National Library of Energy BETA

Sample records for gas heat content

  1. ,"California Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","California Heat Content of Natural Gas ... 10:59:46 AM" "Back to Contents","Data 1: California Heat Content of Natural Gas Consumed

  2. ,"Virginia Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Heat Content of Natural Gas ... 11:00:21 AM" "Back to Contents","Data 1: Virginia Heat Content of Natural Gas Consumed

  3. ,"Oklahoma Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Heat Content of Natural Gas ... 11:00:12 AM" "Back to Contents","Data 1: Oklahoma Heat Content of Natural Gas Consumed

  4. ,"Texas Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Heat Content of Natural Gas ...2016 6:34:00 AM" "Back to Contents","Data 1: Texas Heat Content of Natural Gas Consumed

  5. ,"West Virginia Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Heat Content of Natural Gas ... AM" "Back to Contents","Data 1: West Virginia Heat Content of Natural Gas Consumed

  6. ,"U.S. Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Deliveries to Consumers (BTU per Cubic Foot)","U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)","U.S. Heat Content of Natural Gas Deliveries to ...

  7. ,"New Mexico Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","New Mexico Heat Content of Natural Gas ... 10:27:06 AM" "Back to Contents","Data 1: New Mexico Heat Content of Natural Gas Consumed

  8. ,"North Carolina Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Carolina Heat Content of Natural Gas ... 10:27:02 AM" "Back to Contents","Data 1: North Carolina Heat Content of Natural Gas ...

  9. ,"North Dakota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Heat Content of Natural Gas ... 10:27:03 AM" "Back to Contents","Data 1: North Dakota Heat Content of Natural Gas ...

  10. Idaho Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Bureau of Economic Geology, The University of Texas at Austin Oil & Gas Investment USEIA, April 7-8, 2009 ©CEE-UT, 2 Dr. Michelle Michot Foss, CEE-UT Trends Drivers * Upstream cost structures and margins relative to financing * Demand-side pricing policies by governments (oil) * Impact of financial markets * Resources and opportunities - "frontier" oil * "Frontier" natural gas * Cross-commodity pricing (fuel competition) - the challenge of building value for nat gas *

  11. ,"Massachusetts Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmam.xls" ...

  12. ,"Nebraska Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnem.xls" ...

  13. ,"Oregon Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusorm.xls" ...

  14. ,"Hawaii Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcushim.xls" ...

  15. ,"Maine Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmem.xls" ...

  16. ,"Arizona Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusazm.xls" ...

  17. ,"Wisconsin Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswim.xls" ...

  18. ,"Alaska Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusakm.xls" ...

  19. ,"Montana Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmtm.xls" ...

  20. ,"Delaware Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusdem.xls" ...

  1. ,"Connecticut Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusctm.xls" ...

  2. ,"Missouri Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmom.xls" ...

  3. ,"Iowa Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusiam.xls" ...

  4. ,"Illinois Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusilm.xls" ...

  5. ,"Alabama Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusalm.xls" ...

  6. ,"Georgia Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusgam.xls" ...

  7. ,"Kansas Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusksm.xls" ...

  8. ,"Utah Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusutm.xls" ...

  9. ,"Indiana Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusinm.xls" ...

  10. ,"Ohio Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusohm.xls" ...

  11. ,"Kentucky Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuskym.xls" ...

  12. ,"Colorado Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuscom.xls" ...

  13. ,"Tennessee Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcustnm.xls" ...

  14. ,"Washington Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswam.xls" ...

  15. ,"Nevada Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnvm.xls" ...

  16. ,"Minnesota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmnm.xls" ...

  17. ,"Arkansas Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusarm.xls" ...

  18. ,"Louisiana Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuslam.xls" ...

  19. ,"Florida Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusflm.xls" ...

  20. ,"Idaho Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusidm.xls" ...

  1. ,"Maryland Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmdm.xls" ...

  2. ,"Mississippi Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmsm.xls" ...

  3. ,"Wyoming Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswym.xls" ...

  4. ,"Vermont Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusvtm.xls" ...

  5. ,"Michigan Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmim.xls" ...

  6. Iowa Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Strategic Advisors in Global Energy Strategic Advisors in Global Energy Strategic Advisors in Global Energy Investing in Oil and Natural Gas: A Few Key Issues Prepared for EIA Conference Susan Farrell, Senior Director PFC Energy April 8, 2009 Investing in Oil and Gas| PFC Energy| Page 2 The Top 20 IOCs and Top 20 NOCs Account for Over Half of E&P Spend Source: PFC Energy, Global E&P Surveys Investing in Oil and Gas| PFC Energy| Page 3 Oil Prices Rose, But So Did Costs + 52% $0 $20 $40

  7. Minnesota Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    May 2003 1 Despite a national economic slowdown and a 4.9 percent drop in overall U.S. natural gas consumption in 2001, 1 more than 3,571 miles of pipeline and a record 12.8 billion cubic feet per day (Bcf/d) of natural gas pipeline capacity were added to the national pipeline network during 2002 (Table 1). The estimated cost was $4.4 billion. Overall, 54 natural gas pipeline projects were completed during 2002 (Figure 1, Table 2). 2 Of these, 34 were expansions of existing pipeline systems or

  8. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Lower 48 States Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 50,130 81,827 167,632 312,290 457,725 420,644 359,267 370,180 453,548 436,748 221,389 90,432 2012 74,854 56,243 240,351 263,896 357,965 323,026 263,910 299,798 357,109 327,767 155,554 104,953 2013 70,853 41,928 100,660 271,236 466,627 439,390 372,472

  9. Hawaii Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Dollars per Thousand Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 3.66 NA NA -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of

    2010 2011 2012 2013 2014 2015 View History

  10. Mississippi Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    917 853 860 607 595 558 1977-2014 Adjustments 26 1 109 65 29 -15 1977-2014 Revision Increases 92 77 105 91 39 82 1977-2014 Revision Decreases 250 70 156 300 75 29 1977-2014 Sales 17 31 11 159 39 115 2000-2014 Acquisitions 2 13 10 109 90 82 2000-2014 Extensions 132 33 24 4 5 9 1977-2014 New Field Discoveries 2 0 1 1 0 1 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 2 1977-2014 Estimated Production 100 87 75 64 61 5

    Acquisitions (Billion Cubic Feet) Mississippi Dry Natural Gas

  11. Montana Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    76 944 778 602 575 667 1977-2014 Adjustments 135 -19 -59 38 3 39 1977-2014 Revision Increases 132 103 43 31 113 89 1977-2014 Revision Decreases 210 100 97 191 49 54 1977-2014 Sales 3 40 44 30 72 2 2000-2014 Acquisitions 3 30 44 4 4 1 2000-2014 Extensions 32 86 14 37 36 77 1977-2014 New Field Discoveries 0 0 7 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 1 1 0 0 0 1977-2014 Estimated Production 113 93 75 65 62 58

    Acquisitions (Billion Cubic Feet) Montana Dry Natural Gas Reserves

  12. U.S. Heat Content of Natural Gas Deliveries to Other Sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Other Sectors Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  13. U.S. Heat Content of Natural Gas Deliveries to Electric Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  14. ,"New Hampshire Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnhm.xls" ...

  15. ,"South Dakota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcussdm.xls" ...

  16. ,"New Jersey Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnjm.xls" ...

  17. ,"Rhode Island Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusrim.xls" ...

  18. ,"South Carolina Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusscm.xls" ...

  19. ,"New York Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnym.xls" ...

  20. New York Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    96 281 253 184 144 143 1977-2014 Adjustments -84 104 -22 76 -32 38 1977-2014 Revision Increases 39 35 48 12 35 16 1977-2014 Revision Decreases 59 83 50 108 12 31 1977-2014 Sales 54 2 0 43 8 4 2000-2014 Acquisitions 0 11 0 0 0 0 2000-2014 Extensions 0 0 0 21 0 0 1977-2014 New Field Discoveries 0 56 0 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 27 0 0 0 1977-2014 Estimated Production 35 36 31 27 23 20

    Acquisitions (Billion Cubic Feet) New York Dry Natural Gas Reserves

  1. U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,032 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  2. District of Columbia Heat Content of Natural Gas Deliveries to Consumers

    Gasoline and Diesel Fuel Update (EIA)

    June 2008 1 Each day, close to 70 million customers in the United States depend upon the national natural gas distribution network, including natural gas distribution companies and pipelines, to deliver natural gas to their home or place of business (Figure 1). These customers currently consume approximately 20 trillion cubic feet (Tcf) of natural gas per annum, accounting for about 22 percent of the total energy consumed in the United States each year. This end- use customer base is 92 percent

  3. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  4. Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Virginia Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 135 126 84 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Virginia Shale Gas Proved Reserves, Reserves Changes, and

    DRAFT Last

  5. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 322 1980's 414 1,337 1,466 1,570 1,519 1990's 1,469 1,174 1,136 1,123 1,187 1,289 1,266 556 489 536 2000's 576 540 515 511 459 825 811 805 705 740 2010's 725 711 652 264 243 - = No Data Reported; -- = Not

  6. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    This presentation was prepared by Navigant Consulting, Inc. exclusively for the benefit of the Energy Information Administration, Department of Energy. This presentation is incomplete without reference to, and should be viewed solely in conjunction with the oral briefing provided by Navigant Consulting. April 2008. 2 Table of Contents Energy Efficiency Challenges and Solutions New and Emerging Energy Efficient Technologies » Overview » Examples Market Acceptance of Technologies 3 Energy

  7. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Underground Storage Volume (Million Cubic Feet) Midwest Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 1,955,319 1,742,978 1,640,311 1,681,894 1,816,029 1,970,375 2,124,374 2,287,540 2,434,709 2,544,399 2,469,652 2,351,566 2015 2,115,639 1,842,618 1,748,917 1,805,578 1,934,606 2,062,641 2,181,461 2,321,316 2,463,235 2,583,800 2,580,265 2,477,168 2016 2,253,236 2,096,691 2,031,331 2,053,911 2,159,317 2,252,218 - = No

  8. Intermountain Gas Company (IGC)- Gas Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system...

  9. CONTENTS Gas Hydrate Assessment in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... at the upcoming International Conference on Gas Hydrates, to be held in Beijing, China. ... Proceedings of the 8th International Conference on Gas Hydrates (ICGH8- 2014), Beijing, ...

  10. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  11. CONTENTS Gas Hydrate-Bearing Sand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTENTS Gas Hydrate-Bearing Sand Reservoir Systems in the Offshore of India: Results of the India National Gas Hydrate Program Expedition 02 ..............1 The Potential for Abiotic Methane in Arctic Gas Hydrates .................9 Coupled Thermo-Hydro-Chemo- Mechanical (THCM) Models for Hydrate-Bearing Sediments ....13 Emerging Issues in the Development of Geologic Models for Gas Hydrate Numerical Simulation ................19 Announcements ...................... 23 * DOE/NETL FY2016 Methane

  12. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Savers [EERE]

    Potable Water Heating Key Partners: A.O. Smith Gas Technology Institute Project Goal: ... Partners, Subcontractors, and Collaborators: * AO Smith (OEM): Provides component design, ...

  13. Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a proprietary stack ...

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","32016" ,"Release ...

  15. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,035 1,030 1,025 1,022 1,020 1,020 2013-2015...

  16. Maine Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,046 1,044 1,047 1,032 1,030 1,029 2007-2014...

  17. Nevada Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    3 1,042 1,037 1,042 1,039 1,038

  18. Wyoming Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    35,283 35,074 35,290 30,094 33,618 27,553 1977-2014 Adjustments 1,158 521 -209 692 2,058 -1,877 1977-2014 Revision Increases 5,281 4,880 3,271 1,781 3,800 2,235 1977-2014 Revision Decreases 3,535 5,540 3,033 6,715 1,737 6,530 1977-2014 Sales 174 1,278 1,145 536 695 3,098 2000-2014 Acquisitions 54 1,308 1,205 619 679 4,157 2000-2014 Extensions 3,501 2,117 2,214 953 1,400 766 1977-2014 New Field Discoveries 0 1 0 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 88 0 1 11 11 0 1977-2014

  19. Washington Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,030 1,032 1,029 1,028 1,030 1,044 2007-2014...

  20. Washington Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,054 1,060 1,062 1,065 1,069 1,070 2013-2015...

  1. Hawaii Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,040 1,040 1,048 1,046 983 959 2007-2014...

  2. Hawaii Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 954 947 959 990 1,005 1,011 2013-2015...

  3. Wyoming Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    56 1,052 1,071 1,055 1,053 1,04

  4. Nebraska Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,068 1,060 1,055 1,053 1,054 1,054 2013-2016

  5. Minnesota Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,039 1,041 1,045 1,041 1,043 1,035 2013-2016

  6. Colorado Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,076 1,069 1,060 1,051 1,050 1,052 2013-2016

  7. Virginia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,055 1,053 1,051 1,057 1,055 1,055 2013-2016

  8. Indiana Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,041 1,039 1,034 1,033 1,030 1,033 2013-2016

  9. Wisconsin Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,034 1,045 1,043 1,044 1,045 1,046 2013-2016

  10. Pennsylvania Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,034 1,036 1,040 1,049 1,047 1,047 2007-2015

  11. Ohio Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,034 1,031 1,032 1,046 1,045 1,067 2007-2015

  12. Oklahoma Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,032 1,032 1,030 1,036 1,040 1,047 2007-2015

  13. Vermont Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,020 1,030 1,027 1,027 1,029 1,032 2013-2016

  14. Idaho Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,024 1,033 1,035 1,041 1,034 1,038 2013-2016

  15. Tennessee Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,025 1,032 1,031 1,034 1,035 1,035 2013-2016

  16. Iowa Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,058 1,058 1,057 1,056 1,053 1,052 2013-2016

  17. Washington Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,032 1,029 1,028 1,030 1,043 1,065 2007-2015

  18. Utah Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,042 1,044 1,044 1,046 1,046 1,043 2013-2016

  19. Alaska Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,001 1,001 1,001 1,000 1,000 1,000 2013-2016

  20. Vermont Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,007 1,008 1,012 1,015 1,016 1,026 2007-2015

  1. Montana Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,032 1,032 1,034 1,034 1,033 1,030 2013-2016

  2. Oregon Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,038 1,036 1,035 1,036 1,033 1,034 2013-2016

  3. Ohio Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,071 1,071 1,077 1,077 1,073 1,072 2013-2016

  4. Mississippi Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,031 1,028 1,029 1,030 1,031 1,032 2013-2016

  5. Kansas Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,039 1,037 1,035 1,031 1,032 1,036 2013-2016

  6. Texas Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,028 1,025 1,026 1,027 1,030 1,033 2007-2015

  7. Washington Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,066 1,064 1,069 1,073 1,070 1,075 2013-2016

  8. Florida Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,024 1,023 1,023 1,023 1,015 1,025 2013-2016

  9. Michigan Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,036 1,034 1,041 1,040 1,040 1,038 2013-2016

  10. Kentucky Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,020 1,024 1,021 1,024 1,027 1,025 2013-2016

  11. Tennessee Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,014 1,014 1,021 1,026 1,027 2007-2015

  12. Virginia Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,028 1,027 1,034 1,040 1,041 1,053 2007-2015

  13. Wisconsin Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,010 1,014 1,019 1,025 1,032 1,039 2007-2015

  14. Utah Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,045 1,038 1,043 1,047 1,041 1,044 2007-2015

  15. Pennsylvania Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,044 1,045 1,046 1,046 1,048 1,045 2013-2016

  16. Georgia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,029 1,028 1,026 1,027 1,029 1,030 2013-2016

  17. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,019 1,026 1,025 1,027 1,035 1,037 2013-2016

  18. Maryland Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,050 1,053 1,049 1,050 1,061 1,055 2013-2016

  19. Arizona Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,040 1,042 1,041 1,044 1,046 1,047 2013-2016

  20. Illinois Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,028 1,028 1,030 1,030 1,031 1,031 2013-2016

  1. Arkansas Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,019 1,029 1,014 1,015 1,019 1,015 2013-2016

  2. Alabama Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,030 1,030 1,029 1,029 1,029 1,025 2013-2016

  3. Oregon Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,015 1,021 1,022 1,015 1,025 1,037 2007-2015

  4. Delaware Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,043 1,051 1,051 1,049 1,055 1,050 2013-2016

  5. Connecticut Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,026 1,028 1,027 1,026 1,026 1,026 2013-2016

  6. Massachusetts Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,027 1,028 1,029 1,030 1,031 1,032 2013-2016

  7. Louisiana Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,023 1,023 1,022 1,023 1,024 1,025 2013-2016

  8. Oklahoma Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,049 1,049 1,047 1,050 1,049 1,047 2013-2016

  9. Hawaii Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 989 996 996 997 998 1,004 2013-2016

  10. Texas Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,036 1,036 1,033 1,030 1,029 1,028 2013-2016

  11. Missouri Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,026 1,025 1,024 1,023 1,024 1,023 2013-2016

  12. Alabama Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Widespread Renewables Deployment Bryan Hannegan Vice President, Environment & Generation EIA 2009 Energy Conference April 7, 2009 2 © 2009 Electric Power Research Institute, Inc. All rights reserved. Renewables in Various Stages of Maturity 3 © 2009 Electric Power Research Institute, Inc. All rights reserved. 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 Levelized Cost of Electricity, $/MWh Cost of CO 2 , $/Metric Ton IGCC NGCC ($8/MMBtu) PC Wind (32.5% Capacity Factor) Nuclear Biomass

  13. Alaska Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    3,566 3,722 3,852 3,352 2,898 2,857 2009-2014 Adjustments 0 0 1 -1 1 1 2009-2014 Revision Increases 394 397 362 84 87 239 2009-2014 Revision Decreases 152 76 129 451 392 196 2009-2014 Sales 7 0 17 0 0 125 2009-2014 Acquisitions 0 0 79 0 2 187 2009-2014 Extensions 25 30 40 59 34 35 2009-2014 New Field Discoveries 9 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 210 195 206 191 186 182 Cubic Feet)

    New Reservoir Discoveries in Old

  14. Arizona Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,016 1,015 1,021 1,025 1,029 1,039 2007-2015

  15. Arkansas Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Separation 0 29 46 82 135 189 1979-2014 Adjustments 12 -3 24 38 -23 -20 1979-2014 Revision Increases 5 12 50 5 88 14 1979-2014 Revision Decreases 0 0 13 9 4 0 1979-2014 Sales 5 0 38 0 0 9 2000-2014 Acquisitions 0 0 0 0 0 79 2000-2014 Extensions 0 4 0 11 1 0 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 4 4 6 9 9 10

    22 28 21 10 13 15 2005-2014 Adjustments 0 1 0 0 0 1 2009-2014 Revision Increases 3 9

  16. California Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    ,773 2,647 2,934 1,999 1,887 2,107 1977-2014 Adjustments 11 10 923 -563 -72 34 1977-2014 Revision Increases 259 548 1,486 538 256 612 1977-2014 Revision Decreases 189 451 1,889 539 103 241 1977-2014 Sales 4 3 47 284 70 1,155 2000-2014 Acquisitions 78 0 52 92 60 1,144 2000-2014 Extensions 450 12 73 8 3 0 1977-2014 New Field Discoveries 1 1 0 4 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 9 2 2 1977-2014 Estimated Production 239 243 311 200 188 176

    Acquisitions (Billion Cubic

  17. Colorado Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    3,058 24,119 24,821 20,666 22,381 20,851 1977-2014 Adjustments 306 449 801 -363 -272 627 1977-2014 Revision Increases 1,601 2,973 2,509 2,137 4,110 3,461 1977-2014 Revision Decreases 4,044 3,645 2,921 4,598 2,329 5,007 1977-2014 Sales 374 242 1,244 1,667 584 693 2000-2014 Acquisitions 437 229 1,218 445 953 567 2000-2014 Extensions 3,346 2,838 2,015 1,563 1,352 1,070 1977-2014 New Field Discoveries 8 22 18 9 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 27 0 0 12 6 1977-2014 Estimated

  18. Connecticut Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Robert McCullough Energy Information Administration April 7, 2009 Why did the chicken cross the road?  Curiously, this is often offered as an example of an imponderable question  As everyone knows, chickens cross roads for many reasons:  Random walk: All chickens cross all roads if enough time has lapsed  Nutrition: The grass is always greener on the other side of the road  Competition: There are fewer chickens over there  Reproduction: The chickens across the road are

  19. Delaware Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,025 1,027 1,043 1,054 1,050 2007-2015

  20. Florida Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    7 56 6 16 15 0 1977-2014 Adjustments 6 64 -54 -2 1 -2 1977-2014 Revision Increases 0 0 13 16 0 39 1977-2014 Revision Decreases 0 0 9 4 2 52 1977-2014 Sales 0 0 0 0 0 0 2000-2014 Acquisitions 0 0 0 0 0 0 2000-2014 Extensions 0 0 0 0 0 0 1977-2014 New Field Discoveries 0 0 0 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1977-2014 Estimated Production 0 15 0 0 0 0

    Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  1. Georgia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers by Local Distribution and Markete 0.79 10.94 13.01 16.48 20.53 24.74 1989-2016 Commercial Average Price 6.57 7.05 7.42 7.98 8.22 8.53

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,022 1,018 1,015 1,016 1,022 1,028 2007-2015

  2. Illinois Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,008 1,011 1,011 1,016 1,021 1,029 2007-2015

  3. Indiana Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,012 1,012 1,012 1,015 1,021 1,036 2007-2015

  4. Kansas Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    3,279 3,673 3,486 3,308 3,592 4,359 1977-2014 Adjustments 224 140 125 -236 -20 94 1977-2014 Revision Increases 212 687 152 742 733 575 1977-2014 Revision Decreases 403 166 240 475 521 218 1977-2014 Sales 2 17 124 887 31 1,092 2000-2014 Acquisitions 1 23 122 644 31 1,409 2000-2014 Extensions 24 27 62 310 375 271 1977-2014 New Field Discoveries 0 4 0 5 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 1 1 0 0 0 1977-2014 Estimated Production 334 305 285 281 283 272

    Acquisitions (Billion

  5. Kentucky Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2,782 2,613 2,006 1,408 1,663 1,611 1977-2014 Adjustments 97 -58 -34 -282 103 -9 1977-2014 Revision Increases 126 103 178 43 159 72 1977-2014 Revision Decreases 760 540 639 276 58 46 1977-2014 Sales 0 0 100 0 1 0 2000-2014 Acquisitions 0 39 84 0 1 0 2000-2014 Extensions 713 383 4 0 132 0 1977-2014 New Field Discoveries 0 0 1 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 1 1977-2014 Estimated Production 108 96 101 83 81 70

    Acquisitions (Billion Cubic Feet) Kentucky Dry

  6. Louisiana Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    0,688 29,277 30,358 21,949 20,164 22,975 1981-2014 Adjustments 319 -612 178 605 -42 487 1981-2014 Revision Increases 1,863 3,149 3,755 3,757 2,951 2,762 1981-2014 Revision Decreases 3,105 3,184 5,843 12,816 3,787 3,389 1981-2014 Sales 127 738 5,583 352 1,049 2,478 2000-2014 Acquisitions 103 847 5,552 285 1,425 4,523 2000-2014 Extensions 9,807 10,989 5,793 3,151 1,023 2,740 1981-2014 New Field Discoveries 257 48 47 5 17 57 1981-2014 New Reservoir Discoveries in Old Fields 1,542 279 167 13 21 69

  7. Maryland Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,027 1,027 1,037 1,051 1,050 1,055 2007-2015

  8. Massachusetts Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,035 1,033 1,035 1,033 1,031 1,030 2007-2015

  9. Michigan Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2,763 2,919 2,505 1,750 1,807 1,845 1977-2014 Adjustments -279 243 8 -104 -62 -47 1977-2014 Revision Increases 367 260 210 541 388 290 1977-2014 Revision Decreases 406 378 267 1,062 139 90 1977-2014 Sales 0 529 643 0 11 1 2000-2014 Acquisitions 16 711 403 0 11 8 2000-2014 Extensions 16 1 0 0 0 1 1977-2014 New Field Discoveries 19 2 14 7 0 0 1977-2014 New Reservoir Discoveries in Old Fields 9 0 0 1 3 1 1977-2014 Estimated Production 153 154 139 138 133 12

    Acquisitions (Billion Cubic Feet)

  10. Missouri Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,007 1,010 1,012 1,014 1,015 1,023 2007-2015

  11. Nebraska Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,004 1,011 1,019 1,031 1,039 1,055 2007-2015

  12. Nevada Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,033 1,024 1,029 1,033 1,034 1,043 2007-2015

  13. ,"Pennsylvania Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Excel File Name:","ngconsheatdcuspam.xls" ,"Available from Web Page:","http:www.eia.govdnavngngconsheatdcuspam.htm" ,"Source:","Energy Information ...

  14. California Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    38 1,036 1,034 1,035 1,021 1,042

  15. Multi-Function Gas Fired Heat Pump

    SciTech Connect (OSTI)

    Abu-Heiba, Ahmad; Vineyard, Edward Allan

    2015-11-30

    The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibration reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.

  16. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER...

    Office of Scientific and Technical Information (OSTI)

    ... CONVERSION; ENGINES; EXPLORATION; FUEL CELLS; GAS TURBINES; GREENHOUSE GASES; HOT WATER; INTERNAL COMBUSTION ENGINES; NATURAL GAS; THERMAL RECOVERY; TURBINES; WASTE HEAT; WASTES

  17. Recovery of Water from Boiler Flue Gas Using Condensing Heat...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers Citation Details In-Document Search Title: Recovery of Water from Boiler Flue Gas Using ...

  18. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas ... More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste ...

  19. The Natural Gas Heat Pump and Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Heat Pump and Air Conditioner 2016 Building Technologies Office Peer Review ... Gas Technology Institute to optimize integration of NOx-free radiation burner. * Testing ...

  20. Method and apparatus for fuel gas moisturization and heating

    DOE Patents [OSTI]

    Ranasinghe, Jatila; Smith, Raub Warfield

    2002-01-01

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic ...

  2. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar Gas provides incentives for residential customers to purchase and install solar water heating systems (both for domestic and pool heating uses) in their newly-constructed homes. Rebates of...

  3. Table 26. Natural gas home customer-weighted heating degree...

    U.S. Energy Information Administration (EIA) Indexed Site

    6:14:01 PM Table 26. Natural gas home customer-weighted heating degree days MonthYear... Table 26 Created on: 4262016 6:14:07 PM Table 26. Natural gas home customer-weighted ...

  4. The Natural gas Heat Pump and Air Conditioner

    Broader source: Energy.gov (indexed) [DOE]

    The Natural Gas Heat Pump and Air Conditioner 2015 Building Technologies Office Peer ... Summit - Best Presenter Project Integration and Collaboration Project Integration: ...

  5. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Savers [EERE]

    A.O. Smith Gas Technology Institute Project Goal: Develop and demonstrate a gas-fired ... Partners, Subcontractors, and Collaborators: * AO Smith (OEM): Provides component design, ...

  6. Table 17. Estimated natural gas plant liquids and dry natural gas content of tot

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated natural gas plant liquids and dry natural gas content of total natural gas proved reserves, 2014" "million barrels and billion cubic feet" ,"Total Wet Natural Gas Proved Reserves",,,,"Estimated content of proved reserves" " State and Subdivision",,2014,,,"Natural Gas Plant Liquids",,"Dry Natural Gas" ,,"billion cubic feet",,,"million barrels",,"billion cubic feet"

  7. Gas-fueled absorption heat pump

    SciTech Connect (OSTI)

    Florette, M.; Peuportier, B.

    1982-01-01

    To determine the feasibility of using an absorption heat pump for residential space heating, French investigators are studying both theoretically and experimentally, the performance of the absorption cycle in terms of its efficiency and suitability to space-heating conditions. A 10-kW pilot unit is supplying data on design criteria, heat-exchange fluid selection, and heat and mass balances.

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"10302015 12:46:21 PM" "Back to Contents","Data 1: Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)"...

  9. Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time: 10:00 am - 12:30 pm EDT Purpose: To convene representatives from stakeholder organizations in order to enhance their understanding of the characteristics of condensing natural gas heating and water heating equipment that contribute to the unique installation requirements and challenges of this equipment compared to

  10. Ex Parte Communication Gas Heat SPVU Question | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Heat SPVU Question Ex Parte Communication Gas Heat SPVU Question On Friday, February 6, 2015, the U.S. Department of Energy (DOE) conducted a public meeting on the Notice of Proposed Rulemaking (NOPR) for Single Package Vertical Unit (SPVU) energy conservation standards. 20150210_SPVU Ex Parte Memo_021015 (115.21 KB) More Documents & Publications Air-Conditioning, Heating, and Refrigeration Institute Ex Parte Memo 2014-12-12 Issuance: Energy Conservation Standard for SPVUs; Notice of

  11. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful incorporation of one of the most promising classes of the new materials, the skutterudites, into a working automotive TEG prototype and test results on its performance deer11_meisner.pdf (1.17 MB) More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Develop Thermoelectric

  12. Low-Cost Gas Heat Pump fro Building Space Heating

    Energy Savers [EERE]

    A.O. Smith Gas Technology Institute Target MarketAudience: Residential & Light Commercial ... Partners, Subcontractors, and Collaborators: * AO Smith (OEM): Provides component design, ...

  13. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  14. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, William R.; Cassano, Anthony A.; Dunbobbin, Brian R.; Rao, Pradip; Erickson, Donald C.

    1986-01-01

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

  15. PECO Energy (Gas)- Heating Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The PECO Smart Natural Gas Efficiency Upgrade Program offers rebates and incentives to commercial or residential customers that install an ENERGY STAR qualified high-efficiency natural gas furna...

  16. Process for production of synthesis gas with reduced sulfur content

    DOE Patents [OSTI]

    Najjar, Mitri S.; Corbeels, Roger J.; Kokturk, Uygur

    1989-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

  17. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    more about energy-efficient furnaces and boilers. Addthis Related Articles Tips: Natural Gas and Oil Heating Systems Energy Saver Guide: Tips on Saving Money and Energy at Home...

  18. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Furnaces and boilers Oil-fired boilers and furnaces Gas-fired boilers and furnaces ... Federal tax credits are available for geothermal heat pumps through 2016. Learn more. Federal ...

  19. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Questar Gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  20. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    SciTech Connect (OSTI)

    McBride, Troy O.; Bell, Alexander; Bollinger, Benjamin R.

    2012-08-07

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  1. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O; Bell, Alexander; Bollinger, Benjamin R; Shang, Andrew; Chmiel, David; Richter, Horst; Magari, Patrick; Cameron, Benjamin

    2013-07-02

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  2. Energy Factor Analysis for Gas Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Gluesenkamp, Kyle R

    2016-01-01

    Gas heat pump water heaters (HPWHs) can improve water heating efficiency with zero GWP and zero ODP working fluids. The energy factor (EF) of a gas HPWH is sensitive to several factors. In this work, expressions are derived for EF of gas HPWHs, as a function of heat pump cycle COP, tank heat losses, burner efficiency, electrical draw, and effectiveness of supplemental heat exchangers. The expressions are used to investigate the sensitivity of EF to each parameter. EF is evaluated on a site energy basis (as used by the US DOE for rating water heater EF), and a primary energy-basis energy factor (PEF) is also defined and included. Typical ranges of values for the six parameters are given. For gas HPWHs, using typical ranges for component performance, EF will be 59 80% of the heat pump cycle thermal COP (for example, a COP of 1.60 may result in an EF of 0.94 1.28). Most of the reduction in COP is due to burner efficiency and tank heat losses. Gas-fired HPWHs are theoretically be capable of an EF of up to 1.7 (PEF of 1.6); while an EF of 1.1 1.3 (PEF of 1.0 1.1) is expected from an early market entry.

  3. Method for controlling exhaust gas heat recovery systems in vehicles

    DOE Patents [OSTI]

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  4. Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas

    DOE Patents [OSTI]

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2004-06-22

    Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

  5. Purged window apparatus utilizing heated purge gas

    DOE Patents [OSTI]

    Ballard, Evan O.

    1984-01-01

    A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

  6. Sour gas injection for use with in situ heat treatment

    DOE Patents [OSTI]

    Fowler, Thomas David

    2009-11-03

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

  7. Performance of Gas-Engine Driven Heat Pump Unit

    SciTech Connect (OSTI)

    Abdi Zaltash; Randy Linkous; Randall Wetherington; Patrick Geoghegan; Ed Vineyard; Isaac Mahderekal; Robert Gaylord

    2008-09-30

    Air-conditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved air-conditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motor-driven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater

  8. Experimental investigation of a reticulated porous alumina heat exchanger for high temperature gas heat recovery

    SciTech Connect (OSTI)

    Banerjee, A; Chandran, RB; Davidson, JH

    2015-01-22

    The present study presents an experimental study of a prototype counter-flow heat exchanger designed to recover sensible heat from inert and reactive gases flowing through a high temperature solar reactor for splitting CO2. The tube-in-tube heat exchanger is comprised of two concentric alumina tubes, each filled with reticulated porous alumina with a nominal porosity of 80% and pore density of 5 pores per inch (ppi). The RPC provides high heat transfer surface area per unit volume (917 m(-1)) with low pressure drop. Measurements include the permeability, inertial coefficient, overall heat transfer coefficient, effectiveness and pressure drop. For laminar flow and an inlet gas temperature of 1240 K, the overall heat transfer coefficients are 36-41 W m(-2) K-1. The measured performance is in good agreement with a prior CFD model of the heat exchanger. (C) 2014 Elsevier Ltd. All rights reserved.

  9. The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland

    SciTech Connect (OSTI)

    Horttanainen, M. Teirasvuo, N.; Kapustina, V.; Hupponen, M.; Luoranen, M.

    2013-12-15

    Highlights: • New experimental data of mixed MSW properties in a Finnish case region. • The share of renewable energy of mixed MSW. • The results were compared with earlier international studies. • The average share of renewable energy was 30% and the average LHVar 19 MJ/kg. • Well operating source separation decreases the renewable energy content of MSW. - Abstract: For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50–60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.

  10. CenterPoint Energy (Gas)- Residential Heating and Hot Water Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

  11. Massachusetts Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,033 1,032 1,033 1,035 1,032 1,033 1,034 1,036 1,038 1,033 1,030 2014 1,035 1,032 1,031 1,030 1,030 1,031 1,030 ...

  12. Arkansas Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,016 1,016 1,016 1,017 1,018 1,016 1,016 1,014 1,012 1,012 1,015 2014 1,017 1,015 1,015 1,018 1,017 1,019 1,021 ...

  13. District of Columbia Heat Content of Natural Gas Deliveries to...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,025 1,021 1,014 1,014 1,025 1,034 1,037 1,043 1,041 1,047 1,048 2014 1,041 1,035 1,031 1,038 1,035 1,038 1,038 ...

  14. Florida Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,016 1,015 1,016 1,015 1,016 1,015 1,016 1,016 1,017 1,017 1,018 1,018 2014 1,018 1,018 1,018 1,019 1,019 1,019 1,022 ...

  15. Rhode Island Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,026 1,022 1,023 2010's 1,017 1,020 1,031 1,032 1,029 1,028

  16. Michigan Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,021 1,022 1,026 1,020 1,022 1,024 1,021 1,019 1,019 1,017 1,019 2014 1,019 1,021 1,021 1,017 1,020 1,019 1,015 ...

  17. Wyoming Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,043 1,040 1,041 1,042 1,043 1,045 1,040 1,040 1,041 1,038 1,035 1,030 2014 1,034 1,032 1,030 1,031 1,029 1,026 1,025 ...

  18. Vermont Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,014 1,016 1,016 1,021 1,016 1,015 1,011 1,012 1,014 1,015 1,014 2014 1,013 1,009 1,015 1,014 1,026 1,031 1,011 ...

  19. Wyoming Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,036 1,031 1,031 2010's 1,031 1,034 1,034 1,041 1,042 1,056

  20. Louisiana Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,013 1,015 1,015 1,015 1,016 1,016 1,017 1,017 1,016 1,018 1,019 2014 1,017 1,016 1,018 1,021 1,028 1,025 1,029 ...

  1. Arkansas Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,014 1,015 1,016 2010's 1,012 1,017 1,015 1,015 1,024 1,028

  2. Missouri Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,014 1,013 1,014 1,013 1,017 1,015 1,016 1,019 1,013 1,014 2014 1,013 1,013 1,014 1,014 1,011 1,016 1,016 ...

  3. Kentucky Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,027 1,035 1,036 2010's 1,030 1,027 1,030 1,028 1,028 1,025

  4. Connecticut Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,019 1,018 1,019 2010's 1,022 1,026 1,031 1,030 1,020 1,027

  5. Washington Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,030 1,030 2010's 1,032 1,029 1,028 1,030 1,043 1,065

  6. Indiana Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,022 1,013 1,015 2010's 1,012 1,012 1,012 1,015 1,021 1,036

  7. Washington Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,027 1,026 1,026 1,030 1,032 1,037 1,032 1,033 1,038 1,035 1,030 1,034 2014 1,035 1,037 1,041 1,042 1,045 1,050 1,049 ...

  8. Massachusetts Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,021 1,032 2010's 1,035 1,033 1,035 1,033 1,031

  9. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,015 1,025 1,029

  10. Florida Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,029 1,025 2010's 1,019 1,015 1,015 1,016 1,021

  11. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025 ...

  12. Indiana Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,012 1,013 1,015 1,019 1,020 1,019 1,021 1,020 1,018 1,015 1,014 2014 1,016 1,017 1,019 1,019 1,023 1,023 1,025 ...

  13. Missouri Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,020 1,008 1,007 2010's 1,007 1,010 1,012 1,014 1,015 1,023

  14. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,010 1,010 1,007 2010's 1,006 1,009 1,014 1,016 1,038

  15. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,020 1,021

  16. Mississippi Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,014 1,015 1,018 1,018 1,021 1,022 1,025 1,020 1,020 2014 1,019 1,014 1,019 1,026 1,030 1,034 1,035 ...

  17. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012 1,002 1,002

  18. Alabama Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,025 1,026 2010's 1,018 1,018 1,016 1,017

  19. Georgia Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,026 1,027 2010's 1,022 1,018 1,015 1,016 1,022 1,028

  20. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,030 1,028 1,026

  1. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005 ...

  2. Wisconsin Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,028 1,026 1,025 1,030 1,027 1,026 1,026 1,023 1,026 1,027 1,027 1,027 2014 1,031 1,033 1,035 1,032 1,033 1,032 1,029 ...

  3. South Dakota Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,003 1,003 1,002 2010's 1,005 1,005 1,018 1,023 1,035 1,051

  4. Maryland Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,041 1,037 1,032 1,027 1,037 1,042 1,060 1,056 1,062 1,059 1,061 1,059 2014 1,053 1,048 1,045 1,049 1,047 1,052 1,051 ...

  5. Arizona Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,029 1,023 1,021 1,030 1,027 1,025 1,028 1,025 1,023 1,022 1,024 1,024 2014 1,024 1,025 1,026 1,031 1,028 1,028 1,030 ...

  6. Wisconsin Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,014 1,014 1,014 2010's 1,010 1,014 1,019 1,025 1,032 1,039

  7. District of Columbia Heat Content of Natural Gas Deliveries to...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,027 1,028 1,035 2010's 1,014 1,016 1,029 1,048 1,037 1,044

  8. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,047 1,041 1,044

  9. South Carolina Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,034 1,034 2010's 1,026 1,026 1,023 1,019 1,024 1,030

  10. Tennessee Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,012 1,016 1,019 1,018 1,021 1,023 1,028 1,028 1,025 1,024 1,022 2014 1,020 1,020 1,021 1,027 1,032 1,031 1,032 ...

  11. Maryland Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,038 1,035 1,037 2010's 1,027 1,027 1,037 1,051 1,050 1,055

  12. Montana Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,017 1,016 1,011 2010's 1,012 1,016 1,025 1,028 1,026 1,029

  13. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,024 1,024 1,025 1,027 1,026 1,024 1,025 1,024 1,025 1,024 1,025 2014 1,027 1,022 1,028 1,026 1,029 1,032 1,033 ...

  14. Minnesota Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,019 1,023 1,029 2010's 1,010 1,010 1,019 1,015 1,033 1,041

  15. Georgia Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,014 1,015 1,016 1,015 1,014 1,015 1,016 1,019 1,017 1,016 1,017 1,017 2014 1,018 1,018 1,018 1,018 1,021 1,022 1,023 ...

  16. Vermont Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,001 1,005 1,005 2010's 1,007 1,008 1,012 1,015 1,016 1,026

  17. Kentucky Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,022 1,023 1,025 1,026 1,027 1,028 1,030 1,031 1,028 1,028 1,033 2014 1,029 1,024 1,026 1,028 1,031 1,037 1,034 ...

  18. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,056 1,055 1,057 1,043 983 983 983 983 983 983 983 983 2014 947 946 947 947 947 947 951 978 990 968 974 962 2015 968 954 ...

  19. Delaware Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,033 1,030 2010's 1,023 1,025 1,027 1,043 1,054 1,050

  20. Montana Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,044 1,040 1,032 1,034 1,034 1,044 1,048 1,043 1,047 1,041 1,032 1,031 2014 1,034 1,030 1,030 1,027 1,032 1,030 1,038 ...

  1. Louisiana Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,034 1,035 1,029 2010's 1,024 1,019 1,015 1,014 1,030 1,03

  2. Connecticut Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,018 1,025 1,011 1,022 1,028 1,024 1,032 1,028 1,030 1,030 1,026 1,024 2014 1,015 1,015 1,016 1,019 1,020 1,022 1,022 ...

  3. Nebraska Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,031 1,032 1,033 1,036 1,035 1,029 1,032 1,038 1,040 1,041 1,036 2014 1,034 1,034 1,037 1,043 1,043 1,047 1,051 ...

  4. Colorado Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,032 1,030 1,033 1,040 1,051 1,056 1,057 1,058 1,037 1,032 1,033 2014 1,030 1,036 1,038 1,041 1,051 1,050 1,048 ...

  5. Illinois Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,015 1,015 1,014 1,015 1,015 1,016 1,017 1,019 1,018 2014 1,020 1,020 1,020 1,020 1,020 1,020 1,022 ...

  6. West Virginia Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,074 1,073 1,082 2010's 1,076 1,083 1,080 1,083 1,073 1,08

  7. Tennessee Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,038 1,037 1,028 2010's 1,023 1,014 1,014 1,021 1,026 1,027

  8. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043 ...

  9. Minnesota Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,020 1,021 1,020 1,021 1,026 1,030 1,028 1,029 1,028 1,029 1,029 1,027 2014 1,031 1,027 1,033 1,034 1,038 1,042 1,042 ...

  10. Delaware Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,049 1,046 1,048 1,041 1,049 1,058 1,054 1,065 1,064 1,067 1,057 2014 1,052 1,048 1,048 1,051 1,045 1,049 1,063 ...

  11. Michigan Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,021 1,023 1,021 2010's 1,016 1,014 1,017 1,017 1,021 1,031

  12. Virginia Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,038 1,032 1,033 1,028 1,030 1,039 1,043 1,038 1,043 1,042 1,046 1,045 2014 1,044 1,040 1,039 1,041 1,038 1,040 1,041 ...

  13. West Virginia Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,071 1,071 1,070 1,083 1,088 1,099 1,099 1,119 1,082 1,097 1,086 1,079 2014 1,073 1,073 1,065 1,111 1,094 1,095 1,099 ...

  14. Colorado Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,020 1,019 2010's 1,019 1,032 1,039 1,042 1,043 1,058

  15. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,043 1,040 2010's 1,040 1,048 1,046 983 958 981

  16. New Jersey Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,043 1,043 1,043 1,042 1,043 1,046 1,044 1,042 1,045 1,047 1,048 1,050 2014 1,050 1,047 1,045 1,040 1,035 1,037 1,040 ...

  17. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,027 1,030 1,033

  18. Virginia Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,035 1,038 1,036 2010's 1,028 1,027 1,034 1,040 1,041 1,053

  19. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038 ...

  20. Mississippi Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,026 1,019 2010's 1,014 1,010 1,012 1,016 1,029 1,031

  1. Arizona Heat Content of Natural Gas Deliveries to Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,023 1,027 1,021 2010's 1,016 1,015 1,021 1,025 1,029 1,039

  2. Illinois Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,015 1,014 1,013 2010's 1,008 1,011 1,011 1,016 1,021 1,029

  3. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031 ...

  4. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,030 1,029...

  5. Connecticut Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,019 1,018 1,019 2010's 1,022 1,026 1,031 1,030 1,020...

  6. New Jersey Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    4 1,043 1,042 1,039 1,037 1,037

  7. New York Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    33 1,034 1,033 1,033 1,029 1,030

  8. North Carolina Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    4 1,034 1,037 1,038 1,038 1,034

  9. North Dakota Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    95 1,095 1,099 1,108 1,091 1,070

  10. North Carolina Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,027 1,023 2010's 1,015 1,011 1,011 1,013 1,018...

  11. Heat Content of Natural Gas Delivered to Consumers

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption Electric Power Other Sectors Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 1,023 1,022 1,024 1,027 1,030 1,037 2003-2015 Alabama 1,018 1,018 1,016 1,017 1,025 1,030 2007-2015 Alaska 1,005 1,013 1,012 1,002 1,002 1,001 2007-2015 Arizona 1,016 1,015 1,021 1,025 1,029 1,039 2007-2015 Arkansas 1,012 1,017 1,015

  12. U.S. Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,022 1,024 1,027 1,030 1,037 2003-2015 Total Consumption 1,023 1,022 1,024 1,027 1,032 2003-2014 Electric Power 1,022 1,021 1,022 1,025 1,029 2003-2014 Other Sectors 1,023 1,022 1,025 1,028 1,032 2003-2014

  13. West Virginia Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    92 1,096 1,096 1,096 1,096 1,11

  14. Rhode Island Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    10 2011 2012 2013 2014 2015 View History U.S. 4,782,412 4,713,777 4,149,519 4,897,372 5,087,314 4,616,391 1930-2015 Alabama 42,215 36,582 27,580 35,059 38,971 31,794 1967-2015 Alaska 18,714 20,262 21,380 19,215 17,734 18,468 1967-2015 Arizona 37,812 38,592 34,974 39,692 32,397 34,215 1967-2015 Arkansas 36,240 33,737 26,191 34,989 38,127 30,803 1967-2015 California 494,890 512,565 477,931 481,773 397,489 404,869 1967-2015 Colorado 131,224 130,116 115,695 134,936 132,106 125,433 1967-2015

  15. South Carolina Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Energy Conference April 7, 2009 (1) Economic prosperity is intimately tied to affordable energy. (2) There is potential for geopolitical conflict due to escalating competition for energy resources. (3)The risk of adverse Climate Change. The Energy Problem Oil Dependency is a Drain on our Economy (Using EIA data) Oil Dependency is a Drain on our Economy FRBSF Economic Letter 11/18/05 Gray bars indicate a recession Percentage price increase US oil became a net oil importer in the 1940s China's Oil

  16. South Dakota Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,005 1,005 1,018 1,023 1,035 1,051 2007-2015

  17. West Virginia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    5,946 7,000 10,345 14,611 22,765 29,432 1977-2014 Adjustments 258 -359 -1 251 -565 -559 1977-2014 Revision Increases 383 1,034 1,218 1,701 2,120 2,213 1977-2014 Revision Decreases 865 1,075 759 2,162 2,547 4,249 1977-2014 Sales 54 895 265 275 47 1,723 2000-2014 Acquisitions 2 984 590 105 0 2,287 2000-2014 Extensions 1,190 1,594 2,820 5,132 9,827 9,033 1977-2014 New Field Discoveries 166 0 0 102 94 0 1977-2014 New Reservoir Discoveries in Old Fields 8 64 137 0 0 650 1977-2014 Estimated Production

  18. Rhode Island Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,029 1,029 1,029 1,028 1,028 1,028 2013-2015...

  19. Rhode Island Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,023 1,017 1,020 1,031 1,032 1,028 2007-2014...

  20. Maryland Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,038 1,035 1,037 2010's 1,027 1,027 1,037 1,051 1,050

  1. Alabama Heat Content of Natural Gas Deliveries to Consumers ...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,025 1,026 2010's 1,018 1,018 1,016 1,017 1,025 1,030

  2. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,020 1,021 1,037

  3. Louisiana Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,034 1,035 1,029 2010's 1,024 1,019 1,015 1,014 1,030 1,032

  4. Kentucky Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,027 1,035 1,036 2010's 1,030 1,027 1,030 1,028 1,028

  5. Delaware Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,033 1,030 2010's 1,023 1,025 1,027 1,043 1,054

  6. Massachusetts Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,021 1,032 2010's 1,035 1,033 1,035 1,033 1,031 1,030

  7. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012 1,002 1,002 1,001

  8. Missouri Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,020 1,008 1,007 2010's 1,007 1,010 1,012 1,014 1,015

  9. Oklahoma Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,034 1,033 2010's 1,032 1,032 1,030 1,036 1,040

  10. Florida Heat Content of Natural Gas Deliveries to Consumers ...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,029 1,025 2010's 1,019 1,015 1,015 1,016 1,021 1,024

  11. District of Columbia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    and Commercial Consumers by Local Distributio 9.96 9.53 10.72 10.55 12.56 15.35 1989-2016 Commercial Average Price 9.50 9.30 10.21 10.24 10.24 11.31

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,014 1,016 1,029 1,048 1,037 1,044 2007-2015

  12. New Hampshire Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,037 1,040 1,032 1,030 1,032 1,031 2007-2015

  13. New Jersey Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers by Local Distribution and Mark 6.55 6.86 8.24 8.99 9.49 10.78 1989-2016 Commercial Average Price 7.76 7.66 7.50 6.80 7.15 7.72

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,026 1,026 1,029 1,045 1,042 1,046 2007-2015

  14. New Mexico Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    5,598 15,412 15,005 13,586 13,576 15,283 1977-2014 Adjustments 525 -89 73 153 -202 555 1977-2014 Revision Increases 1,396 2,211 2,114 2,384 3,407 3,394 1977-2014 Revision Decreases 1,708 1,833 2,229 3,276 2,791 1,979 1977-2014 Sales 287 145 1,016 311 705 15 2000-2014 Acquisitions 292 419 1,078 115 594 62 2000-2014 Extensions 441 468 731 680 753 860 1977-2014 New Field Discoveries 1 0 3 1 0 1 1977-2014 New Reservoir Discoveries in Old Fields 3 3 9 4 89 3 1977-2014 Estimated Production 1,350 1,220

  15. North Carolina Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    721,507 836,698 867,922 768,598 368,469 400,600 1973-2014 Alaska 0 0 0 0 0 0 1996-2014 Arkansas 0 0 0 0 0 0 2006-2014 California 2,879 3,019 2,624 0 NA NA 1980-2014 California Onshore 2,879 3,019 2,624 NA NA NA 1992-2014 California State Offshore 0 0 0 NA NA NA 2003-2014 Federal Offshore California NA NA 2003-2014 Colorado 0 0 0 0 0 0 1980-2014 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 1997-2014 Kansas 0 0 0 0 0 0 2002-2014 Louisiana 0 0 0 0 0 0 1996-2014 Louisiana Onshore NA NA NA NA NA NA

  16. North Dakota Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    ,079 1,667 2,381 3,569 5,420 6,034 1977-2014 Adjustments 47 -2 -3 -56 -208 -31 1977-2014 Revision Increases 243 848 570 924 1,096 861 1977-2014 Revision Decreases 81 722 375 292 640 777 1977-2014 Sales 2 47 113 237 13 557 2000-2014 Acquisitions 1 136 169 206 384 322 2000-2014 Extensions 401 442 572 834 1,523 1,161 1977-2014 New Field Discoveries 6 25 10 16 1 4 1977-2014 New Reservoir Discoveries in Old Fields 5 2 17 23 10 37 1977-2014 Estimated Production 82 94 133 230 302 406

    Acquisitions

  17. Heat Content of Natural Gas Delivered to Consumers

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Delivered to Consumers Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 1,038 1,038 1,037 1,037 1,034 1,034 2012-2016 Alabama 1,029 1,025 1,030 1,028 1,028 1,026 2013-2016 Alaska 1,000 1,000 1,001 1,001 1,002 1,003 2013-2016 Arizona 1,046 1,047 1,050 1,042 1,037 1,031 2013-2016 Arkansas 1,019 1,015 1,017

  18. Arizona Heat Content of Natural Gas Deliveries to Consumers ...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,023 1,027 1,021 2010's 1,016 1,015 1,021 1,025 1,029...

  19. New York Heat Content of Natural Gas Deliveries to Consumers...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,023 1,021 1,021 2010's 1,022 1,025 1,031 1,033 1,031...

  20. ,"U.S. Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    1,"Monthly","12016","01152012" ,"Release Date:","03312016" ,"Next Release Date:","04292016" ,"Excel File Name:","ngconsheatdcunusm.xls" ,"Available from Web ...

  1. District of Columbia Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    1 1,049 1,043 1,040 1,035 1,034

  2. New Hampshire Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Delivered to Consumers 1,035 1,039 1,031 1,029 1,027 1,028 2013-2016

  3. New Hampshire Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,033 1,029 1,028 1,029 1,030 1,030 1,027 1,028 1,031 1,033 1,030 1,030 2014 1,037 1,033 1,031 1,031 1,032 1,038 1,033 ...

  4. New Hampshire Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,044 1,040 1,035 2010's 1,037 1,040 1,032 1,030 1,032 1,031

  5. New Mexico Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,026 1,027 1,027 1,033 1,031 1,026 1,032 1,032 1,034 1,028 1,034 1,032 2014 1,030 1,029 1,027 1,028 1,030 1,033 1,041 ...

  6. North Carolina Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,014 1,014 1,012 1,010 1,010 1,010 1,011 1,012 1,012 1,015 1,014 2014 1,016 1,018 1,017 1,015 1,016 1,014 1,017 ...

  7. North Dakota Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,082 1,093 1,096 1,091 1,068 1,131 1,140 1,077 1,013 1,099 1,112 1,089 2014 1,087 1,084 1,074 1,077 1,083 1,079 1,078 ...

  8. New Mexico Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Jun-15 Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 View History Delivered to Consumers 1,039 1,038 1,049 1,040 1,048 1,042 2013-2015...

  9. New Mexico Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,025 1,028 2010's 1,021 1,022 1,024 1,030 1,035...

  10. Rhode Island Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    2 1,027 1,025 1,034 1,029 1,028

  11. South Carolina Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    1 1,031 1,029 1,031 1,030 1,029

  12. South Dakota Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    60 1,058 1,053 1,052 1,054 1,058

  13. U.S. Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    38 1,038 1,037 1,037 1,034 1,034 2012

  14. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors Citation Details In-Document Search Title: Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors The safety ...

  15. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector- Fact Sheet, 2016

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fact sheet overview of a natural gas heat pump system for the residential sector that will incorporate an internal combustion engine that drives a vapor-compression heat pump

  16. Residential Gas-Fired Adsorption Heat Pump Water Heater | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Gas-Fired Adsorption Heat Pump Water Heater Residential Gas-Fired Adsorption Heat Pump Water Heater Gas-fired adsorption heat pump water heater prototype. Image credit: Oak Ridge National Laboratory. Gas-fired adsorption heat pump water heater prototype. Image credit: Oak Ridge National Laboratory. Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN DOE Funding: $310,000 Project Term: October 1, 2013 - September 30, 2016 Funding Type: Annual Operating Plan (AOP) PROJECT

  17. Impact of Interruptible Natural Gas Service on Northeast Heating Oil Demand

    Reports and Publications (EIA)

    2001-01-01

    Assesses the extent of interruptible natural gas contracts and their effect on heating oil demand in the Northeast.

  18. Recent content in Increase Natural Gas Energy Efficiency | OpenEI...

    Open Energy Info (EERE)

    content in Increase Natural Gas Energy Efficiency Home No posts have been made in this group yet. Groups Menu You must login in order to post into this group. Recent content Global...

  19. Natural gas inventories heading to record levels at start of winter heating season

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural gas inventories heading to record levels at start of winter heating season U.S. natural gas inventories are expected to be at record levels to start the winter heating season. In its new forecast, the U.S. Energy Information Administration said the amount of natural gas stored underground should total almost 4 trillion cubic feet by the beginning of November, reflecting record high natural gas production. Inventories could go even higher if heating demand is not strong during October

  20. Superconductor fiber elongation with a heated injected gas

    DOE Patents [OSTI]

    Zeigler, D.D.; Conrad, B.L.; Gleixner, R.A.

    1998-06-02

    An improved method and apparatus for producing flexible fibers of superconducting material includes a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through a downwardly directed nozzle where it is subjected to a high velocity of a heated gas which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by directing them against a collection filter. 10 figs.

  1. Heating and cooling gas-gun targets: nuts and bolts

    SciTech Connect (OSTI)

    Gustavsen, Richard L; Bartram, Brian D; Gehr, Russell J; Bucholtz, Scott M

    2009-01-01

    The nuts and bolts of a system used to heat and cool gas-gun targets is described. We have now used the system for more than 35 experiments, all of which have used electromagnetic gauging. Features of the system include a cover which is removed (remotely) just prior to projectile impact and the widespread use of metal/polymer insulations. Both the cover and insulation were required to obtain uniform temperatures in samples with low thermal conductivity. The use of inexpensive video cameras to make remote observations of the cover removal was found to be very useful. A brief catalog of useful glue, adhesive tape, insulation, and seal materials is given.

  2. Portable tester for determining gas content within a core sample

    DOE Patents [OSTI]

    Garcia, Jr., Fred; Schatzel, Steven J.

    1998-01-01

    A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas- a selector valve connected to the low and high range pressure transducers, a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container, and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use.

  3. Portable tester for determining gas content within a core sample

    DOE Patents [OSTI]

    Garcia, F. Jr.; Schatzel, S.J.

    1998-04-21

    A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas; a selector valve connected to the low and high range pressure transducers and a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container; and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use. 5 figs.

  4. Radiation and gas conduction heat transport across a helium dewer multilayer insulation system

    SciTech Connect (OSTI)

    Green, M.A.

    1995-02-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  5. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    DOE Patents [OSTI]

    Ochs, Thomas L.; O'Connor, William K.

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","District of Columbia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  12. Superconductor fiber elongation with a heated injected gas

    DOE Patents [OSTI]

    Zeigler, Douglas D.; Conrad, Barry L.; Gleixner, Richard A.

    2001-01-16

    An improved method and apparatus for producing flexible fibers (30) of superconducting material includes a crucible (12) for containing a charge of the superconducting material. The material is melted in the crucible (12) and falls in a stream (18) through a bottom hole (16) in the crucible (12). The stream (18) falls through a protecting collar (22) which maintains the stream (18) at high temperatures. The stream (18) is then supplied through a downwardly directed nozzle (26) where it is subjected to a high velocity of a heated gas (36') which breaks the melted superconducting material into ligaments which solidify into the flexible fibers (30). The fibers (30) are collected by directing them against a collection filter (32).

  13. Superconductor fiber elongation with a heated injected gas

    DOE Patents [OSTI]

    Zeigler, Douglas D.; Conrad, Barry L.; Gleixner, Richard A.

    1998-06-02

    An improved method and apparatus for producing flexible fibers (30) of superconducting material includes a crucible (12) for containing a charge of the superconducting material. The material is melted in the crucible (12) and falls in a stream (18) through a bottom hole (16) in the crucible (12). The stream (18) falls through a protecting collar (22) which maintains the stream (18) at high temperatures. The stream (18) is then supplied through a downwardly directed nozzle (26) where it is subjected to a high velocity of a heated gas (36') which breaks the melted superconducting material into ligaments which solidify into the flexible fibers (30). The fibers (30) are collected by directing them against a collection filter (32).

  14. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  15. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...

    Office of Environmental Management (EM)

    Engine-Driven Heat Pump for the Residential Sector - Fact Sheet, 2016 Southwest Gas Corporation, in collaboration with IntelliChoice Energy and Oak Ridge National Laboratory, ...

  16. Observed and simulated full-depth ocean heat-content changes for 1970–2005

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Lijing; Trenberth, Kevin E.; Palmer, Matthew D.; Zhu, Jiang; Abraham, John P.

    2016-07-26

    Greenhouse-gas emissions have created a planetary energy imbalance that is primarily manifested by increasing ocean heat content (OHC). Updated observational estimates of full-depth OHC change since 1970 are presented that account for recent advancements in reducing observation errors and biases. The full-depth OHC has increased by 0.74 [0.68, 0.80]  ×  1022 J yr−1 (0.46 Wm−2) and 1.22 [1.16–1.29]  ×  1022 J yr−1 (0.75 Wm−2) for 1970–2005 and 1992–2005, respectively, with a 5 to 95 % confidence interval of the median. The CMIP5 models show large spread in OHC changes, suggesting that some models are not state-of-the-art and require further improvements. However, the ensemble median has excellent agreement with our observational estimate:more » 0.68 [0.54–0.82]  ×  1022 J yr−1 (0.42 Wm−2) from 1970 to 2005 and 1.25 [1.10–1.41]  ×  1022 J yr−1 (0.77 Wm−2) from 1992 to 2005. These results increase confidence in both the observational and model estimates to quantify and study changes in Earth's energy imbalance over the historical period. We suggest that OHC be a fundamental metric for climate model validation and evaluation, especially for forced changes (decadal timescales).« less

  17. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect (OSTI)

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  18. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    SciTech Connect (OSTI)

    Makarov, A. N.

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  19. PERFORMANCE OF A CONTAINMENT VESSEL CLOSURE FOR RADIOACTIVE GAS CONTENTS

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of the design and testing of the containment vessel closure for the Bulk Tritium Shipping Package (BTSP). This package is a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The containment vessel closure incorporates features specifically designed for the containment of tritium when subjected to the normal and hypothetical conditions required of Type B radioactive material shipping Packages. The paper discusses functional performance of the containment vessel closure of the BTSP prototype packages and separate testing that evaluated the performance of the metallic C-Rings used in a mock BTSP closure.

  20. PECO Energy (Gas)- Residential Heating Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The PECO Residential Smart Natural Gas Efficiency Upgrade Program offers various incentives for installing energy efficient gas equipment in homes.  The program is available to PECO natural gas ...

  1. Natural gas inventories to remain high at end of winter heating season

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural gas inventories to remain high at end of winter heating season Despite the jump in natural gas use to meet heating demand during the recent winter storm that walloped the East Coast, total U.S. natural gas inventories remain near 3 trillion cubic feet. That's about 20 percent higher than at this time last year. In its new monthly forecast, the U.S. Energy Information Administration said that by the end of the winter heating season at the close of March, it expects natural gas inventories

  2. Missouri Gas Energy (MGE)- Residential High Efficiency Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Missouri Gas Energy (MGE), a division of Laclede Gas Company, offers various rebates to residential customers for investing in energy efficient equipment and appliances. All individually metered...

  3. FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Many countries have begun to explore alternative energy sources, including so- called ... What Role Do Gas Hydrates Play in Nature? Theme 2 Gas Hydrates as a Potential Energy ...

  4. Flammability of selected heat resistant alloys in oxygen gas mixtures

    SciTech Connect (OSTI)

    Zawierucha, R.; McIlroy, K.; Million, J.F.

    1995-12-31

    Within recent years, the use of oxygen has increased in applications where elevated temperatures and corrosion may be significant factors. In such situations, traditional alloys used in oxygen systems will not be adequate. Where alternative alloys must be utilized, based upon environmental requirements, it is essential that they may be characterized with respect to their ignition and combustion resistance in oxygen. Promoted ignition and promoted ignition-combustion are terms which have been used to describe a situation where a substance with low oxygen supports the combustion of a compatibility ignites and more ignition resistant material. In this paper, data will be presented on the promoted ignition-combustion behavior of selected heat resistant engineering alloys that may be considered for gaseous oxygen applications in severe environments. In this investigation, alloys have been evaluated via both flowing and static (fixed volume) approaches using a rod configuration. Oxygen-nitrogen gas mixtures with compositions ranging from approximately 40 to 99.7% oxygen at pressures of 3.55 to 34.6 MPa were used in the comparative studies.

  5. Deposition of device quality, low hydrogen content, amorphous silicon films by hot filament technique using "safe" silicon source gas

    DOE Patents [OSTI]

    Mahan, Archie Harvin; Molenbroek, Edith C.; Nelson, Brent P.

    1998-01-01

    A method of producing hydrogenated amorphous silicon on a substrate by flowing a stream of safe (diluted to less than 1%) silane gas past a heated filament.

  6. Numerical simulation of gas dynamics and heat exchange tasks in fuel assemblies of the nuclear reactors

    SciTech Connect (OSTI)

    Zhuchenko, S. V.

    2014-11-12

    This report presents a PC-based program for solution gas dynamics and heat exchange mathematical tasks in fuel assemblies of the fast-neutron nuclear reactors. A fuel assembly consisting of bulk heat-generating elements, which are integrated together by the system of supply and pressure manifolds, is examined. Spherical heat-generating microelements, which contain nuclear fuel, are pulled into the heat-generating elements. Gaseous coolant proceed from supply manifolds to heat-generating elements, where it withdraws the nuclear reaction heat and assembles in pressure manifolds.

  7. Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas

    SciTech Connect (OSTI)

    Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.

    2004-01-01

    An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.

  8. Two-tank working gas storage system for heat engine

    DOE Patents [OSTI]

    Hindes, Clyde J.

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  9. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    Increase Natural Gas Energy Efficiency > Posts by term > Increase Natural Gas Energy Efficiency Content Group Activity By term Q & A Feeds Term: Combined Heat And Power...

  10. Reduce Natural Gas Use in Your Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

  11. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine

  12. Heat transfer between stratified immiscible liquid layers driven by gas bubbling across the interface

    SciTech Connect (OSTI)

    Greene, G.A.; Irvine, T.F. Jr.

    1988-01-01

    The modeling of molten core debris in the CORCON and VANESA computer codes as overlying, immiscible liquid layers is discussed as it relates to the transfer of heat and mass between the layers. This initial structure is identified and possible configurations are discussed. The stratified, gas-sparged configuration that is presently employed in CORCON and VANESA is examined and the existing literature for interlayer heat transfer is assessed. An experiment which was designed to measure interlayer heat transfer with gas sparging is described. The results are presented and compared to previously existing models. A dimensionless correlation for stratified, interlayer heat transfer with gas sparging is developed. This relationship is recommended for inclusion in CORCON-MOD2 for heat transfer between stratified, molten liquid layers. 12 refs., 6 figs., 3 tabs.

  13. PECO Energy (Gas)- Commercial Heating Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PECO offers financial incentives to its business and commercial gas customers to install energy efficient equipment. Incentives are available for energy efficient boilers, furnaces, and for fuel...

  14. FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE SUMMARY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE SUMMARY Beaudoin, Y. C., Boswell, R., Dallimore, S. R., and Waite, W. (eds), 2014. Frozen Heat: A UNEP Global Outlook on Methane Gas Hydrates. United Nations Environment Programme, GRID-Arendal. © United Nations Environment Programme, 2014 This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the

  15. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A. ); Irvine, T.F., Jr. . Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  16. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A.; Irvine, T.F., Jr.

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  17. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system,...

  18. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.0 - HOISTING AND RIGGING IN HOSTILE ENVIRONMENTS February 18, 2010 Rev 1 Page 1 CHAPTER 18.0 TABLE OF CONTENTS TABLE OF CONTENTS..................................................................................................................................1 PAGINATION TABLE.....................................................................................................................................1 18.0 HOISTING AND RIGGING IN HOSTILE ENVIRONMENTS

  19. OpenEI Community - natural gas+ condensing flue gas heat recovery...

    Open Energy Info (EERE)

    groupincrease-natural-gas-energy-efficiency

  20. THE DIVERSE HOT GAS CONTENT AND DYNAMICS OF OPTICALLY SIMILAR LOW-MASS ELLIPTICAL GALAXIES

    SciTech Connect (OSTI)

    Bogdan, Akos; David, Laurence P.; Jones, Christine; Forman, William R.; Kraft, Ralph P., E-mail: abogdan@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-10-10

    The presence of hot X-ray-emitting gas is ubiquitous in massive early-type galaxies. However, much less is known about the content and physical status of the hot X-ray gas in low-mass ellipticals. In the present paper, we study the X-ray gas content of four low-mass elliptical galaxies using archival Chandra X-ray observations. The sample galaxies, NGC 821, NGC 3379, NGC 4278, and NGC 4697, have approximately identical K-band luminosities, and hence stellar masses, yet their X-ray appearance is strikingly different. We conclude that the unresolved emission in NGC 821 and NGC 3379 is built up from a multitude of faint compact objects, such as coronally active binaries and cataclysmic variables. Despite the non-detection of X-ray gas, these galaxies may host low density, and hence low luminosity, X-ray gas components, which undergo an outflow driven by a Type Ia supernova (SN Ia). We detect hot X-ray gas with a temperature of kT {approx} 0.35 keV in NGC 4278, the component of which has a steeper surface brightness distribution than the stellar light. Within the central 50'' ({approx}3.9 kpc), the estimated gas mass is {approx}3 Multiplication-Sign 10{sup 7} M{sub Sun }, implying a gas mass fraction of {approx}0.06%. We demonstrate that the X-ray gas exhibits a bipolar morphology in the northeast-southwest direction, indicating that it may be outflowing from the galaxy. The mass and energy budget of the outflow can be maintained by evolved stars and SNe Ia, respectively. The X-ray gas in NGC 4697 has an average temperature of kT {approx} 0.3 keV and a significantly broader distribution than the stellar light. The total gas mass within 90'' ({approx}5.1 kpc) is {approx}2.1 Multiplication-Sign 10{sup 8} M{sub Sun }, hence the gas mass fraction is {approx}0.4%. Based on the distribution and physical parameters of the X-ray gas, we conclude that it is most likely in hydrostatic equilibrium, although a subsonic outflow may be present.

  1. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    SciTech Connect (OSTI)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  2. Reduce Natural Gas Use in Your Industrial Process Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Think again. Cutting your natural gas bill can be as simple as adjusting a dial. Get ... water, and oils or in preheating charge material going into a furnace or oven. n Consider ...

  3. Recovery of Water from Boiler Flue Gas Using Condensing Heat...

    Office of Scientific and Technical Information (OSTI)

    DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water ...

  4. Method and apparatus for real-time measurement of fuel gas compositions and heating values

    DOE Patents [OSTI]

    Zelepouga, Serguei; Pratapas, John M.; Saveliev, Alexei V.; Jangale, Vilas V.

    2016-03-22

    An exemplary embodiment can be an apparatus for real-time, in situ measurement of gas compositions and heating values. The apparatus includes a near infrared sensor for measuring concentrations of hydrocarbons and carbon dioxide, a mid infrared sensor for measuring concentrations of carbon monoxide and a semiconductor based sensor for measuring concentrations of hydrogen gas. A data processor having a computer program for reducing the effects of cross-sensitivities of the sensors to components other than target components of the sensors is also included. Also provided are corresponding or associated methods for real-time, in situ determination of a composition and heating value of a fuel gas.

  5. THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS

    SciTech Connect (OSTI)

    Michael G. McKellar

    2011-11-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  6. Low-Cost Gas Heat Pump For Building Space Heating | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Credit: Stone Mountain Technologies Lead Performer: Stone Mountain Technologies - Erwin, TN Partners: -- A.O. Smith - Milwaukee, WI -- Gas Technology Institute - Des Plaines, IL ...

  7. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Harvey, Karen; Ferrada, Juan J

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  8. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    SciTech Connect (OSTI)

    Buckingham, A.C.; Siekhaus, W.J.

    1982-09-27

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives.

  9. Development of a gas-fired absorption heat pump

    SciTech Connect (OSTI)

    Ohuchi, Y.

    1985-01-01

    A new absorbent-refrigerant pair suitable for heat pump heating and air-cooled cooling has been developed. Water has been selected as the refrigerant, mainly from the viewpoint of high cycle efficiency and safety, while a 1:1 mixture of lithium bromide (LiBr) and zinc chloride (ZnCl/sub 2/) by weight has been chosen as the absorbent in view of its higher solubility and affinity for water. Based on thermodynamic analysis with experimental data on properties, the new absorbent solution will give a heating COP of 1.57 and a cooling COP of 1.00 as gross values of double-effect absorption cycles, including a boiler efficiency of 80%. As a result of an experimental investigation on corrosiveness and corrosion inhibitors, promising equipment materials and inhibitors have been discovered. Prototypical units of 3.5kw (1-ton) and 35kw (10-ton) have been installed and are undergoing demonstration testing in the laboratory.

  10. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.0 - CRITICAL, SPECIAL, & ENGINEERED LIFTS January 4, 2016 Rev 1 Page 1 CHAPTER 3.0 TABLE OF CONTENTS 3.0 CRITICAL LIFTS ....................................................................................................................................... 3 3.1 SCOPE .......................................................................................................................................................... 3 3.2 CRITICAL LIFT DETERMINATION

  11. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  12. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  13. Deposition of device quality, low hydrogen content, amorphous silicon films by hot filament technique using ``safe`` silicon source gas

    DOE Patents [OSTI]

    Mahan, A.H.; Molenbroek, E.C.; Nelson, B.P.

    1998-07-07

    A method is described for producing hydrogenated amorphous silicon on a substrate by flowing a stream of safe (diluted to less than 1%) silane gas past a heated filament. 7 figs.

  14. Modern technical solutions of gas-fired heating devices of household and communal use and analysis of their testing

    SciTech Connect (OSTI)

    Bodzon, L.; Radwan, W.

    1995-12-31

    A review of technical solutions for gas-fired heating devices for household and communal use in Poland is presented. Based upon the analysis it is stated that the power output of Polish and foreign boilers ranges between 9 and 35 kW. The carbon monoxide content in flue gases reaches (on average) 0.005 vol.%, i.e., it is much lower than the maximum permissible level. Temperature of flue gases (excluding condensation boilers and those with air-tight combustion chamber) ranges between 150 and 200{degrees}C and their heating efficiency reaches 87-93%. The best parameters are given for condensation boilers, however they are still not widespread in Poland for the high cost of the equipment and assembling works. Among the heaters, the most safe are convection devices with closed combustion chamber; their efficiency is also the highest. Thus, it is concluded that a wide spectrum of high efficiency heating devices with good combustion parameters are available. The range of output is sufficient to meet household and communal requirement. They are however - predominantly - units manufactured abroad. It is difficult to formulate the program aimed at the improvement of the technique of heating devices made in Poland, and its implementation is uncertain because the production process is broken up into small handicraft workshops.

  15. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume 2, Sampling Technical Requirements Effective Date: 6/1/07 Vol. 2: i CONTENTS 1.0 SAMPLING AND ANALYSIS PROCESS .................................................................... 1-1 2.0 DATA QUALITY OBJECTIVES ................................................................................... 2-1 3.0 SAMPLING SYSTEMS .................................................................................................. 3-1 3.1 Facility Management

  16. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume 4, Laboratory Technical Requirements Effective Date: 6/1/07 Vol. 4: i CONTENTS 1.0 QUALITY ASSURANCE OBJECTIVES......................................................................... 1-1 1.1 DATA QUALITY OBJECTIVES............................................................................ 1-1 1.2 CLIENT DATA QUALITY REQUIREMENTS ..................................................... 1-2 1.2.1 Precision

  17. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 2, Heating season

    SciTech Connect (OSTI)

    Miller, J.D.

    1995-11-01

    The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

  18. Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season

    Reports and Publications (EIA)

    2000-01-01

    This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

  19. Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program and Book of Abstracts Contents Organizers i-ii Detailed Program iii-viii Oral presentations 1-38 Posters P1-P27 Program Schematic back cover The LAPD Symposium brings together scientists from laser physics, low- temperature plasma chemistry and physics, and nuclear fusion. The Symposium is an important, unique, and fruitful source for cross-fertilization between these fields. Major topics include laser-aided diagnostics for fusion plasmas, industrial process plasmas, and environmental

  20. Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 August 2005 Contents Bechtel Nevada achieves 5 million hours! 1 WSI graduates fresh members of security 1 protective forces Handling radiation emergencies 2 SiteLines features a new editor 2 Rocky Flats survey 3 NTS Swift Water Rescue Team practices on the 3 Colorado River Drilling Program overcomes challenges at the NTS 3 Toastmasters: making effective communication a 4 worldwide reality Atomic Testing Museum update 4 Two more successful shots at JASPER 5 Hazardous Substance Inventory users 5

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Natural Gas Gross Withdrawals from Gas ... 1:07:58 AM" "Back to Contents","Data 1: Nevada Natural Gas Gross Withdrawals from Gas ...

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals from Gas ... 7:01:18 AM" "Back to Contents","Data 1: Kansas Natural Gas Gross Withdrawals from Gas ...

  3. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  4. Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 June/July 2005 Contents Fires burn Nevada Test Site in June NNSA/NSO and Department of Homeland Security break ground at the Nevada Test Site U1h ribbon cutting marks the remarkable New training grounds dedicated at NTS Changes enhance the EAP Unicorn subcritical experiment completes key milestone New communication system takes flight SiteLines goes online DNFSB visits U1a Funnel clouds at the Nevada Test Site Community Environmental Monitor receives EPA award Take Our Daughters and Sons to

  5. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    SciTech Connect (OSTI)

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

  6. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    SciTech Connect (OSTI)

    Moses, L. Ng; Chien-Liang Lin; Ya-Tang Cheng

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas in Underground Storage ... 6:59:57 AM" "Back to Contents","Data 1: Kansas Natural Gas in Underground Storage ...

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Injections into Underground ... 7:00:26 AM" "Back to Contents","Data 1: Minnesota Natural Gas Injections into Underground ...

  9. Experimental investigation on impingement heat transfer of gas-solid suspension flow

    SciTech Connect (OSTI)

    Yokomine, Takenhiko; Shimizu, Akihiko

    1999-07-01

    This paper aims to demonstrate experimentally the heat transfer performance of dense gas-solid suspension impinging jet for diverter cooling of the fusion power reactor. Prior to the experimental study, a tentative goal of 20 kW/m{sup 2}K was set as the heat transfer coefficient based on the expected temperature level of both coolant and diverter plate materials. Figure A-1 summarizes the results of experiments, where H/D is non-dimensional space between nozzle exit and impingement plate. The ranges of examined nozzle Reynolds number Re{sub N} and thermal loading ratio {Gamma}{sub th} were 5.5 x 10{sup 4} {<=} Re{sub N} {<=} 2.4 x 10{sup 5} and 0 {<=} {Gamma}{sub th} {<=} 8.55, respectively. When the glassy-carbon (G-C) particles with 26{micro}m in diameter were used, the maximum heat transfer coefficient could not reach the target value because the solid flow rate was restricted by the crucial erosion damage of test plate and a strong vibration observed in the test line. On the other hand, in the case that the fine graphite particles (10{micro}m in diameter) were used, the maximum heat transfer coefficient of 20 kW/m{sup 2}K was obtained at relatively dilute condition of solid loading ratio, which is considered to be due to the additive production of turbulence by particles' wake. Furthermore, the following consideration can be obtained. (1) Changing the particle from hard glassy carbon to soft and fine graphite is effective not only for anti-erosion but also for heat transfer enhancement by increasing heat capacity. (2) Turbulence augmentation by particles is also important for heat transfer enhancement in addition to the increased heat capacity. However, increasing the solid loading is likely to lead to the saturation of heat transfer enhancement effect, on the contrary, to the attenuation of turbulence. (3) If soft and fine particle, like graphite of 10{micro}m diameter employed in present study, is used as suspended particle in coolant for anti-erosion, the

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    average heat content of 1,027 Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas....

  11. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  12. Laboratory Performance Evaluation of Residential Scale Gas Engine Driven Heat Pump

    SciTech Connect (OSTI)

    Abu-Heiba, Ahmad; Mehdizadeh Momen, Ayyoub; Mahderekal, Dr. Isaac

    2016-01-01

    Building space cooling is, and until 2040 is expected to continue to be, the single largest use of electricity in the residential sector in the United States (EIA Energy Outlook 2015 .) Increases in electric-grid peak demand leads to higher electricity prices, system inefficiencies, power quality problems, and even failures. Thermally-activated systems, such as gas engine-driven heat pump (GHP), can reduce peak demand. This study describes the performance of a residential scale GHP. It was developed as part of a cooperative research and development agreement (CRADA) that was authorized by the Department of Energy (DOE) between OAK Ridge National Laboratory (ORNL) and Southwest Gas. Results showed the GHP produced 16.5 kW (4.7 RT) of cooling capacity at 35 C (95 F) rating condition with gas coefficient of performance (COP) of 0.99. In heating, the GHP produced 20.2 kW (5.75 RT) with a gas COP of 1.33. The study also discusses other benefits and challenges facing the GHP technology such as cost, reliability, and noise.

  13. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    Blog entry Discussion Document Event Poll Question Keywords Author Apply There is no matching content in the group. Group links The technology of Condensing Flue Gas Heat Recovery...

  14. Emergency Decay Heat Removal in a GEN-IV Gas-Cooled Fast Reactor

    SciTech Connect (OSTI)

    Cheng, Lap Y.; Ludewig, Hans; Jo, Jae [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (United States)

    2006-07-01

    A series of transient analyses using the system code RELAP5-3d has been performed to confirm the efficacy of a proposed hybrid active/passive combination approach to the decay heat removal for an advanced 2400 MWt GEN-IV gas-cooled fast reactor. The accident sequence of interest is a station blackout simultaneous with a small break (10 sq.inch/0.645 m{sup 2}) in the reactor vessel. The analyses cover the three phases of decay heat removal in a depressurization accident: (1) forced flow cooling by the power conversion unit (PCU) coast down, (2) active forced flow cooling by a battery powered blower, and (3) passive cooling by natural circulation. The blower is part of an emergency cooling system (ECS) that by design is to sustain passive decay heat removal via natural circulation cooling 24 hours after shutdown. The RELAP5 model includes the helium-cooled reactor, the ECS (primary and secondary side), the PCU with all the rotating machinery (turbine and compressors) and the heat transfer components (recuperator, pre-cooler and inter-cooler), and the guard containment that surrounds the reactor and the PCU. The transient analysis has demonstrated the effectiveness of passive decay heat removal by natural circulation cooling when the guard containment pressure is maintained at or above 800 kPa. (authors)

  15. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect (OSTI)

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  16. Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990

    SciTech Connect (OSTI)

    Mahrle, P.

    1990-12-01

    Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

  17. A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat Introduction In order for metal products to have desired properties, most metal is thermally processed at a high temperature one or more times under a controlled atmosphere. Many different thermal operations are used including oxide reduction, annealing, brazing, sintering, and carburizing. A mixture of hydrogen and nitrogen gas often provides a reducing

  18. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect (OSTI)

    Swindeman, R.W.; Ren, W.

    1996-06-01

    The objective of the research is to provide databases and design criteria to assist in the selection of optimum alloys for construction of components needed to contain process streams in advanced heat recovery and hot-gas cleanup systems. Typical components include: steam line piping and superheater tubing for low emission boilers (600 to 700{degrees}C), heat exchanger tubing for advanced steam cycles and topping cycle systems (650 to 800{degrees}C), foil materials for recuperators, on advanced turbine systems (700 to 750{degrees}C), and tubesheets for barrier filters, liners for piping, cyclones, and blowback system tubing for hot-gas cleanup systems (850 to 1000{degrees}C). The materials being examined fall into several classes, depending on which of the advanced heat recovery concepts is of concern. These classes include martensitic steels for service to 650{degrees}C, lean stainless steels and modified 25Cr-30Ni steels for service to 700{degrees}C, modified 25Cr-20Ni steels for service to 900{degrees}C, and high Ni-Cr-Fe or Ni-Cr-Co-Fe alloys for service to 1000{degrees}C.

  19. LOx breathing system with gas permeable-liquid impermeable heat exchange and delivery hose

    DOE Patents [OSTI]

    Hall, M.N.

    1996-04-30

    Life support apparatus is composed of: a garment for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment; a portable receptacle holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous state when at standard temperature and pressure; a fluid flow member secured within the garment and coupled to the receptacle for conducting the fluid in liquid state from the receptacle to the interior of the garment; and a fluid flow control device connected for causing fluid to flow from the receptacle to the fluid flow member at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer. 6 figs.

  20. Lox breathing system with gas permeable-liquid impermeable heat exchange and delivery hose

    DOE Patents [OSTI]

    Hall, Mark N.

    1996-01-01

    Life support apparatus composed of: a garment (2): for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment (2); a portable receptacle (6) holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous; state when at standard temperature and pressure; a fluid flow member (16) secured within the garment (2) and coupled to the receptacle (6) for conducting the fluid in liquid state from the receptacle (6) to the interior of the garment (2); and a fluid flow control device (14) connected for causing fluid to flow from the receptacle (6) to the fluid flow member (16) at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment (2) at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer.

  1. KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

  2. Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020

    SciTech Connect (OSTI)

    Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

    2007-07-31

    The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

  3. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect (OSTI)

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  4. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,030

  5. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 NA NA NA NA NA NA NA NA NA NA NA NA 2013 1,026 1,026 1,026 1,026 1,027 1,027 1,027 1,027 1,027 1,027 1,028 1,028 2014 ...

  6. Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,011 1,012 2010's 1,004 1,011 1,019 1,031 1,039 1,055

  7. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,033 1,034 1,043

  8. New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,044 1,040 1,035 2010's 1,037 1,040 1,032 1,030 1,032 1,031

  9. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,035 1,033 1,029 2010's 1,026 1,026 1,029 1,045 1,042 1,046

  10. New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,025 1,028 2010's 1,021 1,022 1,024 1,030 1,035 1,041

  11. New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,023 1,021 1,021 2010's 1,022 1,025 1,031 1,033 1,031 1,033

  12. North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,027 1,023 2010's 1,015 1,011 1,011 1,013 1,01

  13. North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,046 1,042 1,055 2010's 1,055 1,073 1,065 1,082 1,064 1,054

  14. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,046 1,045 1,067

  15. Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,034 1,033 2010's 1,032 1,032 1,030 1,036 1,040 1,047

  16. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,015 1,025 1,037

  17. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,038 1,037 2010's 1,034 1,036 1,040 1,049 1,047 1,047

  18. Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,016 1,016 1,016 1,016 1,017 1,016 1,016 1,017 1,018 1,018 2014 1,018 1,017 1,019 1,021 1,024 1,025 1,026 1,027 1,029 1,027 1,029 1,028 2015 1,028 1,026 1,029 1,032 1,031 1,032 1,032 1,030 1,030 1,030 1,029 1,029 2016 1,029 1,025 1,030 1,028 1,028 1,026

  19. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,002 1,001 1,001 1,001 1,002 1,003 1,003 1,002 1,002 1,001 1,001 1,000 2014 1,002 1,004 1,001 1,002 1,001 1,001 1,001 1,001 1,001 1,001 1,001 1,001 2015 1,000 1,000 1,001 1,002 1,001 1,002 1,002 1,002 1,001 1,001 1,001 1,000 2016 1,000 1,000 1,001 1,001 1,002 1,003

  20. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,025 1,027 1,027 1,027 1,031 1,028 1,026 1,026 1,025 1,024 1,025 2014 1,025 1,023 1,024 1,028 1,029 1,028 1,028 1,031 1,033 1,034 1,035 1,034 2015 1,034 1,035 1,033 1,034 1,033 1,037 1,037 1,037 1,037 1,035 1,037 1,037 2016 1,038 1,036 1,034 1,035 1,021 1,042

  1. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30 34 31 31 22 2010's 28 21 10 13 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Arkansas Coalbed Methane Proved

  2. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,020 1,019 2010's 1,019 1,032 1,039 1,042 1,043 1,058

  3. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 245 2010's 225 501 314 1,046 1,426 933 Foot)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,026 1,027 2010's 1,022 1,018 1,015 1,016 1,022 1,028

  4. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Has Driving Come to a Halt? Don Pickrell, Volpe Center Energy Information Administration 2014 Energy Conference July 15, 2014 The National Transportation Systems Center Advancing transportation innovation for the public good U.S. Department of Transportation Office of the Secretary of Transportation John A. Volpe National Transportation Systems Center 2 Here's What's New... 90% 100% 110% 120% 0 12 24 36 48 60 VMT as a % of Pre-Recession Level Nov 1973 - Mar 1975 Jan-July 1980 July 1981 - Nov

  5. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,015 1,014 1,013 2010's 1,008 1,011 1,011 1,016 1,021 1,029

  6. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,022 1,013 1,015 2010's 1,012 1,012 1,012 1,015 1,021 1,036

  7. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    722,847 664,554 667,341 621,099 617,626 592,975 2001-2016 Alabama 18,803 16,519 16,683 15,853 16,730 15,245 2001-2016 Alaska 479 243 237 183 261 363 2001-2016 Arizona 2,020 1,785 1,701 1,570 1,584 1,537 2001-2016 Arkansas 7,825 7,184 6,885 6,457 6,363 5,975 2001-2016 California 64,347 58,941 62,711 61,587 63,299 62,742 2001-2016 Colorado 9,107 7,704 7,546 6,629 6,148 4,995 2001-2016 Connecticut 2,817 2,565 2,082 1,958 1,746 1,632 2001-2016 Delaware 2,821 2,517 2,666 2,464 2,643 2,335 2001-2016

  8. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,021 1,023 1,021 2010's 1,016 1,014 1,017 1,017 1,021 1,03

  9. Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,026 1,019 2010's 1,014 1,010 1,012 1,016 1,029 1,031

  10. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,017 1,016 1,011 2010's 1,012 1,016 1,025 1,028 1,026

  11. Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,011 1,012 2010's 1,004 1,011 1,019 1,031 1,039 1,055

  12. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,033 1,034 1,043

  13. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,035 1,033 1,029 2010's 1,026 1,026 1,029 1,045 1,042 1,046

  14. North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,046 1,042 1,055 2010's 1,055 1,073 1,065 1,082 1,064 1,054

  15. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,046 1,045 1,067

  16. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,015 1,025 1,037

  17. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,038 1,037 2010's 1,034 1,036 1,040 1,049 1,047 1,047

  18. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Review of EIA oil production outlooks For 2014 EIA Energy Conference July 15, 2014 | Washington, DC By Samuel Gorgen, Upstream Analyst Overview Gorgen, Tight Oil Production Trends EIA Conference, July 15, 2014 2 * Drilling Productivity Report performance review - Permian - Eagle Ford - Bakken * Crude oil production projections - Short-Term Energy Outlook - Annual Energy Outlook - International tight oil outlook * New DPR region highlights: Utica Drilling Productivity Report review - major tight

  19. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,003 1,003 1,002 2010's 1,005 1,005 1,018 1,023 1,035 1,051

  20. Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,038 1,037 1,028 2010's 1,023 1,014 1,014 1,021 1,026 1,027

  1. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,027 1,030 1,033

  2. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,022 1,024 1,027 1,030 1,037 2003-2015 Total Consumption 1,023 1,022 1,024 1,027 1,032 2003-2014 Electric Power 1,022 1,021 1,022 1,025 1,029 2003-2014 Other Sectors 1,023 1,022 1,025 1,028 1,032 2003-2014 Foot)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,030 1,037

  3. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,047 1,041 1,044

  4. Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    3,329 3,007 3,329 3,222 3,329 3,222 1997-2016 Alabama 21 19 21 20 36 34 2010-2016 Alaska 1 1 1 1 1 1 2010-2016 Arizona 192 173 192 186 206 199 2010-2016 Arkansas 3 3 3 3 3 3 2010-2016 California 1,565 1,413 1,565 1,514 1,447 1,400 2010-2016 Colorado 30 27 30 29 31 30 2010-2016 Connecticut 5 5 5 5 2 2 2010-2016 Delaware 0 0 0 0 0 0 2010-2016 District of Columbia 95 86 95 92 76 73 2010-2016 Florida 19 18 19 19 27 26 2010-2016 Georgia 111 100 111 107 102 99 2010-2016 Hawaii 1 1 1 1 0 0 2010-2016

  5. Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,035 1,038 1,036 2010's 1,028 1,027 1,034 1,040 1,041 1,053

  6. West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,074 1,073 1,082 2010's 1,076 1,083 1,080 1,083 1,073 1,086

  7. Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Conference John R. Auers, P.E. Executive Vice President July 14, 2014 Washington, D. C. When is the "Day of Reckoning" and how will the industry respond? 0 10 20 30 40 50 60 70 80 90 Refinery Utilization U.S. Production Canadian Imports Saudi Imports Other Light & Medium WB Imports Heavy Waterborne Imports Pre U.S. Crude Boom (~2007/2008) 2 Export regulations irrelevant. Declining U.S. crude production replaced by increasing imports - exceed 10 MM BPD Light & Medium waterborne

  8. Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,036 1,031 1,031 2010's 1,031 1,034 1,034 1,041 1,042 1,056

  9. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,039 1,037 1,034 1,031 1,032 1,031 1,033 1,039 1,032 1,029 1,034 2014 1,033 1,033 1,032 1,034 1,032 1,033 1,033 1,035 1,033 1,036 1,036 1,037 2015 1,040 1,040 1,041 1,043 1,043 1,045 1,044 1,043 1,044 1,043 1,043 1,042 2016 1,043 1,042 1,037 1,042 1,039 1,038

  10. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,028 1,027 2010's 1,023 1,020 1,022 1,028 1,028 1,035

  11. New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,032 1,031 1,031 1,031 1,034 1,035 1,034 1,033 1,034 1,034 1,033 1,032 2014 1,032 1,031 1,032 1,031 1,031 1,031 1,031 1,031 1,031 1,032 1,032 1,033 2015 1,034 1,035 1,034 1,034 1,032 1,032 1,031 1,031 1,032 1,032 1,032 1,033 2016 1,033 1,034 1,033 1,033 1,029 1,030

  12. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,034 1,033 1,033 1,035 1,035 1,038 1,037 1,044 1,045 1,044 1,043 1,044 2014 1,044 1,042 1,041 1,050 1,047 1,048 1,053 1,052 1,052 1,054 1,057 1,060 2015 1,065 1,062 1,062 1,073 1,072 1,068 1,069 1,068 1,071 1,071 1,077 1,077 2016 1,073 1,072 1,070 1,068 1,070 1,069

  13. Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,040 1,037 1,038 1,039 1,041 1,043 1,044 1,042 1,042 1,044 1,043 1,042 2014 1,036 1,036 1,039 1,037 1,040 1,043 1,042 1,042 1,044 1,043 1,041 1,041 2015 1,042 1,043 1,044 1,045 1,048 1,049 1,050 1,047 1,049 1,049 1,047 1,050 2016 1,049 1,047 1,048 1,044 1,047 1,046

  14. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,010 1,012 1,011 1,017 1,020 1,020 1,023 1,021 1,014 1,013 1,013 2014 1,013 1,012 1,010 1,034 1,041 1,044 1,029 1,035 1,033 1,029 1,028 1,028 2015 1,031 1,031 1,032 1,035 1,039 1,042 1,039 1,039 1,038 1,036 1,035 1,036 2016 1,033 1,034 1,036 1,038 1,043 1,044

  15. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,047 1,046 1,047 1,047 1,047 1,048 1,051 1,048 1,049 1,049 1,054 1,053 2014 1,052 1,050 1,048 1,046 1,044 1,044 1,046 1,046 1,045 1,044 1,049 1,052 2015 1,053 1,054 1,049 1,049 1,050 1,046 1,044 1,044 1,044 1,045 1,046 1,046 2016 1,048 1,045 1,042 1,042 1,042 1,041

  16. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,030 1,030 1,032 1,034 1,031 1,032 1,032 1,033 1,034 1,031 1,031 2014 1,031 1,032 1,031 1,030 1,028 1,023 1,029 1,029 1,027 1,030 1,029 1,029 2015 1,029 1,029 1,029 1,029 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 2016 1,032 1,027 1,025 1,034

  17. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,020 1,021 1,019 1,019 1,017 1,019 1,020 1,020 1,020 1,020 1,020 2014 1,022 1,021 1,022 1,022 1,022 1,023 1,022 1,024 1,028 1,027 1,028 1,029 2015 1,030 1,028 1,028 1,029 1,030 1,030 1,031 1,029 1,031 1,031 1,030 1,030 2016 1,031 1,031 1,029 1,031 1,030 1,029

  18. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,028 1,030 1,029 1,028 1,028 1,029 1,031 1,030 1,029 1,031 1,030 1,034 2014 1,034 1,034 1,035 1,036 1,039 1,041 1,039 1,045 1,045 1,049 1,048 1,048 2015 1,048 1,048 1,047 1,051 1,054 1,059 1,062 1,060 1,056 1,053 1,053 1,058 2016 1,060 1,058 1,053 1,052 1,054 1,058

  19. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Lap-Yan; Wei, Thomas Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow weremore » evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.« less

  20. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.