechanism as the heating process of the gas. However, the blue colours of the outer ring and the dust structures in the bar region could suggest that the origin of the X-ray hot gas is due to the infall of material from further out.

I. Perez; K. Freeman

2006-04-18T23:59:59.000Z

162

Time-resolved ellipsometry for studies of heat transfer at liquid/solid and gas/solid interfaces  

E-Print Network (OSTI)

partly controlled by the rate of heat transfer across the interface. Heat moving from the metal film is heated by 10 K using an ultrafast optical pump pulse; the subsequent changes of the phase differenceTime-resolved ellipsometry for studies of heat transfer at liquid/solid and gas/solid interfaces

Granick, Steve

163

Predicted nuclear heating and temperatures in gas-cooled nuclear reactors for process heat applications  

SciTech Connect

The high-temperature gas-cooled nuclear reactor (HTGR) is an attractive potential source of primary energy for many industrial and chemical process applications. Significant modification of current HTGR core design will be required to achieve the required elevations in exit gas temperatures without exceeding the maximum allowable temperature limits for the fuel material. A preliminary evaluation of the effects of various proposed design modifications by predicting the resulting fuel and gas temperatures with computer calculational modeling techniques is reported. The design modifications evaluated are generally those proposed by the General Atomic Company (GAC), a manufacturer of HTGRs, and some developed at the LASL. The GAC modifications do result in predicted fuel and exit gas temperatures which meet the proposed design objectives. (auth)

Cort, G.E.; Vigil, J.C.; Jiacoletti, R.J.

1975-09-01T23:59:59.000Z

164

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

Science Conference Proceedings (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

165

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

Science Conference Proceedings (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

166

Evaluation of local content strategies to plan large engineering projects in the oil & gas industry in high risk country areas  

Science Conference Proceedings (OSTI)

The Local content of a complex project is an important variable to create value and increase the overall sustainability of large engineering projects in the Oil & Gas industry, especially in the developing countries. The paper proposes a method to ... Keywords: causal knowledge map, large engineering projects, local content, scenario analysis

Troncone Enzo Piermichele; De Falco Massimo; Gallo Mosè; Santillo Liberatina Carmela; Pier Alberto Viecelli

2012-01-01T23:59:59.000Z

167

Low-pressure-ratio regenerative exhaust-heated gas turbine. Final report  

SciTech Connect

A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

1991-01-01T23:59:59.000Z

168

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Natural Gas Withdrawals from Gas Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

169

Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season  

Reports and Publications (EIA)

This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

Information Center

2000-10-01T23:59:59.000Z

170

Progress towards understanding and predicting convection heat transfer in the turbine gas path  

SciTech Connect

A new era is drawing in the ability to predict convection heat transfer in the turbine gas path. The authors feel that the technical community now has the capability to mount a major assault on this problem, which has eluded significant progress for a long time. They hope to make a case for this bold statement by reviewing the state of the art in three major heat transfer, configuration-specific experiments, whose data have provided the big picture and guided both the fundamental modeling research and the code development. Following that, they review progress and directions in the development of computer codes to predict turbine gas path heat transfer. Finally, they cite examples and make observations on the more recent efforts to do all this work in a simultaneous, interactive, and more synergistic manner. They conclude with an assessment of progress, suggestions for how to use the current state of the art, and recommendations for the future.

Simoneau, R.J.; Simon, F.F.

1992-01-01T23:59:59.000Z

171

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

Science Conference Proceedings (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

172

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

heat content of 1,027 Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas....

173

Use of a Heat Flow Meter to Determine Active PCM Content in an Insulation  

DOE Green Energy (OSTI)

Residential and commercial roofs and walls are currently designed and tested using steady-state criteria. The resulting R-values, based on the apparent thermal conductivity, are used by building standards as an important measure of energy performance. Building envelope components, however, are subject to dynamic environmental conditions. This mismatch between the steady-state principles used in design and code requirements and their dynamic operation results in relatively low thermal efficiencies. Although several research centers have developed experimental methods for transient analysis of building envelopes, there are no standardized testing procedures available for screening materials and systems for which performance depends on dynamic response. For example, a full-scale dynamic evaluation of phase change materials (PCMs) is needed to assess their energy saving benefits. A nationally accepted small-scale (one to two foot size specimens) testing procedure is not available for the analysis of dynamic thermal characteristics of conventional thermal mass systems or PCM-enhanced materials. At the same time, data on these characteristics are necessary for whole-building simulations, energy analysis, and energy code work. The transient characteristics of PCM-enhanced products depend on the PCM content and quality. The only readily available method of thermal evaluation uses the differential scanning calorimeter. Unfortunately, this method requires small, relatively uniform test specimens. This requirement is unrealistic in the case of PCM-enhanced building envelope products such as PCM-cellulose, PCM-glass fiber, or PCM-gypsum blends. Small specimens are not representative of PCM-based blends, since these materials are not homogeneous. Jan Kosny and David Yarbrough, Oak Ridge National Laboratory, P.O. Box 2008, MS 6070, Oak Ridge, TN 37831-6070. Elizabeth Kossecka, Polish Academy of Sciences, Institute of Fundamental Technological Research, Pawinskiego 5 B, 02-106, Warsaw, Poland. A procedure for making dynamic heat-flow measurements using existing instrumentation has been developed to analyze the benefits of thermal storage. This small-scale testing method is useful for thermal analysis and as a potential quality control method for producers of PCM-enhanced building materials. The research may provide the basis for consensus standard development. This paper uses as an example a dynamic testing process for PCM-enhanced cellulose insulation.

Kosny, Jan [ORNL; Kossecka, Elizabeth [Institute of Fundamental Technological Research, Polish Academy of Sciences; Yarbrough, David W [ORNL

2010-01-01T23:59:59.000Z

174

Release of gas from heated oil shale and from mixtures of dolomite and quartz  

DOE Green Energy (OSTI)

Experiments and calculations were performed to determine the amount of gas released from heated oil shale. It is known that kerogen, a component of oil shale, releases gas when heated. When the temperature is increased, the kerogen yields not only gas but char, a solid that reacts with steam and CO/sub 2/ (by-products of heated shale) to yield H/sub 2/ and CO. It was found that as much as 200 moles of CO and H/sub 2/ could be produced by the reaction of 1 kg of kerogen with steam at 1200/sup 0/C. Another of the gas-releasing components of oil shale, carbonate minerals, begins to decompose at 500/sup 0/C; decomposition is complete at about 700/sup 0/C after 1000 hr. The minerals begin to decompose at a lower temperature in steam. Reactions among carbonates and silicates resulted in the release of CO/sub 2/ even under high CO/sub 2/ pressure.

Taylor, R.W.

1976-01-12T23:59:59.000Z

175

Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles  

SciTech Connect

Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

Haihua Zhao; Per F. Peterson

2012-10-01T23:59:59.000Z

176

Table A5. Approximate Heat Content of Coal and Coal Coke, 1949 ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report › Weekly Natural Gas Storage Report ... coal obtained from a refuse bank or slurry dam, anthracite culm,

177

Adding Environmental Gas Physics to the Semi-Analytic Method for Galaxy Formation: Gravitational Heating  

E-Print Network (OSTI)

We present results of an attempt to include more detailed gas physics motivated from hydrodynamical simulations within semi-analytic models (SAM) of galaxy formation, focusing on the role that environmental effects play. The main difference to previous SAMs is that we include 'gravitational' heating of the intra-cluster medium (ICM) by the net surplus of gravitational potential energy released from gas that has been stripped from infalling satellites. Gravitational heating appears to be an efficient heating source able to prevent cooling in environments corresponding to dark matter halos more massive than $\\sim 10^{13} $M$_{\\odot}$. The energy release by gravitational heating can match that by AGN-feedback in massive galaxies and can exceed it in the most massive ones. However, there is a fundamental difference in the way the two processes operate. Gravitational heating becomes important at late times, when the peak activity of AGNs is already over, and it is very mass dependent. This mass dependency and time behaviour gives the right trend to recover down-sizing in the star-formation rate of massive galaxies. Abridged...

S. Khochfar; J. P. Ostriker

2007-04-18T23:59:59.000Z

178

Procurement Specification for Horizontal Gas Path Heat Recovery Steam Generator: Avoiding Thermal-Mechanical Fatigue Damage  

Science Conference Proceedings (OSTI)

Many heat recovery steam generators (HRSGs), particularly those equipped with F-class gas turbines that are also subjected to periods of frequent cyclic operation, have experienced premature pressure part failures because of excessive thermal-mechanical fatigue (TMF) damage. The very competitive power generation marketplace has resulted in lowest installed cost often taking precedence over medium- and long-term durability and operating costs.

2009-12-23T23:59:59.000Z

179

Direct experimental evidence for a negative heat capacity in the liquid-to-gas like phase transitionin hydrogen cluster ions backbending of the caloric curve  

E-Print Network (OSTI)

Direct experimental evidence for a negative heat capacity in the liquid-to-gas like phase transitionin hydrogen cluster ions

Gobet, F; Farizon, M; Gaillard, M J; Buchet, J P; Carré, M; Schreier, P; Märk, T D

2002-01-01T23:59:59.000Z

180

Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report  

DOE Green Energy (OSTI)

The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

Not Available

1980-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Comparison of actual and predicted energy savings in Minnesota gas-heated single-family homes  

Science Conference Proceedings (OSTI)

Data available from a recent evaluation of a home energy audit program in Minnesota are sufficient to allow analysis of the actual energy savings achieved in audited homes and of the relationship between actual and predicted savings. The program, operated by Northern States Power in much of the southern half of the state, is part of Minnesota's version of the federal Residential Conservation Service. NSP conducted almost 12 thousand RCS audits between April 1981 (when the progam began) and the end of 1982. The data analyzed here, available for 346 homes that obtained an NSP energy audit, include monthly natural gas bills from October 1980 through April 1983; heating degree day data matched to the gas bills; energy audit reports; and information on household demographics, structure characteristics, and recent conservation actions from mail and telephone surveys. The actual reduction in weather-adjusted natural gas use between years 1 and 3 averaged 19 MBtu across these homes (11% of preprogram consumption); the median value of the saving was 16 MBtu/year. The variation in actual saving is quite large: gas consumption increased in almost 20% of the homes, while gas consumption decreased by more than 50 MBtu/year in more than 10% of the homes. These households reported an average expenditure of almost $1600 for the retrofit measures installed in their homes; the variation in retrofit cost, while large, was not as great as the variation in actual natural gas savings.

Hirst, E.; Goeltz, R.

1984-03-01T23:59:59.000Z

182

Simulation of tokamak SOL and divertor region including heat flux mitigation by gas puffing  

Science Conference Proceedings (OSTI)

Two-dimensional (2D), scrape-off layer (SOL)-divertor transport simulations are performed using the integrated plasma-neutral-impurity code KTRAN developed at Seoul National University. Firstly, the code is applied to reproduce a National Spherical Torus eXperiment (NSTX) discharge by using the prescribed transport coefficients and the boundary conditions obtained from the experiment. The plasma density, the heat flux on the divertor plate, and the D (alpha) emission rate profiles from the numerical simulation are found to follow experimental trends qualitatively. Secondly, predictive simulations are carried out for the baseline operation mode in Korea Superconducting Tokamak Advanced Research (KSTAR) to predict the heat flux on the divertor target plates. The stationary peak heat flux in the KSTAR baseline operation mode is expected to be 6.5 MW/m(2) in the case of an orthogonal divertor. To study the mitigation of the heat flux, we investigated the puffing effects of deuterium and argon gases. The puffing position is assumed to be in front of the strike point at the outer lower divertor plate. In the simulations, mitigation of the peak heat flux at the divertor target plates is found to occur when the gas puffing rate exceeds certain values, similar to 1.0 x 10(20) /s and similar to 5.0 x 10(18) /s for deuterium and argon, respectively. Multi-charged impurity transport is also investigated for both NSTX and KSTAR SOL and divertor regions.

Park, Jin Woo [Seoul National University, Seoul, S. Korea; Na, Y. S. [Seoul National University, Seoul, S. Korea; Hong, S. H. [National Fusion Research Institute, Daejon, South Korea; Ahn, J.W. [Oak Ridge National Laboratory (ORNL); Kim, D. K. [Agency Def Dev, Taejon, South Korea; Han, Hyunsun [National Fusion Research Institute, Taejon, South Korea; Shim, Seong Bo [Pusan National University, Busan, Korea; Lee, Hae June [Pusan National University, Busan, Korea

2012-01-01T23:59:59.000Z

183

Emergency Decay Heat Removal in a GEN-IV Gas-Cooled Fast Reactor  

Science Conference Proceedings (OSTI)

A series of transient analyses using the system code RELAP5-3d has been performed to confirm the efficacy of a proposed hybrid active/passive combination approach to the decay heat removal for an advanced 2400 MWt GEN-IV gas-cooled fast reactor. The accident sequence of interest is a station blackout simultaneous with a small break (10 sq.inch/0.645 m{sup 2}) in the reactor vessel. The analyses cover the three phases of decay heat removal in a depressurization accident: (1) forced flow cooling by the power conversion unit (PCU) coast down, (2) active forced flow cooling by a battery powered blower, and (3) passive cooling by natural circulation. The blower is part of an emergency cooling system (ECS) that by design is to sustain passive decay heat removal via natural circulation cooling 24 hours after shutdown. The RELAP5 model includes the helium-cooled reactor, the ECS (primary and secondary side), the PCU with all the rotating machinery (turbine and compressors) and the heat transfer components (recuperator, pre-cooler and inter-cooler), and the guard containment that surrounds the reactor and the PCU. The transient analysis has demonstrated the effectiveness of passive decay heat removal by natural circulation cooling when the guard containment pressure is maintained at or above 800 kPa. (authors)

Cheng, Lap Y.; Ludewig, Hans; Jo, Jae [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (United States)

2006-07-01T23:59:59.000Z

184

Projecting Monthly Natural Gas Sales for Space Heating Using a Monthly Updated Model and Degree-days from Monthly Outlooks  

Science Conference Proceedings (OSTI)

The problem of projecting monthly residential natural gas sales and evaluating interannual changes in demand is investigated using a linear regression model adjusted monthly. with lagged monthly heating degree-days as the independent variable. ...

Richard L. Lehman; Henry E. Warren

1994-01-01T23:59:59.000Z

185

Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990  

SciTech Connect

Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

Mahrle, P.

1990-12-01T23:59:59.000Z

186

On the Joint Role of Subtropical Atmospheric Variability and Equatorial Subsurface Heat Content Anomalies in Initiating the Onset of ENSO Events  

Science Conference Proceedings (OSTI)

Previous research has shown that seasonal mean variations in both the subtropical/extratropical sea level pressures over the central North Pacific and the subsurface heat content anomalies in the western equatorial Pacific are significantly ...

Bruce T. Anderson

2007-04-01T23:59:59.000Z

187

Table A4. Approximate Heat Content of Natural Gas, 1949-2011 (Btu ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual Energy Outlook ... 1984: 1,109: 1,031: 1,030: 1,035: 1,031: 1,005: 1,010: 1985: 1,112: 1,032: 1,031: 1,038: 1,032: 1,002: 1,011 ...

188

Lox breathing system with gas permeable-liquid impermeable heat exchange and delivery hose  

DOE Patents (OSTI)

Life support apparatus composed of: a garment (2): for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment (2); a portable receptacle (6) holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous; state when at standard temperature and pressure; a fluid flow member (16) secured within the garment (2) and coupled to the receptacle (6) for conducting the fluid in liquid state from the receptacle (6) to the interior of the garment (2); and a fluid flow control device (14) connected for causing fluid to flow from the receptacle (6) to the fluid flow member (16) at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment (2) at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer.

Hall, Mark N. (Richland, WA)

1996-01-01T23:59:59.000Z

189

Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020  

SciTech Connect

The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

2007-07-31T23:59:59.000Z

190

Heating and cooling of a two-dimensional electron gas by terahertz radiation  

Science Conference Proceedings (OSTI)

The absorption of terahertz radiation by free charge carriers in n-type semiconductor quantum wells accompanied by the interaction of electrons with acoustic and optical phonons is studied. It is shown that intrasubband optical transitions can cause both heating and cooling of the electron gas. The cooling of charge carriers occurs in a certain temperature and radiation frequency region where light is most efficiently absorbed due to intrasubband transitions with emission of optical phonons. In GaAs quantum wells, the optical cooling of electrons occurs most efficiently at liquid nitrogen temperatures, while cooling is possible even at room temperature in GaN heterostructures.

Budkin, G. V.; Tarasenko, S. A., E-mail: tarasenko@coherent.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

2011-04-15T23:59:59.000Z

191

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

132014 2:06:54 PM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Exports to Brazil (MMcf)" "Sourcekey","NGMEPG0ENGNUS-NBRMMCF" "Date","Liquefied U.S. Natural Gas...

192

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

312013 3:21:41 PM" "Back to Contents","Data 1: Natural Gas Gross Withdrawals from Shale Gas Wells (Summary) " "Sourcekey","NGMEPG0FGSNUSMMCF","NGMEPG0FGSR3FMMMCF","NG...

193

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

312013 3:21:40 PM" "Back to Contents","Data 1: Natural Gas Gross Withdrawals from Shale Gas Wells (Summary) " "Sourcekey","NGMEPG0FGSNUSMMCF","NGMEPG0FGSR3FMMMCF","NG...

194

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

4:58:30 PM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Exports to South Korea (MMcf)" "Sourcekey","NGMEPG0ENGNUS-NKSMMCF" "Date","Liquefied U.S. Natural Gas...

195

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

132014 2:06:55 PM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Exports to China (MMcf)" "Sourcekey","NGMEPG0ENGNUS-NCHMMCF" "Date","Liquefied U.S. Natural Gas...

196

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

72014 2:54:14 PM" "Back to Contents","Data 1: Natural Gas Citygate Price in Idaho (Dollars per Thousand Cubic Feet)" "Sourcekey","N3050ID3" "Date","Natural Gas Citygate...

197

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

72014 2:54:52 PM" "Back to Contents","Data 1: Natural Gas Delivered to Consumers in Idaho (Including Vehicle Fuel) (MMcf)" "Sourcekey","N3060ID2" "Date","Natural Gas Delivered...

198

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

72014 2:54:13 PM" "Back to Contents","Data 1: Natural Gas Citygate Price in Idaho (Dollars per Thousand Cubic Feet)" "Sourcekey","N3050ID3" "Date","Natural Gas Citygate...

199

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

72014 2:54:53 PM" "Back to Contents","Data 1: Natural Gas Delivered to Consumers in Idaho (Including Vehicle Fuel) (MMcf)" "Sourcekey","N3060ID2" "Date","Natural Gas Delivered...

200

Proceedings of the eighth annual coal-fueled heat engines and gas stream cleanup systems contractors review meeting  

SciTech Connect

The goal of the Heat Engines and Gas Stream Cleanup Programs at Morgantown Energy Technology Center is to develop essential technologies so the private sector can commercialize power plants burning coal-derived fuels. The purpose of this annual meeting is to provide a forum for scientists and engineers to present their results, exchange ideas and talk about their plans. Topics discussed were: Heat Engines Commercialization and Proof of Concepts Projects; Components and Testing of Coal-Fueled Gas Turbines; Advances in Barrier Filters; Pulse Combustion/Agglomeration; Advances in Coal-Fueled Diesels; Gas Stream Cleanup; Turbine and Diesel Emissions; and Poster Presentations.

Webb, H.A.; Bedick, R.C.; Geiling, D.W.; Cicero, D.C. (eds.)

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Price for Natural Gas Pipeline and Distribution Use " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

202

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"U.S. Natural Gas Pipeline Imports by Point of Entry " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

203

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"U.S. Natural Gas Pipeline Exports by Point of Exit " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

204

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Industrial Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

205

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Deliveries to Electric Power Consumers (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

206

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

207

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","La...

208

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

209

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Nevada Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

210

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Citygate Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

211

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Maryland Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

212

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Utah Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

213

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Tennessee Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

214

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Kentucky Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

215

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Industrial Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

216

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Alaska Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

217

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Utah Natural Gas Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

218

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Missouri Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

219

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Exports Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

220

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Oklahoma Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Montana Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

222

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Vehicle Fuel Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

223

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Exports (Summary) " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

224

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Consumption " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

225

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Electric Power Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

226

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Arkansas Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

227

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Imports (Summary) " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

228

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Florida Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

229

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Michigan Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

230

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Nebraska Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

231

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Wellhead Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

232

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Wyoming Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

233

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Imports Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

234

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Oregon Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

235

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Alabama Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

236

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Arizona Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

237

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Weekly Working Gas in Underground Storage" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

238

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Hawaii Natural Gas Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

239

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Kansas Natural Gas Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

240

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Maine Natural Gas Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Marketed Production " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

242

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Kansas Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

243

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Delivered to Consumers " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

244

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Colorado Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

245

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"California Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

246

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Nevada Natural Gas Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

247

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Oregon Natural Gas Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

248

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

249

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Pennsylvania Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

250

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","La...

251

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data"...

252

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Delivered to Consumers in South Dakota (Including Vehicle Fuel) (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

253

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Citygate Price in South Dakota (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

254

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Natural Gas Withdrawals from Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

255

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data"...

256

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Percent of Commercial Natural Gas Deliveries in South Dakota Represented by the Price (%)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

257

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","...

258

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Percentage of Total Natural Gas Residential Deliveries included in Prices " ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

259

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

MW Reciprocating Engine 3 MW Gas Turbine 1 MW ReciprocatingEngine 5 MW Gas Turbine 3MW Gas Turbine 40 MW Gas Turbine 1 MW Reciprocating Engine

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

260

Recovery of Water from Boiler Flue Gas  

SciTech Connect

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was within the limits for landfilling inert residues. On the other hand, sulfate and chloride releases were found to comply with the limits for non-hazardous residues.

Seggiani, Maurizia, E-mail: m.seggiani@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Puccini, Monica, E-mail: m.puccini@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Raggio, Giovanni, E-mail: g.raggio@tiscali.it [Italprogetti Engineering SPA, Lungarno Pacinotti, 59/A, 56020 San Romano (Pisa) (Italy); Vitolo, Sandra, E-mail: s.vitolo@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy)

2012-10-15T23:59:59.000Z

262

Film Cooling, Heat Transfer and Aerodynamic Measurements in a Three Stage Research Gas Turbine  

E-Print Network (OSTI)

The existing 3-stage turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A and M University, is re-designed and newly installed to enable coolant gas injection on the first stage rotor platform to study the effects of rotation on film cooling and heat transfer. Pressure and temperature sensitive paint techniques are used to measure film cooling effectiveness and heat transfer on the rotor platform respectively. Experiments are conducted at three turbine rotational speeds namely, 2400rpm, 2550rpm and 3000rpm. Interstage aerodynamic measurements with miniature five hole probes are also acquired at these speeds. The aerodynamic data characterizes the flow along the first stage rotor exit, second stage stator exit and second stage rotor exit. For each rotor speed, film cooling effectiveness is determined on the first stage rotor platform for upstream stator-rotor gap ejection, downstream discrete hole ejection and a combination of upstream gap and downstream hole ejection. Upstream coolant ejection experiments are conducted for coolant to mainstream mass flow ratios of MFR=0.5%, 1.0%, 1.5% and 2.0% and downstream discrete hole injection tests corresponding to average hole blowing ratios of M = 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0 for each turbine speed. To provide a complete picture of hub cooling under rotating conditions, experiments with simultaneous injection of coolant gas through upstream and downstream injection are conducted for an of MFR=1% and Mholes=0.75, 1.0 and 1.25 for the three turbine speeds. Heat transfer coefficients are determined on the rotor platform for similar upstream and downstream coolant injection. Rotation is found to significantly affect the distribution of coolant on the platform. The measured effectiveness magnitudes are lower than that obtained with numerical simulations. Coolant streams from both upstream and downstream injection orient themselves towards the blade suction side. Passage vortex cuts-off the coolant film for the lower MFR for upstream injection. As the MFR increases, the passage vortex effects are diminished. Effectiveness was maximum when Mholes was closer to one as the coolant ejection velocity is approximately equal to the mainstream relative velocity for this blowing ratio. Heat transfer coefficient and film cooling effectiveness increase with increasing rotational speed for upstream rotor stator gap injection while for downstream hole injection the maximum effectiveness and heat transfer coefficients occur at the reference speed of 2550rpm.

Suryanarayanan, Arun

2009-05-01T23:59:59.000Z

263

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site  

E-Print Network (OSTI)

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

1994-01-01T23:59:59.000Z

264

Corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

265

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

the standard efficiency natural gas power plant case, highand imports Natural gas plants providing power to Californianatural gas and petroleum products as well as the remote power plant

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

266

CONTENTS BOEM Releases Assessment of In-Place Gas Hydrate Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

BOEM Releases Assessment of BOEM Releases Assessment of In-Place Gas Hydrate Resources of the Lower 48 United States Outer Continental Shelf ..............1 Re-examination of Seep Activity at the Blake Ridge Diapir ............6 Field Data from 2011/2012 ConocoPhillips-JOGMEC-DOE Iġnik Sikumi Gas Hydrate Field Trial Now Available .......................9 Announcements .......................11 * Norwegian Center of Excellence to Receive Ten Years of Arctic Research Funding * Release of Mallik 2007-2008 Results * Goldschmidt Conference * 2012 Methane Hydrate Research Fellowship Awarded to Jeffrey James Marlow Spotlight on Research........... 16 Bjørn Kvamme CONTACT Ray Boswell Technology Manager-Methane Hydrates, Strategic Center for Natural Gas & Oil 304-285-4541 ray.boswell@netl.doe.gov

267

A diffusion-kinetic model for pulverized-coal combustion and heat-and-mass transfer in a gas stream  

SciTech Connect

A diffusion-kinetic model for pulverized-coal combustion and heat-and-mass transfer in a gas stream is proposed, and the results of numerical simulation of the burnout dynamics of Kansk-Achinsk coals in the pulverized state at different treatment conditions and different model parameters are presented. The mathematical model describes the dynamics of thermochemical conversion of solid organic fuels with allowance for complex physicochemical phenomena of heat-and-mass exchange between coal particles and the gaseous environment.

E.A. Boiko; S.V. Pachkovskii [Polytechnic Institute, Federal University of Siberia, Krasnoyarsk (Russian Federation)

2008-12-15T23:59:59.000Z

268

Proposal to Negotiate, without Competitive Tendering, a Contract for the Supply of Natural Gas for the Heating Plant on the Meyrin Site  

E-Print Network (OSTI)

Proposal to Negotiate, without Competitive Tendering, a Contract for the Supply of Natural Gas for the Heating Plant on the Meyrin Site

1992-01-01T23:59:59.000Z

269

Proposal to Negotiate, without competitive tendering, the renewal of hte contract for hte supply of natural gas for the heating plant on the Prévessin Site  

E-Print Network (OSTI)

Proposal to Negotiate, without competitive tendering, the renewal of hte contract for hte supply of natural gas for the heating plant on the Prévessin Site

1994-01-01T23:59:59.000Z

270

HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability  

SciTech Connect

The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation.

McDonald, C.F.

1980-04-01T23:59:59.000Z

271

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

DOE Green Energy (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

272

Experimental Study of Gas Turbine Blade Film Cooling and Heat Transfer  

E-Print Network (OSTI)

Modern gas turbine engines require higher turbine-entry gas temperature to improve their thermal efficiency and thereby their performance. A major accompanying concern is the heat-up of the turbine components which are already subject to high thermal and mechanical stresses. This heat-up can be reduced by: (i) applying thermal barrier coating (TBC) on the surface, and (ii) providing coolant to the surface by injecting secondary air discharged from the compressor. However, as the bleeding off of compressor discharge air exacts a penalty on engine performance, the cooling functions must be accomplished with the smallest possible secondary air injection. This necessitates a detailed and systematic study of the various flow and geometrical parameters that may have a bearing on the cooling pattern. In the present study, experiments were performed in three regions of a non-rotating gas turbine blade cascade: blade platform, blade span, and blade tip. The blade platform and blade span studies were carried out on a high pressure turbine rotor blade cascade in medium flow conditions. Film-cooling effectiveness or degree of cooling was assessed in terms of cooling hole geometry, blowing ratio, freestream turbulence, coolant-to-mainstream density ratio, purge flow rate, upstream vortex for blade platform cooling and blowing ratio, and upstream vortex for blade span cooling. The blade tip study was performed in a blow-down flow loop in a transonic flow environment. The degree of cooling was assessed in terms of blowing ratio and tip clearance. Limited heat transfer coefficient measurements were also carried out. Mainstream pressure loss was also measured for blade platform and blade tip film-cooling with the help of pitot-static probes. The pressure sensitive paint (PSP) and temperature sensitive paint (TSP) techniques were used for measuring film-cooling effectiveness whereas for heat transfer coefficient measurement, temperature sensitive paint (TSP) technique was employed. Results indicated that the blade platform cooling requires a combination of upstream purge flow and downstream discrete film-cooling holes to cool the entire platform. The shaped cooling holes provided wider film coverage and higher film-cooling effectiveness than the cylindrical holes while also creating lesser mainstream pressure losses. Higher coolant-to-mainstream density ratio resulted in higher effectiveness levels from the cooling holes. On the blade span, at any given blowing ratio, the suction side showed better coolant coverage than the pressure side even though the former had two fewer rows of holes. Film-cooling effectiveness increased with blowing ratio on both sides of the blade. Whereas the pressure side effectiveness continued to increase with blowing ratio, the increase in suction side effectiveness slowed down at higher blowing ratios (M=0.9 and 1.2). Upstream wake had a detrimental effect on film coverage. 0% and 25% wake phase positions significantly decreased film-cooling effectiveness magnitude. Comparison between the compound shaped hole and the compound cylindrical hole design showed higher effectiveness values for shaped holes on the suction side. The cylindrical holes performed marginally better in the curved portion of the pressure side. Finally, the concept tip proved to be better than the baseline tip in terms of reducing mainstream flow leakage and mainstream pressure loss. The film-cooling effectiveness on the concept blade increased with increasing blowing ratio and tip gap. However, the film-coverage on the leading tip portion was almost negligible.

Narzary, Diganta P.

2009-08-01T23:59:59.000Z

273

Review of Potential Federal and State Green House Gas Policy Drivers for Combined Heat and Power Systems  

Science Conference Proceedings (OSTI)

The electric power generation sector contributes about one-third of all green house gas (GHG) emissions in the United States. To curb the reduction of green house gas emissions, all options in the electric power value chain must be considered and evaluated. The more efficient utilization of natural gas fuel via use of distributed combined cooling, heating, and power (CHP) systems in the end-use sector may be one option to mitigating GHG emissions. This research project was undertaken to assess the extent...

2007-12-19T23:59:59.000Z

274

Heating  

SciTech Connect

According to The Hydronics Institute, the surge in gas-fired boiler shipments brought about 3 years ago by high oil prices and the availability of natural gas after years of curtailment has almost competely subsided. Gas prices continue to escalate and the threat of decontrol by 1985 continues. Likewise, the Gas Appliance Manufacturers Association reports that shipments of gas-fired unit heaters, duct furnaces, and wall furnaces have also dropped as homeowners adopt a wait-and-see attitude toward conversion. However, the market for high- and ultra-high-efficiency furnaces appears to hold potential for expansion. Because of the rebounding home market, a steady replacement market, and increased sales for reasons of efficiency, GAMA expects the total (gas, oil, and electric) central furnace market to increase by 16% in 1983.

1983-04-04T23:59:59.000Z

275

Rheology and Convective Heat Transfer of Colloidal Gas Aphrons in Horizontal Minichannels  

E-Print Network (OSTI)

Single-phase convective heat transfer in microchannels: aand Newell, M. E. , 1967. Heat transfer in fully developed3 /s at 130 W. Water CGA Heat Transfer Coefficient, h (W/m 2

Tseng, H.; Pilon, L.; Warrier, G.

2006-01-01T23:59:59.000Z

276

HEAT TRANSFER DURING THE SHOCK-INDUCED IGNITION OF AN EXPOLSIVE GAS  

E-Print Network (OSTI)

11 Stagnation Point Heat Transfer Measurements in Air atR.M. , and Kemp, N.H. , Heat Transfer from High TemperatureProceedings of the 1963 Heat Transfer and Fluid Mechanics

Heperkan, H.

2013-01-01T23:59:59.000Z

277

Hindcast/Forecast of ENSO Events Based upon the Redistribution of Observed and Model Heat Content in the Western Tropical Pacific, 1964–86  

Science Conference Proceedings (OSTI)

The redistribution of observed upper-ocean heat content in the western tropical North Pacific for the four-year period 1979–82 was shown by Pazan et al. to provide a qualitative hindcast capability for the 1982–83 ENSO event. A related study (...

Warren B. White; Stephen E. Pazan; Masamichi Inoue

1987-02-01T23:59:59.000Z

278

A low NO/sub x/ combustion system and a ceramic cross flow heat exchanger for small gas turbines  

SciTech Connect

A new low NO/sub x/ oil-combustion system with superheated steam fuel evaporation prior to combustion has been found especially feasible for open cycle gas turbines with high turbine inlet temperatures and ceramic cross flow heat exchanger. The actual state of development of both the low NO/sub x/ light fuel-oil combustion system and ceramic heat exchanger elements, especially the cross flow type, is outlined in this paper. The use of this combustion system results in considerably lower combustion temperatures in the primary combustion zone, reducing the NO/sub x/-production even at high air temperatures when the air is preheated in the heat exchanger. The water vapour used for the evaporation of the fuel oil before combustion has an improving effect on the cycle efficiency comparable to the Cheng-dual-fluid-cycle. Illustrative evaluations for a gas turbine cycle for a shaft power of 70 kW are given.

Forster, S.; Quell, P.

1987-01-01T23:59:59.000Z

279

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

GHG preferable to grid power only when the waste heat can bethe grid electricity it displaces when the waste heat from

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

280

Network simulation solutions for laminar radiating dissipative magneto-gas dynamic heat transfer over a wedge in non-Darcian porous regime  

Science Conference Proceedings (OSTI)

We study the steady-state, magnetohydrodynamic, optically thick, dissipative gas boundary layer flow and heat transfer past a non-isothermal porous wedge embedded in a scattering, homogenous, isotropic Darcy-Forchheimer porous medium, with significant ... Keywords: Boundary layers, Hartmann number, Joule heating, Magneto-gas dynamics, Network simulation

JoaquíN Zueco; O. Anwar BéG

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

natural-gas- fired combined cycle generation, and the othernatural-gas-fired combined cycle plants. This assumptionplants were efficient combined cycle plants. The four

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

282

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

in-state and imports Natural gas plants providing power toand Imports 20% RPS 2010, 33% RPS 2020 California Electricity Generation (TWh/a) Natural Gas

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

283

Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors  

Science Conference Proceedings (OSTI)

A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000ºC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

Dawn Scates

2010-10-01T23:59:59.000Z

284

Comprehensive computer model for magnetron sputtering. I. Gas heating and rarefaction  

SciTech Connect

The complex interaction between several variables in magnetron sputtering discharges is a challenge in developing engineering design tools for industrial applications. For instance, at high pressures, rarefaction and gas heating should no longer be neglected for determining several parameters of the process. In this article, we use a comprehensive 3D reactor-scale simulator that incorporates most phenomena of interest in a self-consistent manner to simulate the transport of sputtered particles over a wide range of pressures and powers. Calculations of aluminum deposition rates and metal vapor densities are in reasonable agreement with experiments over a wide range of pressures and powers. Of the elements investigated (Al, Ti, and Cu), copper showed the greatest rarefaction (30%) due to its higher sputtering yield. Titanium, despite a slightly lower sputtering yield than Al, shows a greater rarefaction than aluminum as more particles are reflected from the target as high energy neutrals. In this case, a more efficient energy transfer process is responsible for the higher rarefaction observed in Ti sputtering when compared to Al. The authors also observed that by sputtering at a higher pressure, the probability of electron impact ionization of sputtered particles is increased and speculate about the role of this process in contrast to penning ionization, which is believed to be the dominant ionization mechanism in magnetron sputtering.

Jimenez, Francisco J.; Dew, Steven K. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton Alberta, T6G 2V4 (Canada)

2012-07-15T23:59:59.000Z

285

Field comparison of conventional HVAC systems with a residential gas-engine-driven heat pump  

SciTech Connect

Through its Office of Federal Energy Management Program (FEMP), the US Department of Energy (DOE) provides technical and administrative support to federal agency programs directed at reducing energy consumption and cost in federal buildings and facilities. One such program is the New Technology Demonstration Program (NTDP). In this context, NTDP is a demonstration of a US energy-related technology at a federal site. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate new technologies. The partnership of these interests is secured through a Cooperative Research and Development Agreement (CRADA). The Fort Sam Houston (San Antonio, Texas) NTDP is a field evaluation of a 3-ton gas-engine-driven residential heat pump. Details of the technical approach used in the evaluation, including instrumentation and methodology, are presented. Dynamic performance maps, based on field data, are developed for the existing residential furnaces and air conditioners at Fort Sam Houston. These maps are the basis for comparisons between the candidate and current equipment. The approach offers advantages over pre/post-measure evaluations by decoupling the measured equipment performance from the effects of different envelope characteristics, occupant behavior, and weather.

Miller, J.D.

1994-08-01T23:59:59.000Z

286

Neutron methods for measuring {sup 235}U content in UF{sub 6} gas  

SciTech Connect

In the United States and Russia, UF{sub 6} gas streams of highly enriched uranium and lower enrichment uranium am being blended to reduce the stockpile of the highly enriched material. The resultant uranium is no longer useful for weapons, but is suitable as fuel for nuclear reactors. A method to verify the blending of high- and low-enrichment uranium was developed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy, Office of Research and Development (NN-20). In the United States, blending occurs at the U.S. Department of Energy`s Portsmouth Gaseous Diffusion Plant located near Portsmouth, Ohio. In Russia, the blending takes place at Novouralsk. The United States is purchasing the blended product produced in Russia in a program to reduce the availability of enriched uranium that can be used for weapons production. Monitoring the {sup 235}U mass flux of the input stream having the highly enriched uranium will provide confidence that high-enrichment uranium is being consumed in the blending process, and monitoring the output stream will provide an on-line measure of the {sup 235}U in the mixed product. The Portsmouth plant is a potential test facility for non-destructive technology to monitor blending. In addition, monitoring the blending at Portsmouth can support International Atomic Energy Agency activities on controlling and reducing enriched uranium stockpiles.

Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Pappas, R.A.; Sunberg, D.S.

1996-10-01T23:59:59.000Z

287

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"U.S. Price of Natural Gas Pipeline Exports by Point of Exit " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

288

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"U.S. Price of Natural Gas Pipeline Imports by Point of Entry " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

289

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 9:14:27 AM" "Back to Contents","Data 1: Wisconsin Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"...

290

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 9:13:24 AM" "Back to Contents","Data 1: Wisconsin Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic...

291

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 5:40:28 AM" "Back to Contents","Data 1: Wisconsin Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WI2" "Date","Wisconsin...

292

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 5:43:56 AM" "Back to Contents","Data 1: Wisconsin Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035WI2" "Date","Wisconsin...

293

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 5:45:05 AM" "Back to Contents","Data 1: Wisconsin Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045WI2"...

294

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 5:45:04 AM" "Back to Contents","Data 1: Wisconsin Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045WI2"...

295

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2:08:06 PM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Exports to Brazil (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0PNGNUS-NBRDMCF"...

296

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2:08:07 PM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Exports to Brazil (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0PNGNUS-NBRDMCF"...

297

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2:08:11 PM" "Back to Contents","Data 1: Alaska Liquefied Natural Gas Exports Price to China (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0PNGSAK-NCHDMCF"...

298

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2:08:07 PM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Exports to China (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0PNGNUS-NCHDMCF"...

299

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2:08:12 PM" "Back to Contents","Data 1: Alaska Liquefied Natural Gas Exports Price to China (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0PNGSAK-NCHDMCF"...

300

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"172014 2:58:22 PM" "Back to Contents","Data 1: Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010FX2"...

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

AM" "Back to Contents","Data 1: Percent of Commercial Natural Gas Deliveries in Pennsylvania Represented by the Price (%)" "Sourcekey","N3020PA4" "Date","Percent of Commercial...

302

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 9:13:15 AM" "Back to Contents","Data 1: Pennsylvania Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"...

303

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 9:14:13 AM" "Back to Contents","Data 1: Pennsylvania Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"...

304

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9302013 9:16:27 AM" "Back to Contents","Data 1: Natural Gas Citygate Price in Pennsylvania (Dollars per Thousand Cubic Feet)" "Sourcekey","N3050PA3"...

305

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9302013 9:16:28 AM" "Back to Contents","Data 1: Natural Gas Citygate Price in Pennsylvania (Dollars per Thousand Cubic Feet)" "Sourcekey","N3050PA3"...

306

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"172014 2:49:36 PM" "Back to Contents","Data 1: Idaho Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"...

307

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"172014 2:48:16 PM" "Back to Contents","Data 1: Idaho Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ID2" "Date","Idaho...

308

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"172014 2:53:12 PM" "Back to Contents","Data 1: Idaho Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045ID2"...

309

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2:49:37 PM" "Back to Contents","Data 1: Percent of Commercial Natural Gas Deliveries in Idaho Represented by the Price (%)" "Sourcekey","N3020ID4" "Date","Percent of Commercial...

310

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"172014 2:51:34 PM" "Back to Contents","Data 1: Idaho Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035ID2" "Date","Idaho...

311

Investigation of the Heat Transfer Coefficient of Liquid and Gas Bubble Train Flow in a Square Mini-channel Using Infra-Red thermography  

E-Print Network (OSTI)

Investigation of the Heat Transfer Coefficient of Liquid and Gas Bubble Train Flow in a Square Mini slug and bubbles, liquid and gas superficial velocities which depend on the volume flow ratio of the channel (Bo) for specific liquid and gas phase. At relatively high Bo (Bo>Bocr1.835) systems gravity force

Khandekar, Sameer

312

Negative heat capacity in the critical region of nuclear fragmentation: an experimental evidence of the liquid-gas phase transition  

E-Print Network (OSTI)

An experimental indication of negative heat capacity in excited nuclear systems is inferred from the event by event study of energy fluctuations in $Au$ quasi-projectile sources formed in $Au+Au$ collisions at 35 A.MeV. The excited source configuration is reconstructed through a calorimetric analysis of its de-excitation products. Fragment partitions show signs of a critical behavior at about 5 A.MeV excitation energy. In the same energy range the heat capacity shows a negative branch providing a direct evidence of a first order liquid gas phase transition.

M. D'Agostino; F. Gulminelli; Ph. Chomaz; M. Bruno; F. Cannata; R. Bougault; N. Colonna; F. Gramegna; I. Iori; N. Le Neindre; G. V. Margagliotti; P. F. Mastinu; P. M. Milazzo; A. Moroni; G. Vannini

1999-06-07T23:59:59.000Z

313

Design of compact intermediate heat exchangers for gas cooled fast reactors  

E-Print Network (OSTI)

Two aspects of an intermediate heat exchanger (IHX) for GFR service have been investigated: (1) the intrinsic characteristics of the proposed compact printed circuit heat exchanger (PCHE); and (2) a specific design optimizing ...

Gezelius, Knut, 1978-

2004-01-01T23:59:59.000Z

314

Repowering Fossil Steam Plants with Gas Turbines and Heat Recovery Steam Generators: Design Considerations, Economics, and Lessons L earned  

Science Conference Proceedings (OSTI)

This report describes repowering fossil steam plants using gas turbines (GTs) and heat recovery steam generators (HRSGs) in combined-cycle mode. Design considerations and guidance, comparative economics, and lessons learned in the development of such projects are included. Various other methods of fossil plant repowering with GTs are also briefly discussed. The detailed results and comparisons that are provided relate specifically to a generic GT/HRSG repowering. Design parameters, limitations, schedulin...

2012-08-08T23:59:59.000Z

315

Willamina Project Report : Indirect-Fired, Biomass-Fueled, Combined-Cycle, Gas Turbine Power Plant Using a Ceramic Heat Exchanger. Volume 1. Conceptual Plant Design and Analysis. Final report. [Contains Glossary  

SciTech Connect

A new technology for a wood-fueled electrical generation plant was evaluated. The proposed plant utilizes an indirectly fired gas turbine (IFGT) using a ceramic heat exchanger for high efficiency, due to its high temperature capability. The proposed plant utilizes a wood-fueled furnace with a ceramic heat exchanger to heat compressed air for a gas turbine. The configuration proposed is a combined cycle power plant that can produce 6 to 12 MW, depending upon the amount of wood used to supplementally fire a heat recovery steam generator (HRSG), which in turn powers a steam turbine. Drawings, specifications, and cost estimates based on a combined cycle analysis and wood-fired HRSG were developed. The total plant capital cost was estimated to be $13.1 million ($1640/kW). The heat rate for a 8-MW plant was calculated to be 10,965 Btu/kW when using wood residues with a 42% moisture content. Levelized electric energy costs were estimated to be 6.9 cents/kWh.

F.W. Braun Engineers.

1984-05-01T23:59:59.000Z

316

Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

2010-01-01T23:59:59.000Z

317

Cooling of X-ray Emitting Gas by Heat Conduction in the Center of Cooling Flow Clusters  

E-Print Network (OSTI)

We study the possibility that a large fraction of the gas at temperatures of ? 10 7 K in cooling flow clusters cools by heat conduction to lower temperatures, rather than by radiative cooling. We argue that this process, when incorporated into the so-called “moderate cooling flow model”, where the effective age of the intracluster medium is much lower than the age of the cluster, reduces substantially the expected X-ray luminosity from gas residing at temperatures of ? 10 7 K. In this model, the radiative mass cooling rate of gas at ? 10 7 K inferred from X-ray observations, which is heat conduction is regulated by reconnection between the magnetic field lines in cold ( ? 10 4 K) clouds and the field lines in the intracluster medium. A narrow conduction front is formed, which, despite the relatively low temperature, allows efficient heat conduction from the hot ICM to the cold clouds. The reconnection between the field lines in cold clouds and those in the intracluster medium occurs only when the magnetic field in the ICM is strong enough. This occurs only in the very inner regions of cooling flow clusters, at r ? 10 ? 30 kpc. The large ratio of the number of H? photons to the number of cooling hydrogen atoms is explained by this scenario. 1.

Noam Soker; L. Blanton; Craig L. Sarazin; Chandra Fellow

2003-01-01T23:59:59.000Z

318

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

the importance of grid carbon intensity. Natural-gas-fired CHP is GHG preferable to grid power only when supply projection, in-state and imports Natural gas plants providing power to California are a mix ....................................................................................................................... 12 Table 7. 2020 forecasts of California electricity and natural gas prices

319

Home systems research house: Gas heat pump cooling characterization test results. Topical report, July-September 1991  

Science Conference Proceedings (OSTI)

Cooling performance characterization tests were performed at the GRI Home Systems Research House located in the NAHB Research Home Park in Prince George's County, Maryland. Test protocols followed guidelines set forth in GRI's Research House Utilization Plan (RHUP). A combination of minute-by-minute and hourly average data consisting of weather, comfort, and energy parameters was collected by using an automated data acquisition system. The tests were performed from July 1991 through September 1991. The gas heat pump (GHP) had an average daily gas coefficient of performance (COP) value of 1.49 at an outdoor temperature of 72.8 F and 0.84 at an outdoor temperature of 83.9 F. The average test period gas COP was 1.13. The GHP peak cooling capacity achieved was approximately 34,000 Btuh. The GHP provided good overall thermal comfort control on the first-floor and moderate thermal comfort control on the second floor. Reduced second floor performance was primarily due to thermostat location and the stack effect. Good latent heat removal existed throughout the test period. Unit modulation kept room air stratification to a minimum. Thermostat setback saved energy at high average daily outdoor temperatures and used more energy at lower average daily outdoor temperatures, compared to a constant thermostat setpoint control, due to changes in unit gas COP values from low-speed to high-speed operation.

Reigel, H.D.; Kenney, T.M.; Liller, T.C.

1993-01-01T23:59:59.000Z

320

Off-gas characteristics of defense waste vitrification using liquid-fed Joule-heated ceramic melters  

DOE Green Energy (OSTI)

Off-gas and effluent characterization studies have been established as part of a PNL Liquid-Fed Ceramic Melter development program supporting the Savannah River Laboratory Defense Waste Processing Facility (SRL-DWPF). The objectives of these studies were to characterize the gaseous and airborne emission properties of liquid-fed joule-heated melters as a function of melter operational parameters and feed composition. All areas of off-gas interest and concern including effluent characterization, emission control, flow rate behavior and corrosion effects have been studied using alkaline and formic-acid based feed compositions. In addition, the behavioral patterns of gaseous emissions, the characteristics of melter-generated aerosols and the nature and magnitude of melter effluent losses have been established under a variety of feeding conditions with and without the use of auxiliary plenum heaters. The results of these studies have shown that particulate emissions are responsible for most radiologically important melter effluent losses. Melter-generated gases have been found to be potentially flammable as well as corrosive. Hydrogen and carbon monoxide present the greatest flammability hazard of the combustibles produced. Melter emissions of acidic volatile compounds of sulfur and the halogens have been responsible for extensive corrosion observed in melter plenums and in associated off-gas lines and processing equipment. The use of auxiliary plenum heating has had little effect upon melter off-gas characteristics other than reducing the concentrations of combustibles.

Goles, R.W.; Sevigny, G.J.

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat...

322

Tubular and Sector Heat Pipes with Interconnected Branches for Gas Turbine and/or Compressor Cooling.  

E-Print Network (OSTI)

?? Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing… (more)

Reding, Brian D., II

2013-01-01T23:59:59.000Z

323

Demonstration of a high S. P. F. gas heat pump for the north--central United States. Monthly narrative report No. 17  

SciTech Connect

Progress in studying the cost and market potential of HSPF gas heat pumps of the 7/sup 1///sub 2/ ton and larger size level and in testing components of the system is reported. (LCL)

Swenson, P.F.

1977-08-20T23:59:59.000Z

324

Oxidation Potential of the Pu(III)-Pu(IV) Couple in Percloric Acid So lution. Heat Content and Entropy Change  

E-Print Network (OSTI)

on the heat of oxidation of Pu to PuO^ ". The entropies ofT EN«INEi'« T The cPu= Pu + e" has been reported by Hindman et al ' to be -0.945

Connick, Robert E.

2010-01-01T23:59:59.000Z

325

Local heat transfer and film effectiveness of a film cooled gas turbine blade tip.  

E-Print Network (OSTI)

??Gas turbine engines due to high operating temperatures undergo severe thermal stress and fatigue during operation. Cooling of these components is a very important issue… (more)

Adewusi, Adedapo Oluyomi

2012-01-01T23:59:59.000Z

326

Large heavy-duty gas turbines for base-load power generation and heat cogeneration  

SciTech Connect

The predominant role of large gas turbines has shifted from peaking-load duty to midrange and base-load electric power generation, especially within combined-cycle plants. Such applications require heavy-duty industrial gas turbines to ensure the same high reliability and availability for continuous service as the associated steam turbines. It is also important that the gas turbines be designed for low maintenance to minimize the necessary outage times and costs for component repair and replacement. The basic design principles and applications of Model V94 gas turbines are discussed with special reference to highly reliable and economic bulk power generation.

Joyce, J.S.

1985-01-01T23:59:59.000Z

327

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

renewables, including hydroelectric. For this analysis, itin 2010 and 33% in 2020. Hydroelectric generation follows aGas Cogeneration Hydroelectric New Renewables Existing

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

328

U.S. household winter natural gas heating expenditures expected to ...  

U.S. Energy Information Administration (EIA)

LDCs typically buy the natural gas commodity using a variety of services—depending on factors such as their load profile/customer mix, geographic location, ...

329

Gas injection to inhibit migration during an in situ heat treatment process  

DOE Patents (OSTI)

Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

Kuhlman, Myron Ira (Houston, TX); Vinegar; Harold J. (Bellaire, TX); Baker, Ralph Sterman (Fitchburg, MA); Heron, Goren (Keene, CA)

2010-11-30T23:59:59.000Z

330

Heat transfer in leading and trailing edge cooling channels of the gas turbine blade under high rotation numbers  

E-Print Network (OSTI)

The gas turbine blade/vane internal cooling is achieved by circulating the compressed air through the cooling passages inside the turbine blade. Leading edge and trailing edge of the turbine blade are two critical regions which need to be properly cooled. Leading edge region receives extremely hot mainstream flow and high heat transfer enhancement is required. Trailing edge region usually has narrow shaped geometry and applicable cooling techniques are restricted. Heat transfer will be investigated in the leading edge and trailing edge cooling channels at high rotation numbers close to the engine condition. Heat transfer and pressure drop has been investigated in an equilateral triangular channel (Dh=1.83cm) to simulate the cooling channel near the leading edge of the gas turbine blade. Three different rib configurations (45°, inverted 45°, and 90°) were tested at four different Reynolds numbers (10000-40000), each with five different rotational speeds (0-400 rpm). By varying the Reynolds numbers (10000-40000) and the rotational speeds (0-400 rpm), the rotation number and buoyancy parameter reached in this study were 0-0.58 and 0-2.3, respectively. 45° angled ribs show the highest thermal performance at stationary condition. 90° ribs have the highest thermal performance at the highest rotation number of 0.58. Heat transfer coefficients are also experimentally measured in a wedge-shaped cooling channel (Dh =2.22cm, Ac=7.62cm2) to model an internal cooling passage near the trailing edge of a gas turbine blade where the coolant discharges through the slot to the mainstream flow. Tapered ribs are put on the leading and trailing surfaces with an angle of attack of 45°. The ribs are parallel with staggered arrangement on opposite walls. The inlet Reynolds number of the coolant varies from 10,000 to 40,000 and the rotational speeds varies from 0 to 500 rpm. The inlet rotation number is from 0 - 1.0. The local rotation number and buoyancy parameter are determined by the rotational speeds and the local Reynolds number at each region. Results show that heat transfer is high near the regions where strong slot ejection exists. Both the rotation number and buoyancy parameter have been correlated to predict the rotational heat transfer enhancement.

Liu, Yao-Hsien

2008-12-01T23:59:59.000Z

331

Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 1, Cooling season  

Science Conference Proceedings (OSTI)

The Federal government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL)is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer, Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

Miller, J.D.

1995-09-01T23:59:59.000Z

332

Intermediate Heat Transfer Loop Study for High Temperature Gas-Cooled Reactor  

DOE Green Energy (OSTI)

A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycleefficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. This paper also includes a portion of stress analyses performed on pipe configurations.

C. H. Oh; C. Davis; S. Sherman

2008-08-01T23:59:59.000Z

333

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

334

Numerical modeling of pool spreading, heat transfer and evaporation in liquefied natural gas (LNG).  

E-Print Network (OSTI)

?? This master's thesis is a continuation of previous theses written at ComputIT AS. It treats heat transfer to LNG pools boiling on water through… (more)

Myrmo, Øystein

2011-01-01T23:59:59.000Z

335

U.S. natural gas inventories at end of winter heating season ...  

U.S. Energy Information Administration (EIA)

The amount of U.S. working natural gas in underground storage at the end of March 2012 is expected to be the highest since 1983 for the close of the month, the ...

336

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

DOE Green Energy (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

337

A Novel High-Heat Transfer Low-NO{sub x} Natural Gas Combustion System. Final Technical Report  

Science Conference Proceedings (OSTI)

A novel high-heat transfer low NO(sub x) natural gas combustion system. The objectives of this program are to research, develop, test, and commercialize a novel high-heat transfer low-NO{sub x} natural gas combustion system for oxygen-, oxygen-enriched air, and air-fired furnaces. This technology will improve the process efficiency (productivity and product quality) and the energy efficiency of high-temperature industrial furnaces by at least 20%. GTI's high-heat transfer burner has applications in high-temperature air, oxygen-enriched air, and oxygen furnaces used in the glass, metals, cement, and other industries. Development work in this program is focused on using this burner to improve the energy efficiency and productivity of glass melting furnaces that are major industrial energy consumers. The following specific project objectives are defined to provide a means of achieving the overall project objectives. (1) Identify topics to be covered, problems requiring attention, equipment to be used in the program, and test plans to be followed in Phase II and Phase III. (2) Use existing codes to develop models of gas combustion and soot nucleation and growth as well as a thermodynamic and parametric description of furnace heat transfer issues. (3) Conduct a parametric study to confirm the increase in process and energy efficiency. (4) Design and fabricate a high-heat transfer low-NOx natural gas burners for laboratory, pilot- and demonstration-scale tests. (5) Test the high-heat transfer burner in one of GTI's laboratory-scale high-temperature furnaces. (6) Design and demonstrate the high-heat transfer burner on GTI's unique pilot-scale glass tank simulator. (7) Complete one long term demonstration test of this burner technology on an Owens Corning full-scale industrial glass melting furnace. (8) Prepare an Industrial Adoption Plan. This Plan will be updated in each program Phase as additional information becomes available. The Plan will include technical and economic analyses, energy savings and waste reduction predictions, evaluation of environmental effects, and outline issues concerning manufacturing, marketing, and financing. Combustion Tec, Owens Corning, and GTI will all take active roles in defining this Plan. During Phase I, the first three objectives were addressed and completed along with the design component of the fourth objective. In Phase II, the fabrication component of the fourth objective was completed along with objectives five and six. Results of the Phase I work were reported in the Phase I Final Report and are summarized in this Final Technical Report. Work for Phase II was divided in four specific Tasks. Results of the Phase II work were reported in the Phase II Final Report and are also summarized in this Final Technical Report. No Phase III Final Report was prepared, so this Final Technical Report presents the results of Phase III commercial demonstration efforts. A description of each Task in Phases I, II, and III is presented in this report.

Abbasi, H.

2004-01-01T23:59:59.000Z

338

Heat pipe methanator  

DOE Patents (OSTI)

A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

Ranken, William A. (Los Alamos, NM); Kemme, Joseph E. (Los Alamos, NM)

1976-07-27T23:59:59.000Z

339

Handbook of heat and mass transfer. Volume 1  

Science Conference Proceedings (OSTI)

This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 1 emphasizes heat transfer operations. The contents are: Fundamentsls of momentum and heat transfer. Scaling in laminar and turbulent heat and mass transfer. Heat flux in the Benar-Rayleigh problem. Hydrodynamics of free liquid jets and their influence on heat transfer. Natural convection heat transfer to power law fluids. Natural convection in evaporating droplets. Principles of heat and mass transfer with liquid evaporation. Bubble nucleation, growth, and departure in boiling heat transfer. Forced convection boiling in uniformly heated channels. Transient boiling heat transfer under forced convection. Prediction of heat transfer during forced convection subcooled boiling. Liquid metal heat transfer in turbulent pipe flows. Mixed convection in buoyant plumes. Nucleation and growth in the diffusion cloud chamber. Convective and radiative heat transfer of flowing gaseous-solid suspensions. Heat transfer in gas-solid fluidized beds. Gas convection and unsteady conduction in fluid bed heat transfer. Heat transfer between tubes and gas-solid fluid beds. Periodic heat transfer through inhomogeneous layers.

Cheremisinoff, N.P.

1986-01-01T23:59:59.000Z

340

A Heat Exchanger Process for Removal of H{sub2}S Gas  

SciTech Connect

A heat exchanger process has been developed for the removal of H{sub 2}S and other noncondensable gases from geothermal steam. The process utilizes a heat exchanger to condense water from geothermal steam while allowing H{sub 2}S and other noncondensable gases to pass through in the vapor phase. The condensed water is evaporated to form a clean steam from which over 90 percent of the H{sub 2}S and other noncondensable gases have been removed. Some of the important advantages of the heat exchanger process are shown in Table 1. The system can be located upstream of a power plant turbine which eliminates much of the potential for corrosion, as well as the requirement for removing H{sub 2}S from water collected in the main condenser. Since almost all noncondensables are removed, much less steam is needed for air ejector operation. The heat exchanger process is simple: it has no chemical addition requirements or sludge by-products and utilizes standard equipment found in many power plant applications. The regular power plant operators and maintenance crews can easily understand and run the system with minimal attention. Capital and operating costs are competitive with those for currently available H{sub 2}S-abatement technology, although significant economic advantages over downstream abatement processes may result due to the use of clean steam in the turbines.

Coury, Glenn E.; Babione, Robert A.; Gosik, Robert J.

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

TWO-PHASE (GAS-LIQUID) SYSTEM: HEAT TRANSFER AND HYDRAULICS. An Annotated Bibliography  

SciTech Connect

A bibliography of 2843 references in abstracted form is presented which covers the period l950 to 1962. The references are arranged under the following headings: books and review articles, boiling, bubble, condensation, evaporation, equations of state, interfacial characteristics, mass transfer across phase boundaries, measurement techniques, nuclear reactor heat removal, and twophase flow. An author index is included. (D.L.C.)

Kepple, R.R.; Tung, T.V.

1963-07-01T23:59:59.000Z

342

Sinterable ceramic powders from laser heated gas phase reactions and rapidly solidified ceramic materials : annual report.  

E-Print Network (OSTI)

CO[subscript 2] lasers have been employed to heat reactant gases to synthesize Si, Si[subscript 3] N[subscript 4] and SiC powders. The powders are small, uniform in size, nonagglomerated, highly pure and of controlled ...

Haggerty, John Scarseth

1984-01-01T23:59:59.000Z

343

Experimental study of gas turbine blade film cooling and internal turbulated heat transfer at large Reynolds numbers  

E-Print Network (OSTI)

Film cooling effectiveness on a gas turbine blade tip on the near tip pressure side and on the squealer cavity floor is investigated. Optimal arrangement of film cooling holes, effect of a full squealer and a cutback squealer, varying blowing ratios and squealer cavity depth are also examined on film cooling effectiveness. The film-cooling effectiveness distributions are measured on the blade tip, near tip pressure side and the inner pressure and suction side rim walls using a Pressure Sensitive Paint (PSP) technique. A blowing ratio of 1.0 is found to give best results on the pressure side whereas the other tip surfaces give best results for blowing ratios of 2. Film cooling effectiveness tests are also performed on the span of a fully-cooled high pressure turbine blade in a 5 bladed linear cascade using the PSP technique. Film cooling effectiveness over the entire blade region is determined from full coverage film cooling, showerhead cooling and from each individual row with and without an upstream wake. The effect of superposition of film cooling effectiveness from each individual row is then compared with full coverage film cooling. Results show that an upstream wake can result in lower film cooling effectiveness on the blade. Effectiveness magnitudes from superposition of effectiveness data from individual rows are comparable with that from full coverage film cooling. Internal heat transfer measurements are also performed in a high aspect ratio channel and from jet array impingement on a turbulated target wall at large Reynolds numbers. For the channel, three dimple and one discrete rib configurations are tested on one of the wide walls for Reynolds numbers up to 1.3 million. The presence of a turbulated wall and its effect on heat transfer enhancement against a smooth surface is investigated. Heat transfer enhancement is found to decrease at high Re with the discrete rib configurations providing the best enhancement but highest pressure losses. Experiments to investigate heat transfer and pressure loss from jet array impingement are also performed on the target wall at Reynolds numbers up to 450,000. The heat transfer from a turbulated target wall and two jet plates is investigated. A target wall with short pins provides the best heat transfer with the dimpled target wall giving the lowest heat transfer among the three geometries studied.

Mhetras, Shantanu

2006-08-01T23:59:59.000Z

344

Evaluation of Membrane Treatment Technology to Optimize and Reduce Hypersalinity Content of Produced Brine for Reuse in Unconventional Gas Wells  

E-Print Network (OSTI)

Over 18 billion barrels of waste fluids are generated annually from oil and gas production in the United States. As a large amount of water is used for oilfield operations, treating and reusing produced water can cut the consumption of fresh water in well sites. This research has helped to develop a membrane process train for a mobile produced water treatment unit for treating oilfield produced brine for reuse. To design the process train, over 30 sets of combination tests at pilot laboratory scale were performed using pretreatment, microfiltration and nanofiltration processes. Membrane performance was selected based on high flux separation efficiency, high tolerance for solids and fluid treatments. Over 95 % solids rejection and greater than 80 % oil removal efficiency were obtained in all these tests. Process train (pre-treatment and membrane) performance was monitored by chemical analysis of permeate and models fitting experimental data for the process. From the results, hydrocarbon rejection was analyzed; total organic carbon rejection was 47.9 %, total carbon content averaged 37.3 % rejection and total inorganic carbon rejection was at 3.66 %. BTEX removal efficiency ranged from 0.98 % to 52.7 % with the progressive pretreatment methods of using cartridge filters. The nanofiltration membrane showed significant reduction in total dissolved solids and in both anionic and cationic species. The process train is seen to follow a sequence of treatment from cartridge and oil removal filter treatment to microfiltration treatment to ultrafiltration, followed by nanofiltration for the purpose of this research. Further research still needs to be done on to determine the kind of analytical test which will give real time feedback on effectiveness of filters. In summary, the process train developed by TAMU-GPRI possesses distinct advantages in treating oilfield produced brine using membrane technology. These advantages include high quality of permeate, reduced sludge and the possibility of total recycle water systems. The small space requirement, moderate capital costs and ease of operation associated with the use of the mobile unit membrane technology also makes it a very competitive alternative to conventional technologies.

Eboagwu, Uche

2011-08-01T23:59:59.000Z

345

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"12122013 6:56:58 PM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports by Point of Entry " "Sourcekey","N9103US2","NGAEPG0IMLYCAM-Z00MMCF","NAEP...

346

Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01  

SciTech Connect

The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m2). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that ~50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a "toe-thrust" ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those ~70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the KG basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m2. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basin is at the low end of glob

Trehu, Anne; Kannberg, Peter

2011-06-30T23:59:59.000Z

347

Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01  

Science Conference Proceedings (OSTI)

The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m{sup 2}). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that {approx}50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a 'toe-thrust' ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those {approx}70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the K-G basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m{sup 2}. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basi

Anne Trehu; Peter Kannberg

2011-06-30T23:59:59.000Z

348

Two-phase gas-liquid flow characteristics inside a plate heat exchanger  

Science Conference Proceedings (OSTI)

In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-water mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)

Nilpueng, Kitti [Department of Mechanical Engineering, South East Asia University, Bangkok 10160 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

2010-11-15T23:59:59.000Z

349

Heat Transfer in Rectangular Channels (AR=2:1) of the Gas Turbine Blade at High Rotation Numbers  

E-Print Network (OSTI)

Gas turbine blade/vane cooling is obtained by circulating the high pressure air from compressor to the internal cooling passage of the blade/vane. Heat transfer and cooling effect in the rotating blade is highly affected by rotation. The typical rotation number for the aircraft engine is in the range of 0~0.25 and for the land based power generation turbine in the range of 0~05. Currently, the heat transfer data at high rotation numbers are limited. Besides, the investigation of heat transfer phenomena in the turn region, especially near hub portion is rare. This dissertation is to study the heat transfer in rectangular channels with turns in the tip or the hub portion respectively at high rotation numbers close to the engine condition. The dissertation experimentally investigates the heat transfer phenomena in a two-pass rectangular channel (AR=W/H=2:1) with a 180 degree sharp turn in the tip portion. The flow in the first passage is radial outward and after the turn in the second passage, the flow direction is radial inward. The hydraulic diameter (Dh) of the channel is 16.9 mm. Parallel square ribs with an attack angle (alpha) of 45 degrees are used on leading and trailing surfaces to enhance the heat transfer. The rib height-to-hydraulic diameter ratio (e/Dh) is 0.094. For the baseline smooth case and the case with rib pitch-to-height ratio (P/e) 10, channel orientation angles (beta) of 90 degrees and 135 degrees were tried to model the cooling passage in the mid and rear portion of the blade respectively. Two other P/e ratios of 5 and 7.5 were studied at beta=135 degrees to investigate their effect on heat transfer. The data are presented under high rotation numbers and buoyancy parameters by varying the Reynolds number (Re=10,000~40,000) and rotation speed (rpm=0~400). Corresponding rotation number and buoyancy parameter are ranged as 0~0.45 and 0~0.8 respectively. The dissertation also studies the heat transfer in a two-pass channel (AR=2:1) connected by a 180 degree U bend in the hub portion. The flow in the first passage is radial inward and after the U bend, the flow in the second passage is radial outward. The cross-section dimension of this channel is the same as the previous one. To increase heat transfer, staggered square ribs (e/Dh=0.094) are pasted on leading and trailing walls with an attack angle (alpha) of 45 degrees and pitch-to-height ratio (P/e) of 8. A turning vane in the shape of half circle (R=18.5 mm, t=1.6 mm) is used in the turn region to guide the flow for both smooth and ribbed cases. Channel orientation angles (beta) of 90 degrees and 135 degrees were taken for both smooth and ribbed cases. The heat transfer data were taken at high rotation numbers close to previous test section.

Lei, Jiang 1980-

2011-08-01T23:59:59.000Z

350

COMBINED ACTIVE/PASSIVE DECAY HEAT REMOVAL APPROACH FOR THE 24 MWt GAS-COOLED FAST REACTOR  

SciTech Connect

Decay heat removal at depressurized shutdown conditions has been regarded as one of the key areas where significant improvement in passive response was targeted for the GEN IV GFR over the GCFR designs of thirty years ago. It has been recognized that the poor heat transfer characteristics of gas coolant at lower pressures needed to be accommodated in the GEN IV design. The design envelope has therefore been extended to include a station blackout sequence simultaneous with a small break/leak. After an exploratory phase of scoping analysis in this project, together with CEA of France, it was decided that natural convection would be selected as the passive decay heat removal approach of preference. Furthermore, a double vessel/containment option, similar to the double vessel/guard vessel approach of the SFR, was selected as the means of design implementation to reduce the PRA risks of the depressurization accident. However additional calculations in conjunction with CEA showed that there was an economic penalty in terms of decay heat removal system heat exchanger size, elevation heights for thermal centers, and most of all in guard containment back pressure for complete reliance on natural convection only. The back pressure ranges complicated the design requirements for the guard containment. Recognizing that the definition of a loss-of-coolant-accident in the GFR is a misnomer, since gas coolant will always be present, and the availability of some driven blower would reduce fuel temperature transients significantly; it was decided instead to aim for a hybrid active/passive combination approach to the selected BDBA. Complete natural convection only would still be relied on for decay heat removal but only after the first twenty four hours after the initiation of the accident. During the first twenty four hour period an actively powered blower would be relied on to provide the emergency decay power removal. However the power requirements of the active blower/circulators would be kept low by maintaining a pressurized system coolant back pressure of {approx}7-8 bars through the design of the guard containment for such a design pressure. This approach is termed the medium pressure approach by both CEA and the US. Such a containment design pressure is in the range of the LWR experience, both PWRs and BWRs. Both metal containments and concrete guard containments are possible in this pressure range. This approach is then a time-at-risk approach as the power requirements should be low enough that battery/fuel cell banks without diesel generator start-up failure rate issues should be capable of providing the necessary power. Compressed gas sources are another possibility. A companion PRA study is being conducted to survey the reliability of such systems.

CHENG,L.Y.; LUDEWIG, H.

2007-06-01T23:59:59.000Z

351

Improving Gas-Fired Heat Pump Capacity and Performance by Adding a Desiccant Dehumidification Subsystem  

E-Print Network (OSTI)

This paper examines the merits of coupling a desiccant dehumidification subsystem to a gas-engine- driven vapor compression air conditioner. A system is identified that uses a rotary, silica gel, parallel-plate dehumidifier. Dehumidifier data and analysis are based on recent tests. The dehumidification subsystem processes the fresh air portion and handles the latent portion of the load. Adding the desiccant subsystem increases the gas-based coefficient of performance 40% and increases the cooling capacity 50%. Increased initial manufacturing costs are estimated at around $500/ton ($142/kW) for volume production. This cost Level is expected to reduce the total initial cost per ton compared to a system without the desiccant subsystem.

Parsons, B. K.; Pesaran, A. A.; Bharathan, D.; Shelpuk, B. C.

1990-01-01T23:59:59.000Z

352

Direct fired heat exchanger  

DOE Patents (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

353

Heat transfer in sound propagation and attenuation through gas-liquid polyhedral foams  

E-Print Network (OSTI)

A cell method is developed, which takes into account the bubble geometry of polyhedral foams, and provides for the generalized Rayleigh-Plesset equation that contains the non-local in time term corresponding to heat relaxation. The Rayleigh-Plesset equation together with the equations of mass and momentum balances for an effective single-phase inviscid fluid yield a model for foam acoustics. The present calculations reconcile observed sound velocity and attenuation with those predicted using the assumption that thermal dissipation is the dominant damping mechanism in a range of foam expansions and sound excitation frequencies.

Yuri M. Shtemler; Isaac R. Shreiber

2007-05-20T23:59:59.000Z

354

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers ProMIS/Project No.: DE-NT0005648  

NLE Websites -- All DOE Office Websites (Extended Search)

Edward Levy Edward Levy Principal Investigator Director, Lehigh University Energy Research Center RecoveRy of WateR fRom BoileR flue Gas usinG condensinG Heat excHanGeRs PRomis/PRoject no.: de-nt0005648 Background As the United States' population grows and demand for electricity and water increases, power plants located in some parts of the country will find it increasingly difficult to obtain the large quantities of water needed to maintain operations. Most of the water used in a thermoelectric power plant is used for cooling, and the U.S. Department of Energy (DOE) has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. Many coal-fired power plants operate with stack temperatures in the 300 °F range to minimize fouling and corrosion problems due to sulfuric acid condensation and to

355

THE MOLECULAR GAS CONTENT OF z = 3 LYMAN BREAK GALAXIES: EVIDENCE OF A NON-EVOLVING GAS FRACTION IN MAIN-SEQUENCE GALAXIES AT z > 2  

SciTech Connect

We present observations of the CO[J = 3 {yields} 2] emission toward two massive and infrared luminous Lyman break galaxies (LBGs) at z = 3.21 and z = 2.92, using the IRAM Plateau de Bure Interferometer, placing first constraints on the molecular gas masses (M{sub gas}) of non-lensed LBGs. Their overall properties are consistent with those of typical (main-sequence) galaxies at their redshifts, with specific star formation rates {approx}1.6 and {approx}2.2 Gyr{sup -1}, despite their large infrared luminosities (L{sub IR} Almost-Equal-To (2-3) Multiplication-Sign 10{sup 12} L{sub Sun }) derived from Herschel. With one plausible CO detection (spurious detection probability of 10{sup -3}) and one upper limit, we investigate the evolution of the molecular gas-to-stellar mass ratio (M{sub gas}/M{sub *}) with redshift. Our data suggest that the steep evolution of M{sub gas}/M{sub *} of normal galaxies up to z {approx} 2 is followed by a flattening at higher redshifts, providing supporting evidence for the existence of a plateau in the evolution of the specific star formation rate at z > 2.5.

Magdis, Georgios E.; Rigopoulou, D. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Daddi, E.; Sargent, M.; Elbaz, D.; Gobat, R.; Tan, Q.; Aussel, H. [CEA, Laboratoire AIM, Irfu/SAp, F-91191 Gif-sur-Yvette (France); Dannerbauer, H. [Institut fuer Astronophysik, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Feruglio, C. [IRAM-Institut de RadioAstronomie Millimetrique 300 rue de la Piscine, Domaine Universitaire, F-38406 Saint Martin d' Heres (France); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Dickinson, M. [NOAO, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Reddy, N. [Department of Physics and Astronomy, University of California, Riverside 900 University, Avenue Riverside, CA 92507 (United States)

2012-10-10T23:59:59.000Z

356

HEAT-TRANSFER EXPERIMENTS ON A PROPOSED FUEL ASSEMBLY FOR THE EXPERIMENTAL GAS COOLED REACTOR. SECTION II FO FUEL-ASSEMBLY HEAT-TRANSFER AND CHANNEL PRESSURE-DROP EXPERIMENT FOR THE EGCR RESEARCH AND DEVELOPMENT PROGRAM  

SciTech Connect

Heat-transfer data are presented for the Experimental Gas Cooled Reactor Title I seven-rod fuel-assembly design. The effect on heat transfer of (1) the radial location of the outer six rods of the seven-fuel-rod cluster and of (2) the addition of helical-finned spacers at the midpoint of each of the seven fuel rods is discussed. The heattransfer data were obtained to verify preliminary general assumptions pertaining to the heat-transfer characteristics of the seven- rod fuel-assembly design and to obtain local heat-transfer correlations. The heat-transfer tests were performed at near-atmospheric pressure using air as the coolant medium. Plots and equations of heattransfer correlations over a Reynolds Number range from 12,000 to 80,000 are included. The test set-up and test procedure are also described. (auth)

Beaudoin, C.L.; Higgins, R.M.

1960-04-12T23:59:59.000Z

357

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9011us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9011us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:36 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals from Gas Wells (MMcf)" "Sourcekey","N9011US2" "Date","U.S. Natural Gas Gross Withdrawals from Gas Wells (MMcf)" 33253,1482053 33526,1363737 33984,1452098 34015,1305490

358

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

poe2_dcu_nus-z00_a.xls" poe2_dcu_nus-z00_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_dcu_nus-z00_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:44 PM" "Back to Contents","Data 1: U.S. Total Exports " "Sourcekey","N9132US2","N9132US3","N9133US2","N9133US3" "Date","U.S. Natural Gas Pipeline Exports (MMcf)","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)","Liquefied U.S. Natural Gas Exports (MMcf)","Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)"

359

Wafer heating mechanisms in a molecular gas, inductively coupled plasma: in situ, real time wafer surface measurements and three-dimensional thermal modeling  

Science Conference Proceedings (OSTI)

The authors report measurements and modeling of wafer heating mechanisms in an Ar/O{sub 2} inductively coupled plasma (ICP). The authors employed a commercially available on-wafer sensor system (PlasmaTemp developed by KLA-Tencor) consisting of an on-board electronics module housing battery power and data storage with 30 temperature sensors embedded onto the wafer at different radial positions. This system allows for real time, in situ wafer temperature measurements. Wafer heating mechanisms were investigated by combining temperature measurements from the PlasmaTemp sensor wafer with a three-dimensional heat transfer model of the wafer and a model of the ICP. Comparisons between pure Ar and Ar/O{sub 2} discharges demonstrated that two additional wafer heating mechanisms can be important in molecular gas plasmas compared to atomic gas discharges. The two mechanisms are heating from the gas phase and O-atom surface recombination. These mechanisms were shown to contribute as much as 60% to wafer heating under conditions of low bias power. This study demonstrated how the 'on-wafer' temperature sensor not only yields a temperature profile distribution across the wafer, but can be used to help determine plasma characteristics, such as ion flux profiles or plasma processing temperatures.

Titus, M. J.; Graves, D. B. [Department of Chemical Engineering, University of California, Berkeley, California 94720 (United States)

2008-09-15T23:59:59.000Z

360

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Oil Prices by Region and State" Heating Oil Prices by Region and State" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Region-State",32,"Weekly","12/16/2013","10/7/2013" ,"Data 2","Monthly Region-State",6,"Monthly","11/2013","10/15/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","pswd2vwall.xls" ,"Available from Web Page:","http://www.eia.gov/oil_gas/petroleum/data_publications/weekly_petroleum_status_report/wpsr.html"

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Oil Prices by Region and State" Heating Oil Prices by Region and State" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Region-State",27,"Weekly","12/16/2013","10/1/1990" ,"Data 2","Monthly Region-State",6,"Monthly","11/2013","10/15/1990" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","pswd1vwall.xls" ,"Available from Web Page:","http://www.eia.gov/oil_gas/petroleum/data_publications/weekly_petroleum_status_report/wpsr.html"

362

Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Combined Heat and Power Combined Heat and Power Jump to: navigation, search All power plants release a certain amount of heat during electricity generation. This heat can be used to serve thermal loads, such as building heating and hot water requirements. The simultaneous production of electrical (or mechanical) and useful thermal power from a single source is referred to as a combined heat and power (CHP) process, or cogeneration. Contents 1 Combined Heat and Power Basics 2 Fuel Types 2.1 Rural Resources 2.2 Urban Resources 3 CHP Technologies 3.1 Steam Turbine 3.2 Gas Turbine 3.3 Microturbine 3.4 Reciprocating Engine 4 Example CHP Systems[7] 4.1 University of Missouri (MU) 4.2 Princeton University 4.3 University of Iowa 4.4 Cornell University 5 Glossary 6 References Combined Heat and Power Basics

363

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network (OSTI)

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger.… (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

364

Direct Experimental Evaluation of the Grain Boundaries Gas Content in PWR fuels: New Insight and Perspective of the ADAGIO Technique  

SciTech Connect

Over the last decades, many analytical experiments (in-pile and out-of-pile) have underlined the active role of the inter-granular gases on the global fuel transient behavior under accidental conditions such as RIA and/or LOCA. In parallel, the improvement of fission gas release modeling in nuclear fuel performance codes needs direct experimental determination/validation regarding the local gas distribution inside the fuel sample. In this context, an experimental program, called 'ADAGIO' (French acronym for Discriminating Analysis of Accumulation of Inter-granular and Occluded Gas), has been initiated through a joint action of CEA, EDF and AREVA NP in order to develop a new device/technique for quantitative and direct measurement of local fission gas distribution within an irradiated fuel pellet. ADAGIO technique is based on the fact that fission gas inventory (intra and inter-granular parts) can be distinguished by controlled fuel oxidation, since grain boundaries oxidize faster than the bulk. The purpose of the current paper is to present both the methodology and the associated results of the ADAGIO program performed at CEA. It has been divided into two main parts: (i) feasibility (UO{sub 2} and MOX fuels), (ii) application on high burn up UO{sub 2} fuel. (authors)

Pontillon, Y.; Noirot, J.; Caillot, L. [Commissariat a l'Energie Atomique, DEN/DEC/SA3C, Centre d'Etudes de Cadarache, BP1, 13108 Saint Paul Les Durance (France); Muller, E. [Commissariat a l'Energie Atomique, DEN/DEC/SESC, Centre d'Etudes de Cadarache, BP1, 13108 Saint Paul Les Durance (France)

2007-07-01T23:59:59.000Z

365

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_fgc_sky_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgc_sky_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:59:11 AM" "Back to Contents","Data 1: Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) " "Sourcekey","NGM_EPG0_FGC_SKY_MMCF" "Date","Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) "

366

The role of interruptible natural gas customers in New England heating oil markets: A preliminary examination of events in January-February 2000  

Science Conference Proceedings (OSTI)

This report provides an analysis of data collected from gas service providers and end-use customers in the six New England States and offers a preliminary assessment of the impact of interruptible gas customers on the distillate fuel oil market this past winter. Based on information collected and analyzed as of October 2000, the main findings areas follows: (1) For interruptible gas customers with distillate fuel oil as a backup fuel, their volume of interruptions was equivalent to about 1 to 2 percent of the total sales of distillate fuel oil in New England during January-February 2000. For the two peak weeks of gas supply interruptions, however, the equivalent volume of distillate fuel oil amounted to an estimated 3 to 6 percent of total sales in New England. There were no interruptions of the natural gas service during the 2-month period. (2) Purchases of distillate fuel oil by interruptible gas customers may have contributed somewhat to the spike in the price of distillate fuel oil in January-February 2000, especially during the peak weeks of gas interruptions. Nevertheless, other factors--a sudden drop in temperatures, low regional stocks of distillate fuels, and weather-related supply problems during a period of high customer demand--appear to have played a significant role in this price spike, as they have in previous spikes. (3) While this preliminary analysis suggests that interruptible natural gas service does not threaten the stability of the home heating oil market, several steps might be taken-without undermining the benefits of interruptible service--to reduce the potential adverse impacts of gas supply interruptions in times of market stress. Regardless of the magnitude of the impact of distillate fuel oil purchases by interruptible gas customers on Northeast heating oil markets, the threat of future heating oil price spikes and supply problems still remains. To help counter the threat, President Clinton in July 2000 directed Secretary Richardson to establish a heating oil component of the Strategic Petroleum Reserve in the Northeast, and 2 million barrels of heating oil are now stored in the reserve. Other possible policy options are outlined.

None

2000-11-01T23:59:59.000Z

367

International Journal of Greenhouse Gas Control 5 (2011) 15071516 Contents lists available at SciVerse ScienceDirect  

E-Print Network (OSTI)

Natural analogues a b s t r a c t Capture and geological storage of CO2 is emerging as an attractive means that could arise from a diffuse leakage of CO2 from a storage site. This is because there are many natural formation water, a process that has been previously doc- umented in natural gas reservoirs from around

368

Synthesis gas production  

SciTech Connect

Raw synthesis gas produced by the gasification of coal, heavy oil or similar carbonaceous material is contacted with a reforming catalyst at a temperature in the range between about 1000/sup 0/ and about 1800/sup 0/F and at a pressure between about 100 and about 2000 psig prior to adjustment of the carbon monoxide-to-hydrogen ratio and treatment of the gas to increase its Btu content. This catalytic reforming step eliminates C/sub 2/+ compounds in the gas which tend to form tarry downstream waste products requiring further treatment, obviates polymerization problems which may otherwise interfere with upgrading of the gas by means of the water gas shift and methanation reactions, and improves overall process thermal efficiency by making possible efficient low level heat recovery.

Kalina, T.; Moore, R.E.

1977-09-06T23:59:59.000Z

369

ANALYTICAL STUDY OF SOME ASPECTS OF VORTEX TUBES FOR GAS-PHASE FISSION HEATING  

DOE Green Energy (OSTI)

Several problems connected with vortex cavity reactors were studied analytically. They include, the generation of high-strength vortices by utilization of bleed through a porous tube wall to stabilize the shear layer on the wall; the nuclear criticality problem; the suitability of various compounds of plutonium as gaseous fissionable materials; and the problem of retaining the fission fragments within the vortex tube. It is concluded that the shear layer on the vortex tube wall can be stabilized if a mass flow greater than or equal to the vortex through flow is bled through the porous wall, and that the tangential Mach numbers which can be obtained are then slightly more than one-half the inviscid values. Beryllium oxide or graphite-moderated reactors of reasonable size and weight can attain criticality if the product of the hydrogen pressure in the vortex core and the maximum value of the ratio of fissionable gas density to hydrogen density in the tube is greater than about 100 atm. The reactor weights are then in the order of 10,000 lb or less. Of the several compounds of plutonium considered as gaseous fuel carriers, plutonium trifluoride and plutonium tribromide appear to be the most promising. It is probable that they can be held in gaseous form in hydrogen, under the desired concentrations. The rate of loss of fission fragments from the vortex tube can be reduced to a small fraction of the rate of their generation by making the vortex tubes about twice the minimum size that is allowable for satisfactory retention of the fissionable material. (auth)

Kerrebrock, J.L.; Lafyatis, P.G.

1958-07-21T23:59:59.000Z

370

Solar heat receiver  

DOE Patents (OSTI)

A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

1985-01-01T23:59:59.000Z

371

Solar heat receiver  

DOE Patents (OSTI)

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

372

A corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

Richlen, S.L.

1987-08-10T23:59:59.000Z

373

INVESTIGATION OF DUAL ACTIVE NUCLEI, OUTFLOWS, SHOCK-HEATED GAS, AND YOUNG STAR CLUSTERS IN MARKARIAN 266  

Science Conference Proceedings (OSTI)

Results of observations with the Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes are presented for the luminous infrared galaxy (LIRG) merger Markarian 266. The SW (Seyfert 2) and NE (LINER) nuclei reside in galaxies with Hubble types SBb (pec) and S0/a (pec), respectively. Both companions are more luminous than L* galaxies and they are inferred to each contain a Almost-Equal-To 2.5 Multiplication-Sign 10{sup 8} M{sub Sun} black hole. Although the nuclei have an observed hard X-ray flux ratio of f{sub X} (NE)/f{sub X} (SW) = 6.4, Mrk 266 SW is likely the primary source of a bright Fe K{alpha} line detected from the system, consistent with the reflection-dominated X-ray spectrum of a heavily obscured active galactic nucleus (AGN). Optical knots embedded in an arc with aligned radio continuum radiation, combined with luminous H{sub 2} line emission, provide evidence for a radiative bow shock in an AGN-driven outflow surrounding the NE nucleus. A soft X-ray emission feature modeled as shock-heated plasma with T {approx} 10{sup 7} K is cospatial with radio continuum emission between the galaxies. Mid-infrared diagnostics provide mixed results, but overall suggest a composite system with roughly equal contributions of AGN and starburst radiation powering the bolometric luminosity. Approximately 120 star clusters have been detected, with most having estimated ages less than 50 Myr. Detection of 24 {mu}m emission aligned with soft X-rays, radio continuum, and ionized gas emission extending {approx}34'' (20 kpc) north of the galaxies is interpreted as {approx}2 Multiplication-Sign 10{sup 7} M{sub Sun} of dust entrained in an outflowing superwind. At optical wavelengths this Northern Loop region is resolved into a fragmented morphology indicative of Rayleigh-Taylor instabilities in an expanding shell of ionized gas. Mrk 266 demonstrates that the dust 'blow-out' phase can begin in a LIRG well before the galaxies fully coalesce during a subsequent ultraluminous infrared galaxy (ULIRG) phase, and rapid gas consumption in luminous dual AGNs with kiloparsec-scale separations early in the merger process may explain the paucity of detected binary QSOs (with parsec-scale orbital separations) in spectroscopic surveys. An evolutionary sequence is proposed representing a progression from dual to binary AGNs, accompanied by an increase in observed L{sub x} /L{sub ir} ratios by over two orders of magnitude.

Mazzarella, J. M.; Chan, B. H. P. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Iwasawa, K., E-mail: mazz@ipac.caltech.edu, E-mail: bchan@ipac.caltech.edu, E-mail: kazushi.iwasawa@icc.ub.edu [ICREA and Institut del Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain); and others

2012-11-01T23:59:59.000Z

374

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Price Cap Cost Gas Heat Cap Cost Oil Heat Electric Share GasPrice Cap Cost Gas Heat Cap Cost Oil Heat 3. Summary of WorkEPRI [this study] Cap Cost Elec Heat Oil Price Income Gas

Wood, D.J.

2010-01-01T23:59:59.000Z

375

CHAPTER CONTENTS Section Page  

E-Print Network (OSTI)

CHAPTER CONTENTS Section Page 13.1 Wooded Wetland Monitoring 13.1-1 13.2 Landfill Soils Gas Left Blank #12;Data Quality Objectives ­ Landfill Gas and Surface Leachate Monitoring Environmental Surveillance X Restoration #12;Data Quality Objectives - Landfill Gas and Surface Leachate Monitoring 13

Homes, Christopher C.

376

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of electricity and natural gas DER No Heat Storage: thefired natural gas AC (a) Capacity of heat storage unit (but no heat storage, a 200 kW natural gas reciprocating

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

377

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

378

Absorption Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most...

379

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:52 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010PA2" "Date","Pennsylvania Natural Gas Residential Consumption (MMcf)" 24653,279817 25019,285978 25384,295027 25749,297022 26114,304327

380

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Bcf)" Bcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Dry Natural Gas Production (Bcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9070us1m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9070us1m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:14 PM" "Back to Contents","Data 1: U.S. Dry Natural Gas Production (Bcf)"

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1504_nus_4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1504_nus_4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:46:14 PM" "Back to Contents","Data 1: U.S. Natural Gas % of Total Residential - Sales (%)" "Sourcekey","NA1504_NUS_4" "Date","U.S. Natural Gas % of Total Residential - Sales (%)" 37271,98.3 37302,98.5 37330,98.4 37361,98.1

382

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:09 PM" "Back to Contents","Data 1: U.S. Total Natural Gas Injections into Underground Storage (MMcf)" "Sourcekey","N5050US2" "Date","U.S. Total Natural Gas Injections into Underground Storage (MMcf)" 26679 26710 26738 26769 26799

383

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010hi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010hi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:19 PM" "Back to Contents","Data 1: Hawaii Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010HI2" "Date","Hawaii Natural Gas Residential Consumption (MMcf)" 29402,1416 29767,1289 30132,1197 30497,1121 30863,1048 31228,625 31593,579 31958,591

384

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:59 PM" "Back to Contents","Data 1: Texas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010TX2" "Date","Texas Natural Gas Residential Consumption (MMcf)" 24653,201407 25019,211763 25384,220728 25749,232189 26114,237387 26480,240662

385

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: North Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040ND2" "Date","North Dakota Natural Gas Vented and Flared (MMcf)" 35079,232 35110,193 35139,232 35170,176 35200,230 35231,258 35261,269

386

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010de3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010de3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:15 PM" "Back to Contents","Data 1: Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010DE3" "Date","Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

387

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020fl2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020fl2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:29 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Florida (MMcf)" "Sourcekey","N3020FL2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Florida (MMcf)"

388

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:23 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Connecticut (MMcf)" "Sourcekey","N3020CT2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Connecticut (MMcf)"

389

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:17 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arizona (MMcf)" "Sourcekey","N3020AZ2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arizona (MMcf)"

390

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:19 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (MMcf)" "Sourcekey","N3020CA2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (MMcf)"

391

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020dc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020dc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:24 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the District of Columbia (MMcf)" "Sourcekey","N3020DC2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the District of Columbia (MMcf)"

392

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:21 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Colorado (MMcf)" "Sourcekey","N3020CO2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Colorado (MMcf)"

393

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010md2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010md2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:30 PM" "Back to Contents","Data 1: Maryland Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MD2" "Date","Maryland Natural Gas Residential Consumption (MMcf)" 24653,77130 25019,79015 25384,84406 25749,86811 26114,87617 26480,89042

394

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040or2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040or2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Oregon Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OR2" "Date","Oregon Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

395

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:07 PM" "Back to Contents","Data 1: West Virginia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WV3" "Date","West Virginia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

396

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010la2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010la2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:28 PM" "Back to Contents","Data 1: Louisiana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010LA2" "Date","Louisiana Natural Gas Residential Consumption (MMcf)" 24653,74386 25019,77762 25384,82965 25749,86148 26114,79893 26480,82847

397

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AL3" "Date","Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

398

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nm3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nm3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:45 PM" "Back to Contents","Data 1: New Mexico Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NM3" "Date","New Mexico Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

399

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010id2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010id2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:22 PM" "Back to Contents","Data 1: Idaho Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ID2" "Date","Idaho Natural Gas Residential Consumption (MMcf)" 24653,6179 25019,6545 25384,6980 25749,7711 26114,8455 26480,10887 26845,9947 27210,9652

400

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:05 PM" "Back to Contents","Data 1: Washington Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WA2" "Date","Washington Natural Gas Residential Consumption (MMcf)" 24653,23160 25019,26342 25384,30479 25749,31929 26114,33934 26480,38631

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ok2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ok2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OK2" "Date","Oklahoma Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

402

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9132US3" "Date","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" 35445,4.08

403

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nm2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nm2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: New Mexico Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NM2" "Date","New Mexico Natural Gas Vented and Flared (MMcf)" 24653,5992 25019,5987 25384,4058 25749,2909 26114,2823 26480,5696 26845,3791 27210,1227

404

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040sd2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040sd2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: South Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040SD2" "Date","South Dakota Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,0 27575,4 27941,5

405

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: Colorado Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CO2" "Date","Colorado Natural Gas Vented and Flared (MMcf)" 24653,2656 25019,1514 25384,1326 25749,7126 26114,2843 26480,4758 26845,3008 27210,2957

406

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:09 PM" "Back to Contents","Data 1: Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3035US4" "Date","Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

407

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ny2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ny2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New York Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NY2" "Date","New York Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,1 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

408

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ma2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ma2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:29 PM" "Back to Contents","Data 1: Massachusetts Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MA2" "Date","Massachusetts Natural Gas Residential Consumption (MMcf)" 24653,73471 25019,74919 25384,78451 25749,82646 26114,83434 26480,86171

409

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mt2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mt2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: Montana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MT2" "Date","Montana Natural Gas Vented and Flared (MMcf)" 35079,32 35110,38 35139,34 35170,40 35200,43 35231,27 35261,63 35292,59 35323,60

410

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: U.S. Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040US2" "Date","U.S. Natural Gas Vented and Flared (MMcf)" 13331,392528 13696,526159 14061,649106 14426,677311 14792,655967 15157,630212 15522,626782 15887,684115

411

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mi2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mi2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Michigan Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MI2" "Date","Michigan Natural Gas Vented and Flared (MMcf)" 35079,277 35110,277 35139,277 35170,277 35200,277 35231,277 35261,277

412

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1997" Annual",2012,"6/30/1997" ,"Data 2","Futures Prices",4,"Annual",2012,"6/30/1993" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","ng_pri_fut_s1_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_fut_s1_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:13 PM" "Back to Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD","NGM_EPG0_PLC_NUS_DMMBTU" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

413

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9012us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9012us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:55 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals from Oil Wells (MMcf)" "Sourcekey","N9012US2" "Date","U.S. Natural Gas Gross Withdrawals from Oil Wells (MMcf)" 33253,475614 33526,500196 33984,513068 34015,462218

414

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ne2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ne2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: Nebraska Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NE2" "Date","Nebraska Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

415

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040pa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040pa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040PA2" "Date","Pennsylvania Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0

416

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9050us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9050us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:04 AM" "Back to Contents","Data 1: U.S. Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050US2" "Date","U.S. Natural Gas Marketed Production (MMcf)" 26679,1948000 26710,1962000 26738,1907000 26769,1814000 26799,1898000 26830,1839000

417

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020al2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020al2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:11 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alabama (MMcf)" "Sourcekey","N3020AL2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alabama (MMcf)"

418

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9100us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9100us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:51 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9100US3" "Date","Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" 31228,3.21 31593,2.43 31958,1.95 32324,1.84

419

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:41 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 1 (Dollars per Million Btu)" "Sourcekey","RNGC1" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)" 34515,1.934 34880,1.692 35246,2.502 35611,2.475 35976,2.156 36341,2.319

420

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:23 PM" "Back to Contents","Data 1: U.S. Natural Gas Exports (MMcf)" "Sourcekey","N9130US2" "Date","U.S. Natural Gas Exports (MMcf)" 26679,5808 26710,6079 26738,4021 26769,8017 26799,8741 26830,4131 26860,5744 26891,8726 26922,6403 26952,5473

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ks3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ks3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:26 PM" "Back to Contents","Data 1: Kansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010KS3" "Date","Kansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

422

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ca2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ca2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: California Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CA2" "Date","California Natural Gas Vented and Flared (MMcf)" 35079,97 35110,103 35139,109 35170,107 35200,107 35231,104 35261,108

423

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:17 PM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports (MMcf)" "Sourcekey","N9103US2" "Date","U.S. Liquefied Natural Gas Imports (MMcf)" 35445,9977 35476,7667 35504,2530 35535,2557 35565,5007 35596,5059 35626,5026 35657,7535

424

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: Montana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MT2" "Date","Montana Natural Gas Vented and Flared (MMcf)" 24653,5022 25019,12551 25384,26458 25749,5203 26114,4917 26480,4222 26845,3691 27210,3901

425

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tx2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tx2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Texas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TX2" "Date","Texas Natural Gas Vented and Flared (MMcf)" 33253,2478 33284,2147 33312,2113 33343,2353 33373,3203 33404,2833 33434,3175

426

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:24 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9130US3" "Date","Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" 31228,4.77 31593,2.81 31958,3.07 32324,2.74

427

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ny2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ny2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New York Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NY2" "Date","New York Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,0 27575,0 27941,0 28306,0 28671,0

428

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ks2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ks2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:35 AM" "Back to Contents","Data 1: Kansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040KS2" "Date","Kansas Natural Gas Vented and Flared (MMcf)" 24653,2630 25019,2529 25384,2666 25749,2713 26114,2669 26480,2681 26845,2377 27210,889 27575,846

429

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ar2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ar2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: Arkansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AR2" "Date","Arkansas Natural Gas Vented and Flared (MMcf)" 33253,23 33284,13 33312,12 33343,7 33373,13 33404,28 33434,28 33465,30

430

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:15 PM" "Back to Contents","Data 1: Delaware Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010DE2" "Date","Delaware Natural Gas Residential Consumption (MMcf)" 24653,6844 25019,7068 25384,7475 25749,7843 26114,8172 26480,8358 26845,7514

431

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_fgc_sky_mmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgc_sky_mmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:59:11 AM" "Back to Contents","Data 1: Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) " "Sourcekey","NGM_EPG0_FGC_SKY_MMCF" "Date","Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) "

432

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020hi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020hi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:34 PM" "Back to Contents","Data 1: Hawaii Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020HI3" "Date","Hawaii Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

433

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010pa3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010pa3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:52 PM" "Back to Contents","Data 1: Pennsylvania Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010PA3" "Date","Pennsylvania Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

434

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ut3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ut3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:02 PM" "Back to Contents","Data 1: Utah Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010UT3" "Date","Utah Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

435

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010dc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010dc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:13 PM" "Back to Contents","Data 1: District of Columbia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010DC2" "Date","District of Columbia Natural Gas Residential Consumption (MMcf)" 29402,13730 29767,13686 30132,13041 30497,13007

436

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tx3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tx3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:00 PM" "Back to Contents","Data 1: Texas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010TX3" "Date","Texas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

437

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: Arizona Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AZ2" "Date","Arizona Natural Gas Vented and Flared (MMcf)" 26114,347 26480,367 26845,277 27210,26 27575,47 27941,32 29036,101 29402,143 29767,106 30132,162

438

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ca3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ca3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:20 PM" "Back to Contents","Data 1: California Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020CA3" "Date","California Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

439

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010oh3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010oh3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:49 PM" "Back to Contents","Data 1: Ohio Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010OH3" "Date","Ohio Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

440

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020fl3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020fl3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:30 PM" "Back to Contents","Data 1: Florida Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020FL3" "Date","Florida Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ks2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ks2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:36 AM" "Back to Contents","Data 1: Kansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040KS2" "Date","Kansas Natural Gas Vented and Flared (MMcf)" 35079,63 35110,63 35139,63 35170,61 35200,62 35231,57 35261,57 35292,55 35323,56

442

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nv2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nv2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: Nevada Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NV2" "Date","Nevada Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0 33526,0

443

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ms2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ms2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Mississippi Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MS2" "Date","Mississippi Natural Gas Vented and Flared (MMcf)" 35079,217 35110,199 35139,223 35170,219 35200,237 35231,234 35261,239

444

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:18 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103US3" "Date","Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" 31228,4.6 31593,4.62 32324,2.71

445

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:24 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9130US3" "Date","Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" 32523,2.69 32554,2.4

446

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Texas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TX2" "Date","Texas Natural Gas Vented and Flared (MMcf)" 24653,129403 25019,124584 25384,111499 25749,100305 26114,70222 26480,59821 26845,36133 27210,34431

447

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AL2" "Date","Alabama Natural Gas Residential Consumption (MMcf)" 24653,45543 25019,51708 25384,54804 25749,55779 26114,54867 26480,53397 26845,55685

448

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:33 PM" "Back to Contents","Data 1: Michigan Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MI2" "Date","Michigan Natural Gas Residential Consumption (MMcf)" 24653,302472 25019,315694 25384,333264 25749,340033 26114,343773 26480,355266

449

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010co3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010co3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:12 PM" "Back to Contents","Data 1: Colorado Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010CO3" "Date","Colorado Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

450

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wa3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wa3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:05 PM" "Back to Contents","Data 1: Washington Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WA3" "Date","Washington Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

451

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:05 PM" "Back to Contents","Data 1: Alaska Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AK2" "Date","Alaska Natural Gas Residential Consumption (MMcf)" 24653,1958 25019,2293 25384,4573 25749,6211 26114,6893 26480,8394 26845,5024

452

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AR2" "Date","Arkansas Natural Gas Residential Consumption (MMcf)" 24653,52777 25019,56346 25384,58322 25749,59792 26114,48737 26480,47387

453

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ok2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ok2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OK2" "Date","Oklahoma Natural Gas Vented and Flared (MMcf)" 24653,126629 25019,129408 25384,130766 25749,129629 26114,39799 26480,38797 26845,36411

454

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:38 PM" "Back to Contents","Data 1: Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3020US4" "Date","Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

455

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AK3" "Date","Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

456

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ca3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ca3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:11 PM" "Back to Contents","Data 1: California Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010CA3" "Date","California Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

457

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040la2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040la2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:37 AM" "Back to Contents","Data 1: Louisiana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040LA2" "Date","Louisiana Natural Gas Vented and Flared (MMcf)" 33253,1788 33284,1684 33312,1571 33343,1593 33373,1807 33404,1690 33434,2042

458

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Tennessee Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TN2" "Date","Tennessee Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

459

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:06 PM" "Back to Contents","Data 1: Wisconsin Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WI2" "Date","Wisconsin Natural Gas Residential Consumption (MMcf)" 24653,90994 25019,93425 25384,101124 25749,105208 26114,109758 26480,104648

460

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:38 PM" "Back to Contents","Data 1: Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3020US4" "Date","Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nh3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nh3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:43 PM" "Back to Contents","Data 1: New Hampshire Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NH3" "Date","New Hampshire Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

462

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010in2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010in2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:24 PM" "Back to Contents","Data 1: Indiana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010IN2" "Date","Indiana Natural Gas Residential Consumption (MMcf)" 24653,139519 25019,145955 25384,156699 25749,158699 26114,162747 26480,169267

463

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ct3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ct3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:23 PM" "Back to Contents","Data 1: Connecticut Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020CT3" "Date","Connecticut Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

464

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mo3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mo3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:36 PM" "Back to Contents","Data 1: Missouri Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MO3" "Date","Missouri Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

465

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040la2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040la2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:36 AM" "Back to Contents","Data 1: Louisiana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040LA2" "Date","Louisiana Natural Gas Vented and Flared (MMcf)" 24653,161849 25019,166439 25384,158852 25749,154089 26114,103564 26480,63667 26845,102091

466

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ut2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ut2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:46 AM" "Back to Contents","Data 1: Utah Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040UT2" "Date","Utah Natural Gas Vented and Flared (MMcf)" 34592,646 34834,696 34865,4590 34895,4767 34926,4382 34957,4389 34987,4603 35018,4932

467

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:09 PM" "Back to Contents","Data 1: Arizona Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AZ2" "Date","Arizona Natural Gas Residential Consumption (MMcf)" 24653,25376 25019,26681 25384,28426 25749,29679 26114,32619 26480,34259 26845,36280

468

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AK3" "Date","Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

469

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9132US3" "Date","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" 31228,3.92 31593,2.35

470

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010id3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010id3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:23 PM" "Back to Contents","Data 1: Idaho Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010ID3" "Date","Idaho Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

471

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010me2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010me2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:32 PM" "Back to Contents","Data 1: Maine Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ME2" "Date","Maine Natural Gas Residential Consumption (MMcf)" 24653,3967 25019,3571 25384,4910 25749,5247 26114,5591 26480,6036 26845,6027 27210,6174

472

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ne3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ne3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:42 PM" "Back to Contents","Data 1: Nebraska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NE3" "Date","Nebraska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

473

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040wy2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:47 AM" "Back to Contents","Data 1: Wyoming Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040WY2" "Date","Wyoming Natural Gas Vented and Flared (MMcf)" 24653,1498 25019,13038 25384,17632 25749,18419 26114,3860 26480,8376 26845,6618 27210,6102

474

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mn3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mn3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:34 PM" "Back to Contents","Data 1: Minnesota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MN3" "Date","Minnesota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

475

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:10 PM" "Back to Contents","Data 1: California Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CA2" "Date","California Natural Gas Residential Consumption (MMcf)" 24653,522122 25019,517636 25384,562127 25749,552544 26114,630998 26480,637289

476

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040sd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040sd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: South Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040SD2" "Date","South Dakota Natural Gas Vented and Flared (MMcf)" 33253,384 33284,350 33312,382 33343,380 33373,382 33404,376 33434,405

477

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nm2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nm2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New Mexico Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NM2" "Date","New Mexico Natural Gas Vented and Flared (MMcf)" 35079,236 35110,220 35139,240 35170,230 35200,241 35231,229 35261,217

478

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:11 PM" "Back to Contents","Data 1: Colorado Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CO2" "Date","Colorado Natural Gas Residential Consumption (MMcf)" 24653,75351 25019,78371 25384,81068 25749,82595 26114,84864 26480,89187

479

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/17/2013" Daily","12/17/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc2d.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc2d.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:40 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 2 (Dollars per Million Btu)" "Sourcekey","RNGC2" "Date","Natural Gas Futures Contract 2 (Dollars per Million Btu)" 34346,2.13 34347,2.072 34348,2.139 34351,2.196 34352,2.131

480

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:08 PM" "Back to Contents","Data 1: Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AR3" "Date","Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

Note: This page contains sample records for the topic "gas heat content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mo2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mo2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Missouri Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MO2" "Date","Missouri Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

482

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/17/2013" Daily","12/17/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc4d.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc4d.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:29 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 4 (Dollars per Million Btu)" "Sourcekey","RNGC4" "Date","Natural Gas Futures Contract 4 (Dollars per Million Btu)" 34323,1.894 34324,1.83 34325,1.859 34326,1.895 34330,1.965

483

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9010us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9010us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:17 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010US2" "Date","U.S. Natural Gas Gross Withdrawals (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891 26922 26952 26983 27013 27044 27075 27103

484

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ut2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ut2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: Utah Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040UT2" "Date","Utah Natural Gas Vented and Flared (MMcf)" 24653,3000 25019,2906 25384,2802 25749,2852 26114,2926 26480,5506 26845,7664 27210,5259 27575,1806

485

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AK2" "Date","Alaska Natural Gas Residential Consumption (MMcf)" 32523,1793 32554,2148 32582,1566 32613,1223 32643,858 32674,638

486

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nd2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nd2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: North Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040ND2" "Date","North Dakota Natural Gas Vented and Flared (MMcf)" 24653,25795 25019,22050 25384,22955 25749,19862 26114,2686 26480,20786 26845,22533

487

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AL3" "Date","Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

488

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:09 PM" "Back to Contents","Data 1: Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AR3" "Date","Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

489

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010va2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010va2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:02 PM" "Back to Contents","Data 1: Virginia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010VA2" "Date","Virginia Natural Gas Residential Consumption (MMcf)" 24653,41495 25019,43582 25384,46663 25749,49554 26114,49488 26480,55427

490

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040co2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040co2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: Colorado Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CO2" "Date","Colorado Natural Gas Vented and Flared (MMcf)" 35079,112 35110,77 35139,78 35170,91 35200,100 35231,89 35261,100 35292,106

491

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ga2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ga2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:17 PM" "Back to Contents","Data 1: Georgia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010GA2" "Date","Georgia Natural Gas Residential Consumption (MMcf)" 24653,80322 25019,84072 25384,87878 25749,87359 26114,88319 26480,85256 26845,86191

492

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020hi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020hi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:33 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Hawaii (MMcf)" "Sourcekey","N3020HI2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Hawaii (MMcf)"

493

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ga2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ga2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:31 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Georgia (MMcf)" "Sourcekey","N3020GA2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Georgia (MMcf)"

494

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:14 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arkansas (MMcf)" "Sourcekey","N3020AR2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arkansas (MMcf)"

495

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:12 PM" "Back to Contents","Data 1: Connecticut Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CT2" "Date","Connecticut Natural Gas Residential Consumption (MMcf)" 24653,26177 25019,26437 25384,29048 25749,31187 26114,31878 26480,32879

496

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010dc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010dc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:14 PM" "Back to Contents","Data 1: District of Columbia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010DC3" "Date","District of Columbia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

497

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ri3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ri3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:54 PM" "Back to Contents","Data 1: Rhode Island Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010RI3" "Date","Rhode Island Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

498

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010sd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010sd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:56 PM" "Back to Contents","Data 1: South Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010SD3" "Date","South Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

499

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:26 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Delaware (MMcf)" "Sourcekey","N3020DE2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Delaware (MMcf)"

500

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tn3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tn3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:58 PM" "Back to Contents","Data 1: Tennessee Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010TN3" "Date","Tennessee Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"